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Abstract. Self-reported survey data are often plagued by the presence of heap-
ing. Accounting for this measurement error is crucial for the identification and
consistent estimation of the underlying model (parameters) from such data. This
paper introduces two Stata commands. The first command, heapmph, estimates
the parameters of a discrete-time mixed proportional hazard model with gamma
unobserved heterogeneity, allowing for fixed and individual-specific censoring, and
different sized heap points. The second command, heapop, extends the framework
to ordered choice outcomes, subject to heaping. Suitable specification tests are
also provided.
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1 Introduction

A problem frequently encountered in survey data is the abnormal concentration of
reported observations at certain values of the outcome variable. Examples include
reported dates of death in neo-natal mortality data (Arulampalam et al. 2017, ACG
from now on), age of starting and quitting cigarette smoking (Forster and Jones 2001), or
self-reported consumption expenditure data (Pudney 2008). One of the main reasons for
such concentration, often referred to as heap points, is rounding. Correctly identifying
and accounting for the rounding behavior is crucial for consistent estimation of and
valid inference on the parameters of the underlying model of interest. The paper ACG
discusses identification and estimation of popular duration and ordered choice models,
in the presence of heaping, using maximum likelihood procedures.

In this paper, we introduce the Stata command heapmph to estimate the underly-
ing parameters in the case of a discrete-time mixed proportional hazard (Cox 1972)
duration model as proposed in ACG. More specifically, this command estimates a semi-
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parametric baseline hazard function in the presence of heaping of observations at certain
durations, and gamma distributed unobserved heterogeneity (frailty). In the accompa-
nying heapop, we extend the framework to an ordered choice model, allowing for the
presence of heaping points.

As shown in ACG, when some of the parameters lie on the boundary of the parameter
space, the limiting distribution of the estimator is no longer a normal distribution, and
more complicated subsampling procedures are required for inference. Hence, we also
provide two specification tests. The first one tests for the absence of heaping effects in
the model. The second specification test examines whether all heaping parameters lie
inside the parameter space, which in turn will allow for inference based on asymptotic
normality. We use the so called M out of N bootstrap method to calculate the standard
errors. These tests provide a set of tools that enable applied researchers to verify the
validity of different model specifications.

In Appendix 1, we show how the heapmph command can be used to test for a shift
in the heaping probability and/ or baseline parameters as a consequence of a policy or
regime change, while in Appendix 2 we outline similar examples for heapop. Finally,
in Appendix 3 we formally link the proportional hazard model to the Type I Extreme-
Value (EV) ordered choice model (Han and Hausman 1990) outlining the implications
for the interpretation of the parameters.

2 Mixed proportional hazard model with ‘heaping’

2.1 Specification

We start with the Mixed Proportional Hazard (MPH) model for the unobserved true
durations in continuous time, and parameterize this for individual i as:

λi(τ
∗|zi, ui) = λ0(τ∗) exp(z′iβ + ui), (1)

where λ0(τ∗) is the baseline hazard at time τ∗, ui is the individual unobserved hetero-
geneity (frailty), and zi a set of time invariant covariates. In most empirical studies,
time is observed on a discrete scale. We therefore, assume that a continuous duration
τ∗i ∈ [τ, τ + 1) is recorded as τ , where τ denotes a discrete time period, so that the
sample of (discrete) durations is given by τi for i = 1, . . . , N . The discrete time hazard
for our model can then be written as:

hi(τ |zi, ui) = Pr [τ∗i < τ + 1|τ∗i > τ, zi, ui]

=1− exp

(
−
∫ τ+1

τ

λi(s|zi, ui)ds
)

(2)

=1− exp
(
− exp

(
z
′

iβ + γ(τ) + ui

))
,

where γ(τ) = ln
∫ τ+1

τ
λ0(s)ds. Due to misreporting, the researcher however, does not

observe τi directly, but ti, a potentially mismeasured version of it.
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More specifically, the form of misreporting we address is referred to as “heaping” in
the literature, and describes the phenomenon of observing an over- and under-reporting
of failures at certain time periods. We briefly list informally the set of assumptions for
the derivation of the estimator and its properties here, and refer the readers to ACG for
further details on the assumptions and identification results.1 Based on the neonatal
mortality illustration from ACG, we also illustrate our command using a simulated
dataset based on ACG.

