A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/132958

Copyright and reuse:

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

ON FINITELY PRESENTED FUNCTORS, AUSLANDER ALGEBRAS, AND ALMOST SPLIT SEQUENCES

Maria Teresa Anes Duarte Nogueira

Thesis submitted for the degree of Doctor of Philosophy.

July 1986
Mathematics Institute University of Warwick Coventry

CONTENTS

Page
Acknowl edgements i
Summary ii
PART A.
Chapter 0. Introduction 1
§l. About categories 2
§2. Some categories 5
§3. Some functors 8
54. Some topics of Auslander-Reiten theory 9
55. Method to construct almost split sequences 12
Chapter I. Matricial Techniques 18
§1. Auslander Algebra of $A=K-a l g<z: z^{q}=0$, 18
§2. The A-module $\left(V_{j}, V_{i}\right)$ 19
§3. The A-module $D\left(V_{j}, V_{i}\right)$ 25
§4. The A-modules (W, U) and $D(W, U)$ 31
§5. Automorphisms 37
§6. Elementary operations on the matrix of $T \in D(W, U)$ 41
૬7. Some particular cases 44
Chapter II. Finitely presented functors 60
§1. A characterization of finitely presented functors 60
§2. $\operatorname{mmod} A$ and $D(W, U)(W, U \in \bmod A)$ 67
§3. The category T 73
54. Decomposability in T and $\operatorname{mmod} A$ 77

Page

§5. Examples of indecomposable finitely presented functors 84
§6. More about the category mmod A 91
Chapter III. Representation type of R_{Q} and the
Auslander-Reiten quiver of R_{3} 102
§1. Representation type of R_{q} 102
§2. $\bmod R_{3}$ and $\bmod ^{\prime} R_{3}$ 104
§3. The Auslander-Reiten quiver of R_{3} 114
PART
Chapter IV. Notes on almost split sequence II 135
§1. Introduction 135
§2. Dualities and the Nakayama functor 138
§3. Some maps 140
§4. The Roggenkamp diagram 146
Chapter V. A "trace formula" for T_{θ} 153
§1. Introduction 153
§2. A projective endomorphism of M 155
§3. The map $B_{M}(X)$ 159
64. Case where A is symmetric 164
65. Case where \wedge is the group ring 169
§6. Examples 171
References 184

Acknowledgements

I wish to express my gratitude to my supervisor, Professor J.A. Green, for his kindness, patience and immense help during the years I have spent at the University of Warwick. It was a great honour for me to work with Professor Sandy Green, in whom I admire both the mathematician and the teacher.

I would also like to thank my friends of the Faculty of Science of the University of Lisbon, especially Professors M. Benito Ramalho, M.L. Noronha Galvão and J. Furtado Coelho, through whose influence I came to undertake post-graduate studies in Algebra and who supported my coming to England.

I would like to thank my family for their moral support and love, which was so important to me during these years.

I wish to thank Mrs. Peta McAllister for the efficient typing.
Finally I would like to acknowledge the financial support I received from the Instituto Nacional de Investigação Científica of Portugal, and thank the Faculty of Science of Lisbon for exempting me from all academic duties during my time of study abroad.

Summary

This thesis consists of two parts:
In Part A we study the category of finitely presented functors and use it to determine the representation type of the Auslander Algebra of $A_{q}=K$-algebra $\left\langle z: z^{q}=0\right.$, denoted R_{q} (K is a field). This is possible because the category of finitely generated modules over R_{q}, $\bmod R_{q}$, is equivalent to the category of finitely presented functors from $\left(\bmod A_{q}\right)^{O P}$ to Mod k. Part A finishes with the construction of the Auslander-Reiten quiver of R_{q} in case $q=3$.

Part B deals with the construction of almost split sequences in the category $\bmod ^{0} \Lambda$ of lattices over an R-order Λ, where R is a complete discrete rank 1 valuation ring.

In the first chapter of part B we give a description of some unpublished work by J.A. Green who permitted me to include it in this thesis. This work contains a method to construct a short exact sequence $0 \rightarrow N \rightarrow E \rightarrow S \rightarrow 0$ in a way which gives an explicit expression for the subfunctor $\operatorname{Im}(, g)$ of $(, S)$, and shows that the construction of almost split sequences can be viewed as a particular case of this problem.

In the second chapter of part B we continue this work by deducing a "trace formula" which provides a practical way of dealing with a certain step of the construction of almost split sequences in $\bmod ^{\circ} \Lambda$. Then we consider the particular case where Λ is the group ring.

PART A.

Chapter 0 : Introduction

Let k be a field and A a finite dimensional k-algebra.
The purpose of this first part is to study the category of the finitely presented functors from $(\bmod A)^{\circ p}$ to $\operatorname{Mod} k$, denoted $\operatorname{mmod} A$, and apply this to the particular case where A is the finite cyclic k-algebra of order q, i.e., $A=A_{q}=k-a l g<z: z^{q}=0$ > in order to determine the representation type of its Auslander Algebra, which we shall denote R_{q}.

In fact the category of finitely generated modules over R_{q} is equivalent to $\bmod A_{q}$; and this category can be approached by considering the elements of $D\left(\operatorname{Hom}_{A_{q}}(W, U)\right)$, where $W, U \in \bmod A_{q}$.

This work will be organized as follows:
In Chapter I we shall develop a matricial technique to find certain elements in $D\left(\operatorname{Hom}_{A_{q}}(W, U)\right)\left(W, U \in \bmod A_{q}\right)$, that, later, will be called "indecomposable".

In Chapter II we consider an arbitrary finite dimensional k-algebra, A, and study the relation between finitely presented functors $F \in \operatorname{mmod} A$ and elements of $D(W, U), W, U \in \bmod A$, using an important result of Auslander and Reiten ([AR], pg. 318, 319) and some ideas given by J.A. Green.

In Chapter III we use the results of the previous chapter to deduce the representation type of R_{q} and we construct its AuslanderReiten quiver in case $q=3$, using a method by J.A. Green (see [Gr 2]).

But we must start by defining some of the concepts that occur, giving the required notation and stating some of the basic results we need.

51. About categories

We begin with a few generalities about categories taken from [AI] pgs. 179 to 183:
(0.1) Let C, D be categories and $F: C \rightarrow D$ be a functor. F is said to be dense if given $D \in D$, there exists $C \in \mathcal{C}$ such that $F(C) \cong D$.

Let C^{\prime} be a subcategory of C. C^{\prime} is dense in C if the inclusion functor is dense, i.e., if for each $C \in C$, there exists a $C^{\prime} \in C^{\prime}$ such that $C^{\prime} \xlongequal{\cong}$.

A category C is skeletally small if it has a small dense subcategory C^{\prime}, i.e., a dense subcategory C^{\prime} such that its collection of objects is a set.

Remark: All the categories that we shall consider are skeletally small.
(0.2) If C and D are categories and F is a (covariant) functor $F: C \rightarrow D$, then F is said to be an equivalence of categories if:
(1) F is dense
(2) $\quad F:\left(C_{1}, C_{2}\right)_{C} \rightarrow\left(F\left(C_{1}\right), F\left(C_{2}\right)\right)_{D}$ is an isomorphism, $\forall C_{1}, C_{2} \in C$
(0.3) A category C is pre-additive if for each $A, B \in \operatorname{Obj} C$ the set of morphisms from A to $B,(A, B)_{C}$ is an abelian group and the multiplication of morphisms is bilinear.

In fact most of the categories that we shall mention are k-categories (for some field k) :
(0.4) A category C a k-category if it is pre-additive and for each pair $A, B \in C,(A, B)_{C}$ is a k-space. (See [AR], pg. 309.)
(0.5) A pre-additive category where every finite family of objects has a direct sum is an additive category.

In any pre-additive category C, we have the following
(0.6) Let $A, A_{i} \in C, i=1, \ldots, n$. Then $A \cong A_{1} \Perp A_{2} \mu \ldots \mu A_{n}$ iff there are morphisms $A_{i} \xrightarrow[\mu_{i}]{\mu_{i}} A(i=1, \ldots, n)$ such that

$$
\pi_{j} \mu_{i}=\delta_{i j} 1_{A_{i}}(i, j=1, \ldots, n) \text { and } \sum_{i=1}^{n} \mu_{i} \pi_{i}=1_{A} .
$$

(0.7) An object $B \in C$ is said to be indecomposable if:
(i) B is not the zero object (i.e. End $B \neq 0$).
(ii) If $B \cong B_{1} \Perp B_{2}$, with $B_{1}, B_{2} \in B$ then either B_{1} or B_{2} is the zero object in C.
(0.8) An endomorphism e of $A \in \mathcal{C}$ is idempotent if $e^{2}=e$.

Notice that if $A \cong A_{1} \Perp A_{2}$ (with $A_{1}, A_{2} \neq 0$), then if we take $e_{1}=\mu_{1} \pi_{1}, e_{2}=\mu_{2} \pi_{2} \in$ End A (see 0.6), then these are idempotents and $e_{1} e_{2}=e_{2} \cdot e_{1}=0, e_{1}+e_{2}=1_{A}$. Moreover $e_{1}, e_{2} \neq 0$ (if $e_{1}=0,0=\pi_{1} \mu_{1} \pi_{1}{ }_{1}=1_{A_{1}}^{2}={ }_{1_{A}}$ and this is a contradiction). Thus:
(0.9) In any pre-additive category C, if $A=A_{1} \mu A_{2}$ with $A_{1}, A_{2} \neq 0$, there exists an idempotent endomorphism $e \neq 0,1$ in End A.
(0.10) An idempotent endomorphism $e \neq 0$ of $A \in \mathcal{C}$ is said to split if it has a kernel in \mathcal{C}.
(0.11) If C is a category in which idempotents split then if $e \neq 0,1$ is an idempotent of A, then $A=k e r e \Perp k e r(1-e)$ and ker e, $\operatorname{ker}(1-e) \neq 0$, so A is decomposable ([AI] pg. 188).

We also need the following concepts (see [AR] §l):
(0.12) Suppose C is a k-category. An ideal J of C is defined by giving, for each pair $A, B \in O b j C$, a k-subspace $J(A, B)$ of $(A, B)_{C}$ such that:

If $f \in J(A, B)$, then for each $C \in O b j C, g \in(B, C)_{C}$, one
has $g f \in J(A, C)$, and for each $D \in \operatorname{Obj} C, h \in(D, A)_{C}$, one has $f h \in J(D, B)$.
(0.13) If J is an ideal of the category C, then one can define the quotient category \mathcal{C} / J such that:
(i) The objects of \mathcal{C} / J and \mathcal{C} are the same.
(ii) $(A, B)_{C / J}:=(A, B)_{C^{\prime}} J(A, B)$.

By (0.12) multiplication of morphisms $\bar{f}=f+J(A, B), \bar{g}=g+J(B, C)$ is well defined by the rule

$$
\bar{g} \bar{f}=g f+J(A, C)(=\overline{g f}) .
$$

52. Some categories

If k is a field and A a finite dimensional $k-a l g e b r a$, denote by Mod A (Mod' A) the category of the left (right) A-modules.

If $M, N \in \operatorname{Mod} A$, then $\operatorname{Hom}_{A}(M, N)$ will be denoted simply by $(M, N)_{A}$ or (M, N).
$\bmod A\left(\bmod { }^{\prime} A\right)$ is the full subcategory of $\operatorname{Mod} A(M o d ' A)$ whose objects are the A-modules which are finitely generated as k-modules.

Mrod A is the category whose objects are the $k-l i n e a r$ contravariant functors $F: \bmod A \rightarrow \operatorname{Mod} k$ and whose morphisms are the natural transformations. (In [AI] this category is denoted $\operatorname{Mod}(\bmod A))$.

M'mod A is the category of the $k-1$ inear covariant functors $F: \bmod A \rightarrow \operatorname{Mod} k$ and the natural transformations.

Most concepts that exist in Mod A have an analogous in Mmod A (and in $M^{\prime} \bmod A$), such as subfunctor, quotient functor, sums and intersections of subfunctors, direct sums, kernel and image of a morphism, exact sequences, projective and injective functors, indecomposable functors, radical of a functor. (See [F], [AI] §2 and also [Gr 1] §l.)

We state without proof some of the results we will use later (we refer to the books and papers already mentioned and also [M]).
(0.14) Proposition: If $0 \neq F \in M_{m o d} A$, then F is indecomposable if and only if End $F=(F, F)_{\text {Mmod } A}$ has no idempotents except $1_{F}, 0_{F}$.
(0.15) Yoneda's Lemma: If $U \in \bmod A$ and $F \in \operatorname{Mmod} A$, then the map:

$$
p:((, U), F)_{M \bmod A} \rightarrow F(U)
$$

given by

$$
p(\alpha)=\alpha(U)\left(1_{U}\right)
$$

is a k-linear isomorphism.

Notation: If U is any set, l_{U} denotes the identity map on U.
(0.16) Remark: This result is also true if $W \in \bmod A, F \in M$ mod A and $p:((W), F,) \rightarrow F(W)$.
(0.17) Corollary: If $U, W \in \bmod A$ and $\alpha:(, U) \rightarrow(, W)$ is a morphism in Mmod A, then there exists a unique A-map $h: U \rightarrow W$ such that $\alpha=(, h)$.
(0.18) Proposition: For every $U \in \bmod A$, the functor (,U) is a projective object in Mmod A and the functor $D(U$,$) is an$ injective object in Mmod A.

We also need the next definition ([AI], pg. 204):
(0.19) Definition: $F \in \operatorname{Mmod} A$ is finitely presented if there exists an exact sequence

$$
(, E) \xrightarrow{\beta}(, V) \xrightarrow{\alpha} F \rightarrow 0
$$

with $E, V \in \bmod A$.

This exact sequence is called a projective presentation for F.

If ker $\alpha \leq \operatorname{rad}(, V)$ and $\operatorname{ker} \beta \leq \operatorname{rad}(, E)$, this presentation is called minimal.
(0.20) It can be shown that a minimal projective presentation is unique up to isomoprhism (see [AI], §4).

The full subcategory of Mmod A, whose objects are the finitely presented functors is denoted mmod A.
(0.21) Remark: One could give a definition similar to (0.19)
for $F \in M^{\prime} \bmod A$. Then the full subcategory of M'mod A with these objects is denoted m'mod A.

§3. Some functors

Besides those functors already mentioned we need to consider a few more:

The usual duality $D=\operatorname{Hom}_{k}(, k)$, may be considered a functor : $\bmod A \rightarrow \bmod A(\operatorname{mor} \bmod A \rightarrow \bmod A)$, with the rule:

If $X \in \bmod A(\bmod A)$ then $D X \in \bmod A(\bmod A)$ as follows:
(0.22) Definition ([CR] pg.410): ($\phi \mathrm{a})(x)=\phi(a x),((a \phi)(x)=\phi(x a))$ $\forall \phi \in D X, a \in A, x \in X$.
$d=\operatorname{Hom}_{A}(, A): \bmod A \rightarrow \bmod A$ is a $k-l i n e a r$ contravariant functor as follows:

If $X \in \bmod A, d X$ is a right A-module with:
(0.23) Definition ([CR], pg.399) $(f a)(x)=f(x) a, \forall f \in d X$, $a \in A, X \in X$.

We may similarly define the functor $\operatorname{Hom}_{A}\left(, A_{A}\right): \bmod A \rightarrow \bmod A$, which is also denoted d.
d is left exact, turns projectives into projectives and $d(A e) \cong e A, d(e A) \cong A e$, where e is an idempotent of A.

$$
\begin{array}{r}
\text { (0.24) Definition ([Ga] pg. 10) : N }=\text { Dd:mod } A \rightarrow \bmod A \\
\bmod ^{\prime} A \rightarrow \bmod ^{\prime} A
\end{array}
$$

is the Nakayama functor.

$$
\text { (0.25) Definition: } M=d D: \bmod A \rightarrow \bmod A .
$$

§4. Some topics of Auslander-Reiten theory

In this section we look into some aspects of the Auslander-Reiten theory that will be used mainly in Chapter III. We refer to [AR III] and [AR IV].
(0.26) Definition ([AR IV] pg.456) Let $U, W \in \bmod A ;$ then $f \in(U, W)$ is irreducible if:
(i) f is neither a split monomorphism nor a split epimorphism.
(ii) If $f=h g$ where $g \in(U, X), h \in(X, W)$ for some $X \in \bmod A$, then g is a split monomorphism or h is a split epimorphism.

Given a finite dimensional algebra A one can construct a directed graph, called Auslander-Reiten quiver, defined as follows:
(0.27) Definition: The Auslander-Reiten quiver of A is the directed graph whose vertices are the isomorphism classes [V] of
indecomposable A-modules and such that there is an arrow [V] \rightarrow [V'] if and only if there exists an irreducible map $V \rightarrow V^{\prime}$.

We also need the
(0.28) Definition ([AR IV] pg.443): Let $E: 0 \rightarrow U \xrightarrow{f} E q$ g $V \rightarrow 0$ be a short exact sequence in $\bmod A$. Then E is almost split if
(1) E is not split
(2) U, V are indecomposable modules.
(3) If $X \in \bmod A, h \in(X, V)$ is not split epimorphism then there exists $h^{\prime} \in(X, E)$ such that $h=g h '$.

(0.29) Remark: It can be proved that (3) can be replaced by:
(3') If $Y \in \bmod A, t \in(U, Y)$ is not split monomorphism, then there exists $t^{\prime} \in(E, Y)$ such that $t=t ' f$

The next theorem tells us that almost split sequences exist:
(0.30) Theorem (Auslander-Reiten) ([AR III] pg.263) Given any non-projective indecomposable $V \in \bmod A$, there exists an almost split sequence E ending with V. E is determined by V uniquely up to isomorphism of short exact sequences.

The following fact gives the connection between irreducible maps and almost split sequences:
(0.31) Proposition: Let E be an almost split sequence. Let $X, Y \in \bmod A, h \in(X, V), t \in(U, Y) ;$ then
(i) h is irreducible iff there is a split monomorphism $h^{\prime} \in(X, E)$ such that $h=g h^{\prime}$, i.e. $X \mid E(X$ is a direct summand of $E)$.
(ii) t is irreducible iff there is a split epimorphism $t^{\prime} \in(E, Y)$ such that $t=t^{\prime} f$, i.e. $Y \mid E$

Thus, if $\left\{X_{n}, \ldots, X_{n}\right\}$ is a full set of non isomorphic indecomposable direct summands of E,

is a subquiver of the Auslander-Reiten quiver of A. This subquiver is called a mesh.
§5. Method to construct almost split sequences
In this section we look at P. Gabriel's version of AuslanderReiten's construction of almost split sequences [Ga].

One can describe this method in successive steps. For details we refer to Green's paper ([Gr 2]).

We will consider right A-modules, for convenience.
Given $V \in \bmod A$ such that V is indecomposable and non-projective, to construct the almost split sequence that ends in this module we proceed as follows:
(1) Construct a 2-step minimal projective resolution of V i.e. an exact sequence

$$
p_{1} \xrightarrow{p_{1}} p_{0} \xrightarrow{p_{0}} v \longrightarrow 0
$$

such that P_{j}, P_{0} are projective modules and $\operatorname{ker} p_{i} \leq \operatorname{rad} \quad P_{i}, i=0,1$.
(2) Apply the functor $d=\left(, A_{A}\right)$ which is left exact contravariant $\bmod A \rightarrow \bmod A \quad($ see 53$)$

$$
d P_{1}<\frac{d p_{1}}{d P_{0}}\left(<\frac{d p_{0}}{d V}<-0\right)
$$

Let $\operatorname{Tr} V:=$ cover $d p_{1}=d P_{1} /$ In $d p_{1}$ (see [AR III]. §2)
Then

$$
0<-\operatorname{Tr} V<- \text { nat } \quad d P_{1}<\frac{d p_{1}}{<} d P_{0}
$$

is exact in $\bmod A$.
(3) Apply $D: \bmod A \rightarrow \bmod ' A$ which is exact

$$
\left(\text { a) } 0 \longrightarrow \operatorname{DTr} V \xrightarrow{\text { Drat }} N P_{1} \xrightarrow{N p_{1}} N P_{0}\right.
$$

where $N=\operatorname{Dd}$ (1.24).
 where e_{v} are idempotents of A. Thus $d P_{0}=\bigsqcup_{v=1}^{n} A z_{v}$ where $z_{v} \in\left(P_{0}, A\right)$ is such that $z_{v}\left(\sum_{j=1}^{n} e_{j} a_{j}\right)=e_{v} a_{v}$.

If $\theta \in\left(V, D d P_{0}\right)$ let $t_{v} \in D V$ be defined by

$$
t_{v}(s)=\theta(s)\left(z_{v}\right), \quad \forall s \in V
$$

$$
v=1, \ldots, n .
$$

Let $T_{\theta} \in D(V, V)$ be the element defined as follows:
$\forall h \in(V, v), T_{\theta}(h)=\sum_{v=1}^{n} t_{v}\left(h p_{0}\left(e_{v}\right)\right)=\sum_{v=1}^{n} \theta\left(h p_{0}\left(e_{v}\right)\right)\left(z_{v}\right)$.

Choose θ such that

$$
\begin{align*}
& T_{\theta} \neq 0 \tag{0.32}\\
& T_{\theta}(J(\text { End } V))=0 .
\end{align*}
$$

(5) Make sequence (b) by "pull-back" ([Ro] pg.51)
(a) $0 \longrightarrow D T r V \xrightarrow{\text { Dnat }} N P_{1} \xrightarrow{N p_{1}} N P_{0}$
(b) $0 \longrightarrow D T r V \longrightarrow V(\theta) \longrightarrow \quad V \longrightarrow$
i.e.

$$
\begin{aligned}
& E(\theta)=\left\{(x, y) \in N P_{1} \Perp V: N p_{1}(x)=\theta(y)\right\} \\
& f(u)=(u, 0), \forall u \in D \operatorname{Tr} V \\
& g(x, y)=y \quad \forall(x, y) \in E(\theta) .
\end{aligned}
$$

Then

$$
\begin{align*}
& 0 \rightarrow D \operatorname{Tr} V \xrightarrow{f} E(\theta) \xrightarrow{g} V \rightarrow 0 \text { is almost split sequence } \tag{0.33}\\
& \text { in mod' } A \text {. }
\end{align*}
$$

One can change slightly this method in order to get one almost split sequence that starts with a given non-injective indecomposable
module. Now we consider left A-modules:
Let $U \in \bmod A$ be non-injective indecomposable. Take its dual $D U=V \in \bmod A$ which is indecomposable and non-projective.
(1') Construct a 2-step minimal projective resolution of V, in mod'A.

$$
P_{1} \xrightarrow{p_{1}} P_{0} \xrightarrow{p_{0}} v \rightarrow 0
$$

(2') Apply d (left exact) and finish sequence with cover $d p_{1}=\operatorname{Tr} V$.

Thus

$$
\text { (a') } 0+\operatorname{Tr} V<- \text { nat } d P_{1}<\frac{d p_{1}}{-} d P_{0}(\leftarrow d V+0)
$$

is exact in $\bmod \mathrm{A}$.
(3') Let $P_{0} \cong \prod_{v=1}^{n} e_{v} A$, then $d P_{0} \cong \prod_{v=1}^{n} A z_{v}$ where $z_{v}\left(\sum_{j=1}^{n} e_{j} a_{j}\right)=$ $e_{v}{ }^{a} v$. Choose $\Psi: d P_{0} \rightarrow D V$ such that

$$
\begin{aligned}
& T_{\psi} \in D(V, V) \text { defined by } \\
& T_{\psi}(h)=\sum_{V=1}^{n} \psi\left(z_{v}\right)\left(h p_{0}\left(e_{v}\right)\right)
\end{aligned}
$$

satisfy conditions:

$$
\begin{equation*}
T_{\psi} \neq 0 \quad T_{\psi}(J(\text { End } V))=0 . \tag{0.34}
\end{equation*}
$$

(0.35) Remark: Using previous method at this stage we should apply D and then choose $\theta: V \rightarrow D_{0}$ subject to certain conditions.
$\theta: V \rightarrow \operatorname{DdP}_{0}$ defines and is defined by a bilinear form

$$
\begin{aligned}
& \beta: V \times d P_{0} \rightarrow k \\
&(x, \ell) \rightarrow \theta(x)(l) .
\end{aligned}
$$

But we may also use this form to define a map:

$$
\begin{aligned}
& \psi: d P_{0} \rightarrow D V \\
& \ell \rightarrow \psi(\ell): \psi(\ell)(x)=\beta(x, \ell)=\theta(x)(\ell) \\
& \forall \ell \in \mathrm{dP}_{0}, x \in V .
\end{aligned}
$$

So $T_{\theta}(h)=\sum_{v=1}^{n} \theta\left(h p_{0}\left(e_{v}\right)\right)\left(z_{v}\right)=\sum_{v=1}^{n} \psi\left(z_{v}\right)\left(h p_{d}\left(e_{v}\right)\right)=T_{\psi}(h)$.

So conditions in (3') are equivalent to conditions in (4).
(4') Make sequence (b') by "push-out" (see [Roc] pg.41)

$$
\begin{aligned}
& \text { (a') } 0<\operatorname{Tr} V<\frac{\text { nat }}{} \mathrm{dP}_{1}<\frac{d p_{1}}{t_{\ell^{\prime}}} \mathrm{dP}_{0} \\
& \text { (b') } 0<\operatorname{Tr} V<\frac{t_{\psi}}{f^{\prime}} \mathrm{F}(\psi)<\frac{g^{\prime}}{g^{\prime}} D V \cong U+0 \\
& \text { i.e. } \quad F(\psi)=\frac{U \Perp d P_{1}}{\left\{\left(\psi(x),-d p_{1}(x)\right): x \in d P_{0}\right\}}
\end{aligned}
$$

Denoting the elements of this module by $[u, y]: u \in U$, $y \in d P_{1}$,

$$
\begin{aligned}
& \ell^{\prime}(y)=[0, y] \\
& g^{\prime}(u)=[u, 0] \\
& f^{\prime}[u, y]=\operatorname{nat}(y) .
\end{aligned}
$$

Then

$$
\text { (0.36) } 0 \leftarrow \operatorname{Tr} V \ll f^{\prime} F(\psi)<-\quad U \leftarrow 0
$$

is an almost split sequence in $\bmod \mathrm{A}$.
(0.37) Remark: It is clear that this is dual of (0.33) (if we suppose that the module V is the same).

Chapter I : Matricial Techniques

§1. Auslander algebra of $A=k-a l g\left\langle z: z^{q}=0>\right.$
Let k be a field and $A=A_{q}=k-a l g<z: z^{9}=0>$, the $k-a l g e b r a$ generated by a single element z, subject to the relation $z^{q}=0$ for some $q \in \mathbb{Z}, q \geq 1$.
A is commutative and every element $a \in A$ has a unique form $a=\lambda_{0} 1+\lambda_{1} z+\ldots+\lambda_{q-1} z^{q-1}$ with $\lambda_{0}, \lambda_{1}, \ldots \lambda_{q-1} \in k$.

It is well known that

$$
\left\{V_{i}=A / A z^{i}: i=1, \ldots, q\right\}
$$

is a full set of indecomposable objects in $\bmod A$.

Let $C=V_{1} \Perp V_{2} \Perp \cdots \not V_{q}$ and $R=R_{q}=E n d A$, the endomorphism algebra of $C . R$ is the Auslander Algebra of $A([R t 2], p g .450)$.

Each $f \in R$ can be given by a matrix $\left(f_{i j}\right)_{i, j=1, \ldots, q}$ where $f_{i j}=\pi_{i} f \mu_{j} \in\left(V_{j}, V_{i}\right)$, the π_{i} and μ_{j} being the projections and injections associated with C.

In particular, the elements $e_{i}=\left(\begin{array}{lllllll}0 & & & & & & 0 \\ & \ddots & & & & & \\ & & 1_{V_{i}} & & & \\ 0 & & & & \ddots & \\ 0 & & & & \end{array}\right)$
$i=1, \ldots, q$ are a set of primitive orthogonal idempotent of R.

Conversely every matrix $\left(f_{i j}\right)_{i, j=1, \ldots, \mathcal{q}}$ with coefficients $f_{i j} \in\left(V_{j}, V_{i}\right)$ is the matrix of a unique element $f=\sum_{i, j=1}^{q}{ }^{\mu_{i}} f_{i j}{ }^{\pi}{ }_{j} \in R$. Thus the map $f \rightarrow\left(f_{i j}\right)_{i, j=?}, \ldots, q$ is a k-algebra isomorphism.
52. The A-module $\left(V_{j}, V_{i}\right)$

Given any two indecomposable modules $V_{j}, V_{i} \in \bmod A$, we can regard $\left(V_{j}, V_{i}\right)=\operatorname{Hom}_{A}\left(V_{j}, V_{i}\right)$ as a (left) A-module with the rule:

$$
\begin{gathered}
(a \theta)(u)=\theta(a u) \quad \forall a \in A, \theta \in\left(V_{j}, V_{i}\right) \\
u \in V_{j}
\end{gathered}
$$

because A is commutative.
(1.1) Notation: Let $\mathbf{i}, \mathbf{j} \in \mathbb{N}_{0}$. Then $\mathbf{i} \sim j$ is the element of \mathbb{N}_{0}, given by

$$
i \sim j=\left\{\begin{array}{ccc}
0 & \text { if } & j \geq i \\
i-j & \text { if } & j<i
\end{array}\right.
$$

Remark: Observe that $\min (i, j)=i-(i \sim j)$.
(1.2) Proposition:
(a) $\left(v_{j}, v_{i}\right) \xlongequal[A]{\cong} z^{i \sim j} v_{i}$.
(b) Let $\mathrm{c} \geq \mathrm{i} \sim \mathbf{j}$. Then

$$
M_{i j}(c)=\left\{f_{i j} \in\left(v_{j}, v_{i}\right): f_{i j}\left(v_{j}\right) \subseteq z^{c} v_{i}\right\}
$$

is the A-submodule of $\left(V_{j}, V_{i}\right)$ generated by the element $u_{i j}(c) \in\left(v_{j}, v_{i}\right)$ such that:

$$
1+A z^{j} \longrightarrow z^{c}\left(1+A z^{\mathbf{i}}\right) .
$$

(c) Each A-submodule of $\left(V_{j}, V_{i}\right)$ is a member of the chain:

$$
\left(v_{j}, v_{i}\right)=M_{i j}(i \sim j)>M_{i j}((i \sim j)+1)>\ldots>M_{i j}(i)=0 .
$$

Also $M_{i j}(c)=0, \forall c \geq i$.

Proof: (a) Consider the map

$$
\Lambda:\left(v_{j}, v_{i}\right) \rightarrow v_{i}
$$

such that $\theta \rightarrow \theta\left(1+A z^{j}\right)$.
Clearly it is an A-map, and if $\theta\left(1+A z^{j}\right)=0$, then $\theta\left(a+A z^{j}\right)=$ $=a \theta\left(1+A z^{j}\right)=0$, so Λ is injective.

Also,
$z^{j} \Lambda(\theta)=z^{j} \theta\left(1+A z^{j}\right)=\theta(0)=0$ and $z^{i} \Lambda(\theta)=0$, because $\Lambda(\theta) \in V_{i}$.

Therefore,

$$
z^{\min (i, j)} \Lambda(\theta)=0, \text { and, since } \min (i, j)=i-(i \sim j), \text { this }
$$

means that $\Lambda(\theta) \in z^{i \sim j} V_{i}$. Hence In $\Lambda \subseteq z^{i \sim j} V_{i}$.
Conversely if $r \in z^{i \sim j} V_{i}$, then $z^{j} r \in z^{j+(i \sim j)} V_{i}=$ $=\left\{\begin{array}{l}z^{i} V_{i}=0 \text { if } j<i \\ z^{j} V_{i} \leq z^{i} V_{i}=0 \text { if } j \geq i\end{array} \quad\right.$. Thus $z^{j} r=0$ and so $A z^{j} \leq \operatorname{ker} \phi$ where ϕ is the $A-m a p A \rightarrow V_{i}$ such that $1 \rightarrow r$.

Therefore ϕ induces a map $\theta: A / A z^{j}=V_{j} \rightarrow V_{i}$ such that
$\theta \circ n=\phi$ where n is the natural epimorphism $A \rightarrow V_{j}$.
Thus $(\theta \circ n)(1)=\theta\left(1+A z^{j}\right)=\phi(1)=r$ and so $r \in \operatorname{Im} \Lambda$. Hence $z^{\mathbf{i} \sim \mathbf{j}_{V}} \mathbf{j} \subseteq \operatorname{Im} \Lambda$.
(b) If $c \geq i \sim j, z^{c}\left(1+A z^{i}\right) \in z^{i \sim j} V_{i}$, and so by (a), there is some $\theta \in\left(V_{j}, V_{i}\right)$ such that $\theta\left(1+A z^{j}\right)=z^{c}\left(1+A z^{i}\right)$.

Call this map $\psi_{j}(c)$.
Thus $u_{i j}(c) \in M_{i j}(c)$, and so $A u_{i j}(c) \leq M_{i j}(c)$ because $M_{i j}(c)$ is an A-submodule of $\left(V_{j}, V_{i}\right)$.

Conversely if $\theta \in M_{i j}(c)$, then $\theta\left(1+A z^{j}\right) \in z^{c} V_{i}$ and so $\theta\left(1+A z^{j}\right)=z^{c} a\left(1+A z^{i}\right)$ for some $a \in A$.

Then $\theta=a u_{i j}(c) \in A u_{i j}(c)$.
So $M_{i j}(c)=A u_{i j}(c)$.
(c) The isomorphism $\Lambda:\left(V_{j}, V_{i}\right) \rightarrow z^{i n j} V_{i}$ of (a) is such that $\Lambda\left(M_{i j}(c)\right)=z^{c} v_{i}$.

