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Summary

This thesis consists of two parts:

In Part A we study the category of finitely presented functors 

and use it to determine the representation type of the Ausländer Algebra 

of Aq = K-algebra <z:zq = 0> , denoted (K is a field). This is

possible because the category of finitely generated modules over , 

mod Rq , is equivalent to the category of finitely presented functors 

from (mod Aq)op to Mod k. Part A finishes with the construction of 

the Auslander-Reiten quiver of Rq in case q = 3.

Part B deals with the construction of almost split sequences in 

the category mod°A of lattices over an R-order A , where R is a 

complete discrete rank 1 valuation ring.

In the first chapter of part B we give a description of some 

unpublished work by J.A. Green who permitted me to include it in this 

thesis. This work contains a method to construct a short exact sequence 

0-*-N-*-E-*-S-*-0 in a way which gives an explicit expression for the 

subfunctor Im( ,g) of ( ,S) , and shows that the construction of 

almost split sequences can be viewed as a particular case of this 

problem.

In the second chapter of part B we continue this work by 

deducing a "trace formula" which provides a practical way of dealing 

with a certain step of the construction of almost split sequences in 

mod°A . Then we consider the particular case where A is the group

ring.
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PART A.

Chapter 0 : Introduction

Let k be a field and A a finite dimensional k-algebra.

The purpose of this first part is to study the category of the 

finitely presented functors from (mod A)op to Mod k , denoted 

mmod A , and apply this to the particular case where A is the 

finite cyclic k-algebra of order q , i.e., A = A^ = k-alg<z:zq = 0>

in order to determine the representation type of its Ausländer Algebra, 

which we shall denote R .q
In fact the category of finitely generated modules over R^ is

equivalent to mmod A^ ; and this category can be approached by

considering the elements of D(Hom. (W,U)) , where W,U e mod A
q q

This work will be organized as follows:

In Chapter I we shall develop a matricial technique to find 

certain elements in D(Hom. (W,U)) (W,U e mod A ) , that, later, will
q q

be called "indecomposable".

In Chapter II we consider an arbitrary finite dimensional 

k-algebra, A , and study the relation between finitely presented 

functors F e mmod A and elements of D(W,U) , W,U e mod A , using 

an important result of Ausländer and Reiten ([AR], pg. 318, 319) and 

some ideas given by J.A. Green.
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In Chapter III we use the results of the previous chapter to 

deduce the representation type of and we construct its Auslander- 

Reiten quiver in case q = 3 , using a method by J.A. Green (see 

CGr 23).

But we must start by defining some of the concepts that occur, 

giving the required notation and stating some of the basic results we 

need.

§ 1. About categories

We begin with a few generalities about categories taken from [AI3 

pgs. 179 to 183:

(0.1) Let C,V be categories and F:C -*■ V be a functor. F is 

said to be dense if given D e V , there exists C e C such that 

F(C) = D .

Let C* be a subcategory of C . C 1 is dense in C if the 

inclusion functor is dense, i.e., if for each C e C , there exists 

a C' e C' such that C 1 = C .

A category C is skeletally small if it has a smal1 dense sub

category C* , i.e., a dense subcategory C1 such that its collection

of objects is a set.

Remark: All the categories that we shall consider are skeletally

small.
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(0.2) If C and V are categories and F is a (covariant) 

functor F:C -*■ V , then F is said to be an equivalence of categories 

if:

(1) F is dense

(2) F:(C^,C2)c (F(C.j),F(C2))p is an isomorphism, V C-j ,C2 e C

(0.3) A category C is pre-additive if for each A,B e Obj C 

the set of morphisms from A to B , (A,B)C is an abelian group and 

the multiplication of morphisms is bilinear.

In fact most of the categories that we shall mention are k-categories 

(for some field k) :

(0.4) A category C a k-category if it is pre-additive and 

for each pair A,B e C , (A,B)C is a k-space. (See [AR], pg. 309.)

(0.5) A pre-additive category where every finite family of objects 

has a direct sum is an additive category.

In any pre-additive category C , we have the following

(0.6) Let A,A. £ C ,i = l,...,n . Then A = A ̂ ii. A2 ii.. .jiAn 

iff there are morphisms Ai , 1 > A (i = 1.... n) such that
IT .1

7T
j

n ̂ O.j = l....,n) and z = 1
Hi 1 = 1 1 1

(0.7) An object B e C is said to be indecomposable if:
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(i) B is not the zero object (i.e. End B ^ 0) .

(ii) If B = B̂ jj. B,, , with Bi »62 e B then either B̂  or 

B2 is the zero object in C .

(0 .8 ) An endomorphism e of A e C is idempotent if e .

Notice that i f  A = A-j ll A„

e-j = y-j^i • ^2 = ^2^2 e ^

and e ^  = ^.e-j = 0 , e-j + e2

el = ° '  0 = V l V l  = 1A] = 1A1

(with A^,A2 f 0) , then if we take 

(see 0 .6 ), then these are idempotents 

= . Moreover e-j ,e2 t 0 (if

and this is a contradiction). Thus:

(0.9) In any pre-additive category C , if A = Â  jl A2 with 

A-j ,A2 + 0 , there exists an idempotent endomorphism e + 0,1 in End A .

(0.10) An idempotent endomorphism e {= 0 of A e C is said to 

split if it has a kernel in C .

(0.11) If C is a category in which idempotents split then if 

e / 0,1 is an idempotent of A , then A = ker elLker (1-e) and ker e , 

ker (1-e) + 0 , so A is decomposable ([AI] pg. 188).

We also need the following concepts (see [AR] §1):

(0.12) Suppose C is a k-category. An ideal J of C is 

defined by giving, for each pair A,B e Obj C , a k-subspace J(A,B) 

of (A,B)C such that:

If f e J(A,B) , then for each C e Obj C , g e (B,C)C , one
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has gf e J(A,C) , and for each D e Obj C , h e (D,A)C , one has 

fh e J(D,B) .

(0.13) If J is an ideal of the category C , then one can 

define the quotient category C/J such that:

(i) The objects of C/J and C are the same.

(ii) (A,B)C/J := (A,B)C/J(A,B) .

By (0.12) multiplication of morphisms f = f + J(A,B) , g = g + J(B,C) 

is well defined by the rule

gf = gf + J(A,C) (= g?) .

§2. Some categories

If k is a field and A a finite dimensional k-algebra, denote by 

Mod A (Mod1 A) the category of the left (right) A-modules.

If M,N e Mod A , then Hom^(M,N) will be denoted simply by (M,N)A 

or (M,N) .

mod A (mod' A) is the full subcategory of Mod A (Mod1 A) whose 

objects are the A-modules which are finitely generated as k-modules.

Mmod A is the category whose objects are the k-1inear contravariant 

functors F:mod A -»• Mod k and whose morphisms are the natural transformations. 

(In [AI] this category is denoted Mod (mod A)).
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M'mod A is the category of the k-1 inear covariant functors 

F:mod A Mod k and the natural transformations.

Most concepts that exist in Mod A have an analogous in Mmod A 

(and in M'mod A) , such as subfunctor, quotient functor, sums and 

intersections of subfunctors, direct sums, kernel and image of a morphism, 

exact sequences, projective and injective functors, indecomposable functors, 

radical of a functor. (See CF], CAI□ §2 and also [Gr 1] §1.)

We state without proof some of the results we will use later (we 

refer to the books and papers already mentioned and also [M]).

(0.14) Proposition: If 0  ̂F £ Mmod A , then F is indecomposable 

if and only if End F = (F»F)Mmoc| A has no idempotents except lp, Op. □

(0.15) Yoneda's Lemma: If U e mod A and F e Mmod A , then 

the map:

P : (( *U>’F)Mmod A - F(U>

given by

p(a) = a(U)( ly)

is a k-1inear isomorphism. □

Notation: If U is any set, ly denotes the identity map on U . 

(0.16) Remark: This result is also true if W e mod A , F e M'mod A

and p:((W, ),F) - F(W) .



(0.17) Corollary: If U,W e mod A and a:( ,U) -► ( ,W) is 

a morphism in Mmod A , then there exists a unique A-map h:U -*■ W 

such that a = ( ,h) . □

(0.18) Proposition: For every U &  mod A , the functor ( ,U) 

is a projective object in Mmod A and the functor D(U, ) is an 

injective object in Mmod A . □

We also need the next definition ([AI], pg.204):

(0.19) Definition: F e Mmod A is finitely presented if there 

exists an exact sequence

( ,E) -£-» ( ,V) -2-> F - 0

wi th E, V « mod A .

This exact sequence is called a projective presentation for F .

If ker a s rad ( ,V) and ker e £ rad ( ,E) , this presentation 

is called minimal.

(0.20) It can be shown that a minimal projective presentation is 

unique up to isomoprhism (see [All, §4).

The full subcategory of Mmod A , whose objects are the finitely 

presented functors is denoted mmod A .

(0.21) Remark: One could give a definition similar to (0.19)
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for F e M'mod A . Then the full subcategory of M'mod A with 

these objects is denoted m'mod A .

§3. Some functors

Besides those functors already mentioned we need to consider 

a few more:

The usual duality D = Homk( ,k) , may be considered a functor : 

mod A -*• mod'A (or mod'A mod A) , with the rule:

If X e mod A (mod'A) then DX e mod'A (mod A) as follows:

(0.22) Definition (CCR] pg.410) : (<t>a)(x) = 4>(ax) , ((a<t>)(x) = 4>(xa))

V ♦ £ DX , a e A , x e X .

d = Hom^( ,^A) : mod A mod'A is a k-linear contravariant 

functor as follows:

If X e mod A , dX is a right A-module with:

(0.23) Definition ([CR], pg.399) (fa)(x) = f(x)a , V f e dX ,

a e A , x e X .

We may similarly define the functor Hom^( ,A^) : mod'A -*■ mod A , 

which is also denoted d .

d is left exact, turns projectives into projectives and 

d(Ae) = eA , d(eA) = Ae , where e is an idempotent of A .



9

(0.24) Definition ([Ga] pg.10) 

is the Nakayama functor.

N = Dd:mod A -*■ mod A 

mod'A -*■ mod'A

(0.25) Definition: M = dD : mod A -*■ mod A

mod'A mod'A .

§4. Some topics of Auslander-Reiten theory

In this section we look into some aspects of the Auslander-Reiten 

theory that will be used mainly in Chapter III. We refer to CAR III ] 

and [AR IV ].

(0.26) Definition (CAR IV] pg.456) Let U,W e mod A ; then 

f £ (U,W) is irreducible if:

(i) f is neither a split monomorphism nor a split epimorphism.

(ii) If f = hg where g e (U,X) , h e (X,W) for some X e mod A , 

then g is a split monomorphism or h is a split epimorphism.

Given a finite dimensional algebra A one can construct a 

directed graph, called Auslander-Reiten quiver, defined as follows:

(0.27) Definition: The Auslander-Reiten quiver of A is the

directed graph whose vertices are the isomorphism classes CV] of
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indecomposable A-modules and such that there is an arrow EV] -*■ EV'] 

if and only if there exists an irreducible map V -*■ V 1 .

We also need the

(0.28) Definition (EAR IV] pg.443): Let E : 0 U -t E 3 V 0

be a short exact sequence in mod A . Then E is almost split if

(1) E is not split

(2) U,V are indecomposable modules.

(3) If X e mod A , h e  (X,V) is not split epimorphism then there 

exists h' e (X,E) such that h = gh' .

0  > U — — > E — 9_> v ---->0

i i\h \
X

(0.29) Remark: It can be proved that (3) can be replaced by:

(3') If Y e mod A , t e (U,Y) is not split monomorphism, then 

there exists t' e (E,Y) such that t = t'f

0  > U — — > E — 9-> V ----> 0

The next theorem tells us that almost split sequences exist:
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(0.30) Theorem (Ausländer-Reiten) ([AR III] pg.263) Given 

any non-projective indecomposable V e mod A , there exists an 

almost split sequence E ending with V . E is determined by V 

uniquely up to isomorphism of short exact sequences.

The following fact gives the connection between irreducible maps 

and almost split sequences:

(0.31) Proposition: Let E be an almost split sequence. Let 

X,Y e mod A , h e  (X,V) , t e (U,Y) ; then

(i) h is irreducible iff there is a split monomorphism h' e (X,E)

such that h = gh' , i.e. X|E (X is a direct summand of E)

(11) t is irreducible iff there is a split epimorphism t

such that t = t'f , i.e. Y|E

E : 0 ---> U — — > E — 3-> V - — > 0
t \  /  \h' yz \  c t ' '' /  h

Y X

Thus, if {X ,...,X } is a full set of non isomorphic indecomposable 

direct summands of E ,
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is a subquiver of the Auslander-Reiten quiver of A . This subquiver 

is called a mesh.

55. Method to construct almost split sequences

In this section we look at P. Gabriel's version of Auslander- 

Reiten's construction of almost split sequences CGal.

One can describe this method in successive steps. For details we 

refer to Green's paper ([Gr 21).

We will consider right A-modules, for convenience.

Given V e mod'A such that V is indecomposable and non-projective, 

to construct the almost split sequence that ends in this module we proceed 

as follows:

(1) Construct a 2-step minimal projective resolution of V 

i.e. an exact sequence

such that Pi«Pq are projective modules and ker p̂  s rad P.. ,i = 0,1 .

(2) Apply the functor d = ( , A^) which is left exact contra- 

variant mod’A ■+■ mod A (see §3)

P * P,0 V ■> 0

dp
dP, <■ dV < 0 ) .
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Let Tr V := coker dp-j = dP-|/Im dp-j (see [AR III].§2) 

Then

. dp.
0 <--- Tr V <--- dP1 <— —  dPQ

is exact in mod A

(3) Apply D : mod A -*• mod'A which is exact

(a) 0 ---> DTr V

where W = Dd (1.24).

Dnat
-> NP

Wp
-> NP,

(4) Since Pq is projective it can be written as Pn = 11 euA0 v=l

where ev are idempotents of A . Thus dPg = J_|_Azw where
v=l

zy e (Pq .A) is such that zw ( £ e..a..) = ewa
V j=l J V V

If 6 e (V.DdPg) let ty e DV be defined by

tv(s) = e(s)(zy) , V s e V

v = 1.... n

Let T e D(V,V) be the element defined as follows:
0

V h € (V.V) , Te(h) = S tv(hp0(ev )) = ! e(hp0 (ev ))(zv)
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Choose 0 such that

(0.32)
T0(J(End V)) = 0 .

(5) Make sequence (b) by "pull-back" ([Rol pg.51)

N p
(a) 0 ---> DTrV - Dnat > WP] ----]--- > NPQ

-T T* T=
(b) 0 ---> DTrV ------- > E(e) ------- > V --- 0

f g
i .e.

E(6 ) = {(x,y) e N P1 u. V : W p1(x) = e(y)} 

f(u) = (u,0), V u e  DTr V 

9(x,y) = y V(x,y) e E(e).

Then

(0.33) 0 DTr V — — E(e) -3— > V ■+ 0 is almost split sequence

i n mod'A .

One can change slightly this method in order to get one almost 

split sequence that starts with a given non-injective indecomposable
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module. Now we consider left A-modules:

Let U e mod A be non-injective indecomposable. Take its 

dual DU = V e mod'A which is indecomposable and non-projective.

(I1) Construct a 2-step minimal projective resolution of V , 

in mod'A .

Pi Pn
P] — — > PQ — — > V -*■ 0

(2*) Apply d (left exact) and finish sequence with coker 

dp.| = Tr V .

Thus

. dPi
(a1) 0 <- Tr V dP] <--- - dPQ («- dV 0)

is exact in mod A .

n n n
(3‘ ) Let Pn = lie A , then dPn = J_L Azw where z (  z e.a ’

v=l 0 ^ 1  " ~ v v j=l J J

eyav . Choose y : dPQ ■+ DV such that

T^ e D(V,V) defined by

V h ) = *(zv) ( % ( % ) )
v=l

satisfy conditions:

(0.34) T^ + 0 T^(J(End V)) = 0 .
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(0.35) Remark: Using previous method at this stage we should 

apply D and then choose 6:V -»■ DdPp subject to certain conditions.

0:V -*■ DdPQ defines and is defined by a bilinear form

e : V x dPQ k

(x,t) e(x)(x.) .

But we may also use this form to define a map: 

iJj : dPg -*■ DV

a ■+■ ip(i) : if/(t)(x) = 6(x,t) = e(x)(t)

V i e  dPQ , x e V

n n
So T (h) = E 6(h P(jfe ))(z ) = z *(z )(hP(le )) = T (h) .

V=1 V = 1 v

So conditions in (3‘) are equivalent to conditions in (4).

(41) Make sequence (b1) by "push-out" (see CRol pg.41)

dp
(a1) O ^ T r V  < nat dPn <■

II

(b1) 0 «- Tr V <• F(*)
f '

U _U_ dP
i .e. F (ik) =

{(i(-(x), -dp1 (x)): x e dPQ}
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Denoting the elements of this module by Eu,y] : u e U , 

y e dP] ,

*'(y) = C0 ,y]

g'(u) = [u,o]

f'Cu.y] = nat(y) .

Then

(0.36) 0 •*- Tr V <---- F(^) <--- U 0
f' 9 '

is an almost split sequence in mod A .

(0.37) Remark: It is clear that this is dual of (0.33) (if 

we suppose that the module V is the same).
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Chapter I : Matricial Techniques

§1. Ausländer algebra of A = k-alg <z:zq = 0>

Let k be a field and A = A = k-alg <z:z^ = 0> , theq

k-algebra generated by a single element z , subject to the relation 

z^ = 0 for some q e Z , q > 1 .

A is commutative and every element a e A has a unique form 

a = xo1 + Xlz + ,,+  ̂ with Xq ,A-|,... A -| e k .

It is well known that

{V. = A/Az1 : i = 1 ____.q}

is a full set of indecomposable objects in mod A .

Let C = V.| Jl and R = = End^C , the endomorphism

algebra of C . R is the Ausländer Algebra of A ([Rt 2], pg.450).

matrix (f..). . , where

and yj being the projections and

Each f e R can be given by a

fij = *1 f pj e <Vj * V  > the *i 
injections associated with C .

V.
J

fij 1
V. <-l

-> c
I f
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In particular, the elements ei

i = 1... q are a set of primitive orthogonal idempotents of R .

Conversely every matrix (f. .). . , with coefficients
IJ • 9 J I 9 • • • 9 H

q
f. . € (V .,V.) is the matrix of a unique element f = E u. f. . ir. e R 
1J J 1 i,j=l 1 ^  J

Thus the map f -*• (f. .), . , is a k-algebra isomorphism.
I J • 9 J ■

§2. The A-module (V.,V.)-------------  v j

Given any two indecomposable modules V̂ .V.. e mod A , we can

regard (V.,V.) = Homfl(V.,V.) as a (left) A-module with the rule:
J 1 M J 1

(ae)(u) = e(au) V a e A , 9 e (V.,V.)
J i

U e V.
J

because A is commutative.

(1.1) Notation: Let i.j e ]NQ 

of INq , given by

0 if j

■r"Al

i-j if j < i

Then i ^ j is the element

Remark: Observe that min(i,j) = i-(i'vj) .
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(1.2) Proposi tion:

(a) (V,V ) = z H j V. .
J i A 1

(b) Let c H  i j . Then

V c> ■ (fij • <YV : V V £lCV
is the A-submodule of (V .,V.) generated by the element

«J *

un.j(c) e (Vj ,Vi) such that:

1 + Azj -------------> zc(l + Az1) .

(c) Each A-submodule of (V̂ .V..) is a member of the chain:

(Vj.V.) = Mi j (i'v/j) > M1 j( (i~J )+l) >•••> M̂. j (i) = 0 .

Also M..(c) = 0 , V c > i .
• J

Proof: (a) Consider the map 

» ! (Vj.V,) * V, 

such that 6 -*■ 6(1 + AzJ ) .

Clearly it is an A-map, and if 9(1 + AzJ) = 0 , then e(a+AzJ) = 

= ae(l+AzJ ) = 0 , so A is injective.

A1 so,

zJA(e) = zJe(l+Az^) = 0(0 ) = 0 and z^A(9) = 0 , because A(e) e V.
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Therefore,

zmin(i,j) A 0̂j _ g  ̂ anc)> s-jnce min(i,j) = i-(i~j) , this 

means that A(e) e z1%JVi . Hence Im A sz1̂ JVi .

Conversely if r e z^'v.. , then zJr e zj+('*'''j) y.. = 

z1Vi = 0  if j < i

Thus z'Jr = 0 and so AzJ s ker <P
z^V. £ z V  = 0 if j > i

where $ is the A-map A such that 1 -*■ r .

Therefore <f> induces a map e:A/AzJ = V. -*■ V. such that
J ^

0on = <j> where n is the natural epimorphism A -*• V̂. .

Thus (0on)(l) = 6(1 + AzJ) = i)>(1) = r and so r e Im A ,

Hence z^V.j c im A .

(b) If c > i-vj , zc(l+Azi) e z ^ V .  , and so by (a), there 

is some 0 e (V. ,V..) such that ©(l+Az'-’) = zc(l+Azi) .

Call this map u.j(c) •

Thus u. .(c) e M. .(c) , and so Au. .(c) < M..(c) because M. .(c)
• J 1J T J 1J 1J

is an A-submodule of (V.,V.) •
J ^

Conversely if e e M. .(c) , then e(l+AzJ) ezcV. and soJ I
e(l+AzJ) = zc a(l+Az’) for some a e A .
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Then e = a u..(c) e A u..(c) .
u '  ' ij' '

So M ^ c )  = A u.jjCc) .