Assumptions:

A1 Excessive concentrations of reported failures occur at time periods that are mul-
tiples of a positive integer. This implies equal distance between the heap points.
In most of the empirical applications where we see heaping due to rounding, we
often see the distance between heaping points to be the same. This is the sce-
nario heapmph uses.2 There is no heaping at time zero. This is not an unrealistic
assumption, since one would expect survey respondents to know whether the dis-
cretized duration was a zero or not. Following ACG, our illustration also assumes
the heaping to be at points that are multiples of 5.

A2 In order to identify the baseline hazard from possibly misreported observations,
we need to impose a structure on the heaping process. In the illustration provided
here, we assume that one period to the right and to the left of each heap point
are associated with that heap. We denote the maximum number of time periods
that a duration can be rounded to as r, and in this example r = 1. That is, we
assume that the duration points 4, 9, and 14, will be rounded up, while 6, 11, and
16 will be rounded down to 5, 10 and 15, respectively.

A3 All heaping is to observed duration points only. In our example, this implies that
the heaping is to the points 5, 10, and 15 only, as we assume that the outcome
variable is censored at 18 days. The maximum number of heaps is assumed to be
j, and in our example j =3.

A4 The censoring is exogenous, and the censored observations are correctly reported.

A5 Whenever the true duration falls onto one of the heaping points, it will be correctly
reported. However, whenever the duration falls onto the non-heaping points, it is
assumed to be either correctly reported or rounded (up or down) to the nearest
heaping point. Let p1, p2, etc. denote the corresponding rounding up probabilities
when a true duration is lower by one, two, etc units from the nearest heaping
point. Similarly let q1, q2, etc. denote the rounding down probabilities when a
true duration is higher by one, two, etc. units from the nearest heaping point. In
our illustration, a reported duration of say 10 days, includes true durations of 11
(9) days, which have been rounded down (up) to 10 days (see Figure 1). Hence,

1. Note, ACG discusses a more general setup which can accommodate more complex heaping mech-
anisms.

2. It is noteworthy that the theoretical setup can in principle be straightforwardly amended to allow
for non-equally spaced heaping points, see the paper ACG.
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p1 is the probability that a true duration of 9 will be rounded up to 10 days.
Analogously q1 is the probability that a true duration of 11 will be rounded down
to 10 days.

A6 There exists a segment in the baseline hazard that is constant from time period
k, and includes a known true value (i.e. there is no mis-reporting at this value).
In our example, we assume k = 12.

Heuristically, the assumption that the hazard is constant over a set of time periods,
which includes (at least) a known true value, enables us to uniquely identify the γ
parameter associated with this correctly reported time period as well as the parameters
of the heaping process, i.e. the ps and the qs, in this region, from the observed data.
Subsequently, we can use these identified probability parameters to pin down the rest
of the baseline and other hazard parameters. See Figure 1.

2.2 Maximum likelihood estimation

Before writing down our likelihood function, we first define some notation.

Let θ = {β′, γ′}′ with γ = {γ(0), γ(1), . . . , γ(τ − 1)}′, and τ be some finite, positive
integer, and (τ − 1) represent the uncensored maximum observed time period. Define
the probability of survival at least until time period τ < τ in the absence of misreporting
as:

Si (τ |zi, ui, θ) = Pr (τi ≥ τ |zi, ui, θ)

=

τ−1∏
s=0

exp (− exp (z′iβ + γ(s) + ui))

=

τ−1∏
s=0

exp (−vi exp (z′iβ + γ(s))) ,

where vi ≡ exp(ui), and ui is the unobserved heterogeneity.

