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ABSTRACT
We propose modifications to the functional form of the Strongly Constrained and Appropriately Normed (SCAN) density functional to elim-
inate numerical instabilities. This is necessary to allow reliable, automatic generation of pseudopotentials (including projector augmented-
wave potentials). The regularized SCAN is designed to match the original form very closely, and we show that its performance remains
comparable.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5094646

I. INTRODUCTION

First principles modeling of electronic structure has become
a standard tool in studying the structure, stability, and dynamics
of matter on the atomistic scale, with Density Functional Theory
(DFT) being particularly popular, due to the balance of computa-
tional accuracy and cost.1 The major source of inaccuracy in Kohn-
Sham DFT calculations2 is the necessity of using the exchange-
correlation functional, which for general systems, only exists in
approximate forms. Semilocal functionals based on the General-
ized Gradient Approximation (GGA), for example, the Perdew-
Burke-Ernzerhof (PBE) functional,3 model the electronic structure
at a reasonable accuracy for a wide range of problems. However,
there is a need for functionals with yet greater accuracy. Com-
pared to GGAs, the meta-generalized Gradient Approximations
(mGGA) provide more flexibility in the approximate functional
form by introducing another local property on which the exchange-
correlation functional depends, the orbital kinetic energy density,
in addition to the electron density and its gradients. The recently
proposed Strongly Constrained and Appropriately Normed (SCAN)
functional is the first mGGA constructed such that it satisfies all
known constraints that a semi-local functional can satisfy, and
the remaining free parameters are fitted to reproduce exact or
accurate reference values, or norms, of exchange and correlation
energies. The resulting functional has proved broadly transferable4

and improved the DFT description of a wide range of systems,
such as liquid water and ice,5 semiconductor materials,6 or metal
oxides.7

Despite the tremendous success of SCAN, its implementation
in DFT packages intended for condensed matter simulations is, at
the time of writing this manuscript, somewhat limited. For example,
most recent versions of the all-electron general potential linearized
augmented plane wave (LAPW) codes elk8 and WIEN2K9 only allow
non-selfconsistent calculations with mGGA functionals. To date, in
plane-wave pseudopotential DFT implementations, the availability
of SCAN-based pseudopotentials has also been limited, and to our
knowledge, only a norm-conserving library exists,10 which is lacking
kinetic energy density augmentation terms and nonlinear core cor-
rections. For this reason, many calculations published on condensed
phase simulations use PBE pseudopotentials,5,11–15 which at best is
an uncontrolled approximation. This type of inconsistency in using
pseudopotentials has been studied by Fuchs et al.,16 and they have
shown that using local density approximation (LDA) pseudopoten-
tials in GGA calculations leads to significant errors in the calculated
structural properties. We have also found earlier17 that all-electron
properties are much more accurately reproduced when consistent
pseudopotentials are used.

Our motivation for this current work was to generate a library
of SCAN ultrasoft pseudopotentials for the entire periodic table,
based on our previous work.17 However, we found severe numer-
ical instabilities in both the solution of the atomic all-electron
generalized Kohn-Sham equation, which is normally the first step
in the pseudopotential generation workflow and again during the
pseudopotential construction itself. Indeed, it has been previously
observed that SCAN is numerically less stable than GGA exchange-
correlation functionals,18 and recent work has identified shortcom-
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ings of the isoorbital indicator component of some mGGA function-
als.19 To remedy this situation, we propose a regularized form of the
original SCAN functional (rSCAN), which retains the accuracy of
the original form, while improving its stability.

In this paper, we analyze the properties of the isoorbital indi-
cator of SCAN used to connect different approximations of the
exchange-correlation energy based on the local bonding environ-
ment. We describe a modification that eliminates the unphysical
divergence of the exchange-correlation potential, which occurs in
some free atoms, while keeping the isoorbital indicator close to the
original expression for most regions. We also identify a feature of the
switching function in SCAN, which introduces rapidly oscillating
regions in the exchange-correlation potential. This causes instabil-
ities in the pseudopotential generation procedure and also affects
the discrete representation of the potential on a Fourier grid, which
is pivotal in DFT programs using a plane-wave basis set. We pro-
pose a small modification, which provides smoother switching, while
retaining the superb description of the exchange-correlation energy
of the original SCAN functional. We test the rSCAN to establish
its closeness to the original form and provide benchmark calcu-
lations of fully consistent plane-wave pseudopotential DFT with
rSCAN.