(c) The isomorphism A:(Vj,V..) -*■ z1 '̂JVi of (a) is such

that A(M.,(c)) = zc V. .
1 J 1

iSince z JV . is uniserial, with composition series: 

z ^ .  > zi'v'J+1vi >...> ziVi = 0

also (Vj.V..) is uniserial with composition series:

(Vj.V.) = Mij(i~j) > M.jii'v.j+l) >.. .> Mid(i) = 0 □

(1.3) Corollary: u-.(i'v)) generates 
 ̂J

(Vj.V.) as an A-module

(1.4)

uij(c) = zC

Notation: We shall denote this 

■(Kj)ui . , c ii^j .

element by u ..
• J

. Then

(1.5) Corollary: The elements û ..,
i J

n = min(i.j) , form a k-basis of (V̂ .V..) 

f e (V.,V.) has a unique expression
J '

zu......,zn_1u., where
• J 1 J

. Hence every element

(1.6) f = “(f)uid

where a(f) is a polynomial in kHz] with degree < n .
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Proof: A : (Vj.V..) -*■ z1%J is an isomorphism of k-spaces 

such that

u. .
ij

zu. .
ij

-> u..(l+AzJ ) = zi^ + A z i
' J

-  z1̂ 1 + Az1

.n-1.z" 'u.. ----> z1"1 + Az1 .
1 J

Since z1'''0 + Az1 , zi'bJ+1 + Az1 , zi_1 + Az1 form a k-

-basis for z’^ V .  , then u.. , zu . .,.. .,zn_1u .. with n = min(i,j) 
‘ 1 J 1 J 1J

□is a k-basis of (V.,V.) .
v J l '

(1.7) Proposition: Let Vj.V^.V,. , be some of the indecomposable

modules in mod A , and uhj., u..̂ , u.. . maps as in (1.4). Then

(1.8) u,h .uhj - . UlJ

Proof: u,h.uhj (1 * Szj) ■ J) , Ai1 .

One can easily check that (i-vh) + (h-vj) 2 i n, j .

Thus

(i-vh) + (h-vj) = + w(i,h,j) where w(i,h,j) > 0

Therefore
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u.h.uhj ( W )  = z(^j)+w(i,h,j) + Az1 =

= 2w(i,h,j)-zi<vj + A z i = z w(i,h,j)u (1 + A z j} and
 ̂J

w(i,h,j) = (i~h) + (h-vj) - (i~j) . □

(1.9) Corollary: Let f e (Vh ,V.) , g e (Vj,Vh) . Then

a(fg) = z C ) + ( h«vj) ).a(g) (mod Az11)

with n = min(i, j ) .

Proof: Clear by (1.8), (1.6). □

(1.10) Remarks:

(i) If f e EndAV. , g € (Vj.V.) , h e End^. , then 

a(fgh) = a(f) a(g) a(h) (mod Azn)

(ii) Since lv = u... , * ( l y  ) s 1 « A . Thus by (1.9), f e Aut

if and only if a(f) is a unit in A , i.e. a(f) = Xq + x^z +...+ x . ^ z 1

with Xq ^ 0 .

(iii) If f e (V.,V.) is such that a(f) = x.z^ +...+ X ,zn’'j i k n-1
with k > 0 , X^ ̂ 0 , n = min(i.j) , then there exists g e Aut Vi ,

such that o(gf) = zk , by (1.9) and (1.10)(ii).
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§3. The A-module D(Vj,V..)

Now we shall consider D(V.,V.) = Horn. ((V . ,V.),k) which is
J "I K J 1

a (right) A-module with the rule:

If T « D(Vj,V.j) , a e A then Ta is such that

(1.11) (Ta)(f) = T(af) , V f e (Vj,Vi) .

Remark: Since A is commutative we may write aT instead of 

Ta , when convenient.

It is well known that dim.D(V.,V.) = dim.(V.,V.) , and, since
K J  1 K J  1

(u. .,zu.... *"1 1. ., z u . • / wi th
IJ IJ IJ

the k-sapce “( V j - V has a

(1.12) / A \ 
\ (z uij) " 6k*

(1.13) Lemma: it -----  n-1 is

Proof: Let f = a(f)uij
c(f) II y O + z +...+ X

Then

(V i zhH f> = V i
n-l

U ‘
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= V l (V huij + X1zh+1 uij + ' " + xn-lzh+n_luij) = \  such that

n-1 = h+k , so k = n-h-1 .

Thus (tt̂ z )(f) = ^n_h_-| » and so

IT ,Z  = TT , ,n-1 n-h-1

for h = 0 .... n-1 .

(1.14) Notation: We shall denote this element tt , e D(V..V.l .   n-1 ' j i'

Thus (1.12) becomes:

(1.15) (wJizr) (zn"s_1.u...) = 6rs , r,s = 0,1....n-1; n = min(i.j)

and the k-basis {ttq.... ^n-l^ ^ (Vj »^i) » becomes

n _  i

' .... ,TTJ.} (n = min(i, j)) .

Therefore, every element T e D(V.,V.) has a unique expression
J *

(1.16) T = 7Tji b(T)

where e(T ) is a polynomial in k[z ] with degree < n = min(i.j) . 

Now we consider the following:

4k
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(1.17) Definition: Let e,p be A-maps such that

V -5-> w — > U

where V,W,U e mod A and T e D(V,U) .

Then T*0 e D(V,W) is defined by

(T*e)(f) = T(ef) , V f e (V,W)

P*T e D(W,U) is defined by 

(p*T)(g) = T(gp) , V g e (W,U) .

The following are some of the properties of * :

(1.18) Proposition: (1) Let 0, e', p,p' be A-maps such that

V -£-> V' -£^-> W > U' — > U 

and T e D(V,U) . Then:

(1) (T*0 )*e1 = T*091 e D(V,W)

(ii) p 1*(p*T) = p 1p*T e D(W,U)

(2) Let e,p be A-maps such that V -8— > W -5— > u and a e A

Then

(i) Ta*0 = (T*0)a = T*a0 e D(V,W)
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(ii) p*Ta = (p*T)a = ap*T e D(W,U)

(iii) (P*T)*0 = p *(T*0) e D(W,W) .

Proof: (1) (i)(ii) trivial.

(2) (i) (Ta*e)(f) = Ta(ef) = T(a(of)) = (T*ae)(f) . 

Also T(aef) = T(e(af)) = [(T*e)a](f) .

(ii) similar (iii) trivial. □

(1.19) Proposi tion:

Let i,j,h e {1,2,... q} and U hj e “ih e < V V

and ir e D ( V ., V . ) be defined as in (1.4), (1.14). Then:
J I J •

(1) < D(Vj.*h )

(” > ‘ ’hi1 *"'1 1 ° < V V  •

Proof: (i) It is enough to prove that

( tt. . * u ., ) ( u .  . )  = ir . . z h%1 (u,  . ) . v ji ih/v hj7 jh v hj7

We have:

( it . . *U .. ) ( U. . ) = IT . . (u  .. .Uu ■ ) = 1 T . . ( z  ' Ji ih7V hj7 ji ' ih hj7
( i~h )+(h~j )-(i*vj )

uij) =

1 if (i^h) + (h'v-j) - (i*yj) = min(i.j) - 1

0 otherwise
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and

-h'v-i,,, > , ĥ -i . .
*jhZ (Uhj)=irjh(2 uh j > = {

if h^i = min(h,j)-l 

otherwise.

So we must prove that:

(i'Ui) + (h-vj) - (i'vj) = min(i,j)-l iff h^i = min(h,j)-l .

Writing min(i.j) = i-(i-vj) and min(h,j) = j-(jMi) , this is 

equivalent to proving that

(i^h) + (h'vj) = i-1 iff (h'vi) + (j^h) = j-1

and this can easily be checked considering all possible cases.

(ii) Similar. □

(1.20) Corollary: Let a,b e A and uhj. , u^h , it be as in

(1.19).

Then

(i) w ^ a  * bu.h = Trjh zh M ab

(ii) auh . * w ..b = *h . z ^ a b  .

Proof: This is clear by (1.19) and (1.18)(2)i,ii, using the

commutativity of A . □
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Now we have the following:

(1.21) Definition: Let U,W e mod A and T,T' e D(W,U) .

Then we say that T is equivalent to T ‘ and write T^T' if 

there is a p e Aut W and a a e Aut U such that

T' = p*T*a .

This is clearly an equivalence relation in D(W,U) .

We have the following:

(1.22) Corollary: If T e D(Vj,V..) , p e End , a e End

then

8(p*T*c) s a(p)B(T)a(a) (mod z nA) t n = min(i,j)

where a,e are defined in (1.6), (1.16).

Proof: it.. 8(p*T*a) = p*T*a = <x(p )u ..*it..B(T) * a(a)u.. =
JT JJ  ̂̂

= ttja(p)B(T)o(a) by (1.20).

Thus

8(p*T*a) = a(p)B(T)a(a) (mod(znA)). □

Therefore, if T,T' e D(V.,V.)

T'vT' iff there exists p € Aut V., a £ Aut V., such that
J *
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B(T') = a(p)0(T)a(a) (mod z nA)

and using (1.10)(ii) and (iii) one sees that

T^T' iff B(T) = Xkzk +...+ and

6(T') = v^z1 + ..+ V l zn_1

with t 0 and k = t .

Thus every class of equivalence of D(V -»Vi) has one and only
k

one representative with the form tt̂ -z f k = 0,...,n-l and so 

D(Vj,V^)/^ has n elements.

§4. The A-modules (W,U) and D(W,U)

Suppose

(1.23) W = J_LW , U =_LL u. with W.,U. e {V. ,. . ,V } , j e J ,
j£j J iel 1 J 1 1 9

i e I and J,I are some finite sets.

By (0.6) these decompositions are associated with morphisms

m. e (U ,U) n. e (W ,W)
(1.24) i e I , j e J 

p. £ (U,U.) q. e (W.Wj)

such that
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B(T') = a(p)g(T)a(a) (mod z nA)

and using (1.10)(ii) and (iii) one sees that

1VT iff B(T) = Xkzk +...+ V i 2 "'1 and 

B(T') = + ..+ y ^ z "'1

with x k,ut t 0 and k = t .

Thus every class of equivalence of D(V -»V^) has one and only
k

one representative with the form tt . .z k = 0 ,...,n-l and so 

D(Vj,V^)/-v has n elements.

§4. The A-modules (W,U) and D(W,U)

Suppose

(1.23) W=JJ_W. , U = _LL U . with W.,U. e {V.....V >, J e J ,
jej J ieI 1 j l 1 q

i e I and J,I are some finite sets.

By (0.6) these decompositions are associated with morphisms

m. € (U.,U) n. e (Wj.W)
(1.24) i e I , j e J 

Pi e (U,U.) q^ e (W.Wj)

such that
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PA  ‘ 5n  \ • v «  ■ V  '»j i,t £ I , j,i 6 J

u ,  m'pf ' 'u
, E n .q. = 1.. . 

jeJ J J W

Let:

y : I ----> (1...q}

i ----> y(i) such that U. = V ...
1 y ( i )

(1.25) 6: J ----> (1.... q}

j ---- 6(j ) such that Wj =

Let Ij = (i e I : y(i) = t} , = {j e J : 6(j) = . Then

q
I = u 1^ , and = |It| is the multiplicity of in the

q
decomposition of U ; also J = 0 J and n. = |J.| is the multi-

4=1 * I X .

plicity of in the decomposition of W .

One has

(W,U) = Qiw ,1LU ) = _LL(w.,u.) = -lL(v.m .v m ) .
jeJ J iel 1 iel J 1 iel 

jeJ jeJ

Let f e (W,U) . Considering the maps associated with decompositions

(1.23), we have the diagram:
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U. = V ... <- 
i Y(i) -

q. if
“j ‘ *«(3) <= = i  

j

Then f can be given by a matrix

 ̂Fn F1 2 •”  Flq\
(1.26) F = < V iei = F21 F22 ‘■' F2q

j£J
l Fqi Fq2 • Fqq /

where .f.nj , and each FtJl is an mt x matrix, i.e.

n m
gives a map "*'vt •

We also can write

(1.27) F = <“lj<f>uY(i)«(J)>ieI with “ij(f) £ A '

jeJ

We can assume that a. .(f) is a polynomial in z with
* J

degree < min (r(i).«(j)) i.e. «^.(f) = a(fij-) • (See (1.6).)

(1.28) Definition: Let T e D(W,U) . Define T.. e D(W.,U.)
J • J ^

as follows:

Tji = V T*mi

(where q j a r e  as in (1.24)).
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We have D(W,U) = JJ_ D(W.U.) , thus T e D(W,U) can be 
i e I J 1
jeJ

given by a matrix:

(1.29) T = (T..). T = (7rP,., ... e..(T)). ,
V JViel v 6(j)y(l) "jeJ

jeJ iel

with 2j-j(T) e A , and we can always assume that 6^(1") is a

polynomial in z with degree < min (y(i),6(j)) i.e.  ̂(T) = 6 (T j )

(see (1.16)).

(1.30) Remark: If |l| = n |J| = m we see that the matrix of 

f e (W,U) is

W.
J

ij
U.l
n><m

with f,j < (W.,u,)

and the matrix of T e D(W,U) is / \

T3i ....

\ /
j With J.. e D(Wj ,U^)

mxn

Given f e (W,U) , then f = E m.p. f n.q. (by 1.24)),
iel 1 1 J J
jeJ



35 -

Thus

T ( f ) E T(m p fn.q ) = E (q *T*m.)(p fn.) = e T,,(f..) . 
iel 1 1 J J iel J 1 1 J ie l J 1 U

jeJ jeJ

Therefore:

(1.31) If T e D(W,U) , is given by the matrix T =

= (Tji)jej • f e (w >u ) is given by the matrix F = (f^j)ieI . then 
iel jeJ

T ( f ) = ^ Tj i  ( ^ i  -j) •
j£J J 1 
iel

Now we want to describe the equivalence classes for <v in 

D(W,U) (see 1.21). We need the following:

(1.32) Proposition: If T e D(W,U) has matrix T = (T^^)jej
i e l

with T.. e D(W.,U.) , and g e End W , h e  End U have matrices
J 1 J •

A = (9jk>j,keJ * B = <h*A , i e I  respectively (with gJk * (W|{.Hj ) . 

hjii e < V V >  » then g*T*h e D(W,U) has matrix

ke J
lei

9 .l*T. *h„. )3jk ki. «.l'jeJ
i e l

A*T*B
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Proof: (g*T*h)(f) = T(hfg) = z T ^ h f g ) ^  (by (1.31))
kej
lei

kej ^ j e j  h^ fl'j9jk) 
«•el i e I

kj eJ Tk <h*i fij V  = E
t , i e I

k,jej JJ'k k* AiM iJ' 
«, 1 e I

■ £ < E - < V Tk *h*i» < Vjej kej 
i eI lei

Then by (1.31)

S ( Z (gik*Tk«.*hi.i = Z (9*T*h) (f ) , V f e (W,U)
jej kej JK k* ’J jej J1 ^
l'el lei i e I

In particular, if f is such that its matrix is of the form

(g*T*h)ji (fid) = (k;J(gjk*Tk**h*1))(f1j)

tel

and the proposition is proved. □
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(1.33) Corollary: With the conditions of (1.32),

A*T * B = ( z 
ke J 
U  I

,(j^k)+(i^t)

jeJ

Proof: Clear by (1.32) and (1.19). □

§5. Automorphi sms

Let W = _LL W.
jcJ J

(1.23). Let f e End W be given by the matrix

F11 F12 •" F19
(1.34) F = F21 F22 ” • F2q (as in (1.26))

Fq2 ’*• crc
Lu

Using Fitting's theorem ([CRM], pg. 462) we have:

f is automorphism iff F^, F ^  are non-singular.

In particular we may consider the automorphisms whose matrices 

belong to the following types:
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(1.35)

6(k) = s = 5 ( 0  

(see 1.23, 1.25)

(a is a unit in A)

(b € A)

E-|,E2,E3 will be called 

elementary matrices.

If we multiply any matrix F

(1.34) on the 1 eft by these matrices 

we get the following results:

(i) Multiplication by Ê  corresponds to interchanging rows 

k and l .

(ii) Multiplication by E2 corresponds to substituting row k 

by its product by the unit a e A .

(iii) Multiplication by E3 corresponds to substituting row k

by its sum with the product of row r by bugt (this product is calculated 

using rule (1.8 )).
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We will call these operations on F , elementary operations 

of types E.|, E^, E3 respectively.

Observe that using Ê  we can only interchange the rows k, 

such that 6(k) = 6(£) . (Strictly speaking Ê  should not be 

considered an elementary operation since it can be obtained by a 

number of operations E,,, E3 in rows k,i. such that 6(k) = 6(t)).

However we can interchange any two rows, provided that we realize 

that this means a reordering of the decomposition of W when con

sidered as the range of f . For example

un 0
° \

0 0 U22
0 un 0 /

gives the identity map lw of W = V^JlV^ 

but it is considered as a map

V^JI V2 - V1 JLV2 iiV1

The multiplication of a matrix F (1.34) on the right by matrices 

of types E.|, E2> E3 gives similar results for columns.

And interchanging any two columns, means the reordering of the 

decomposition of W , when considered as the domain of f .

It is clear that the inverses of the automorphisms of types E., E2, 

E3 are given by matrices of the same type.

Let f e Aut W be given by (1.34).

Since F.|i is non-singular it is possible to find matrices
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A-j , * a • |A^ 9 B-J ,... of type E] * E2 or

At '.. .•• B* = Iull F12

F 1̂ F22

Then using matrices Ap’--,At+1 ,Ba+l 9 • • •

can get

AP" •At+1-At* . .A-|FB...B*B*+1••Bk

(because uj-|u]i = uj-| (1.8 ), and 

more generally u.^u^. = u^.)

F
qq

of type E3 we

Iull 0 0 ..

0 F22 F" r 23

CVJ 
S CO 
Li_O

F33

qq

Repeating the process we obtain

... etc.

and finally:

/ Iull

Iu

Iull 0 0 ... 0

0 IU 22 0 ... 0

... 
o 0 F"*

r 33

0 0
Fqq

22

qq
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Thus there are matrices A^...As> B^,...Br of types , E^, E^ 

such that:

s 1 1 r

and so

f = a :1 ... a ^ b-1 ... b:1 .1 s r 1

Therefore:

(1.36) If f £ Aut W , the matrix F of f is a product of 

elementary matrices.

§6 . Elementary operations on the matrix of T e D(W,U)

Let T e D(W,U) be given by a matrix

O '-3 7 ’ T -  ( V , , ,  -  ( * J ( j ) Y ( f ) »Jf ( T) ) j . J  

jeJ iel

as in (1.29).

We know that EndA w and EndA ^ act on D(W,U) on and

right respectively as follows (see 1.17):

(p *T)(f) = T(fp) V p € EndAW

V f e (W,U)

(T*e)(f) = T(ef) V 0 e EndAU .

Proposition (1.32) tells us that this action can be given by matrices.
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In particular we are interested now on the action * of matrices 

of types E-j, E^, E^ (1.35) on the matrix T (1.37) on left and 

right. These actions will be called elementary operations on T .

Using (1.19)(ii) one sees that:

(1.38) (i) E.|*T is the matrix obtained from T by interchanging

rows k,£ (with 6(k) = 6(i)) .

(ii) E2*T is the matrix obtained from T by multiplying 

row k by a € A (a is a unit).

(iii) E^*^ is the matrix obtained from T by adding to

row k the row r multiplied by t>ust (here, by "multiplication" we mean the 
action *).

Now we look with more detail, into case (iii).

Let 6(r) = t , 6(k) = s . Suppose 6(r) < S(k) .

r

k

-  u6(r)6(r)

- bU<s (k)6 (r)' ‘ u6(k)6(k)* *

-  1T6( r ) y ( r ) ^ r r ( T )  “ • *6(r)y(k)&rk(‘J'> “ • 

• ••7T6(k)Y(r)ekr(T) 1T6(k)Y(k)ekk(T)-' ’

•••"S(k)Y(r)l6kr<'t)*bz6lk)'S<r)err<T»----s(k)T(k)(»kkn ) ^ 5'k>-i'rlerk(T)).
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If S(k) s 6(r)

U6(k)6(k) ••• bu6(k)6(r)"- '••ir6(k)Y(k)ekk(T)" - iri•^(k)y(r)Bkr(T)

u6(r)6(r) ••• •7r6(r)y(r )6rr^T^

Thus

(1.39) If 6(r) < 6(k) , E3*T is the matrix obtained from T

If 6(r) 2 6(k) , E3*T is the matrix obtained from T by adding 

to row k , the row r multiplied by b .

Remark: If S(r) 2 6(k) and Brr(T) is a unit we may use an 

elementary operation of type E3 to "annihilate" ^(kjytr) ek r ^  •

However, in case 6(r) < 6(k) , this may not be possible...

The action * of matrices of types E1, E^, E^ on the right is 

similar to what has just been described except for the fact that it 

affects columns and not rows.

by adding to row k , the row r multiplied by z6(k)-6(r)>b
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Because of (1.32), (1.36), this can be used to calculate 

D(W,U)/^ where ",v" is given by (1.21).

