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Abstract

Vector-borne diseases (VBDs) such as malaria, dengue, and leishmaniasis exert a huge

burden of morbidity and mortality worldwide, particularly affecting the poorest of the poor.

The principal method by which these diseases are controlled is through vector control,

which has a long and distinguished history. Vector control, to a greater extent than drugs or

vaccines, has been responsible for shrinking the map of many VBDs. Here, we describe the

history of vector control programmes worldwide from the late 1800s to date. Pre 1940, vec-

tor control relied on a thorough understanding of vector ecology and epidemiology, and

implementation of environmental management tailored to the ecology and behaviour of

local vector species. This complex understanding was replaced by a simplified dependency

on a handful of insecticide-based tools, particularly for malaria control, without an adequate

understanding of entomology and epidemiology and without proper monitoring and evalua-

tion. With the rising threat from insecticide-resistant vectors, global environmental change,

and the need to incorporate more vector control interventions to eliminate these diseases,

we advocate for continued investment in evidence-based vector control. There is a need to

return to vector control approaches based on a thorough knowledge of the determinants of

pathogen transmission, which utilise a range of insecticide and non–insecticide-based

approaches in a locally tailored manner for more effective and sustainable vector control.

Author summary

Vector-borne diseases (VBDs) such as dengue, Chagas disease, human African trypanoso-

miasis (HAT), leishmaniasis, and malaria exert a huge burden of morbidity and mortality

worldwide. The principal method by which these diseases are controlled is through vector

control. The authors chart the history of vector control through time from elucidation of

the transmission route of VBDs to the present day. Pre-1940 vector control relied heavily
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on environmental management and larval control based on a thorough understanding of

pathogen transmission but was replaced by insecticide-based vector control, often

deployed as a monotherapy. The authors call for increased political will and investment in

vector control and a return to locally tailored vector control that draws on the entire

toolbox of interventions available.

Introduction

Vector-borne diseases (VBDs) are infections caused by pathogens that are transmitted by

arthropods such as mosquitoes, triatomine bugs, blackflies, tsetse flies, sand flies, lice, and

ticks. Dengue, Chagas disease, Japanese encephalitis, leishmaniasis, lymphatic filariasis (LF),

malaria, and yellow fever threaten over 80% of the world’s population and disproportionately

affect the poorest populations living in the tropics and subtropics [1]. Many of these VBDs are

co-endemic, and it is estimated that more than half the world’s population live in areas where

2 or more VBDs are present [1]. VBDs contribute significantly to the global burden of disease,

accounting for 17% of the global estimated burden of all infectious diseases [2]. Perhaps the

best known VBD, malaria, is a major cause of morbidity and mortality, particularly in sub-

Saharan Africa (SSA), with approximately half the world’s population predicted to be at risk of

malaria (Table 1) [3]. Many VBDs are classified as neglected tropical diseases (NTDs), e.g.,

arboviral diseases like dengue and chikungunya, Chagas disease, human African trypanosomi-

asis (HAT), leishmaniasis, LF, and onchocerciasis [4]. The burden of NTDs is poorly under-

stood, and until the last 5 to 10 years, these diseases have suffered from a lack of prioritisation

and investment. Important aspects of NTD biology, epidemiology, and prevention remain

inadequately understood. While the global numbers of deaths from vector-borne NTDs is

lower than for malaria, vector-borne NTDs continue to cause high levels of morbidity and rep-

resent a significant public health burden; e.g., from 1990 to 2013, dengue cases increased

Table 1. Global burden of VBDs.

Data source Estimated cases worldwide in

2017 (thousands [95% CI])

Estimated global all-age DALYs in

2017 (thousands [95% CI])

Estimated all-age deaths worldwide

in 2017 (thousands [95% CI])

Malaria World Malaria Report

2018 [8]

219,000 (203,000–262,000) Not stated 435

Global Burden of

Disease 2017 [6, 7, 9]

208,768 (170,214–257,506) 45,000 (31,700–61,000) 619.8 (440.1–839.5)

Dengue Global Burden of

Disease 2017 [6, 7, 9]

104,771 (63 759–158,870) 2,920 (1,630–3,970) 40.5 (17.6–49.8)

CL and mucocutaneous

leishmaniasis

4,166.6 (3,560.7–4,992.8)� 264 (172–389) -

VL 10.6 (8.2–16.5)� 511 (1.02–2,440) 7.5 (0.0–34.5)

Yellow fever 97.4 (28.0–251.7) 314 (67.2–900) 4.8 (1.0–13.8)

Chagas disease 6,197.0 (5,248.5–7,243.9)� 232 (210–261) 7.9 (7.5–8.6)

HAT 4.9 (1.3–19.8)� 79.0 (15.4–287) 1.4 (0.3–4.9)

LF 64,623.4 (59,178.2–70,866.1)� 1,360 (752–2,160) -

Onchocerciasis 20,938.1 (12,882.3–37,227.7)� 1,340 (639–2,370) -

Trachoma 3,818.9 (2,842.6–5,135.2)� 303 (202–425) -

Zika virus disease 2,232.2 (1,659.6–3,097.6) 2.24 (1.27–4.66) 0.0 (0.0–0.1)

�Prevalence.

Abbreviations: CL, cutaneous leishmaniasis; DALY, disability-adjusted life year; HAT, human African trypanosomiasis; LF, lymphatic filariasis; VBD, vector-borne

disease; VL, visceral leishmaniasis

https://doi.org/10.1371/journal.pntd.0007831.t001
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nearly 450% globally [5]. Some zoonotic NTDs have an additional veterinary health burden

[6, 7].

Vector control is the principal method available for controlling many VBDs—both histori-

cally and today. Moreover, for some diseases, such as dengue (a vaccine is licensed but is not

widely used due to safety concerns [10]), chikungunya, Zika, and West Nile disease, vector

control is currently the only method available to protect populations. Vector control aims to

limit the transmission of pathogens by reducing or eliminating human contact with the vector.

A wide range of vector control tools exist, which can be broadly classified into chemical- and

non–chemical-based tools (Table 2). Tools targeting immature vectors can act by killing the

immature stages (e.g., chemical or biological larvicides and predator species) or by removing

suitable aquatic habitats (e.g., habitat modification or manipulation). Tools targeting the adult

vectors function by killing the vector (e.g., indoor residual spraying [IRS], space spraying)

and/or reducing vector contact (blood-feeding success) with human and/or animal reservoir

hosts (e.g., topical repellents, house screening, insecticide-treated bed nets [ITNs], insecticide-

treated dog collars). There are also several novel vector control tools under development, e.g.,

genetic manipulation of mosquitoes, bacterial infection of vectors (e.g., Wolbachia), and insec-

ticide-treated eave tubes (Box 1).

Table 2. Categories and examples of vector control methods [11].

Chemical Immature Chemical larvicides Contact pesticides affecting insect nervous system (e.g., temephos) or endocrine system (insect

growth regulators, e.g., pyriproxyfen)

Adult ITNs Pyrethroid-treated ITNs or combination ITNs (e.g., pyrethroid plus synergist piperonyl

butoxide) for malaria, LF, and leishmaniasis control

Insecticide-treated materials for personal

protection

Insecticide-treated clothing for workers and mobile populations

IRS Spraying of residual insecticides (typically either pyrethroids, carbamates, or

organophosphates) indoors for malaria and Aedes-borne disease control

Space spraying Aircraft, vehicle or hand-held space spraying for dengue epidemic and other Aedes-borne

disease control

Insecticidal treatment of habitat Focal, perifocal, ground, or aerial insecticide spraying

Insecticide-treated cattle Pour-on or spot-on pyrethroids for control of tsetse

Insecticide-treated traps and targets Targets for control of HAT and insecticide-treated adulticidal oviposition traps for Aedes-
borne diseases

Topical repellent Chemicals (e.g., N,N-diethyl-meta-toluamide [DEET], picaridin) applied to the skin to reduce

vector biting

Spatial repellent Transfluthrin/metafluthrin passive emanators or coils

Nonchemical Immature Microbial larvicides Bacillus thuringiensis var. israelensis, B. sphaericus
Predator species Predatory fish or invertebrates

Habitat modification, i.e., a permanent

change of land and/or water

Drainage of surface water, land reclamation and filling, and coverage of large water storage

containers (or complete coverage of water surfaces) with a material that is impenetrable to

mosquitoes, such as expanded polystyrene beads

Habitat manipulation, i.e., a recurrent

activity

Water-level manipulation, exposing habitats to the sun (depending on the ecology of the

vector), flushing of streams, drain clearance, and source reduction, including rubbish disposal

and regular emptying and cleaning of domestic containers (e.g., flowerpots, animal drinking

water troughs)

Regulatory measures Removal of man-made aquatic habitats and appropriate waste disposal

Adult House improvement and screening Closing eaves, door and window screening

Removal trapping Solar-powered mosquito trapping system for malaria control and sticky adulticidal oviposition

traps for Aedes-borne diseases

Abbreviations: HAT, human African trypanosomiasis; IRS, indoor residual spraying; ITN, insecticide-treated bed net; LF, lymphatic filariasis

https://doi.org/10.1371/journal.pntd.0007831.t002
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Our goal was to review the history of vector control from the 1800s to the present day,

highlighting what tools and approaches were adopted and the impacts they had on vectors and

infection and disease. This Review focuses on the main VBDs: Aedes-borne viruses, Chagas

Box 1. Examples of novel vector control interventions being
developed

Gene drive

Gene drive is a method of genetic modification that can be used to spread favourable

traits through interbreeding populations of malaria mosquitoes [12]. The gene drive

allows genes to spread through populations in a self-sustaining manner, even if they con-

fer a fitness cost. The technique can be used for population replacement (reducing the

ability of mosquitoes to transmit a pathogen) or population suppression (reducing the

size of the vector population by, e.g., reducing fertility of females or biasing the sex ratio

towards males). The ‘Target Malaria’ group started initial work in Burkina Faso, in prep-

aration for releases of gene drive mosquitoes.