Since $z^{i \imath j} v_{i}$ is uniserial, with composition series:

$$
z^{i \sim j} v_{i}>z^{i \sim j+1} v_{i}>\ldots>z^{i} v_{i}=0
$$

also $\left(V_{j}, V_{i}\right)$ is uniserial with composition series:

$$
\left(v_{j}, v_{i}\right)=M_{i j}(i \sim j)>M_{i j}(i \sim j+1)>\ldots>M_{i j}(i)=0 .
$$

(1.3) Corollary: $u_{i j}(i n, j)$ generates $\left(V_{j}, V_{i}\right)$ as an A-module.
(1.4) Notation: We shall denote this element by $u_{i j}$. Then $u_{i j}(c)=z^{c-(i \sim j)_{u}}, c \geq i \sim j$.
(1.5) Corollary: The elements $u_{i j}, z u_{i j}, \ldots, z^{n-1} u_{i j}$ where $n=\min (i, j)$, form $a \operatorname{k}$-basis of $\left(V_{j}, V_{i}\right)$. Hence every element $f \in\left(V_{j}, V_{i}\right)$ has a unique expression
(1.6) $\quad f=\alpha(f) u_{i j}$
where $\alpha(f)$ is a polynomial in $k[z]$ with degree $<n$.

Proof: $\Lambda:\left(V_{j}, V_{i}\right) \rightarrow z^{i \imath j} V_{i}$ is an isomorphism of k-spaces such that

$$
\begin{aligned}
& u_{i j} \longrightarrow u_{i j}\left(l+A z^{j}\right)=z^{i \sim j}+A z^{i} \\
& z u_{i j} \longrightarrow z^{i \sim j+1}+A z^{i} \\
& \cdots \\
& z^{n-1} u_{i j} \longrightarrow z^{i-1}+A z^{i} .
\end{aligned}
$$

Since $z^{i \sim j}+A z^{i}, z^{i \sim j+1}+A z^{i}, \ldots, z^{i-1}+A z^{i}$ forma $k-$ -basis for $z^{i n j} v_{i}$, then $u_{i j}, z u_{i j}, \ldots, z^{n-1} u_{i j}$ with $n=\min (i, j)$ is a k-basis of $\left(v_{j}, v_{i}\right)$.
(1.7) Proposition: Let V_{j}, v_{h}, v_{i}, be some of the indecomposable modules in $\bmod A$, and $u_{h j}, u_{i h}, u_{i j}$ maps as in (1.4). Then
(1.8)

$$
u_{i h} \cdot u_{h j}=z^{(i \sim h)+(h \sim j)-(i \sim j)} \cdot u_{i j} .
$$

Proof: $u_{i h} \cdot u_{h j}\left(1+A z^{j}\right)=z^{(i \sim h)+(h \sim j)}+A z^{i}$.
One can easily check that $(i \sim h)+(h \sim j) \geq i \sim j$.
Thus

$$
(i \sim h)+(h \sim j)=(i \sim j)+w(i, h, j) \text { where } w(i, h, j) \geq 0 .
$$

Therefore

$$
u_{i h} \cdot u_{h j}\left(l+A z^{j}\right)=z^{(i \sim j)+w(i, h, j)}+A z^{i}=
$$

$$
=z^{w(i, h, j)} \cdot z^{i \sim j}+A z^{i}=z^{w(i, h, j)} u_{i j}\left(l+A z^{j}\right) \quad \text { and }
$$

$$
w(i, h, j)=(i \sim h)+(h \sim j)-(i \sim j) .
$$

(1.9) Corollary: Let $f \in\left(V_{h}, v_{i}\right), g \in\left(V_{j}, v_{h}\right)$. Then

$$
\alpha(f g) \equiv z^{(i \sim h)+(h \sim j)-(i \sim j)} \cdot \alpha(f) \cdot \alpha(g)\left(\bmod A z^{n}\right)
$$

with

```
n=min(i,j).
```

Proof: Clear by (1.8), (1.6).
(1.10) Remarks:
(i) If $f \in E n d_{A} V_{i}, g \in\left(V_{j}, V_{i}\right), h \in E n d_{A} V_{j}$, then $\alpha(f g h) \equiv \alpha(f) \alpha(g) \alpha(h)\left(\bmod A z^{n}\right)$
(ii) Since $\mathbf{l}_{V_{i}}=u_{i i}, \alpha\left(l_{V_{i}}\right)=1 \in A$. Thus by (1.9), f \in Aus V_{i} if and only if $\alpha(f)$ is a unit in A, i.e. $\alpha(f)=\lambda_{0}+\lambda_{1} z+\ldots+\lambda_{i-1} z^{i-1}$ with $\lambda_{0} \neq 0$.
(iii) If $f \in\left(V_{j}, V_{i}\right)$ is such that $\alpha(f)=\lambda_{k} z^{k}+\ldots+\lambda_{n-1} z^{n-1}$ with $k>0, \lambda_{k} \neq 0, n=\min (i, j)$, then there exists $g \in A u t V_{i}$, such that $\alpha(g f)=z^{k}$, by (1.9) and (1.10)(ii).
53. The A-module $D\left(V_{j}, V_{i}\right)$

Now we shall consider $D\left(V_{j}, V_{j}\right)=\operatorname{Hom}_{k}\left(\left(v_{j}, V_{i}\right), k\right)$ which is a (right) A-module with the rule:

If $T \in D\left(V_{j}, V_{j}\right)$, $a \in A$ then $T a$ is such that
(1.11) $(T a)(f)=T(a f), \forall f \in\left(V_{j}, V_{i}\right)$.

Remark: Since A is commutative we may write aT instead of Ta , when convenient.

It is well known that $\operatorname{dim}_{k} D\left(V_{j}, V_{i}\right)=\operatorname{dim}_{k}\left(V_{j}, V_{i}\right)$, and, since $\left\{u_{i j}, z u_{i j}, \ldots, z^{n-1} u_{i j}\right\}$ with $n=\min (i, j)$ is a basis for $\left(v_{j}, v_{i}\right)$, the k-sapce $D\left(V_{j}, V_{i}\right)$ has a basis $\left\{\pi_{0}, \pi_{1}, \ldots, \pi_{n-1}\right\}$ such that
(1.12) $\pi_{k}\left(z^{\ell} u_{i j}\right)=\delta_{k \ell} k, \ell=0, \ldots, n-1$.
(1.13) Lemma: π_{n-1} is an A-generator of $D\left(V_{j}, V_{i}\right)$.

Proof: Let $f=\alpha(f) u_{i j} \in\left(v_{j}, v_{i}\right)$ (1.6), be such that $\alpha(f)=\lambda_{0}+\lambda_{1} z+\ldots+\lambda_{n-1} z^{n-1}, n=\min (i, j)$.

Then

$$
\left(\pi_{n-1} z^{h}\right)(f)=\pi_{n-1}\left(z^{h} f\right)=\pi_{n-1}\left(z^{h}\left(\lambda_{0}+\ldots+\lambda_{n-1} z^{n-1}\right) u_{i j}\right)=
$$

$$
\begin{aligned}
& =\pi_{n-1}\left(\lambda_{0} z^{h} u_{i j}+\lambda_{1} z^{h+1} u_{i j}+\ldots+\lambda_{n-1} z^{h+n-1} u_{i j}\right)=\lambda_{k} \text { such that } \\
& n-1=h+k \text {, so } k=n-h-1 \text {. } \\
& \text { Thus }\left(\pi_{n-1} z^{h}\right)(f)=\lambda_{n-h-1} \text {, and so } \\
& \pi_{n-1} z^{h}=\pi_{n-h-1}
\end{aligned}
$$

for $h=0, \ldots, n-1$.
(1.14) Notation: We shall denote this element $\pi_{n-1} \in D\left(v_{j}, v_{i}\right)$, by $\pi_{j i}$.

Thus (1.12) becomes:

$$
\begin{equation*}
\left(\pi_{j i} z^{r}\right)\left(z^{n-s-1} \cdot u_{i j}\right)=\delta_{r s}, r, s=0,1, \ldots, n-1 ; n=\min (i, j) \tag{1.15}
\end{equation*}
$$

and the

$$
\text { k-basis }\left\{\pi_{0}, \ldots, \pi_{n-1}\right\} \text { of } D\left(v_{j}, v_{i}\right) \text {, becomes }
$$

$$
\left\{\pi_{j i} z^{n-1}, \ldots, \pi_{j i} z, \pi_{j i}\right\} \quad(n=\min (i, j))
$$

Therefore, every element $T \in D\left(V_{j}, V_{i}\right)$ has a unique expression
(1.16) $\quad T=\pi_{j i} B(T)$
where $\beta(T)$ is a polynomial in $k[z]$ with degree $<n=\min (i, j)$.
Now we consider the following:
(1.17) Definition: Let θ, ρ be A-maps such that

$$
v \xrightarrow{\rho} w \xrightarrow{\theta} U
$$

where $V, W, U \in \bmod A$ and $T \in D(V, U)$.

Then $T * \theta \in D(V, W)$ is defined by
$\left(T^{*} \theta\right)(f)=T(\theta f), \quad \forall f \in(V, W)$
$\rho^{*} T \in D(W, U)$ is defined by $(\rho * T)(g)=T(g \rho), \quad \forall g \in(W, U)$.

The following are some of the properties of * :
(1.18) Proposition: (1) Let $\theta, \theta^{\prime}, \rho, \rho^{\prime}$ be A-maps such that

$$
V \xrightarrow{\rho} V^{\prime} \xrightarrow{\rho^{\prime}} W \xrightarrow{\theta^{\prime}} U^{\prime} \xrightarrow{\theta} U
$$

and $T \in D(V, U)$. Then:
(i) $\left(T^{*} \theta\right)^{*} \theta^{\prime}=T^{*} \theta_{\theta}{ }^{\prime} \in D(V, W)$
(ii) $\rho^{\prime *}\left(\rho^{*} T\right)=\rho^{\prime} \rho^{*} \boldsymbol{T} \in D(W, U)$
(2) Let θ, ρ be A-maps such that $V \xrightarrow{\rho} W \xrightarrow{\theta} U$ and $a \in A$. Then
(i) $T a{ }^{*} \theta=\left(T{ }^{*} \theta\right) a=T * a \theta \in D(V, W)$
(ii) $\rho * T a=(\rho * T) a=a \rho * T \in D(W, U)$
(iii) $(\rho * T) * \theta=\rho *(T * \theta) \in D(W, W)$.

Proof: (1) (i)(ii) trivial.
(2) (i) $(T a * \theta)(f)=T a(\theta f)=T(a(\theta f))=(T * a \theta)(f)$.

Also $T(a \theta f)=T(\theta(a f))=[(T * \theta) a](f)$.
(ii) similar (iii) trivial.
(1.19) Proposition:

Let $i, j, h \in\{1,2, \ldots q\}$ and $u_{h j} \in\left(v_{j}, v_{h}\right) \quad u_{i h} \in\left(v_{h}, v_{j}\right)$
and $\pi_{j i} \in D\left(v_{j}, V_{f}\right)$ be defined as in (1.4), (1.14). Then:
(i) $\pi_{j i}{ }^{\star} u_{i h}=\pi_{j h} z^{h \sim i} \in D\left(v_{j}, v_{h}\right)$
(ii) $u_{h j}{ }^{*} \pi_{j i}=\pi_{h i}{ }^{z^{h} \sim j} \in D\left(V_{h}, v_{i}\right)$.

Proof: (i) It is enough to prove that

$$
\left(\pi_{j i}{ }^{* u_{i h}}\right)\left(u_{h j}\right)=\pi_{j h} z^{h \sim i}\left(u_{h j}\right) .
$$

We have:
$\left(\pi_{j i}{ }^{*} u_{i h}\right)\left(u_{h j}\right)=\pi_{j i}\left(u_{i h} \cdot u_{h j}\right)=\pi_{j i}\left(z^{(i \sim h)+(h \sim j)-(i \sim v)} \cdot u_{i j}\right)=$
$= \begin{cases}1 & i f(i \sim h)+(h \sim j)-(i \sim j)=\min (i, j)-1 \\ 0 & \text { otherwise }\end{cases}$
and

$$
\pi_{j h} z^{h \sim i}\left(u_{h j}\right)=\pi_{j h}\left(z^{h \sim i} u_{h j}\right)=\left\{_{0}^{1} \begin{array}{ll}
\text { if } h \sim i=\min (h, j)-1 \\
0 & \text { otherwise. }
\end{array}\right.
$$

So we must prove that:

$$
(i \sim h)+(h \sim j)-(i \sim j)=\min (i, j)-1 \quad i f f \quad h \sim i=\min (h, j)-1 .
$$

Writing $\min (i, j)=i-(i \sim j)$ and $\min (h, j)=j-(j \sim h)$, this is equivalent to proving that

$$
(i \sim h)+(h \sim j)=i-1 \quad i f f \quad(h \sim i)+(j \sim h)=j-1
$$

and this can easily be checked considering all possible cases.
(ii) Similar.
(1.20) Corollary: Let $a, b \in A$ and $u_{h j}, u_{i h}, \pi_{j i}$ be as in (1.19).

Then
(i) $\pi_{j i}{ }^{a *} b u_{i h}=\pi_{j h} z^{h \sim i} a b$
(ii) $a u_{h j}{ }^{*} \pi_{j i} b=\pi_{h i} z^{h \sim j_{a b}}$.

Proof: This is clear by (1.19) and (1.18)(2)i,ii, using the commutativity of A.

Now we have the following:
(1.21) Definition: Let $U, W \in \bmod A$ and $T, T^{\prime} \in D(W, U)$.

Then we say that T is equivalent to T^{\prime} and write $T \sim T^{\prime}$ if there is a $\rho \in A u t W$ and $a \quad \sigma \in A u t U$ such that

$$
T^{\prime}=\rho \star T^{\star}
$$

This is clearly an equivalence relation in $D(W, U)$.

We have the following:
(1.22) Corollary: If $T \in D\left(V_{j}, V_{i}\right), \rho \in E$ End $V_{j}, \sigma \epsilon$ End V_{i} then

$$
B(\rho * T * \sigma) \equiv \alpha(\rho) \beta(T) \alpha(\sigma) \quad\left(\bmod z^{n} A\right), n=\min (i, j)
$$

where α, β are defined in (1.6), (1.16).
 $=\pi_{j i} \alpha(\rho) B(T) \alpha(\sigma) \quad$ by (1.20).

Thus

$$
\begin{aligned}
& \qquad \beta\left(\rho^{\star} T^{\star} \sigma\right) \equiv \alpha(\rho) \beta(T) \alpha(\sigma) \quad\left(\bmod \left(z^{n} A\right)\right) . \\
& \text { Therefore, if } T, T^{\prime} \in D\left(V_{j}, V_{i}\right) \\
& T \sim T^{\prime} \text { iff there exists } \rho \in \text { Aut } V_{j}, \sigma \in \text { Aut } V_{i} \text {, such that }
\end{aligned}
$$

$$
\beta\left(T^{\prime}\right) \equiv \alpha(\rho) \beta(T) \alpha(\sigma) \quad\left(\bmod z^{n} A\right)
$$

and using (1.10)(ii) and (iii) one sees that

$$
\begin{gathered}
T \sim T^{\prime} \text { inf } \beta(T)=\lambda_{k} z^{k}+\ldots+\lambda_{n-1} z^{n-1} \text { and } \\
\beta\left(T^{\prime}\right)=\mu_{t} z^{t}+\ldots+\mu_{n-1} z^{n-1}
\end{gathered}
$$

with $\lambda_{k},{ }_{t} \neq 0$ and $k=t$.

Thus every class of equivalence of $D\left(v_{j}, V_{i}\right)$ has one and only one representative with the form $\pi_{j i^{2}}{ }^{k}, k=0, \ldots, n-1$ and so $D\left(V_{j}, v_{i}\right) / \sim$ has n elements.
§4. The A-modules (W, U) and $D(W, U)$
Suppose
(1.23) $W=\underset{j \in J}{\prod_{j}} W_{j}, U=\underset{i \in I}{\Longrightarrow} U_{i}$ with $W_{j}, U_{i} \in\left\{V_{1}, \ldots, V_{q}\right\}, j \in J$, $i \in I$ and J, I are some finite sets.

By (0.6) these decompositions are associated with morphisms

$$
\begin{array}{ll}
m_{i} \in\left(U_{i}, U\right) & n_{j} \in\left(W_{j}, W\right) \tag{1.24}\\
p_{i} \in\left(U, U_{i}\right) & q_{j} \in\left(W, W_{j}\right)
\end{array}
$$

such that

$$
\beta\left(T^{\prime}\right) \equiv \alpha(\rho) \beta(T) \alpha(\sigma) \quad\left(\bmod z^{n} A\right)
$$

and using (1.10)(ii) and (iii) one sees that

$$
\begin{aligned}
& T \sim T \text { iff } \beta(T)=\lambda_{k} z^{k}+\ldots+\lambda_{n-1} z^{n-1} \text { and } \\
& \beta\left(T^{\prime}\right)=\mu_{t^{\prime}} z^{t}+\ldots+\mu_{n-1} z^{n-1}
\end{aligned}
$$

with $\lambda_{k}, \mu_{t} \neq 0$ and $k=t$.

Thus every class of equivalence of $D\left(v_{j}, V_{i}\right)$ has one and only one representative with the form $\pi_{j i} Z^{k}, k=0, \ldots, n-1$ and so $D\left(V_{j}, V_{j}\right) / \sim$ has n elements.
s4. The A-modules (W, U) and $D(W, U)$
Suppose
(1.23) $W=\underset{j \in J}{\perp} W_{j}, U=\frac{\prod_{i \in I}}{} U_{i}$ with $W_{j}, U_{i} \in\left\{V_{1}, \ldots, V_{q}\right\}, j \in J$, $i \in I$ and J, I are some finite sets.

By (0.6) these decompositions are associated with morphisms

$$
\begin{array}{ll}
m_{i} \in\left(U_{i}, U\right) & n_{j} \in\left(W_{j}, W\right) \\
p_{i} \in\left(U, U_{i}\right) & q_{j} \in\left(W, W_{j}\right)
\end{array} \quad i \in I, j \in J
$$

such that

$$
\begin{aligned}
& p_{i} m_{t}=\delta_{i t} l_{U_{i}}, q_{j} n_{\ell}=\delta_{j \ell} l_{W_{j}} \quad i, t \in I, j, \ell \in J \\
& \sum_{i \in I} m_{i} p_{i}=l_{U}, \sum_{j \in J} n_{j} q_{j}=l_{W} . \\
& \text { Let: }
\end{aligned}
$$

$$
r: I \longrightarrow\{1, \ldots, q\}
$$

$$
i \longrightarrow \gamma(i) \text { such that } U_{i}=V_{\gamma(i)}
$$

$$
(1.25) \delta: J \longrightarrow\{1, \ldots, q\}
$$

$$
j-\delta(j) \text { such that } W_{j}=V_{\delta(j)}
$$

$$
\text { Let } I_{t}=\{i \in I: \gamma(i)=t\}, J_{\ell}=\{j \in J: \delta(j)=\ell\} \text {. Then }
$$ $I={\underset{U}{t=1}}_{q}^{q} I_{t}$, and $m_{t}=\left|I_{t}\right|$ is the multiplicity of v_{t} in the decomposition of U; also $J={\underset{U}{Q} J_{\ell}}_{q}$ and $n_{\ell}=\left|J_{\ell}\right|$ is the multiplicity of V_{ℓ} in the decomposition of W.

One has

$$
(W, U)=\left(\prod_{j \in J} W_{j}, \underset{i \in I}{\prod_{i}} U_{i}^{\cong} \underset{\substack{i \in I \\ j \in J}}{\prod_{j}}\left(W_{j}, U_{i}\right)=\underset{\substack{\mathbf{j} \in I \\ j \in J}}{\prod_{\delta(j)}}\left(V_{\gamma(i)}\right) .\right.
$$

Let $f_{\epsilon}(W, U)$. Considering the maps associated with decompositions (1.23), we have the diagram:

$$
\begin{aligned}
& u_{i}=v_{\gamma(i)} \stackrel{p_{i}}{m_{i}} u \\
& w_{j}=v_{\delta(j)} \stackrel{q_{j}}{n_{j}} w
\end{aligned}
$$

Then f can be given by a matrix
(1.26) $\quad F=\left(f_{i j}\right)_{\substack{i \in I \\ j \in J}}=\left(\begin{array}{llll}F_{11} & F_{12} & \ldots & F_{1 q} \\ F_{21} & F_{22} & \ldots & F_{2 q} \\ F_{q 1} & F_{q 2} & \ldots & F_{q q}\end{array}\right)$
where $f_{i j}=p_{i} . f_{j} n_{j}$, and each $F_{t \ell}$ is an $m_{t} \times n_{\ell}$ matrix, i.e. gives a map $v_{l}^{n_{l}} \rightarrow v_{t}^{m} t$.

We also can write
(1.27)

$$
F=\left(\alpha_{i j}(f) u_{\gamma(i) \delta(j)}\right)_{\substack{i \in I \\ j \in J}} \text { with } \alpha_{i j}(f) \in A
$$

We can assume that $\alpha_{i j}(f)$ is a polynomial in z with degree $<\min (\gamma(i), \delta(j))$ i.e. $\alpha_{i j}(f)=\alpha\left(f_{i j}\right)$. (See (1.6).)
(1.28) Definition: Let $T \in D(W, U)$. Define $T_{j i} \in D\left(W_{j}, U_{i}\right)$ as follows:

$$
T_{j i}=q_{j}{ }^{\star} T \pi_{i}
$$

(where $\mathrm{q}_{\mathrm{j}}, \mathrm{m}_{\mathrm{i}}$ are as in (1.24)).

We have $D(W, U) \xlongequal{\cong} \underset{\substack{\mathbf{j} \in I \\ j \in J}}{\underset{~}{L}}\left(W_{j} U_{i}\right)$, thus $T \in D(W, U)$ can be given by a matrix:
(1.29) $\quad T=\left(T_{j i}\right)_{\substack{i \in I \\ j \in J}}=\left(\pi_{\delta(j) \gamma(i)} \beta_{j i}(T)\right)_{\substack{j \in J \\ i \in I}}$
with $\beta_{j i}(T) \in A$, and we can always assume that $\beta_{j i}(T)$ is a polynomial in z with degree $<\min (\gamma(i), \delta(j))$ ie. $\beta_{j i}(T)=\beta\left(T_{j i}\right)$ $(\operatorname{see}(1.16))$.
(1.30) Remark: If $|I|=n \quad|J|=m$ we see that the matrix of $f \in(W, U)$ is

and the matrix of $T \in D(W, U)$ is $\left(\begin{array}{c}i \\ \vdots \\ \vdots \\ \left.T_{j i} \ldots \ldots .\right)_{j \times n} \text { with } T_{j i} \in D\left(W_{j}, U_{i}\right), ~\end{array}\right.$

$$
\text { Given } \left.f \in(W, U\rangle \text {, then } f=\sum_{\substack{i \in I \\ j \in J}} m_{i} p_{i} f n_{j} q_{j} \quad(\text { by } 1.24)\right)
$$

Thus

$$
T(f)=\sum_{\substack{i \in I \\ j \in J}} T\left(m_{i} p_{i} f n_{j} q_{j}\right)=\sum_{\substack{i \in I \\ j \in J}}\left(q_{j} * T * m_{i}\right)\left(p_{i} f n_{j}\right)=\sum_{\substack{i \in I \\ j \in J}} T_{j i}\left(f_{i j}\right)
$$

Therefore:
(1.31) If $T \in D(W, U)$, is given by the matrix $T=$
$=\left(T_{j i}\right)_{\substack{j \in J \\ i \in I}}, f \in(W, U)$ is given by the matrix $F=\left(f_{i j}\right)_{\substack{i \in I \\ j \in J}}$, then

$$
T(f)=\sum_{\substack{j \in J \\ \mathbf{i} \in I}} T_{\mathbf{j} i}\left(f_{i j}\right)
$$

Now we want to describe the equivalence classes for n in $D(W, U)$ (see 1.21). We need the following:
(1.32) Proposition: If $T \in D(W, U)$ has matrix $T=\left(T_{\mathbf{j} i}\right)_{\underset{j}{\mathbf{j} \in \mathrm{~J}} \mathrm{~J}}$ with $T_{j \div} \in D\left(W_{j}, U_{i}\right)$, and $g \in E n d W, h \in$ End U have matrices $A=\left(g_{j k}\right)_{j, k \in J} \quad B=\left\langle h_{\ell i}\right)_{\ell, i \in I}$ respectively (with $g_{j k} \in\left(W_{k}, W_{j}\right)$, $\left.h_{\ell i} \in\left(U_{i}, U_{\ell}\right)\right)$, then $g^{\star} T^{*} h \in D(W, U)$ has matrix

$$
A \star T * B=\left(\sum_{\substack{k \in J \\ \ell \in I}} g_{j k}{ }^{\star} T_{k \ell}{ }^{\star h}{ }_{\ell i}\right)_{\substack{j \in J \\ i \in I}}
$$

$$
\begin{aligned}
& \text { Proof: } \quad\left(g^{\star} T^{\star} h\right)(f)=T(h f g)=\sum_{\substack{k \in J \\
\ell \in I}} T_{k \ell}(h f g)_{\ell k} \text { (by (1.31)) } \\
& =\sum_{\substack{k \in J \\
\ell \in I}} T_{k \ell}\left(\sum_{\substack{j \in J \\
i \in I}} h_{\ell \mathbf{i}} f_{i j} g_{j k}\right)= \\
& =\sum_{\substack{k, j \in J \\
\ell, i \in I}} T_{k}\left(h_{\ell i} f_{i j} g_{j k}\right)=\sum_{\substack{k, j \in J \\
\ell, j \in I}}\left(g_{j k}{ }^{*} T_{k \ell}{ }^{*} h_{\ell j}\right)\left(f_{i j}\right)= \\
& \left.=\sum_{\substack{j \in J \\
i \in I}}\left(\sum_{k \in J}^{\sum \in I}\right\}\left(g_{j k}{ }^{*} T_{k}{ }^{*} h_{\ell j}\right)\right)\left(f_{i j}\right) .
\end{aligned}
$$

Then by (1.31)

$$
\sum_{\substack{j \in J \\ i \in I}}\left(\sum_{k \in J}^{\sum}\left(g_{j k}{ }^{*} T_{k \ell}{ }^{\star h_{\ell i}}\right)\right)\left(f_{i j}\right)=\sum_{\substack{j \in J \\ i \in I}}\left(g^{* T * h}\right)_{j i}\left(f_{i j}\right) \quad, \forall f \in(W, U)
$$

In particular, if f is such that its matrix is of the form

$$
\begin{aligned}
& \left(\begin{array}{lll}
& \vdots & \\
0 & f_{i j} & 0 . . \\
0 &
\end{array}\right) \quad \text { we have: } \\
& \left(g \star T^{*} h\right)_{j i}\left(f_{i j}\right)=\left(\sum_{k \in J}^{\ell \in I}\left(g_{j k}{ }^{*} T_{k \ell}{ }^{\star} h_{\ell i}\right)\right)\left(f_{i j}\right)
\end{aligned}
$$

and the proposition is proved.
(1.33) Corollary: With the conditions of (1.32),

$$
\begin{aligned}
& \text { Proof: Clear by (1.32) and (1.19). }
\end{aligned}
$$

55. Automorphisms

Let $W=\frac{\prod_{j \in J}}{} W_{j}(1.23)$. Let $f \in$ End W be given by the matrix
(1.34) $\quad F=\left|\begin{array}{llll}F_{11} & F_{12} & \ldots & F_{1 q} \\ F_{21} & F_{22} & \ldots & F_{2 q} \\ F_{q 1} & F_{q 2} & \ldots & F_{q q}\end{array}\right|$
(as in (1.26))

Using Fitting's theorem ([CRM], pg. 462) we have:
f is automorphism iff $F_{11}, F_{22}, \ldots, F_{q q}$ are non-singular.
In particular we may consider the automorphisms whose matrices belong to the following types:

We will call these operations on F, elementary operations of types E_{1}, E_{2}, E_{3} respectively.

Observe that using E_{1} we can only interchange the rows k, such that $\delta(k)=\delta(\ell)$. (Strictly speaking E_{1} should not be considered an elementary operation since it can be obtained by a number of operations E_{2}, E_{3} in rows k, ℓ such that $\delta(k)=\delta(\ell)$).

However we can interchange any two rows, provided that we realize that this means a reordering of the decomposition of W when considered as the range of f. For example

$$
\left(\begin{array}{ccc}
u_{11} & 0 & 0 \\
0 & 0 & u_{22} \\
0 & u_{11} & 0
\end{array}\right) \quad \begin{gathered}
\text { gives the identity map } 1_{W} \text { of } W=v_{1}^{2} \Perp v_{2} \\
\text { but it is considered as a map } \\
v_{1}^{2} \Perp v_{2}+v_{1} \Perp v_{2} \Perp v_{1}
\end{gathered}
$$

The multiplication of a matrix $F(1.34)$ on the right by matrices of types E_{1}, E_{2}, E_{3} gives similar results for columns.

And interchanging any two columns, means the reordering of the decomposition of W, when considered as the domain of f.

It is clear that the inverses of the automorphisms of types E_{1}, E_{2}, E_{3} are given by matrices of the same type.

Let $f \in$ Aut W be given by (1.34).
Since F_{11} is non-singular it is possible to find matrices
$A_{1}, \ldots, A_{t}, B_{1}, \ldots B_{\ell}$ of type E_{1}, E_{2} or E_{3} such that

$$
A_{t} \ldots A_{1} F B_{1} \ldots B_{l}=\left|\begin{array}{llll}
I u_{11} & F_{12}^{\prime} & \ldots & \\
F_{21}^{\prime} & F_{22}^{\prime} & & \\
\vdots & & & \\
& & & F_{q 9}
\end{array}\right|
$$

Then using matrices $A_{p}, \ldots, A_{t+1}, B_{\ell+1}, \ldots, B_{k}$ of type E_{3} we can get

$$
\begin{aligned}
& A_{p} \ldots . . A_{t+1} \cdot A_{t} \ldots A_{1} F B_{1} \ldots B_{\ell} B_{\ell+1} \ldots B_{k}
\end{aligned}=\left|\begin{array}{ccccc}
I u_{11} & 0 & 0 & \ldots & 0 \\
0 & F_{22}^{\prime \prime} & F_{23}^{\prime \prime} & & \\
0 & F_{32}^{\prime \prime} & F_{33} & \\
\vdots & & & \\
0 & & & & F_{q 9}
\end{array}\right|
$$

Repeating the process we obtain $\left|\begin{array}{ccccc}\mathrm{Iu} & 0 & 0 & \ldots & 0 \\ 0 & \mathrm{Iu}_{22} & 0 & \ldots & 0 \\ 0 & 0 & \mathrm{~F}_{33}^{\prime \prime \prime} & & \\ \vdots & \vdots & \text { etc. } & \\ 0 & 0 & & & \mathrm{~F}_{\mathrm{qq}}\end{array}\right|$
and finally:

$$
\left(\begin{array}{ccc}
\mathrm{I} u_{11} & & 0 \\
& \mathrm{I} u_{22} & \\
& 0 & \mathrm{I}_{\mathrm{q9}}
\end{array}\right)=1 .
$$

Thus there are matrices $A_{1} \ldots A_{s}, B_{1}, \ldots B_{r}$ of types E_{1}, E_{2}, E_{3} such that:

$$
A_{s} \ldots A_{1} F B_{1} \ldots B_{r}=I
$$

and so

$$
F=A_{1}^{-1} \ldots A_{s}^{-1} B_{r}^{-1} \ldots B_{1}^{-1} .
$$

Therefore:
(1.36) If $f \in$ Aut W, the matrix F of f is a product of elementary matrices.
§6. Elementary operations on the matrix of $T \in D(W, U)$
Let $T \in D(W, U)$ be given by a matrix
(0.37) $T=\left(T_{j i}\right)_{\substack{\mathbf{j} \in \mathrm{I} \\ j \in J}}=\left(\pi_{\delta(j) \gamma(i)} \boldsymbol{\beta}_{j i}(T)\right)_{\substack{\mathbf{j} \in \mathrm{J}}}$
as in (1.29).
We know that $E n_{A} W$ and $E n d_{A} U$ act on $D(W, U)$ on left and right respectively as follows (see 1.17):

$$
(\rho * T)(f)=T\left(f_{\rho}\right) \quad \forall \rho \in E_{A d_{A}} W
$$

$\forall f \in(W, U)$

$$
\left(T^{\star} \theta\right)(f)=T(\theta f) \quad \forall \theta \in \operatorname{End}_{A} U .
$$

Proposition (1.32) tells us that this action can be given by matrices.

In particular we are interested now on the action * of matrices of types $E_{1}, E_{2}, E_{3}(1.35)$ on the matrix T (1.37) on left and right. These actions will be called elementary operations on T.

Using (1.19)(ii) one sees that:
(1.38) (i) $E_{1}{ }^{*} T$ is the matrix obtained from T by interchanging rows $k, \ell(w i t h \quad \delta(k)=\delta(\ell))$.
(ii) $\mathrm{E}_{2}{ }^{*} T$ is the matrix obtained from T by multiplying row k by $a \in A$ (a is a unit).
(iii) $E_{3}{ }^{*} T$ is the matrix obtained from T by adding to row k the row r multiplied by bust (here, by "multiplication" we mean the action *).

Now we look with more detail, into case (iii).
Let $\delta(r)=t, \delta(k)=s$. Suppose $\delta(r)<\delta(k)$.

$=k\left|\cdots \pi_{\delta(k) r(r)}{ }^{\left.\left(\beta_{k r}(T)+b z^{\delta(k)-\delta(r)} \beta_{r r}(T)\right) \ldots \pi_{\delta(k) \gamma(k)^{(\beta}{ }_{k k}(T)+b z^{\delta(k)-\delta(r)}}^{\beta_{r k}}(T)\right) \cdots \mid}\right|$

$$
\begin{aligned}
& \text { If } \delta(k) \leq \delta(r)
\end{aligned}
$$

$$
\begin{aligned}
& k \left\lvert\, \begin{array}{lll}
= & \\
\cdots \pi_{\delta(k) \gamma(k)}\left(\beta_{k k}(T)+\beta_{r k}(T) \cdot b\right) \quad \cdots \pi_{\delta(k) \gamma(r)}\left(\beta_{k r}(T)+\beta_{r r}(T) \cdot b\right) \cdots
\end{array}\right.
\end{aligned}
$$

Thus
(1.39) If $\delta(r)<\delta(k), E_{3}{ }^{\star} T$ is the matrix obtained from T by adding to row k, the row r multiplied by $z^{\delta(k)-\delta(r) . b . ~}$

If $\delta(r) \geq \delta(k), E_{3}{ }^{\star} T$ is the matrix obtained from T by adding to row k, the row r multiplied by b.