§7. Some particular cases

In the following we will use a simplified notation: 

We will write

Y(1)

T = (... Bdi (T) ...J 6(j)

instead of

(j )r(i) eji(T)

and often instead of 3ji(T ) • We shall also call "multiplication

to the action * .

Now we consider some special cases:

Let T e D(v|,vJ) 1 s t,

k k k
T = S11 B12 •" Blm

B21 B22 6 2m

Bsl Bs 2 Bsm

m,s e M .
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If there exists a that is a unit we may use operations

of types E-j and E  ̂ to place 1 in entrie (1,1). Then multi- 

plying*the first row by -e21utt anc* acl<:lin9 to the seconc* row we 

annihilate entrie (2,1). Using right multiplication * we also 

annihilate • Observe that in this case 6(j) is always

t , so this is possible.

After a number of steps we obtain:

1

rr

61 sr

8‘rm

e'sm

where all e‘.. are 
J ■

divisible by z .

If no 6.. is a unit we may consider that T is this matrix 
J *

with r = 1 .

If there is 3'.. = z.unit, then using operations of type E. and 
J ̂

E„ we may assume that 0' = z and then annihilate all entries (i,r)c rr
and (r,j) (because these are "divisible" by z).

Thus

k ... k
1, t

• • • 6 "m

with all 0^  divisible 

by z2 .

6s*' E
= CO
CQ t
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If no 8j.j has the form z.unit then consider l = r , etc. 

After a finite number of steps, we have:

k ...

/ I

(1.40)

zl

z2I

zn_1I

0

Thus T can be transformed into a direct sum of (1), (z),... 

with n = min (t,k).

Remark: The reason why this may be called direct sum will be

explained later (see (2.30)).

m. m .
(b) Let T e D(V M L V  J ,

• J

(a) it is clear that: 

i

I l
zl

n. n .
V ^ I L  VjJ) with i = j+1 . Using

j
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We may also assume that Bq , Cq = 0 and B^, Ck have entries 

which are polynomials of degree < k,j, V k = 1,... i . This is so, 

since otherwise it was always possible to use z in the same row 

(column) to annihilate the terms of degree > k .

We can go further: if 0 + 8* e B, then 8* = ir.-.z^ba ' sr k sr u
o k — c.—1 -1

where b e A is a unit and i < k . Thus it.. . z .b*z b u .̂  =
k k= tt̂  z ; so it is possible to annihilate tt̂ z in the same row.

This may affect a column in Ck . Repeating this whenever necessary

and interchanging columns and rows we have

. , . where the columns
-/ 1 !i affected by above

z I I
! operation are now

1-1. 1Z I ,--- ; ---- i n °\COo

\co] sp 'l  ci->ici] A I lcw

Now we may proceed similarly for the k = 0,...,i . After

a certain number of steps we have the following matrix.

i
1 ! j \zi  !

z2 i ; 1

z1' 1 ! j

o !
- • - J

c* ! A i
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m„ m1 n_ n.
(c) Suppose in particular that T e D(V2 _LL V-| , V2 _LL V-| ) .

Then using (b),

T

Then,

Consider
2

0

1

B* 2 . If there was a unit in B* ,

\ C* I 1
then the .1 in the same

column could be annihilated.

using (a) and inter

changing rows and 

interchanging columns.
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Substituting above we have:

2 1

I

I

2

zl

0

(1.41)

o .

(d) T e D(V3j_1L , V3 _LLV21') • Using the same method we 

see that:

/
3 3 2  2 3 3 2 2 3

zl
zl

zl
zl

z2I

0 /
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m, s-. s,
(e) T e D(V3 1L V-j , V3 IL V-] ) . In this case we use the 

followi ng:

Notation: Denote by I* (I**) a matrix such that when the 

null columns (rows) are removed, it becomes 1̂  .

3 1

because if C2 had an entry 4= 0 it would be possible to annihilate 
2

tt3 3  z  i n  the same row ...

Now consider

„ i c  ̂1 z i o o , i °\z M 1 0 0h—

CD h ° r* i n • • •
(° °j i ( It° ! 0 0

i o o ! o o*/
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The last step is valid because the use of E3 on rows

not affect I. ol , since given ir^z a e zA , then 

0 0/

bu^.ir^^za = ir^zab = 0 ; and the same holds for columns. 

Then

/  i : t  
z#  ! 0

o
 

o 1  z l k j C 0 \

0 B | 0 0

o o ; o

\
1 0 1 0 0 /

Oo

1 0 0 0 /

Substituting on (1.42) we have:

(1.43)

Observe that B and C are matrices of elements on \ 

rank i, and t respectively.

will

V b e A ,

, with
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Let B = (b. . . If b., £ 0 , for some i,then by

j=l,... k

interchanging rows and multiplying by bT| we can assume that b ^  =1 .

Then using operations on rows only, we can annihilate all b^  ̂0 (i >0).

If there is no b ^  t 0, the first column is null and we consider the second.

Suppose B
7

1 bi 2 ••• \
0 b22 •"

\
0 bÌ2 •" )

If some b^2 is 0, then:

(i) If t k 1 we may suppose that

operations on rows, we can annihilate all

b ^  = 1 and using only

b;2 1 4 2 .

(ii) If only b ^  = b + 0 then

z ! z -bz 1 lz 1
Z 1 z z !

! c 1 C
j C 1

Z 1
1 o - ]

0 0  ! 0 0 ! i

cc

: ! 0 ! i ! 0 : r i 0

1 ° 0 ! 1 ° 0 i o o !

If all bj.2 = 0 , the matrix has already this form.
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Proceeding this way we see that

z I ! r <

IÏ

Then we use a similar method on C  . One can see that I 

does not change, as follows:

Suppose we have the following case (which is the only

that could affect I* ):

z
z _

\

where c is the only element f 0 

in its row.

Then we have one of the following cases:

. L ,  \ 1! z ... | ... l \ 1

i

(i) z •.. ; ... i

H

-CZ ... Z ~ j  ... Ô

b

z .. ; ...6 
i

’ 1 \ 0 !

1. i

1 o 
1

' z . .... ! - i  \

z ■ 

1

.. i ... o

i ° l

(ii )
( L ,  \ l  f-..-' I"'1: \ !  K  -

Î...1

z — ¡-c > -CZ - Z  -  ¡ - Ô Z ... ¡•••6

1

V  "
0

! °  i V  \  ! 0 )

1,

\  0

•
1

! 0 
i

* o?
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1 ! 1 ) i - c ' . 'z  ! o ^ «
• z ! c

! _ -> 1
—►

o
 ,

* 
i 1

°
 
!

1 o o

Finally we have:

x I ir

1 i * ! o
\  1

Substituting in (1.43)

columns, we get:

3 3 31

(1.44)

'! ẑ l

i
\Z !

z 1 
!1 0

31

l?Jj
: Z
L 1

LI L
IT]

l l

' I'll

LU
"•0.



The blocks with * are not necessarily zero; 

any symbol inside, are null.

those without

Considering the matrix formed by the shaded blocks and applying 

the methods of previous examples, we obtain:
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3 2 1

Now we consider the matrix /  z I 0 I** \ 3m ^

( 1 . 4 5 ) 0 0 ! t 2

\ I* I** 0  1 1

\  n k /

I f  I has order 2 2  this is  a decomposable matrix because in

each row and each column of the IT* J * r i (j = m,k, i = n, t) , there

is at most one 1 and the blocks ( 2 , 3 ) and (3 , 2 ) are 0 .

3 2 1 3

z
2 1 3 2

If ... 0 --J— -0 —•O'"!“] 0 0 1
1

1

3

0 z—!—o*....Q__J-Q.__0 3 0 n 0

0

1 n
Example: “  0 ~

- ? r ■ ”  ! 9

_ _ f -
2

0 i
1

1

1 1
6 0 ! u 1 b 6 t z 0 0 3

1

°. .... f T 1 " .... 0 - 4  6 6

1
0 ! 0 0 1 2

10 H-o- • - 1 - 4 -0 -....0 ! i i 0 1

The method used can be generalized to any matrix o f the type ( 1 . 4 5 ). 

And the matrices into which i t  decomposes s t i l l  belong to this type.

Thus we must consider a l l  possible 3 x3  matrices with the form

(1 . 4 5 ). Using ( 1 . 1 9 ) we can transform them as follows:

3 2 1 3 2 1

o'!/ z 0 0 ^ 3 z 0 i 3 T

0II

0 1 2 1 i : 0 1 Â  is similar

\ 1 1 0 ] 1 fo o '] V 2

(2) A2

3  2  1 3  2  1

z -z l\ 3  

0 0 0 2 
1 0  0/1

3  2  1 3  1 2

z 0  1 \
3  H. z 1 | 0 )

0  0  0 2 1 0  • 0

1 0  0 1 r °  0 1 0

3

1
2

A2  is  similar.
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(4)

3 2 1 3 2 1

z 0 °\ 3 z 0 I o\ 3

A 3 ' 0 0 0 2 - 1 1 ! o 1

l 1 0 1 \o 0 ! °J 2

AI is simi1ar

3 2 1 3 1 2

i 2 0 '] 3 fz 1 i °\ 3

II<

0 0 0
I2 - 0 0 1 0 2

1°
1 0 M i° 0 ' 11 1

is similar.

(5) 1 2
o ! 3

1 1 0 2 Ag is similar
0 ' 1 1

( 6 ) 3 1 2

N O

0 0 0 L 0 0 j 0

OOO

^0 o ; o /
is similar.

A7 =

2 0 1̂ /z -z l\ i 2 -
0 0 1 1-

Oo

r -Z z 0

\l 1 0j 1 0 0j k 1 0 0

( 7 )
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(8)
3 2 1
1

z «
—  _J

0 0 1 3
0 1 1 0 0 2

° : 0 0] 1

(9)
3 1 2
z 1 i o
1 0 ' o 1_
0~ ’ o’: o

3
1
2

( 10) 3 1 2
z 0 o  y

1
Z t

? . L ° J
0 0 1 -> 0 «

L i . 0. ]

\ °
1 0  i

\ °  !
0  1 1 /

3 1 2
Considering

(Zl
j**
r

0 \
0 0 zl

0
0 I*

*

2 one can easily see that

3 it decomposes into the

1 direct sum of the

3 1 2 3 2 2 1
following matrices: (z 1)2 |z|3 , (z )2 , (z )3 , (1)1 , (1)2 .

Collecting all these matrices, we can say that:

(1.46) T can be transformed into a matrix that is the direct 

sum of matrices taken from the set of 21 matrices (1.47).
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It will be shown later (see Chapter II, §5) that these matrices 

are indecomposable i.e. that they cannot be written as the direct 

sum of two matrices different from zero.

It will also be shown that no two of these matrices correspond to 

equivalent elements (as defined in (1.21)).

0
*13 *12 *13 ' '*21  0 1 (*31 *33z )

*31 *3 3 2 / 0 *33z i L *31 *3 3 Z

*13 (  *21 *23Z ] ' *12 ( ^ 1 ( ’ 3 3 * )

*33Z i 7T32Z

( * 32I2 ( 1T2 3 Z  ̂ ( 7T22z ^ (*33^
( tt23 ) ( r 32) (ir13) (ir31 )

( n 2 2  ^ ( * 12 ) ( 7r2i ) ( )  •
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Chapter II : Finitely presented functors

§1. A characterization of finitely presented functors

Let k be a field and A any finitely dimensional k-algebra.

In this chapter we make use of the following important 

characterization of finitely presented functors (TAR] pg.318, 319):

(2.1) Theorem (Auslander-Reiten): A functor F e Mmod A is

finitely presented if and only if there exist U,W e mod A and 

a:( ,U) -*• D(W, ) such that Im a = F . □

(2.2) Remark: In CAR] prop. 3.1. pg. 318, it is proved that

F e mmod A , iff F and DF are finitely generated i.e. there are 

V,W e mod A : ( ,V) F 0 , (W, ) -*■ DF ■+ 0 are exact. This

is obviously equivalent to (2.1) above.

Before we go further we give a more constructive proof of (2.1) 

than the one given in CARD. In fact this is equivalent to answering 

the questions:

(1) If F i Im a with a:( ,V) D(W, ) , V,W e mod A , 

describe V-j e mod A so that ( ,V^) -*• ( ,V) -*■ F -*• 0 is exact.

(2) Conversely given F e mmod A and an exact sequence 

( .Vt ) - ( ,VQ ) ■+• F -*■ 0

W and a:( ,Vq ) -*■ D(W, ) so that F = Im o .describe
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Green answers the first question in CGr 2] §2, by constructing 

what he calls the Auslander-Reiten-Gabriel (A-R-G) diagram.

For convenience we write here the main steps of this construction

Let

P1 p0(2.3) P-| ---> Pq ---> W -*■ 0 be a projective resolution of W .

Then D(P1 , ) ------- > D(Pn, ) ------- > D(W, ) -+0 is exact.
D(pr  ) u D(p0 , )

Applying d (see Chapter 0; §3), to (2.3), and considering 

C = Coker dp^ , the sequence

dp,
dPQ --- -— > dP1 -----* C + o

is exact.

So

( , inc) ( ,Np, )
0 - ( ,DC) ---------- > ( .M»! ) ----- !---- >( ,M»„)

is exact, where N is the Nakayama functor (0.24). 

There exists a k-map

(2.4) ay : D(Y, ) - ( ,NY)

which is isomorphism if Y is projective (see [Gr 2] pg. 17).

With b = D(pn, ) a”1 , 
u Pq

the following diagram commutes:
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D(Pr ) D(pn , )
D(P1 , ) ---- '-- > D(P0 , ) -------> D(W, ) - 0

]D(W, )

■> D(W, ) 0

a Cl
h Po

y
( .Wpi)

0 - ( ,DC) ----> ( ,WP-| ) -----— > ( ,WP0 )

Since b is epimorphism, there is 6 e (V.NPg) such that 

b(V) (e) = c(V)(lv) .

Let

E(e) = {(u, v ) e WP-j _1L V : Np-| (u) = e(v)} , the 

pull-back over Wp^ and e 

Then

0 - DC — > E(e) -2-> V 

with f(u) = (u,0) , g(u,v) = v , is exact

Let t:E(e) -*■ WP-j be such that (u,v) u .

Then one can complete the commutative A-R-G diagram, where

the rows are exact:
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D(Pr  ) -> D(P0 , )

“Pr

-> D(W, ) -v 0

D(W, )

(2.5) 0 - ( , DC) 

\  .DC)

-> ( .np^

( .0

( » Pi) k
----- L> ( ,WP0) — ---> D(W, ) -> 0

( ,9) 1D(W, )

0 + ( ,DC) -----> ( ,E(e)) -----
( . f ) ( .g )

( .V) D(W, )

It commutes because a(ly) = b(V) (V,e)(lv) => a = b( ,e) 

by Yoneda's Lemma (0.15).

So

0 ->- ( ,DC ) -*■ ( ,E(0))-i-^i ( ,V) -*• F = Im a + 0

is a projective resolution of F and one can take = E(9) . 

An answer to the second question is given by:

(2.6) Proposi tion: Let

( ,V,) ------- > ( ,V) -  F -  0
1 ( .9 )

be exact.

Let Iq ,Ii be injective modules, and A,e, i^, maps such that 

there exists an exact sequence

(2.7) 0 +  V,

( i )

-> ^  JL V
(■¡T .-9)

-> I,
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Let

W = Coker Mi^ (with M = dD (see (0.25))

and

a = D(n ,) ay{ ( ,6) : ( ,V) - D(W, )

where

n is the natural map : MIg -*• Coker Mi^ 

given by (2.4).

Then F = Im a

and is

(2.8) Remark: Condition that there is an exact sequence (2.7) 

is clearly equivalent to:

Ig, I.j are injective modules such that:

(1) There is a map X:V-j -*■ Ij such that xjker g is injective.

(2) Ig contains a module X , such that (X,i^,e) is a push- 

-out of x,g .

Such Ig, I,, x, e, i1 always exist.

Proof: Let MIj = P-| , MIQ = PQ ; these are projective modules 

(see Chapter 0, §3).

Since i, : ^  - Ig , then Mi^ : P-j -*■ Pg .
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Taking W = Pg/Im Mi^ = coker Mi^ , clearly 

Min
P] — ---> PQ — — > W 0

is a projective resolution of W .

So we can construct the A-R-G diagram as described above:

D(Pr  )
D(Mir )

-> D(P0 , )
D(n, )

(2.9)

0 - ( ,A)

0 - ( ,A)

0
( ,inc)

>( ,Ii)
( ,ii)

( »ifO

( .A) ( .X)

O'

( . 0 )

( ,f)
-> ( .V,)-------> ( ,V)

( .9 )

— > D(W, ) - 0

^(W, )

-> D(W, ) -* 0

]D(W, ) 

-> D(W, )

wi th
-1A = ker i, , b = D(n, ) a p , a = b( ,e)

I rr>

Exactness of (2.7) implies that (*) is a monomorphism so 

V1 = Im (g) = {(Xtv^, g(v1 ) ) : v1 e .

Also

Im(g) = ker(i^-e) = {(u,v) e IjJLV : 1j(u) = 0(v)> .

So

V-j is isomorphic to the pullback over i-|, e .
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Note that if u e A = Ker î  , then i-j (u) = 0 = 0(0) so

(u.0) e Im(g) = V] .

Thus we can describe f as the map u (u,0) .

Also, g can be identified with the map

i(^(v] ),g(v1 )) : v] e V} -*■ V

such that (x(v] ),g(v1)) -*■ g ^ )  , v1 « V] .

It is clear that

0 -► A V-i V
f  1 g

is exact.

Therefore to prove that the last row of diagram (2.9) is exact 

one must show that Im( ,g) = ker a :

If p e Im(X,g) i.e. p = (X,g)(a) for a e (X.V^ then 

(X,i 1) (X,X)(a) = (X,e)(X,g)(o) £ ImiX,^) = Ker b(X) .

Thus 0 = b(X)(X,e)(X,g)(o) = o(X)(X,g)(o) = o(X)(p) 

i.e. p e Ker a(X) .

Conversely, let p e ker a(X) i.e. 0=a(X)(p) = b(X)(X,e)(p) .

Thus (X,e)(P) e ker b(X) = Im(X.i^) .

Therefore there exists 6 £ (X,^) such that i 1 (<5(x)) = e(p(x)) Vx £ X. 

So (6(x),p(x)) £ ker (i1 .-0) = V] .
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Considering (6,p) : X -> V-j

x -» (5(x ),p (x ))

then

(X,g)(6,P) = g(6,p) : x g(S(x),p(x)) = p(x) .

So (X,g)(6,p) = p i.e. p e Im(X,g) .

Therefore

Im a = ( ,V)/ker a = ( ,V)/Im( ,g) = F . □

§2. mrood A and D(W,U) (W,U £ mod A)

Yoneda's lemma (0.15) tells us that the map a in (2.1) is 

completely determined by the element T = a(U) (1^) c D(W,U) , and 

conversely,given an element in D(W,U) , it determines a map 

a:( ,U) -*■ D(W, ) and therefore a finitely presented functor.

So an element F e mmod A is completely determined by a

triple T,  W, U with W,U e mod A and T e D(W,U) .

(2.10) Notation: In this case, write F = H(T;W,U) .

Before we can go further we must make some considerations about 

the map a of (2.1):

Naturality of a gives the commutative diagram:
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(U,U)
“ (U )

D(W,U)
( 2. 11)

(f,U)

-> T

I
- >«( X) (f )

D(W,f)

(X,U)
a(X)

D(W,X)

where f: X ■*> U , T = a(U)(ly) 

Then:

a(X)(f) = D(W,f ) (a(U) ) ( 1 jj ) ) = D(W,f)(T) € D(W,X) . 

If <l> e (W,X) , then:

D(W.f)(T)(*) = T(f’l') = (T*f)(*) using (1.17) .

Thus

(2.12) a(X)(f) = T*f

Considering the covariant case, the map:

((W, ),D( ,U)) D(W,U)

B B(W)(1W )

is a k-linear isomorphism. (See (0.16)).

Then naturality gives the commutative diagram:
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(2.13) (W,W)
B ( W )

D(W.U)
■> T'

(W.h)

(W,X)
B(X)

B(X)(h)

D(X,U)

D(h,U)

where h:W -> X , T* = e(W)(lw)

6(X)(h) = D(h,U)(6(W)(lw)) = D(h,U)(T1) e 

If <j> e (X,U) then:

D(h.U)(T‘ )(♦) = T ‘ (<f>h) = (h*T' )(<(>) using

D(X,U) .

(1.17) .

Thus

(2.14) B(X)(h) = h*r .

The next theorem, due to J.A. Green, tells us how to "describe" 

a morphism between functors when these are given in the form (2.10):

(2.15) Theorem (Green) : Let F,F' e mmod A , be such that

F = H(T;W,U) , F' = HiT'jW'.U') .

Then

(i) Given a morphism $:F -► F* , there exist A-maps f:U -*■ U' ,

h:W ■+ W' such that:
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(2.16) T'*f = h*T .

(ii) Given maps f:U -*■ U' , h:W -*• W' such that (2.16) holds, 

there is a unique morphism :F -*■ F' such that the following diagram 

commutes:

Proof: (i) Given <t> , then,since ( ,U) is projective, there 

exists f*:( ,U) -*■ ( ,U') such that <t>a = a'f* . And f* = ( ,f) 

for some f:U-*U' (0.17). Thus <f>a=a'( ,f) .