The probability for an exit event in τi < τ is:

fi (τ |zi, ui, θ) = Pr (τi = τ |zi, ui, θ)
=Si (τ |zi, ui, θ)− Si (τ + 1|zi, ui, θ)

=

τ−1∏
s=0

exp (−vi exp (z′iβ + γ(s))) (3)

−
τ∏
s=0

exp (−vi exp (z′iβ + γ(s))) .

fi (τ |zi, ui, θ) in the above equation denotes the probability of a duration equal to τ
when there is no misreporting. However, because of the rounding, heaped values are
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over-reported while non-heaped values are under-reported, and this needs to be taken
into account when constructing the likelihood function (see below).

Henceforth, let

φi (t|zi, vi, θ) = Pr (ti = t|zi, vi, θ)

with ti denoting the discrete reported duration.

The likelihood contributions depend on the following four cases.

(I) For correctly reported durations, φi (t|zi, vi, θ) = fi (t|zi, vi, θ). This will include the
duration point discussed in Assumption A3 earlier. Depending on the application, there
might be other points too.

(II) For reported durations that are l = 1, 2, etc points below the nearest heaping point,
φi (t|zi, vi, θ) = (1− pl)fi (t|zi, vi, θ), since pl refer to the probabilities of rounding up.

(III) Similar to (II), for reported durations that are l = 1, 2, etc points above the nearest
heaping point, φi (t|zi, vi, θ) = (1 − ql)fi (t|zi, vi, θ), since ql refer to the probabilities
of rounding down.

(IV) Finally for reported durations on the heaping points:

φi (t|zi, vi, θ) =
∑
l

plfi (t− l|zi, vi, θ) +
∑
l

qlfi (t+ l|zi, vi, θ) + fi (t|zi, vi, θ) .

In summary, there are four different probabilities of exit events depending on the
nature of the true duration.

We next write down the corresponding unconditional probabilities under a set of as-
sumptions on the unobserved heterogeneity vi. More specifically, we impose the follow-
ing assumptions on the properties and the distributional form of vi, which are standard
in the duration literature:

(i) vi is identically and independently distributed over i and is also independent of zi;

(ii) vi follows a Gamma distribution with unit mean and variance σ2.3

The unconditional probabilities under the above assumptions, in case (I) above are

3. The assumption of Gamma distribution for vi gives us a closed form expression for the unconditional
probabilities. While the choice of the Gamma distribution might appear overly restrictive at first
sight, we note that this can often be rationalized theoretically (Abbring and Van Den Berg 2007).
In addition, findings by Han and Hausman (1990) as well as Meyer (1990) suggest that estimation
results for discrete-time proportional hazard models where the baseline is left unspecified, display
little sensitivity to alternative distributional assumptions.
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given by:∫
φi (t|zi, v, θ) g(v;σ)dv =

∫
Pr (τi = t|zi, v, θ) g(v;σ)dv

=

∫
Si (t|zi, v, θ) g(v;σ)dv −

∫
Si (t+ 1|zi, v, θ) g(v;σ)dv

=

(
1 + σ

(
t−1∑
s=0

exp (z′iβ + γ(s))

))−σ−1

−

(
1 + σ

(
t∑

s=0

exp (z′iβ + γ(s))

))−σ−1

where the last equality uses the fact that there is a closed form expression under the
Gamma density assumption for v (e.g., see Meyer (1990, p. 770)). Moreover, since the
integral is a linear operator, the probabilities for the cases (II) to (IV) can be derived
accordingly.

Our next goal is to obtain consistent estimators for θ = {θ′, σ, p1, . . . , pr, q1, . . . , qr}′
from the possibly misreported durations. Before setting up the likelihood function, we
introduce censoring into our setup.