Remark: If $\delta(r) \geq \delta(k)$ and $\beta_{r r}(T)$ is a unit we may use an elementary operation of type E_{3} to "annihilate" $\pi_{\delta(k) \gamma(r)} \beta_{k r}(T)$.

However, in case $\delta(r)<\delta(k)$, this may not be possible...
The action * of matrices of types E_{1}, E_{2}, E_{3} on the right is similar to what has just been described except for the fact that it affects columns and not rows.

Because of (1.32), (1.36), this can be used to calculate $D(W, U) / \sim$ where " \sim " is given by (1.21).

§7. Some particular cases

In the following we will use a simplified notation:

We will write

$$
T=\left(\begin{array}{cc}
\gamma(i) \\
\cdots & \beta_{j i}(T)
\end{array} \ldots\right) \delta(j)
$$

instead of

$$
\left(\ldots \pi_{\delta(j) r(i)} \beta_{j i}(T) \ldots\right)
$$

and often $\beta_{j i}$ instead of $\beta_{j i}(T)$. We shall also call "multiplication *" to the action * .

Now we consider some special cases:

$$
\text { (a) Let } T \in D\left(V_{t}^{S}, V_{k}^{m}\right) \quad 1 \leq t, k \leq q, m, s \in N \text {. }
$$

Thus

If there exists a $\beta_{j i}$ that is a unit we may use operations of types E_{1} and E_{2} to place 1 in entrie (1,1). Then multiplying*the first row by ${ }^{-\beta}{ }_{21} u_{t t}$ and adding to the second row we annihilate entrie (2,1). Using right multiplication * we also annihilate β_{12}, \ldots. Observe that in this case $\delta(j)$ is always t, so this is possible.

After a number of steps we obtain:

$$
\left(\begin{array}{cccccc}
1 & & & & & \\
& 1 & \ddots & & & \\
\\
& & 1 & & & \\
& & & \beta_{r r}^{\prime} & \cdots & \beta_{r m}^{\prime} \\
& & & & & \\
& & & \beta_{s r}^{\prime} & \cdots & \beta_{s m}^{\prime}
\end{array}\right) \quad \begin{array}{llll}
\\
\text { where all } & \beta_{j i}^{\prime} & \text { are } \\
\text { divisible by } & z &
\end{array}
$$

If no $\beta_{j i}$ is a unit we may consider that T is this matrix with $r=1$.

If there is $\beta_{j i}^{\prime}=z$.unit, then using operations of type $E_{\boldsymbol{1}}$ and E_{2} we may assume that $\beta_{r r}^{\prime}=z$ and then annihilate all entries (i, r) and (r, j) (because these are "divisible" by z).

Thus
$\ldots \rightarrow\left|\begin{array}{lllll}k & \ldots & & & k \\ l_{\ddots} & & & & \\ & z_{\ddots} & & & \\ & & & & \\ & & \beta_{l l}^{\prime \prime} & & \ldots \\ & & \beta_{l m}^{\prime \prime} \\ & & \beta_{s l}^{\prime \prime} & \ldots & \beta_{s m}^{\prime \prime}\end{array}\right|_{t}^{t}$
with all $\beta_{j i}^{\prime \prime}$ divisible by z^{2}.

If no $\beta_{j i}^{\prime}$ has the form z.unit then consider $\ell=r$, etc. After a finite number of steps, we have:

Thus T can be transformed into a direct sum of (1), (z), ... $\ldots\left(z^{n-1}\right)$ with $n=\min (t, k)$.

Remark: The reason why this may be called direct sum will be explained later (see (2.30)).
(b) Let $T \in D\left(v_{i}^{m_{i}^{i}} \Perp v_{j}^{m_{j}}, v_{i}^{n_{i}} \mu v_{j}^{n}\right)$ with $i=j+1$. Using (a) it is clear that:

We may also assume that $B_{0}, C_{0}=0$ and B_{k}, C_{k} have entries which are polynomials of degree $<k, j, \forall k=1, \ldots \mathbf{i}$. This is so, since otherwise it was always possible to use z^{k} in the same row (column) to annihilate the terms of degree $\geq k$.

We can go further: if $0 \neq \beta_{s r}^{\star} \in B_{k}$ then $\beta_{s r}^{\star}=\pi_{i j} \cdot z^{\ell} b$ where $b \in A$ is a unit and $\ell<k$. Thus $\pi_{i j} z^{\ell} \cdot b^{*} z^{k-\ell-1} b^{-1} u_{j i}=$ $=\pi_{i j} z^{k}$; so it is possible to annihilate $\pi_{i i^{\prime}} z^{k}$ in the same row. This may affect a column in C_{k}. Repeating this whenever necessary and interchanging columns and rows we have

where the columns affected by above operation are now $\operatorname{in}\binom{0}{C_{i}^{\prime}}$.

Now we may proceed similarly for the $C_{k} k=0, \ldots, i$. After a certain number of steps we have the following matrix.

(c) Suppose in particular that $T \in D\left(V_{2}^{m_{2}} \Perp V_{1}^{m_{1}}, V_{2}^{n_{2}} \mu V_{1}^{n_{1}}\right)$. Then using (b),

$$
T \rightarrow\left(\begin{array}{ccc:c}
& 2 & 1 \\
I & & & 0 \\
& z I & & 0 \\
& & 0 & B \\
\hdashline 0 & 0 & C & A
\end{array}\right)_{1}
$$

Then,

2
1

Consider $\left(\begin{array}{ll}2 & 1 \\ 0 & B^{\star} \\ C^{\star} & I\end{array}\right) \begin{aligned} & 2 \\ & 1\end{aligned} \quad \begin{aligned} & \text { If there was a unit in } B^{*}, \\ & \text { then the } \pi 11.1 \text { in the same } \\ & \text { column could be annihilated. }\end{aligned}$

Thus:
$\ldots \rightarrow\left(\begin{array}{c:c:c}2 & 1 \\ 0 & B^{*} & 0 \\ \hdashline C \star * & 0 & 0 \\ \hdashline 0 & 0 & I\end{array}\right), 2 \rightarrow\left(\begin{array}{c:c:c}0 & 0 & 10 \\ \hdashline\end{array}\right)$
using (a) and interchanging rows and
interchanging columns.

Substituting above we have:

(d) $T \in D\left(v_{3}^{m_{3}} \Perp v_{2}^{m_{2}}, v_{3}^{s_{3}} \Perp v_{2}^{{ }^{3}}{ }^{i}\right)$. Using the same method we can see that:
(e) $T \in D\left(V_{3}^{m_{3}} \Perp V_{1}^{m_{1}}, v_{3}^{s_{3}} \Perp V_{1}^{s_{1}}\right)$. In this case we use the following:

Notation: Denote by $I_{l}^{*}\left(I_{l}^{* *}\right)$ a matrix such that when the null columns (rows) are removed, it becomes I_{ℓ}.

$$
\begin{aligned}
& 31
\end{aligned}
$$

because if C_{2} had an entry $\neq 0$ it would be possible to annihilate $\pi_{33} z^{2}$ in the same row...

Now consider

$$
\left(\begin{array}{c:c}
& \\
z I & C^{\prime \prime} \\
\hdashline B^{\prime \prime} & D^{\prime \prime}
\end{array}\right) \rightarrow\left(\begin{array}{c:cc}
& & I_{t} \\
z & 0 & t \\
\hdashline I_{\ell} & 0 & 0^{\prime \prime} \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{c:cc}
z & I_{t} & 0 \\
z & A & 0 \\
\hdashline & 0 & 0 \\
\hdashline 0 & 0 & 0 \\
0 & 0 & D^{\star}
\end{array}\right) \rightarrow \ldots
$$

The last step is valid because the use of E_{3} on rows will not affect $\left|\begin{array}{ll}I_{i} & 0 \\ 0 & 0\end{array}\right|$, since given $\pi_{33^{2}} a \in z A$, then $\forall b \in A$, ${ }^{b u}{ }_{13} \cdot \pi_{33} z a=\pi_{13} z a b=0 ;$ and the same holds for columns.

Then

Substituting on (1.42) we have:
(1.43)

Now we must consider the matrix $x=\left(\begin{array}{c:c}z_{k} & C \\ \hdashline B & 0\end{array}\right)$
Observe that B and C are matrices of elements on k, with rank \& and t respectively.

Let $B=\left(b_{i j}\right)_{i=1, \ldots, \ell} \quad$ If $b_{i f} \neq 0$, for some i, then by

$$
j=1, \ldots k
$$

interchanging rows and multiplying by $b_{i 1}^{-1}$ we can assume that $b_{11}=1$. Then using operations on rows only, we can annihilate all $b_{i l} \neq 0(i>0)$.

If there is no $b_{i q} \neq 0$, the first column is null and we consider the second

Suppose

$$
B \rightarrow\left(\begin{array}{lll}
1 & b_{12}^{\prime} & \cdots \\
0 & b_{22}^{\prime} & \cdots \\
0 & b_{l 2}^{\prime} & \cdots
\end{array}\right)
$$

If some $b_{t 2}^{\prime}$ is $\neq 0$, then:
(i) If $t \neq 1$ we may suppose that $b_{22}^{\prime}=1$ and using only operations on rows, we can annihilate all $b_{i 2}^{\prime} \neq b_{22}^{\prime}$.

$$
\text { (ii) If only } b_{12}^{\prime}=b \neq 0 \text { then }
$$

If all $b_{t 2}^{\prime}=0$, the matrix has already this form.

Proceeding this way we see that

$$
x \rightarrow\left(\begin{array}{c:c}
z & I \\
& C^{\prime} \\
\hdashline I_{\ell}^{*} & 0
\end{array}\right)
$$

Then we use a similar method on C^{\prime}. One can see that I_{ℓ}^{*} does not change, as follows:

Suppose we have the following case (which is the only that could affect I_{ℓ}^{*}):

Then we have one of the following cases:
(i)

- 54 -
(iii)

$\rightarrow\left(\begin{array}{ccc:c}z & & & 0 \\ \hdashline & z & & \vdots \\ \hdashline 0 & 1 & & 0\end{array}\right)$
(iv)

$$
\left(\begin{array}{cc:c}
z & & \\
\ddots & z & 1 \\
\hdashline 0 & 0 & 0
\end{array}\right) \longrightarrow\left(\begin{array}{ccc:c}
z & \ddots & & 1 \\
\hdashline & \cdots & 0 \\
\hdashline 0 & \ddots & 0 & 0
\end{array}\right)
$$

Finally we have:

$$
X \rightarrow\left(\begin{array}{c:c}
2 I_{k} & I_{t}^{* *} \\
\hdashline I_{l}^{*} & 0
\end{array}\right)
$$

Substituting in (1.43) and interchanging conveniently rows and columns, we get:

(f) Let $T \in D\left(v_{3}^{m_{3}} \Perp v_{2}^{m_{2}} \Perp v_{1}^{m_{1}}, v_{3}^{s_{3}} \Perp v_{2}^{s_{2}} \Perp v_{1}^{s_{1}}\right)$

The blocks with * are not necessarily zero; those without any symbol inside, are null.

Considering the matrix formed by the shaded blocks and applying the methods of previous examples, we obtain:

$$
\begin{aligned}
& 3 \quad 2
\end{aligned}
$$

Now we consider the matrix \((1.45) \quad\left(\begin{array}{ccc}3 \& 2 \& 1

z \& 0 \& I_{m}^{\star \star}

0 \& 0 \& I_{t}^{\star}

I_{\mathrm{n}}^{*} \& \mathrm{I}_{\mathrm{k}}^{\star *} \& 0\end{array}\right)\)| 3 |
| :--- |
| 2 |

If I has order ≥ 2 this is a decomposable matrix because in each row and each column of the $I_{j}^{* *}, I_{i}^{*}(j=m, k, i=n, t)$, there is at most one 1 , and the blocks $(2,3)$ and $(3,2)$ are 0 .

Example:

The method used can be generalized to any matrix of the type (1.45). And the matrices into which it decomposes still belong to this type.

Thus we must consider all possible 3×3 matrices with the form (1.45). Using (1.19) we can transform them as follows:
(1) $A_{1}=\left(\begin{array}{lll}3 & 2 & 1 \\ 2 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0\end{array}\right) 2 \begin{aligned} & 3\end{aligned} \rightarrow\left(\begin{array}{cc:c}3 & 2 & 1 \\ z & 0 & 0 \\ 1 & 1 & 0 \\ \hdashline 0 & 0 & 1\end{array}\right) \frac{3}{1} 2 \quad A_{1}^{T} \quad$ is similar

A_{2}^{\top} is similar.
(3)
$A_{3}=\left(\begin{array}{lll}3 & 2 & 1 \\ z & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 0\end{array}\right) \quad \begin{aligned} & 3 \\ & 2 \\ & 1\end{aligned} \rightarrow\left(\begin{array}{cc:c}3 & 2 & 1 \\ 1 & 0 & 0 \\ \hdashline 0 & 0 & 0\end{array}\right) \begin{aligned} & 3 \\ & 1\end{aligned}$
A_{3}^{\top} is similar.
(4)
$A_{4}=\left(\begin{array}{lll}3 & 2 & 1 \\ z & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array} \left\lvert\, l \begin{array}{l}2\end{array} \rightarrow\left(\begin{array}{cc:c}3 & 1 & 2 \\ \hdashline & 1 & 0 \\ \hdashline 0 & 0 & 0 \\ \hdashline 0 & 0 & 1\end{array}\right) \frac{3}{2}\right.\right.$
A_{4}^{\top} is similar.
(5)

$$
A_{5}=\left(\begin{array}{lll}
z & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{c:c:c}
z & 0 & 0 \\
\hdashline 0 & 1 & 0
\end{array}\right)^{3} \quad A_{5}^{T} \text { is similar. }
$$

(6)

$$
A_{6}=\left(\begin{array}{lll}
z & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{cc:c}
3 & 1 & 2 \\
z & 1 & 0 \\
\hdashline 0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \frac{3}{2} \quad A_{6}^{T} \text { is similar. }
$$

(7)

$$
A_{7}=\left(\begin{array}{lll}
z & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
z & -z & 1 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)+\left(\begin{array}{ccc}
z & -z & 1 \\
-z & z & 0 \\
1 & 0 & 0
\end{array}\right)+\left(\begin{array}{lll}
z & 0 & 1 \\
0 & z & 0 \\
1 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{cc:c}
3 & 1 & 2 \\
1 & 1 & 0 \\
1 & 0 & 0 \\
\hdashline 0 & 0 & z
\end{array}\right) \frac{3}{1}
$$

(8)

$$
A_{8}=\left(\begin{array}{c:cc|c}
3 & 2 & 1 & \\
\hdashline \begin{array}{c}
z \\
0
\end{array} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0
\end{array}\right.
$$

(9)

$$
A_{9}=\left(\begin{array}{lll}
z & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)+\left(\begin{array}{cc:c|c}
2 & 1 & 1 & 0 \\
1 & 0 & 0 & 3 \\
\hdashline 0 & 0 & 0
\end{array}\right) \frac{2}{2}
$$

(10)

$$
A_{10}=\left(\begin{array}{lll}
z & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{c:c:c|c}
3 & 1 & 2 \\
\hdashline 0 & 0 & 0 & 3 \\
\hdashline 0 & 0 & 0 & 1
\end{array}\right.
$$

Considering \(\left(\begin{array}{ccc}3 \& 1 \& 2

z \& I_{r}^{\star \star} \& 0

0 \& 0 \& z I

0 \& 0 \& I_{l}^{\star}\end{array}\right) \frac{2}{} \quad\)| one can easily see that |
| :--- |
| it decomposes into the |
| direct sum of the |

following matrices: $\quad\left(\begin{array}{ll}z & 1\end{array}\right)^{2}\left|\begin{array}{l}z \\ 1\end{array}\right|_{1}^{3},(z) 2,(z) 3,(1) 1,(1) 2$.

Collecting all these matrices, we can say that:
(1.46) T can be transformed into a matrix that is the direct sum of matrices taken from the set of 21 matrices (1.47).

It will be shown later (see Chapter II, §5) that these matrices are indecomposable i.e. that they cannot be written as the direct sum of two matrices different from zero.

It will also be shown that no two of these matrices correspond to equivalent elements (as defined in (1.21)).

$$
\begin{aligned}
& \left(\begin{array}{cc}
0 & \pi_{13} \\
\pi_{31} & \pi_{33} z
\end{array}\right)\left(\begin{array}{cc}
\pi_{12} & \pi_{33} \\
0 & \pi_{33} z
\end{array}\right)\left(\begin{array}{cc}
\pi_{21} & 0 \\
\pi_{31} & \pi_{33} z
\end{array}\right)\left(\begin{array}{ll}
\pi_{31} & \pi_{33} z
\end{array}\right) \\
& \text { (1.47) }\binom{\pi_{13}}{\pi_{33^{2}}}\left(\begin{array}{ll}
\pi_{21} & \pi_{23^{z}}
\end{array}\right)\binom{\pi_{12}}{\pi_{32^{2}}}\left(\begin{array}{ll}
\pi_{33^{2}}{ }^{2}
\end{array}\right)\left(\begin{array}{l}
\left.\pi_{33^{z}}\right)
\end{array}\right. \\
& \begin{array}{lllllll}
\left(\pi_{32}\right) & \left(\pi_{23^{z}}\right) & \left(\pi_{22^{z}}\right) & \left(\pi_{33}\right) & \left(\pi_{23}\right) & \left(\pi_{32}\right) & \left(\pi_{13}\right)
\end{array} \quad\left(\pi_{31}\right) \\
& \left(\pi_{22}\right)\left(\pi_{12}\right)\left(\pi_{21}\right)\left(\pi_{11}\right) .
\end{aligned}
$$

Chapter II : Finitely presented functors

§l. A characterization of finitely presented functors
Let k be a field and A any finitely dimensional $k-a l g e b r a$.
In this chapter we make use of the following important characterization of finitely presented functors ([AR] pg.318, 319):
(2.1) Theorem (Auslander-Reiten): A functor $F \in \operatorname{Mmod} A$ is finitely presented if and only if there exist $U, W \in \bmod A$ and $\alpha:(, U) \rightarrow D(W$,$) such that \operatorname{Im} \alpha=F$.
(2.2) Remark: In [AR] prop. 3.1. pg. 318, it is proved that $F \in \operatorname{mmod} A, \quad i f f F$ and $D F$ are finitely generated i.e. there are
$V, W \in \bmod A:(, V) \rightarrow F \rightarrow 0,(W,) \rightarrow D F \rightarrow 0$ are exact. This is obviously equivalent to (2.1) above.

Before we go further we give a more constructive proof of (2.1) than the one given in [AR]. In fact this is equivalent to answering the questions:
(1) If $F \cong \operatorname{Im} \alpha$ with $a:(, V) \rightarrow D(W), V,, W \in \bmod A$, describe $V_{1} \in \bmod A$ so that $\left(, V_{1}\right) \rightarrow(, V) \rightarrow F \rightarrow 0$ is exact.
(2) Conversely given $F \in \bmod A$ and an exact sequence

$$
\begin{gathered}
\left(, V_{1}\right) \rightarrow\left(, V_{0}\right) \rightarrow F \rightarrow 0 \\
\text { describe } W \text { and } \alpha:\left(, V_{0}\right) \rightarrow D(W,) \text { so that } F \cong \operatorname{Im} \alpha .
\end{gathered}
$$

Green answers the first question in [Gr 2] §2, by constructing what he calls the Auslander-Reiten-Gabriel (A-R-G) diagram.

For convenience we write here the main steps of this construction: Let
(2.3) $P_{1} \xrightarrow{p_{1}} P_{0} \xrightarrow{p_{0}} W \rightarrow 0$ be a projective resolution of W.

Then $D\left(P_{1},\right) \xrightarrow[D\left(p_{1},\right)]{ } D\left(P_{0},\right) \xrightarrow[D\left(p_{0},\right)]{ } D(W,) \rightarrow 0$ is exact.
Applying d (see Chapter 0 ; §3), to (2.3), and considering $C=$ Coker dp_{1}, the sequence

$$
d P_{0} \xrightarrow{d p_{1}} d P_{1} \longrightarrow C \rightarrow 0
$$

is exact.

So

$$
0 \rightarrow(, D C) \xrightarrow{(, \text { inc })}\left(, N P_{1}\right) \xrightarrow{\left(, N p_{1}\right)}\left(, N P_{0}\right)
$$

is exact, where N is the Nakayama functor (0.24).
There exists a k-map
(2.4) $\quad \alpha_{Y}: D(Y,) \rightarrow(, N Y)$
which is isomorphism if Y is projective (see [Gr 2] pg. 17).
With $b=D\left(p_{0},\right) \alpha_{p_{0}}^{-1}$, the following diagram commutes:

```
\[
D\left(P_{1},\right) \xrightarrow{D\left(p_{1},\right)} D\left(P_{0},\right) \xrightarrow{D\left(p_{0},\right)} D(W,) \rightarrow 0
\]
\[
\int^{x_{0}}{ }^{1} \quad{ }^{x} p_{0} \quad{ }^{1} D(w,)
\]
\[
0 \rightarrow(, D C) \longrightarrow\left(, N P_{1}\right) \xrightarrow{\left(, N p_{1}\right)}\left(, N P_{0}\right) \longrightarrow D(W,) \rightarrow 0
\]
Since \(b\) is epimorphism, there is \(\theta \in\left(V, N P_{0}\right)\) such that
\[
b(V)(\theta)=\alpha(V)\left(I_{V}\right) .
\]
Let
\[
E(\theta)=\left\{(u, v) \in N P_{1} \Perp V: N p_{1}(u)=\theta(v)\right\} \text {, the }
\]
pull-back over \(N p_{1}\) and \(\theta\).
Then
\[
0 \rightarrow D C \xrightarrow{f} E(\theta) \xrightarrow{g} V
\]
with \(f(u)=(u, 0), g(u, v)=v\), is exact
\[
\text { Let } \ell: E(\theta) \rightarrow N P_{1} \text { be such that }(u, v) \rightarrow u .
\]
```

Then one can complete the commutative $A-R-G$ diagram, where the rows are exact:

is a projective resolution of F and one can take $V_{1}=E(\theta)$.
An answer to the second question is given by:
(2.6) Proposition: Let

$$
\left(, v_{1}\right) \xrightarrow[(, g)]{ }(, v) \rightarrow F \rightarrow 0
$$

be exact.
Let I_{0}, I_{1} be injective modules, and λ, θ, i_{1}, maps such that there exists an exact sequence

$$
\text { (2.7) } 0 \rightarrow v_{1} \xrightarrow[\binom{\lambda}{g}]{ } 1_{1} \Perp V \xrightarrow[\left(i_{1},-\theta\right)]{ } I_{0}
$$

Let

$$
W=\text { Coker } \mathrm{Mi}_{1} \text { (with } M=\mathrm{dD} \quad \text { (see }(0.25) \text {) }
$$

and

$$
\alpha=D(n,) \alpha_{M I_{0}}^{-1}(, \theta):(, V) \rightarrow D(W,)
$$

where
 given by (2.4).

Then $F \cong \operatorname{Im} \alpha$.
(2.8) Remark: Condition that there is an exact sequence (2.7) is clearly equivalent to:
I_{0}, I_{1} are injective modules such that:
(1) There is a map $\lambda: V_{1} \rightarrow I_{1}$ such that $\left.\lambda\right|_{\text {ker } g}$ is injective.
(2) I_{0} contains a module X, such that (X, i, θ) is a push--out of $\lambda, 9$.

Such $I_{0}, I_{1}, \lambda, \theta, \mathbf{i}_{1}$ always exist.

Proof: Let $M I_{1}=P_{1}, M I_{0}=P_{0}$; these are projective modules (see Chapter 0, §3).

$$
\text { Since } i_{1}: I_{1} \rightarrow I_{0} \text {, then } M i_{1}: P_{1} \rightarrow P_{0}
$$

$$
\begin{gathered}
\text { Taking } W=P_{0} / \operatorname{Im} M i_{1}=\text { conker } M i_{1} \text {, clearly } \\
P_{1} \xrightarrow{M i_{0}} P_{0} \xrightarrow{n} W \rightarrow 0
\end{gathered}
$$

is a projective resolution of W.
So we can construct the A-R-G diagram as described above:
(2.9)

$$
\left.0 \rightarrow(, A) \xrightarrow[(, f)]{ }\left(, V_{1}\right) \xrightarrow[(, g)]{ }(, V) \longrightarrow\right)
$$

with

$$
A=\operatorname{ker} i, \quad b=D(n,) \alpha_{P_{0}^{-1}}^{-1}, \quad a=b(, \theta)
$$

Exactness of (2.7) implies that $\binom{\lambda}{g}$ is a monomorphism so $v_{1} \cong \operatorname{Im}\binom{\lambda}{g}=\left\{\left(\lambda\left(v_{1}\right), g\left(v_{1}\right)\right): v_{1} \in v_{1}\right\}$.

Also
$\operatorname{Im}\binom{\lambda}{g}=\operatorname{ker}\left(i_{1},-\theta\right)=\left\{(u, v) \in I_{1} \mathscr{L} V: i_{1}(u)=\theta(v)\right\}$.
So
v_{1} is isomorphic to the pullback over i_{1}, θ.

$$
\begin{aligned}
& 0 \rightarrow(, A) \xrightarrow{(, i n c)}\left(, I_{\eta}\right) \xrightarrow{\left(, i_{1}\right)}\left(, I_{0}\right) \xrightarrow{b} D(W,) \rightarrow 0 \\
& \left|\begin{array}{l|l|l}
1 \\
1
\end{array}\right|(A)|(, \theta) \quad|{ }^{1} D(W,)
\end{aligned}
$$

Note that if $u \in A=\operatorname{Ker} \mathbf{i}_{1}$, then $i_{1}(u)=0=\theta(0)$ so $(u, 0) \in \operatorname{Im}\binom{\lambda}{g} \cong V_{1}$.

Thus we can describe f as the map $u \rightarrow(u, 0)$.
Also, g can be identified with the map

$$
\left\{\left(\lambda\left(v_{1}\right), g\left(v_{1}\right)\right): v_{1} \in V\right\} \rightarrow V
$$

such that $\left(\lambda\left(v_{1}\right), g\left(v_{1}\right)\right) \rightarrow g\left(v_{1}\right), v_{1} \in v_{1}$.

It is clear that

$$
0 \rightarrow A \underset{f}{f} V_{1} \underset{g}{ } V
$$

is exact.
Therefore to prove that the last row of diagram (2.9) is exact one must show that $\operatorname{Im}(, g)=$ ker α :

If $\rho \in \operatorname{Im}(X, g)$ i.e. $\rho=(X, g)(\sigma)$ for $\sigma \in\left(X, V_{1}\right)$ then $\left(X, i_{1}\right)(X, \lambda)(\sigma)=(X, \theta)(X, g)(\sigma) \in \operatorname{Im}\left(X, i_{1}\right)=\operatorname{Ker} b(X)$.

Thus $0=b(X)(X, \theta)(X, g)(\sigma)=\alpha(X)(X, g)(\sigma)=\alpha(X)(\rho)$ i.e. $\rho \in \operatorname{Ker} \alpha(X)$.

Conversely, let $\rho \in \operatorname{ker} \alpha(X)$ i.e. $0=\alpha(X)(\rho)=b(X)(X, \theta)(\rho)$.
Thus $(X, \theta)(\rho) \in \operatorname{ker} b(X)=\operatorname{Im}\left(X, i_{1}\right)$.
Therefore there exists $\delta \in\left(X, I_{1}\right)$ such that $i_{q}(\delta(x))=\theta(p(x)) \quad \forall x \in X$. So $(\delta(x), \rho(x)) \in \operatorname{ker}\left(i_{1},-\theta\right) \cong V_{1}$.

Considering $(\delta, \rho): X \rightarrow V_{1}$

$$
x \rightarrow(\delta(x), p(x))
$$

then
$(x, g)(\delta, \rho)=g(\delta, \rho): x \rightarrow g(\delta(x), \rho(x))=\rho(x)$.

So $(X, g)(\delta, 0)=\rho$ i.e. $\rho \in \operatorname{Im}(X, g)$.

Therefore

$$
\operatorname{Im} a \cong(, V) / \operatorname{ker} x=(, V) / \operatorname{Im}(, g) \cong F .
$$

§2. \quad mmod A and $D(W, U) \quad(W, U \in \bmod A)$
Yoneda's lemma (0.15) tells us that the map α in (2.1) is completely determined by the element $T=\alpha(U)\left(1_{U}\right) \in D(W, U)$, and conversely,given an element in $D(W, U)$, it determines a map $\alpha:(, U) \rightarrow D(W$,$) and therefore a finitely presented functor.$

So an element $F \in \bmod A$ is completely determined by a triple T, W, U with $W, U \in \bmod A$ and $T \in D(W, U)$.
(2.10) Notation: In this case, write $F=H(T ; W, U)$.

Before we can go further we must make some considerations about the map α of (2.1):

Naturality of a gives the commutative diagram:

where $f: X \rightarrow U, T=\alpha(U)\left(l_{U}\right)$.
Then:

$$
\left.\alpha(X)(f)=D(W, f)(\alpha(U))\left(1_{U}\right)\right)=D(W, f)(T) \in D(W, X)
$$

If $\psi \in(W, X)$, then:

$$
D(W, f)(T)(\psi)=T(f \psi)=(T \star f)(\psi) \text { using (1.17). }
$$

Thus
(2.12) $\alpha(X)(f)=T^{\star} f$

Considering the covariant case, the map:

$$
\begin{aligned}
((W,), D(, U)) \longrightarrow & D(W, U) \\
B & \longrightarrow(W)\left(1_{W}\right)
\end{aligned}
$$

is a k-linear isomorphism. (See (0.16)).
Then naturality gives the commutative diagram:

$$
\begin{aligned}
& \text { where } h: W \rightarrow X, T^{\prime}=\beta(W)\left(1_{W}\right) \\
& \beta(X)(h)=D(h, U)\left(\beta(W)\left(1_{W}\right)\right)=D(h, U)\left(T^{\prime}\right) \in D(X, U) . \\
& \text { If } \phi \in(X, U) \text { then: } \\
& D(h, U)\left(T^{\prime}\right)(\phi)=T^{\prime}(\phi h)=\left(h * T^{\prime}\right)(\phi) \text { using (1.17). }
\end{aligned}
$$

Thus
(2.14) $B(X)(h)=h * T^{\prime}$.

The next theorem, due to J.A. Green, tells us how to "describe" a morphism between functors when these are given in the form (2.10):
(2.15) Theorem (Green) : Let $F^{\prime} F^{\prime} \in \operatorname{mmod} A$, be such that $F=H(T ; W, U), F^{\prime}=H\left(T^{\prime} ; W^{\prime}, U^{\prime}\right)$.

Then

(i) Given a morphism $\phi: F \rightarrow F^{\prime}$, there exist A-maps $f: U \rightarrow U^{\prime}$, $h: W \rightarrow W^{\prime}$ such that:
(2.16) $\quad T \quad{ }^{\prime *} f=h * T$.
(ii) Given maps $f: U \rightarrow U^{\prime}, h: W \rightarrow W '$ such that (2.16) holds, there is a unique morphism $\phi: F \rightarrow F^{\prime}$ such that the following diagram commutes:
(2.17)

Proof: (i) Given ϕ, then, since $(, U)$ is projective, there exists $f^{*}:(, U) \rightarrow\left(, U^{\prime}\right)$ such that $\phi \alpha=\alpha^{\prime} f^{*}$. And $f^{*}=(, f)$ for some $f: U \rightarrow U^{\prime}(0.17)$. Thus $\phi \alpha=\alpha^{\prime}(, f)$.

Also, since $D\left(W^{\prime},\right)$ is injective, there exists $h^{*}=D(h$, with $h: W \rightarrow W$ such that

$$
D(h,) i n c=i n c^{\prime} \phi
$$

Thus

$$
D(h,) \alpha=\phi \alpha=\alpha^{\prime}(, f)
$$

and

$$
D(h, U) \alpha(U)\left(1_{U}\right)=\alpha^{\prime}(U)(U, f)\left(1_{U}\right) \Rightarrow D(h, U)(T)=\alpha^{\prime}(U)(f) \Rightarrow
$$

$$
\Rightarrow h^{\star} T=T^{\prime *} f \text { by }(2.12),(2.14)
$$

(ii) If f, h are such that (2.16) holds, then, since $D(h, U) \alpha(U)\left(l_{U}\right)=h * T$ and $\alpha^{\prime}(U)(U, f)\left(l_{U}\right)=T^{\prime *} f^{\prime}$, by Yoneda's Lemma (1.15), we have

$$
\begin{aligned}
& \qquad(h,) \alpha=\alpha^{\prime}(, f) \\
& \text { Now define } \phi: F \rightarrow F^{\prime} \text { as follows: }
\end{aligned}
$$

$$
\left.\phi=\left.D(h,)\right|_{F} \text { (restriction of } D(h,) \text { to } F\right) \text {. }
$$

We must show that $\operatorname{Im} \phi(X) \leq F^{\prime}(X)$, for all $X \in \bmod A$:

Let $S \in F(X)$; then $D(h, x)(S)=S(h, x)=h * S$ (because $\left.(S .(h, X))(t)=S(t h)=(h * S)(t), \forall t \in\left(W^{\prime}, X\right)\right)$. Since $S \in F(X)=\operatorname{lm} \alpha(X)$, then $S=\alpha(X)(v)$ for some $v \in(X, U)$; so $S=T * V$.

Thus $D(h, X)(S)=h * S=h *(T * v)=(h * T) * v=\left(T^{\prime *} f\right)^{*} v=T^{\prime *} f v=$ $=\alpha^{\prime}(X)(f v) \in \operatorname{Im} \alpha^{\prime}(X)=F^{\prime}(X)$.