Wolbachia

Wolbachia is a genus of bacteria that naturally infect some insect species but are not nor-

mally found in Aedes mosquitoes. Introduction of Wolbachia into Aedes mosquitoes

reduces transmission of dengue and other arboviruses to people [13]. Mosquitoes carry-

ing Wolbachia are released by field teams and mate with the wild mosquito population,

and over time the percentage of mosquitoes carrying Wolbachia increases. The ‘World

Mosquito Program’ is conducting a randomised controlled trial and programmatic eval-

uations in several countries worldwide (e.g., [14, 15]).

Spatial repellents

Spatial repellents are chemicals that prevent a vector from entering a space occupied by

a potential human host to reduce encounters between the vector and the host [16]. They

are typically used against malaria or Aedes mosquitoes and can be used indoors or out-

doors, where they may serve as a useful tool in combating outdoor transmission of

malaria. Spatial repellents exist in a number of formats, including coils, passive emana-

tors, and impregnated fabric. Although several small trials of spatial repellent coils have

been performed [17, 18], spatial repellents are not yet recommended for disease preven-

tion. Results from randomised controlled trials for malaria and dengue are currently

being analysed. A research programme was recently funded by UNITAID to carry out a

second efficacy evaluation of spatial repellent passive emanators against malaria, and a

second trial is being considered for dengue.

Eave tubes

Eave tubes are small plastic tubes with insecticide-laden electrostatic netting that are

inserted into the house wall, below the roof [19]. Mosquitoes are lured to the house by

host odours emanating through the eave tubes and are killed after contacting the insecti-

cide-treated netting. Eave tubes are being tested in a large randomised-controlled trial in

Côte d’Ivoire, which includes other house improvements, including eave closure and

window screening [20].
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disease, HAT, leishmaniasis, LF, malaria, and onchocerciasis. Malaria is the dominant focus of

the Review given the high burden of morbidity and mortality and well-documented history of

thinking on malaria vector control [21, 22]. The manuscript uses some terminology that is often

misused in the public health literature and may require definition: ‘control’ refers to deliberate

efforts to reduce disease incidence, prevalence, morbidity, or mortality to a locally acceptable

level; ‘elimination’ refers to interruption of local transmission requiring continued efforts to pre-

vent reestablishment of transmission; and ‘eradication’ refers to permanent reduction to zero of

the worldwide incidence of infection as a result of deliberate efforts, so that intervention measures

are no longer needed [23]. A summary of the programmes and campaigns discussed is given in

Fig 1 and Table 3. The World Health Organization (WHO) calls for effective, locally adapted,

and sustainable vector control in its recent Global Vector Control Response (GVCR) 2017–2030

strategy [2]. Increasing our understanding of the different types of vector control tools that were

used in the past, what settings they were used in, and their impacts on vectors and disease can

hopefully help us to select and promote new and existing vector control methods to sustainably

reduce the burden and threat of VBDs. We conclude by drawing out key lessons from the history

of vector control and identifying how these can be applied now and in the future.

A brief history of vector control

Elucidation of the transmission route of VBDs and early vector control

In the 1890s and early 1900s, the transmission route of Chagas disease, HAT, LF, malaria, and

yellow fever were elucidated, primarily in response to the germ theory of Pasteur and Koch

and advancements in microscopy [64–69]. The first VBD of humans to be identified was

malaria when in 1897, ground-breaking work by Sir Ronald Ross showed that Anopheles mos-

quitoes transmitted malaria parasites [66]. However, vector control had been taking place

prior to this, mainly due to an awareness of the connection between fevers and proximity of

swamps and marshes. For example, historical reports from Greek (circa 550 B.C.) and Roman

times describe large drainage schemes and reductions in ‘plague’ and fever [70, 71]. There are

reports of the use of mechanical vector control methods, such as sleeping in high buildings,

where mosquitoes were unable to fly due to wind; the use of bed nets in Egypt (as noted by

Herodotus 484–425 B.C.) and by the Romans; and the use of bed curtains, as noted by Marco

Polo during his travels to India in the 13th century [70]. Sanitary measures helped to control

yellow fever in the US in the late 1700s, including cleaning sewers and pumping bilge water

out of ships, which was practiced in Philadelphia during a large outbreak in 1793 when refugee

ships from Saint Dominigue (now Haiti) inadvertently brought in the Ae. aegypti vector

[72, 73].

Environmental management as the primary tool for control of VBDs

Prior to the use of insecticides, VBD control generally relied on understanding local vector

behavioural ecology and tailored environmental control, although these were often labour

intensive. Following Ross’s discovery and pioneering work on quantitative epidemiology of

VBDs, the focus of malaria control was on elimination of anopheline vectors, primarily by

changing the aquatic habitats where the vectors developed. There was also a focus on housing

improvements such as screening of doors and windows. The first trial of a malaria intervention

was carried out by Angelo Celli among railway workers in Italy in 1899–1900 [74–76]. The

combined intervention of housing screening, whitewashing internal walls, burning special

powders (probably pyrethrum), and protective clothing was highly successful. Celli found that

92% of the families left unprotected contracted malaria compared to only 4% in the interven-

tion group.
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Fig 1. A short history of vector control. CL, cutaneous leishmaniasis; DDT, dichlorodiphenyltrichloroethane; GMEP, Global Malaria Eradication Programme; HAT,

human African trypanosomiasis; IRS, indoor residual spraying; ITN, insecticide-treated bed net; VBD, vector-borne disease; VL, visceral leishmaniasis.

https://doi.org/10.1371/journal.pntd.0007831.g001
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Table 3. Historical overview of notable vector control programmes and their effects.

Date Location Programme Disease Vector species

targeted

Vector control methods

implemented

Effects observed Reference

Late 1800s East Africa Efforts led by colonial

powers

HAT Glossina Bush clearance, game

destruction, trapping of

tsetse

Decline in tsetse

populations

[24–27]

1901–1920 Malaya (now

Malaysia)

Efforts led by Sir Malcolm

Watson

Malaria Anopheles
umbrosus
An. maculatus

Draining marshes, subsoil

drainage, filling water

bodies, tree clearing,

relocating housing

Reduction in malaria [28]

1901–1912 Cuba Efforts led by Gorgas and

Le Prince, taken over by

local authorities after

1904

Yellow fever

and malaria

Aedes aegypti
An. albimanus

Yellow fever: house

inspection and

destruction/oiling of

containers, fines if

cisterns not covered, and

isolation of patients with

screening and netting,

and fumigation of their

premises

Malaria: drainage, filling

or oiling of standing

water, ditching, cutting

vegetation at edges of

ponds/streams,

larvivorous fish and oiling

of wells, restricting animal

grazing during wet

season, intermittent

short-duration flooding of

watercress beds (versus

constant flooding)

Reduction in yellow

fever and malaria

[29]

1904–1913 Panama Canal Efforts led by Gorgas and

Le Prince

Yellow fever

and malaria

An. albimanus
An. tarsimaculata
Ae. aegypti

Yellow fever: house

screening, premise and

container inspections,

destruction or treatment

of containers with oil/

larvicide

Malaria: house screening,

clearing water bodies,

draining or filling

standing water, installing

drains, removing jungle,

larviciding using oil or

Paris Green

Reduction in malaria

and yellow fever

[29] [30]

1920–1935 Indonesia ‘Species sanitation’ led by

N. H. Swellengrebel

Malaria An. ludlowi (now

An. sundaicus)
An. aconitus
An. maculatus

Environmental

management, e.g., filling

and draining of ponds,

maintaining and flushing

drains, planting trees

Reduction in malaria [31, 32]

1930–1962 Italy Italian antimalarial

campaign ‘bonfica

integrale’ under

Mussolini

Malaria An. labranchiae Draining of Pontine

marshes, house screening,

community education and

mobilisation, larviciding

using Paris Green,

clearing canals and

ditches, DDT aerial

spraying (after 1946)

Malaria eradication [33–35]

(Continued)
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Table 3. (Continued)

Date Location Programme Disease Vector species

targeted

Vector control methods

implemented

Effects observed Reference

1930–1942 Brazil Cooperative Yellow Fever

Service directed by Fred

Soper

Yellow fever

and malaria

Ae. aegypti
An. gambiae

Yellow fever: container

inspections, oiling/

larviciding of aquatic

habitats, sanitary

legislation enforced by

monetary fines

Malaria: larviciding with

Paris Green, house

spraying with short-acting

pyrethroids

Elimination of Ae.
aegypti from many areas,

reduction in yellow

fever; elimination of An.

gambiae from northeast

Brazil

[36]

1929–1950 Copperbelt,

Zambia

Roan Antelope Copper

Mine and others,

including Nchanga

Consolidated Copper

Mines, Rhokana

Corporation, and

Mufulira Cooper Mines

Malaria An. gambiae
An. funestus

Vegetation clearance

along river and

tributaries, modification

of river boundaries and

removal of man-made

obstructions, draining

flooded areas and

swamps, oiling of larval

habitats, and house

screening

At Roan Antelope Mine,

reduced malaria-related

mortality and morbidity

by 70%–95% within 3–5

years

[37]

[38]

1933–1950 Tennessee

Valley, US

TVA Malaria An.

quadrimaculatus
Regulation of water levels

in the lakes, shoreline

improvements such as

deepening or diking and

draining, larviciding, and

later (to a limited extent)

house improvement, DDT

aerial spraying, and IRS

using DDT

Virtual malaria

elimination

[39, 40]

1942–1943

(World War

II)

Guadalcanal,

Solomon

Islands

US Navy, Malaria Control

Unit ‘Cactus’

Malaria An. farauti Oiling of swamps,

fumigation of planes and

huts, relocation of

plantation workers, ITNs,

topical repellents, atabrine

prophylaxis

Reduction in malaria

cases

[41, 42]