Also, since D(W', ) is injective, there exists h* = D(h, ) 

with h:W -*■ W  such that

D(h,U)a(U)(lu) = «'(U) (U.fJily) => D(h,U)(T) = a'(U)(f) => 

=> h*T = T'*f by (2.12), (2.14).

( ,U)
a inc D(W, )•>

(2.17) ( .f) D(h, )

a .» F' c- -> D(W1, )

D(h, ) inc = inc' <t>

Thus

D(h, )a = <)>a = a ‘ ( ,f)

and
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(ii) If f,h are such that (2.16) holds, then, since 

Dih.UMUMly) = h*T and o‘ (U)(U,f )(1(J) = T'*f , by Yoneda's 

Lemma (1.15), we have

D(h, )a = a'( ,f) .

Now define 4>:F -*■ F' as follows:

<t> = D(h, ) |p (restriction of D(h, ) to F)

We must show that Im 4>(X ) £ F 1 (X) , for all X € mod A :

Let S e F(X) ; then D(h,X)(S) = S (h,X) = h*S (because 

(S.(h,X))(t) = S(th) = (h*S)(t) , V t e (W‘,X)) .

Since S e F(X) = Im a(X) , then S = a(X)(v) for some v e (X,U) ; 

so S = T*v .

Thus D(h,X)(S) = h*S = h*(T*v) = (h*T)*v = (T’*f)*v = T'*fv =

= a '(X)(fv) e Im a'(X) = F'(X) .

Clearly 4>a = a' ( ,f) and D(h, ) inc = inc‘<J> and $ is 

uniquely determined by these expressions.

Now one has to prove that 4>(X) is natural in X :

Let g : X -*■ Y . We must prove that the diagram

F(X) — 112Ü----  F' (X)

F(g) f | F ’(g) commutes.

F(Y) ---------- > F * ( Y )
*(Y)
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Consider the diagram:

(X,U)

( g . u ) (a)

F(X) ---^ ---> F' (X)

F(g) (b) F'(g)

lncM ---> D(W',X)

(c) D(W',g)

(Y,U)
a(Y)

F(Y)
*( V )

F'(Y)
inc'(Y)

D(W',Y)

(a) and (c) commute because a and inc' are natural.

Let R e F(Y) . Then R = a(Y)(v) = T*v with v e (Y,U) .

♦(X)F(g)(R) = ♦(X)F(g)«(Y)(v) = +(X)«(X)(g,U)(v) = *(X)a(X)(vg) 

= <t>(X)(T*vg) = h*T*vg = h*(T*v)*g = h*R*g = D(W',g)(h*R) =

= D(W' ,g)4>(Y)(R) = F1 (g)4>(Y)(R) , using commutativity of (c).

Thus ♦(X)F(g) = F'(g)*(Y) . □

(2.18) Remark: An equivalent definition for <p is:

If S e F(X ) , X e mod A ,

♦(X)(S) = T'*fv

where v e (X,U) is such that a(X)(v) = T*v = S . (v exists 

because a:( ,U) -*• F is epimorphism, and 41 is well-defined since 

if v 1 is such that T*v' = T*v then T*(v-v‘) = 0 ; so T'*f(v-v') 

= h*T*(v-v') = h*(T*(v-v‘)) = 0 , i.e. T'*fv = T'*fv' .)

(2.19) Corollary: If there exists isomorphisms f:U -*■ U* ,

h:W h. w' such that T'*f = h*T , then F = H(T;W,U) = F' = H(T';W,U'
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Proof: T'*f = h*T => h-1*T‘ = T*f_1 . Thus by (2.15)(ii)

3^:F -► F 1 such that ( ,U) F D(W, ) commutes.CK*

( .f“1) t J D(h'\ )

( ,U' ) +  F' D(W, )
a

Considering this diagram and (2.17) we have: ( )cx = (̂<}>ct) =

= <l>a'( ,f) = a( ,f ^)( ,f) * a = lpa . Since a is epimorphism, 

ip<t> = lp . Similarly <t>̂> = Ip, . Hence $,iji are isomorphisms. □

In particular, using the equivalence relation (1.21)

(2.20) Corollary: Let U,W e mod A and T,T' e D(W,U) be 

such that T <v T' . Then

F = H(T;W,U) = F' = H(T';W,U) . □

§3. The category T

Let A be any finite dimensional k-algebra.

(2.21) Definition: Denote by T the following category:

Obj T = {(T;W.U) : W,U e mod A , T e D(W,U)}

((T;W,U),(T,;W,,U,))f = i(f.h) : f € (U,U')A . h « (W,W')A

and T'*f = h*T} .
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The "composition law" is

((T;W,U),(T';W,,U,))x((T,;W,tU ,MT";W",U")) -  ( (T;W,U), (T" ,W ,U" ) )

((f,h) , (f',h‘)) ----------------------> (f'f.h'h)

and 1 (T;W,U) = Ou. V  •

T is a k-category (see (0.4)).

Theorems (2.1) and (2.15) give a k-linear covariant functor 

H : T ---------------- > mmod A

such that

( 2 . 22)

(T;W,U) --------------- > F = H(T;W,U) i.e. F = Im a

where a: ( ,U) -*■ D(W, ) 

is such that ot(U)(ly> = T 

(f,h) ---------------- > <(> given by (2.15)(ii)

(2.23) Remark: Since H is k-linear, it commutes with direct

sums i.e. if (T;W,U) = (T1;W1,U1)_1L (T2;W2>U2) in T then 

H(T;W,U) = ;W] ,U] )_ILH(T2;W2,U2) in mmod A .

Let J be such that,for given objects (T;W,U),(T‘;W,U') in T , 

one has:

(2.24) J((T;W,U),(T' ;W ,U*)) = {(f,h):f e (U,U')A , h e (W,W)A

and T1*f = 0 = h*T} .
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This is clearly an ideal in the category T (see (0.12)).

For simplicity denote by (f ,h) the element (f,h) + J((T;W,U) ,

(T1:W ,U')) e ((T;W,U) , (T1;W',U1))T/J.

Then

(2.25) Lemma: The following is an equivalence of categories:

H : T/J ------------- > mmod A

such that

(T;W,U) -----------------> H(T;W,U)

(f,h) ----------------- > H(f,h)

where H is the functor given in (2.22).

Proof: We use definition (0.2) of equivalence of categories:

H is dense by (2.1);

And H:((T;W,U),(T,;Wi,U'))t /j - (H(T;,W,U),H(T'jW.U1 J ) ^  A 

(f,h) ------------------ > H(f,h)

is an isomorphism:

In fact (f,h) = (f1,h1) => T'*(f-f') = 0 = (h-h')*T => T'*f = T'*f 

=>T'*fv = T'*f'v, V v e (X,U) , V X c mod A . Then by (2.18),

H(f,h) = H(f1,h') .
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Also H(f,h) = 0 => H(f,h)(U)(T ) = 0 => T'*f = 0 = h*T .

Thus H is a monomorphism.

And given 4> e(H(T;W,U),H(T' ;W ,U' ))ninod A , by (2.15)(i).there 

ar®  f:U U ‘ , h : W -*■ W  such that T'*f = h*T .

These are maps such that

D(h, ) a = <j>a = a 1 ( ,f)

where a , a '  are as in (2.17).

But this means that D(h.) |H(T;W>U) = *|H(T;W,U) “ *

i.e. H(f,h) = 4> . Thus H is epimorphic. □

Given (T;W,U) e T , define:

(2.26) I = J((T;W,U),(T;W,U)) =

= {(f,h):f e EndftU , h £ EndftW and T*f = 0 = h*T} .

I is an ideal of the k-algebra End7-(T;W,U) .

And using lemma (2.25) we see that 

End_(T;W,U)
(2.27) ---------- = End F where F = H(T;W,U) e mmod A .

I
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§4. Decomposability in T and mmod A

We start this section by generalizing some of the facts referred to 

in Chapter I, §4 , to a category mod A where A is any finite-dimensional 

k-algebra.

Namely we have the following:

By (0.6) ,

m n
W = _LLW. , U = -LL U. in mod A iff there are morphisms 

j=l J i=l 1

mi € (U..,U) , Pi e (U,U.) , nj e (W^.W) , q^ e (W.W^) , such that:

Pimt = 6it 1Ui V *  ’ V \
n m i, t = 1,..., n

mipi = ’u t n.q. = 
j=l J J

lw = l,...,m

if T e D(W,U) , the matrix of T with respect to the

above decompositions of W,U is:

(2-28> ^ = <Tji>i=l.... n
j=l.... m

where is defined by the expression:

T.. = q.*T*m. e D(W.,U.) .ji i ' j i'(2.29)
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Remark: If the decompositions of W,U are assumed to be

known, we sometimes use (abusively) the same symbol for the element

T e D(W,U) and its matrix with respect to the given decompositions,

writing, for example, expressions such as T = (T ..). . e D(W,U) .
J 1 1 5 J

(2.30) Proposition: (T;W,U) e T is decomposable iff:

(i) There are W-|»W2,U1,U2 $ 0 in mod A such that:

W = W] JL W2 , U = ^  JL U2 .

(ii) There are elements T1 e D(W^,U^) , T? e D(W2,U2) such 

that the matrix T of T with respect to the decompositions of W,U 

given in (i), is

Proof: Using (0.6) and the definition of morphism in T we have

T

(TsW.U) = ( ^  ;W1,U1)iL (T2;W2,U2) <=> there are

morphisms y. = (m.,n.) , ir. = (p. ,q.) , with:

m. e (U.,U) n. e (W.,W) T.*p. = q.*T

(2.31) and

Pi e (U,U.) q. e (W,W.) T*m. = n.*T.
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such that

V i  = 6ij 1(T.;Wi,U.) ( i = l . 2) = 1 (T;W,U) <=>

exist morphisms mi, n., p^, in mod A such that (2.31) holds and

(2.32)

p .m. = 6. . 1.. 
i ij U.

£ m.p. = 1.
1-1 11 1

q .n. = 6. . 1..i 1J wi

¿ V i  = \  *

If there are morphisms m.. ,n.. ,p.. ,q.. (i = 1,2) such that (2.31) 

and (2.32) are verified then by (0.6):

W = W-j JL W2 » U = Ui -1LU2 and with respect to these decompositions 

(see (2.28), (2.29)):

T  =

/q.|*T*m.| q^*T*m2

yq2*T*m1 q2*T*m2

/ Tl*plmi T!*Plm2 \ 0 \

\T2*P2ml ^2*P2m2 0 T
2 /

Conversley assume that (i), (ii) are verified. Then there are 
P ■ q ■

morphisms U .< J- —„ U , W^< 1 W in mod A such that (2.32)
ni

there

holds.
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Then

q1*T*m1 q1*T^i2 \
T

q2*T*m-| q2*T*m2 ̂
where qj*T*m.. e D (W ̂ , U..)

(i,j = 1,2)

By (i), q-j*T*m-| = T1 => q1*T*m1p1 = T1*p1 

q1*T*m2 = 0 => q1*T*m2p2 = 0

q2*T*m-| = 0 => q2*T*m1p1 = 0

q2*T*m2 = T2 => q2*T*m2P2 - T2*p2 *

Thus by (2.32)

Similarly T*mi = n^*T. (i =1,2).

Thus the maps m.. ,n. ,p.. ,q. (i = 1,2) verify (2.31), (2.32), so 

by above equivalences

We also observe the following:

(2.33) The category T has kernels. Therefore in this category 

idempotents split (see (0.10)).

(T;W,U) = (T1;W1,U1)IL(T2;W2,U2) . □

In fact we have:
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(2.34) Let (f,h) : (T;W,U) (T' ;W ' ,U' ) be a morphism in

T ; then ((T*i,W,ker f) , (i, 1^)) (where i:ker f -*■ U is the

inclusion map) is a kernel of (f,h) .

Proof: Consider the diagram

(i, lw ): (T.j ;W,ker f) (T;W,U) is a morphism in T because

that (f,h)(f1,h') = (ff',hh') = (0,0) .

Then clearly there is f" : U" -*■ ker f such that f' = if" .

And, of course, 1wh 1 = h 1 .

And T]*f" = T*i*f" = T*if" = T*f' = h'*T2 . Thus (f",h‘) is

a morphism in T .

(
(r ,Kerf) •*•0(11, ) T1 = T*i

t 2 ( , U")tl- >  D ( W " , J D(1W , )

D(U, ) T

( ,f) D(h. )

( .U') ^D( W ,  ) T'

Let (T2;W",U") e T and (f ' ,h* ): (TgjW.U") (T;W,U) besuch

So (T*i,W,ker f) is a kernel of (f,h) . □
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(2.35) Remark: By (2.33) and using (0.9), (0.11) we have:

(T;W,U) is indecomposable in T iff the set of idempotents 

in Endr (T;W,U) is {(Oy.Oy). (ly.ly)} .

Now let us recall the following theorem (see [CRM], pgs.lll and

119):

(2.36) Theorem: Let B 4 0 be a finite-dimensional k-algebra. 

Then the following are equivalent:

I. Id(B) = {0,1} where Id(B) is the set of idempotents in B

II. Each element b e B is either invertible or nilpotent.

III. B/J(B) is a division algebra (J(B) is the Jacobson 

radical of B).

IV. J(B) is the unique maximal ideal of B . □

Such an algebra B is called a local algebra.

It is clear that:

(2.37) If B is a local algebra, and I is an ideal of B

such that I =) B , then B/I is a local algebra. □

Recall also that to prove that an algebra B is local, is

equivalent to prove that B/N is local, where N is some nilpotent
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ideal of B (see for example [Lrl, pg.3, using the fact that an 

idempotent ¥ 0 is not nil potent).

The following fact will be useful later:

(2.38) If Bq is a subalgebra of B such that BQ + N = B , 

where N is a nilpotent ideal of B , then if Bq is local, B

is local.
B0 ^ B + N

(This is so because if Bn is local, then u-—— n—  = ------  ,
0 Bo n N N

is local, i.e. B/N is local, therefore B is local.)

Now returning to our discussion about T and mmod A:

(2.39) Lemma: If (T; W,U) is a non-zero object in T ,

then it is non-zero in T/J , i.e. the ideal I = J((T;W,U),(T;W,U)) 

is not equal to End-j-(T;W,U) .

Proof: I = {(f,h) c End U JL End W : T*f = 0 = h*T} (see (2.26)).

If (1q , 1w ) e I , then T = T*ly = 0 , and this is a contradiction. □

Thus

(2.40) Proposition: (T;W,U) is decomposable in T iff 

H(T;W,U) is decomposable in mmod A .

Proof: By (2.23) if (T;W,U) is decomposable in T then

H(T;,W,U) is decomposable in mmod A .
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Now suppose that (T;W,U) is indecomposable in T . By 

(2.35) and (2.36).I, Endj-(T;W,U) is a local algebra.

Lemma (2.39) shows that I  ̂End.j-(T;W,U) .

Endr (T;W,U)
Then by (2.37), -----------  is local. But

I

Endr (T;W,U)
— ^ -----  = Endmmod AH<T ’W ’U> <2-27>

Thus Endrnmoc| a H(T;W,U) is local and this implies that H(T;W,U) 

is indecomposable in mmod A (0.14). □

§5. Examples of indecomposable finitely presented functors

Let k be a field and A the k-algebra considered in Chapter I, 

§1, i.e. A = A = k-alg <z:zq = 0>
q

In this section we consider some examples of indecomposable 

elements in mmod A^ .

(1) Let q = 3 and let ,V2,V3 be the indecomposable A^

Suppose T = ^12 *13 \e D(W,U) where W = V-j ILV-j ,

,° *33Z /

V2 JLV3 . Consi der (T;W,U) e T (see §3)

Let B = EndT(T ;W,U) = i(f,h) c End Uil.End W:T*f = h*T) .
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Let N = rad (End U IL End W) and

B0 {(f,h) e End UiLEnd W : f = h

: a,b,c,d e k and T*f = h*T}

Then Bq + (N n B) = B and N n B is nilpotent.

In order to prove that B is local it is enough to prove that Bq 

is local (by 2.38).

By (2.36) we can prove that Bq is local by showing that

idempotents of BQ are (°u* °W^ and (Iq , lw ) :

T*f = h*T => | 12 ’13 \ * (aU22 0

1 ° n33Z ) 0 bu33

the only

/air 12 blr13 \ _ / Clrl 2 Clrl 3

\ 0 bir33Z / \ 0 dlr33Z

=>a = c = b = d .

Now clearly the only idempotents in BQ are the trivial ones.

Using this method it is easy to prove that all matrices in (1.47) 

give indecomposable elements in T , and so correspond to indecomposable 

elements in mmod A (see 2.40).
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Remark: It can be shown now that no two of the functors given

by the matrices (1.47) are isomorphic, by considering for each 

T e D(W,U) in (1.47), the map

aT : ( ,U) D(W, )

such that ot̂ .(U)( 1 y ) = T (by Yoneda's Lemma (0.15)) and then

constructing the modules Fy(C) = Im ay(C) = (C,U)/{f e (C,U):T*f = 0} 

t= Mt) where C = V-| Ji. V2 11V3 and FT = H(T;W,U).
It can be shown that no two of the 21 modules My are isomorphic.

Some examples of these modules are given in Chapter III and a 

complete list of them (given by considering their radical series and 

socle series) appears in the graph (3.27).

Now, if for some T,T' in (1.47), Fy = Fy, , then My = My, , 

a contradiction. It is also clear that no two matrices of (1.47) are 

equivalent (by 2.20).

( 2 ) Now consider the following example:

Let q > 4 and U = W = V"ILVJ for some n e IN .

Let

•rr P 
2 2 K '24zl '

T 3 T n = e D(W,U) wheren
 ̂*42Zl w 2‘ 1

2nx2n
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the matrix
/ ° 0 . .  0 0

1 1 0 .. 0 0

0 1 0 0

1° 0 . . . 1 0 n*n

Consider the element (T ;W,U) e T and let 

B = End (T;W,U) = i(f,h) e End UJLEnd W : T*f = h*T)

We may write f in the form

h in the form

1 F22u22 F24u24

\ F42U42 F44u44

H22u22 H24u24

\ H42u42 H44u44

and

where F.. , H.. are n»n 
U  ij

matrices of elements in A

Let

B* = {(f ,h) £ End U_LLEnd W : F24 = 0 = F42 = = H42

: ( i )  _ F( i )  _ H(1) _ H( i )  =
22 " r44 ” ”22 _ 44

: (1)
kj

we denote the matrix whose elements are the coefficients of the terms 

of degree i of the entries of F^. .

Let BQ = B* n B . This is clearly a subalgebra of B .

Let N = rad (End UlLEnd W) n B .

Then

BQ + N = B

as follows:
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Clearly BQ + N c B .

Conversely let (f,h) e B ; then f = fg+n h = hg+m where

is given by
fF ( o) 

22
0

, h » is given by
0 \

1 °
F(0 ) 
h44 ^

U
0 <VI

and n e J(End U) , m e  J(End W) .

So (f,h) = + (n,m) where (n,m) e rad(End UaiEnd W) .

Now

T*f = h*T =>
1T22^PF22+ z F 42^ * 2 4

1 1t4 2 (z F2 2 +z F42^ * 4 4

■ r r 24 L 4 4 '

:3f2X f44)

* 2 2 ^ H22P+z H24^ * 2 4 ^ z F*22+ z  ^24^

^ 4 2 ( z  ^*42P+Z^44^ w44^ z ^ 4 2 +z ^44^

PF22) = H22)p 
H(0) _ F(0) 
" 4 4  44
H(0) _ F(0) 
" 2 2  r 44
H(0) _ F(0) 
" 4 4  22

i . 2 2pF<»>
*2 4 z F4 4 ) ^ *2 2  ^ 2 2 ^ P 1I24i H 2 2 ) '

H
^ 4 2 z F 2 2 J W 2 f ( 0 ) i

44 44 f 4 2  z H44 * w 2 " « /

<=> T *fg  = hg*T => (fg.hg) e Bg .

Since (f,h) , (fg.hg) e B then (n*m ) 6 B • thus (n»m ) e N * 

Therefore (f,h) e BQ + N .

By (2.38), we must prove that BQ is local.
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Using the calculations just done it is easy to see that

/ f <»> ,22 0

F<°> u h44 44

/ F ^  u 0 r 22 22

r 22 44/

'H<°> u . 0 \\ P F ^  = P

h (®) u 
M44 U44/

l Q
i-22 u22

\  ° F(° )uh 22 U44

22 '22
'u(O) - F(0 ) _ H(0) . F(0 ) 
m44 r44 n22 " 22

. pp(O) = F ^ P  
• Kr22 22

Simple calculations give that:

PFio' = f 1o )P=> =: ( 0 )
22 22 22

(for some a-|,.. .an e k.)
V l  an-2

= anI + a0P + a,P + ... + a P 1 2  3 n

n 

n-1

n-1

0
0
0

a-j 0

a2 al

Since P is nilpotent, it is clear that every element of BQ 

is invertible or nilpotent. Thus by (2.36), Bq is a local algebra. 

Then by (2.38) , B is local.
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Thus

(2.41) F = H n

'

T =
n2Z^ t24Z^

n
i i*42zI

; v"lLVj , V^ILVJ

2n*2n

€. mmod A^ , is indecomposable, V n e IN

Let

“n : < *V> V4n) -> D ( v " _ u _ v "  , )

be the map such that

“n<V2 JJ-*4>('vn u V n> * Tn

(use Yoneda's Lemma (0.15)), 

Thus

Ker an £ rad( .V^lLVjj1) i.e. c*n is a projective

cover of Fn (see [All pg.208).