Clearly $\phi \alpha=\alpha^{\prime}(, f)$ and $D(h$,$) inc =$ inc' ϕ and ϕ is uniquely determined by these expressions.

Now one has to prove that $\phi(X)$ is natural in X :

Let $g: X \rightarrow Y$. We must prove that the diagram

Consider the diagram:

(a) and (c) commute because α and inc' are natural.

Let $R \in F(Y)$. Then $R=\alpha(Y)(v)=T * V$ with $v \in(Y, U)$.
$\phi(X) F(g)(R)=\phi(X) F(g) \alpha(Y)(v)=\phi(X) \alpha(X)(g, U)(v)=\phi(X) \alpha(X)(v g)=$
$=\phi(X)(T * v g)=h * T * v g=h *(T * v) * g=h * R * g=D\left(W^{\prime}, g\right)(h * R)=$
$=D\left(W^{\prime}, g\right) \phi(Y)(R)=F^{\prime}(g) \phi(Y)(R)$, using commutativity of (c).
Thus $\phi(X) F(g)=F^{\prime}(g) \phi(Y)$.
(2.18) Remark: An equivalent definition for ϕ is:

If $S \in F(X), X \in \bmod A$,

$$
\phi(X)(S)=T^{\prime \star} f v
$$

where $v \in(X, U)$ is such that $\alpha(X)(v)=T^{*} v=S .(v$ exists because $\alpha:(, U) \rightarrow F$ is epimorphism, and ϕ is well-defined since if v^{\prime} is such that $T^{*} v^{\prime}=T^{*} v$ then $T^{*}\left(v-v^{\prime}\right)=0$; so $T^{\prime *} f\left(v-v^{\prime}\right)=$ $=h * T^{*}\left(v-v^{\prime}\right)=h *\left(T *\left(v-v^{\prime}\right)\right)=0$, i.e. $\left.T^{\prime *} f v=T^{\prime *} f v^{\prime}.\right)$
(2.19) Corollary: If there exists isomorphisms $f: U \rightarrow U^{\prime}$, $h: W \rightarrow W^{\prime}$ such that $T^{\prime *} f=h^{*} T$, then $F=H(T ; W, U) \cong F^{\prime}=H\left(T^{\prime} ; W^{\prime}, U^{\prime}\right)$.

Proof: $T^{\prime * f}=h * T \Rightarrow h^{-1} * T^{\prime}=T^{*} f^{-1}$. Thus by (2.15)(ii) $\exists \psi: F \rightarrow F^{\prime}$ such that $(, U) \underset{a}{ } F \rightarrow D(W$,$) \quad commutes.$

Considering this diagram and (2.17) we have: $(\psi \phi) \alpha=\psi(\phi \alpha)=$ $=\psi \alpha^{\prime}(, f)=\alpha\left(, f^{-1}\right)(, f)=\alpha=1_{F^{\alpha}}$. Since α is epimorphism, $\psi \phi=1_{F}$. Similarly $\phi \psi=1_{F}$. Hence ϕ, ψ are isomorphisms.

In particular, using the equivalence relation (1.21)
(2.20) Corollary: Let $U, W \in \bmod A$ and $T, T^{\prime} \in D(W, U)$ be such that $T \sim T^{\prime}$. Then

$$
F=H(T ; W, U) \cong F^{\prime}=H\left(T^{\prime} ; W, U\right)
$$

53. The category T

Let A be any finite dimensional k-algebra.
(2.21) Definition: Denote by T the following category:

Obj $T=\{(T ; W, U): W, U \in \bmod A, T \in D(W, U)\}$
$\left((T ; W, U),\left(T^{\prime} ; W^{\prime}, U^{\prime}\right)\right)_{T}=\left\{(f, h): f \in\left(U, U^{\prime}\right)_{A}, h \in\left(W, W^{\prime}\right)_{A}\right.$ and $\quad T^{\prime *} f=h * T$.

The "composition law" is
$\left((T ; W, U),\left(T^{\prime} ; W^{\prime}, U^{\prime}\right)\right) \times\left(\left(T^{\prime} ; W^{\prime}, U^{\prime}\right),\left(T^{\prime \prime} ; W^{\prime \prime}, U^{\prime \prime}\right)\right) \rightarrow\left((T ; W, U),\left(T^{\prime \prime}, W^{\prime}, U^{\prime \prime}\right)\right)$ $\left((f, h),\left(f^{\prime}, h^{\prime}\right)\right) \longrightarrow\left(f^{\prime} f, h^{\prime} h\right)$
and $I_{(T ; W, U)}=\left(1_{U}, 1_{W}\right)$.
T is a k-category (see (0.4)).

Theorems (2.1) and (2.15) give a k-linear covariant functor

$$
H: T \longrightarrow \operatorname{mmod} A
$$

such that
$(T ; W, U) \longrightarrow F=H(T ; W, U)$ i.e. $F=\operatorname{Im} \alpha$ where $a:(, U) \rightarrow D(W$,
is such that $\alpha(U)\left(I_{U}\right)=T$
$(f, h) \longrightarrow \phi$ given by (2.15)(ii)
 sums i.e. if $(T ; W, U) \xlongequal{\cong}\left(T_{1} ; W_{1}, U_{1}\right) \xrightarrow{\mu}\left(T_{2} ; W_{2}, U_{2}\right)$ in T then $H(T ; W, U) \cong H\left(T_{1} ; W_{1}, U_{1}\right) \Perp H\left(T_{2} ; W_{2}, U_{2}\right)$ in $\operatorname{mmod} A$.

Let J be such that,for given objects ($T ; W, U$),($\left.T^{\prime} ; W^{\prime}, U^{\prime}\right)$ in T, one has:
(2.24) $J\left((T ; W, U),\left(T^{\prime} ; W^{\prime}, U^{\prime}\right)\right)=\left\{(f, h): f \in\left(U, U^{\prime}\right)_{A}, h \in\left(W, W^{\prime}\right)_{A}\right.$ and $T^{\prime *}=0=h * T$.

This is clearly an ideal in the category T (see (0.12)).

For simplicity denote by ($\bar{f}, \mathrm{~h})$ the element $(f, h)+J((T ; W, U)$, $\left.\left(T^{\prime}: W^{\prime}, U^{\prime}\right)\right) \in\left((T ; W, U),\left(T^{\prime} ; W^{\prime}, U^{\prime}\right)\right)_{T / J} \cdot$

Then
(2.25) Lemma: The following is an equivalence of categories:

$$
H: T / J \longrightarrow \operatorname{mmod} A
$$

such that

$$
\begin{aligned}
& (T ; W, U) \longrightarrow H(T ; W, U) \\
& (\overline{f, h}) \longrightarrow H(f, h)
\end{aligned}
$$

where H is the functor given in (2.22).

Proof: We use definition (0.2) of equivalence of categories:
H is dense by (2.1);

And $H:\left((T ; W, U),\left(T^{\prime} ; W^{\prime}, U^{\prime}\right)\right)_{T / J} \rightarrow\left\langle H(T ; W, U), H\left(T^{\prime} ; W^{\prime}, U^{\prime}\right)\right)_{\operatorname{mmod}} A$ (f,h) \qquad $H(f, h)$
is an isomorphism:
In fact $(\overline{f, h})=\left(\overline{f^{\prime}, h^{\prime}}\right) \Rightarrow T^{\prime *}\left(f-f^{\prime}\right)=0=\left(h-h^{\prime}\right) * T \Rightarrow T^{\prime *} f=T^{\prime *} f^{\prime} \Rightarrow$ $\Rightarrow T^{\prime *} f v=T^{\prime *} f^{\prime} v, \forall v \in(X, U), \forall X \in \bmod A$. Then by (2.18), $H(f, h)=H\left(f^{\prime}, h^{\prime}\right)$.

Also $H(f, h)=0 \Rightarrow H(f, h)(U)(T)=0 \Rightarrow T^{\prime \star} f=0=h * T$.
Thus H is a monomorphism.
And given $\phi \in\left(H(T ; W, U), H\left(T^{\prime} ; W^{\prime}, U^{\prime}\right)\right)_{\text {munod } A}$, by (2.15)(i), there are $f: U \rightarrow U^{\prime}, h: W \rightarrow W^{\prime}$ such that $T^{\prime \star} f=h^{\star} T$.

These are maps such that

$$
D(h,) \alpha=\phi \alpha=\alpha^{\prime}(, f)
$$

where α, α^{\prime} are as in (2.17).
But this means that $\left.D(h)\right|_{H,(T ; W, U)}=\left.\phi\right|_{H(T ; W, U)}=\phi$
i.e. $H(f, h)=$. Thus H is epimorphic.

Given $(T ; W, U) \in T$, define:
(2.26) $I=J((T ; W, U),(T ; W, U))=$
$=\left\{(f, h): f \in E \operatorname{End}_{A} U, h \in E n d_{A} W\right.$ and $\left.T * f=0=h * T\right\}$.
I is an ideal of the k-algebra $E n d T(T ; W, U)$.
And using lemma (2.25) we see that
(2.27) $\frac{\text { End_(} T ; W, U)}{I} \cong$ End F where $F=H(T ; W, U) \in \bmod A$.
54. Decomposability in T and $\operatorname{mmod} A$

We start this section by generalizing some of the facts referred to in Chapter $I, \S 4$, to a category $\bmod A$ where A is any finite-dimensional $k-a l g e b r a$.

Namely we have the following:
By (0.6) ,
$W={\underset{j=1}{m}}_{\prod_{j}}, U=\stackrel{\sum_{i=1}^{n}}{n} U_{i}$ in mod A iffy there are morphisms $m_{i} \in\left(U_{i}, U\right), p_{i} \in\left(U, U_{i}\right), n_{j} \in\left(W_{j}, W\right), q_{j} \in\left(W, W_{j}\right)$, such that:

$$
\begin{array}{lll}
p_{i} m_{t}=\delta_{i t} l_{U_{i}} & q_{j} n_{\ell}=\delta_{j \ell} 1_{W_{j}} & \\
\sum_{i=1}^{n} m_{i} p_{i}=l_{U} & \sum_{j=1}^{m} n_{j} q_{j}=1_{W} & j, \ell=1, \ldots, n
\end{array}
$$

Then, if $T \in D(W, U)$, the matrix of T with respect to the above decompositions of W, U is:

$$
T=\left(T_{j i}\right)_{\begin{array}{c}
i=1, \ldots, n \tag{2.28}\\
j=1, \ldots, m
\end{array}}
$$

where
is defined by the expression:
(2.29)

$$
T_{j i}=q_{j}{ }^{\star T^{\star} m_{i} \in D\left(W_{j}, U_{i}\right)}
$$

Remark: If the decompositions of W, U are assumed to be known, we sometimes use (abusively) the same symbol for the element $T \in D(W, U)$ and its matrix with respect to the given decompositions, writing, for example, expressions such as $T=\left(T_{j i}\right)_{i, j} \in D(W, U)$.
(2.30) Proposition: $(T ; W, U) \in T$ is decomposable iff:
(i) There are $W_{1}, W_{2}, U_{1}, U_{2} \neq 0$ in mod A such that: $W=W_{1} \Perp W_{2}, U=U_{1} \Perp U_{2}$.
(ii) There are elements $T_{1} \in D\left(W_{1}, U_{1}\right), T_{2} \in D\left(W_{2}, U_{2}\right)$ such that the matrix T of T with respect to the decompositions of W, U given in (i), is

$$
T=\left(\begin{array}{c:c}
\mathrm{T}_{1} & 0 \\
\hdashline 0 & \mathrm{~T}_{2}
\end{array}\right)
$$

Proof: Using (0.6) and the definition of morphism in T we have:

$$
\begin{aligned}
& \qquad(T ; W, U) \cong\left(T_{1} ; W_{1}, U_{1}\right) \Perp\left(T_{2} ; W_{2}, U_{2}\right) \Leftrightarrow \text { there are } \\
& \text { morphisms } u_{i}=\left(m_{i}, n_{i}\right), \pi_{i}=\left(p_{i}, q_{i}\right), \text { with: }
\end{aligned}
$$

$$
\begin{array}{lll}
m_{i} \in\left(U_{i}, U\right) & n_{i} \in\left(W_{i}, W\right) & T_{i}{ }^{*} p_{i}=q_{i}^{*} T \\
\text { and } & \\
p_{i} \in\left(U, U_{i}\right) & q_{i} \in\left(W, W_{i}\right) & T * m_{i}=n_{i} * T_{i}
\end{array}
$$

such that

$$
\pi_{j} \mu_{i}=\delta_{i j}{ }^{1}\left(T_{i} ; W_{i}, U_{i}\right) \quad(i=1,2) \text { and } \sum_{i=1}^{2} \mu_{i} \pi_{i}=1(T ; W, U) \ll \text { there }
$$

exist morphisms $m_{i}, n_{i}, p_{i}, q_{i}$ in mod A such that (2.31) holds and

$$
\begin{array}{ll}
p_{j} m_{i}=\delta_{i j} l_{U_{i}} & , \quad q_{j} n_{i}=\delta_{i j} l_{W_{i}} \\
\sum_{i=1}^{2} m_{i} p_{i}=l_{U} & , \quad \sum_{i=1}^{2} n_{i} q_{i}=l_{W} . \tag{2.32}
\end{array}
$$

If there are morphisms $m_{i}, n_{i}, p_{i}, q_{i}(i=1,2)$ such that (2.31) and (2.32) are verified then by (0.6):
$W \cong W_{1} \Perp W_{2}, U \cong U_{1} \Perp U_{2}$ and with respect to these decompositions (see (2.28), (2.29)):

Conversley assume that (i), (ii) are verified. Then there are morphisms $U_{i}<\frac{p_{i}}{\frac{m_{i}}{}} U, W_{i}<\xlongequal[n_{i}]{q_{i}} W$ in mod A such that (2.32) holds.

Then

$$
T=\left(\begin{array}{cc}
q_{1}{ }^{\star} T^{\star} m_{1} & q_{1}{ }^{\star T} T^{*} m_{2} \\
q_{2}{ }^{\star{ }^{\star} m_{1}} & q_{2}{ }^{\star} T^{\star} m_{2}
\end{array}\right) \quad \text { where } \quad q_{j}{ }^{\star} T^{\star} m_{i} \in D\left(W_{j}, U_{i}\right)
$$

By (i), $\quad q_{1}{ }^{*} T^{\star} m_{1}=T_{1} \Rightarrow q_{1}{ }^{*} T^{*} m_{1} p_{1}=T_{1}{ }^{*} p_{1}$
$q_{1} * T m_{2}=0 \Rightarrow q_{1}{ }^{* T *} m_{2} p_{2}=0$
$q_{2}{ }^{*}{ }^{*} m_{1}=0 \Rightarrow q_{2}{ }^{*} T^{*} m_{1} p_{1}=0$
$q_{2}{ }^{*} T^{*} m_{2}=T_{2} \Rightarrow q_{2}{ }^{*}{ }^{*} \mathrm{~m}_{2} p_{2}=T_{2}{ }^{\star} p_{2}$.

Thus by (2.32)

$$
q_{i}^{*} T^{*}\left(m_{1} p_{1}+m_{2} p_{2}\right)=T_{i}^{*} p_{i} \Rightarrow q_{i}^{* T}=T_{i}^{*} p_{i} \quad(i=1,2)
$$

Similarly $\quad T{ }^{*} m_{i}=n_{i}{ }^{*} T_{i} \quad(i=1,2)$.
Thus the maps $m_{i}, n_{i}, p_{i}, q_{i}(i=1,2)$ verify (2.31), (2.32), so by above equivalences

$$
(T ; W, U) \cong\left(T_{1} ; W_{1}, U_{1}\right) \Perp\left(T_{2} ; W_{2}, U_{2}\right)
$$

We also observe the following:
(2.33) The category T has kernels. Therefore in this category idempotents split (see (0.10)).

In fact we have:
(2.34) Let $(f, h):(T ; W, U) \rightarrow\left(T^{\prime} ; W^{\prime}, U^{\prime}\right)$ be a morphism in T; then $\left(\left(T^{*} i, W\right.\right.$, er $\left.\left.f\right),\left(i, l_{W}\right)\right)$ (where $i: k e r f \rightarrow U$ is the inclusion map) is a kernel of (f, h).

Proof: Consider the diagram

$\left(i, l_{W}\right):\left(T_{1} ; W\right.$, er $\left.f\right) \rightarrow(T ; W, U)$ is a morphism in T because $T^{*}{ }_{i}=1_{W}{ }^{*} T_{1}$.

Let $\left(T_{2} ; W^{\prime \prime}, U^{\prime \prime}\right) \in T$ and $\left(f^{\prime}, h^{\prime}\right):\left(T_{2} ; W^{\prime \prime}, U^{\prime \prime}\right) \rightarrow(T ; W, U)$ be such that $(f, h)\left(f^{\prime}, h^{\prime}\right)=\left(f f^{\prime}, h h^{\prime}\right)=(0,0)$.

Then clearly there is $f^{\prime \prime}: U^{\prime \prime} \rightarrow$ ger f such that $f^{\prime}=i f "$.
And, of course, $\mathrm{I}_{W^{\prime}}{ }^{\prime}=h^{\prime}$.
And $T_{1}{ }^{* \prime \prime} f^{\prime \prime}=T * i * f^{\prime \prime}=T * i f^{\prime \prime}=T * f^{\prime}=h^{\prime *} T_{2}$. Thus ($f^{\prime \prime}, h^{\prime}$) is a morphism in T.

So ($T^{*} i, W, k e r f$) is a kernel of (f, h).
(2.35) Remark: By (2.33) and using (0.9), (0.11) we have:
($T ; W, U$) is indecomposable in T iff the set of idempotents
in $E \operatorname{End}_{T}(T ; W, U)$ is $\left\{\left(0_{U}, 0_{W}\right),\left(1_{U}, l_{W}\right)\right\}$.

Now let us recall the following theorem (see [CRM], pgs.lll and 119):
(2.36) Theorem: Let $B \neq 0$ be a finite-dimensional k-algebra. Then the following are equivalent:
I. $\operatorname{Id}(B)=\{0,1\}$ where $\operatorname{Id}(B)$ is the set of idempotents in B.
II. Each element $b \in B$ is either invertible or nilpotent.
III. $B / J(B)$ is a division algebra $(J(B)$ is the Jacobson radical of $B)$.
IV. $J(B)$ is the unique maximal ideal of B.

Such an algebra B is called a local algebra.
It is clear that:
(2.37) If B is a local algebra, and I is an ideal of B such that $I \neq B$, then B / I is a local algebra.

Recall also that to prove that an algebra B is local, is equivalent to prove that B / N is local, where N is some nilpotent
ideal of B (see for example [Lr], pg.3, using the fact that an idempotent $\neq 0$ is not nilpotent).

The following fact will be useful later:
(2.38) If B_{0} is a subalgebra of B such that $B_{0}+N=B$, where N is a nilpotent ideal of B, then if B_{0} is local, B is local.
(This is so because if B_{0} is local, then $\frac{B_{0}}{B_{0}} \frac{B_{0}}{=} \frac{B_{0}+N}{N}$, is local, i.e. B / N is local, therefore B is local.)

Now returning to our discussion about T and $\operatorname{mmod} A$:
(2.39) Lemma: If ($T ; W, U$) is a non-zero object in T, then it is non-zero in T / J, i.e. the ideal $I=J((T ; W, U),(T ; W, U))$ is not equal to $E^{1} \operatorname{End}_{T}(T ; W, U)$.

Proof: $I=\{(f, h) \in$ End $U \mathcal{L}$ End $W: T * f=0=h * T\}$ (see (2.26)).

If $\left(l_{U}, l_{W}\right) \in I$, then $T=T^{*} 1_{U}=0$, and this is a contradiction.

Thus
(2.40) Proposition: ($T ; W, U$) is decomposable in T iff $H(T ; W, U)$ is decomposable in $\operatorname{mmod} A$.

Proof: By (2.23) if ($T ; W, U$) is decomposable in T then $H(T ; W, U)$ is decomposable in mod A.

Now suppose that $(T ; W, U)$ is indecomposable in T. By (2.35) and (2.36).I, End $(T ; W, U)$ is a local algebra.

Lemma (2.39) shows that $I \neq E n d_{T}(T ; W, U)$.
Then by (2.37), $\frac{\mathrm{End}_{T}(T ; W, U)}{I}$ is local. But

Thus End mmod $A^{H(T ; W, U)}$ is local and this implies that $H(T ; W, U)$ is indecomposable in mmod A (0.14).
55. Examples of indecomposable finitely presented functors

Let k be a field and A the k-algebra considered in Chapter I, §1, i.e. $\left.A=A_{q}=k-a l g<z: z^{q}=0\right\rangle$.

In this section we consider some examples of indecomposable elements in $\operatorname{mmod} A_{q}$.
(1) Let $q=3$ and let V_{1}, V_{2}, V_{3} be the indecomposable A_{3}-modules.

Suppose $T=\left(\begin{array}{ll}\pi_{12} & \pi_{13} \\ 0 & \pi_{33}{ }^{2}\end{array}\right) \in D(W, U)$ where $W=V_{1} \Perp V_{3}$,
$U=V_{2} \Perp V_{3}$. Consider $\quad(T ; W, U) \in T \quad($ see $\varsigma 3)$.
Let $B=\operatorname{End}_{T}(T ; W, U)=\{(f, h) \in$ End $U \Perp$ End $W: T * f=h * T\}$.

Let $N=\operatorname{rad}(E n d U \Perp$ End W) and

$$
B_{0}=\left\{(f, h) \in \text { End } u \Perp \text { End } W: f=\left(\begin{array}{cc}
a u_{22} & 0 \\
0 & b u_{33}
\end{array}\right), \quad h=\left(\begin{array}{cc}
c u_{11} & 0 \\
0 & d u_{33}
\end{array}\right)\right.
$$

$: a, b, c, d \in k$ and $\left.T^{*} f=h * T\right\}$.

Then $B_{0}+(N \cap B)=B$ and $N \cap B$ is nilpotent.
In order to prove that B is local it is enough to prove that B_{0} is local (by 2.38).

By (2.36) we can prove that B_{0} is local by showing that the only idempotents of B_{0} are $\left(0_{U}, O_{W}\right)$ and $\left(1_{U}, l_{W}\right)$:

$$
\begin{aligned}
& T * f=h * T=\left(\begin{array}{cc}
\pi & \pi_{13} \\
0 & \pi_{33} z
\end{array}\right) *\left(\begin{array}{cc}
a u_{22} & 0 \\
0 & b u_{33}
\end{array}\right)= \\
& =\left(\begin{array}{cc}
c u_{11} & 0 \\
0 & d u_{33}
\end{array}\right) *\left(\begin{array}{cc}
\pi_{12} & \pi_{13} \\
0 & \pi_{33} z
\end{array}\right) \Rightarrow\left(\begin{array}{cc}
a \pi_{12} & b \pi_{13} \\
0 & b_{\pi_{33}} z
\end{array}\right)=\left(\begin{array}{cc}
c \pi_{12} & c \pi_{13} \\
0 & d \pi_{33} z
\end{array}\right) \\
& \Rightarrow a=c=b=d .
\end{aligned}
$$

Now clearly the only idempotents in B_{0} are the trivial ones.

Using this method it is easy to prove that all matrices in (1.47) give indecomposable elements in T, and so correspond to indecomposable elements in mmod A (see 2.40).

Remark: It can be shown now that no two of the functors given by the matrices (1.47) are isomorphic, by considering for each $T \in D(W, U)$ in (1.47), the map

$$
\alpha_{T}:(, U) \rightarrow D(W,)
$$

such that $a_{T}(U)\left(1_{U}\right)=T$ (by Yoneda's Lemma (0.15)) and then constructing the modules $F_{T}(C)=\operatorname{Im} \alpha_{T}(C) \cong(C, U) /\{f \in(C, U): T * f=0\}$ $\left(=M_{T}\right)$ where $C=V_{1} \Perp V_{2} \Perp V_{3}$ and $F_{T}=H(T ; W, U)$.

It can be shown that no two of the 21 modules M_{T} are isomorphic.
Some examples of these modules are given in Chapter III and a complete list of them (given by considering their radical series and socle series) appears in the graph (3.27).

Now, if for some T, T^{\prime} in (1.47), $F_{T} \cong F_{T}$, then $M_{T} \xlongequal{\cong} M_{T^{\prime}}$, a contradiction. It is also clear that no two matrices of (1.47) are equivalent (by 2.20).
(2) Now consider the following example:

Let $q \geq 4$ and $U=W=V_{2}^{n} \Perp V_{4}^{n}$ for some $n \in \mathbb{N}$.
Let

$$
T=T_{n}=\left(\begin{array}{ll}
\pi & \pi_{22^{P}} z I \\
\pi_{42^{2}} I & \pi_{44^{2}} z^{2}
\end{array}\right)_{2 n \times 2 n} \in D(W, U) \quad \text { where } P \text { is }
$$

the matrix $\left(\begin{array}{cccccc}0 & 0 & \ldots & 0 & 0 \\ 1 & 0 & \ldots & 0 & 0 \\ 0 & 1 & & 0 & 0 \\ \cdots & & & \cdots & \cdots \\ 0 & 0 & \cdots & & 1 & 0\end{array}\right)_{n \times n}$

Consider the element $(T ; W, U) \in T$ and let
$B=\operatorname{End}(T ; W, U)=\{(f, h) \in$ End $U \Perp$ End $W: T * f=h \star T\}$.
We may write f in the form $\left(\begin{array}{ll}F_{22} u_{22} & F_{24} u_{24} \\ F_{42} u_{42} & F_{44} u_{44}\end{array}\right) \quad$ and h in the form $\left(\begin{array}{ll}H_{22} \mathrm{u}_{22} & \mathrm{H}_{24} \mathrm{u}_{24} \\ \mathrm{H}_{42} \mathrm{U}_{42} & \mathrm{H}_{44} \mathrm{u}_{44}\end{array}\right) \quad \begin{aligned} & \text { where } F_{i j} \text {, } H_{i j} \text { are } n \times n \\ & \text { matrices of elements in } A .\end{aligned}$ Let

$$
B^{*}=\left\{(f, h) \in \text { End } U \perp \text {. End } W: F_{24}=0=F_{42}=H_{24}=H_{42}\right.
$$

and $F_{22}^{(i)}=F_{44}^{(i)}=H_{22}^{(i)}=H_{44}^{(i)}=0$ if $\left.i \geq 1\right\}$ where by $F_{k j}^{(i)}$
we denote the matrix whose elements are the coefficients of the terms of degree i of the entries of $F_{k j}$.

Let $B_{0}=B^{*} \cap B$. This is clearly a subalgebra of B.
Let $N=\operatorname{rad}(E n d U 川$ End $W) \cap B$.
Then

$$
B_{0}+N=B
$$

as follows:

Clearly $\mathrm{B}_{0}+\mathrm{N} \subset \mathrm{B}$.
Conversely let $(f, h) \in B ;$ then $f=f_{0}+n h=h_{0}+m$ where
f_{0} is given by $\left(\begin{array}{cc}F_{22}^{(0)} & 0 \\ 0 & F_{44}^{(0)}\end{array}\right), h_{i}$ is given by $\left(\begin{array}{cc}H_{22}^{(0)} & 0 \\ 0 & H_{44}^{(0)}\end{array}\right)$
and $n \in J(E n d U), m \in J(E n d W)$.
So $(f, h)=\left(f_{0}, h_{0}\right)+(n, m)$ where $(n, m) \in \operatorname{rad}(E n d U \Perp E n d W)$.
Now
$T * f=n \star T \Rightarrow\left(\begin{array}{cc}\pi_{22}\left(P F_{22}+z F_{42}\right) & \pi_{24}\left(z^{2} P F_{24}+\bar{z} F_{44}\right) \\ \pi_{42}\left(z F_{22}+z^{2} F_{42}\right) & \pi_{44}\left(z^{3} F_{24}+z^{2} F_{44}\right)\end{array}\right)=$
$=\left(\begin{array}{cc}\pi_{22}\left(\mathrm{H}_{22}^{\left.\mathrm{P}+2 \mathrm{H}_{24}\right)}\right. & \pi_{24}\left(2 \mathrm{H}_{22}+z^{2} \mathrm{H}_{24}\right) \\ \pi_{42}\left(z^{2} \mathrm{H}_{42}{ }^{\left.\mathrm{P}+\mathrm{zH}_{44}\right)}\right. & \pi_{44}\left(z^{3} \mathrm{H}_{42}+z^{2} \mathrm{H}_{44}\right)\end{array}\right) \Rightarrow \begin{aligned} & \mathrm{PF}_{22}^{(0)}=H_{22}^{(0)} \mathrm{P} \\ & H_{44}^{(0)}=F_{44}^{(0)} \\ & H_{22}^{(0)}=F_{44}^{(0)} \\ & H_{44}^{(0)}=F_{22}^{(0)}\end{aligned}$
$\Leftrightarrow\left(\begin{array}{ll}\pi_{22} \mathrm{PF}_{22}^{(0)} & \pi_{24} z^{2} \mathrm{~F}_{44}^{(0)} \\ \pi_{42^{2}}^{2 F_{22}^{(0)}} & \pi_{44} z^{2} F_{44}^{(0)}\end{array}\right)=\left(\begin{array}{ccc}\pi_{22} & H_{22}^{(0)} P & \pi_{24}^{z H_{22}^{(0)}} \\ \pi_{42} & 2 H_{44}^{(0)} & \pi_{44} z^{2} H_{44}^{(0)}\end{array}\right) \Leftrightarrow$
$\Leftrightarrow T{ }^{\star} f_{0}=h_{0}{ }^{\star} T \Rightarrow\left(f_{0}, h_{0}\right) \in B_{0}$.
Since $(f, h),\left(f_{0}, h_{0}\right) \in B$ then $(n, m) \in B$, thus $(n, m) \in N$.
Therefore $(f, h) \in B_{0}+N$.
By (2.38), we must prove that B_{0} is local.

Using the calculations just done it is easy to see that
$B_{0}=\left\{\left(\left(\begin{array}{ccc}F_{22}^{(0)} & u_{22} & 0 \\ 0 & F_{44}^{(0)} & u_{44}\end{array}\right)\left(\begin{array}{ccc}H_{22}^{(0)} & u_{22} & 0 \\ 0 & H_{44}^{(0)} & u_{44}\end{array}\right)\right): \begin{array}{c}P F_{22}^{(0)}=H_{22}^{(0)} P \\ H_{44}^{(0)}=F_{44}^{(0)}=H_{22}^{(0)}=F_{22}^{(0)}\end{array}\right\}$
$=\left\{\left(\left(\begin{array}{ccc}F_{22}^{(0)} & u_{22} & 0 \\ 0 & F_{22}^{(0)} & u_{44}\end{array}\right)\left(\begin{array}{ccc}F_{22}^{(0)} & u_{22} & 0 \\ 0 & F_{22}^{(0)} u_{44}\end{array}\right)\right): P F_{22}^{(0)}=F_{22}^{(0)} P\right\}$
Simple calculations give that:
$P F_{22}^{(0)}=F_{22}^{(0)} P=F_{22}^{(0)}=\left(\left.\begin{array}{llll}a_{1} & 0 & \cdots & 0 \\ a_{2} & a_{1} & \cdots & 0 \\ a_{3} & a_{2} & \cdots & 0 \\ \cdots & & & \\ a_{n-1} & a_{n-2} & \cdots & a_{1} \\ a_{n} & a_{n-1} & \cdots & a_{2} a_{1}\end{array} \right\rvert\,, ~\right.$
$=a_{1} I+a_{2} p+a_{3} p^{2}+\ldots+a_{n} p^{n-1}$.

Since P is nilpotent, it is clear that every element of B_{0} is invertible or nilpotent. Thus by (2.36), B_{0} is a local algebra. Then by (2.38), B is local.

Thus

$$
F_{n}=H\left(T_{n}=\left(\begin{array}{ll}
\pi_{22^{P}} & \pi 24^{z I} \tag{2.41}\\
\pi 42^{z I} & \pi 44^{z^{2} I}
\end{array}\right)_{2 n \times 2 n} ; v_{2}^{n} \Perp v_{4}^{n}, v_{2}^{n} \Perp v_{4}^{n}\right) \epsilon
$$

$\epsilon \bmod A_{q}$, is indecomposable, $\forall n \in \mathbb{N}$.
Let

$$
a_{n}:\left(, v_{2}^{n} \Perp v_{4}^{n}\right) \longrightarrow D\left(v_{2}^{n} \Perp v_{4}^{n},\right)
$$

be the map such that

$$
a_{n}\left(v_{2}^{n} \Perp v_{4}^{n}\right)\left(1 v_{2}^{n} \Perp v_{4}^{n}\right)=T_{n}
$$

(use Yoneda's Lemma (0.15)).

Thus

$$
\operatorname{Ker} \alpha_{n} \leq \operatorname{rad}\left(, V_{2}^{n} \Perp V_{4}^{n}\right) \quad \text { i.e. } \alpha_{n} \text { is a projective }
$$

cover of F_{n} (see [AI] pg.208).
To prove this it is enough to show that

$$
\operatorname{Ker} \alpha\left(V_{2}^{n} \Perp V_{4}^{n}\right) \leq \operatorname{rad}\left(E n d V_{2}^{n} \Perp V_{4}^{n}\right)
$$

(by Fitting's theorem ([CRM], pg.462)).
But

$$
\operatorname{Ker} \alpha\left(V_{2}^{n} \Perp V_{4}^{n}\right)=\left\{f \in E n d\left(V_{2}^{n} \Perp V_{4}^{n}\right): T_{n}^{* f}=0\right\} .
$$

Writing f in the form $\left(\begin{array}{lll}F_{22} & u_{22} & F_{24} \\ u_{24} \\ F_{42} & u_{42} & F_{44}\end{array} u_{44}\right) \quad$ we have

$$
T_{n}^{*} f=0 \Rightarrow\left(\begin{array}{ll}
\pi_{22}\left(P F_{22}+z F_{44}\right) & \pi_{24}\left(z^{2} P F_{24}+z F_{44}\right) \\
\pi_{42}\left(z F_{22}+z^{2} F_{42}\right) & \pi_{44}\left(z^{3} F_{24}+z^{2} F_{44}\right)
\end{array}\right)=0
$$

$$
\Rightarrow\left\{\begin{array}{l}
F_{22}^{(0)}=0 \\
F_{44}^{(0)}=0
\end{array} \quad \Rightarrow f \in \operatorname{rad}\left(E n d v_{2}^{n} \Perp v_{4}^{n}\right)\right.
$$

Since a projective cover is unique up to isomorphism (see [AI] pg. 209), and $(, V) \cong(, U)$ in $\operatorname{mmod} A$ iff $V \cong U$ in mod A, it is clear that if $n \neq m$, then $F_{n} \tilde{\neq} F_{m}$.