Let ci be an indicator equal to one if the observation is uncensored and zero oth-
erwise. It is assumed that durations are censored at a fixed time τ which exceeds the
points that are rounded and is not one of the heaping points. Assuming that censor-
ing is independent of the heaping process and the durations, we have the following
unconditional likelihood contributions.4

The likelihood function for the observed sample is:

LN (θ) =

N∏
i=1

∫ {
φi(t|zi, v)ciSi(t|zi, v)(1−ci)

}
g(v;σ)dv

and so

lN (θ) = lnLN (θ) =

N∑
i=1

ln

∫ {
φi(t|zi, v)ciSi(t|zi, v)(1−ci)

}
g(v;σ)dv.

Given the definition of φi(t|zi, v) and cases (I) through (IV), it is clear that the (log)
likelihood function down-weights the contribution of heaped durations, and over-weights
the contribution of non heaped durations.

Under the assumptions provided in ACG, it can be shown that the limiting distri-
bution of the estimator depends on whether some heaping probability parameters lie
on the boundary of the parameter space or not, that is, if one or more of the “true”

4. For ease of exposition, we have assumed a constant censoring point (type I censoring; Cox and
Oakes 1984). However, the program allows the censoring points to vary over i.
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probability parameters are equal to zero. In this case, the limiting distribution is no
longer normal as the information matrix is not block diagonal in general, but takes a
different form. We use the M out of N bootstrap method to derive the asymptotic
standard errors. Details are provided in ACG.

3 Ordered probit model with heaping: specification and
estimation

In general, there are many observed discrete outcomes (other than durations) that can
exhibit heaping. For instance, survey data on the number of doctor visits or on cigarette
consumption in a given period of time is often subject to this phenomenon. Here we
discuss the estimation of an ordered probit model allowing for heaping. In Appendix 3,
we provide a discussion on the link between the discrete duration model derived from
the proportional hazard specification and the ordered choice model. To keep notational
clutter to a minimum, we do not explicitly show the conditioning set in what follows.

Consider the following latent variable model representation of an ordered choice
model:5

y∗i = z′iβ
† + εi

where y∗i represents the latent outcome, zi stands for the vector of regressors, β† is the
vector of coefficients, and let the cumulative probability function of the error term εi
be standard normal, denoted by Φ(·).6 Assume we have an ordered discrete outcome
variable coded as yi ∈ {0, ..., J}. That is, we have:

yi = j if and only if κj < y∗i = z′iβ
† + εi < κj+1,

where κ0, .....κJ are the threshold parameters that divide the real line into a finite
number of intervals. Here, we have assumed the normalizations κ0 = −∞, κJ+1 = +∞,
and κj < κj+1. In addition, note that we require a scale normalization and so zi may
not contain a constant. For any j ∈ {0, . . . , J}, the probabilities of interest are given
by:

Pr(yi = j) = Pr(κj < y∗i < κj+1)

= Pr(κj − z′iβ† < εi < κj+1 − z′iβ†)
= Φ(κj+1 − z′iβ†)− Φ(κj − z′iβ†). (4)

In the presence the heaping data, the term Pr(yi = j) depends on the four cases:

(I) For correctly reported outcomes, Pr(yi = j) = Φ(κj+1 − z′iβ†)− Φ(κj − z′iβ†).

5. Supplementary material provided in ACG sketches the key identification conditions required for
the estimation of this model when heaping is present in the data. A class of ordered choice models
known as generalized ordered choice models, extends the standard model in different ways to
incorporate unobserved heterogeneity (Greene 2014). Our Stata command estimates the standard
ordered probit model with heaping, but without unobserved heterogeneity.

6. In principle, other distributions for εi can be chosen. For example, a logistic distribution for εi will
lead to an ordered logit model.
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(II) For reported outcomes that are l = 1, 2, etc. points below the nearest heaping point,
Pr(yi = j) = (1− pl)

(
Φ(κj+1 − z′iβ†)− Φ(κj − z′iβ†)

)
.