1942–1945 Upper Egypt Species (An. gambiae)
eradication

Malaria An. gambiae Larviciding with Paris

Green (later Malariol due

to supply issues);

pyrethrum house

spraying; residual

spraying of boats, planes,

trains, automobiles with

pyrethrum (later DDT)

Massive reductions in

malaria cases (10,193

cases in 1942, to 59 in

1946); eradication of An.

gambiae

[43]

1947–1951 Southeast USA US National Malaria

Elimination Programme

Malaria An.

quadrimaculatus
An. freeborni

IRS with DDT, larviciding

using Paris Green,

deepening or diking and

draining of water bodies,

lining canals with

concrete

Free of malaria as a

significant public health

problem in 1949

[44]

1955–1969 Worldwide Global Malaria

Elimination Programme

Malaria Varied depending

on location

IRS with DDT and other

residual insecticides

Elimination from some

regions, but unsuccessful

elsewhere

[45, 46]

1947–1962 South and

Central America

and Caribbean

Pan-American Sanitary

Bureau

Yellow fever Ae. aegypti Container inspections,

oiling of aquatic habitats,

later perifocal spraying of

DDT in water containers

and nearby walls

Vector eradicated from

large parts of South

America

[47, 48]

(Continued)
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Table 3. (Continued)

Date Location Programme Disease Vector species

targeted

Vector control methods

implemented

Effects observed Reference

1951–1980 China National visceral

leishmaniasis control

programme

VL Phlebotomus
chinensis
P. longiductus
P. wui
P. alexandri

IRS of houses and animal

shelters using DDT, and

elimination or topical

deltamethrin treatment of

dogs

Massive reduction in

case incidence from 94/

100,000 in 1950 to

approximately 0.03/

100,000 by 1980

[49]

1950s–1970s Peruvian Andes Gains as a result of Global

Malaria Elimination

Programme

CL Lutzomyia
peruensis
Lu. verrucarum
Lu. ayacuchensis

IRS with DDT Decrease in cases but

resurgence once IRS was

stopped

[50]

1973–1991 Botswana Tsetse control

programme

HAT G. morsitans
centralis

Aerial spraying of

insecticides; deltamethrin-

treated targets to stop

reinvasion of tsetse

Eliminated tsetse and

HAT

[25, 51]

1970s–

present

Solomon

Islands and

Papua New

Guinea

Malaria Elimination

Programme

Pacific Programme for

the Elimination of

Lymphatic Filariasis

(PacELF) post 1999

LF An. farauti
An. koliensis
An. punctulatus

Solomon Islands: IRS

using DDT

Papua New Guinea: IRS

with DDT, later mosquito

nets (untreated), and

since 2005 long-lasting

ITNs

Elimination from

Solomon Islands by late

1970s, and near

elimination from PNG

(ongoing)

[52–54]

1974–2002 West Africa Onchocerciasis Control

Programme (OCP) and to

a lesser extent African

Programme for

Onchocerciasis Control

(APOC)

Onchocerciasis Simulium spp. Larviciding Near elimination of river

blindness from West

Africa

[55, 56]

1991–present Argentina,

Bolivia, Brazil,

Chile, Paraguay,

and Uruguay

Southern Cone Initiative

(SCI)

Chagas disease Triatoma
infestans and

other species

IRS, house improvements,

and community education

Decline in indoor

infestation and disease

incidence

[57–59]

1953–present India, Nepal,

Bangladesh

Visceral Leishmaniasis

Elimination Programme–

Memorandum of

Understanding between

countries signed 2005

(previous gains as a result

of Malaria Eradication

Programme)

VL P. argentipes IRS using DDT in homes

and animal shelters

Decline in cases in 3

countries from 77,000 in

1992 to 6,000 in 2016

[60]

1915

(California)–

present

US Mosquito abatement

districts

Aedes-borne

diseases

Aedes and

nuisance

mosquitoes

Predominantly larval

control

Prevention of local

Aedes-borne virus

transmission, e.g., no

locally transmitted Zika

in US states

[61]

2000–present SSA Campaign to eliminate

HAT (numerous donors,

research institutions, and

implementing partners)

HAT Glossina spp. Screening and treatment,

traps and targets (‘Tiny

Targets’), insecticide-

treated cattle

25,841 cases of

Trypanosoma brucei
gambiense HAT in 2000

to 2,110 in 2016 and

from 709 Trypanosoma
brucei rhodesiense HAT

cases in 2000 to 54 in

2016

[62]

2000–present SSA Scale-up of ITNs and IRS Malaria An. gambiae and

other species

ITNs and IRS ITNs responsible for

68% of 663 million

clinical cases averted

from 2000 to 2015

[63]

Abbreviations: CL, cutaneous leishmaniasis; DDT, dichlorodiphenyltrichloroethane; HAT, human African trypanosomiasis; IRS, indoor residual spraying; ITN,

insecticide-treated bed net; LF, lymphatic filariasis; SSA, sub-Saharan Africa; TVA, Tennessee Valley Authority; VL, visceral leishmaniasis

https://doi.org/10.1371/journal.pntd.0007831.t003
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Environmental management flourished in both Malaya (now Malaysia) and Netherlands

East Indies (now Indonesia) in the early 1900s. British doctor Sir Malcolm Watson joined the

Malayan Medical Service in 1900, where he led vector control efforts against malaria based on

an understanding of the ecology of local vectors [28]. Drainage of aquatic habitats controlled

malaria in 2 coastal towns in the state of Selangor and allowed resumption of port develop-

ment. Later, Watson’s work expanded to lowland areas—where he controlled An. umbrosus by

clearing the forest within 0.8 km of plantation labourer houses so that water bodies were

exposed to the sun—and in 1909 to hilly regions, where subsoil drainage was successful against

An. maculatus. Watson also oversaw successful drainage schemes in Singapore in 1911, where

local malaria transmission was practically eliminated [28]. The Dutch zoologist Nicolaas Swel-

lengrebel was inspired by Watson and set out to replicate the work throughout the Indonesian

archipelago between 1920 and 1935, terming his methods ‘species sanitation’ [31]. Swellengre-

bel aimed to control malaria primarily through environmental management, such as filling in

or draining ponds and lagoons, maintaining and flushing drains, or planting shade trees

depending on the vector species present and its ecology.

The Pontine marshes, near Rome, Italy, suffered from high malaria transmission for over

1,000 years. Large-scale drainage from 1930 onwards was highly successful in malaria control

against the Italian malaria vector An. labranchiae [34]. This was done as part of the three-

pronged ‘bonifica integrale’ campaign, or ‘bonification’, instigated by Mussolini. The cam-

paign included agricultural improvements—e.g., draining swamps to increase agricultural

land; hygienic measures, such as building sturdy, well-screened brick housing; and quinine

distribution.

Another excellent example of environmental management for malaria control was in the

Zambian Copperbelt during the 1920s and 1930s [37, 38, 77]. Control measures launched at

the Roan Antelope Copper Mine in 1929—including vegetation clearance, modification

of river boundaries, draining swamps, oil application to open water bodies, and house

screening—were highly effective in targeting An. gambiae and An. funestus [37]. In 3 to

5 years, malaria-related mortality and morbidity declined by 70%–95%, and over a 20-year

period, the programme averted an estimated 4,173 deaths and 161,205 malaria attacks.

Environmental management was also being implemented on a large scale in the southern

US. The Tennessee Valley Authority (TVA) was set up in 1933 to exploit the Tennessee River’s

potential for hydroelectric power and improve the land and waterways for agricultural devel-

opment of the region [39, 40]. At the time, the region was highly endemic for malaria, and the

creation of artificial lakes would have exacerbated the problem. Vector control tools imple-

mented included regulation of water levels in lakes, shoreline improvements such as deepening

or diking and draining, larviciding, house screening, and later dichlorodiphenyltrichlor-

oethane (DDT) spraying. Massive reductions in malaria were seen, and the disease was essen-

tially eliminated from the area by the late 1940s.

Control of yellow fever in the Americas at the start of the 20th century was heavily reliant

on environmental management. At this time, the US had taken control of Cuba following the

end of the Spanish American war, but outbreaks of yellow fever and malaria were taking the

lives of many US soldiers [78]. Following confirmation that Ae. aegypti was the yellow fever

virus vector, in 1901 Major William Gorgas, Chief Sanitary Officer, was asked to initiate a pro-

gramme for the elimination of Ae. aegypti, work he carried out with Joseph Le Prince [29]. The

programme was highly successful and comprised house inspections, oiling or destruction of

mosquito-producing containers, and isolation of yellow fever patients in screened quarters

with fumigation of their premises with sulphur or pyrethrum. Havana residents not covering

their cisterns were made to pay a US$10 fine. After introduction of the mosquito brigades, yel-

low fever deaths dropped from an average of 467 per year between 1890 and 1900 to 18 in
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1901 [29]. Later the Aedes programme was expanded to include Anopheles control by drainage,

filling or oiling of standing water, ditching in a herringbone pattern, cutting vegetation at

edges of ponds or streams, the addition of larvivorous fish or oil to wells, restricting animal

grazing during the wet season to avoid creating habitats in flooded footprints, and intermittent

short-duration flooding of watercress beds in Havana (versus constant flooding). This resulted

in a fall in malaria deaths from 5,643 between 1890 and 1900 to 444 deaths between 1900 and

1910, despite a greatly increased human population [29].