II. REGULARIZED SCAN
A. The isoorbital indicator function

A crucial ingredient in SCAN20 and some other mGGA func-
tionals21 is the isoorbital indicator function defined as α = τ−τW

τU
,

with the definitions of the used quantities listed in Table I. α detects
the different local bonding environments, such as covalent single,
metallic, or weak bonds, and is used to switch between various local
approximations of the exchange and correlation energies, derived
for the appropriate bonding type.

However, Furness and Sun19 have found that derivatives of α
with respect to the electron density display divergent behavior at
rapidly decreasing electron densities, such as in some free atoms at
large distance from the nucleus. The consequence is that the poten-
tial itself becomes divergent in these cases, as the derivatives of α
appear in the expressions for the potential and are not dampened
sufficiently by other terms. Therefore, the resulting exchange or cor-
relation potentials can diverge, for example, in the case of the hydro-
gen 1s type orbital. Figure 1 shows the SCAN exchange-correlation
potential corresponding to the density and kinetic energy density of
ψ(r) = e−r/√π, the H 1s orbital, exhibiting the unphysically divergent
behavior.

FIG. 1. SCAN and rSCAN exchange-correlation potentials computed on densities
corresponding to a singly occupied 1s orbital. PBE is also shown for reference.

Furness and Sun19 suggested an alternative isoorbital indicator
function β = τ−τW

τ+τU
, which still displays some divergence, but at a

significantly smaller rate, therefore in total resulting in a physically
well-behaved potential. In this paper, however, we intend to pro-
pose the least amount of modification in the SCAN functional form;
hence, we resorted to regularizing the original isoorbital indication
function.

The worst divergence occurs in the low-density, single-orbital
region, where α ≈ 0, or in case of the 1s orbital example, α = 0 exactly.
It is partially due to the rapidly decreasing τU in the denominator of
α, which leads to numerical instabilities at low-density regions in α.
We propose our first regularization in the kinetic energy density of
the uniform electron gas as τ′U = τU + τr , where τr = 1 × 10−4 is a
small constant, which only affects α at very low densities.

The second proposed regularization is described as α′ = α3

α2+αr
,

where αr = 1 × 10−3 is a small constant, and the regularized isoor-
bital indicator function α′ only differs from the original α function
at small values. However, in the single-orbital region, this construc-
tion allows vanishing derivatives of α′ with respect to n, ∇n, and τ,
therefore minimizing the interference of the switching construction
with the physically motivated parts of the exchange and correlation
functional expressions. It should be noted, however, that upon intro-
ducing τ′ and α′, the exchange energy no longer scales exactly under

TABLE I. Definition of the quantities based on the Kohn-Sham orbitals used in this work.

Kohn-Sham orbitals ψi

Orbital kinetic energy density τ = 1/2∑occ
i ∣∇ψi∣2

Electron density n = ∑occ
i ∣ψi∣2

Weizsäcker kinetic energy density τW = ∣∇n∣2
8n

Kinetic energy density of the uniform electron gas τU = (3/10)(3π2)2/3n5/3
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uniform scaling of the density, although in a practical calculation
this effect is expected to remain negligible.

In low-density regions, rSCAN corrects the divergence of
derivatives, as well as adjusting the physical interpretation that the
isoorbital indicator provides. For example, in the case of isolated
noble gas atoms, with the exception of helium, the tail of the valence
p orbitals tends to dominate far from the nucleus. According to the
original definition, this results in α≫ 1 at greater distances from the
nucleus, corresponding to weak bonds,20 whereas the regularized α
indicator returns to zero. This is more similar to helium, where α = 0
everywhere, by construction. Figure 2 compares the original and the
regularized isoorbital indicator functions for the isolated Kr atom,
also indicating the proportion of the highest contributing orbital
type.