(III) Similar to (II), for reported outcomes that are l = 1, 2, etc. points above the
nearest heaping point, Pr(yi = j) = (1− ql)

(
Φ(κj+1 − z′iβ†)− Φ(κj − z′iβ†)

)
.

(IV) Finally for reported outcomes on the heaping points:

Pr(yi = j) =
∑
l

pl
(
Φ(κj+1 − z′iβ†)− Φ(κj − z′iβ†)

)
+
∑
l

ql
(
Φ(κj+1 − z′iβ†)− Φ(κj − z′iβ†)

)
+
(
Φ(κj+1 − z′iβ†)− Φ(κj − z′iβ†)

)
Note that when the outcome is duration data and for right-censored data at yi = τ̄ ,

the likelihood function can be written as:

LN (θ†) =

N∑
i=1

τ̄−1∑
j=1

Pr(yi = j)

dij ·ci (
1− Φ(κτ̄ − z′iβ†)

)(1−ci)
, (5)

where θ† = {β†′ , κ′, p1, . . . , pr, q1, . . . , qr}′ and dij is an indicator equal to one when
ti = j and zero otherwise.

4 Testing for ‘heaping’

As pointed out in Section 2.2, if some of the heaping probability parameters lie on the
boundary of the parameter space, the asymptotic distribution of the estimator is no
longer normal. In addition, inference becomes more complicated, since subsampling
methods are used to derive the asymptotic standard errors. In the following, we discuss
two specification tests. First, a test to detect whether heaping matters in a statistical
sense (Hπ1). If heaping matters, a second test to discriminate between the general case
that allows for probability parameters on the boundary, and the special case without
parameters on the boundary (Hπ2). That is, while the first test helps to determine
whether the specified heaping model is indeed preferred over a standard model that
does not account for heaping, the second test allows one to decide whether inference, in
fact, ought to be based on subsampling methods.

Thus, collecting all heaping parameters in the vector π with π = {p1, . . . , pr, q1, . . . , qr}′
and θ = {θ′, σ, π′}′, the first test examines the existence of heaping effects through:

Hπ1 :
Hπ1

0 : p1 = ... = pr = q1 = ... = qr = 0

vs
Hπ1

A : pl > 0 and/or ql > 0
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for some l = 1, ..., r. The above hypothesis Hπ1
0 can be tested through a standard

likelihood ratio test (ACG).

The second specification test examines whether all heaping parameters lie inside the
parameter space, which in turn allows inference based on asymptotic normality. That
is, the null hypothesis of the test is that at least one rounding parameter is equal to
zero versus the alternative that none is zero (and thus no boundary problem exists).
Therefore, if we reject this hypothesis, we are able to make inference based on standard
normal critical values, while if we fail to reject we ought to rely on subsampling methods
for inference.

Formally, let H
(j)
p,0 : pj = 0, H

(j)
p,A : pj > 0, and let H

(j)
q,0 , H

(j)
q,A be defined analogously.

Our objective is to test the following hypothesis:

Hπ2 :
Hπ2

0 =
(
∪rj=1H

(j)
p,0

)
∪
(
∪rj=1H

(j)
q,0

)
vs

Hπ2

A =
(
∩rj=1H

(j)
p,A

)
∩
(
∩rj=1H

(j)
q,A

)
,

so that under Hπ2

A all ps and qs are strictly positive. To discriminate between Hπ2
0 and

Hπ2

A , we apply the Intersection-Union principle (IUP), see e.g. chapter 5 in Silvapulle
and Sen (2005). According to the IUP, we only reject Hπ2

0 at level α if all single null

hypotheses H
(j)
p,0 and H

(j)
q,0 are rejected at level α.

We now introduce a rule to discriminate between Hπ2
0 and Hπ2

A .

Rule IUP-PQ: Reject Hπ2
0 , if maxj=1,...,r {PVp,j , PVq,j} < α and, do not reject oth-

erwise.