In 1904, Gorgas became Chief Sanitary Officer during the building of the Panama Canal

and with the aid of Le Prince eliminated yellow fever and kept malaria at low levels [29]. Con-

trol was achieved by screening living quarters, draining or filling standing water, installing

drains, and larviciding using oil or Paris Green [30]. Paris Green is not used currently due to

high human toxicity and ecological concerns, and we now have much less toxic chemicals that

can be applied in a more targeted manner. After these successes, similar campaigns were

launched by Joseph White in Havana, Oswaldo Cruz in Rio de Janeiro, and Emilio Ribas in

Santos [79]. Successful control was followed by a period of apathy. Complacency was brought

to a halt by an epidemic of yellow fever in Rio de Janeiro in 1928 in which population densities

of Ae. aegypti were again at high levels. The Cooperative Yellow Fever Service, a collaboration

between the Brazilian Government and the Rockefeller Foundation, was established under the

direction of Fred Soper with the aim of eradicating Ae. aegypti from Brazil. From 1930 to 1934,

Soper led a well-organised campaign, with control measures including oiling of water contain-

ers and house searches for larvae and adults. Campaigns initiated by the Cooperative Yellow

Fever Service also succeeded in eliminating An. gambiae from the northeast of Brazil in 1942

largely using larviciding with Paris Green, complemented in some areas by house spraying

with short-acting pyrethroids [36].

In the late 1800s, colonial expansion in SSA and massive outbreaks of HAT led to a number

of scientific missions to study the disease. In 1903, David Bruce and colleagues found that the

trypanosome that causes HAT was transmitted by Glossina palpalis (now G. fuscipes) [69]. In

colonial times, game destruction and bush clearing were widely practised for tsetse control in

many countries. The impetus for game destruction was a natural experiment—a rinderpest

epizootic in the 1890s eliminated wild hosts and domestic stock across large parts of east and

southern Africa [80]. This led to the disappearance of tsetse from large areas, but as the game

populations recovered, so did the tsetse. Game destruction was first introduced in Southern

Rhodesia (now Zimbabwe) in 1919, and by 1921, cases of trypanosomiasis were greatly

reduced [81]. From 1922 until the early 1980s, game destruction was generally adopted as a

tsetse control method [26]. In the 1950s, game destruction in Shinyanga, Tanzania, succeeded

in eradicating an isolated tsetse population [25]. Full or partial habitat destruction was also

practiced. For example, riverine tsetse species were eradicated from rivers and streams in

Ghana and Nigeria by removing short bush and trees with low branches [24]. Despite these

successes, the huge environmental impact of bush clearing and game destruction would be

unacceptable today.

Traps and targets for tsetse control also started to be developed around this time, as scien-

tists gained an understanding of tsetse behaviour in response to visual (e.g., colour, movement,

size/shape) and olfactory cues [27, 82]. For example, in 1909 on the island of Prı́ncipe, estate

staff were made to wear squares of black cloth coated with bird lime on their backs, which suc-

ceeded in reducing local densities of G. palpalis. This approach was later incorporated into an

island-wide programme (including, also, habitat and host destruction), which eliminated tsetse

and lasted until at least 1932 [83, 84]. Early traps developed included the Harris Trap used in

Zululand from 1931 onwards against G. pallipides [83] and the ‘animal’ trap used in West

Africa to control G. fuscipes and G. tachnoides [85].
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From 1942 to 1945, An. gambiae was eradicated from Upper Egypt (Aswan, Qena, Girga,

and Asyût Provinces) through a meticulous campaign of weekly larviciding using Paris Green

and, to a lesser extent, house spraying using pyrethrum [43]. Residual treatment of trains,

automobiles, and planes was also performed to prevent spread of An. gambiae to uninfested

areas to the north. The number of malaria cases in the region fell from 10,193 cases in 1942 to

59 in 1946.

Prior to the use of residual insecticides, environmental management was also the standard

control method against phlebotomine sand fly transmission of Leishmania species causing

human cutaneous leishmaniasis (CL) and visceral leishmaniasis (VL). Early attempts towards

the end of World War I to control sand flies was in response to epidemics of sand fly fever

(rather than to leishmaniasis) that disrupted British troops in the Middle East and Mediterra-

nean regions. Based on investigations of local sand fly ecologies and larval development loca-

tions, environmental management included the following: pitching camps away from refuse,

debris, and loose friable rocks; pitching camps on levelled drained ground; sealing soil cracks

with cresol, sand, or sawdust; and treatment with lime—all to render the ground impermeable

to ovipositing and emerging sand flies. Additional chemical control included spraying cresol,

crude oil, or paraffin or treating with tar around tents and the lower 3 feet (0.9 m) of buildings

[86]. Similarly, in India, naphthalene in kerosene with petrol and carbon disulphide was

applied 120 yards (110 m) around army barracks, resulting in a 50% reduction in sand flies

[86]. Few chemical advances were made against adult sand flies during this period. Bed nets

needed to be fine mesh sizes due to the small size of sand flies and were considered too uncom-

fortable in hot climates. Thus, sand fly control was in existence prior to its definitive incrimi-

nation as a vector of Leishmania, the result of cumulative experiments between 1904 and 1942

[86–88]. Plastering walls of houses, cattle sheds, and latrines with lime and mud to eliminate

cracks used as diurnal resting sites by Ph. argentipes, a vector in the Indian subcontinent, con-

tinues to be part of an integrated approach to sand fly control [89].

Post–World War II era and the advent of DDT

The first residual insecticide DDT was added to the vector control toolbox in the early 1940s,

consequently increasing the popularity of insecticide-based control. World War II had

stemmed the supply of pyrethrum (derived from chrysanthemum flowers) from Japan, and

alternatives were urgently needed [90]. The first major demonstration of DDT use was at the

end of World War II when the allies used the insecticide to control an epidemic of typhus,

transmitted by body lice, amongst the populations of war-torn Europe [91].

With the advent of DDT, malaria eradication became a more realistic proposition. In 1947,

spurred on by malaria control successes—including the TVA and Malaria Control in War

Areas programme to control malaria around military training bases in the southern US [92]—

the US National Malaria Eradication Programme was established [44]. This was a joint under-

taking by state and local health agencies in 13 southeastern states and the Communicable Dis-

ease Center of the US Public Health Service. Indoor DDT spraying, drainage, removal of

mosquito larval development sites, and insecticide spraying eliminated malaria transmission,

and in 1949 the US was declared free of malaria as a significant public health problem [44].

Support for an eradication approach and IRS using DDT was bolstered by insights from the

Ross-Macdonald model, which illustrated that malaria transmission was highly sensitive to

reductions in mosquito longevity [93, 94]. In 1955, WHO launched the Global Malaria Eradi-

cation Programme (GMEP)—excluding SSA, which they deemed too problematic—with the

goal of interrupting transmission through IRS with DDT and other residual insecticides [45,

46]. Environmental management—such as drainage of marshes and housing improvements to
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prevent mosquito bites—was abandoned, and only later were antimalaria drugs included in

the strategy. The GMEP succeeded in eliminating malaria from Europe, North America, the

Caribbean, and parts of Asia and South-Central America, primarily where there were more

temperate climates, seasonal transmission, and well-functioning control programmes. The

northern part of Venezuela was the first to be WHO certified as malaria free in June 1961

through the use of IRS with DDT, sanitary engineering (water management and house

improvement), and larviciding [95]. Parasite resistance to drugs, mosquito resistance to insec-

ticides, lack of community participation, and reduced funding led to abandoning the GMEP in

1969 after it was realised that elimination was not possible everywhere with the approach

adopted [45].

Also around this time, the Pare-Taveta Malaria Scheme, a pilot project to test the feasibility

of malaria eradication in Africa, was initiated [96]. Between 1954 and 1966, the project evalu-

ated the effect of IRS with dieldrin on malaria and mortality in the Taveta subdistrict of Kenya

and the Pare district of Tanganyika (now Tanzania). The project succeeded in reducing

malaria to low levels, but intensive IRS could not be sustained, and malaria bounced back after

the intervention was stopped.

In 1947, Brazil called for elimination of Ae. aegypti across the whole South American conti-

nent, a task that was coordinated by the Pan-American Sanitary Bureau with the continued

involvement of Fred Soper [47]. Brazil was encouraged by the success of the Cooperative Yel-

low Fever Service in northeast Brazil but also understood that Ae. aegypti could not be eradi-

cated from Brazil unless frontiers and ports were protected from invasion from other

countries in the region. Container inspections, oiling of larval development sites, and later

perifocal spraying of DDT in water containers and nearby walls succeeded in eradicating Ae.
aegypti from large parts of South America during the 1950s and 1960s. By October 1961, 16

countries in the Western Hemisphere were free of Ae. aegypti (Bolivia, Chile, Ecuador, Guate-

mala, Nicaragua, Paraguay, Uruguay, French Guiana, Brazil, Costa Rica, El Salvador, Hondu-

ras, Panama, Peru, Canal Zone, and British Honduras) [48]. During the 1940s and 1950s,

yellow fever was virtually eliminated in the Americas, but unfortunately, this success became

the downfall of the programme. As yellow fever subsided, political support for the eradication

campaigns waned despite warnings from Soper about the risk that could result from pulling

back the hemisphere-wide Ae. aegypti control programme [97]. Weak vector control and sur-

veillance meant, as predicted, that Ae. aegypti gradually returned to many countries, most

likely due to re-infestation from countries that had not achieved eradication, including Argen-

tina, French Guyana, the US, Venezuela, and several Caribbean countries.

The advent of DDT and dieldrin also saw the use of residual insecticides for tsetse control.