B. The switching function
The original SCAN functional form includes a switching func-

tion, based on the isoorbital indicator. The switching function
facilitates a smooth transition between limiting cases, which are
constructed observing the constraints based on exact density func-
tional. The functional form of the switching function had been care-
fully selected, and its parameters were fitted such that the result-
ing exchange and correlation energies reproduce those of accurate
model systems. Even so, the actual form is arbitrary, and we identi-
fied the region corresponding to α ≈ 1 as another source of numer-
ical instability. Figure 3 shows the switching function and its first
and second derivatives, both contributing to the resulting exchange
and correlation potentials. The region around α ≈ 1 is constructed
so flat that f (n)(1) = 0 for every n, in order to preserve the gradi-
ent expansion for the exchange energy in the slowly varying limit.
However, this in turn introduces severe oscillations in the deriva-
tives at the surrounding region. These oscillations also manifest in

FIG. 2. Top panel: Isoorbital indicator function of SCAN and rSCAN, as evaluated
on the Kr self-consistent densities computed with the PBE exchange-correlation
functional, shown as a function of distance from the nucleus. Bottom panel: At each
distance, fraction of the contribution from the highest contributing single orbital to
the total electron density for the isolated Kr atom.

FIG. 3. Switching functions and their derivatives used in the exchange functional
of SCAN and rSCAN.

the exchange-correlation potential, as shown for GGA part of the
potential in Fig. 4 and mentioned in Ref. 18.

Our intent is to make minimal changes to the switching func-
tion, and we found that replacing the region 0 < α < 2.5 by a 7-th
degree polynomial removes the oscillatory behavior, while keep-
ing the performance of SCAN similar to the original functional
form, although recognizing that we lose the gradient expansion in
the slowly varying limit. We fitted the coefficients (supplementary
material) of the polynomials such that the derivatives f (0,1,2)(0) and
f (0,1,2,3)(2.5) are retained and the additional constraint f (1) = 0 is
satisfied. Figure 3 compares the original and modified switch-
ing functions and their derivatives, demonstrating the improved

FIG. 4. Multiplicative part of the SCAN and rSCAN exchange-correlation potentials
computed using the PBE self-consistent electronic and kinetic energy densities
of isolated He (top) and Ge (bottom) atoms. The PBE result is also shown for
reference.
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TABLE II. Exchange and correlation energies of isolated noble gas atoms, in
hartrees. Original SCAN values are obtained from Ref. 20, reference values from
Refs. 27–29.

Ne Ar Kr Xe

Ex SCAN −12.164 −30.263 −94.068 −179.325
rSCAN −12.163 −30.298 −94.199 −179.632
Ref. −12.108 −30.188 −93.890 −179.200

Ec SCAN −0.345 −0.691 −1.756 −2.899
rSCAN −0.345 −0.695 −1.768 −2.914
Ref. −0.391 −0.723 −1.850 −3.000

Exc SCAN −12.508 −30.954 −95.826 −182.218
rSCAN −12.508 −30.993 −95.966 −182.546
Ref. −12.499 −30.911 −95.740 −182.200

smoothness, as also evidenced in the practical case of two isolated
atoms in Fig. 4.

III. RESULTS
We implemented rSCAN in the CASTEP22 plane-wave pseu-

dopotential DFT program and the PySCF quantum chemistry pack-
age.23 Self-consistent calculations were performed by solving the
generalized Kohn-Sham equations iteratively.18,24 In CASTEP, ultra-
soft pseudopotentials were generated on-the-fly, using the method-
ology we described elsewhere.17 We have also pseudized the τ-
dependent part, Vτ of the exchange-correlation potential. In our
solid-state calculations, we used Monkhorst-Pack k-point grids25

with a 0.02 Å−1 (0.014 Å−1 in case of metals) spacing to sam-
ple the Brillouin zone, and the basis_precision: extreme set-
ting in CASTEP for the energy cutoff of the plane-wave basis.
PySCF was used to compute the Ar dimer dissociation ener-
gies, using the aug-cc-PVQZ basis set26 at the standard grid set-
tings. We used CASTEP to optimize the geometry of the water
monomer and hexamer configurations, using a cubic box with 15 Å
sides, 750 eV plane-wave cutoff, and the Γ point in the Brillouin
zone.