Thus, as pointed out above, if one rejects Hπ2
0 , the inference can be based on asymp-

totic normality, while failure to reject Hπ2
0 requires the use of subsampling methods as

outlined before.

5 Command Implementation

As discussed in the earlier section, if one or more of the probability parameters lie on
the boundary of the parameter space, the asymptotic distribution of the estimator is no
longer normal. We provide two tests that can be used to detect this. Hence, the output
provides the usual asymptotic standard errors along with the standard errors calculated
using the M out of N bootstrap method, where M denotes an integer strictly smaller
than N (see ACG).

5.1 Data

We illustrate the use of the heapmph and heapop commands using generated data based
on 250 observations drawn randomly from the original sample used in ACG. More
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specifically, we retain two covariates of these observations that were found to be sig-
nificant: mother’s age at the time of birth (age m), and mother’s years of schooling
(school m). Our outcome variable duration,which is the time of death of the child
measured in days if the child died within the first 17 days, is generated using these two
covariates within the ordered choice model framework as detailed next. All observations
where the child survived for longer than 18 days are treated as censored.7

The latent dependent variable y∗i in the ordered choice model framework, is generated
according to:

y∗i = 0.1 age mi − 0.1 school mi + εi for i = 1, ..., 250.

We use two different schemes to generate εi for demonstrating heapmph and heapop

commands, respectively. Note, as shown in Appendix 3, the Cox’s proportional hazards
(PH) model is equivalent to the ordered choice model where the underlying error term
in the latent variable model is Type I EV distributed. The threshold parameters κ are
then generated in terms of parameters γ (see Appendix 3).8 In detail:

(i) For heapmph command, we characterize a proportional hazard model data exam-
ple by generating i.i.d. εi from a Type I EV distribution. The baseline gamma param-
eters are set as follows: exp

(
γ(t)

)
= 0.3 for t = 0, 1, 2, 3, exp

(
γ(t)

)
= 0.6 for t = 4, .., 7,

exp
(
γ(t)

)
= 1.2 for t = 8, .., 11, exp

(
γ(t)

)
= 2.5 for t = 12, .., 15,, exp

(
γ(16)

)
= 8,

and exp
(
γ(17)

)
= 10. The dataset created according to this scheme is enclosed in the

package and named as “heap demonstration2.dta".

(ii) For the data example used to demonstrating heapop, we draw εi from a standard
normal distribution. We set the gamma parameters for heapop as follows: exp

(
γ(t)

)
=

0.6 for t = 0, 1, ..., 11, exp
(
γ(t)

)
= 1.5 for t = 12, .., 15, exp

(
γ(16)

)
= 1.8, and

exp
(
γ(17)

)
= 3. In the heap package, the dataset generated following this scheme

is named as “heap demonstration.dta".

Note that we keep the function flat from period 12 to 15. The discrete duration
variable without heaping, for each observation i = 1, 2, ..., 250, for these models is then
generated using the cutoff points as:

durationi = t if y∗i ∈ [δt, δt+1) for t = 0, ..., 18

where we assume δ0 = −∞, and δ19 =∞ for the normalization.

Finally, we add the following heaping pattern to the dependent variable: the duration
points 4, 9, and 11 are rounded up to 5, 10, and 15 with probability 0.7, respectively, and
the duration points 6, 11, and 16 are rounded down to 5, 10 and 15, respectively, with
the same probability 0.7. Hence the heaping probability parameters are p1 = q1 = 0.7 .