Thus
(2.42) $\quad\left\{F_{n}=H\left(T_{n} ; V_{2}^{n} \Perp V_{4}^{n}, V_{2}^{n} \Perp V_{4}^{n}\right): n \in \in N\right\}$
given in (2.41) is an infinite family of non-isomorphic indecomposable functors in $m m o d A_{q}$.
§6. More about the category mmod A
The category of finitely presented functors is well known (see for example [A]), but the interpretation given by Lemma (2.25) which derives from the important results (2.1) of Auslander-Reiten and (2.15) of Green, provides a different way of viewing mmod A, which may bring a better understanding of this category.

We finish this chapter with some facts about mmod A (where A is any finite-dimensional k-algebra), in which we use the characterization of this category given by lemma (2.25).

The facts contained in this section are not necessary for the continuation of this work.

One may ask the question:

Since it is clear that different elements of T may correspond to isomorphic functors in mod A (see e.g. (2.20)), find a necessary and sufficient condition for this to happen.

The answer to this question is a corollary of the following proposition:
(2.43) Proposition: Let $F=H(T ; W, U), F^{\prime}=H\left(T^{\prime} ; W^{\prime}, U^{\prime}\right) \in \bmod A$. Let $\phi: F \rightarrow F^{\prime}$ be such that $\phi=H(f, g)$ where $f \in\left(U, U^{\prime}\right), g \in\left(W, W^{\prime}\right)$. Then:
(i) ϕ is an epimorphism iff there exists $h: U^{\prime} \rightarrow U$ such that $T^{\prime *} f^{\prime}=T^{\prime}$.
(ii) ϕ is a monomorphism iff there exists $h: W^{\prime} \rightarrow W$ such that $h g^{*} T=T$.

Proof: The diagram

is commutative.
(i) Suppose that there exists $h: U^{\prime} \rightarrow U$ such that $T^{\prime *}{ }^{\prime} h=T^{\prime}$.

Let $Z \in F^{\prime}(X)$. Then $Z=\alpha^{\prime}(X)(t)$ for some $t \in\left(X, U^{\prime}\right)$.

Thus

$$
\begin{aligned}
Z & =\alpha^{\prime}(X)(t)=T^{\prime *} t=T^{\prime *} f h^{\star} t=T^{\prime *} \star \hbar h t= \\
& =g^{*}(T * h t)=\phi(X) \alpha(X)(h t)
\end{aligned}
$$

Therefore ϕ is epimorphism.
Conversely, suppose ϕ is an epimorphism, so $T^{\prime} \in F^{\prime}\left(U^{\prime}\right)$ is such that $T^{\prime}=\phi\left(U^{\prime}\right) \alpha\left(U^{\prime}\right)(h)$ for some $h \in\left(U^{\prime}, U\right)$. Thus $T^{\prime}=\alpha^{\prime}\left(U^{\prime}\right)\left(U^{\prime}, f\right)(h)=\alpha^{\prime}\left(U^{\prime}\right)(f h)=T^{\prime *} f h$.
(ii) Suppose that there exists $h: W^{\prime} \rightarrow W: h g^{\star} T=T$.

Let $Z \in F(X)$ be such that $\phi(X)(Z)=0 \in F^{\prime}(X)$.
Thus $D(g, X)(Z)=0$ and also $Z=\alpha(X)(\ell)$ for some $\ell \in(X, U)$, i.e. $Z=T^{*}$.

Therefore
$0=D(g, X) \alpha(X)(\ell)=\alpha^{\prime}(X)(X, f)(\ell)=\alpha^{\prime}(X)(f \ell)=T^{\prime *} f \ell=g^{*} T^{*} \ell$;
So $0=h{ }^{*} T{ }^{*} l=T{ }_{l}=Z$.
Thus ϕ is monomorphism.
Conversely suppose ϕ is monomorphism. Consider the diagram:

Since $D(W$,$) is injective, there$ exists $\theta: D\left(W^{\prime},\right) \rightarrow D(W$,$) such$
that this diagram commutes.

```
    Thus D0:(W,) & (W',) i.e. D0 = (h,) for some h:W' }->W.W
Therefore 0 = D(h, ).
    But 0i'\phi = i => D(h, )i'\phi\alpha = i\alpha => D(h,U)i'(U)\phi(U)\alpha(U)(lU) =
= i(U)\alpha(U)(1U) => D(h,U)i'(U)\phi(U)(T) = T => D(h,U)D(g,U)i(U)(T)
= T => D(hg,U)(T) = T => hg*T = T .
```

(2.44) Corollary: Let $F^{\prime} F^{\prime}, \phi$ be as in (2.43). Then ϕ is isomorphism tff there exist $t: U^{\prime} \rightarrow U, h: W^{\prime} \rightarrow W$ such that $h g^{*} T=T, T^{\prime *} f t=T^{\prime}$. Also $\phi^{-1}=H(t, h)$.

Proof: The first part is obvious.
 Thus $(t, h):\left(T^{\prime} ; W^{\prime}, U^{\prime}\right) \rightarrow(T ; W, U)$ is a morphism in T, so $H(t, h)$ is a morphism in mmod A.

Clearly $T^{*} t f=T$ and $g h^{*} T^{\prime}=T^{\prime}$. Thus, by (2.43), $H(t, h)$ is an isomorphism.

Since $h g^{\star} T=T$ and $T * t f=T$, then $\left(\overline{1_{U}, T_{W}}\right)=(\overline{t f, h g})$ (see (2.26)); so $\left(\overline{T_{U}, T_{W}}\right)=(\overline{t, h})(\overline{f, g})$ in V_{J}. Also, since $g h^{*} T^{\prime}=T^{\prime}$ and $T^{\prime * f t}=T^{\prime},\left(\overline{l_{U^{\prime}}, l_{W^{\prime}}}\right)=(\overline{f t, g h})=(\bar{f}, \bar{g})(\overline{t, h})$.

Thus $I_{F}=H(t, h) H(f, g)=H(t, h) \phi$ and $l_{F^{\prime}}=\phi H(t, h)$, so $H(t, h)=\phi^{-1}$.

Remark: Since conditions $h g^{*} T=T$ and $T^{\prime \star} f t=T^{\prime}$ can be written in the form $h * T^{\prime *} f=T$ and $g^{*} T^{*} t=T^{\prime}$, respectively, it is clear that (2.20) is a particular case of (2.44).

Now we consider some examples of monomorphisms and epimorphisms:
(2.45) Let $U, U_{1}, W \in \bmod A$ and $f \in\left(U_{1}, U\right)$. Then

$$
\psi=H\left(f, l_{W}\right): H\left(T * f, W, U_{1}\right) \rightarrow H(T ; W, U)
$$

is a monomorphism.
Moreover the family of subfunctors of $H(T ; W, U)$ in mmod A is:

$$
\left\{H\left(T * f ; W, U_{1}\right): U_{1} \in \bmod A, f \in\left(U_{1}, U\right)\right\}
$$

and ψ is the inclusion map.

Proof: The first part is obvious.
Let $F_{1}=H\left(T * f, W, U_{1}\right), F=H(T ; W, U)$ where U_{1}, U, W, f satisfy the given conditions.

Then $\psi=H\left(f, 1_{W}\right)$ is such that

$$
\left.\psi=\left.D\left(l_{W},\right)\right|_{F_{1}}=\left.l_{D(W,)}\right|_{F_{1}} \quad \text { (see proof of } 2.15(i i)\right)
$$

Thus $F_{p}(X)=\psi(X) F_{p}(X) \subseteq F(X)$, and $\psi(X)$ is natural in X.

This means that F_{1} is a subfunctor of F and ψ is the inclusion map.

Conversely let $F_{j} \leq F=H(T ; W, U)$ in $\bmod A$. Then $F \leq D(W$,$) , so F_{1} \leq D(W$,$) . Then we can construct the diagram:$

where U_{1}, α_{1} are such that $F_{1} \cong\left(, U_{1}\right) /$ ker α_{1} (we know that such module and map exist). Since $\left(, U_{1}\right)$ is a projective functor and α is a epimorphism, there exists a map γ such that this diagram commutes, and r has the form $(, f)$ with $f \in\left(U_{1}, U\right)$. Then $\alpha_{1}\left(U_{1}\right)\left(1_{U_{1}}\right)=i\left(U_{1}\right) \alpha_{1}\left(U_{1}\right)\left(I_{U_{1}}\right)=\alpha\left(U_{1}\right)\left(f, U_{1}\right)\left(I_{U_{1}}\right)=T^{*} f$.

Thus $F_{1}=H\left(T^{*} f, W, U_{1}\right)$.

We have by (2.43)(i) :
(2.46) Let $W, W_{1}, U \in \bmod A$ and $g \in\left(W, W_{1}\right)$; then

$$
\phi=H\left(I_{U}, g\right): H(T ; W, U) \rightarrow H\left(g^{\star} T: W_{1}, U\right)
$$

is an epimorphism.

Moreover the family of quotient functors of $H(T ; W, U)$ in $\operatorname{mmod} A$ is:

$$
\left\{H\left(g * T ; W_{1}, U\right): W_{1} \quad \bmod A, g \in\left(W, W_{1}\right)\right\}
$$

and ϕ is the natural epimorphism.

Proof: Since ϕ is an epimorphism the elements of mmod A with the form $H\left(g^{*} T ; W_{1}, U\right)$ are quotient functors of $H(T ; W, U)$.

Conversely if $G=H\left(T^{\star} f ; W, U_{j}\right) \leq H(T ; W, U)=F$ then F / G is finitely presented and there is an epimorphism $(, U) \xrightarrow[\alpha^{T}]{\longrightarrow} F / G$. Then there exists $W_{1} \in \bmod A$ such that $F / G \leqq D\left(W_{1},\right)$. Consider the diagram:

Since $D\left(W_{1},\right)$ is injective there exists $\delta=D(g$,$) such that this$ diagram commutes. So $F / G=H\left(g^{\star} T ; W_{1}, U\right)$.

We can also observe the following:
Let ϕ be given by
(2.47) $\phi=H(f, g): F=H(T ; W, U) \rightarrow F^{\prime}=H\left(T^{\prime} ; W^{\prime}, U^{\prime}\right)$.

The following diagram commutes:

where $\alpha^{\star}=\phi \alpha$. And $\alpha^{*}(U)\left(1_{U}\right)=\phi(U) \alpha(U)\left(1_{U}\right)=\phi(U)(T)=D(g),(T)=$ $=g{ }^{\star} T=T^{\prime *} f$.

Thus
(2.48) $\operatorname{Im} \phi=H\left(g^{\star} T ; W^{\prime}, U\right)=H\left(T^{\prime *} ; W^{\prime}, U\right)$.

And
(2.49) $H(T ; W, U) \xrightarrow{H\left(l_{U}, g\right)} H\left(g^{\star} T ; W^{\prime}, U\right) \xrightarrow{H\left(f, l_{W^{\prime}}\right)} H\left(T^{\prime} ; W^{\prime}, U^{\prime}\right)$
is the "canonical decomposition" of $\phi=H(f, g)$.

To obtain a description of the injective and projective objects in mod A we can proceed as follows:

Recall that given W mod A, if $P_{1} \xrightarrow{P_{1}} P_{0} \xrightarrow{P_{0}} W \rightarrow 0$ is a projective resolution of W then
(2.50) $\left(, N P_{1}\right) \xrightarrow{\left(, N p_{1}\right)}\left(, N P_{0}\right) \xrightarrow{b} D(W,) \rightarrow 0$
is a projective presentation of $D(W$,$) , where b=D\left(p_{0},\right) \alpha_{p_{0}}^{-1}$ (see (2.4)).

Then
(2.51) The injective objects of mmod A are

$$
D(W,)=H\left(b\left(N P_{0}\right)\left(l_{N P_{0}}\right), W, N P_{0}\right)
$$

where $W \in \bmod A, P_{0}$ is a projective module such that there exists an epimorphism $p_{0}: P_{0} \rightarrow W$ and $b=D\left(p_{0},\right) \alpha_{p_{0}}^{-1}$ (where $\alpha_{p_{0}}$ is given by (2.4)).

We can give a similar description for the projective objects in $\operatorname{mmod} A:$

Since these are of the form $(, U)$ we must find $U, W \in \bmod A$ and $\alpha:(, U) \rightarrow D(W$,$) such that \alpha$ is monomorphism.

Let U be any A-module and
(2.51) $0 \rightarrow U \xrightarrow{i_{0}} I_{0} \xrightarrow{i_{1}} I_{1}$
an injective resolution for U.

Apply (X,) to (2.51) :

$$
0 \rightarrow(x, u) \xrightarrow{\left(x, i_{0}\right)}\left(x, I_{0}\right) \xrightarrow{\left(x, i_{1}\right)}\left(x, I_{1}\right) .
$$

Apply $M=d D$, which is left exact,to (2.51) and let
$B=$ Coker Mi_{1}.
Then

$$
0 \rightarrow M U \xrightarrow{M i_{0}} M I_{0} \xrightarrow{M i_{1}} M I_{1} \rightarrow B \rightarrow 0
$$

is exact.
Apply (, X) (left exact, contravariant)

$$
(M U, X)<-\left(M I_{0}, X\right) \leftarrow\left(M I_{1}, X\right) \leftarrow(B, X) \leftarrow 0
$$

Now

$$
D\left(M I_{0}, X\right) \rightarrow D\left(M I_{1}, X\right) \rightarrow D(B, X) \rightarrow 0
$$

is exact.
Recall that $\alpha_{P}: D(P,) \rightarrow(, D d P)$ (2.4) is isomorphism, (see [Gr 2] pg.17) when P is in projective module.

If $P=M I$ where I is injective, then $N P \cong I$. Thus

$$
a_{M I}: D(M I,) \rightarrow(, I) \text { is an isomorphism. }
$$

Let

$$
\beta_{I}=\alpha_{M I}^{-1}
$$

Then we have the commutative diagram with exact rows:

$$
\begin{aligned}
& 0 \longrightarrow(X, U) \xrightarrow{\left(X, i_{0}\right)}\left(X, I_{0}\right) \xrightarrow{\left(X, i_{1}\right)}\left(X, I_{1}\right) \\
& f\left(X, 1_{U}\right) \quad\left|\beta_{I_{0}}(X) \quad\right| B_{I_{1}}(X) \\
& 0 \longrightarrow(X, U) \xrightarrow[\beta_{I_{0}}(X)\left(X, i_{0}\right)]{ } D\left(M I_{0}, X\right) \longrightarrow D\left(M I_{1}, X\right) \rightarrow D(B, X) \rightarrow 0 \\
& \text { Let } \\
& c=\beta_{I_{0}} o\left(, i_{0}\right)=\alpha_{M I_{0}}^{-1}\left(, i_{0}\right) .
\end{aligned}
$$

This is a monomorphism and we have:
(2.52) The projective objects in mod A are

$$
(, U)=H\left(c(U)\left(I_{U}\right), M I_{O}, U\right)
$$

where $U \in \bmod A, I_{0}$ is an injective module such that there exists a monomorphism $i_{0}: U \rightarrow I_{0}$ and $c=a_{M I_{0}}^{-1}\left(, i_{0}\right)$.

Chapter III : Representation type of R_{q} and the Auslander-Reiten quiver of R_{3}.

§1. Representation type of R_{q}

In this chapter we consider again the Auslander Algebra $R_{\overparen{Y}}=E n d_{A_{Q}}\left(V_{1} \Perp \ldots \Perp V_{Y}\right)$, where $A_{\widetilde{Y}}$ is the k-algebra $\left\langle z: z^{q}=0\right\rangle$, and $\left\{V_{1}, \ldots, V_{q}\right\}$ is a full set of indecomposable objects in $\bmod A_{q}$ (see Chapter I, §1).

Using some of the facts established in Chapter II we can prove now the following theorem:
(3.1) Theorem: The Auslander algebra R_{q} of $A_{q}=$ $=k-a \lg \left\langle z: z^{q}=0>\right.$ is of finite representation type if $q \leq 3$ and of infinite representation type if $q \geq 4$.

For this we must consider the following equivalence of categories (see [AI], pg. 191 to 193):

$$
\begin{gather*}
\mathrm{e}_{\mathrm{C}}: \operatorname{mmod} A_{\mathrm{q}} \longrightarrow \bmod { }^{\prime} \mathrm{R}_{\mathrm{q}} \tag{3.2}\\
\mathrm{~F} \longrightarrow \mathrm{~F}(\mathrm{C})
\end{gather*}
$$

where $\quad c=V_{1} \Perp \ldots \Perp V_{q}$.
$F(C)$ is considered a right R_{q}-module with the rule:
If $\xi \in F(C), h \in R_{q}$ then $\xi h=F(h)(\xi)$.

We want to decide when the number of isomorphism classes of indecomposable modules in mod R_{q} (or equivalently in $\bmod R_{q}$, since the number is the same ...) is finite or infinite.

By (3.2), we see that this number is the number of isomorphism classes of indecomposable functors in $\operatorname{mmod} A_{q}$.

But this number has already been calculated in the case $q=3$:
In 55, Chapter II we saw that the functors $F=H(T ; W, U)$, given by the matrices (1.47) of Chapter I are indecomposable and non-isomorphic, and from $\S 7$, Chapter I, (using (2.40), (2.30)) we deduce that they are the only indecomposable functors.

Thus:
If $q=3$, there are 21 isomorphism classes of indecomposable functors, and therefore there are 21 isomorphism classes of indecomposable modules in mod R_{3}. Therefore R_{3} is of finite representation type.

If $q \geq 4$ there is an infinite number of non-isomorphic indecomposable functors in mmod A_{q}, since (2.41) is an infinite family of such functors.

Thus if $q \geq 4, R_{q}$ is of infinite representation type.
If $q \leq 2, R_{q}$ is a serial algebra, so it is of finite representation type (see [Ft] prop. 16.11 and $16.14 \mathrm{pg} .58,61$).

In the following sections of this Chapter we construct the Auslander-Reiten quiver of the Auslander Algebra of finite representation type, R_{3}.
§2. $\bmod R_{3}$ and $\bmod ' R_{3}$
 $\mathbf{i}=1,2, \ldots, q$, are the primitive orthogonal idempotents in $R=R_{q}$ so the principal indecomposable modules in $\bmod R$ are $R e_{i}$ and in $\bmod ^{\prime} R$ are $e_{i} R, i=1, \ldots, q$.
(3.3) Definition: Let $\underline{a}=\left(a_{i j}\right)_{i, j \in\{1, \ldots, q\}}$ be a $q \times q$ matrix of integers $a_{i j}$, such that $\mathbf{i} \sim \mathbf{j} \leq a_{i j} \leq i$.

Then define the A-submodule $S(\underline{a})$ of R as follows:

$$
S(\underline{a}):=\underset{i, j}{\oplus} M_{i j}\left(a_{i j}\right)=\underset{i, j}{\oplus} A z^{a_{i j}-(i \sim j)} \cdot u_{i j}
$$

(using the notation of (1.2)(b) and (1.4)).

As examples we may consider the following:
(3.4) (1) $R=S(\underline{a})$ with $\underline{a}=(i \sim j)_{i, j}$.
(2) By Fitting's theorem

$$
\begin{aligned}
f \in J(R) \Leftrightarrow f_{i j}: V_{j} \rightarrow V_{i} & \text { is non-isomorphism } \forall i, j \\
\Leftrightarrow f_{i j} \in \operatorname{rad}\left(V_{i}, V_{i}\right) \forall i \Leftrightarrow f_{i j} \in A z u_{i j}= & M_{i j}(1) .
\end{aligned}
$$

Thus
(3.5) $J(R)=S(\underline{b})$ with $\left\{\begin{array}{ll}b_{i j}=1 & i=j \\ b_{i j}=i \sim j & i \neq j\end{array}\right.$.

In particular if $q=3: \underline{b}=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 1 & 1\end{array}\right)$.
(3) $f \in e_{i} R \Leftrightarrow\left(f_{i j}\right)_{i, j}=\left(\begin{array}{ll} & 0 \\ f_{i 1} & f_{i 2} \\ 0\end{array} \cdots f_{i q}\right) \Leftrightarrow$ $\Leftrightarrow\left\{\begin{array}{l}f_{k j}=0 \in M_{k j}(k) \text { if } k \neq i \\ f_{i j} \in\left(V_{j}, V_{i}\right)=M_{i j}(i \sim, j)\end{array}\right.$.

Thus if $q=3$:
(3.6)

$$
\begin{array}{ll}
e_{1} R=S\left(\underline{c}_{1}\right) & \text { with } \\
\underline{c}_{1}=\left(\begin{array}{lll}
0 & 0 & 0 \\
2 & 2 & 2 \\
3 & 3 & 3
\end{array}\right) \\
e_{2} R=S\left(\underline{c}_{2}\right) & \underline{c}_{2}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0 \\
3 & 3 & 3
\end{array}\right) \\
e_{3} R=S\left(\underline{c}_{3}\right) & \underline{c}_{3}=\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2 \\
2 & 1 & 0
\end{array}\right)
\end{array}
$$

Example (3) can be generalized as follows:
(3.7) Proposition:
(i) Every right R-submodule M of $e_{i} R$ is such that
$M=S(\underline{a})$ with

$$
\underline{a}=\left(\left.\begin{array}{ccc}
1 & \cdots & \tag{3.8}\\
\vdots & \cdots & \vdots \\
i-1 & \cdots & \\
a_{i 1} & \cdots & \\
i+1 & & a_{i q} \\
\vdots & & i+1 \\
q & & \vdots \\
i
\end{array} \right\rvert\,\right.
$$

(ii) Every left R-submodule N of $\mathrm{Re}_{\mathbf{i}}$ is such that $N=S(\underline{b})$ with $\underline{b}=\left|\begin{array}{ccccccc}1 & \ldots & 1 & b_{1 i} & 1 & \ldots & 1 \\ 2 & & 2 & b_{2 i} & 2 & & 2 \\ \vdots & & \vdots & \vdots & \vdots & & \vdots \\ q & \ldots & q & b_{q i} & q & \ldots & q\end{array}\right|$

Proof: (i) One has $e_{i} R_{j}=\left\{\left(\begin{array}{c}0 \\ 0 \\ f_{i j}\end{array} 0 ..\right): f_{i j} \in\left(V_{j}, V_{i}\right)\right\}$ $\cong\left(V_{j}, v_{i}\right)=M_{i j}(i \sim j) \quad(1.2 c)$.

Let $M \leq e_{i} R$; then $M e_{j} \leq M$ and $M e{ }_{j} \leq e_{i} R e_{j}$.
Conversely if $m \in M \cap e_{i} R e_{j}$, then $m=e_{i} r e_{j}$, some $r \in R$, so $m e_{j}=m$.

Thus $M e_{j}=M \cap e_{i} R e_{j}$, so $i t$ is a submodule of $\left(V_{j}, V_{i}\right)$ and therefore $M e_{j}=M_{i j}\left(a_{i j}\right), i \geq a_{i j} \geq i \sim j$ (by $\left.1.2(c)\right)$.

Then $M=M .1=\underset{j=1}{\oplus} M_{j}=\underset{j=1}{q} M_{i j}\left(a_{i j}\right)=S(\underline{a})$ with \underline{a} as in (3.8).
(ii) Similar.
(3.10) Remark: According to (3.7) every right R-submodule M of $e_{i} R$ can be given by the $i^{\text {th }}$ row of the matrix \underline{a}.

Thus we may write $M=\left(a_{i}, \ldots, a_{i q}\right)$.
Also in (ii) we can write $N=\left(\begin{array}{c}b_{1 i} \\ \vdots \\ b_{q i}\end{array}\right)$
So example (3) says that

$$
e_{1} R=\left(\begin{array}{lll}
0 & 0 & 0
\end{array}\right) \quad e_{2} R=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right) \quad e_{3} R=\left(\begin{array}{lll}
2 & 1 & 0
\end{array}\right)
$$

One can also see that:

$$
\operatorname{Re}_{1}=\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right) \quad \operatorname{Re}_{2}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \quad \operatorname{Re}_{3}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

(3.11) Lemma: If $\underline{a}=\left(a_{\mathbf{i j}}\right)_{\mathbf{i}, \mathbf{j}} \underline{b}=\left(b_{\mathbf{i j}}\right)_{\mathbf{i}, \mathbf{j}}$ are $q \times q$ matrices such that $i \sim j \leq a_{i j}, b_{i j} \leq i$, then

$$
S(\underline{a}) \cdot S(\underline{b})=S(\underline{c})
$$

where $\underline{c}=\left(c_{i j}\right)_{i, j}$ is given by

$$
\begin{aligned}
c_{i j}= & \min \left(a_{i t}+b_{t j}, i\right) \\
& t \in\{1, \ldots q\} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Proof: } S(\underline{a}) \cdot S(\underline{b})=\left(\underset{i, k}{\oplus} A z^{a_{i k}-(i \eta k)} \cdot u_{i k}\right)\left(\underset{e, j}{\oplus A z^{b j}}{ }^{b-(\ell \sim j)} u_{\ell j}\right) \\
& \left.=\underset{i, j \underset{t}{\oplus}\left(\oplus z^{a_{i t}-(i \sim t)+b} t j^{-(t \sim j)}\right.}{ } \cdot u_{i t} \cdot u_{t j}\right)=
\end{aligned}
$$

(by 1.8)
$\left.\left.=\underset{i, j}{\oplus} \underset{t}{\left(\oplus A z^{a} i t^{+b} t j^{-(i \sim j)}\right.} \cdot u_{i j}\right)=\underset{i, j}{\oplus A z^{t}} \min _{i t^{+b}}^{t j}, i\right)-(i \sim j) \quad \cdot u_{i j}$
because these modules form a chain and if $a_{i t}+b_{t j} \geqslant \mathbf{i}$, they are zero.

So $S(\underline{a}) \cdot S(\underline{b})=S(\underline{c})$ with $c=\min _{t}\left(a_{i t}+b, i j\right)$.
(3.12) Example

Since $e_{1} J(R)=e_{1} R . J$ and $e_{1} R$ is given by (3.6), J by (3.5) then using, this lemma we see that

$$
\mathrm{e}_{\mathrm{1}} \mathrm{~J} \text { is given by } \mathrm{S}(\underline{c}) \text { with } \underline{c}=\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 2 & 2 \\
3 & 3 & 3
\end{array}\right) \text {, }
$$

thus $e_{1}{ }^{J}=(100)$ using notation (3.10).

Also $\quad \mathrm{Je}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$.
The following consequence of Lemma (3.11) gives a description of the $S(\underline{a})$ which are left or right ideals of R.

$$
\begin{aligned}
& \quad(3.13) \text { Proposition: (a) } S(\underline{a}) \underset{l}{\leq} R \text { with } \underline{a}=\left(a_{i j}\right) \text { iffy } \\
& a_{i+1 j}=a_{i j} \text { or } 1+a_{i j} \text {. } \\
& b_{i j+1}=b_{i j} \text { or }-1+b_{i j} .
\end{aligned}
$$

Proof:

(i) $I=S(\underline{a}) \underset{\ell}{\unlhd} R$ iff $R I=I$. This is equivalent to say that

$$
S(\sigma) . S(\underline{a})=S(\underline{a}) \text { with } \sigma=(i \sim j)_{i j} \text { by (3.4). }
$$

By (3.11),

$$
\begin{aligned}
& R I=S(\underline{b}) \text { with } b_{i j}= \min _{\ell \in\left\{i \sim \ell+a_{\hat{\ell} j}, i\right)} \\
& \ell \in\{1, \ldots, q\}
\end{aligned}
$$

In particular:
$b_{i+1 j}=\min \left(i+a_{1 j}, i-1+a_{2 j}, \ldots, 1+a_{i j}, a_{i+1 j}, \ldots, i+1\right)$
$b_{i j}=\min \left(i-1+a_{1 j}, i-2+a_{2 j}, \ldots, 1+a_{i-1 j}, a_{i j}, a_{i+1 j}, \ldots, i\right)$

But $R I=S(\underline{a})$, so $\underline{a}=\underline{b}$.

Therefore

$$
\begin{aligned}
& b_{i+1 j}=a_{i+1 j} \text { and so } a_{i+1 j} \leq 1+a_{i j} \\
& b_{i j}=a_{i j} \text { and so } a_{i j} \leq a_{i+1 j}
\end{aligned}
$$

Thus

$$
a_{i+1 j}=a_{i j} \text { or } 1+a_{i j}
$$

$$
\text { Conversely suppose } a_{i j} \leq a_{i+1 j} \leq 1+a_{i j}, \forall i, j .
$$

Then

$$
\begin{aligned}
& a_{i j} \leq a_{i+1 j} \leq a_{i+2 j} \leq \ldots \leq a_{q j} \text { by first inequality } \\
& a_{i j} \leq 1+a_{i-1 j} \leq 2+a_{i-2 j} \leq \ldots \leq i-1+a_{1 j} \text { by second inequality. }
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \quad a_{i j}=\min \left\{i-1+a_{1 j}, i-2+a_{2 j}, \ldots, 1+a_{i-1 j}, a_{i j}, a_{i+1 j}, a_{i+2 j}, \ldots, a_{q j}, i\right\}= \\
& =\min _{\ell \in\{1, \ldots, q\}}\left\{i \sim \ell+a_{\ell j}, i\right\}=b_{i j} . \\
& \text { Therefore } S(\sigma) \cdot S(\underline{a})=S(\underline{a}) \text { and so } S(\underline{a})_{\ell} \underbrace{}_{\ell} .
\end{aligned}
$$

(b) Similar.

This proposition gives a method to calculate all R-submodules of $\mathrm{Re}_{\mathbf{i}}$ and $\mathrm{e}_{\mathbf{i}} \mathrm{R}$.

For example:
In $\bmod R_{3}, e_{2} J$ is given by (110) and $e_{2} J^{2}$ by (2 11) (using
notation (3.10)). But clearly there are R-submodules M_{i} such that $e_{2} J>M_{i}>e_{2} J^{2}$. Using (3.13) we see that there are two such submodules, namely $M_{1}=(210) \quad M_{2}=(111)$.

Notation: Denote the simple modules in $\bmod R$, by T_{i} $\mathbf{i}=1, \ldots, q$, and in mod'R, by S_{i}.

Then $e_{1} R / e_{1} J \cong S_{1} \cong e_{2} J /(210), e_{2} J /(111) \cong S_{3}$ and we can draw the lattice

Now we have all the tools to calculate the series of R-submodules of $e_{i} R$ and $R e_{i}$, which,in case $q=3$, are given by (3.14). These contain, among others, the modules in the radical series and socle series, which are the same, in this particular example.

Since $D(M) / D(M / N) \cong D N$, where N is a submodule of M and $D^{2} M \cong M$ one can easily calculate the series of submodules for the injective indecomposable modutes of R_{3}. These are given by (3.15).
(3.14) Series of submodules of the nrojective indecomnosable modules in $\bmod R_{3}:$

and in $\bmod ^{\prime} n_{3}:$

modules in mod'R ${ }_{3}$:

§3. The Auslander-Reiten quiver for R_{3}
In this section we apply the method described in $\$ 5$. Chapter 0 , to construct the Auslander-Reiten quiver of R.

Since we must start with an indecomposable non-injective R-module, we can take a simple module, for example T_{1}.

Its dual is $S_{1} \cong e_{1} R / e_{1} J$.
A projective resolution of $S_{\mathcal{1}}$ is:

where the maps are as follows:
p_{0} is the natural epimorphism
p_{1} is such that $p_{1}\left(e_{2}\right)=a \in e_{1} R e_{2}$. We can take
$a=\left(\begin{array}{ccc}0 & u_{12} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$, since then $p_{1}\left(e_{2}^{R}\right)=$
$=\left\{a r: r=\left(\begin{array}{ccc}f_{11} u_{11} & f_{12} u_{12} & f_{13} u_{13} \\ f_{21} u_{21} & f_{22} u_{22} & f_{23} u_{23} \\ f_{31} u_{31} & f_{32} u_{32} & f_{33} u_{33}\end{array}\right) \in R\right\}=\left\{\left(\begin{array}{ccc}0 & f_{22} u_{12} & f_{23} u_{13} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)\right\}=$
$=(100)=e_{1} J=\operatorname{ker} p_{0}$.
p_{2} is such that $p_{2}\left(e_{1}\right)=\left(\begin{array}{ccc}0 & 0 & 0 \\ u_{21} & 0 & 0 \\ 0 & 0 & 0\end{array}\right) \in \quad e_{2} R_{1}$
(in fact we do not need to know p_{2}).

Now we apply d which is left exact:
$\ldots \longleftarrow d\left(e_{2} R\right) \cong R e_{2}<\frac{d p_{1}}{=} d\left(e_{1} R\right) \cong R_{1}<\frac{d p_{0}}{\because} d S_{1} \ll \quad 0$

Then

0
$<-M=\operatorname{Re}_{2} / \operatorname{Im~dp_{1}} \quad n=\operatorname{Re}_{2}<\frac{d p_{1}}{} \operatorname{Re}_{1}<\frac{d p_{0}}{\square} d S_{1}<-0$
where n is the natural epimorphism, is exact.
dp_{1} is such that $\mathrm{dp}_{1}(r)=r a, \forall r \in R e_{1}$ and
$\operatorname{Im} d p_{1}=\{r a: r \in R\}=\left\{\left(\begin{array}{lll}0 & f_{11} u_{12} & 0 \\ 0 & z f_{21} u_{22} & 0 \\ 0 & z f_{31} u_{32} & 0\end{array}\right) \quad f_{i j} \in A\right\}=\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right)$.
Thus $M=\operatorname{Re}_{2} /\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right)$.
We will write $M=\dot{\int} T_{2}$ where this diagram is the minimal lattice

of submodules of M, that contains the module on both Loewy series of M. (In this case the radical series and the socle series coincide.)