Ground spraying of insecticides onto tsetse resting sites was carried out from the 1950s until

the mid-1970s by tsetse control programmes in large parts of East Africa, combined with

screening, treatment, and follow-up of patients [98–100]. Aerial spraying was first used in

Zululand, South Africa, in the 1950s but was expanded greatly in the 1970s and 1980s. The

most successful example of aerial spraying was in the Okavango Delta of Botswana, where it

was used from 1973 to 1991 and again in the early 2000s against G. m. centralis succeeding in

eliminating tsetse and HAT [25, 51]. Reduced infrastructures for spraying, high costs, and con-

cerns about the environmental impact of DDT and dieldrin, however, resulted in ground and

aerial spraying being largely discontinued [69]. The idea of insecticide-treated cattle for tsetse

fly control was also developed in the 1940s [101, 102]. Experiments in Tanganyika (now Tan-

zania) showed that DDT-treated cattle reduced the abundance of G. morsitans by 99% and G.

swynnerloni by 93% [101]. Insecticides also started to be used in traps and targets. For example,

reinvasion of Prı́ncipe by tsetse in the 1950s led to the use of insecticidal ‘animal’ traps between

1956 and 1958, which were successful in eradicating tsetse in Prı́ncipe [103].
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Much of the historical control of leishmaniasis has been attributed to IRS using DDT, both

targeted specifically against Leishmania vectors, or as a beneficial consequence of the GMEP in

the 1950s. In China, approximately 530,000 cases of co-circulating zoonotic and anthroponotic

Leishmania species were reported north of the Yangtze River prior to the creation of the Peo-

ple’s Republic in 1949. The national VL control programme, which started in 1951, included

human VL case detection and treatment, IRS of houses and animal shelters using DDT, and

elimination or topical deltamethrin treatment of dogs. This campaign reduced the case inci-

dence from 94 per 100,000 population in 1950 to approximately 0.03 per 100,000 population

by 1980, with clear effects associated with IRS interventions alone in some regions [49]. In Bra-

zil, where zoonotic VL occurs, the government commission to investigate leishmaniasis and

other diseases—created in 1936 and headed by Evandro Chagas—led to the first use of DDT in

the 1950s in northeast Brazil. VL case incidence was reduced by 58% in 14 sprayed areas com-

pared to a rise of 12% in 14 untreated areas [104]. Implementation of an integrated approach

similar to that adopted in China (without the option of topical insecticide for dogs) led to con-

siderable reductions in the number of cases, though with some reservations about the residual-

ity of DDT on adobe houses [105, 106].

Reductions in Leishmania vectors—as well as human incidence, though this is less well

reported—have been attributed to the GMEP operating in various countries [107]. In Rio de

Janeiro, Brazil, DDT IRS circumstantially led to a reduction from 12.7% prevalence in 1947 to

0.3% in 1953 [108]. IRS spraying during the Indian National Malaria Eradication Programme

of 1958 to 1970 apparently resulted in zero cases of VL being reported from the State of Bihar

during that time period [109]. Perhaps the more compelling evidence is the rise in VL cases

once the GMEP largely ceased in the late 1960s [107, 110]. For example, in the subsequent VL

epidemic in Bihar, India, case numbers rose from a few to 40,000 cases by 1978 [109]. Similar

rebounds were reported in several countries [107, 110, 111]. Retrospective analysis of house-

hold survey data from the Peruvian Andes showed that IRS with DDT from the 1950s until the

1970s resulted in a decrease in CL cases. Cases increased after IRS was discontinued [50].

GMEP abandoned—What next for malaria?

After the GMEP was abandoned, many countries switched from eradication to malaria con-

trol, even though WHO reaffirmed that eradication was still the ultimate goal [112]. During

the 1970s and 1980s, malaria was poorly controlled. There were epidemics in the Indian sub-

continent (1973–1976) and Turkey (1977) and focalisation of the malaria problem where there

was sociopolitical instability or limited socioeconomic development, including countries in

SSA, Brazil, and Sri Lanka [46, 113]. The economic crisis in the early 1970s and reorientation

of collaborating agencies like the United Nations Children’s Fund (UNICEF) towards general

health (rather than malaria) meant less funding for malaria control, oil shortages led to

increases in insecticide prices, drug and insecticide resistance were increasing, and operational

capacity in programmes was reduced [45]. Also of note was a large WHO-funded research

study conducted from 1969 to 1976 in Garki, northern Nigeria, known as the Garki Project

[114]. Despite the GMEP not being implemented in Africa, WHO wanted to test whether IRS

with propoxur and mass drug administration (MDA) with chloroquine and sulfadoxine-pyri-

methamine would interrupt malaria transmission. The measures were successful in reducing

parasite prevalence from 80% to 30%, but 1 year after stopping control, malaria rebounded

back to pre-intervention levels.

After these setbacks, WHO called for a more tactical approach to malaria control based on

the biological, social, ecological, and economic determinants of malaria rather than blanket

distribution of insecticide-based vector control and MDA. This approach was endorsed by the
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World Health Assembly (WHA) in 1978 [115] and further developed at the Seventeenth

WHO Expert Committee on Malaria in 1979 [116]. In the early 1990s, WHO devised with

member states a new global malaria control strategy, which was endorsed by the WHA in 1993

[117]. The new strategy called for a selective approach in determining whether and where to

attempt vector control (and if so, what method to use) and deemphasised IRS, stating that ‘the

proper use of insecticides is a complex matter, involving considerable expense and trained per-

sonnel and demanding sustained application, usually for many years.’ A renewed focus on

research led to new vector control tools becoming available.

In the early 1970s, ITNs emerged as a vector control idea because many communities were

already sleeping under untreated bed nets. At this time, synthetic pyrethroids were developed

(permethrin, cypermethrin, and deltamethrin), which were safe to use for impregnation of

ITNs [118]. Following pioneering trials on ITNs, including those in The Gambia in the 1980s

that showed huge impacts on malaria infection and mortality [119–121], WHO recommended

the use of ITNs for children and pregnant women [122]. In the early 2000s, the late Chris Cur-

tis and others were strong advocates for ITNs as a public good and for their provision via the

public sector with financial assistance from donors [123]. Following several studies that

showed a community-level effect of ITNs [124–126] through mass killing of mosquitoes, there

was an increasing push for ITNs to be provided to entire communities, rather than just high-

risk groups [127]. As a result, the WHO position statement was strengthened in 2007 to rec-

ommend the use of long-lasting ITNs (with long-lasting pyrethroid formulations that last for 3

years) distributed either free or highly subsidised and used by all community members [128].

A major stimulus for malaria control at this time was the recognition that malaria restrained

economic development and that eliminating malaria in SSA would lead to rapid development

[129]. Political will and resources for malaria increased, and in 2007, malaria eradication hit

the agenda again following calls by the Bill and Melinda Gates Foundation to eradicate malaria

with massive scale-up of existing and experimental interventions [130]. ITN coverage

increased rapidly from 2000, predominantly financed through the Global Fund to fight AIDS,

Tuberculosis and Malaria [131, 132], and an estimated 50% of the population at risk of malaria

of SSA were sleeping under an ITN in 2017 [8]. IRS was used only in specific areas, and there-

fore only 7% of the population at risk in SSA was covered by IRS in 2017 [8]. Much of the IRS

conducted in SSA was funded by the US Presidents Malaria Initiative [133].

Both ITNs and IRS have had considerable public health impact. Between 2000 and 2015,

there was a decline in malaria infection by over 50% and an estimated 663 million clinical

cases averted in SSA. ITNs were estimated to have been responsible for an estimated 68% of

averted cases and IRS for 13% of cases averted [63]. This reliance on insecticide-based malaria

vector control has, however, fuelled the development of insecticide resistance [134]. WHO

noted that 68 of the 80 malaria-endemic countries that provided data for 2010–2017 reported

resistance to at least 1 of the 4 insecticide classes in one malaria vector species, while 57 coun-

tries reported resistance to 2 or more insecticide classes [8]. Existing evidence is equivocal as

to whether insecticide resistance is adversely impacting malaria control, but it remains a major

concern [135–137]. In response to the growing threat of insecticide resistance, a public–private

partnership—the Innovative Vector Control Consortium—was established in 2005 to bring

new insecticide chemistries to the market, which led to several ongoing market-shaping initia-

tives on next-generation ITNs and IRS (www.ivcc.com). Despite these efforts, since 2017

WHO World Malaria Reports have highlighted stalling progress against malaria [8, 138, 139].

The reasons for this stagnation include inadequate coverage of ITNs, the need to replace old

nets, high rainfall in some parts of SSA, and insecticide resistance. WHO called for increased

investment, including filling gaps in coverage of core malaria tools like ITNs [8] and the need

to develop additional tools for vector control.
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NTDs—Lagging behind in vector control

Vector control for vector-borne NTDs, including Chagas disease, Gambian HAT, leishmania-

sis, LF, and onchocerciasis, took longer to gain traction compared to efforts against anopheline

and Aedes vectors.

Despite the early discovery by Sir Patrick Manson of transmission of the main LF parasite—

Wuchereria bancrofti—by mosquitoes in 1878 [67, 140], vector control against LF played a lesser

role than for other VBDs. Uniquely among VBDs, LF can be transmitted by 5 genera of mos-

quito (Anopheles, Aedes, Culex, Mansonia, and Ochlerotatus), although it typically requires a

large number of infective mosquito bites over many years to result in an infectious human host

[141]. Although vector control for LF is advocated by WHO [142], much of the focus today is

on use of MDA to eliminate microfilariae from the blood of infected humans in order to inter-

rupt mosquito transmission. Despite this, there are several examples from the Pacific region of

elimination of LF using vector control alone—including IRS using DDT against Anopheles vec-

tors in the Solomon Islands and Papua New Guinea [52–54], as well as sanitation campaigns

against culicine vectors in Australia [143]. It is likely that the recent massive rollout of ITNs in

SSA has contributed to a decline in LF, although the evidence is equivocal [144–147]. In Papua

New Guinea, however, an MDA campaign from 1994 to 1998 reduced transmission, but large

declines in mosquito and human infection were not seen until ITNs were introduced in 2009

[148], which was consistent with the notion that combining drugs with vector control would be

more effective than either approach alone. Polystyrene beads used in pit latrines against culicine

vectors were also shown to augment MDA in India and Zanzibar in the 1980s and 1990s [149–

151]. In 1997, WHO called for eradication of LF and 5 other infectious diseases. In 2000 the

Global Programme to Eliminate Lymphatic Filariasis (GPELF) was launched, with vector con-

trol currently playing a minor role to MDA as a supplementary intervention [152, 153].