To prove this it is enough to show that

Ker «(v J j l v J) s rad(End vg j l v ")

(by Fitting's theorem ([CRM], pg.462)). 

But

Ker a(v" JLJ_v") = if é End(v" j l v ") : Tn*f = 0} .
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/ F22 u 22 F24 U24\
Wri ti ng f in the form c 3L

i- we
\ F42 u42

T *f = 0 => i 1T22(PF22 + zF44) ^24(z PF24 + 

V (z3p24 + 2

zP44 )
n

\7r42(zF22 + z2p42J 2p44)

=> f e rad (End V^lLvJJ)

Since a projective cover is unique up to isomorphism (see [AID 

pg. 209), and ( ,V) = ( ,U) in mmod A iff V = U in mod A , 

it is clear that if n ^ m , then Fp ? Fm .

Thus

(2.42) (Fn = H(Tn;V"iiV" , v J jjlvJ) : n e e N}

given in (2.41) is an infinite family of non-isomorphic indecomposable 

functors in mmod A .
q

§6. More about the category mmod A

The category of finitely presented functors is well known (see 

for example [A]), but the interpretation given by Lemma (2.25) which 

derives from the important results (2.1) of Auslander-Reiten and (2.15) 

of Green, provides a different way of viewing mmod A , which may bring 

a better understanding of this category.
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We finish this chapter with some facts about mmod A (where 

A is any finite-dimensional k-algebra), in which we use the 

characterization of this category given by lemma (2.25).

The facts contained in this section are not necessary for the 

continuation of this work.

One may ask the question:

Since it is clear that different elements of T may correspond 

to isomorphic functors in mmod A (see e.g. (2.20)), find a necessary 

and sufficient condition for this to happen.

The answer to this question is a corollary of the following 

proposition:

(2.43) Proposition: Let F = H(T;W,U) , F1 = H(T';W',UI) e mmod A .

Let <(>:F -*• F 1 be such that <t> = H(f,g) where f e (U,U') , g e (W,W') .

Then:

(i) <|> is an epimorphism iff there exists h:U’ -*■ U such that T'*fh = T'

(ii) Q is a monomorphism iff there exists h:W ' W such that hg*T = T.

Proof: The diagram

( ,U) -------> F = Im a ‘--------> D(W, )

( S )  | I* i°(9 , )

( ,U') ------ > F' = Im a' «------> D(W‘, )
a 1 i'

is commutative.
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such 

T' =

i .e.

So

D(W,

'1
F —

(i) Suppose that there exists h:U1 U such that T'*fh = T'.

Let Z e F'(X) . Then Z = o'(X)(t) for some t e. (X.U1) .

Thus

Z = a'(X)(t) = T'*t = T'*fh*t = T'*f*ht =

= g*(T*ht) = 4>(X)tt(X)(ht) .

Therefore <p is epimorphism.

Conversely, suppose <p is an epimorphism, so T' e F'(U') is 

that T 1 = (t>(U')a(U' )(h) for some h e (U',U) . Thus 

a'(U')(U',f)(h) = a '(U1)(fh) = T'*fh .

(ii) Suppose that there exists h:W' -*■ W : hg*T = T.

Let Z e F(X) be such that <t>(X)(Z) = 0 e F'(X) .

Thus D(g,X)(Z) = 0 and also Z = a(X)(s.) for some i e (X,U) , 

Z = T*£ .

Therefore

0 = D(g,X)a(X)(A) = o'(X)(X,f)(4) = a' (X)(fJt) = T*ft = g*T*t ; 

0 = hg*T*i. = T*t = Z .

Thus <p is monomorphism.

Conversely suppose $ is monomorphism. Consider the diagram:

0

-> F'1— D(W, )

Since D(W, ) is injective, there 

exists e:D(W', ) D(W, ) such 

that this diagram commutes.
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Thus De:(W, ) ( W , ) i.e. Da = (h, ) for some h:W' W .

Therefore 0 = D(h, ) .

But 0i ■<#. = i => D(h, )i 14>oi = ia => D(h,U)i 1 ( U M U M U K l y )  =

= i f U M U K l y )  => D(h,U)i1 (U)<J>(U)(T) = T => D(h,U)D(g,U)i(U)(T)

= T => D(hg,U)(T) = T => hg*T = T . 0

(2.44) Corollary: Let F,F',cj> be as in (2.43). Then <J> is isomorphism 

iff there exist t:l)‘ -*■ U, h:W‘ W such that hg*T = T,T'*ft = T' .

Also <f>  ̂ = H(t,h) .

Proof: The first part is obvious.

Now hg*T = T => h*T*f = T => h*T'*ft = T*t => h*T' = T*t .

Thus (t,h):(T1;W',U') ■* (T;W,U) is a morphism in T , so H(t,h) 

is a morphism in mmod A .

Clearly T*tf = T and gh*T' = T' . Thus, by (2.43), H(t,h) is 

an isomorphism.

Since hg*T = T and T*tf = T , then (ly.ly) = (tf»h9) (see 

(2.26)); so (ly, lw ) = (t,h)(f,g) in T/j . Also, since gh*T' = T' 

and T'*ft = T*, (l^TTT^,) = (ft.gh) = (fl)(t7h) .

Thus lp = H(t,h)H(f,g) = H(t,h)<j> and lp, = $ H(t,h) , so 

H(t,h) = i.-1 . □
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Remark: Since conditions hg*T = T and T'*ft = T  can be

written in the form h*T'*f = T and g*T*t = T 1 , respectively, 

it is clear that (2.20) is a particular case of (2.44).

Now we consider some examples of monomorphisms and epimorphisms:

(2.45) Let U,Ur W e  mod A and f e  (Ur U) . Then 

* = H(f, lw ) : H(T*f,W,U1) -*• H(T;W ,U) 

is a monomorphism.

Moreover the family of subfunctors of H(T;W,U) in mmod A is: 

{H(T*f ;W,U-| ) : U] « mod A , f e (l^.U)} 

and ik is the inclusion map.

Proof: The first part is obvious.

Let F1 = H(T*f,W,U1) , F =H(T;W,U) where U^U.W, f satisfy 

the given conditions.

Then i|i = H(f, lw ) is such that

= D(lw» ) ^(W, )

F-j (X) = 4»(X)F̂  (X) £ F(X) ,

(see proof of 2.15(ii)).

Thus and ip(X) is natural in X .
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This means that F-j is a subfunctor of F and iji is the inclusion 

map.

Conversely let F-| < F = H(T;W,U) in mmod A . Then 

F < D(W, ) , so F.| < D(W, ) . Then we can construct the diagram:

Y = ( ,f)

( .iv

v
( >U)

“1
F1

i

-> F

-> D(W, )

.. D d W *)

-> D(W, )

where U-|, a-j are such that F-| = ( ,1̂  )/ker a-| (we know that 

such module and map exist). Since ( ,U^) is a projective functor

and a is a epimorphism, there exists a map y such that this diagram 

commutes, and y has the form ( ,f) with f e (U-| ,U) . Then 

W O u  ) = i(U1)«1(Ui)(lUi) = «(U^if.U^il^) = T*f .

Thus F1 = H(T*f,W,U1) . □

We have by (2.43)(i) :

(2.46) Let W.W^U e mod A and g e (W.W^ ; then 

* = H( 1 jj,g) : H(T;W,U) - H f g n ^ . U )

is an epimorphism.
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Moreover the family of quotient functors of H(T;W,U) in

mmod A is:

{H(g*T;Wr U) : W] mod A , g e (W.W-,)}

and § is the natural epimorphism.

Proof: Since <j> is an epimorphism the elements of mmod A with the 

form H(g*T;Wi,U) are quotient functors of H(T;W,U) .

Conversely if G = H(T*f;W,U.,) < H(T;W,U) = F then F/G is 

finitely presented and there is an epimorphism ( ,U) i > F/G .

Then there exists W-| e mod A such that F/G § D( ,  ) . Consider 

the diagram:

Since D(W-|, ) is injective there exists 6 = D(g, ) such that this

•>D(W, )

( ,U) a ■> F/G ---->D(W, , )

diagram commutes. So F/G = H(g*T;W,,U) . □

We can also observe the following:

Let 4> be given by

(2.47) $ = H(f,g):F = H(T;W,U) - F* = H(T,;W',U') .

The following diagram commutes:
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a ■> F •> D(W, )

D(g, )

a*
•> Im $ •> D(W, )

■> Fa

where a* = 4>a . And a*(U )(ly ) = <t>(U)a(U) ( 1 y) = 4> ( U ) ( T ) - D(g, )(T) 

= g*T = T'*f .

Thus

(2.48) Im <f> = H(g*T;W',U) = H(T'*f;W,U) .

And

is the "canonical decomposition" of <p = H(f,g) .

To obtain a description of the injective and projective objects 

in mmod A we can proceed as follows:

(2.49) H(T;W,U)
H(ly,g)

•> H(g*T;W ,U) H(T';W1,U)•>

Recall that given W mod A , if P ■> P,0 ■> W -»• 0 is

a projective resolution of W then
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is a projective presentation of D(W, ) , where b = D(Pq , )ap 

(see (2.4)).

-1

Then

(2.51) The injective objects of mmod A are

D(W, ) = H( b(NP0) (lNp ) , W,WPQ)

where W e mod A , PQ is a projective module such that there exists 

an epimorphism pgiPg ^ w and b = D(Pg» ) “p̂  (where ctp is giver

by (2.4)).

We can give a similar description for the projective objects in 

mmod A :

Since these are of the form ( ,U) we must find U,W e mod A 

and a:( ,U) -* D(W, ) such that a is monomorphism.

Let U be any A-module and

10 nl(2.51) 0 -> U — IQ — — > ^

an injective resolution for U . 

Apply (X, ) to (2.51) :

(X,1n) (X,i,)
0 -> ( X ,11) ---- — > (X, 10) ----- -— > (X.I, )
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Apply M = dD , which is left exact,to (2.51) and let 

B = Coker Mi^ .

Then

Mi. Mi..
0 MU ----> MIq — — > MI-j B -*■ 0

is exact.

Apply ( ,X) (left exact, contravariant)

(MU,X) <--- (MI0 ,X) - (MIr X) - (B.X) - 0

Now

D(MI0 ,X) -v DfM^ ,X) - D(B,X) - 0

is exact.

Recall that ap:D(P, ) ( ,DdP) (2.4) is isomorphism, (see

[Gr 21 pg.17) when P is in projective module.

If P = MI where I is injective, then NP = I . Thus
ft

<*M j : D(MI, ) ( ,1) is an isomorphism.

Let

6I = °MI •
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Then we have the commutative diagram with exact rows:

0 ---> (X,U)
(X,in )

(x.y

(X.U)

( X , i , )
-> ( X , I 0 ) --------------------- > ( X , I-j

6t (X) 6, (X)

0T (X)(X,i0 )
!o u

D(MIq ,X) -------- > D(MI-J ,X) D(B,X) 0

Let

c = b I qo ( , i 0 ) = aM] ^ (  . i 0 ) •

This is a monomorphism and we have:

(2.52) The projective objects in mmod A are

( ,U) = H(c(U)(lu ) , MI0 ,U)

where U e mod A , Iq 

a monomorphism iq :U

is an injective module such that there exists 

IQ and c = -MI < * V  '
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Chapter III : Representation type of Rq and the Auslander-Reiten 

quiver of R^ .

§1. Representation type of Rq

In this chapter we consider again the Ausländer Algebra 

R = Endft (V^IL ... j lV ) , where A is the k-algebra <z:zq = 0> ,
H q H H

and (V-1....Vq } is a full set of indecomposable objects in mod Aq

(see Chapter I, §1).

Using some of the facts established in Chapter II we can prove 

now the following theorem:

(3.1) Theorem: The Ausländer algebra Rq of Aq =

= k-alg<z:zC| = 0> is of finite representation type if q s 3 and 

of infinite representation type if q M  ,

For this we must consider the following equivalence of categories 

(see [All, pg. 191 to 193):

(3.2) er : mmod A C q -> mod'R
q

> F ( C )

where C = V-| 11 ... J1 Vq .

F(C) is considered a right R^-module with the rule: 

If 5 «  F(C) , h e Rq then eh = F (h) (c) •
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We want to decide when the number of isomorphism classes of 

indecomposable modules in mod Rq (or equivalently in mod'R^ , 

since the number is the same ...) is finite or infinite.

By (3.2), we see that this number is the number of isomorphism 

classes of indecomposable functors in mmod A

But this number has already been calculated in the case q = 3:

In §5, Chapter II we saw that the functors F = H(T;W,U) , given 

by the matrices (1.47) of Chapter I are indecomposable and non-isomorphic, 

and from §7, Chapter I, (using (2.40), (2.30)) we deduce that they are 

the only indecomposable functors.

Thus:

If q = 3 , there are 21 isomorphism classes of indecomposable 

functors, and therefore there are 21 isomorphism classes of indecom

posable modules in mod R^ . Therefore R^ is of finite representation 

type.

If q > 4 there is an infinite number of non-isomorphic indecom

posable functors in mmod Aq , since (2.41) is an infinite family of 

such functors.

Thus if q > 4 , Rq is of infinite representation type.

If q s 2 , Rq is a serial algebra, so it is of finite representation 

type (see [Ft] prop. 16.11 and 16.14 pg.58, 61). □
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In the following sections of this Chapter we construct the 

Auslander-Reiten quiver of the Ausländer Algebra of finite 

representation type, Rg .

/o •

01 V
/ ö \

O c o

0 . \ 0 /'ol \ * /

§2. mod R3 and mod'R3 * i

As we saw in §1, Chapter I , ei =

i = l,2,...,q , are the primitive orthogonal idempotents in R = R^ 

so the principal indecomposable modules in mod R are Re^ and in 

mod'R are e^R , i = l,...,q .

(3.3) Definition: Let a = (â ,.),. j be a qxq matrix
--------------  IJ IjJ € l I j . . jCJ/

of integers a ^  , such that i*vj £ a^j s i .

Then define the A-submodule S(aJ of R as follows:

a -
S(a) := ® M .(a. .) = ® Az

i.j J J i,j

(using the notation of (1.2)(b) and (1.4)).

As examples we may consider the following:

(3.4) (1) R = S(a) with a = (i'yjh , .
— I J J

Uij
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(2) By Fitting's theorem

f e J(R) <=> f.j : Vj -*■ V.. is non-isomorphism V i,j

<=> f.. € rad(V. ,\ l . )V io f .. e Azu.. = M. .(1) . n  i 1 n  n  n ' '

Thus

(3.5) J(R) = S(b) with
b . . = 1 i = j

bij = i~j i ^ j

In particular if q = 3 : b =
1 0 0
1 1 0

\ 2 1 1

0

il fi2
0

fkj ■ 0 * Hkj(k) 1f k i 1 

f1J * ‘vd*v1> - M1j <*"»>

Thus if q = 3 :

elR = S(c_i) with ĉi

(3.6) e?R = S(c,)

e3R = S(c3)

£2

—3

0 0 0
2 2 2

\ 3 3 3

h 1 1
1 0 0

\ 3 3 3

h 1 1
2 2 2

\ 2 1 0
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Example (3) can be generalized as follows:

(3.7) Proposi tion:

(i) Every right R-submodule M of

M = S(a) wi th â =
J - •

1

I i-1 ... i-1

(3.8) ail aiq
i+1 i+l

u q

is such that

(ii) Every left R-submodule N of Re^ is such that

N = S(b) with b = 1 ••• 1 bli 1 ••• 1

(3.9)

2 b2i 2

q ... q bqi q

Proof: (i) One has e^e^ = (|0... f ^  0.. J: f ̂ j e (Vj.V^)}

" (Vj-V1) “ M1J(1-J) (1.2c).

Let M ^ e.R ; then Me. s M and Me. £ e.Re.
p i  J J 1 J

Conversely if m e M n  e^Re^ , then m = e. r ej , some r e R ,

so me. = m .
J
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Thus Mei = M n e.Re. , so it is a submodule of (V.,V.)
J ■ J J 1

and therefore Mei = M . . (a. .) , i 2 a.. > i-vj (by 1.2(c)).
*J ' J  * J  * J

q q
Then M = M.l = ® Me. = ® M. .(a..) = S(a) with a as in (3.8).

j=l J j=i 'J 'J

(ii) Similar. □

(3.10) Remark: According to (3.7) every right R-submodule M 

of e^R can be given by the ith row of the matrix â .

Thus we may write M = (a.̂  

Also in (ii) we can write

9 • • •’V

z II
W

So example (3) says that

e-| R = (0 0 0 ) e2R = (1 0 0) e3R = (2 1 0 ) .

One can also see that:

0\
Re, = 1

U

/ 0 \
Re, = I 0 I 

\1 /

01
Re, = 0

3 \o/
•

(3.11) Lemma: If i "  (aij>i,j b = (b. .). . 
v ij i.J

are qxq matrices

that i'vj s a^, b.. s i , then
• J

S(a) . S(b) = S(c)
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where c = (c. .). . is given by
1 J 1 j J

cij = min(ait + btj’i} 
t e {1,. .q} .

Proof: S(a).S(b) = ( ® Az 
i ,k

aik-(i^)
.u..)( e Az 

e,j
u . )

a,t-(iM:)+b .-(fg)
= 0 (® Az tJ -u.^.u..) =

i,J t i f  tj'

ait~(i'vt)+btj-(t'Vj ) + (i'Vt) + (t'Vj)-(i'Vj)
= 0 (0 Az
i ,j t

(by 1.8 )

ait+b -(i'vj) 
= © (© Az ir
i ,j t

U

min(ait+btj,i)-(i'vj)

•uu > -  • A z 1 •“«
1 »J

because these modules form a chain and if a^t + b^. ^ i , they are 

zero.

So S(aj.S(b} = S(£) with c= min(a^+btj,i) . □

(3.12) Example

Since e-|J(R) z e-|R.J and
e i R

is given by (3.6),

by (3.5) then using, this lemma we see that

f l 0 0 \

e-j J is given by S(£) with £  = 2 2 2
! 3 3 3/

thus e^J = (100) using notation (3.10) .
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1 \
Also Je, = 1 .

U /

The following consequence of Lemma (3.11) gives a description 

of the S(aJ which are left or right ideals of R .

(3.13) Proposi tion : (a) S(a ) 3 R with
l

. = a. . or 1+a . . .
i ij i J

(b) S(b) 3 R with
r

= b. . or -1+b..
i J U

Proof:

(i) I = S(a) < R iff RI = I ,. This is

ij

ij'

S(a).S(aJ = S(a) with a = (i-vj)̂ . by (3.4)

By (3.11),

RI = S(b) with b. .rminii-vt+a .,i )
I J ^  J

i e i l .,q}

In particular:

bi+l j = »ind+a^.i-l+ay.... l+aij.ai+1 j, • • *,i+1 )

bij = min(i-l+aij.1-2+a2j.... 1+ai-ij*aij’ai+lj.... i) .

But RI = S(a) , so a = b̂ .
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Therefore

bi+lj = ai+lj and 50 ai+lj s 1 + aij 

bij = aij and 50 aij S ai+lj *

Thus a a . . or 1 + a . ■ .T+lj TJ TJ

Conversely suppose a^. s ai+1j s 1 + a^. f V i,j

Then

aij S ai+lj * ai+2j s ••• s aqj by first inequality

a^j < 1+a^ij < 2+a^^j s ... < i-l+a^ by second inequality.

Thus

aij = minii-1+alj*i-2+a2j " ” *1+ai-1j»aij’ai+1j*ai+2j*-**aqj*i}

min ti'vi. + a..,i} = b.. .
*«{!,..,q} 1J

Therefore S(a).S(aJ = S(aJ and so S(a) d R
i

(b) Similar. □

This proposition gives a method to calculate all R-submodules 

of Re.j and e ^  .

For example:
2

In mod'R3> e£J is given by (11 0) and e2J by (2 11) (using
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notation (3.10)). But clearly there are R-submodules M.. such

Now we have all the tools to calculate the series of R-submodules 

of e^R and Re.. , which,in case q = 3, are given by (3.14). These 

contain, among others, the modules in the radical series and socle 

series, which are the same, in this particular example.

Since D(M)/D(M/N) = DN , where N is a submodule of M
2 'vand D M = M one can easily calculate the series of submodules for 

the injective indecomposable modules of R^ . These are given by

2
that e2J > M.. > e^J . Using (3.13) we see that there are two 

such submodules, namely M-j = (210) M2 = (111) .

Notation: Denote the simple modules in mod R , by T.

i = l,...,q , and in mod‘R , by .

Then e^R/e^J = = e2J/(210) , e2J/(lll) = and we can draw

the lattice

( 211)

(3.15).

>
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(3.14) Series of submodules of the projective indecomposable 

modules in mod :

e-jR . (000)

elJ (100)

e^  (110) 

S-

0 = e,J (111)

and in rnod'R-

Rel 1

T3
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(3.15) Series of submodules for the injective indecomposable

modules in mod'R  ̂ :

D(e1 R)

D(e-| R/e-j J^)

D ^ R / e ^ )

and in mod :

D( Re-,) D(Re2)

D(Re1/J e-|)

D(Re^/Je-j)

Si

D(Re3)

D(Re3/J4e3)

D(Re3/J3e3) 

S3

D(Re3/J2e3) 

D(Re3/Je3)

0 0 0
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§3. The Auslander-Reiten quiver for R,

In this section we apply the method described in §5. Chapter 0, to 

construct the Auslander-Reiten quiver of R .