We of ten will use the simplificd notation $M=\dot{j}^{2}$ $\mid 3$

Now we consider the "push-out" diagram:

The only possibilities for Ψ are 0 and λ.nat ($\lambda \in k$) and 0 is not in the required conditions. Thus we can take ψ as the natural epimorphism.
$F(\psi)$ is the pushout over ψ and $d p$ i.e.

$$
F(\psi)=\frac{D S_{1} H \operatorname{Re}_{2}}{\left\{\left(\psi(x),-d p_{1}(x)\right): x \in \operatorname{Re}_{1}\right\}}
$$

ℓ is such that $\ell: y \rightarrow[0, y] \in F(\psi)$. Since ψ is epimorphism, \& is also epimorphism.

And ker $\ell=\left\{y \in \operatorname{Re}_{2}: \ell(y)=[0, y]=0\right\}$.
But $[0, y]=0 \Leftrightarrow\left(\psi(x),-d p_{p}(x)\right)=(0, y)$ for some
$x \in \operatorname{Re}_{1} \Leftrightarrow \psi(x)=0,-\mathrm{dp}_{1}(x)=y \Leftrightarrow y \in \mathrm{dp}_{1}(\operatorname{ker} \psi)=\mathrm{dp}_{1}\left(\mathrm{Je}_{1}\right)=$
$=J e_{1} a=J a=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$.

So ker $\ell=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$ and $F(\psi) \cong \operatorname{Re}_{2} /\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)=1$.
This module is clearly indecomposable.
Thus

$$
0 \leftarrow \operatorname{Re}_{1} /\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)<-\operatorname{Re}_{2} / J^{2} e_{2}<-T_{1} \leftarrow 0
$$

or in another notation:
(3.16)

is an almost split sequence.

The next step consists in taking the middle term of this sequence, $N=$ that begins with N.

We shall look into this example with some detail, also, because it gives an almost split sequence whose middle term is decomposable and it involves some techniques that have not been used in the first rather simple example.

A projective resolution for $D N$ may start as follows:
(3.17)
 DN 0

And $D N=\operatorname{Im} P_{0} \cong \frac{e_{1} R \Perp e_{3} R}{\text { ker } p_{0}}$

The existence of a map P_{0}, is equivalent to the existence of an R-invariant blinear form:

$$
\begin{equation*}
\eta:\left(e_{1} R \ddot{H} e_{3} R\right) \times R e_{2} \longrightarrow k \tag{3.18}
\end{equation*}
$$

such that the left kernel of $n, L(\eta)=\left\{r \in e_{1} R \Perp e_{3} R\right.$: $\left.\eta(r, g)=0, \forall g \in \operatorname{Re}_{2}\right\}$ is ker p_{0} and the right kernel of η, $R(n)=\left\{r \in \operatorname{Re}_{2}: n(g, r)=0, \forall g \in e_{1} R \Perp e_{3} R\right\}$
is $\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)=\left\{r=\left(\begin{array}{llll}0 & r_{12} & u_{12} & 0 \\ 0 & r_{22} & u_{22} & 0 \\ 0 & r_{32} & u_{32} & 0\end{array}\right): r_{i j} \in A \quad\right.$ and $\left.\quad r_{12}^{(0)}=r_{22}^{(0)}=r_{32}^{(0)}=0\right\}$
where $r_{i j}^{(t)}$ is the coefficient of the term of degree t of $r_{i j}$, when this element of A is considered as a polynomial in z.

To give an R-invariant bilinear form (3.18) is equivalent to give a matrix

$$
\begin{equation*}
W=\left(\pi_{21} W_{21} \quad \pi_{23} W_{23}\right) \tag{3.19}
\end{equation*}
$$

where $\pi_{j i}$ is an A-generator of the module $D\left(A u_{i j}\right)=D\left(e_{i} R e_{j}\right)$. (since this is $\cong D\left(V_{f}, V_{f}\right)$ we use the same notation as in (1.14)) and $w_{21}, w_{23} \in A$.

This equivalence is given by the formula:

$$
\begin{aligned}
n\left(\left(e_{1} r, e_{3} s\right), r^{\prime} e_{2}\right) & =\left(\pi_{21} w_{21}\right)\left(e_{1} r r^{\prime} e_{2}\right)+ \\
& +\left(\pi_{23} w_{23}\right)\left(e_{3} s r^{\prime} e_{2}\right) .
\end{aligned}
$$

We need to know ger p_{0}, so that we can find the second term of the projective resolution (3.17). This will be done by finding the matrix $W(3.19)$, by imposing that $\left.R(n)=\left\lvert\, \begin{array}{l}1 \\ 1 \\ 2\end{array}\right.\right)$. Then using W we can easily determine $L(\eta)$.

Write $\quad w_{21}=w_{21}^{(0)}$

$$
w_{23}=w_{23}^{(0)}+w_{23}^{(1)} z \quad w_{21}^{(0)}, w_{23}^{(0)}, w_{23}^{(1)} \in k .
$$

We want to find elements $w_{21}^{(0)}, w_{23}^{(0)}, w_{23}^{(1)}$ of k such that the following is true:

$$
n(g, r)=0 \quad \forall g, k \text {-generator of } e_{1} R \Perp e_{3} R \Leftrightarrow r \in R(n)
$$

This can be done as follows:

$$
\begin{aligned}
& \text { g } \\
& \text { (k-generator of } \\
& e_{1} R \mu e_{3} R \text {) } \\
& \left|\begin{array}{lll}
u_{11} & 0 & 0 \\
0 & 0 & 0
\end{array}\right| \quad\left(\pi_{21} w_{21}\right)\left(r_{12} u_{12}\right)=w_{21}^{(0)} r_{12}^{(0)}=0 \\
& \left(\begin{array}{ccc}
0 & u_{12} & 0 \\
0 & 0 & 0
\end{array}\right) \quad\left(\pi_{21} w_{21}\right)\left(r_{22} u_{12}\right)=w_{21}^{(0)} r_{22}^{(0)}=0 \\
& \left(\begin{array}{lll}
0 & 0 & u_{13} \\
0 & 0 & 0
\end{array}\right) \quad\left(\pi_{21} w_{21}\right)\left(z r_{32} u_{12}\right)=0 \\
& \left(\begin{array}{lll}
0 & 0 & 0 \\
u_{31} & 0 & 0
\end{array}\right) \quad\left(\pi_{23} w_{23}\right)\left(2 r_{12} u_{32}\right)=w_{23}^{(0)} r_{12}^{(0)}=0 \\
& \left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & u_{32} & 0
\end{array}\right) \quad\left({ }_{23} w_{23}\right)\left(r_{22} u_{32}\right)=w_{23}^{(0)} r_{22}^{(1)}+w_{23}^{(1)} r_{22}^{(0)}=0 \\
& \left.\left\lvert\, \begin{array}{ccc}
0 & 0 & 0 \\
0 & z u_{32} & 0
\end{array}\right.\right) \quad\left(\pi_{23} w_{23}\right)\left(z_{22} u_{32}\right)=w_{23}^{(0)} r_{22}^{(0)}=0 \\
& \left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & u_{33}
\end{array}\right) \quad\left(\pi_{23} w_{23}\right)\left(r_{32} u_{32}\right)=w_{23}^{(0)} r_{32}^{(1)}+w_{23}^{(1)} r_{32}^{(0)}=0 \\
& \left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 2 u_{33}
\end{array}\right) \quad\left(\pi_{23} w_{23}\right)\left(z r_{32} u_{32}\right): w_{23}^{(0)} r_{32}^{(0)}=0 \\
& \left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & z^{2} u_{33}
\end{array}\right) \quad\left(\pi_{23} w_{23}\right)\left(z^{2} r_{32} u_{32}\right)=0
\end{aligned}
$$

If we take $w_{21}^{(0)}=1 w_{23}^{(0)}=0 w_{23}^{(1)}=1$ then this system of equations is $\left\{\begin{array}{l}r_{12}^{(0)}=0 \\ (0) \\ r_{22}=0 \\ (0) \\ r_{32}=0\end{array} \quad\right.$ and $R(n)=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right) \quad$.

$$
\begin{aligned}
& \text { Thus } W=\left(\pi_{2} \pi_{23} z\right) . \\
& \text { Now } L(n)=\left\{s \in e, R \Perp e_{3} R: \eta(s, h)=0, \forall h \in k\right. \text {-generators }
\end{aligned}
$$ of $\left.\operatorname{Re}_{2}\right\}$.

$$
\text { Writing } s=\left(\begin{array}{ccc}
s_{11} u_{11} & s_{12} u_{12} & s_{13} u_{13} \\
0 & 0 & 0 \\
s_{31} u_{31} & s_{32} u_{32} & s_{33} u_{33}
\end{array}\right) \quad \text { and using a method }
$$

similar to the one just used we can see that the conditions $\eta(s, h)=0$ where h is a k-generator of Re_{2}, are:

$$
\left\{\begin{array}{l}
s_{11}^{(0)}=0 \\
s_{12}^{(0)}+s_{32}^{(0)}=0 \Leftrightarrow s_{12}^{(0)}=-s_{32}^{(0)} \\
s_{33}^{(0)}=0
\end{array}\right.
$$

Thus

$$
L(n)=\left\{\left(\begin{array}{ccc}
0 & -s_{32} u_{12} & s_{13} u_{13} \\
0 & 0 & 0 \\
s_{31} u_{31} & s_{32}{ }^{u_{32}} & { }^{2 s} s_{33} u_{33}
\end{array}\right): s_{i j} \in A\right\} .
$$

And

$$
L(n) J=\left\{\left(\begin{array}{ccc}
0 & 0 & g_{13} u_{13} \\
0 & 0 & 0 \\
g_{31} u_{31} & z g_{32} u_{32} & -2 g_{13} u_{33}
\end{array}\right): g_{i j} \in A\right\}
$$

Thus:

$$
L(n) / L(n) J \cong S_{2} \Perp S_{3}
$$

So we can complete the projective resolution (3.17) as follows:
(3.20) $0 \rightarrow e_{2} R \longrightarrow e_{2} R \xrightarrow{\mu} e_{3} R \xrightarrow{p_{1}} e_{1} R \Perp e_{3} R \xrightarrow{P_{0}} D N \rightarrow 0$

This is so because we can take p_{1} as the left multiplication
by $b=\left(\begin{array}{ccc}0 & u_{12} & u_{13} \\ 0 & 0 & 0 \\ 0 & -u_{32} & 0\end{array}\right) \quad$ and so ger $p_{1}=e_{3} J \cong e_{2} R$.

Now we apply d :
$\ldots+\operatorname{Re}_{2} \Perp \operatorname{Re}_{3}<\frac{d p_{1}}{} \operatorname{Re}_{1} \mu \operatorname{Re}_{3}<\frac{d p_{0}}{d(D N) \leftarrow 0}$

If $M=\frac{R e_{2} H R_{3}}{\text { Lm } d p_{1}}$ then:
is exact.

To get a better description of M we calculate its radical series:
$\operatorname{Im} d p_{1}=\left\{\left(\begin{array}{ccc}0 & f_{12} u_{12} & f_{13} u_{13} \\ 0 & z f_{22} u_{22} & z f_{23} u_{23} \\ 0 & f_{32} u_{32} & z^{2} f_{33} u_{33}\end{array}\right) . f_{12}=f_{13}\right\}<J e_{2} \Perp J e_{3}$

$$
\begin{aligned}
& \text { Thus } M / J M \cong \frac{R e_{2} \Perp R e_{3}}{J e_{2} \Perp J e_{3}} \cong T_{2} \Perp T_{3} . \\
& J^{2} e_{2} \Perp J^{2} e_{3}+I m d p_{1}=\left\{\left(\begin{array}{lll}
0 & g_{12} u_{12} & g_{13} u_{13} \\
0 & z g_{22} u_{22} & 2 g_{23} u_{23} \\
0 & g_{32} u_{32} & 2 g_{33} u_{33}
\end{array}\right): g_{i j} \in A\right\} \\
& \text { Then } J M / J^{2} M=\frac{\frac{J e_{2}+11 \cdot J e_{3}}{I m d p_{i}}}{\frac{J^{2} e_{2} \Perp J^{2} e_{3}+I m d p_{1}}{I m d p_{1}}} \cong \frac{J e_{2} \Perp J e_{3}}{J^{2} e_{2} \Perp J^{2} e_{3}+\operatorname{Im~dp}} 1
\end{aligned} T_{2} .
$$

Using similar calculations, $J^{2} M / J^{3} M \cong T_{1} \Perp T_{3}$ and $J^{3} M=0$.
Thus the lattice of the radical series of M is

Now we want to find the socle series; this can be done as follows:

With the method used after (3.19) we can show that:
The bilinear form $n^{\prime}:\left(e_{1} R \not \Perp e_{3} R\right) \times\left(\operatorname{Re}_{2} \Perp R e_{3}\right) \rightarrow k$ given by

$$
W^{\prime}=\left(\begin{array}{rr}
\pi_{21} & 0 \\
-\pi_{31} & 2 \pi_{33}
\end{array}\right)
$$

is such that

$$
R\left(n^{\prime}\right)=\operatorname{Im} d p_{1} . \text { Then } D M \cong \frac{e_{1} R \Perp e_{3} R}{L\left(n^{\prime}\right)}
$$

If we consider the non-singular, R-invariant bilinear form

$$
\eta^{*}: \frac{e_{1} R \Perp e_{3} R}{L\left(\eta^{\prime}\right)} \times \frac{R e_{2} \Perp R e_{3}}{I m d p_{1}} \rightarrow k
$$

induced by n^{\prime},
then we may calculate the socle of M as follows:

Soc $M=\{m \in M: J m=0\}$. But $J m=0 \ll>$
$\Leftrightarrow n^{*}(n, J m)=0, \forall n \in D M \Leftrightarrow n^{*}(n J, m)=0, \forall n \in D M$
$\Leftrightarrow n^{*}\left(n^{\prime}, m\right)=0, \forall n^{\prime} \in(D M) J$.
The conditions $n\left(n^{\prime}, m\right)=0$, where n^{\prime} is a k-generator of (DM)J, and $m=\left(\begin{array}{lll}0 & m_{12} u_{12} & m_{13} u_{13} \\ 0 & m_{22} u_{22} & m_{33} u_{33} \\ 0 & m_{32} u_{32} & m_{33} u_{33}\end{array}\right)$, are $m_{23}^{(0)}=0 \quad m_{22}^{(0)}=0$ $m_{33}^{(0)}=0$. Let Q be the set of these elements.

Thus $\operatorname{soc} M=\frac{Q}{I m d p_{1}} \cong T_{1} \Perp T_{3}$.
Then $\operatorname{soc}^{2} M=\left\{m \in M: J^{2} m=0\right\}=\left\{m \in M: n^{\star}\left(n^{\prime \prime}, m\right)=0, \forall n^{\prime \prime} \in N J^{2}\right\}$, etc.

Proceeding analogously we conclude that the socle series is given by

Thus the minimal lattice of submodules that contains both Loewy series is:

Now we must construct the "push-out" diagram:

The only possible endomorphisms of $D N$ are 0 and automorphisms. Thus $\operatorname{rad} \operatorname{End}(D N)=0$.

So we can take any non-zero map to be ψ.

Let ψ be given by:

$$
\psi\left(x e_{1}+y e_{3}\right)=\left(x e_{1}+y e_{3}\right)\left(\begin{array}{lll}
0 & u_{12} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+J^{2} e_{2} .
$$

It is easily seen that $\operatorname{ker} \psi=\mathrm{Je}_{1} \mu \mathrm{Re}_{3}$ and so
Im $\psi \cong \frac{\operatorname{Re}_{1} \Perp \operatorname{Re}_{3}}{J e_{1} \Perp \mathrm{Re}_{3}} \cong T_{1}$.

For simplicity instead of diagram (3.22) we may consider

$$
0 \leftarrow M<-\overline{\mathrm{F}}(\psi)<N^{\cong} \mathrm{Re}_{2} / J^{2} \mathrm{e}_{2} \leftarrow 0
$$

where $\bar{\delta}$ is induced by δ, and

$$
\overline{\mathrm{F}}(\psi)=\frac{\frac{\operatorname{Re}_{2} \Perp \operatorname{Re}_{3}}{\delta(\operatorname{ker} \psi)} \Perp \mathrm{N}}{\left\{(\bar{\delta}(x),-\psi(x)): x \in \operatorname{Re}_{1} \Perp \operatorname{Re}_{3}\right\}}
$$

Since $\bar{F}(\psi) \cong F(\psi)$, this is the same almost split sequence as in (3.22) (up to isomorphism).

Now we want to study the decomposability of $F(\psi)$.

We have the
(3.24) Lemma: Let \bar{F} be the pushout of $\bar{\delta}, \psi$:

\quad If there exists a map $w: N \rightarrow M^{\prime}$ such that $w \downarrow=\bar{\delta}$, then
$\bar{F} \xlongequal{\cong} M^{\prime} \Perp N / I m \psi$.

Proof: If such an w exists

let $n: \bar{F} \rightarrow N / I m \psi$ be such that:

$$
n[\bar{y}, n]=n+I m \psi
$$

where:

$$
\begin{aligned}
& {[\bar{y}, n]=\{(\bar{y}+\bar{\delta}(x), n-\psi(x)): x \in x\} \in \bar{F}} \\
& \quad \text { Let } \xi: N / \operatorname{Im} \psi \rightarrow \bar{F} \text { be such that } \xi(n+\operatorname{Im} \psi)=[-w(n), n] \text {. } \\
& \quad \xi \text { is well-defined since: if } n \in \operatorname{Im} \psi \text {, i.e. } n=\psi(x) \text { for } \\
& \text { some } x \in X, \text { then }-w(n)=-w \psi(x)=-\bar{\delta}(x) \text {. Thus }[-w(n), n]= \\
& =[-\bar{\delta}(x), \psi(x)]=0 \text {. } \\
& \text { And } n \xi(n+\operatorname{Im} \psi)=n[-w(n), n]=n+\operatorname{Im} \psi \text {, thus } n \xi={ }^{1} N / \operatorname{Im} \psi .
\end{aligned}
$$

So $\bar{F} \cong \operatorname{Im} \xi \mu k e r \eta$ and $\operatorname{Im} \xi \cong N / \operatorname{Im} \psi$ since ξ is a monomorphism also $\operatorname{ker} n=\{[\bar{y}, n] \in \bar{F}: n=\psi(x), x \in X\} \cong M^{\prime}$ as follows:

$$
\text { Let } \begin{aligned}
\alpha: M^{\prime} & \longrightarrow \operatorname{ker} \eta \\
\bar{y} & \longrightarrow[\bar{y}, 0] \quad .
\end{aligned}
$$

Then $\bar{y}=0 \Rightarrow y \in \delta(\operatorname{ker} \psi) \Rightarrow y=\delta(x), \psi(x)=0=>\bar{y}=\bar{\delta}(x)$, $-\psi(x)=0 \Rightarrow[\bar{y}, 0]=[\bar{\delta}(x),-\psi(x)]=0 \Rightarrow(\bar{y}, 0)=(\bar{\delta}(x),-\psi(x))=>$ $\Rightarrow \bar{y}=\bar{\delta}(x), x \in \operatorname{ker} \psi \Rightarrow \bar{y}=0$; so α is monomorphism.

And $[\bar{y}, n] \in \operatorname{ker} n=n=\psi(x), x \in X=>[\bar{y}, n]=[\bar{y}+\bar{\delta}(x), n-\psi(x)]=$ $=[\bar{y}+\bar{\delta}(x), 0]=\left[\bar{y}^{\prime}, 0\right]$ with $\bar{y}^{\prime}=\bar{y}+\bar{\delta}(x)$. Thus $\bar{y}^{\prime} \xrightarrow{\alpha}[\bar{y}, n]$.

So $\bar{F} \cong N / \operatorname{Im} \psi \mu M^{\prime}$.

If $N=$ Re; $/ L$ then to define a map $w: N \rightarrow M^{\prime}$, it is necessary the existence of an element $\bar{m} \in M^{\prime}$ such that $e_{i} \bar{m}=\bar{m}$ and $\ell \bar{m}=0, \forall \ell \in L$. If such an element \bar{m} exists then we may define w such that $w\left(\mathbf{e}_{\mathbf{i}}+L\right)=\bar{m}$. If $w \psi=\bar{\delta}$ then this map satisfies the conditions of Lemma (3.24) and \bar{F} is decomposable.

Returning to our example: $N=\operatorname{Re}_{2} /\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$
$e_{2} \bar{m}=\bar{m} \Leftrightarrow\left(1-e_{2}\right) \bar{m}=0 \Leftrightarrow\left(1-e_{2}\right) m \in \delta($ ker $\psi)$
$\ell \stackrel{\rightharpoonup}{m}=\overline{0}, \forall \ell \in\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right) \Leftrightarrow \ell m \in \delta(\operatorname{ker} \psi), \quad \forall \ell \in\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right) \quad$ and $m \in \operatorname{Re}_{2} \Perp \operatorname{Re}_{3}$.

But

$$
\begin{aligned}
& \delta(\text { ker } \psi)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & z g_{22} u_{22} & z g_{23} u_{23} \\
0 & g_{32} u_{32} & z^{2} g_{33} u_{33}
\end{array}\right) \\
& \text { Writing } m=\left(\begin{array}{lll}
0 & c_{12} u_{12} & c_{13} u_{13} \\
0 & c_{22} u_{22} & c_{23} u_{23} \\
0 & c_{32} u_{32} & c_{33} u_{33}
\end{array}\right) \quad \text { then: } \\
& \left(1-e_{2}\right) m=\left(\begin{array}{ccc}
0 & c_{12} u_{12} & c_{13} u_{13} \\
0 & 0 & 0 \\
0 & c_{32} u_{32} & c_{33} u_{33}
\end{array}\right) \in \delta(\text { ker } \psi) \Leftrightarrow c_{12}, c_{13} \in z A \\
& \text { Then } m=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & d_{22} u_{22} & d_{23} u_{23} \\
0 & d_{32} u_{32} & z^{2} d_{33} u_{33}
\end{array}\right) \text {. If } \quad \& \epsilon\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right) \text {, then one can } \\
& \text { easily see that } \ell m \in \delta(\operatorname{ker} \psi) \text {. }
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \qquad \bar{m}=m+\delta(\operatorname{ker} \psi)=\left(\left.\begin{array}{ccc}
0 & 0 & 0 \\
0 & d_{22} u_{22} & d_{23} u_{23} \\
0 & 0 & 0
\end{array} \right\rvert\,+\delta(\operatorname{ker} \psi) .\right. \\
& \text { Defining } w \text { by } w\left(e_{2}+\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)\right)=\bar{m} \text { then }
\end{aligned}
$$

$$
\begin{aligned}
& w^{\psi}\left(x e_{1}+y e_{3}\right)=w \psi\left(\begin{array}{lll}
f_{11} u_{11} & 0 & f_{13} u_{13} \\
f_{21} u_{21} & 0 & f_{23} u_{23} \\
f_{31} u_{31} & 0 & f_{33} u_{33}
\end{array}\right)= \\
& =w\left(\left(\begin{array}{lll}
0 & f_{11} u_{12} & 0 \\
0 & 2 f_{21} u_{22} & 0 \\
0 & 2 f_{31} u_{32} & 0
\end{array}\right)+J^{2} e_{2}\right)=\left(\begin{array}{lll}
0 & f_{11} u_{12} & 0 \\
0 & z f_{21} u_{22} & 0 \\
0 & 2 f_{31} u_{31} & 0
\end{array}\right) m+\delta(\text { ker } \psi)= \\
& =\left(\begin{array}{ccc}
0 & f_{11} d_{22}{ }_{12} & f_{11} 1_{23}{ }^{u} 13 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+\delta(\text { ker } \psi) . \\
& \text { We want that this equals } \bar{\delta}\left(x e_{1}+y e_{3}\right)=\left(\begin{array}{ccc}
0 & f_{11} u_{12} & f_{11} u_{12} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+\delta(\operatorname{ker} \psi) \text {. } \\
& \text { If } d_{22}=d_{23}=1 \text { then clearly } w \psi=\bar{\delta} \text {. } \\
& \text { Thus } \bar{F}(\psi) \stackrel{\cong}{=} N / \operatorname{Im} \psi \Perp \frac{\operatorname{Re}_{2} \Perp \operatorname{Re}_{3}}{\delta(\operatorname{ker} \psi)}= \\
& \xlongequal{\approx} N / \operatorname{Im} \psi \mu R e_{2} /\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \Perp R e_{3} /\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)=\dot{l}_{2} \mu\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right.
\end{aligned}
$$

is a part of the Auslander-Reiten quiver of R.

Now we construct the almost split sequences that start with the direct summands of $\bar{F}(\psi)$.

After a certain number of calculations similar to those described above we obtain the graph shown in (3.27). Since we already krow that there are no more than 21 isomorphism classes of indecomposable modules ($\$ 1$, Chapter III), this graph is the Auslander-Reiten quiver of R_{3}.

Remark: Since R_{3} is a connected Algebra (because if $i \neq j$, $\left.\operatorname{Hom}_{R}\left(\operatorname{Re}, \operatorname{Re}{ }_{j}\right)=e_{i} \operatorname{Re}{ }_{j} \neq 0\right)$, the fact that its Auslander-Reiten quiver has a connected component (3.27) implies that the Auslander-Reiten quiver of R_{3}, is this connected component (see [Ga] pg.43,44).

The matrices I that occur next to each indecomposable modules M are the elements of $D(W, U)$ (for some $W, U \in \bmod A$), that correspond to M by the rule:

$$
\begin{equation*}
M \cong \frac{\left(V_{1} \Perp V_{2} \Perp V_{3}, U\right)}{\left\{f \in\left(V_{1} \Perp V_{2} \Perp V_{3}, U\right): T * f=0\right\}} \quad\left(\cong T *\left(V_{1} \Perp V_{2} \Perp V_{3}, U\right)\right) . \tag{3.26}
\end{equation*}
$$

Indeed a module M is such that $M=e_{C}(F)=F(C)$ (see (3.2)) for some $F \in \operatorname{mmod} A$. But $F=I m a$ where $a:(, U) \rightarrow D(W$,$) for$ some $U, W \in \bmod A($ see (2.1)) and by Yoneda's Lemma (0.15), a is completely determined by $T=a(U)\left(l_{U}\right) \in D(W, U) \quad$ (see $\S 2$, Chapter II).

Thus $F=\operatorname{Im} \alpha \Rightarrow M=\operatorname{Im} \alpha(C)$ with $C=V_{1} \Perp V_{2} \Perp V_{3}$ and

$$
\text { Im } \alpha(C)=T^{*}(C, U) \cong(C, U) / \operatorname{ker} \alpha(C) \text {, so we have (3.26). }
$$

Removing the projective and injective modules (see (3.14), (3.15)) we have the "stable quiver". Its "tree class" (see [Rt 1], pg.208) is given by the graph

We end this chapter with a brief explanation of the symmetry of (3.27) about the two axes formed by the auto-dual modules:

If R is any k-algebra a map $\alpha: R \rightarrow R$ such that $\alpha(r s)=\alpha(s) \alpha(r)$, $\alpha^{2}=1_{R}$ is an involution. Then,if $U \in \bmod R,(U, k) \in \bmod R$ with the rule:

$$
(r \psi)(u)=\psi(\alpha(r) u), \forall \phi \in(U, k), r \in R, u \in U .
$$

The functor

$$
F=\operatorname{Hom}_{k}(, k): \bmod R \rightarrow \bmod R
$$

is k-linear, contravariant, exact, and $F^{2} \cong$ Id, transforms projective modules into injective modules and vice-versa (as the duality functor $\operatorname{Hom}_{k}(, k): \bmod R \rightarrow \bmod R \quad(53$. Chapter 0$\left.)\right)$.

It is also trivial to see that F transforms irreducible maps (0.26) into irreducible maps and if

$$
0 \rightarrow L \xrightarrow{f} M \xrightarrow{g} N \rightarrow 0 \text { is an almost split sequence }
$$

$$
\begin{aligned}
& \text { Now let } R=R_{q}=\sum_{i, j} A u_{i j} \text { and let } \alpha: R \rightarrow R \text { be such that } \\
& \alpha\left(u_{i j}\right)=u_{j i} \quad \forall i, j=1, \ldots, q .
\end{aligned}
$$

$$
\text { Then } \alpha^{2}=1_{R} \text { and } \alpha\left(u_{i j} \cdot u_{j \ell}\right)=\alpha\left(z^{(i \sim j)+(j \sim \ell)-(i \sim \ell)} \cdot u_{i \ell}\right)
$$

$$
\text { (by } 1.8)=z^{(i \sim j)+(j \sim \ell)-(i \sim \ell)} \cdot u_{\ell i}=z^{(\ell \sim j)+(j \sim i)-(\ell \sim i)} \cdot u_{\ell i}=
$$

$$
=u_{\ell j} \cdot u_{j i}=\alpha\left(u_{j}\right) \cdot \alpha\left(u_{i j}\right) .
$$

This can be extended to any element of R, so α is an involution.

Thus reversing all arrows and "turning the modules upside-down" we must get exactly the same quiver. This of course can only happen if the graph has the symmetry mentioned above.

PART B

Chapter IV : Notes on almost split sequences II

§1. Introduction

In this chapter we introduce the notation used in this second part, and outline the results contained in some manuscript notes, by J.A. Green, written under the title "Notes on almost split sequences II", since these have not been published. This prepares the deduction of a "trace formula" (this name derives from the parallel with the trace formula described in $[G r 2] \S 3)$ which will be the object of Chapter V.

Let R be a complete discrete rank 1 valuation ring, with maximal ideal $M=R \pi$. It is well known that R is a principal ideal domain, whose ideals are $R \pi^{n} \quad\left(n \in \mathbb{N}_{0}\right)$.

Let K be the quotient field of R, and A a finite dimensional separable K-algebra, i.e. a K-algebra such that for every extension field E over $K, A^{E}=E A$ is a semisimple E-algebra (see [CRM] pg. 142). Of course, A itself is semi-simple.

Let Λ be an R-order in A, i.e. Λ is a subring of A which (as an R-module) is such that $\Lambda=R a_{1} \oplus \ldots \oplus \operatorname{Ra}{ }_{n}$ where $\left\{a_{1}, \ldots, a_{n}\right\}$ is some K-basis of A (see [CRM] pgs. 523, 524).

A typical example, that we shall consider later in Chapter V
is $A=K G$, the group algebra, and $\Lambda=R G$, the group ring, where R is the complete ring of p-adic integers (see [D], pg.317), K the quotient field of R, and G a finite group.

As in the first part we use the notation $\operatorname{Mod} \Lambda$ for the category of left Λ-modules, mod Λ for the category of finitely generated left n-modules.

Denote by $\bmod ^{0} \Lambda$ the category of left $\Lambda-1$ attices.
Recall that a Λ-module X is a Λ-lattice if X is free and finitely generated as an R-module (see [CRM] pg. 524, having in mind that over a PID a module is projective iff it is free) and that rank $X:=n$ if X has a free R-basis of n elements.

Recall also that if X is a Λ-lattice, then $K \underset{R}{\infty} X$ can be regarded as an A-module and $\operatorname{dim}_{K}\left(\begin{array}{l}K \\ R\end{array}\right.$ $\left\{x_{1}, \ldots x_{n}\right\}$ is an R-basis of x then $\left\{1_{K} \otimes x_{1}, \ldots, 1_{K} \otimes x_{n}\right\}$ is a

Denote by $\bmod ^{t} \Lambda$ the category of the Λ-modules Y, which are finitely generated and torsion as R-modules i.e. $\forall y \in Y$, there exists an $n(y) \in \mathbb{N}: \pi^{n(y)} y=0$. Since Y is a finitely generated R-module this is equivalent to say that there exists $N \in \mathbb{N}: \pi^{N_{Y}}=0$.

Observe that the quotient x / x_{0} of a n-lattice X may be a torsion Λ-module. This happens when rank $X=\operatorname{rank} X_{0}$.

Taking the special case $A=K, \Lambda=R$ we have the categories $\bmod R, \bmod ^{0} R$, and $\bmod ^{t} R$ of the finitely generated left R-modules, finitely generated free left R-modules, and finitely generated torsion left R-modules respectively.

We have the following:
If X is R-submodule of $Y \in \bmod ^{\circ} R$ then $X \in \bmod ^{0} R$ (because X is finitely generated and torsion-free, so free as an R-module, since R is a P.I.D.).

One can define almost split sequences in $\bmod ^{0} \Lambda$ as in (0.28), taking all modules and maps in this category.

Then one has the following theorem ([RS] pg.894).
(4.1) Theorem: (Auslander, Roggenkamp, Schmidt)

If $S \in \bmod ^{0} \Lambda$ is non-projective and indecomposable then there exists an almost split sequence

$$
E: 0 \rightarrow N \xrightarrow{f} E \xrightarrow{g} S \rightarrow 0
$$

in $\bmod ^{\circ} \Lambda$. Moreover E is unique up to isomorphism.