7. Please refer to ACG for details of the survey and the original sample used in ACG.
8. exp

(
κ(t)

)
= exp

(
− δ(t)

)
= exp

(
γ(0)

)
+ ...+ exp

(
γ(t− 1)

)
.
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Algebraically, the actual observed duration variable duration is generated by:

ui ∼ Uniform[0, 1]

durationi = 5 if durationi = 4 and ui < 0.7

durationi = 5 if durationi = 6 and ui < 0.7

durationi = 10 if durationi = 9 and ui < 0.7

durationi = 10 if durationi = 11 and ui < 0.7

durationi = 15 if durationi = 14 and ui < 0.7

durationi = 15 if durationi = 16 and ui < 0.7

We have not included the unobserved heterogeneity in the generation of the above data.
Figure 2 plots the histograms of both observed duration variable with heaping and the
true duration variable without heaping as generated from the ordered probit model.

5.2 heapmph command

This section describes the implementation of the heapmph command for the mixed pro-
portional hazard model.

Basic syntax

The basic syntax of the heapmph command follows the standard Stata command form:

heapmph depvar varlist
[
if
] [

in
] [

, options
]

where depvar stands for the dependent variable, and varlist may contain the specified
covariates. In this paper, we demonstrate the usages of the heap package with exam-
ples, and then explain a few other options available. We do not provide an exhaustive
explanation of all the options available, and thus refer the interested user to the help
files included in the package.

Model estimation

As discussed in Section 5.1, the analysis is restricted to modeling the hazard rate during
the first 18 days after birth since the reported number of deaths is smaller after this
period (see ACG). We, therefore, add the censor(18) option to the command to fix
the right-censoring period for each observation at 18. By default, the heap command
assumes that the right-censoring period is the largest value of the dependent variable
in the chosen sample. Instead of using the fixed right-censoring, it is also possible to
allow for person-specific censoring points for each observation (see Section 5.4). We also
provide a command to test for policy effects (see Appendix 2)
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We next detail the values used for the four compulsory options to define the pattern
of heaping in our example.

1. Since we have generated the data with heaps at days 5, 10, and 15, we define the
starting period (h∗) of 5 using the option hstar(5). The assumption is that the
heaping occurs at points that are multiples of h∗.

2. We set option jbar(3) (i.e., j̄ = 3) to indicate that there are a maximum of three
heaping points prior to the censoring point (see point 1 above).

3. As illustrated in our stylized example (Figure 1), the rounding probabilities are
p1, and q1, respectively. Hence, with the number of heaping probabilities, we
have the maximum number of time periods that a duration can be rounded to is
denoted as r = 1. This is set by the option rbar(1) in the command.

4. The constant part of the baseline hazard enables us to identify the parameters of
the heaping process. In this example, we set the time period after which the hazard
is constant equal to 12 (k). Also, we assume that the heaping is asymmetric, which
suggests that constant baseline hazard parameters are at different levels for periods
{12, 13, 14, 15}.9 In the command, the starting period of the flat segment can be
defined by adding the option kbar(12).

Example

We choose duration as the dependent variable, and age m and school m as the
covariates. We request Stata to implement the command using the code:

. heapmph duration age m school m, censor(18) hstar(5) jbar(3) kbar(12) rbar(1)

Coefficients estimation in progress (% finished approx.): 0%....1%........10%
...................20%................30%................40%.................50%
..............60%.................70%................80%..................90%
.....................100%

Initial temperature: 1 Final temperature: 0.000000010
Consecutive rejections: 10 Number of function calls: 35,277
Total final loss: 626.285 Observations: 250

MooN bootstrap will take approximately 25 minutes (100 replicates).
(each dot . indicates one replication)

1 2 3 4 5
.................................................. 50
.................................................. 100

Bootstrap Std. Normal Bootstrap
Coef. Std. Err. z P>|z| [95% Conf. Interval]

exp(gamma)
gamma0 .3057518 .0735412 4.16 0.000 .2955595 .3159441

9. See Assumption H (iii) in ACG.
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gamma1 .1539733 .0485058 3.17 0.002 .1472508 .1606959
gamma2 .2757727 .0833442 3.31 0.001 .2642218 .2873236
gamma3 .244938 .0663895 3.69 0.000 .2357369 .2541391
gamma4 .2434391 .3819543 0.64 0.524 .1905029 .2963752
gamma5 .5821127 .517579 1.12 0.261 .5103799 .6538455
gamma6 .5240925 .9355118 0.56 0.575 .3944372 .6537478
gamma7 .5396087 .1250595 4.31 0.000 .5222763 .556941
gamma8 1.012341 .2346417 4.31 0.000 .9798218 1.044861
gamma9 .6691035 1.008273 0.66 0.507 .529364 .808843