Since we must start with an indecomposable non-injective R-module, 

we can take a simple module, for example T-| .

Its dual is S-| = e^R/e^J .

A projective resolution of S-| is:

where the maps are as follows:

a

Po is the natural epimorphism

Pi is such that p-j(e2) = a e e-j R e

o U1 2 ° \
= 0 0

°
.since then p̂  (e2R) =

u 0 0 /

/ fn un f12u12 f13u13^

l ar : r = f21U21 f22U22 f23U23
\ f31U31 f32U32 f33U33 /

22ul 2 
0
0

f23U13 w 
0
0

Po •= (100) = e^J ker
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1 0 0 °\
P2 is such that P2 êl) = U21 0 0

0 0 °/

(in fact we do not need to know P2)-

Now we apply d which is left exact:

% dp. % dp.
—  *—  d(e2R) = Re2 <-----  d(e-|R) = Re-j <------  dS-j <-----  0

Then

n dpl dPn0 <---M = Re2/Im dp1 — -—  Re2 <—  ----  Re] <----—  dS1 <---- 0

where n is the natural epimorphism, is exact.

dp-j is such that dp^(r) = ra ,V r e Re, and

We will write M = T2 where this diagram is the minimal lattice 

T,

of submodules of M , that contains the module on both Loewy series

of M . (In this case the radical series and the socle series coincide.)
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We often will use the simplified notation VI = ¡2 

i 3
Now we consider the "push-out" diagram:

0 <-

0 <-

M <-

1,M

M <-

Re 2 <-

1'
F(») «-

dp
Re

DS-| = Re]/Je1 = T] <-

The only possibilities for v are 0 and x.nat (Xek) and 

0 is not in the required conditions. Thus we can take as the 

natural epimorphism.

F(^) is the pushout over \p and dp^ i.e.

DS, 1L Re,
F(*) = ----------------

{(<l'(x),-dp1 (x)):x e Re]}

i is such that i:y •* CO.y] e F(xp) . Since \p is epimorphism, 

£. is also epimorphism.

And ker J = ly e Re2 : t(y) = [0,y] = 0}

But [0,y] = 0 <=> (ip(x),-dpi (x)) = (0,y) for some 

x e Re-| <=> î (x) = 0 , -dp.|(x) = y <=> y e dp^(ker iji) = dp^ (Je-j) =

= Je-j a = Ja = 1
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So ker i = 11 I and F(^) = Re^1

This module is clearly indecomposable. 

Thus

/l\
0 Re-|/

or in another notation

,2 ) "---- Re2/J ®2 ‘----  Tl " °

(3.16) 0 1 <-

is an almost split sequence.

The next step consists in taking the middle term of this 

sequence, N = ■< i and construct the almost split sequence

that begins with N .

We shall look into this example with some detail, also, because 

it gives an almost split sequence whose middle term is decomposable 

and it involves some techniques that have not been used in the first

rather simple example.
i 2

If N =
l \ / 3

then DN =

A projective resolution for DN may start as follows:
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(3.17) ... -> e-| R lLejR -> DN -> 0

And DN = Im Pq =
e] P -D_ e^R

ker Po

The existence of a map p^ , is equivalent to the existence of 

an R-invariant blinear form:

(3.18) n : (e^RlLe^R) x Reg ----- > k

such that the left kernel of n , L ( n )  = {r e e^RlLe^R : 

n(r,g) = 0  , V g £ Reg) is ker Pq and the right kernel of n > 

R(n )  = {r e Reg : n(g,r) = 0 ,V g c e^RiiegR}

1
is ¡1

\2

fO r, ? u,? 0>
{r = ( 0 r22 Ugg 0 | : r ^  e A and rjg^ = r ^  = r ^  = 0}

0 r32 U32 0

.(t)where r|j is the coefficient of the term of degree t of r ^  , 

when this element of A is considered as a polynomial in z .

To give an R-invariant bilinear form (3.18) is equivalent to 

give a matrix

(3.19) W — (7T2lw21 tt23W2 3 ̂
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where it ... is an A-generator of the module D(Au^) = D(e.. R ê .).

r\j
(since this is = D(V.,V.) we use the same notation as in (1.14))

J  *

and W£i» W22 € A .

This equivalence is given by the formula:

n((e1r,e3s) , r'e2) = (tt2] w2] )(e]rr'e2) +

+ ("23 w23)(e3sr'e2) .

We need to know ker pQ , so that we can find the second term 

of the projective resolution (3.17). This will be done by finding 

the matrix W (3.19);by imposing that R(n)

we can easily determine L(n) .

1
1

12 /

Then using W

Wri te w = w<°>W21 W21

w23 = w23^ + W23^Z W21),w23),w23) e k

We want to find elements w2^ ,  w23 >̂ w23^ k such that the

following is true:

n(g,r) = 0  V 9 , k-generator of e-jR JU.e3R <=> r e R(n) 

This can be done as follows:
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(k-generator of 

eiR _iLe3R)

n (g >

10 r12 U12
0 r22 U22 0 ) = 0

\ ° r32 U32 °i

= w (°)W21 r (0) rl 2 = 0

0 u.| 2 0 ' 

0 0 0 (^21W21) ( r 22Ul 2) ” w21^ r 22^ “ 0

0 0 u
0 0 0

13 (1I21W21 ^ z r 32 u12^ ~ 0

(w23w23)(zrl2 u32^ w 23^ r12^ " 0

(W23w23)(r22 u32^ = w23^ r22^ + W23^ r22^ = 0

(tt23w 23) (Zr22 u32^ w23^ r22^ = 0

0 0 0 
0 0 u33 (7723W23) (r32 U32^ _ w 23^ r32^ + w23^ r32^ = °

0 0 0 
0 0 zu33 (1T23W23)(zr32 u32^ : w23^ r32^ _ 0

0 0 0 
0 0 z2u33

(7723W23) (Z r32 u32^ " 0

If we take = 1 = 0 = 1 then this system of

equations is

’ 21

r(°) = 0 rl 2 u
P  = 0 r 22
(0) n
r32 = 0

’23

and R(n) =
1\
1

\2 /
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Thus W = ( tt21 7T23z -̂

Now L(o) = is e e ^ l L e ^ R  : n(s,h) = 0, V h e k- generators 

of Re2> .

/Sllull s12u12 s13u13\
Writing s = 0 0 0

\S31U31 S32U32 S33u33]

and using a method

similar to the one just used we can see that the conditions n(s,h) 

where h is a k-generator of Re2 > are:

Thus

And

s (°) = o 
S11 U

s(0) + ¿01 = 0 <=> (0 ) = (0)
S12 s32 U S12 s32

s(0J = 0 S33 U

0 -s32ul 2 S13U13\
L (n )  =<J| 0 0 0

S31U31 S32u32 ZS33U33/

L(n)J

0 0 g13U13
0 0 0

31U31 Z932U32 "Zg13U33

Thus: L(n)/L(n)J = S2 JLS3 .
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So we can complete the projective resolution (3.17) as follows:

Pi Pn(3.20) 0 -*■ e,R ---> e2R_LLe3R --- — > e^R_LLe3R — -— > DN 0

This i s so because we

1° U1 2 U1 3
by b = ° 0 0

\° 1 C
G
J

ro

0

and so ker p̂  = e3J = e2R .

Now we apply d:

Re2 -U-Re3 <• dpl dp0---—  Re1_LLRe3 <---—  d(DN) +- 0

Re„ JL Re,
If M = — ------ - then:

Im dp-|

nat dp, dpn
0 M <-----  Re2 iLRe3 <--- —  R e ^ R e - j « ---—  dDN 0

is exact.

To get a better description of M we calculate its radical series

Im dp.

0 f12U12 f13Ul3 \
0 zf22U22 zf23u23 . f]2 = f

0 f32u32 z^f33u33 ) fij
fc A

< Je2 Jj_Je3
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Re„lLRe,
Thus M/JM = ---------  = T0 J1T.

de^lL Je3

0 91 2U12 gl 3U13 \
0 zg22U22 Zg23U23 : 9ij e

0 g32U32 zg3 3U 33/

Jea -il-Je3
? Im dp, ^ Jez ±L Je3 ^

Then dM/d M = ----- 1-------------- = ?----------  = T?
,2 ,2 , T m Hn J e 2,-T-L d e + Ini dp,d e2 _LL J e3 + Im dp3 3 1

Im dp-j

2 3 'v,
Using similar calculations , d M/d M = T̂  _LLT3 

Thus the lattice of the radical series of M

Now we want to find the socle series; this can be done as 

follows:

With the method used after (3.19) we can show that:

The bilinear form n1: (e-jR_lLe3R) * (Re2 -U-Re3) k given by

W' ^21 0

;"3i Zlr33
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is such that

'v e-|R -U-e3R
R(n') = Im dp, . Then DM = — ----- —

1 L(n‘)

If we consider the non-singular, R-invariant bilinear form

e.R it e,R Re„lL Re,
_ ★ . I ^  ̂  ̂ 1/

induced by n‘ ,

then we may calculate the socle of M as follows:

Soc M = {m e M : Jm = 0} . But Jm = 0 <=>

<=> n*(n,Jm) = 0 , V n e DM <=> n*(nO,m) = 0 , V n e DM

<=> n*(n',m) = 0 , V n* e (DM)J .

The conditions n(n',m) = 0 , where n' is a k-generator of

n X

L(n‘) Im dp

(DM)J , and are m ^  = 0 m ^  = 0

m^' = 0 . Let Q be the set of these elements.

Thus soc M = — -—  
Im dp

2 ? . 2
Then soc M = {m e M : J m = 0} = {m e M:n*(n",m) = 0 , V n" e NJ }

etc.
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Proceeding analogously we conclude that the socle series is 

g i ve n by 3

Thus the minimal lattice of submodules that contains both Loewy

Now we must construct the "push-out" diagram:

6 - dp,
M <---------- Re2-LLRe3 <---------- Re-|J-LRe2

\l \ I *
1 M Re, N ^ Re,
M <----  F(4-) = — ----- ----  <----- N = <--- 0

{(6(x),-^(x)):x Re-jliRe3} J e2

The only possible endomorphisms of DN are 0 and automorphisms. 

Thus rad End(DN) = 0 .

0

(3.22)

0

So we can take any non-zero map to be ip
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Let \p be given by:

/ 0
4<(xe1 + ye3) = (xe] + ye3) 0

\ 0

U12 °\

0 0

0 0 /

It is easily seen that ker <Jj = Je-j _llRe3 and so

. Re, iL Re,r i n* 1 3 *vIm <p = ---------  = T, .
Je1 -U. Re3

For simplicity instead of diagram (3.22) we may consider

0 -<- M <-
Re3 Ji-Re3 

<5 (ker )

(3-23) | 1„ |

0 -<- M <----- F(i|>) <-

Rei IL Re3

N = Re2/J2e2 <- 0

where 6 is induced by 6 , and

Re 2 -LL Re 3
— S-----I IL N
6(ker i|i)

F(*) = -----------------------------
{(6(x ),-i|i(x ) ) : x e Re-j 1L Re3> .

Since F(î ) = F(ip) , this is the same almost split sequence 

as in (3.22) (up to isomorphism).

Now we want to study the decomposabil ity of F(î ) .



We have the

(3.24) Lemma: Let F be the pushout of 6 , ^ :

= Y/5(ker i(i) <--- ----—  X

1 1*
= F <--------------- —  N

i(6(x),-^(x)):xeX}

If there exists a map w:N -*■ M' such that wiji = 6 , then 

F = M'JL N/Im V

Proof: If such an w exists M' ---------- X

let n:F -*• N/Im be such that: 1
N

nty,n] = n+Im \p
1
1

where: N/Im

Ly,n] = {(y+6(x),n-^(x)):x e X} e F

Let £:N/Im ^ F be such that S(n+Im <p) = [-w(n),n] .

£ is well-defined since: if n e Im * , i.e. n = i(i(x) for 

some x e X , then -w(n) = -ŵ p(x) = -6(x) . Thus C-w(n),n] =

= C-6(x) ,ip(x)D = 0 .

And n£(n + Im i>) = nC-w(n),n] = n + Im <p , thus nC = ^N/Im ri> .
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So F = Im 5 ^i-ker n and Im 5 = N/Im \p since £ is a monomorphism
— — >\f

also ker n = {[y,nl e F : n = <i<(x), x e X} = M' as follows:

Let a : M' ------ > ker n

y ------- > Cy.O] .

Then y = 0 => y e 6(ker ii) => y = 6(x) , iji(x) = 0 => y = 5(x) ,

->k(x) = 0  => t y , 0 1  = C 5(x),-i|<(x)3 = 0  => ( y , 0 )  = (6(x),-ik(x)) =>

=> y = 6(x), x e ker \ji => y = 0 ; so a is monomorphism.

And [y,nl e ker n => n = i(/(x) , x e X =>[y,nl = [y+6(x),n-ij;(x)] = 

= Cy+6(x),0] = [y',03 with y 1 = y + 5(x) . Thus y 1 > Cy,n] .

So F = N/Im i! u l M' . □

If N = Re^/L then to define a map w:N— »M1 , it is necessary 

the existence of an element m e M' such that e^m = m and 

tin = 0 , V i e L . If such an element m exists then we may define w 

such that w(e.j + L) = m . If wt|i = 6 then this map satisfies the con

ditions of Lemma (3.24) and F is decomposable.

[1
Returning to our example: N = Re2/

e = m <=> (1-e*2)m = 0 <=> (l-e2)m € 6(ker
V 1\

UJot
=►OIIiEo< 1 <=> tm e 6(ker vp) , V 1 e 1

>2, 2
m e Re2 iL Re^ .and
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But

6(ker >̂) =

0 0 

0 zg22u22
° \ 

zg23U23

Writing m =

(l-e2)m

\° g32u32 z2g33U33 /

/° C12U12 C1 3U13 ̂
0 c22u22 C23U23 then:

\° c32u32 c33u33 1

1° C12U12 C13U13 \

- p 0 0 e 6(ker ip) <=> c-|2,c^2 e

\° C32U32 C33U33 / c33 e z A

1 0 0
° ^ 1\

Then m = 0 d22U22 d23U23 . If l e 1
2 /

l 0 d32U32 z2d33U33^

easily see that tm e <5(ker \p) .

then one can

Thus

m = m + 6(ker î) =

10 0

0 d22u22

\0 0

Defining w by w(e2 + )= m then

°

d23u23

0

+ 6(ker i|<)
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w^(xe-] + ye3 ) = wP

( fllull 0 f13Ul3^

f 21U21 0 f23u23

 ̂f31U31 0 f33U33 1

I/° fllU12
,  \ 1 ° fn ui2 ° \

0 zf21U22 0 + J^e2 = 0 zf21U22
°

\\° zf 31U32 1 1 ° zf31U31 0 /

m + <5(ker 4») =

0 flld22U12 flld23U13 
0

0

+ 6 (ker )

We want that this equals 6(xe-| + ye3) =
fllU12
0
0

fllU12
0
0

+ 5(ker >)/).

If d22 = d23 = 1 then clearly wp = l .

Re~ It Re.,
Thus F(^) = N/Im — ----- —  =

6(ker ip)

= N/Im 4 itRe2/
/l' l'
1 iL Re,/ 1
11 12/

Thus

I 2

II

(3.25)

is a part of the
Auslander-Reiten quiver of R.



131

Now we construct the almost split sequences that start with 

the direct surnnands of F(^) .

After a certain number of calculations similar to those described 

above we obtain the graph shown in (3.27). Since we already know that 

there are no more than 21 isomorphism classes of indecomposable 

modules (§1, Chapter III), this graph is the Auslander-Reiten quiver 

of R3 .

Remark: Since R^ is a connected Algebra (because if i j ,

HomD(Re . ,Re . )=e. Re.  ̂0) , the fact that its Auslander-Reiten quiverK i j i j
has a connected component (3.27) implies that the Auslander-Reiten 

quiver of R^ , is this connected component (see [Gal pg.43,44).

The matrices T that occur next to each indecomposable modules M 

are the elements of D(W,U) (for some W,U e mod A) , that correspond 

to M by the rule:

* (V, JL V2 JLV U)
(3.26) M = ------ I---- ----- -------------  (= T*(V] UL V2 -U. V3,U))

{f e (V1 J1V2 JL V3,U) : T*f = 0}

Indeed a module M is such that M = e^F) = F(C) (see (3.2)) 

for some F e mmod A . But F = Inn where a:( ,U) D(W, ) for 

some U,W £ mod A (see (2.1)) and by Yoneda's Lemma (0.15), a is 

completely determined by T = a(U)(1y) £ D(W,U) (see §2, Chapter II).

Thus F = Im a => M = Im a(C) with C = V-| 1L V2 _ll V3 and
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Im c(C) = T*(C,U) = (C,U)/ker a(C) , so we have (3.26).

Removing the projective and injective modules (see (3.14), (3.15)) 

we have the "stable quiver". Its "tree class" (see CRt 11, pg.208) is 

given by the graph

We end this chapter with a brief explanation of the symmetry of

(3.27) about the two axes formed by the auto-dual modules:

If R is any k-algebra a map a:R R such that <*(rs) = a(s) a(r) ,
2

a = 1^ is an involution. Then,if U e mod R , (U,k) e mod R with the

rule:

(r^)(u) = ^(a(r)u) , V <f> e (U,k) , r e R , u e U .

The functor

F = Hom^( ,k) : mod R -*■ mod R

2 'vis k-1inear, contravariant, exact, and F = Id , transforms projective 

modules into injective modules and vice-versa (as the duality functor 

Homk( ,k) : mod R m o d ' R  (§3. Chapter 0)).

It is also trivial to see that F transforms irreducible maps (0.26) 

into irreducible maps and if

0 -*■ L — i-> M -3— > N -*• 0 is an almost split sequence 

then 0 i- FL <---- FM <■
Ff Fg

FN <- 0 is also an almost split sequence.
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Now let R = R = Z Au
M i.J U

«(Uij) = V i,j = 1.... q .

and let a:R -*■ R be such that

(t'uj) + (j'ui)-(Jl'ui)
(by 1.8)

U„ . .U .. = a(u . ) .a(u. .) . 
lj Jl V J ' V

This can be extended to any element of R , so a is an 

i nvolution.

Thus reversing all arrows and "turning the modules upside-down" 

we must get exactly the same quiver. This of course can only happen 

if the graph has the symmetry mentioned above.
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PART B

Chapter IV : Notes on almost split sequences II 

§1. Introduction

In this chapter we introduce the notation used in this second part, 

and outline the results contained in some manuscript notes, by J.A. Green, 

written under the title "Notes on almost split sequences II", since 

these have not been published. This prepares the deduction of a "trace 

formula" (this name derives from the parallel with the trace formula 

described in [Gr 2] §3) which will be the object of Chapter V.

Let R be a complete discrete rank 1 valuation ring, with maximal 

ideal M = Rtt . It is well known that R is a principal ideal domain, 

whose ideals are Rtt0 (n € H q ) .

Let K be the quotient field of R , and A a finite dimensional

separable K-algebra, i.e. a K-algebra such that for every extension

field E over K , AE = E 8 A is a semisimple E-algebra (see [CRM]
K

pg. 142). Of course, A itself is semi-simple.

Let A be an R-order in A , i.e. A is a subring of A which 

(as an R-module) is such that A = Ra-| 9 ... 0 Ran where (ap...,a }

is some K-basis of A (see [CRM] pgs. 523, 524).

A typical example, that we shall consider later in Chapter V
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is A = KG , the group algebra, and A = RG , the group ring, where 

R is the complete ring of p-adic integers (see [D], pg.317), K the 

quotient field of R , and G a finite group.

As in the first part we use the notation Mod A for the category 

of left A-modules, mod A for the category of finitely generated left 

A-modules.

Denote by mod°A the category of left A-lattices.

Recall that a A-module X is a A-lattice if X is free and 

finitely generated as an R-module (see CCRM] pg. 524, having in mind 

that over a PID a module is projective iff it is free) and that 

rank X := n if X has a free R-basis of n elements.

Recall also that if X is a A-lattice, then K 8 X can be
R

regarded as an A-module and dim.,(K 8 X) = rank X (because if
K R

{x-|,... xp} is an R-basis of X then {1K 8 x^,..., 1K 8 xn> is a

k-basis of K 8 X) .
R

Denote by mod^A the category of the A-modules Y , which are

finitely generated and torsion as R-modules i.e. V y e Y , there exists

an n(y) e IN : irn^ y  = 0 . Since Y is a finitely generated R-module
Nthis is equivalent to say that there exists N e N : rr Y = 0.

Observe that the quotient X/XQ of a A-lattice X may be a 

torsion A-module. This happens when rank X = rank Xq .
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Taking the special case A = K , A = R we have the categories 

mod R , mod°R , and modtR of the finitely generated left R-modules, 

finitely generated free left R-modules, and finitely generated torsion 

left R-modules respectively.

We have the following:

If X is R-submodule of Y t mod°R then X e mod°R (because 

X is finitely generated and torsion-free, so free as an R-module, 

since R is a P.I.D.).