Then using the same reasoning as in [Gr 2] pgs. 3,4, we have:
(4.2) Proposition: Let $S \in \bmod ^{0} \Lambda$ be indecomposable and non-
projective. Let

$$
E: 0 \rightarrow N \xrightarrow{f} E \xrightarrow{g} S \rightarrow 0
$$

be a short exact sequence in $\bmod ^{0} \Lambda$.
Then E is almost split iff N is indecomposable and

$$
\operatorname{Im}(X, g)=R(X, S), \quad \forall X \in \bmod ^{\circ} \Lambda
$$

where

$$
R(X, S):=\{h \in(X, S): h t \in \operatorname{rad} \text { End } S, \forall t \in(S, X)\}
$$

52. Dualities and the Nakayama functor

One requires three contravariant $\mathrm{R}-1$ inear functors:
(4.3) Definitions:
(1) $D^{*}: \operatorname{Mod} R \rightarrow \operatorname{Mod} R$, such that $D^{*}=\operatorname{Hom}_{R}(, I)$ where

I is the injective cover of the residue field $R / R \pi$.
(2) $D: \operatorname{Mod} \Lambda \rightarrow \operatorname{Mod} \Lambda^{o p}$ is the functor $\operatorname{Hom}_{R}(, R)$, and given
$X \in \operatorname{Mod} \Lambda, D X$ is regarded as a right Λ-module with rule
$(f \lambda)(x)=f(\lambda x), \forall f \in D X, \lambda \in \Lambda, X \in X$.
(3) $d: \operatorname{Mod} \Lambda \rightarrow \operatorname{Mod} \Lambda^{\text {op }}$ is the functor $\operatorname{Hom}_{\Lambda}\left(, \Lambda^{\Lambda}\right)$ with:
if $X \in \operatorname{Mod} \Lambda$, then $d X$ is regarded as a right Λ-module with the rule:

$$
(f \lambda)(x)=f(x) \lambda \quad \forall f \in d X, \lambda \in \Lambda, X \in X \text {. }
$$

One needs some facts:
The injective cover I of R / R_{π} can be considered as the direct limit

$$
I=\lim _{n \rightarrow \infty} R / R_{\pi}^{n}
$$

whose elements are classes with the form:

$$
\left[a+R \pi^{n}\right]=\left\{a \pi^{s}+R_{\pi}^{n+s}: s \in \mathbb{N}_{0}\right\}
$$

So we can say that a typical element is $a+R_{\pi}{ }^{n}$ such that $a+R_{\pi}{ }^{n}$ is identified with $a{ }^{s}+R_{\pi}{ }^{n+s}, \forall s \in \mathbb{N}$.

I is not finitely generated. Clearly $D^{*} R \cong I$ and so D^{*} does not map $\bmod R$ into $\bmod R$.

But D^{*} maps $\bmod ^{t} R$ into $\bmod ^{t} R$, since $D^{\star} X \cong X, \forall X \in \bmod ^{t} R$. This is because $D^{*}\left(R / R_{\pi}{ }^{n}\right) \cong R / R_{\pi}{ }^{n} \quad(n \in \mathbb{N})$ and $R / R_{\pi}{ }^{n}, n \in \mathbb{N}$, are the indecomposable modules in $\bmod ^{t} R$.

D clearly maps $\bmod ^{0} \Lambda$ into $\bmod ^{0} \Lambda^{o p}$.
It also maps any $M \in \bmod ^{t} \Lambda$ into 0 . In fact if $M \in \bmod ^{t} \Lambda$, there is an $N \in \mathbb{N}: \mathbb{N}^{N} M=0$. If $\phi \in D M$, then $\phi(u)=r \in R, \forall u \in M$. But $\pi^{N} \phi(u)=\phi\left(\pi^{N} u\right)=0$, thus $\pi^{N} r=0$. Since R is an integral domain, $r=0$. Therefore $\phi(u)=0, \forall u \in M$, so $\phi=0$.

D is left exact but it maps a short exact sequence in $\bmod ^{0} \Lambda$ into a short exact sequence in $\bmod ^{0} \Lambda^{\circ}$ because the elements of this category are free as R-modules. Thus we may say that $D: \bmod ^{0} \Lambda \rightarrow \bmod ^{0} \Lambda^{O P}$ is contravariant, exact and $D^{2} \cong$ id.

Also D sends projectives (resp. injectives) in $\bmod ^{\circ} \Lambda$ to injectives (resp. projectives) in $\bmod ^{\circ} \Lambda^{\circ P}$.
d is left-exact and maps $\bmod ^{0} \Lambda$ into $\bmod ^{0} \Lambda^{O P}$.
(If $X \in \bmod ^{0} \Lambda$, then $d X=\operatorname{Hom}_{\Lambda}(X, \Lambda) \subseteq \operatorname{Hom}_{R}(X, \Lambda)$ which is free and finitely generated, hence $d X$ is a free and finitely generated R-module).

Since $d(\Lambda e) \cong e \Lambda$ for any idempotent $e \in \Lambda$, d maps projective modules into projective modules.
$N=D d: \operatorname{Mod} \Lambda \rightarrow \operatorname{Mod} \Lambda$ is the Nakayama functor.
It clearly maps $\bmod ^{0} \Lambda$ into $\bmod ^{0} \Lambda$.
§3. Some maps
Let $X, Y \in \bmod ^{0} \Lambda$ and let
(4.4) $B_{Y}(X): d Y X X(Y, X)$
be such that

$$
f \otimes x \longrightarrow \beta_{f, x}: y \rightarrow f(y) \cdot x \text {. }
$$

(4.5) Notation: Denote by $P(Y, X)$ the space of all maps of (Y, X) which factor through some projective object in $\bmod ^{0} \Lambda$ (i.e. the space of all projective maps from Y to X in $\bmod ^{0} \Lambda$).

Then

```
(4.6) Im B
```

Also, one has:
(4.7) Proposition: (i) If $P \in \bmod \Lambda$ is projective then

$$
B_{p}: d P \underset{A}{ } \rightarrow(P,)
$$

is an isomorphism.
(ii) If $P \in \bmod \Lambda$ is projective then
${ }^{B_{Y}}(P): d Y \& \rightarrow(Y, P)$ is an isomorphism.
Pf: see [AR III] pg. 249.

One has,
(4.8) $\quad D_{B_{Y}}(X): D(Y, X) \longrightarrow D(d Y \not X)$
$h \longrightarrow h_{0 \beta_{Y}}(X)$

Consider also the "adjoint isomorphism " (see [Ro] pg.37):

$$
\begin{aligned}
\text { (4.9) } \left.\begin{array}{rl}
\sigma_{Y}(X): D(d Y \otimes X) & \longrightarrow(X, N Y) \\
& \longrightarrow \\
& \longrightarrow(X \rightarrow(\underset{\in d Y}{f} \longrightarrow g(f \otimes x))
\end{array}\right)
\end{aligned}
$$

then

$$
\begin{aligned}
(4.10) \sigma_{Y}(X)^{-1}:(X, N Y) \longrightarrow & D(d Y \otimes X) \\
h \longrightarrow & (f \otimes x \longrightarrow \\
& (f \in d Y \in X
\end{aligned}
$$

Now define
(4.11) $\alpha_{Y}(X)=\sigma_{Y}(X) \circ D \beta_{Y}(X): D(Y, X) \rightarrow(X, N Y)$
(4.12) Remark: $\alpha_{Y}(X)$ maps $h \in D(Y, X)$ to $\xi \in(X, D d Y)$ defined as follows:

$$
\xi(x)(f)=h(y \rightarrow f(y) x)
$$ $\forall x \in X, f \in d Y$.

$$
\begin{aligned}
\text { In fact } & \alpha_{Y}(X) \text { is the composition } \\
& h \rightarrow \operatorname{hoß}_{Y}(X) \rightarrow\left(x \rightarrow\left(f \rightarrow \operatorname{hop}_{Y}(X)(f \& x)\right)\right.
\end{aligned}
$$

but

$$
h_{\circ} \beta_{\gamma}(x)(f \otimes x)=h\left(\beta_{f, x}\right) \quad \text { (see (4.4)) }
$$

with $B_{f, x} \in(Y, X)$ such that $\beta_{f, x}(y)=f(y) \cdot x, \forall y \in Y$.
So $\alpha_{\gamma}(X)$ is such that

$$
\begin{aligned}
& h \longrightarrow \xi: X \rightarrow N Y \text { such that } \\
& \qquad \xi(x)(f)=h\left(\beta_{f, x}\right)=h(y \rightarrow f(y) \cdot x) .
\end{aligned}
$$

The next proposition is of crucial importance, but, since its proof is not necessary for the purposes of this chapter we omit it.
(4.13) Proposition: Let $U \in \bmod R, V \in \bmod ^{0} R$ and $B \in \operatorname{Hom}_{R}(U, V)$, be such that

$$
B_{k}=1_{K} \otimes \beta: K \underset{R}{K} U \rightarrow K \underset{R}{Q} V \text { is a } K \text {-isomorphism. }
$$

Then
(i) ker β, Coker β are torsion modules.
(ii) If $T=$ Coker β, then there is a short exact sequence
(4.14) $0 \rightarrow D V \xrightarrow{D \beta} D U \xrightarrow{\delta} D^{\star} T \rightarrow 0$
in mod R, with the map δ defined as follows:
If $\mu \in D U, v \in V$, then:
(4.15) $\delta(\mu)(v+\operatorname{Im} \beta)=\left[\mu(u)+\pi^{N}{ }_{R}\right]$ where $u \in U, N \in \mathbb{N}$ are such that $\pi^{N} v=\beta(u)$.

Remark: Observe that given $v \in V$, there exists $N \in N$ such that $\pi^{N} v \in \operatorname{Im} \beta$, because Coker $\beta=V / \operatorname{Im} \beta$ is a torsion module.

Now, returning to the maps we were considering...
Using (4.6) we see that:
(4.16) $d Y{ }_{\Lambda} X \xrightarrow[\beta=\beta_{Y}(X)]{ }(Y, X) \xrightarrow[\text { nat }]{ }(Y, X) / P(Y, X) \rightarrow 0$
is exact.

$$
\begin{aligned}
& \text { The map } \beta=\beta_{Y}(X) \text { satisfies the conditions of proposition (4.13): }
\end{aligned}
$$

and

But
because $K \underset{R}{\otimes} \times$ (and $\underset{R}{K} Y$) is projective, since A is semisimple.

Thus

$$
K \underset{R}{\otimes}(d Y \underset{\Lambda}{\otimes} X) \stackrel{N}{\cong} \underset{R}{\otimes}(Y, X) .
$$

Then, proposition (4.13) tells us that $(Y, X) / P(Y, X)$ is a torsion module, and there is an exact sequence:
(4.17) $D(Y, X) \xrightarrow{D \beta_{Y}(X)} D\left(d Y \not X_{\Lambda} X\right) \xrightarrow{\delta=\delta_{Y}(X)} D^{\star}((Y, X) / P(Y, X)) \rightarrow 0 \quad$.

Let:
(4.18) $\quad \gamma_{Y}(X)=\delta_{Y}(X) \sigma_{Y}(X)^{-1}$.

Considering (4.11) and (4.18) we conclude that:
(4.19) $D(Y, X) \xrightarrow{\alpha_{Y}(X)}(X, N Y) \xrightarrow{\gamma_{Y}(X)} D^{\star}((Y, X) / P(Y, X)) \rightarrow 0$
is exact.

Therefore:
(4.20) Coker $\alpha_{Y}(X) \cong D^{*}((Y, X) / P(Y, X))$.
§4. The Roggenkamp diagram
In this section we describe a method given in "Notes on almost split sequences II", to construct almost split sequences.

This is a particular case of the following problem:
Given $S \in \bmod ^{\circ} \Lambda$, construct a short exact sequence

$$
0 \rightarrow N \xrightarrow{f} E \xrightarrow{g} S \rightarrow 0
$$

in $\bmod ^{0} \Lambda$, in such a way that one has an explicit expression for the subfunctor $\operatorname{Im}(, g)$ of (S$)$.

Green solves this problem by constructing what he calls the "Roggenkamp diagram" (because this construction is based in some results by K. Roggenkamp).

This is done by using a method similar to the one used in the construction of the Auslander-Reiten-Gabriel diagram (see [Gr 2]; see also (2.5), Chapter II).

Let $M \in \bmod ^{0} \Lambda$ and let
(4.21) $P \xrightarrow{P_{0}} M \rightarrow 0$
be a projective resolution of M. Then

$$
\begin{equation*}
0 \rightarrow \Omega M \rightarrow P \xrightarrow[P_{0}]{ } M \rightarrow 0 \tag{4.22}
\end{equation*}
$$

is a short exact sequence, with P projective and $\Omega M=k e r p_{0}$. Apply d to (4.22). Then

$$
0 \rightarrow d M \xrightarrow[d p_{0}]{ } d P \rightarrow d \Omega M
$$

is exact in $\bmod ^{\circ} \Lambda^{\circ}$.

Let $C=$ Coker dp_{0}.
Then

is exact, and $C \leq d \Omega M$, thus $C \in \bmod \Lambda^{0}{ }^{O P}$.
Therefore (4.23) is an exact sequence in $\bmod ^{\circ} \Lambda^{O P}$. Apply D and write $D C=\underline{B M}$. Thus

$$
\text { (4.24) } 0 \rightarrow B M \xrightarrow[j=D \text { nat }]{ } N P \xrightarrow[N p_{0}]{ } N M \rightarrow 0
$$

is a short exact sequence.
This is such that if M is indecomposable non-projective and (4.21) is minimal (i.e. Ker $p_{0} \leq \operatorname{rad} P$), then $B M$ is indecomposable (see [R] prop. 2, pg.1369).

Applying $D(, X)$ to (4.21) we get the exact sequence:

$$
D(P, X) \xrightarrow{D\left(P_{0}, X\right)} D(M, X) \longrightarrow 0 .
$$

Applying (X,) to (4.24) we obtain the exact sequence:

$$
0 \rightarrow(X, B M) \xrightarrow[(X, j)]{ }(X, N P) \xrightarrow[\left(X, N p_{0}\right)]{ }(X, N M) \quad .
$$

Then we may consider the diagram:

$$
\begin{array}{ll}
\quad D(P, x) \xrightarrow{D\left(p_{0}, x\right)} & D(M, x) \longrightarrow 0 \\
a_{P}(x) \downarrow & \downarrow_{a_{M}(x)}
\end{array}
$$

It is commutative because $\alpha_{Y}(X)$ is natural in Y; and the sequences are exact. Namely the exactness at (X, NM) is for the following reason:

Since $\alpha_{p}(X)$ is an isomorphism and $D\left(p_{0}, X\right)$ is an epimorphism, the commutativity of the diagram gives $\operatorname{Im}\left(X, N p_{0}\right)=\operatorname{Im} \alpha_{M}(X)$. By (4.19), $\operatorname{Im} \alpha_{M}(X)=\operatorname{ker} \gamma_{M}(X)$.

Now consider any module $S \in \bmod ^{0} \Lambda$ and any map $\theta \in(S, N M)$ and construct the pull-back diagram :

(4.25)

Let $a_{\theta}(X)=\gamma_{M}(X)(X, \theta)$. Then one can construct the "Roggenkamp diagram", which is commutative,and where all rows are exact, as follows:

$$
\begin{aligned}
& D(P, x) \xrightarrow{D\left(p_{0}, X\right)} D(M, X) \longrightarrow 0 \\
& \alpha_{p}(x) \quad \alpha_{M}(x) \\
& \text { (4.26) } 0 \rightarrow(X, \underline{B} M) \xrightarrow{(X, j)}(X, N P) \xrightarrow{\left(X, N p_{0}\right)}(X, N M) \xrightarrow{\gamma_{M}(X)} D^{*}((M, X) / P(M, X)) \rightarrow 0 \\
& \text { id } \quad \dagger(x, \ell) \quad \mid(x, \theta) \quad \text { id } \\
& 0 \rightarrow(X, \underline{B} M) \underset{(X, f)}{\longrightarrow}(X, E(\theta)) \xrightarrow[(X, g)]{ }(X, S) \xrightarrow[a_{\theta}(X)]{ } D^{*}((M, X) / P(M, X)) \\
& \text { In particular } \\
& \text { (4.27) } \operatorname{Im}(, g)=\operatorname{ker} a_{\theta} . \\
& \text { By Yoneda's lemma (0.15), } a_{\theta} \text { is completely determined by the } \\
& \text { element }
\end{aligned}
$$

$$
\begin{align*}
T_{\theta} & =a_{\theta}(S)\left(1_{S}\right)=\gamma_{M}(S)(S, \theta)\left(l_{S}\right)=\gamma_{M}(S)(\theta) \tag{4.28}\\
& \in D^{*}((M, S) / P(M, S)) .
\end{align*}
$$

Next one can see how an almost split sequence is a particular case of $E(\theta)$ in (4.25).

One can identify $D^{*}((M, S) / P(M, S))$ with the R-module consisting of those elements $T \in D^{*}(M, S)$, which vanish on $P(M, S)$.

Thus each $T \in D^{\star}((M, S) / P(M, S))$ defines a map

$$
a_{T}:(, S) \longrightarrow D^{\star}(M,)
$$

(by Yoneda's Lemma (0.15)). In particular $T_{\theta}(4.28)$ defines ${ }^{a} T_{\theta}=a_{\theta}$.

Using the commutativity of the diagram:

$$
(X, S) \longrightarrow D^{a_{T}(X)}(M, X)
$$

one sees that:

$$
\left[a_{T}(X)(f)\right](g)=\left[D^{*}(M, f)(T)\right](g)=T(f g), \quad \forall g \in(M, X)
$$

Thus

```
    Ker a}\mp@subsup{a}{T}{}(X)={f\in(X,S):T(fg)=0,Vg\in(M,X)}
    Since T vanishes on P(M,S) it is clear that P(X,S) s
Ker a}\mp@subsup{a}{T}{}(X)\mathrm{ or,in functorial terms, P(,S) s Ker a}\mp@subsup{\textrm{T}}{\textrm{T}}{}
    Now take T= T (4.28), M=S ; then:
        Ker }\mp@subsup{a}{0}{}(x)={f\in(X,S):\mp@subsup{T}{0}{}(fg)=0,\forallg\in(S,X)}
```



```
    But f.(S,X) is a right ideal of End(S). Thus
    (4.29) Ker a }\mp@subsup{a}{0}{}(X)={f\in(X,S):fg\in maximal right ideal of
            End(S) contained in Ker T
    Now suppose S is indecomposable, take }0\in(S,NS), an
construct }E(0)\mathrm{ as in (4.25).
    Proposition (4.2) tells us that E(0) is almost split sequence
if and only if }\underline{BM}(=\underline{BS})\mathrm{ is indecomposable and Ker }\mp@subsup{a}{0}{}=R(,S)\mathrm{ , where:
(4.30) \forallX\in mod
    From (4.29), (4.30) we have:
```

Ker $a_{\theta}=R(, S)<=>$ (maximal right ideal of End S contained in Ker T_{0}) $=\operatorname{rad}$ End S.

Since rad End S is the unique maximal right ideal of End S (because S is indecomposable), this is equivalent to

$$
T_{\theta} \neq 0, T_{\theta}(\operatorname{rad} \text { End } S)=0
$$

And $B S$ is indecomposable if S is indecomposable non-projective and the presentation (4.21) is minimal as we saw before.

Thus:
(4.31) Proposition: Let $S \in \bmod ^{0} \Lambda$ be indecomposable non-projective. Take $M=S$, assume that (4.21) is minimal and let $\theta \in(S, N S)$. Then construct $E(\theta)$ as in (4.25).

Then $E(\theta)$ is almost split iff $T_{\theta}=\gamma_{S}(S)(\theta) \in D^{*}((S, S) / P(S, S))$ (see (4.28)) satisfies the conditions
(4.32) $T_{\theta} \neq 0, T_{\theta}(\operatorname{rad}$ End $S)=0$.

Remark: Since S is not projective, $P(S, S)$ End S. Thus $P(S, S) \leq \operatorname{rad}$ End $S<E n d S$, so there exist an element $T \in D^{*}(S, S)$ which satisfy (4.32) and $T(P(S, S))=0$, so $T \in D^{\star}((S, S) / P(S, S))$. Since the map $\gamma_{S}(S)$ (see 4.26) is surjective, there exists $\theta \in(S, N S)$ such that $T_{\theta}=\gamma_{S}(S)(\theta)$.

Chapter V : A "trace formula" for T_{\rightarrow}

§1. Introduction

As in $\S 3$ of $[\mathrm{Gr} 2]$, it is possible to present an explicit formula for $T_{\theta}(4.28)$. But the method used to deduce this formula is very different from that used in that paper.

We need to have in mind a few facts relative to separable algebras. These are a particular case of Frobenius algebras:

Let K be a field.
A Frobenius algebra A is a finite dimensional K-algebra such that $A^{A} \cong D\left(A_{A}\right)$ (see [CR] pg.413).

It can be proved that this is equivalent to the existence of a nondegenerate bilinear form:
(5.1) $f: A \times A \longrightarrow K$
such that $f(a b, c)=f(a, b c) \quad([C R] p g .414,415)$.
The following facts are taken from [CR] pg. 481, 482:
Given a basis $\left\{a_{1}, \ldots, a_{n}\right\}$ of A let $\left\{b_{1}, \ldots b_{n}\right\}$ be a dual basis with respect to f, i.e. such that $f\left(a_{i}, b_{j}\right)=\delta_{i j} \forall i, j=1, \ldots, n$.

For each $a \in A$ we can consider the element $c(a)=\sum_{1} b_{i} a_{i} a_{i}$, which is in the center of $A, C(A)$.

Then we may consider the ideal of $C(A)$:
(5.2) $\quad \Gamma(A)=\{c(a): a \in A\} \subseteq C(A)$
which is independent of f, and of the chosen basis $\left\{a_{i}\right\},\left\{b_{i}\right\}$.
And one has the following characterization of separable algebras:
(5.3) Proposition (D.G. Higman): The K-algebra A is separable iff A is a Frobenius algebra and $\Gamma(A)=C(A)$.

Now we want an explicit formula for:

$$
T_{\theta}=a_{\theta}(S)\left(1_{S}\right)=\gamma_{M}(S)(\theta) \quad \text { (see }(4.28) \text {) }
$$

where $\quad \gamma_{M}=\delta_{M} \circ \sigma_{M}^{-1}(\operatorname{see}(4.18))$.

Thus T_{θ} is the result of the following sequence of maps:

$$
\mathrm{I}_{\mathrm{S}} \longrightarrow \theta \longrightarrow \theta((\rho \otimes s) \longrightarrow \delta(\rho)) \longrightarrow \delta(\mu)=T_{\theta}
$$

$\delta(\mu)$ is such that, for given $h \in(M, S)$,

$$
\delta(\mu)\left(h+\operatorname{Im} \beta_{M}(S)\right)=f(\mu, h)
$$

and f is given by:

$$
\begin{aligned}
& f: D(d M \otimes S) \times(M, S) \longrightarrow I \text { (injective cover of } R / R \pi) \\
& (\mu, h) \longrightarrow\left[\mu\left(\sum_{i} \rho_{\mathbf{i}} \otimes s_{\mathbf{i}}\right)+\pi^{N_{R}}\right]= \\
& =\left[\sum_{i} \theta\left(s_{i}\right)\left(\rho_{i}\right)+\pi^{N} R\right] \\
& \text { where } s_{i} \in S, \rho_{i}: M \rightarrow \Lambda, N \in \mathbb{N} \text { are such that: } \\
& \text { (5.5) } \quad \beta_{M}(S)\left(\sum_{i} \rho_{i} s_{i}\right)=\pi{ }^{N} h \\
& \text { (see proposition (4.13)). } \\
& \text { Therefore, } \\
& \text { given } h: M \rightarrow S \text { we must find } N \in \mathbb{N} \text { such that } \pi^{N} h \in \operatorname{Im} B_{M}(S) \\
& \text { and } p_{i} \in d M, s_{i} \in S \text { such that (5.5) is verified. }
\end{aligned}
$$

52. A projective endomorphism of M

The first question we have to answer is:
Given $h \in(M, S)$, find $N \in N$ such that $\pi N_{h} \in \operatorname{Im} \beta_{M}(S)$, i.e. such that $\pi^{N} h$ is a projective map (see (4.6)).

Observe that, since the set of projective maps $P(M, S)$ forms an ideal in the category $\bmod ^{0} \Lambda$ (see (0.12)) it is enough to answer the question:
(5.6) Find $N \in \mathbb{N}$ such that $\pi^{N} \cdot l_{M}$ is a projective endomorphism of M.

Recall that we are assuming that R, K, Λ, A, satisfy the conditions given in Chapter IV, gl. In particular $\Lambda=R a_{1} \oplus \ldots \oplus R a_{n}$, where $\left\{a_{1}, \ldots, a_{n}\right\}$ is a K-basis of A, and A is a separable K-algebra, with a non-degenerate associative bilinear form $f: A \times A \rightarrow K$ (see 5.1)).

Let $\left\{b_{1}, \ldots, b_{n}\right\}$ be a dual basis of $\left\{a_{1}, \ldots, a_{n}\right\}$ with respect to f.
Since A is separable, and $1 \in C(A)$, the center of A, proposition (5.3) tells us that $1 \in \Gamma(A)$ (5.2), thus

$$
1=\sum_{i=1}^{n} b_{i} \quad a \quad a_{i}
$$

for some $a \in A$.

If $\tilde{a}_{i}=b_{i} a$, then

$$
1=\sum_{i=1}^{n} \tilde{a}_{i} \cdot a_{i} .
$$

Consider the element:

$$
\begin{equation*}
b=\sum_{i=1}^{n} \tilde{a}_{i} a_{i} \in A \underset{K}{\otimes A} . \tag{5.7}
\end{equation*}
$$

Since $A \underset{K}{\otimes} A=K(\Lambda \underbrace{Q}_{R} \Lambda)$, there exists $r_{0} \in R$ such that

$$
\begin{equation*}
r_{0} b \in \Lambda \underset{R}{ } \Lambda \tag{5.8}
\end{equation*}
$$

(Observe that it is enough to find $r_{0}: r_{0} \tilde{a}_{i} \in \Lambda, i=1, \ldots, n$).

Now consider the map:
such that

$$
\begin{aligned}
m: A \otimes A & \longrightarrow A \\
K & \longrightarrow y \cdot y .
\end{aligned}
$$

Denote also by m its restriction to $\begin{gathered}\Lambda \cap \\ \\ R\end{gathered}$
(5.9) m : $\Lambda \underset{R}{\otimes} \wedge \longrightarrow \Lambda$.

Let

$$
f: A \longrightarrow A \underset{K}{\longrightarrow} A
$$

be such that $1 \longrightarrow b$

Then $m f(1)=m\left(\sum_{1}^{n} \tilde{a}_{i} a_{i}\right)=1$, i.e. $m f=1_{A}$.
Let f_{0} be the restriction of $r_{0} f$ to Λ :
(5.10) $\quad f_{0}=r_{0} f: \Lambda \longrightarrow \Lambda \underset{R}{⿴} \Lambda \quad$.

Then $m f_{0}(\lambda)=m\left(r_{0} f(\lambda)\right)=r_{0} m f(\lambda)=r_{0} \lambda, \forall \lambda \in \Lambda$, i.e.
(5.11) $\quad m f_{0}=r_{0}{ }^{1} \Lambda$.

Now apply the functor - $\Lambda_{\Lambda} M$ to (5.9):
p is clearly an epimorphism and $\Lambda \underset{R}{\otimes} M$ is projective. So this is a projective presentation for M.

$$
\begin{align*}
& m(=1 \otimes m) \longrightarrow \sum_{1}^{n} r_{0} \tilde{a}_{i}{ }_{R}^{\Omega} a_{i} m= \tag{5.13}\\
& =r_{0} b \mathrm{~m}
\end{align*}
$$

and

$$
p \circ w=\left(m \& l_{M}\right)\left(f_{0} l_{\Lambda}^{Q}\right)=m f_{0} l_{M}=r_{0} l_{\Lambda} \otimes l_{M}=r_{0} l_{M}
$$

Thus $r_{0} \cdot l_{M}=p \circ w$, and so $r_{0} l_{M}$ factors through the projective module $\Lambda \underset{R}{\Lambda}$ i.e. $\quad r_{0} l_{M}$ is a projective endomorphism.

Then:
(5.14) Proposition: Let A be a finite dimensional separable K-algebra, Λ an R-order in A such that $\Lambda=R a_{1} \oplus \ldots \otimes R a_{n}$ for some K-basis $\left\{a_{1}, \ldots, a_{n}\right\}$ of $A, \tilde{a}_{1}, \ldots, \tilde{a}_{n}$ elements of A such that $1=\sum_{i=1}^{n} \tilde{a}_{i} a_{i}$, and $r_{0} \in R$ such that $r_{0} \tilde{a}_{i} \in \Lambda, \forall i=1, \ldots, n$.

Then
$\forall M \in \bmod ^{0} \Lambda, r_{0} \cdot 1_{M}$ is a projective endomorphism of M.
(5.15) Remark: In the particular case we are considering we can take $r_{0}=\pi^{N} . u$, where u is a unit in R, and $N \in \mathbb{N}_{0}$.
§3. The map $\beta_{M}(X)$
The next proposition gives a way of finding an element $\tau \in d M \otimes M$ such that $\beta_{M}(M)(\tau)$ is a given element of $P(M, M)$.
(5.16) Proposition: Let $M \in \bmod ^{\circ} \Lambda$ be such that
(5.17) $0 \rightarrow M^{\prime} \rightarrow \underset{i=1}{\Phi} \Lambda y_{i}=P \xrightarrow{p_{0}} M \rightarrow 0$
is a projective presentation of M. Let $g \in P(M, M)$, so g factors through P, i.e. there exists $w: M \rightarrow P: p_{0} w=g$.

Consider the following element $\tau \in d M \& M$;
(5.18) $\quad \tau=\sum_{i=1}^{s} \mu_{i} m_{i}$
such that
(1) $m_{i}=p_{0}\left(y_{i}\right), i=1, \ldots, s$.
(2) $\quad \mu_{i} \in d M$ is defined by
(5.19) $\quad w(m)=\sum_{i=1}^{s} \mu_{i}(m) \cdot y_{i}, \quad \forall m \in M$.

Then
(5.20) $B_{M}(M)(\tau)=g$.

Proof: Since $P=\underset{i=1}{\oplus} \Lambda y_{i}$ is a direct sum, the expression (5.19) makes sense and gives a definition for the maps $\mu_{i} \in d M=(M, \Lambda)$.

Let $m \in M$. Then $\left[\beta_{M}(M)(\tau)\right](m)=\sum_{i=1}^{s} \mu_{i}(m) \cdot m_{i}=$
$=\sum_{i=1}^{s} \mu_{i}(m) \cdot p_{0}\left(y_{i}\right)=p_{0}\left(\sum_{i=1}^{s} \mu_{i}(m) \cdot y_{i}\right)=p_{0} w(m)=g(m)$.
(See (4.4).)

In particular we may consider the conditions of proposition (5.14), that $g=r_{0} \cdot l_{M}$, and that we have a projective presentation as in (5.12):

and $\quad P=\Lambda \underset{R}{\otimes} M \xrightarrow[P_{0}]{ } M \rightarrow 0$ is a projective presentation of M with $p_{0}\left(1 \otimes m_{i}\right)=m_{i}, i=1, \ldots, s$.

Also

$$
w(m)=\sum_{j=1}^{s} \mu_{j}(m)\left(1 \Leftrightarrow m_{j}\right)
$$

But

$$
\begin{aligned}
& w(m)=\left(f_{0} 1_{M}\right)(m)=\sum_{i=1}^{n} r_{0} \tilde{a}_{i}{\underset{R}{R}}^{\infty} a_{i} m \quad \text { (see (5.13)). } \\
& \text { Let } a_{i} m=\sum_{j=1}^{s} r_{i j}(m) \cdot m_{j} \text { with } r_{i j}(m) \in R \text {. }
\end{aligned}
$$

Then $w(m)=\sum_{j=1}^{S} r_{0}\left(\sum_{i=1}^{n} \tilde{a}_{i} r_{i j}(m)\right) \underset{R}{\infty} m_{j}=$

$$
=\sum_{j=1}^{s} r_{0}\left(\sum_{i=1}^{n} \tilde{a}_{i} r_{i j}(m)\right)\left(1 \otimes m_{j}\right)
$$

Comparing these two expressions of $w(m)$ we get

$$
\mu_{j}(m)=r_{0} \sum_{i=1}^{n} \tilde{a}_{i} r_{i j}(m)
$$

Thus:
(5.21) Proposition: Suppose conditions of proposition (5.14) are verified. Let $M=\underset{j=1}{\stackrel{s}{\oplus}} \mathrm{Rm}_{j} \in \bmod ^{0} \Lambda$ and suppose that $a_{i} \cdot m \in M$ is given by the expression

$$
a_{i} \cdot m=\sum_{j=1}^{s} r_{i j}(m) \cdot m_{j} \quad \text { with } \quad r_{i j}(m) \in R
$$

Consider the element $\tau=\sum_{j=1}^{s} \mu_{j} \Omega m_{j} \in d M \underset{\Lambda}{\Omega}$, where μ_{j} is such that $\mu_{j}(m)=r_{0} \cdot \sum_{i=1}^{n} \tilde{a}_{i} r_{i j}(m)$.

Then

$$
B_{M}(M)(\tau)=r_{0} l_{M}
$$

$$
\begin{aligned}
& \text { Proof: } \beta_{M}(M)(\tau)(m)=\sum_{j=1}^{s} \mu_{j}(m) \cdot m_{j}= \\
= & \sum_{j=1}^{s}\left(r_{0} \sum_{i=1}^{n} \tilde{a}_{i} r_{i j}(m)\right) m_{j}=r_{0} \sum_{i=1}^{n} \tilde{a}_{i}\left(\sum_{j=1}^{s} r_{i j}(m) \cdot m_{j}\right)= \\
= & r_{0} \sum_{i=1}^{n} \tilde{a}_{i} \cdot a_{i} m=r_{0} 1 . m=r_{0} m=r_{0} 1_{M}(m) .
\end{aligned}
$$

Using naturality of $\beta_{M}(X)$ in X, and given any $S \in \bmod ^{\circ} \Lambda$, $h \in(M, S)$,

we obtain $\beta_{M}(S)\left(\sum_{j=1}^{S} \mu_{j} \not h\left(m_{j}\right)\right)=r_{0} h$.
Now we can return to the expression of T_{θ} (5.4) and take the following conclusion:
(5.22) Theorem: Let R be a complete discrete rank 1 valuation ring, with maximal ideal R_{π}; let K be the quotient field of R and

A a separable f.d. K-algebra. Let Λ be an R-order such that $\Lambda=R a_{1} \oplus \ldots \oplus R a_{n}$ for some k-basis $\left\{a_{1}, \ldots, a_{n}\right\}$ of A, and $\tilde{a}_{1}, \ldots, \tilde{a}_{n}$ elements of A such that $1=\sum_{i=1}^{\tilde{a}_{i}} \cdot \tilde{a}_{i}$.