Vector control has been integral to the control of onchocerciasis [154], particularly in the

Onchocerciasis Control Programme (OCP) in Africa from 1974 to 2002 [55]. Weekly aerial

larviciding was conducted from 1976 to 1989 along the rivers of a wide area of west African

savanna (700,000 km2) where onchocerciasis was endemic [155]. The programme initially cov-

ered Benin, Burkina Faso, the northern parts of Côte d’Ivoire, Ghana, southeastern Mali,

southwestern Niger, and Togo but was expanded to include additional river basins in Benin,

Côte d’Ivoire, Ghana, Guinea, Sierra Leone, and Togo from where Simulium were invading

[156]. The programme was hugely successful, and the level of onchocerciasis endemicity

declined rapidly. Longitudinal entomological surveys at 4 catching points in Burkina Faso

showed a decline in annual transmission potential of infective Onchocerca volvulus larvae from

between 300 and 900 in 1975 to less than 100 by 1982 [155]. The same study reported a reduc-

tion in prevalence of human microfilariae infections from around 70% in 1976 to almost negli-

gible levels through to 2000. The absence of—or at least very low levels of—transmission have

been maintained since, despite the absence of vector control or ivermectin MDA. Several

important lessons were learned from the OCP that can be applied to vector control more

widely, including the need to rotate insecticides (implemented following development of resis-

tance to temephos and chlorphoxim) and the value of using a targeted approach to eliminating

residual foci based on entomological and epidemiological monitoring [156]. In 1991, the

Onchocerciasis Elimination Program of the Americas (OEPA) was launched [157], and in

1995, the African Programme for Onchocerciasis Control (APOC) was established in 19 Afri-

can countries not included in the OCP [56, 158]. Several of the APOC countries successfully

used ground larviciding, although both APOC and the OEPA relied predominantly on com-

munity-directed treatment with ivermectin, the use of which was bolstered by the Merck Mec-

tizan donation scheme that began in 1987 [159].
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Vector control has also been highly effective against Chagas disease as illustrated by suc-

cesses of the Southern Cone Initiative (SCI) initiated during 1991 in Argentina, Bolivia, Brazil,

Chile, Paraguay, and Uruguay [57–59] and similar initiatives launched in 1997 in Central

America and Andean Pact countries. Interventions against the vector T. infestans focused

mainly on IRS, house improvements (replacement of mud walls and floors with cement, and

thatched roofs with corrugated metal), and community education. In the 1980s, there were

thought to be between 16 and 18 million people infected with Trypanosoma cruzi, and the SCI

achieved a decline in infestation rate and a sharp decline in the infection rates of children

[160]. Uruguay became the first Latin American country to eliminate Chagas disease in 1997

[161], and domestic transmission was effectively eliminated in Chile (1999); Brazil (2006); sub-

stantial areas of Argentina, Bolivia, and Paraguay; and parts of Central America [162]. Despite

these successes, there are estimated to be still over 6 million people infected with the parasite

[6], and continued vigilance is necessary to combat peridomestic and sylvatic vector popula-

tions, which can re-invade houses or mediate transmission outside the home [162]. In some

regions, successful vector control to maintain low house infestation rates is a prerequisite for

human treatment [163].

Vector control continues to play an important role in the fight against leishmaniasis, partic-

ularly where sand flies are endophilic [50, 109, 111, 164, 165]. Control is complex, however,

due to the numerous aetiologies and transmission cycles, many of which in the Americas are

sylvatic, and most Leishmania species involve a zoonotic reservoir. To tackle anthroponotic

VL, an elimination initiative was launched by India, Bangladesh, and Nepal in 2005 incorpo-

rating an IRS component alongside screening and treatment, which was associated with a

reduction in VL cases from over 77,000 in 1992 to fewer than 6,000 cases in 2016 [60]. A large

cluster randomised trial of ITNs in India and Nepal against anthroponotic VL, however, failed

to show effectiveness against infection or disease [166], perhaps due to the vector being more

exophagic than expected [167]. In contrast, successful deployment of bed nets reduced anthro-

ponotic CL incidence in a variety of Old World foci [110]. Against zoonotic VL, an alternative

insecticide application is deltamethrin-impregnated dog collars, which provide high levels of

individual protection against canine infection [168]. Community-level dog collar implementa-

tion in Iran reduced human infection incidence by 43% [169] and infantile clinical VL by 50%

[168].

Traps and targets for tsetse control also continued to be developed, now incorporating syn-

thetic pyrethroids [82]. In West Africa, the Challier Laveissiére biconical trap was developed

and found to catch many more tsetse than the ‘animal’ trap [170]. Deltamethrin-impregnated

biconical traps deployed along River Léraba in Burkina Faso in the 1970s rapidly reduced G.

palpalis gambiensis and G. tachinoides [171]. Different variants of the biconical trap were

developed and deployed in different settings, including the pyramidal trap, monoconical and

Vavoua trap, bipyramidal trap, and others [27]. Insecticidal targets, panels of insecticide-

impregnated cloth, were developed including the R type, which was the first to be widely

deployed, and the simplified S type target, which consisted of a rectangle of black cloth flanked

by two pieces of black mosquito netting attached to a frame and inserted via a pole into the

ground [172]. Pyrethroid treatment of cattle to combat ticks and tsetse was used widely in suc-

cessful control programmes in Burkina Faso, Tanzania, Zanzibar, and Zimbabwe [173]. The

sterile insect technique was used experimentally in Nigeria and Tanzania but only program-

matically in Zanzibar, where between 1994 and 1997 tsetse was eliminated [174]. Unfortu-

nately, scaling down of tsetse control campaigns and neglect of surveillance activities led to an

increase in HAT cases by the turn of the century. Renewed efforts are underway to eliminate

T. b. gambiense and T. b. rhodesiense HAT through reduction of the parasite reservoir using

screening and treatment of humans, as well as vector control, including traps and targets for
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riverine tsetse and insecticide-treated cattle for savannah flies [175, 176]. WHO aims to eliminate

HAT as a public health problem by 2020 (with elimination of transmission by 2030) and has

developed a roadmap to achieve this goal [177]. Active screening and treatment of human cases

provides the mainstay of efforts to achieve the elimination goal. Increased control efforts have

coincided with plummeting case numbers from 25,841 cases of T. b. gambiense HAT in 2000 to

2,110 in 2016 and from 709 T. b. rhodesiense HAT cases in 2000 to 54 in 2016 [62]. While active

screening and treatment have been responsible for the majority of this decline, in the last decade,

new cost-effective methods of controlling riverine species of tsetse—the important vectors of T.

b. gambiense—have begun to make an important contribution to the global effort. In particular,

‘Tiny Targets’ are—despite their small size—proving highly effective in reducing the density of

riverine species where active screening and treatment alone is not predicted to achieve the elimi-

nation goals [178, 179]. Tiny Targets are currently deployed by control programmes in Chad,

Côte d’Ivoire, the Democratic Republic of Congo, Guinea, and Uganda.

In Europe, the US, and Australia—where VBDs such as malaria were once endemic—effec-

tive disease control programs were replaced by the control of nuisance biting mosquitoes and

the intermittent control of epidemics caused by viruses, such as West Nile virus, dengue, and

Zika [180]. In Europe, large-scale mosquito control is confined largely to the Rhine Valley,

where authorities are conducting larviciding and environmental management [181, 182]. In

the US, mosquito abatement districts are present in many states, including large-scale pro-

grammes in California and Florida. The abatement district programme has been successful—

e.g., in 2018, there were no locally transmitted Zika cases in US states despite importation of

cases due to travellers returning from affected areas [61]. The distribution of Ae. aegypti in

Australia is restricted to Queensland, where routine control measures include IRS (targeting

the premises of contacts of dengue cases), lethal ovitraps, barrier/harbourage spraying, treat-

ment of containers with residual chemicals, and source reduction [183].

The growing global threat of Aedes-borne diseases

While protozoa and nematodes were the dominant vector-borne pathogens of the 19th to 20th

centuries, arboviruses are likely to be most important in the 21st century. Aedes-borne viral

diseases, including chikungunya, dengue fever, yellow fever, and Zika disease, are a growing

threat worldwide [184, 185] due to geographic expansion of vectors and viruses through glob-

alisation and urbanisation [186]. Urbanisation, often unplanned, is typically associated with

inadequate housing and lack of basic services, including water and waste management, which

creates ideal habitats for expanding Ae. aegypti populations [187]. Aedes albopictus—once con-

fined to tropical forests of Southeast Asia—has increased its geographic range since the mid-

1960s and adapted to live in human-made habitats in urban and peri-urban areas [188]. This is

exacerbated by a lack of investment in Aedes vector control, which in its current form is failing

to prevent Aedes-borne epidemics. Indeed, as noted by Margaret Chan, Director General of

WHO, during her opening address at the 69th WHA in 2016, ‘. . . Above all, the spread of

Zika, the resurgence of dengue, and the emerging threat of Chikungunya are the price being

paid for a massive policy failure that dropped the ball on mosquito control in the 1970s.’ Suc-

cessful Aedes-control campaigns of the past were replaced by reactive control during epidem-

ics, which has been largely ineffective. In general, there is a lack of clarity on what vector

control methods are effective for Aedes-borne diseases because the tools available have not

been rigorously assessed against epidemiological outcomes [189]. This is of great concern

because in the absence of effective vaccines, programmes that limit contact between humans

and vectors and are expedient, comprehensive, and sustained are the most effective method of

controlling arboviral diseases [189].

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007831 January 16, 2020 18 / 31

https://doi.org/10.1371/journal.pntd.0007831


Discussion

Vector control has been the principal method of preventing VBDs for over 100 years and

remains highly effective, when comprehensively applied and sustained. It remains, for several

diseases, the only control tool we currently have at our disposal. Key lessons that we can learn

from the history of vector control are discussed further as follows and summarised in the ‘Key

learning points’.