One can define almost split sequences in mod°A as in (0.28), 

taking all modules and maps in this category.

Then one has the following theorem ( [RS] pg.894).

(4.1) Theorem: (Ausländer, Roggenkamp, Schmidt)

If S e mod°A is non-projective and indecomposable then there 

exists an almost split sequence

E : 0 -*■ N — > E -2-> S 0

in mod°A . Moreover E is unique up to isomorphism. □

Then using the same reasoning as in [Gr 2] pgs. 3,4, we have:

(4.2) Proposition: Let S e nod°A be indecomposable and non-
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projective. Let

E : 0 -*■ N — > E -9-> S 0

be a short exact sequence in mod°A .

Then E is almost split iff N is indecomposable and

Im(X,g) = R(X,S) , V X £ mod°A

where

R(X,S) := {h e (X,S) : ht £ rad End S , V t £ (S,X)} . D

§2. Dualities and the Nakayama functor

One requires three contravariant R-linear functors:

(4.3) Definitions:

(1) D* : Mod R-*- Mod R , such that D* = HomR( ,1) where

I is the injective cover of the residue field R/Rtt

(2) D:Mod A ->■ Mod A0p is the functor HomR( ,R) , and given

X £ Mod A , DX is regarded as a right A-module with rule

(fx)(x) = f(ax) , V f £ DX , X £ A , x e X .

(3) d:Mod A -*• Mod A0p is the functor HomA( ,̂ A) with:

if X e Mod A , then dX is regarded as a right A-module with the rule
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(fX)(x) = f(x)x V f e d X . X e A . X e X .

One needs some facts:

The injective cover I of R/Rtt can be considered as the direct

limit

I = lim R/Rtt" 
n-x»

whose elements are classes with the form:

[a + Rtt"] = U ttS + RTtn+s : s 6 1Nq} .

So we can say that a typical element is a + Rtt11 such that a + Rtt11

is identified with a-s+R7rn+s , V s e IN .

I is not finitely generated. Clearly D*R = I and so D* does 

not map mod R into mod R.

But D* maps mod^R into modtR , since D*X = X , V X e mod^R .

This is because D*(R/RTrn) = R/Rtt0 (n e IN) and R/Rti11 , n e IN , are

the indecomposable modules in mod^R .

D clearly maps mod°A into mod°A0p .

It also maps any M e modtA into 0 . In fact if M e  mod^A , there is 

an N e IN :tt̂ M = 0 . If $ e DM , then <t>(u) = r e R , V u e M .  But 

ttN(J>(u ) = 4>(ttNu ) = 0, thus irNr = 0 . Since R is an integral domain, 

r = 0 . Therefore $(u) = 0 , V u e M , so $ = 0 .
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D is left exact but it maps a short exact sequence in mod°A 

into a short exact sequence in mod°A0pbecause the elements of this

category are free as R-modules. Thus we may say that D:mod°A mod°Aop
2 -vis contravariant, exact and D = id .

Also D sends projectives (resp. injectives) in mod°A to 

injectives (resp. projectives) in mod°Aop .

d is left-exact and maps mod°A into mod°A0p 

(If X £ mod°A , then dX = HomA(X,A) ç HomR(X,A) which is free 

and finitely generated, hence dX is a free and finitely generated 

R-module).

Since d(Ae) = eA for any idempotent e £ A , d maps projective 

modules into projective modules.

W = Dd : Mod a Mod a is the Nakayama functor.

It clearly maps mod°A into mod°A.

§3. Some maps

Let X,Y e mod°A and let

(4.4) eY(X) : dY 8 X ----- > (Y.X)
A

be such that
f a x  ----- > 8f x : y -*• f(y).x .



- 141

(4.5) Notation: Denote by P(Y,X) the space of all maps of 

(Y,X) which factor through some projective object in mod°A (i.e. 

the space of all projective maps from Y to X in mod0a) .

Then

(4.6) Im by (X) = P(Y,X) (see CRD] pg. V7).

Also,one has:

(4.7) Proposition: (i) If P e mod A is projective then

Sp : dP 8 - -*• (P, )
A

is an isomorphism.

(ii) If P e mod A is projective then

BY(P) : dY 8 P -*• (Y,P) is an isomorphism.
A

Pf: see CAR III] pg. 249. □

One has,

(4.8) Dby (X) : D(Y,X) ----- ■> D(dY a X)
A

h ------------->hogy(X)

Consider also the "adjoint isomorphism " (see [Ro] pg.37):
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(4.9) a„(X) : D(dY 8 X) ---- > (X.WY)
A

g ------- > (x -» ( f -v g ( f 8 x))
edY

then

(4.10) aY(X)_1 : (X,NY) ----- > D(dY 8 X)
A

h -------- > (f 8 x ----► h(x)(f))
edY eX

Nov/ define

(4.11) aY (X) = aY (X)oDSY (X) : D(Y,X) - (X.NY)

(4.12) Remark: aY(X) maps h e D(Y,X) to c e (X.DdY) 

defined as follows:

C(x)(f) = h(y -*■ f(y)x)

V x e X , f e dY .

In fact c*Y (X) is the composition

h -  ho6Y (X) -*• (x -► (f -*• ho0y (X)(f 8 x))

hoBY (X) (f 8 x) = h(6f> x) (see (4.4))

but
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with 8f,x e (Y»x) such that 6f,x^y  ̂ = f(y)-x . v y e Y •

So aY (X) is such that

h ----> ç : X -» NY such that

? ( x ) ( f )  = h(sf j X ) = h(y ->• f ( y ) -x )  .

The next proposition is of crucial importance, but,since its 

proof is not necessary for the purposes of this chapter we omit it.

(4.13) Proposition: Let U e mod R , V e mod°R and 8 e Homn(U,V), 

be such that

8i, * L  Ï 6 : k 8 U k 8 V is a k-isomorphism.
K R R

Then

(i) ker e , Coker 8 are torsion modules.

(ii) If T = Coker 6 > then there is a short exact sequence

(4.14) 0 -» DV ---»DU — > D*T -» 0

in mod R , with the map 5 defined as follows:
If u £ DU , v e V , then:

(4.15) 5(u)(v+Im 6) = Cu(u) + ttNR] where u e U , N e IN are

such that ttNv = B(u) . □
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Remark: Observe that given v e V , there exists N € N  such that 

ttN v  e Imp , because Coker B = V/Im s is a torsion module.

Now, returning to the maps we were considering...

Using (4.6) we see that:

(4-16) dY 0 X -■b=b-y-w - ■> (Y.X) nat -> (Y.X)/P(Y.X) - 0 

is exact.

The map B = 8y(X) satisfies the conditions of proposition (4.13) 

In fact K 8 (dY 0 X) = (K 0 dY) 8 (K 0 X) (see [Ro]pg.l03)
R A R A R

= d(K 0 Y) 8 (K 8 X) (because K 8 dY = K a (Y, A) =
R A R R R A

= Horn. (K 0 Y 
M R

. K 0 A) 
R A

= HomA(K 8 Y , AA) = 
R

d(K 0 Y)) 
R

and

K a (Y.x) = Horn.(K 0 Y , K 0 X) (see CCRH]
R M R R

But

d(K 8 Y) 8 (K 0 X) = Hom.(K 0 Y , K 0 X)
R A R B(K8X) h R R

K8Y

because K 8 X (and K 0 Y) is projective, since A is semisimple. 
R R
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Thus

K 0(dY 8 X) = K 0 (Y,X) .
R A  R

Then, proposition (4.13) tells us that (Y,X)/P(Y,X) is a 

torsion module, and there is an exact sequence:

Dgv(X) 6 = 6V(X)
(4.17) D(Y,X) — --- > D(dY B X)------ ----- > D*((Y,X)/P(Y,X)) - 0

A

Let:

(4.18) yY(X) = 6y (X) aY (X)_1 .

Considering (4.11) and (4.18) we conclude that: 

aY(X) YY(X)
(4.19) D(Y,X)—  -----> (X,NY)—  -----> D*( (Y,X)/P(Y,X) ) -►O

is exact.

Therefore :

(4.20) Coker ay(X) = D*((Y,X)/P(Y,X)) .
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§4. The Roggenkamp diagram

In this section we describe a method given in "Notes on almost 

split sequences II", to construct almost split sequences.

This is a particular case of the following problem:

Given S e mod°A , construct a short exact sequence

0 - N — > E -2-> S ->■ 0

in mod0 A , in such a way that one has an explicit expression for 

the subfunctor Im( ,g) of ( ,S) .

Green solves this problem by constructing what he calls the 

"Roggenkamp diagram" (because this construction is based in some 

results by K. Roggenkamp).

This is done by using a method similar to the one used in the 

construction of the Auslander-Reiten-Gabriel diagram (see CGr 21; see 

also (2.5), Chapter II).

Let M e mod°A and let

(4.21) P — P-Q— > M -> 0 

be a projective resolution of M . Then

(4.22) 0 ftM P
Po

•> M - 0
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is a short exact sequence, with P projective and fiM = ker Pg .

Apply d to (4.22). Then

0 dM — -,---> dP dnM
dP0

is exact in mod°A0p .

Let C = Coker dpQ .

Then

(4.23) O + d H  — > dP nat > C 0

is exact, and C s d n M , thus C e mod°A0p .

Therefore (4.23) is an exact sequence in mod°A0p .

Apply D and write DC = BM . Thus

(4.24) 0 BM --------- > NP ------ > WM ->■ 0
j = D nat Wp0

is a short exact sequence.

This is such that if M is indecomposable non-projective and

(4.21) is minimal (i.e. Ker Pg s rad P) , then BM is indecomposable 

(see CR] prop. 2, pg.1369).
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Applying D( ,X) to (4.21) we get the exact sequence:

D(P0 ,X)
D(P,X) -----------> D(M,X) ----- > 0 .

Applying (X, ) to (4.24) we obtain the exact sequence:

0 -* (X, BM) -------- > (X,NP) ---------- > (X.NM) .
(X,j) (X,Wp0)

Then we may consider the diagram:

D(P0 ,X)
D(P,X) -------> D(M,X) ------- > 0

cp(X)i i aM(X)

0 -V (X,BM) ----------- > (X,NP) -------- > (X,NM) ------ > D*( (M,X)/P(M,X)) 0
(X, j) (X’WP0) V x>

It is commutative because aY(X) is natural in Y ; and the sequences 

are exact. Namely the exactness at (X, NM) is for the following reason:

Since oip(X) is an isomorphism and D(pg,X) is an epimorphism, the 

commutativity of the diagram gives Im(X,Npg) = Im aM(X) . By (4.19),

Im aM(X) = ker yM(X) .

Now consider any module S e mod°A and any map e e (S, NM) and 

construct the pull-back diagram :
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i Mp0BM — ■> NP ------ » NM

(4.25) |i d |E

E(e) 0 --- > BM E ( 0 )

Let a0(X) = YM(X)(X,e) . Then one can construct the "Roggenkamp 

diagram", which is commutati ve, and where all rows are exact, as follows:

D(P0 .X)
D(P,X) ---------> D(M,X) -> 0

ao(X)

(X,j) (X,Np0) ym (X)
(4.26) 0 (X,BM) ----- > (X.M3) ----- — > (X,WM) — --- > D*((M,X)/P(M,X) ) + 0

id (X.i) (X,0)

0 - ( X, BM ) ----> ( X, E ( 0 ))-----
(X,f) (X,g)

(X,S)
ae(X)

id

D*((M,X)/P(M,X))

In particular

(4.27) Im( ,g) = ker a0 .

By Yoneda's lemma (0.15), a„ is completely determined by the0
element
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(4.28) T0 = a0(S) (ls) = ym (S)(S,6) (1$) = YM(S)(e)

e D*((M,S)/P(M,S)) .

Next one can see how an almost split sequence is a particular 

case of E(e) in (4.25).

One can identify D*((M,S)/P(M,S)) with the R-module consisting 

of those elements T e D*(M,S) , which vanish on P(M,S) .

Thus each T e D*((M,S)/P(M,S)) defines a map

(by Yoneda's Lemma (0.15)). In particular TQ (4.28) defines
0

V »  •
Using the commutativity of the diagram:

aT : ( ,S) -> D*(M, )

■> D*(M,S)

-> D*(M,X)

one sees that:

CaT(X)(f)3(g) = CD*(M,f)(T)](g) = T(fg) , V g € (M,X) .
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Thus

Ker aT(X) = {f e (X.S) : T(fg) = 0 , V g e (M,X)} .

Since T vanishes on P(M,S) it is clear that P(X,S) s 

Ker ay(X) or;in functorial terms, P( ,S) s Ker a-p .

Now take T = T. (4.28) , M = S ; then:

Ker a0(X) = {f e (X.S) : T0(fg) = 0 ,V g e (S,X)> =

= {f e (X.S) : fg € Ker TQ, V g £ (S.X)} = {f e (X,S):f(S,X) < Ker T0}

But f.(S,X) is a right ideal of End(S) . Thus

(4.29) Ker aQ(X) = (f e (X,S) : fg e maximal right ideal of
0

End(S) contained in Ker T , V g e (S,X)}

Now suppose S is indecomposable, take e e (S, NS) , and 

construct E(e) as in (4.25).

Proposition (4.2) tells us that E(9) is almost split sequence 

if and only if BM (= BS) is indecomposable and Ker aQ = R( ,S) , where:

(4.30) V X e mod0A, R(X,S) = (f e (X,S):fg e rad End(S), V g e (S.X)} .

From (4.29), (4.30) we have:
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Ker aQ = R( ,S)<=> (maximal right ideal of End S contained 

in Ker T_) = rad End S .u

Since rad End S is the unique maximal right ideal of End S 

(because S is indecomposable), this is equivalent to

T0 + 0 , T0(rad End S) = 0 .

And BS is indecomposable if S is indecomposable non-projective 

and the presentation (4.21) is minimal as we saw before.

Thus:

(4.31) Proposition: Let S e mod°A be indecomposable non-projective. 

Take M = S , assume that (4.21) is minimal and let e e (S,NS) . Then 

construct E(e) as in (4.25).

Then E(e) is almost split iff TQ = ys(S)(e) e D*((S,S)/P(S,S))

(see (4.28)) satisfies the conditions

(4.32) Ta f 0 , T (rad End S) = 0 . □

Remark: Since S is not projective, P(S,S) | End S . Thus 

P(S,S) s rad End S < End S , so there exist an element T e D*(S,S) which 

satisfy (4.32) and T(P(S,S)) = 0 , so T e D*((S,S)/P(S,S)) . Since the 

map Yj(S) (see 4.26) is surjective, there exists 9 e (S,NS) such that

Te = (s ) (9) •
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Chapter V : A "trace formula" for TQ 

§1. Introduction

As in §3 of [Gr 2], it is possible to present an explicit formula 

for T. (4.28). But the method used to deduce this formula is very 

different from that used in that paper.

We need to have in mind a few facts relative to separable algebras. 

These are a particular case of Frobenius algebras:

Let K be a field.

A Frobenius algebra A is a finite dimensional K-algebra such 

that ftA = D(Aa) (see CCR] pg.413).

It can be proved that this is equivalent to the existence of a non

degenerate bilinear form:

(5.1) f : A x A ------- > K

such that f(ab,c) = f(a,bc) (CCR] pg.414, 415).

The following facts are taken from CCRD pg. 481 , 482:

Given a basis } of A let {b-j,... bn) be a dual

basis with respect to f , i.e. such that f(a^,bj) = V 1,j=l,..,n
n

For each a e A we can consider the element c(a) = T. b. a a. ,
1 1 1

which is in the center of A , C(A) .
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Then we may consider the ideal of C(A) :

(5.2) r(A) = (c(a) : a e A} c C(A)

which is independent of f , and of the chosen basis {a.}, {b^} .

And one has the following characterization of separable algebras:

(5.3) Proposition (D.G. Higman): The K-algebra A is separable

iff A is a Frobenius algebra and r(A) = C(A) . □

Now we want an explicit formula for:

Te = (see (4.28))

where ym = «M o c^1 (see (4.18)).

Thus T is the result of the following sequence of maps:0

(S,e) -1
(5.4) (S,S) ■> (S.DdM) ■> D(dM 8 S)

A
•> D*((M,S)/Im bm (S))

S •> 0 -> ( ( p 8 s ) —— > e(  s ) ( p ) ) -----> 6 (p)  = T0

6(u) is such that, for given h e (M,S) ,

6(y)(h+Im eM(S)) = f(y,h)

and f is given by:
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f : D(dM 8 S) x (M,S) ------> I (injective cover of R/Rir)
A

(u,h) ------------- ■>[y(E Pi 8 Si) + A ]  =

= iz e(s.)(p.) + A ]

where ŝ  e S , p. : M -*• A , N e IN are such that:

(5.5) eM (S) (I p. a s.) = A

(see proposition (4.13)).

Therefore,
Ngiven h:M -*• S we must find N e IN such that tt h e Im B„(S) 

and Pi e dM , s. e S such that (5.5) is verified.

§2. A projective endomorphism of M

The first question we have to answer is:

Given h e (M,S) , find N e IN such that A  e Im 3M(S) ,

i.e. such that it h is a projective map (see (4.6)).

Observe that, since the set of projective maps P(M,S) forms an 

ideal in the category mod°A (see (0.12)) it is enough to answer the 

question:
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N(5.6) Find N e IN such that ir .1^ is a projective endomorphism 

of M .

Recall that we are assuming that R, K, A, A, satisfy the conditions 

given in Chapter IV, si. In particular A = R â  I ... IRa^ , where 

{ai,...,a } is a K-basis of A , and A is a separable K-algebra, 

with a non-degenerate associative bilinear form f:A x A K (see 5.1)).

Let (b.|.... bn> be a dual basis of {a-|,...,a } with respect to f .

Since A is separable, and 1 e C(A) , the center of A , proposition

(5.3) tells us that 1 e r(A) (5.2), thus

n
1 = z b. a a. 

i=l 1 1

for some a e A .

If ai = b ^  , then

n

Consider the element: 

n
(5.7) b = Z a. 8 a. e A 8 A .

1-1 1 1 K

Since A 0 A = K(a 8 A) , there exists rn « R such that 
K R u

(5.8)
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(Observe that it is enough to find rQ :r0 9f. e A ,i = l,...,n). 

Now consider the map:

m : A 8 A ------ » A
K

such that x 8 y ------ » x.y .

Denote also by m its restriction to A 8 A :
R

(5.9) m : A 8 A ------ » A .
R

Let

f : A ------- »• A 8 A
K

be such that 1 ------- * b

n
Then mf(l) = m(z a. 8 a.) = 1 , i.e.

1 1 1

Let fQ be the restriction of rQf to

(5.10) fQ = rQf : A ----- * A 8 A .
R

Then mf0(x) = m(rQf(x)) = rQ mf(x) = rQ x,

(5.11) mfQ = rQ 1A .

Now apply the functor - 8 M to (5.9):
A

mf = 1A .

A :

V X e A , 1 .e.
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(5.12) p = m 8 L  : A 8 A 6 H = i 8 H + A 8 H = H .
A ” R A R A

p is clearly an epimorphism and A 0 M is projective. So this is a
R

projective presentation for M .

Now applying the same functor - 8 M to (5.10) we get:
A

(5.13) w = fQ 0 1M
A

= r^ b 0 m
A

and

p o w = (m 0 lM)(f0 8 ^  = mfo ® = r0 "*A 8 = r0 1M '
A  A A

Thus rQ-1M = P o w , and so rQ 1M factors through the projective

module A 0 M i.e. r~ 1M is a projective endomorphism.
R u m

Then:

(5.14) Proposition: Let A be a finite dimensional separable

K-algebra, A an R-order in A such that A = R a-j 9.. .9 Ran for

some K-basis 
n

{a*| »... of A , a.
'V/

.... an elements of A such that

1 = £ a.a. , 
1 1

and rg t R such that 'V/
ro ai £ A , V i = 1,... ,n •

Then

V M e mod0A , rQ • Im

M = A 0 M
A

m(= 10m)

-> A 0 A 0 H = A 0 H 
R A R

n
-> Z rftâ. 0 a.m =

1 U 1 R 1

is a projective endomorphism of M . □
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(5.15) Remark: In the particular case we are considering we
Ncan take rg = tt .u , where u is a unit in R , and N e INg .

§3. The map SM (X)

The next proposition gives a way of finding an element t e dM a M
A

such that Bm (M)(t) is a given element of P(M,M).

(5.16) Proposition: Let M e mod°A be such that

s P0
(5.17) 0 + H '  + ® A y. = P — -— > M 0

i=l 1

is a projective presentation of M . Let g e P(M,M) , so g factors 

through P , i.e. there exists w:M P : pQw = g.

Consider the following element t e dM 8 M ;
A

s
(5.18) t = I y. 8 m-

i -1 1 1

such that

( 1 )  mi  = P0 ( y i ) . i  = l . - . - . s  .

(2) ŷ  e dM is defined by

s
(5.19) w(m) = T. ys(m).y. , V m e M .

i=l 1 1

(5.20) Bm (M)( t ) = g .

Then
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s
Proof: Since P = ® Ay. is a direct sum, the expression

i=l 1

(5.19) makes sense and gives a definition for the maps u. f dM = (M,AA) .

s
Let m e  M . Then C8M (M) ( t ) l(m) = z u^mj.m^ = 

s s
= z ui(m).p0(yi) = pQ( = pQ w(m) = g(m) .