Let $N \in \mathbb{N}$ be such that $\pi_{N} \tilde{a}_{i} \in \Lambda, \forall i=1, \ldots, n$.
Let $M \in \bmod ^{0} \Lambda$ and suppose that $M=\stackrel{s}{\oplus} R m_{i}$.
Let $\rho_{f} \in d M$ be given by

$$
\rho_{j}(m)=\pi{ }^{N} \sum_{i=1}^{n} \tilde{a}_{i} r_{i j}(m) \quad j=1, \ldots, s
$$

where the $r_{i j}(m) \in R$ are such that

$$
a_{i} m=\sum_{j=1}^{s} r_{i j}(m) \cdot m_{j}
$$

Let $S \in \bmod ^{\circ} \Lambda$. Then:

Identifying $D^{*}((M, S) / P(M, S))$ with the R-module consisting of those $T \in D^{\star}(M, S)$ which vanish in $P(M, S)$, we have:

For each $\theta \in(S, N M), T_{\theta}=\gamma_{M}(S)(\theta) \in D^{*}(M, S)$ is given by:
(5.23) $\quad T_{\theta}(h)=\left[\sum_{j=1}^{S}\left(\theta\left(h\left(m_{j}\right)\right)\right)\left(\rho_{j}\right)+\pi^{N} R\right], \forall h \in(M, S)$.

Remark: (5.23) may be called a "Trace formula" for T_{0} in parallel with formula (3.11), pg. 18 of [Gr.2].
§4. Case where A is symmetric

Now we assume that A is symmetric, i.e. the non-degenerate associative, bilinear form f (see (5.1)) satisfies the condition:

$$
f(a, b)=f(b, a) \quad \forall a, b \in A
$$

(see [CR] pg.440).
Suppose also that f induces a non-degenerate R-integral form in A .

Let $\lambda: A \rightarrow K$ be such that

$$
\lambda(a)=f(a, 1) \quad(=f(1, a)), \quad \forall a \in A .
$$

Then

$$
\lambda(a b)=f(a b, 1)=f(a, b) \quad \forall a, b \in A .
$$

Since f induces a non-degenerate R-integral form in Λ, then $\lambda(\ell) \in R, \forall \ell \in \Lambda$. So we may consider

$$
\lambda: \Lambda \rightarrow R .
$$

As in [Gr. 2] pg.22, for each $X \in \bmod ^{\circ} \Lambda$ consider the map

$$
U(X): d X \longrightarrow D X
$$

$$
g \longrightarrow \lambda g
$$

This is an isomorphism in $\bmod ^{0}{ }_{\Lambda}{ }^{\circ p}$:

In fact $(\lambda g)(x)=0, \forall x \in X \Rightarrow f(1, g(x))=0, \forall x \in X$
$\Rightarrow f(\ell, g(x))=f(1, \ell g(x))=f(l, g(\ell x))=0, \forall \ell \in \begin{aligned} & f \\ x & \in X\end{aligned}$
$\Rightarrow g(x)=0, \forall x \in X \Rightarrow g=0$, so $U(X)$ is injective and
if $h \in D X, \quad$ let $g: X \rightarrow \Lambda$ be such that $x \rightarrow h(x) \cdot{ }_{\Lambda}{ }_{\Lambda}$. Then

between the functors d and D.

Then
$W=D U$ gives a natural isomorphism between $D^{2} \cong$ Id and $D d=N$. Remark: We see that BM (c.f. (4.24)) is $C M$, in this particular case. Thus

$$
\begin{equation*}
W(X): \tag{5.24}
\end{equation*}
$$

\qquad NX

$$
x \rightarrow \longrightarrow(g \rightarrow(\lambda g)(x)) \quad \forall g \in d X
$$

is an isomorphism.
Then for every $S \in \bmod ^{\circ} A$, one has the isomorphism (since S is
projective as R-module)

$$
(S, x) \xrightarrow{(S, W(X))}(S, N X)
$$

$$
\psi \longrightarrow W(X) \circ \psi \quad \forall \psi \in(S, X) \quad .
$$

Now consider formula (5.23):
Let $\theta \in(S, N M)$. Then $\theta=W(M) \circ \phi$ for some $\phi \in(S, M)$.
Then, for all $h \in(M, S)$

$$
\left(\theta\left(h\left(m_{j}\right)\right)\right)\left(\rho_{j}\right)=\left((W(M) \circ \phi)\left(h\left(m_{j}\right)\right)\left(\rho_{j}\right)=\right.
$$

$=\left(W(M)\left(\phi h\left(m_{j}\right)\right)\right)\left(\rho_{j}\right)=\left(\lambda \rho_{j}\right)\left((\phi h)\left(m_{j}\right)\right)$ by (5.24).

Let

$$
\sigma_{j}=\lambda \rho_{j} \in D M
$$

Thus formula (5.23) gives the following, where we write U_{ϕ} instead of $T_{W(M) O \phi}$:

$$
U_{\phi}(h)=\left[\sum_{j=1}^{s} \sigma_{j}\left((\phi h)\left(m_{j}\right)\right)+\pi^{N_{R}}\right] \quad, \forall h \in(M, S)
$$

Observe that σ_{j} is such that

$$
\sigma_{j}(m)=\pi{ }^{N} \sum_{i=1}^{n} r_{i j}(m) \lambda\left(\tilde{a}_{i}\right)
$$

$j=1, \ldots, s$
where $r_{i j} \in D M$ is such that

$$
a_{i} m=\sum_{j=1}^{s} r_{i j}(m) \cdot m_{j}
$$

And

$$
\lambda\left(\tilde{a}_{i}\right)=\lambda\left(b_{i} a\right)=f\left(b_{i}, a\right) \text { where }\left\{b_{i}\right\} \text { is the basis dual }
$$

of $\left\{a_{i}\right\}$ with respect to f.

Let $a=\alpha_{1} a_{1}+\ldots+\alpha_{n}{ }_{n}, \alpha_{i} \in K$.
Then

$$
\begin{aligned}
f\left(b_{i}, a\right) & =f\left(b_{i}, \alpha_{1} a_{1}+\ldots+\alpha_{i} a_{i}+\ldots \alpha_{n} a_{n}\right)= \\
& =\alpha_{i} f\left(a_{i}, a_{i}\right)=\alpha_{i} .
\end{aligned}
$$

Thus
$\lambda\left(\tilde{a}_{i}\right)$ is the coefficient of a_{i}, when a is written in terms of the basis $\left\{a_{1}, \ldots, a_{n}\right\}$

Therefore we have:
(5.25) Proposition: Let $R, K, A, \Lambda=R a, \theta \ldots \theta a_{n}$ verify the conditions in (5.22). Suppose, further, that A is symmetric and $f: A \times A \rightarrow K$ is a non-degenerate associative symmetric bilinear form which induces a non-degenerate R-integral form in Λ.

Let $\left\{b_{i}\right\}_{i=1, \ldots, n}$ be the basis dual to $\left\{a_{i}\right\}_{i=1}, \ldots, n$ with
respect to f. Let $a \in A$ be such that

$$
1=\sum_{i=1}^{n} b_{i} \text { a } a_{i}
$$

and suppose that $a=\alpha_{1} a_{1}+\ldots+\alpha_{i} a_{i}+\ldots+\alpha_{n}{ }^{a_{n}}\left(\alpha_{i} \in K, i=1, \ldots n\right)$.
Let $N \in \mathbb{N}$ be such that $\pi^{N} b_{i} . a \in \Lambda \quad \forall i=1, \ldots, n$.
Suppose $M, S \in \bmod ^{0} \Lambda$, where $M=\underset{1}{\Phi} R m_{i}$.
Let $r_{i j} \in D M$ be such that

$$
a_{i} m=\sum_{j=1}^{s} r_{i j}(m) m_{j}
$$

and $\sigma_{j} \in D M$ be such that

$$
\sigma_{j}(m)=\pi^{N} \sum_{i=1}^{n} r_{i j}(m) \alpha_{i}, \quad \forall m \in M, j=1, \ldots, s .
$$

Then

$$
\begin{aligned}
& \forall \phi \in(S, M), U_{\phi}=T_{W(M) \circ \phi} \in D^{*}((M, S) / P(M, S)) \text { is given by } \\
& (5.26) \quad U_{\phi}(h)=\left[\sum_{j=1}^{S} \sigma_{j}\left((\phi h)\left(m_{j}\right)\right)+\pi^{N_{R}}\right]
\end{aligned}
$$

$\forall h \in(M, S)$.
85. Case where Λ is the group ring

Let $G=\left\{1_{G}=x_{1}, x_{2}, \ldots x_{n}\right\}$ be a finite group of order $n>1$.
Suppose that R is a complete discrete rank 1 valuation ring with maximal ideal $P=(\pi)$, such that the characteristic of its field of fractions K does not divide n. Let $n=u . \pi^{N}$ where u is a unit in R and $N \in \mathbb{N}$.

If the characteristic of the field of fractions K of R does not divide n, by Maschke's Theorem (see [CRM] pg.42), KG is semisimple, i.e. $\operatorname{rad} K G=0$.

Then KG is separable (see [CRM] Theorem 7.10, pg. 147).
(5.27) Example: If π is a fixed prime, consider the ring of π-adic integers i.e. the subring of Q consisting on all rational numbers a / b such that π / b. Let R be the "complete ring of π-adic integers" (see [D] pg. 316, 317). Then K is an extension of Q so has characteristic zero.

It is well-known that $K G$ is a symmetric algebra, with

$$
\begin{aligned}
f: & K G \times K G \rightarrow K \\
& \left(\sum_{x \in G} a_{x} x, \sum_{x \in G} b_{x} x\right) \rightarrow \sum_{x y=1}^{\Sigma} a_{x} \cdot b_{y} .
\end{aligned}
$$

Clearly f induces a non-degenerate R-integral form in $\Lambda=R G$.

Thus conditions of (5.25) are verified.
We can take $\left\{1=x_{1}, x_{2}, \ldots x_{n}\right\}=\left\{a_{i}\right\}{ }_{i=1, \ldots, n}$ and then $\left]_{G}=x_{1}^{-1}, x_{2}^{-1}, \ldots x_{n}^{-1}\right\}=\left\{b_{i}\right\}_{i=1}, \ldots, n$

Since $\quad 1=\frac{1}{|G|} \sum_{x \in G} x \cdot x^{-1}$ then $a=\frac{1}{|G|} 1_{G}$.
Thus

$$
\alpha_{1}=\frac{1}{|G|}, \alpha_{2}=0, \ldots, \alpha_{n}=0
$$

Since $n=u . \pi^{N}, N \in N$ is such that $\pi^{N} b_{i} . a \in R G \quad i=1, \ldots, n$. Then if $M=\stackrel{\oplus}{\oplus} \mathrm{Rm}_{i=1}$, let $\sigma_{j} \in D M$ be such that

$$
\sigma_{j}(m)=\pi^{N} r_{1 j}(m) \frac{1}{|G|}
$$

where the $r_{1 j}$ are such that

$$
\begin{array}{ll}
& 1 . m=\sum_{j=1}^{s} r_{1 j}(m) \cdot m_{j} . \\
\text { i.e. } \quad\left\{r_{1 j}\right\}_{j=1, \ldots, s} \text { is a basis of DM dual to }\left\{m_{j}\right\}_{j=1, \ldots, s} .
\end{array}
$$

Thus

$$
r_{1 j}=m_{j}^{\star} \quad \text { and } \quad \sigma_{j}=\frac{\pi^{N}}{|G|} m_{j}^{\star}
$$

Thus

$$
\begin{aligned}
\forall h \in(M, S), U_{\phi}(h) & =\left[\sum_{j=1}^{s} \frac{\pi^{N}}{|G|} m_{j}^{*}\left((\phi h)\left(m_{j}\right)\right)+\pi^{N} R\right]= \\
& =\frac{\pi^{N}}{|G|}\left[\sum_{j=1}^{S} m_{j}^{*}\left((\phi h)\left(m_{j}\right)\right)+\pi^{N} R\right]= \\
& =\frac{\pi^{N}}{|G|}\left[\operatorname{Tr}(\phi h)+\pi^{N} R\right] \text { where } \operatorname{Tr}(\phi h) \text { is the }
\end{aligned}
$$

trace of the endomorphism $\phi \mathrm{h}$ of M .

Thus:
(5.28) Theorem: Let G be a finite group, R a complete discrete rank 1 valuation ring with maximal ideal $P=(\pi)$, such that the characteristic of its field of fractions K does not divide $|G|$. Let $N \in N$ be such that $|G|=\pi^{N} . u \quad(u$ is a unit in R). Let $M=\stackrel{S}{\underset{1}{\oplus}} \mathrm{Rm}_{j}, \quad S \in \bmod ^{0} \mathrm{RG}$.

Then for each $\phi \in(S, M), U_{\phi}=T_{W(M){ }_{\circ \phi}} \in D^{*}((M, S) / P(M, S))$ is given by

$$
\text { (5.29) } \quad U_{\phi}(h)=\frac{\pi^{N}}{|G|}\left[\operatorname{Tr}(\phi h)+\pi^{N} R\right] \quad \forall h \in(M, S) \text {. }
$$

56. Examples

We end this chapter by considering some examples of application of theorem (5.28) to the construction of almost split sequences.
(i) Let p be a fixed prime.

Let R be a complete discrete valuation ring with maximal ideal πR, such that $p \in \pi R$.

Let G be a p-group with $|G|=n=\pi^{N} . u>1$ where u is a unit in R, and $N \in \mathbb{N}$.

Let $R_{G}=R$, be the trivial RG-module i.e. R with the action: if $g \in G, \lambda \in R$ then $g \lambda=\lambda$.
R is an indecomposable non-projective RG-module (because $n>1$).

Consider the following projective presentation of R :

$$
\begin{equation*}
0 \longrightarrow \Omega R \xrightarrow{i} \Lambda=R G \xrightarrow{\varepsilon} \rightarrow 0 \tag{5.30}
\end{equation*}
$$

where

$$
\varepsilon\left(\sum_{x \in G} r_{x} x\right)=\sum_{x \in G} r_{x} \text { is the augmentation map ([CRM], pg.189), }
$$

i is the inclusion map and

$$
\begin{aligned}
& \Omega R=\operatorname{Ker} \varepsilon=\left\{\underset{x \in G}{\sum} r_{x} x: \Sigma r_{x}=0\right\}=\underset{x \in G-\{1\}}{\oplus} \underset{x}{R(x-1)} . \\
& \text { Since } G \text { is a p-group, } \Omega R \subseteq \operatorname{rad} R G=\pi G+(\underset{x \in G-\{1\}}{\otimes} R(x-1))
\end{aligned}
$$

([CRM] pg.115), thus (5.30) is minimal.
Now we must find $\phi \in E_{n d} \mathrm{RG}^{R}$ such that:
(1) $U_{\phi}\left(E n d_{R G} R\right) \neq 0$.
(2) $U_{\phi}\left(\operatorname{rad} E n d G_{G} R\right) \neq 0$
where U_{ϕ} is given by (5.29), i.e.

$$
U_{\phi}(h)=\frac{\pi^{N}}{|G|}\left[\operatorname{Tr}(\phi h)+\pi^{N} R\right]=u^{-1} \cdot\left[\operatorname{Tr}(\phi h)+\pi^{N} R\right]
$$

$\forall h \in E_{n d} R^{R}$.
Since $E^{E n d}{ }_{R G} R=\left\{\lambda .1_{R}: \lambda \in R\right\}$, condition (1) is equivalent to $U_{\phi}\left(I_{R}\right) \neq 0$.

But $U_{\phi}\left(1_{R}\right)=u^{-1}\left[\operatorname{Tr} \phi+\pi^{\left.N_{R}\right]}=u^{-1}\left[\phi(1)+\pi^{N} R\right]\right.$ so $U_{\phi}\left(1_{R}\right) \neq 0$ iff $\phi(1) \notin \pi^{N_{R}}$.

One has $\pi R \subseteq J(R)$ and $R / \pi R$ is a division ring, so $\pi R=J(R)$; since $E n d_{R G} R \cong R$, $\operatorname{rad} E n d_{R G} R \cong \pi R$ so condition (2) is equivalent to $U_{\phi}\left(\pi \cdot l_{R}\right)=0$.

But $U_{\phi}\left(\pi .1_{R}\right)=u^{-1}\left[\pi \phi(1)+\pi^{\left.N_{R}\right]=0}\right.$ iff $\phi(1) \in \pi^{N-1} R$.
Thus we may take $\phi=\pi^{N-1} 1_{R}$.
Now consider the pull-back diagram:

with $F=\left\{\left(r, \sum_{x \in G} r_{x} x\right) \in R \oplus R G \mid \pi^{N-1} r=\sum_{x \in G} r_{x}\right\}$
$\left.\cong \sum_{x \in G} r_{x} x \mid \sum r_{x} \in \pi^{N-1} R\right\}$ (since R is an integral domain)
$=(\underset{x \in G-\{1\}}{\oplus} R(x-1)) \oplus R \pi^{N-1} .1$.

Then (5.31) is an almost split sequence.
The middle term, F, is indecomposable. To show this we start by proving the
(5.32) Lemma: Let $a \in K G$ and let $\rho_{a}: K G \rightarrow K G$ denote the "right multiplication by a" . Then

$$
\operatorname{End}_{R G} F=\left\{\left.\rho_{a}\right|_{F}: a \in C\right\}
$$

where

$$
C=R \pi E_{1} \oplus\left(\sum_{x \in G-\{1\}}^{\Sigma} R x\right) \text {, with } E_{1}=\frac{1}{n} \sum_{x \in G} x .
$$

Proof: The R-basis $\left\{\pi^{N-1} 1, x-1 \mid x \in G-\{1\}\right\}$ of F is a K-basis for KG (where K is the field of fractions of R), so

Therefore any RG-endomorphism of F can be extended to a KG-endomorphism
of KG . In other words:

$$
\operatorname{End}_{R G} F=\left\{\left.f\right|_{F}: F \rightarrow F \mid f \in E_{n d}^{K G} \text { KG and } f(F) \subseteq F\right\} .
$$

It is well known that $\operatorname{End}_{K G} K G=\left\{\rho_{a}: a \in K G\right\} \cong(K G)^{O P}$. (From now on, $\left.\rho_{a}\right|_{F}$ will be written ρ_{a}, if $F a \subseteq F$). Then:

$$
\operatorname{End}_{R G} F=\left\{\rho_{a}: a \in K G \text { and } F a \subseteq F\right\}
$$

But
$F a \subseteq F \Leftrightarrow b$ ba $\in F, \forall b \in F \Leftrightarrow$ ba $\in R G$ and $\varepsilon(b a) \in \pi^{N-1} R$ (see definition of F), $\forall b \in F$.

Since $\varepsilon(b a)=\varepsilon(b) . \varepsilon(a)$ and $\varepsilon(b) \in \pi^{N-1} R$, then $\varepsilon(b a) \in \pi^{N-1} R$, $\forall b \in F$, iff $\varepsilon(a) \in R$.

It is enough to consider the condition ba ϵ RG whenever b is an element of the basis of F.

$$
\begin{aligned}
& \text { Thus if } a=\sum_{x \in G} a_{x} \cdot x, a_{x} \in K \text {, we must have: } \\
& \qquad \pi^{N-1} a=\sum_{x \in G} \pi^{N-1} a_{x} \cdot x \in R G \Leftrightarrow \pi^{N-1} a_{x} \in R, \quad \forall x \in G
\end{aligned}
$$

and

$$
\forall g \in G,(g-1) a=\sum_{x \in G} a_{x}(g x-x)=\sum_{y \in G g^{-1} \cdot y}\left(y-g^{-1} \cdot y\right)=
$$

$$
\left.=\sum_{y \in G g^{-1} y_{y}}{ }^{y}-\sum_{y \in G} a_{y} \cdot y=\sum_{y \in G}\left(a_{g}^{-1} y^{-a}\right)_{y}\right) y \in R G \Leftrightarrow a_{g \cdot y^{-1}}{ }^{-a_{y} \in R}, \forall g, y \in G .
$$

Then: End ${ }_{R G} F=\left\{\rho_{a}: a \in C\right\}$, where
$C=\left\{a=\sum_{x \in G} a^{a} x \cdot x \in K G \mid \pi^{N-1} a_{x} \in R\right.$ and $\left.a_{x}-a_{y} \in R, \forall x, y \in G\right\}$.

Let $a=\sum_{x \in G} a_{1} \cdot x \in C$. Then $a=\sum_{x \in G} a_{1} x+\sum_{x \in G-\{1\}}\left(a_{x}-a_{1}\right) x$.
By definition of $C, a_{x}-a_{1} \in R$ and $\pi^{N-1} a_{1}=r_{1}^{\prime} \in R$, thus $a_{1}=\frac{\pi}{\pi^{N}} r_{1}^{\prime}=\frac{\pi u}{\pi^{N}} r_{1}^{\prime}=\pi \cdot \frac{1}{n}\left(u r_{1}^{\prime}\right)=\pi \cdot \frac{1}{n} r_{1}$ with $r_{1}=u r_{1}^{\prime}$, so $\sum_{x \in G} a_{1} x=\pi r_{1}\left(\frac{1}{n} \sum_{x \in G} x\right)$.

Let $E_{1}=\frac{\sum x \in G}{n}, r_{x}=a_{x}-a_{1}$. Then

$$
\begin{equation*}
a=r_{1} \pi E_{1}+\sum_{x \in G-\{1\}} r_{x} \cdot x \tag{5.33}
\end{equation*}
$$

Conversely, given an element a with an expression of the form (5.33), it is trivial to see that it belongs to C.

Since the expression (5.33) of an element of C is unique, we can write:
(5.34)

$$
C=R \pi E_{1} \oplus\left(\sum_{x \in G-\{1\}} R x\right)
$$

We also have:
(5.35) C is an R-order in $K G$ with $\left\{\pi E_{1}, x \mid x \in G-\{1\}\right\}$ a an R-basis.

Observe that $1 \in \mathbb{C}$ has the following expression in terms of this R-basis:

$$
1=\frac{|G|}{\pi}\left(\pi E_{1}\right)-\sum_{x \in G-\{1\}} x .
$$

Since $E_{\text {Rd }}{ }^{F}$ is anti-isomorphic to C, to prove that F is indecomposable it is enough to prove that C is local.

Let k be the residue field $R / \pi R$, and let J be the ideal $\left(\pi E_{1}\right) C+\pi C$ of C.

Then C / J is a k-algebra with basis

$$
\{x+J \mid x \in G-\{1\}\}
$$

and multiplication given by

$$
\begin{aligned}
& (x+J)(y+J)=x y+J \quad \text { if } x, y, x y \in G-\{1\} \\
& (x+J)\left(x^{-1}+J\right)=-\sum_{y \in G-\{1\}}(y+J), \quad \forall x \in G-\{1\} .
\end{aligned}
$$

Consider the k-algebra $k G / T$ where $T=k\left(\sum_{x \in G} x\right)$.
It has the basis $\{x+T: x \in G-\{1\}\}$ and multiplication
$(x+T)(y+T)=x y+T$ if $x, y, x y \in G-\{1\}$
$(x+T)\left(x^{-1}+T\right)=1+T=-\sum_{y \in G-\{1\}}(y+T)$.
Thus clearly

$$
C / J \cong k G / T
$$

and this is a local algebra because $k G$ is local and $T \leq r a d k G$ (since $\sum_{x \in G} x=\sum_{x \in G-\{1\}}(x-1)+\pi^{N}$, and $N \neq 0$).

Also $J \leq \operatorname{rad} C$ (since $J^{2} \subseteq \pi C \subseteq \operatorname{rad} C$) so C / J local implies
C local.

Thus F is indecomposable.
(ii) Suppose R, G verify the conditions of (i) with $G=\langle x\rangle$, a cyclic p-group of order $n=\pi N_{u}$ with $N \geq 2$.

Then

$$
F=\left(\bigoplus_{i=1}^{n-1} R\left(x^{i}-1\right)\right) \oplus R \pi^{N-1} \cdot 1=R G(x-1)+R G \pi^{N-1}
$$

is indecomposable by (i) and non-projective (because $N \geq 2$).

$$
\text { Let } r:(R G)^{2} \longrightarrow F=R G(x-1)+R G \pi^{N-1} \text { be such that }
$$

$$
\begin{array}{ll}
(1,0) & \\
(0,1) \longrightarrow \pi^{N}-1
\end{array}
$$

Then

$$
\begin{aligned}
& r\left(\sum_{i=0}^{n-1} a_{i} \cdot x^{i}, \sum_{j=0}^{n-1} b_{j} x^{j}\right)=\sum_{i=0}^{n-1} a_{i} x^{i}(x-1)+\sum_{j=0}^{n-1} \pi^{N-1} b_{j} x^{j}= \\
= & \sum_{j=0}^{n-1} \pi^{N-1} b_{j}+\sum_{i=1}^{n-1}\left(a_{i-1}-a_{i}+\pi^{N-1} b_{i}\right)\left(x^{i}-1\right)
\end{aligned}
$$

and
ker $\gamma=\left\{\left(\sum_{i=0}^{n-1} a_{i} x^{i}, \sum_{j=0}^{n-1} b_{j} x^{j}\right): \sum_{j=0}^{n-1} b_{j}=0 ; a_{i-1}{ }^{-a}+\pi_{i}^{N-1} b_{i}=0\right.$,
$i=1, \ldots, n-1\}$
Now consider formula (5.29)

$$
U_{\phi}(h)=\left[\operatorname{Tr}(\phi h)+\pi_{R} R\right], \quad \forall h \in E n d_{R G} F .
$$

We know that

$$
E_{n d_{R G}} F=\left\{\rho_{a}: a \in R_{\pi} E_{1} \oplus\left(\sum_{U \in G-\{1\}} R x\right)\right\}
$$

where $E_{1}=\frac{1}{\pi}\left(\sum_{i=0}^{n-1} x^{i}\right) \quad($ see $(5.32))$.
With respect to the basis $\left\{x^{i}-1, \pi^{N-1} 1: i=1, \ldots, n-1\right\}$ of F,

$$
{ }^{\circ} \mathrm{E}_{1} \text { has matrix } \quad Y=\left(\begin{array}{cc}
1 \\
0 & \vdots \\
0 & 1 \\
\pi
\end{array}\right)_{n \times n}
$$

and

$$
\rho_{x} \quad \text { has matrix } x=\left(\begin{array}{rrrrrrr}
-1 & -1 & -1 & \ldots & -1 & -1 & \pi^{N-1} \\
1 & 0 & 0 & & 0 & 0 & 0 \\
0 & 1 & 0 & & 0 & 0 & 0 \\
0 & 0 & 0 & \ddots & 1 & 0 & 0 \\
0 & 0 & 0 & & 0 & 0 & 1
\end{array}\right)_{n \times n}
$$

Thus the elements of $E n d_{R G} F$ are such that its matrix with respect to the given basis of F is

$$
\text { (5.36) } \quad \Phi=r_{1} x+r_{2} x^{2}+\ldots+r_{n-1} x^{n-1}+s Y \quad\left(r_{i}, s \in R\right)
$$

Then

$$
\operatorname{Tr} \Phi=\operatorname{Tr}\left(r_{1} X\right)+\ldots+\operatorname{Tr}\left(r_{n-1} X^{n-1}\right)+\operatorname{Tr}(s Y)=s \pi .
$$

Thus

$$
\begin{aligned}
& \text { (5.37) } \pi \mid \operatorname{Tr} \phi, \forall \phi \in E_{n d}^{R G}{ }^{F} . \\
& \text { Also }
\end{aligned}
$$

is R-generated by:

$$
\left(x^{i}-1\right) \pi E_{1}=0,\left(x^{i}-1\right) x^{j}, \pi^{2} E_{1}, \pi x^{j} \quad(i, j=1, \ldots, n-1)
$$

Then with respect to the same basis of F we can show that:

$$
\begin{aligned}
& { }^{\rho}\left(x^{i}-1\right) x^{j} \text { has matrix } A_{i j}= \\
& \text { and } \\
& \operatorname{Tr}\left(A_{i j}\right)=0 \quad v i, j=1, \ldots, n-1 \\
& j\left(\begin{array}{lllllll}
1 & 1 & 1 & \ldots & 1 & 1 & -\pi \\
1 & 0 & 0 & \ldots & & & \\
0 & 1 & 0 & \ldots & & &
\end{array}\right. \\
& i+j \left\lvert\, \begin{array}{rrr}
-1 & -1 & -1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
& & \ddots
\end{array}\right. \\
& -1 \quad-1 \quad \pi_{\pi}^{N-1} \\
& \rho_{\pi^{2} E_{1}} \text { has matrix } \\
& Y=\left(\begin{array}{cc}
& \pi \\
0 & \vdots \\
& \pi \\
& \pi^{2}
\end{array}\right) \\
& \text { and } \operatorname{Tr}(Y)=\pi^{2} \\
& \rho_{\pi x}{ }^{j} \text { has matrix } \\
& Z_{j}=\left(\begin{array}{rrrrrr}
\\
j-1 & & & & & \\
-\pi & -\pi & \cdots & & -\pi & \pi^{N} \\
0 & 0 & & & \\
& & \ddots & & \\
& & & \ddots & \pi
\end{array}\right) \\
& \text { (5.38) } \quad \pi^{2} \mid \operatorname{Tr} h \quad \forall h \in \operatorname{rad} E n d G_{G} F \text {. }
\end{aligned}
$$

Now suppose that with respect to the same basis of F, ϕ is given by the matrix
(5.39)

$$
\Phi=\left(\begin{array}{cc}
& \pi^{N}-2 \\
0 & \pi^{N}-2 \\
\vdots \\
& { }_{\pi}{ }^{N}-2 \\
& N-1
\end{array}\right)
$$

Then

$$
\begin{aligned}
& \quad\left[\operatorname{Tr}\left(\phi l_{F}\right)+\pi^{N} R\right] \neq 0 . \\
& \text { Let } h \in \operatorname{rad} E n d_{R G} F \text { be given by } H=\left[h_{i j}\right]_{n \times n} .
\end{aligned}
$$

Then

$$
\phi h \text { has matrix }\left|\begin{array}{ccc}
\pi^{N-2} h_{n 1} & \cdots & \pi^{N-2} h_{n n} \\
\pi^{N-2} h_{n 1} & \cdots & \pi^{N-2} h_{n n} \\
\pi^{N-2} h_{n 1} & \cdots & \pi^{N-2} h_{n n} \\
\pi^{N-1} h_{n 1} & \cdots & \pi^{N-1} h_{n n}
\end{array}\right|
$$

$n \times n$
and

$$
\operatorname{Tr}(\phi h)=\pi^{N-2}\left(h_{n 1}+h_{n 2}+\ldots+h_{n n-1}+\pi h_{n n}\right) .
$$

Now observe that $\left.\begin{array}{cc}1 \\ 0 & 1 \\ \vdots \\ \pi\end{array}\right) \cdot H=\left(\begin{array}{ccc}h_{n 1} & \ldots & h_{n n} \\ h_{n 1} & \ldots & h_{n n} \\ \pi h_{n 1} & \cdots & \pi h_{n n}\end{array}\right) \in$
$\epsilon \operatorname{rad} E n d_{R G} F$, thus $\pi^{2} \mid\left(h_{n 1}+h_{n 2}+\ldots+\pi h_{n n}\right)$ by (5.38).

$$
\begin{array}{ll}
\text { Thus } & \operatorname{Tr}(\phi h) \in \pi N_{R} \\
\text { i.e. } \quad\left[\operatorname{Tr}(\phi h)+\pi N_{R}\right]=0, \quad \forall h \in \operatorname{rad} E n d_{R G} F .
\end{array}
$$

Now consider the pull-back diagram where ϕ is given by (5.39):

Then (5.40) is an almost split sequence.

References

[A] M. Auslander - "Representation dimension of Artin Algebras". Queen Mary College Mathematics Notes.
[AI] M. Auslander - "Representation theory of Artin Algebras I". Comm. in Algebra 1 (1974), 177-268.
[AR] M. Auslander, I. Reiten - "Stable equivalence of dualizing R-varieties". Adv. in Math. (1974), 306-366.
[AR III] M. Auslander, I. Reiten - "Representation theory of Artin Algebras III", Comm. in Algebra 3 (1975), 239-294.
[AR IV] M. Auslander, I. Reiten - "Representation theory of Artin Algebras IV", Comm. in Algebra 5 (1977), 443-518.
[CR] C.W. Curtis and I. Reiner. "Representation theory of finite groups and associative algebras". J. Wiley and Sons, New-York - 1962.
[CRM] C.W. Curtis and I. Reiner. "Methods of representation theory with apl. to finite groups and orders". Vol. I. Wiley Interscience.
[D] L. Dornhoff - "Group representation theory". (part B) (M. Dekker)
[F] P. Freyd - "Abelian Categories". Harper and Row, New York 1964.
[Ft] W. Feit - "The representation theory of finite groups". North Holland Mathematical Library.
[Ga] P. Gabriel - "Auslander-Reiten sequences and representation finite algebras" in Representation Theory I, Lecture notes in Mathematics 831, Springer, 1980.
[Gr 1] J.A. Green - "Functors on categories of finite group representations" (preprint).
[Gr 2] J.A. Green - "Notes on almost split sequences I" (preprint).
[Lr] P. Landrock - "Finite group algebras and their modules". Cambridge University Press, L.M.S.
[M] S. Maclane - "Categories for the working mathematician". Springer (1971).
[R] K.W. Roggenkamp - "The construction of almost split sequences for integral group rings and orders", Comm. in Algebra 5 (13) pg. 1363-1373 (1977).
[RD] K.W. Roggenkamp, Verena Huber-Dyson - "Lattices over orders I, LNM no. 115 .
[Ro] J. Rotman - "Introduction to Homological Algebra". Academic Press.
[RS] K.W. Roggenkamp and J.W. Schmidt - "Almost split sequences for integral group rings and orders". Comm. in Algebra 4 (10) pg. 893-917 (1976).
[Rt 1] Riedtman, Cr. "Algebren, Darstellungsköcher Überlagerungen und Zurück", Comm. Math. Helvetici 55 (1980) pg. 199-224.
[Rt 2] Riedtman, Cr. "Representation finite self injective algebras of class $A_{n}{ }^{\prime \prime}$ in Representation theory II, L.N.M. 832, Springer.