The parameters in the exchange and correlation switching
function of the original SCAN were fitted to reproduce the exchange
and correlation energies of isolated Ne, Ar, Kr, and Xe atoms, the
interaction energies of compressed Ar dimers, and the jellium sur-
face exchange-correlation energy. We compared the accuracy of
these quantities, with the exception of the jellium surface exchange-
correlation energy, and summarized the results in Table II. For the
relative binding energy curve of the Ar dimer at 1.6 Å, 1.8 Å, and

TABLE III. Equilibrium lattice constants (Å) of a selection of metallic and semicon-
ductor solids (a subset of “LC20” in Ref. 20), computed using the rSCAN functional.
Experimental values, corrected for zero point anharmonic expansion, were taken from
Ref. 30, and reference SCAN values from Ref. 20.

Li Na Ag C Si SiC LiF MgO

Expt. 3.451 4.207 4.063 3.555 5.422 4.348 3.974 4.188
SCAN 3.460 4.190 4.079 3.550 5.424 4.349 3.980 4.206
rSCAN 3.453 4.197 4.039 3.555 5.441 4.353 3.964 4.200

TABLE IV. Dissociation energies (meV/monomer) of a few low-energy water hexam-
ers conformations, the equilibrium bond length (Å), bond angle, and dipole moment
(Debye) of the water molecule. Reference hexamer dissociation values are computed
by CCSD(T),31 while the geometry of the water molecule is from Ref. 32 and its dipole
moment from Ref. 33. SCAN values were obtained from Ref. 4.

Prism Cage Book Chair rOH θHOH (deg) µ

Ref. 348 346 339 332 0.957 104.5 1.855
SCAN 377 376 370 360 0.961 104.5 1.847
rSCAN 359 358 356 348 0.959 104.4 1.847

2.0 Å, the mean absolute error of rSCAN is 1.1 kcal/mol, while the
figure for the original SCAN was below 1 kcal/mol.

We also benchmarked the rSCAN on some model systems in
the literature where results with the original SCAN are available.
The set is far from complete, and we note that the literature fig-
ures are not consistent: they were obtained by a broad range of
codes using different basis sets, in some cases with inconsistent
projector augmented-wave (PAW) pseudopotentials. However, our
results demonstrate that rSCAN has a performance comparable to
the original SCAN functional.

Table III lists the lattice constants of a set of simple solids as
calculated with rSCAN and compares them to experiment as well
as the original SCAN figures reproduced from the supplementary
material of Ref. 20, showing good agreement. A recently published
shortcoming of SCAN is the overestimation of magnetic energies of
ferromagnetic systems.11 We have found that rSCAN performs sim-
ilarly, obtaining m = 2.62 µB of the spin moments for bcc iron at an
optimized lattice constant of 2.84 Å, in good agreement of the SCAN
values presented in Ref. 11m = 2.60 µB at the optimized 2.85 Å lattice
constant.

Interaction energies of water systems are a very strict test of
density functionals, and the original SCAN functional performs
remarkably well, predicting the correct energetic ordering of ice
polymorphs and water hexamer conformations. With the rSCAN,
the water monomer geometry is very close to that of the original
SCAN and the dipole moments of the isolated molecule are also
in close agreement. We have also calculated the dissociation ener-
gies of four low-energy water hexamers, as shown in Table IV,
recovering the same energetic ordering as predicted by CCSD(T)31

and SCAN, and somewhat improving the absolute values of the
energies.

IV. CONCLUSIONS
Exchange-correlation functionals based on the mGGA have

become increasingly successful, but their implementation in solid-
state DFT packages lags behind the theoretical developments. We
have implemented the SCAN mGGA functional in a plane-wave
DFT program, using ultrasoft pseudopotentials generated with the
same functional and solving the electronic problem self-consistently
via the generalized Kohn-Sham scheme. To achieve this it was nec-
essary to introduce a regularized form of the SCAN functional that
has an improved numerical stability while retaining the accuracy
of the original form. We note that the few adjustable parameters,
which we imported from SCAN may be reoptimized to further
improve the performance, but that is outside of the scope of our
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current work. Our benchmark calculations illustrate that the pro-
posed rSCAN functional remains transferable and accurate for a
broad range of solid state and molecular systems. rSCAN will make
the generation of pseudopotential and PAW datasets more straight-
forward in other packages, while its improved smoothness proper-
ties should improve the stability of any DFT implementation where
the exchange-correlation functionals need to be represented on a
grid.

SUPPLEMENTARY MATERIAL

See supplementary material for the numerical values of the
polynomial coefficients of the modified exchange and correlation
switching functions.
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