(See (4.4).) □

In particular we may consider the conditions of proposition (5.14), 

that g = rQ.lM , and that we have a projective presentation as in (5.12)

s s
Suppose M = ® Rm. ; then P = A 8 M = ® a (1 8 m.)

i =1 1 R 1 R 1

and P = A 8 M --------- > M -+ 0 is a projective presentation
R p0

of M with Pq ( 1 8 m..) = m.. , i = 1.... S .

Also

s
w(m) = z gj(m)(l 8 m.) . 

j=l J J

But

w(m) = (fQ 8 lM)(m) = z rQ a. 8 a ^
l= 1 R

s
Let a^m = z r..(m).m. with r^im)

(see (5.13)). 

e R .
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s n ^Then w(m) = E rn ( E a. r..(m)) 8 m. = 
j=l u i=l 1 1J R J

= E r„( E a, r. .(m))(1 8 m ) .
j=l u i=l 1 1J R J

Comparing these two expressions of w(m) we get

pj(m) = r o ^ i  rij(m ) •

Thus :

(5.21) Proposition: Suppose conditions of proposition (5.14) are 
s overified. Let M = © Rm. e mod A and suppose that a . .m e M is given 

j=l J 1
by the expression

s
a ..m = E r..(m).m. with r..(m) e R .
* j _ l ' J  J ' J

s
Consider the element x =  E p . 8 m. e d M B M ,  where u- is such that

j=l J J A J

Wjtm) = rQ . ^  2 . r.d(m) .

Then

8 m ( M ) ( t ) - rQ 1 M .
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Proof: 6M(M)(x)(m) = z pH(m).m. =
j=l

n „ s'V»
1 (rn 1 ai = rn 1 ai( s ri i W ' m i) =

j=l 0 i=l 1 1J J u i=l 1 j=l 1J J

= rQ ^ a -.a.m = rQ 1 .m = rQm = rQ lM(m)

Using naturality of BM(X) in X , and given any S e mod A , 

h € (M,S) ,

dM8h

dM 0 M
A s

bm (m )

z p .0m. 
j=l J J

Z p  .0h(m.) 
j=l J J

dM 8 S
A bm (s )

-> (M,M)

r0 ^

r0h

(M,h)

(M,S)

we obtain BM (S)( z pj h(nij)) = rQh .

Now we can return to the expression of T0 (5.4) and take the 

following conclusion:

(5.22) Theorem: Let R be a complete discrete rank 1 valuation 

ring, with maximal ideal Rtt ; let K be the quotient field of R and
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A a separable f.d. K-algebra. Let A be an R-order such that

A = Ra-j ® ... ® Ran for some K-basis {a-|,... ’V  of A , and

a,,...,a elements 1 n of A such that 1

Let N e IN be such that ir e A ,V i = 1,... ,n

Let M e mod°A and suppose that M = © R m. .
1 1

Let p. £ dH be given by
J

N n ^p,(m) = tt E a . r. .(m) j = l,..,s 
J i=l 1 1J

where the r.jj(m) £ R are such that 

s
a.m = E r..(m).m. .
1 j=l 1J J

Let S e mod°A . Then:

Identifying D*((M,S)/P(M,S)) with the R-module consisting of those 

T € D*(M,S) which vanish in P(M,S) , we have:

For each 6 £ (S,NM), TQ = y m (S)(6) £ D*(M,S) is given by:

(5.23) T (h) = C ? (e(h(m.)))(P .) + ttNR ]  , V h e (M,S) . □
0 j=l J J

Remark: (5.23) may be called a "Trace formula" for T„ in parallelU

with formula (3.11), pg. 18 of CGr.2].
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§4. Case where A is symmetric

Now we assume that A is symmetric, i.e. the non-degenerate 

associative, bilinear form f (see (5.1)) satisfies the condition:

f(a,b) = f(b,a) V a,b e A

(see CCRH pg.440).

Suppose also that f induces a non-degenerate R-integral form 

in A .

Let A : A -*■ K be such that

A(a) = f(a,l) (= f(1,a)) , V a c A .

Then

A(ab) = f(ab,l) = f(a,b) V a,b e A .

Since f induces a non-degenerate R-integral form in A , 

then A(i.) c R , V i 6 A . So we may consider

A : A -*■ R .

As in CGr. 21 pg.22, for each X e mod°A consider the map 

U(X) : dX ----> DX

g ■> Ag
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This is an isomorphism in mod°A013 :

In fact (Xg)(x) = 0,1/ x e X => f (1 ,g(x)) = 0 , V x e X

=> f (JL,g(x)) = f(l,ig(x)) = f(l,g(tx)) = o , V i € A
x e X

=> g(x) = 0 , Y x e X = > g = 0 , so UOO is injective and

if h c DX , let g : X + be such that x -> h(x) . 1̂  .

Then

X (g(x)) = X(h(x).l ) = h(x).X(lA ) = h(x) , thus U(X) is surjective. 

Since, given t : X -*■ Y X,Y e mod°A the diagram 

dX <--d- - dY

U(X)I Ju(Y) commutes, U is a natural isomorphism

DX <------ DY
Dt

between the functors d and D .

Then

W = DU gives a natural isomorphism between D^ = Id and Dd = W . 

Remark: We see that BM (c.f. (4.24)) is r.M , in this particular case. 

Thus

(5.24) W(X) : X 

x

--> NX

— » (g (Xg)(x)) V g e dX
is an isomorphism.

Then for every S e mod°A, one has the isomorphism (since S is
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projective as R-module)

(S.W(X))
(S,X) ----------------- > (S.NX)

* ------------------- > W(X)o* V il> e (S,X) .

Now consider formula (5.23):

Let 9 e (S.NM) . Then 0 = W(M)oi)> for some <p e (S,M) . 

Then , for all h e (M,S)

(e(h(mj)))(Pj) = ((W(M) o ♦)(h(mj))(Pj) =

= (W(M)(«h(mj)))(Pj) = (APj)((<t>h)( h k )) by (5.24) .

Let

a . = X p . e DM . 
J J

Thus formula (5.23) gives the following,where we write l/̂, 

instead of Tw(m)q+ :

lUh) = [ e 5i((4>h)(m .)) + wNR] , V h e (M.S)
* j=l J J

Observe that o. is such that
J

N na,(m) = it E r. .(m)X(a.) 
J i=1 U  1

j = 1 s



where r . . e  DM is such that
* J

s
a.m = z r . .
1 j=l 1J J

And

X(cL) = xib^a) = f(b.. ,a) where {b..} is the basis dual 

of ia.j} with respect to f .

Let a = a,a, + ... + a a , a. e  K .I ' n n 1

Then

f(bi>a) f(b.,a,a, +...+ ct.a. + .. a a ) = ' i l l  ii n rr

“ i f <ai ’ ai> = ai •

Thus

r\j
X(a.j) is the coefficient of â  , when a is written in terms 

of the basis {a-|,..,a }

Therefore we have:

(5.25) Proposition: Let R, K, A, A = Ra-j 0...® Ran verify 

the conditions in (5.22). Suppose,further, that A is symmetric and 

f:A x A -*■ K is a non-degenerate associative symmetric bilinear form 

which induces a non-degenerate R-integral form in A
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Let {b.}._, be the basis dual to {a-}. ,i i= i )• • vn i i

respect to f . Let a e A be such that

1 = I b- a a. 
i=l 1 1

and suppose that a = a^a^ +...+ a^a^ +...+ “nan « K

Let N e IN be such that ir̂ b̂ .a e A V i = l,..,n .
s

Suppose M,S e mod0A , where M = ® R m.
1 1

Let r. . e DM be such that 
• <3

a, m = z r.,(m)m. 
i j=1 U  J

and a. e DM be such that 
J

Then

Na.(m) = tt e  r. .(m)a. , V m e M , j = l,..., 
J i=i U  i

V a c (S,M) , = Tw(m)o  ̂c D*((M,S)/P(M,S))

(5.26) U (h) = [ z o.((ah)(m.)) + irNR] 
* j=l J J

wi th

, i = 1,...n)

S .

is given by

V h e (M,S) .
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§5. Case where A is the group ring

Let G = ilg = xn> be a finite group of order n > 1 .

Suppose that R is a complete discrete rank 1 valuation ring

with maximal ideal P = (n) , such that the characteristic of its
Nfield of fractions K does not divide n . Let n = u.-rr where 

u is a unit in R and N e IN .

If the characteristic of the field of fractions K of R does 

not divide n , by Maschke's Theorem (see [CRM] pg.42), Kg is 

semisimple, i.e. rad KG = 0 .

Then KG is separable (see CCRM] Theorem 7.10, pg. 147).

(5.27) Example: If -n is a fixed prime, consider the ring of 

ir-adic integers i.e. the subring of Q consisting on all rational 

numbers a/b such that -n/f b . Let R be the "complete ring of 

n-adic integers" (see CD] pg. 316, 317). Then K is an extension of 

Q so has characteristic zero.

It is well-known that KG is a symmetric algebra, with

f : KG x KG - K

( T a x  
xcG x

. l b x) 
XeG X

E a .b
xy=i x y

Clearly f induces a non-degenerate R-integral form in A = RG .
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Thus conditions of (5.25) are verified.

We can take (1 = x.j .x^,.. .xn> = {a^}^_^ n and then

{1G = X1 ,x2 ’' “  xn } {V i = l .... n *

Since 1 = — £ x.x  ̂ then a = — —  1,
I G I X eG |G|

Thus

a,  = — , a ,  = 0 = 0 .
1 IG| 2 n

Since n = u .tt̂  , N £ N is such that ir̂ b̂ .a e RG i

Then if M = 8 Rm. , let a. e DM be such that
i=l 1 3

o.(m) = TTNr, -(m)
3 13 IG I

where the r ^  are such that

1 .m = £ r, .(m) .m .
j=l 13 3

i .e. {r, .}. , is a basis of DM dual to {m.}
lj J=1.... s J

* „N *
r , = m . and o . = —  m . 

IJ «3 3 I g J *3

Thus
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Thus

s  „ N N
V h e (M.S). U (h) = C E ^—  m*((*h)(mi)) + irwR] =

* j=l 1G | J J

N s  N
= _ L _  [ E ((<J>h) (m.)) + * R] =

|G| j=l J J
N M

= -—  CTr(4>h) + ttinR] where Tr(4>h) is the 
|G|

trace of the endomorphism <j>h of M .

Thus:

(5.28) Theorem: Let G be a finite group, R a complete 

discrete rank 1 valuation ring with maximal ideal P = (n) , such 

that the characteristic of its field of fractions K does not divide

|G| . Let N e N be such that |G| = irN.u (u is a unit in R). Let 

s
M = ® Rm. , S e mod RG .

1 3

Then for each 4> e (S,M) , = Tw(m)q(|) e D*( (M,S)/P(M,S)) is given by

N N
(5.29) U (h) = —  CTr(<(.h) + * R] V h € (M.S) . □

<t> Ini

§6. Examples

We end this chapter by considering some examples of application of 

theorem (5.28) to the construction of almost split sequences.
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(i) Let p be a fixed prime.

Let R be a complete discrete valuation ring with maximal

ideal tiR 9 such that p £ ttR .

Let G be a p-group wi th |G | N
= n = tt .u > 1 where u is a

unit in R , and N e IN .

Let rg = R , be the trivial RG-module i .e. R wi th the

action: if g e G , X £ R then gX = X .

R is an indecomposable non-projective RG-module (because n > 1) 

Consider the following projective presentation of R :

(5.30) 0 ---- > nR — ---- > A = RG — ----> R -*• 0

where

e( ï. r x)= £ r is the augmentation map ([CRM], pg.189), 
xeG x XeG x

i is the inclusion map and

nR = Ker e = { £ r x : £ r = 0 } =  ® R(x-1) .
xeG x x xeG-{l}

Since G is a p-group, nR ç rad RG = nG + ( ® R(x-l))
XeG-{l}

(CCRMl pg.115), thus (5.30) is minimal.

Now we must find <t> c End^^R such that:

(1) (EndRGR) * 0 .
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(2) (rad EndR(,R) * 0

where is given by (5.29), i.e.

U (h) = —  [Tr(<f>h) + ttNR] = u'1 .CTr (4>h) + ttNR]
’ |G|

V h e EndR(,R •

Since EndR(.R = {X.1R : X e R} , condition (1) is equivalent to

y  1r > + 0 .

But lyip) = u_1CTr * + ttNRD = u-1 C<t>( 1) + ttNR] so U^(lr) + 0 

iff <(.(1) i ttNR .

One has ttR £ J(R) and R/ttR is a division ring, so nR = J(R) ; 

since EndRGR = R , rad EndR(.R = ttR so condition (2) is equivalent to

y - y  = o .

But (^• 1R) = U-1[ir<(>(l) + itNR] = 0 iff *(1) e ttN_1R .

N-lThus we may take $ = tt 1r .

Now consider the pull-back diagram:

0 8 R(x-1) — !— > RG e > R
xeG- U  } i 1 “t"

II l

(5.31) o ^ 8 R(x-l) -----> > R
XeG-il> f 9
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with F = {(r, I r x) e R © R G | V
xeG x

= { I r x | I r eirN"^R} (since R is an integral domain) 
XeG X X

= ( © R(x-1)) © RttN_1 .1 .
xeG-il}

Then (5.31) is an almost split sequence.

The middle term, F , is indecomposable. To show this we start 

by proving the

(5.32) Lemma: Let a e KG and let pg:KG ■+ KG denote the 

"right multiplication by a" . Then

K-basis for KG (where K is the field of fractions of R) , so

where

C = RttE, © ( z Rx) , with E 
1 xeG-{l}

Proof: The R-basis "*1 , x-1 | x e G-{1}} of F is a

K 8 F = KG 0 F = KG
R RG

Therefore any RG-endomorphism of F can be extended to a KG-endomorph ism
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of KG . In other words:

EndRGF = {f|F: F - F f e EndKGKG and f(F) £ F} .

It is well known that End,.„KG = {pi\b a
(From now on, p, will be written p d p  a

EndR„F = {pa : a e KG and Fa

: a t KG) = (KG)0p .

, if Fa £ F) . Then:

£ F} .

But

Fa £ F <=> ba e F , V b e F <=> ba e RG and e(ba) e ttN 

(see definition of F) , V b e F .

Since e(ba) = e(b).e(a) and c(b) e irN ^R , then e(ba) £ ir^R , 

V b e F , iff e(a) e R .

It is enough to consider the condition ba e RG whenever b is 

an element of the basis of F .

Thus if a = t a .x , a e K , we must have: 
xeG x x

= £ tt̂  ^a .x e RG <=> ir^^a e R , V x e G
xeG X X

and

V g e G, (g-l)a = £ a (gx-x) = £ a , (y-g'^y) = 
xsG yeG g . y

= £ a _1 y - £ a .y = £ (a -a )y e RG <=> a -a e R , V g,y e G
yeG g . y yeG y yeG g . y y g • y y
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Then: EndRQF = {pa : a e C} , where

XeG

xeG

xeG

Let E, = XeG
n

i .x e KG I x 1
N-lTT ax 6 R and ax'ay e R > v x»y e 6>

i .X e C . Then a == E a. 
XeG '

x + E (a -a,)x . 
X eG- {1 } X 'X

) of C , ax-ai c R and tt̂  â-| = r̂  e R ,

ITU ,
tt.1 (urj) 1= TT.—n r.j with r̂  = ur^ ,

i  J o  x) ■

X
- , r = ax - al • ThenX

= r, ttE1 + Z rv',x .
XeG-{1} X

Conversely, given an element a with an expression of the form

(5.33), it is trivial to see that it belongs to C .

Since the expression (5.33) of an element of C is unique, we 

can wri te:

(5.34) C = R tt E, ® ( E Rx). □
1 xeG-{l}

We also have:

(5.35) C is an R-order in KG with { it E^,x |x e  G-{1}> as 

an R-basis.
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Observe that 1 e C has the following expression in terms of 

this R-basis:

1 = ---  (ir E, ) - £ x
* 1 xeG-{l}

Since EndRgF is anti-isomorphic to C , to prove that F is 

indecomposable it is enough to prove that C is local.

Let k be the residue field R/nR , and let J be the ideal 

(ir E-| )C + ttC of C .

Then C/J is a k-algebra with basis

ix + Jlx e G-{1}}

and multiplication given by

(x+J)(y+J) = xy + J if x,y,xy e G-il>

(x+J)(x_1+J) = - £ (y+J), V x e G-il> .
yeG-ill

Consider the k-algebra kG/T where T = k( £ x) .
xeG

It has the basis (x+T : x e G-{1}} and multiplication

(x+T)(y+T) = xy + T if x.y.xy e G-{1>

(x+T)(x-1+T) = 1+T = - £ (y+T) .
yeG-il)

Thus clearly

C/J = kG/T
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and this is a local algebra because kG is local and T s rad kG

(since z x = Z (x-1) + , and N f 0) .
xeG xeG-{l>

?
Also J s rad C (since J ç iC £ rad C) so C/J local implies 

C local.

Thus F is indecomposable.

(ii) Suppose R,G verify the conditions of (i) with G = <x> ,
Na cyclic p-group of order n = tt u with N a 2 .

Then

F = ( V r ^ - I ) )  ® RttN_1.1 = RG(x-l) + RG ttN_1 
i —1

is indecomposable by (i) and non-projective (because N s 2) .

Let y:(RG)2 ------ > F = RG(x-l ) + RG ttN_1 be such that

(1,0 )

(0 ,1 )

■> x-1

-> IT
N-l

Then

n-l . n -l . n -l . n -l N , ,
y ( z a..x , z b.xJ) = z a.x (x-1) + z tt b.xJ = 

i =0 1 j=0 J i =0 1 j=0 J

n-l m_i r'-1 M_1 -i
= z it b. + z (a. ,-a. + tt b.)(x -1) 
j=0 J i=l 1-1 1 1
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and

n-l , n-1 , n-1 N_,
ker y = {( z a.x , r b,xJ) : z b . = 0 ; a. ,-a. + if b. = 0 , 

i=0 1 j=0 J j=0 J 1 - 1 1

i = l ....n-1} .

Now consider formula (5.29)

U (h) = CTr(4>h) + irNR ], V h e EndRfiF . 

We know that

End orF = {p ¡aeRuE, ® ( £ Rx)} 
Kb a 1 ueG-{1}

n-1
where E, = —¡r ( t x1) (see (5.32)) . 

1 w i=0

With respect to the basis {x’-l, ttN  ̂1 : i = 1,... ,n-l} of F ,

and

p r has matrix Y =/ 
*E1

px has matrix X

!\

71 /nxn

-1 -1 -1 ... -1 -1
1 0 0 0 0 o
0 1 0 0 0 0

0 0 0 1 0 0 10 0 0 0 0 1 /nxn
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Thus the elements of EndR(,F are such that its matrix with 

respect to the given basis of F is

(5.36) $ = r ^  + r^ 2 +...+ r ^ X 0-1 + sY (r^s e R) . 

Then

Tr i = Tr(r-|X) +...+ Tr(rn_-|Xn + Tr(sY) = sir

Thus

(5.37) t t  | Tr 4> »  V <p e EndRgF .

A1 so

n-1 . n-l •
rad(EndDrF) = rad C = ( ® R(x-l) 8 Rtt) (RttE-, 8 ( r Rx1)) 

Kb (ANTI) i=l i =1

is R-generated by:

(x1-1)ttE1 = 0 , ( x M ) x J , tt2E1 , ttx'1’ (i,j = 1,...,n-l) . 

Then with respect to the same basis of F we can show that:
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p . . has matrix A. . =
(x-l)xJ 1J

and

Tr(A. .) = 0  V i,j = 1,... ,n-l
■ J

1 1 1 . • . 1 1
1 0 0 .. •
0 1 0

-1 -1 -1 -1 -1
1 0 0
0 1 0

N-l-7T
\

N-l
it

has matrix

and Tr(Y) =

p . has matrix 
TTXJ

and Tr(Z.) = 0 V j = l,...,n-l
J

Thus

(5.38) | Tr h V h e rad EndR(.F .
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Now suppose that with respect to the same basis of F , 

given by the matrix

N-2\

is

(5 .3 9 )  $ =
N-2

N-2
V l

Then

[ T r (4> 1F ) + ttNR] ± 0 .

Let h e rad EndR(.F be given by H [hij]n*n

Then

<t>h has matrix N-2.
11 hnl • . nN-2hnn
N-2.

* hnl •
N-2.

• 17 nn

N-2.
hn1 •

N-2.. it h „ nn
N-l.

r  hnl
N-l.

* 17 hnn

and

Tr(<t>h) = ^N'2(hnl + hn2 + ... + hnn-l

Now observe that/
0 1 \ * -f hnl •

n»n

+ irh ) nn'

■ /
wh

nl

nl

nn
wh nn

e rad EndR(,F , thus tt I (hn-j + hn2 + ... + nhnn) by (5 .3 8 )  .
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Thus Tr(i)>h) e ir̂ R

i.e. [Tr(<f>h) + ttNR] = 0 , V h e rad EndRgF .

Now consider the pull-back diagram where p is given by (5.39):

>2 r n-1 N-l0 ---> ker y ----► (RG)*■ — L-*F=i|1R(x1-l) 9 Rir ' ----> 0

(5.40) 0 ---->ker y
n-l .

L ----»F= © R(x -1) 9 Rir
i —1

N-l -> 0

Then (5.40) is an almost split sequence.
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