History shows that complacency and lack of investment in vector control leads to VBD

resurgence. A striking example comes from South America, where,—despite achieving eradi-

cation of Ae. aegypti in 16 countries—after control programmes were scaled back the vector

reinvaded, flourished, and caused hemisphere-wide epidemics from multiple different viruses

[48]. It is estimated that 91% (68/75) of malaria resurgence events from the 1930s to the 2000s

were attributed, at least in part, to weakened vector control programmes [190]. Complacency

in tsetse control and surveillance led to flareups of HAT in the early 2000s.

Political will and central coordination clearly have important roles to play. For example, the

current successes in reducing VL incidence between 2012 and 2017 in the Indian subcontinent

[191] are attributed to the advocacy and political support generated with substantial donations

from pharmaceutical industry, governments, and nongovernmental agencies [192]. The VL

initiative and other programmes—including the Pan American Sanitary Bureau efforts to

eliminate Ae. aegypti from the South American continent, the OCP, and the SCI—all involved

strong cross-border collaboration [48, 55, 59]. These large-scale collaborations enabled effec-

tive coordination and dialogue, sharing of best practices, and cross-border containment. Effec-

tiveness of this approach is exemplified today by the Elimination8—a collaboration between 8

countries in southern Africa to eliminate malaria (https://malariaelimination8.org/).

It is imperative that political will and investment in vector control is maintained, particu-

larly as we approach elimination targets when the cost per VBD case averted will inevitably

increase. Despite this, vector control is chronically underfunded, for research and develop-

ment (R&D) and at programme level. Investment in vector control R&D is dwarfed by that for

drugs, diagnostics, and vaccines [193]. For example, for malaria, only 18 million US$ (3% of

total R&D investment) supported vector control in 2014. Although we have seen an increase

in investment in dengue vector control R&D from 5 million US$ in 2010 to 21 million US$ in

2014 (an increase from 8% to 25% of total R&D investment), there is negligible or no invest-

ment in vector control R&D for other VBDs such as LF. At the programme level, additional

funding is needed to increase vector control capacity and build health systems. Programmes

lack skilled personnel, in particular public health entomologists and vector control technicians

[194]. Surveillance systems and monitoring and evaluation need significant strengthening to

allow programmes to target interventions, track progress against programmatic indicators,

and make adjustments as needed. Huge funding shortfalls are a roadblock to more effective

intervention—even for malaria, which is better funded than other VBDs. Global financing for

malaria control and elimination was 2.9 billion US$ in 2015, which represents only 46% of the

Global Technical Strategy 2020 annual investment milestone of 6.4 billion US$ [195, 196].

NTDs received only 0.6% of Official Development Assistance in 2012, compared to 6.8% for

malaria and 47.2% for HIV/AIDS [197]. At the international level, vector control is losing

expertise fast with a massive reduction in the number of entomologists working at WHO’s

headquarters in Geneva. To sustain and further the gains already made, political will must be

enhanced and investment in vector control dramatically increased.

Throughout the history of vector control, a range of different tools were successfully

applied. It is striking, however, that environmental management such as drainage and filling

and larviciding come up repeatedly—particularly pre 1940—but were less common thereafter
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(as noted by Keiser and colleagues for malaria control [22]). Work by Watson and Schwellen-

grebel, which took an ecological perspective [28, 31], shows that success can be achieved when

we have a thorough understanding of the vector and context for transmission as a knowledge

base on which to build vector control efforts. Similarly, the development of highly effective

baits for tsetse would not have been possible without a rational and detailed understanding of

vector behaviour. Unfortunately, the success of this approach is often forgotten in the search

for seemingly more easily scalable solutions. Insecticides such as DDT gained favour because

they gave a rapid result and were often less labour intensive to implement than environmental

management. The availability of residual insecticides initiated a fundamental shift in vector

control approaches from locally tailored approaches based on an understanding of the epide-

miology and ecological, environmental, economic, and social determinants of VBDs to a focus

on deployment of uniform insecticide-based commodities, particularly for malaria. In essence,

entomologists stopped being thinkers and became monolithic deployment automatons.

Many of the historical vector control examples involved collaboration with the non-health

sector. For example, public–private partnerships such as those in the Zambian Copper Belt

and the pioneering work of Celli on improved housing against malaria [37, 38, 74, 77]. This

has been largely taken over by health-sector–led vector control. There is huge potential for

engagement of the non-health sector for greater resilience against VBDs and increased sustain-

ability of vector control. For instance, farmers can be mandated to dry their fields regularly to

reduce Anopheles habitats [198], the private sector (e.g., extractive industries) can implement

vector control to maintain the health of their workforce and surrounding communities [199],

and the housing sector can be engaged to implement housing improvements (e.g., screening)

that can dramatically reduce house entry of anopheline and Aedes mosquitoes [200].

Development and testing of novel vector control tools is essential. While we are waiting for

new tools to come to the market, however, the vector control community should draw upon

the full toolbox of interventions that are currently available, including noninsecticidal tools

like environmental management. This is particularly important given the changing landscape

of VBDs, which mandates a transformation in how we do vector control. For example, insecti-

cide resistance in Anopheles and Aedes vectors is on the rise and threatens to undermine con-

trol of these diseases [134, 201]. Social and environmental change such as urbanisation,

climate change, agricultural expansion and intensification, water resource development, defor-

estation, natural resource exploitation, trade, and population movement are creating enabling

conditions for VBD transmission, and current tools do not fully address these VBD determi-

nants [202]. It is increasingly acknowledged that in order to control VBD more effectively

and/or drive VBD transmission to zero, multiple interventions need to be applied based on

local conditions and needs, and that this may not be achievable with the current tools being

used [189, 203–205]. For example, in many settings—even in the presence of universal cover-

age with core malaria interventions—malaria vectors are able to maintain robust transmission

through outdoor biting, feeding on nonhuman animal hosts, and resting outdoors [206]. Envi-

ronmental management—e.g., house screening against malaria—can also play a role after

VBD elimination has been achieved by reducing the risk of reestablishment of transmission.

A criticism of this rationale may be that some of the historic examples, particularly those

against yellow fever in South America, involved a ‘military-like’ vector control response in less

complex ecosystems that some say would not be feasible today. This is a reasonable point to

consider. We argue, however, that a weakness of many of the historic examples was a lack of

community engagement in vector control. This could be strengthened, particularly for control

of Aedes mosquitoes. There are contemporary examples of successful community-based vector

control against dengue, HAT, and malaria [207–209].
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There is an increasing recognition of the role that vector control can play in disease preven-

tion. For example, the WHO GVCR strategy came about following calls from countries to

strengthen vector control in the wake of the Zika epidemic [2]. The GVCR has 4 pillars of

action, to (i) strengthen inter- and intra-sectoral action and collaboration; (ii) engage and

mobilize communities; (iii) enhance vector surveillance and monitoring and evaluation of

interventions; and (iv) scale up and integrate tools and approaches, within the health sector

and—where relevant—outside the health sector. Rather than a one-size-fits-all approach, the

GVCR advocates for locally appropriate solutions (insecticidal and noninsecticidal) based on

solid epidemiological and entomological evidence, which harks back to the approach used by

many successful historic vector control programmes. The GVCR will help to galvanise this

transformative approach to vector control and should be supported by the entire vector con-

trol community.

Conclusion

Vector control has been shown to be highly effective, historically and presently. Lack of fund-

ing and weak programmatic capacity undermine programmes and mean that we are not well

equipped to face the pressing new challenges to VBD control, such as environmental change,

insecticide resistance, and population growth. There is an urgent need for increased invest-

ment in strengthening programmatic capacity for surveillance and control, as well as the devel-

opment of new vector control tools. We cannot afford to wait until new tools and strategies,

such as Wolbachia and genetically modified mosquitoes, are available. Instead, we should

revisit successful programs from the past and adopt a problem-solving approach that imple-

ments tailored vector control solutions drawing upon our entire toolbox of available interven-

tions, including insecticide and non–insecticide-based control methods.

Key learning points

• Political will and investment in capacity and capability must be maintained in order to

keep VBDs and vector control as public health priorities. If this is not done, disease

resurgence is inevitable.

• Train and retain entomologists at all programme levels—a better understanding of the

vectors will enable more effective control.

• Encourage cross-border collaboration and regional efforts where possible.

• Expand the toolbox of vector control to include environmental management and larval

control and develop the role of sectors outside health to deliver environmental

interventions.

• Single vector control tools are unlikely to be sustainable; combined control (including

additional vector control tools, vaccines, MDA, and diagnosis and treatment) are

more effective and sustainable.
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com aquele inseticida. Revista brasileira de malariologia e doencas tropicais. 1954; 6:127–30.

109. Kishore K, Kumar V, Kesari S, Dinesh DS, Kumar AJ, Das P, et al. Vector control in leishmaniasis.

Indian J Med Res. 2006; 123:467–72. PMID: 16778324

110. Alexander B, Maroli M. Control of phlebotomine sandflies. Med Vet Entomol. 2003; 17:1–18. https://

doi.org/10.1046/j.1365-2915.2003.00420.x PMID: 12680919

111. Ostyn B, Vanlerberghe V, Picado A, Dinesh DS, Sundar S, Chappuis F, et al. Vector control by insecti-

cide-treated nets in the fight against visceral leishmaniasis in the Indian subcontinent, what is the evi-

dence? Trop Med Int Health. 2008; 13:1073–85. https://doi.org/10.1111/j.1365-3156.2008.02110.x

PMID: 18564350

112. World Health Organization. Malaria. Handbook of resolutions and decisions of the World Health

Assembly and the Executive Board. Volume I. 1948–1972. 1st to 25th WHA and 1st to 50th EB.

Geneva: WHO, 1973.

113. Najera JA. Malaria and the work of the WHO. Bull World Health Organ. 1989; 67:229–43. PMID:

2670294

114. Molineaux L, Gramiccia G. The Garki Project. Research on the Epidemiology and Control of Malaria in

the Sudan Savanna of West Africa. Geneva: World Health Organization, 1980.

115. World Health Organization. Thirty-first World Health Assembly, Geneva, 8–24 May 1978: part I: reso-

lutions and decisions: annexes. 1978.

116. World Health Organization. WHO Expert Committee on Malaria. Seventeenth report. World Health

Organ Tech Rep Ser. 1979; 640:1–71.

117. World Health Organization. A global strategy for malaria control. Geneva: WHO, 1993.

118. Elliott M. Properties and applications of pyrethroids. Environ Health Perspect. 1976; 14:1–12. https://

doi.org/10.1289/ehp.76141 PMID: 789056

119. Alonso PL, Lindsay SW, Armstrong JR, Conteh M, Hill AG, David PH, et al. The effect of insecticide-

treated bed nets on mortality of Gambian children. Lancet. 1991; 337:1499–502. https://doi.org/10.

1016/0140-6736(91)93194-e PMID: 1675368

120. Alonso PL, Lindsay SW, Armstrong Schellenberg JR, Keita K, Gomez P, Shenton FC, et al. A malaria

control trial using insecticide-treated bed nets and targeted chemoprophylaxis in a rural area of The

Gambia, west Africa. 6. The impact of the interventions on mortality and morbidity from malaria. Trans

R Soc Trop Med Hyg. 1993; 87:37–44. https://doi.org/10.1016/0035-9203(93)90174-o PMID:

8212109

121. Snow RW, Lindsay SW, Hayes RJ, Greenwood BM. Permethrin-treated bed nets (mosquito nets) pre-

vent malaria in Gambian children. Trans R Soc Trop Med Hyg. 1988; 82:838–42. https://doi.org/10.

1016/0035-9203(88)90011-9 PMID: 2908286

122. World Health Organization. Guidelines on the use of insecticide-treated mosquito nets for the preven-

tion and control of malaria in Africa Geneva: WHO, 1997.

123. Curtis C, Maxwell C, Lemnge M, Kilama WL, Steketee RW, Hawley WA, et al. Scaling-up coverage

with insecticide-treated nets against malaria in Africa: who should pay? Lancet Infect Dis. 2003; 3

(5):304–7. https://doi.org/10.1016/s1473-3099(03)00612-1 PMID: 12726981

124. Hawley WA, Phillips-Howard PA, Ter Kuile F, Terlouw DJ, Vulule JM, Ombok M, et al. Community-

wide effects of permethrin-treated bed nets on child mortality and malaria morbidity in western Kenya.

Am J Trop Med Hyg. 2003; 68:121–7. PMID: 12749495

125. Howard SC, Omumbo J, Nevill C, Some ES, Donnelly CA, Snow RW. Evidence for a mass community

effect of insecticide-treated bednets on the incidence of malaria on the Kenyan coast. Trans R Soc

Trop Med Hyg. 2000; 94(4):357–60. https://doi.org/10.1016/s0035-9203(00)90103-2 PMID:

11127232

126. Binka FN, Indome F, Smith T. Impact of spatial distribution of permethrin-impregnated bed nets on

child mortality in rural northern Ghana. Am J Trop Med Hyg. 1998; 59:80–5. https://doi.org/10.4269/

ajtmh.1998.59.80 PMID: 9684633

127. Teklehaimanot A, Sachs JD, Curtis C. Malaria control needs mass distribution of insecticidal bednets.

Lancet. 2007; 369(9580):2143–6. https://doi.org/10.1016/S0140-6736(07)60951-9 PMID: 17597200

128. World Health Organization. Insecticide-treated mosquito nets: a WHO position statement. Geneva:

WHO, 2007.

129. Sachs J, Malaney P. The economic and social burden of malaria. Nature. 2002; 415:680–5. https://

doi.org/10.1038/415680a PMID: 11832956

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007831 January 16, 2020 27 / 31

http://www.ncbi.nlm.nih.gov/pubmed/16778324
https://doi.org/10.1046/j.1365-2915.2003.00420.x
https://doi.org/10.1046/j.1365-2915.2003.00420.x
http://www.ncbi.nlm.nih.gov/pubmed/12680919
https://doi.org/10.1111/j.1365-3156.2008.02110.x
http://www.ncbi.nlm.nih.gov/pubmed/18564350
http://www.ncbi.nlm.nih.gov/pubmed/2670294
https://doi.org/10.1289/ehp.76141
https://doi.org/10.1289/ehp.76141
http://www.ncbi.nlm.nih.gov/pubmed/789056
https://doi.org/10.1016/0140-6736(91)93194-e
https://doi.org/10.1016/0140-6736(91)93194-e
http://www.ncbi.nlm.nih.gov/pubmed/1675368
https://doi.org/10.1016/0035-9203(93)90174-o
http://www.ncbi.nlm.nih.gov/pubmed/8212109
https://doi.org/10.1016/0035-9203(88)90011-9
https://doi.org/10.1016/0035-9203(88)90011-9
http://www.ncbi.nlm.nih.gov/pubmed/2908286
https://doi.org/10.1016/s1473-3099(03)00612-1
http://www.ncbi.nlm.nih.gov/pubmed/12726981
http://www.ncbi.nlm.nih.gov/pubmed/12749495
https://doi.org/10.1016/s0035-9203(00)90103-2
http://www.ncbi.nlm.nih.gov/pubmed/11127232
https://doi.org/10.4269/ajtmh.1998.59.80
https://doi.org/10.4269/ajtmh.1998.59.80
http://www.ncbi.nlm.nih.gov/pubmed/9684633
https://doi.org/10.1016/S0140-6736(07)60951-9
http://www.ncbi.nlm.nih.gov/pubmed/17597200
https://doi.org/10.1038/415680a
https://doi.org/10.1038/415680a
http://www.ncbi.nlm.nih.gov/pubmed/11832956
https://doi.org/10.1371/journal.pntd.0007831


130. Roberts L, Enserink M. Did they really say . . .eradication? Science. 2007; 318:1544–5. https://doi.org/

10.1126/science.318.5856.1544 PMID: 18063766

131. Sachs JD, Schmidt-Traub G. Global Fund lessons for Sustainable Development Goals. Science.

2017; 356(6333):32. https://doi.org/10.1126/science.aai9380 PMID: 28385974

132. The Global Fund to Fight AIDS Tuberculosis and Malaria. The Framework Document. Geneva Swit-

zerland: GFATM, 2001.

133. Oxborough RM. Trends in US President’s Malaria Initiative-funded indoor residual spray coverage and

insecticide choice in sub-Saharan Africa (2008–2015): urgent need for affordable, long-lasting insecti-

cides. Malar J. 2016; 15(1):146.

134. Ranson H, Lissenden N. Insecticide resistance in African Anopheles mosquitoes: a worsening situa-

tion that needs urgent action to maintain malaria control. Trends Parasitol. 2016; 32:187–96. https://

doi.org/10.1016/j.pt.2015.11.010 PMID: 26826784

135. Cook J, Tomlinson S, Kleinschmidt I, Donnelly MJ, Akogbeto M, Adechoubou A, et al. Implications of

insecticide resistance for malaria vector control with long-lasting insecticidal nets: trends in pyrethroid

resistance during a WHO-coordinated multi-country prospective study. Parasit Vectors. 2018; 11

(1):550. https://doi.org/10.1186/s13071-018-3101-4 PMID: 30348209

136. Kleinschmidt I, Bradley J, Knox TB, Mnzava AP, Kafy HT, Mbogo C, et al. Implications of insecticide

resistance for malaria vector control with long-lasting insecticidal nets: a WHO-coordinated, prospec-

tive, international, observational cohort study. Lancet Infect Dis. 2018; 18(6):640–9. https://doi.org/10.

1016/S1473-3099(18)30172-5 PMID: 29650424
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vector control interventions on Anopheles gambiae population dynamics. Parasit Vectors. 2011;

4:153. https://doi.org/10.1186/1756-3305-4-153 PMID: 21798055

204. Erlanger TE, Keiser J, Utzinger J. Effect of dengue vector control interventions on entomological

parameters in developing countries: a systematic review and meta-analysis. Med Vet Entomol. 2008;

22(3):203–21. https://doi.org/10.1111/j.1365-2915.2008.00740.x PMID: 18816269

205. Griffin JT, Hollingsworth TD, Okell LC, Churcher TS, White M, Hinsley W, et al. Reducing Plasmodium

falciparum malaria transmission in Africa: a model-based evaluation of intervention strategies. PLoS

Med. 2010; 7:e1000324. https://doi.org/10.1371/journal.pmed.1000324 PMID: 20711482

206. Killeen GF. Characterizing, controlling and eliminating residual malaria transmission. Malar J. 2014;

13:330. https://doi.org/10.1186/1475-2875-13-330 PMID: 25149656

207. Andersson N, Nava-Aguilera E, Arosteguı́ J, Morales-Perez A, Suazo-Laguna H, Legorreta-Soberanis

J, et al. Evidence based community mobilization for dengue prevention in Nicaragua and Mexico

(Camino Verde, the Green Way): cluster randomized controlled trial. BMJ. 2015;351.

208. Mutero CM, Mbogo C, Mwangangi J, Imbahale S, Kibe L, Orindi B, et al. An assessment of participa-

tory integrated vector management for malaria control in Kenya. Environ Health Perspect. 2015;

123:1145–51. https://doi.org/10.1289/ehp.1408748 PMID: 25859686

209. Percoma L, Sow A, Pagabeleguem S, Dicko AH, Serdebéogo O, Ouédraogo M, et al. Impact of an
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