gamma10 1.239431 .7855968 1.58 0.115 1.130553 1.348309
gamma11 1.046086 1.855192 0.56 0.573 .7889691 1.303202
gamma12 1.73946 .7507658 2.32 0.021 1.635409 1.843511
gamma13 3.974719 5.473584 0.73 0.468 3.216119 4.733319
gamma14 6.835998 2.162892 3.16 0.002 6.536237 7.13576

sigma
sigma .0000838 .0041016 0.02 0.984 -.0004847 .0006522

beta
age_m -.087153 .0098087 -8.89 0.000 -.0885124 -.0857936

school_m .1161123 .0108713 10.68 0.000 .1146056 .117619

prob_left
p1 .6780751 .3751911 1.81 0.071 .6260763 .730074

prob_right
q1 .6848905 .9971728 0.69 0.492 .5466894 .8230916

The command firstly employs a single simulated annealing algorithm (see Section
5.5.3) to solve for the point estimates. The M out of N bootstrap procedure is then
conducted to yield the standard errors. Note also that the 95% bootstrap confidence
interval is constructed using the 2.5% and the 97.5% quantile of the empirical bootstrap
distribution. The output table consists of five panels. The panel exp(gamma) reports the
estimates of functions of the baseline hazard parameters (see Section 5.1 and Appendix
3). It is worth mentioning again that we set the baseline hazard parameters γ, to be
constant over periods {12, 13, 14, 15}. Hence, the number of baseline hazard parameters
we estimate is 18− 3− 1 = 14. Specifically, gamma0, gamma1,..., gamma11 in the output
table correspond to functions of the baseline hazard in period 0, 1,..., 11, respectively.
gamma12 corresponds to the flat baseline hazard during periods {12, 13, 14, 15}. gamma13
is for period 16, and gamma14 is for the period 17.

Panel sigma displays the estimate of σ which is the standard deviation of the gamma
distributed unobserved heterogeneity variable vi, and panel beta is for the estimates of
the covariate coefficients. In panels prob left and prob right, we report the estimated
heaping probabilities p1, and q1. The value of sigma coefficient can be seen to be very
close to zero numerically. This does not come unexpected since the data generating
process does not feature any unobserved heterogeneity.10

10. To test this formally, note that this is a test for a parameter on the boundary which requires an
adjustment of the critical value or the p-value. Alternatively, for a formally valid likelihood ratio
test, see Gutierrez et al. (2001).
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Testing for the presence of heaping effects

This command provides a subroutine to test null hypothesis via the Likelihood Ratio
(LR) test described in Remark 4.2 in Section 4 of ACG, and briefly discussed in Section
4 in this paper. We provide a test (testpi1) that can be implemented by addition of an
option to the main command. testpi1 tests the null hypothesis (Hπ1

0 ) that all heaping
probability parameters are zero, and the alternative (Hπ1

A ) is that at least one heaping
probability parameter is greater than zero. Applying the Intersection-Union principle
(IUP), we could test the null hypothesis (Hπ2

0 ) that at least one heaping probability
parameter is equal to zero, and the alternative (Hπ2

A ) is that none is zero.

Example

To test for the presence of heaping effects under the model specification described
in the last subsection, we can simply add testpi1 option to the command:

. heapmph duration age m school m, censor(18) hstar(5) jbar(3) kbar(12) rbar(1)
testpi1

-- Estimating the coefficients under the null (H0) --
Coefficients estimation in progress (% finished approx.): 0%....1%........10%
...................20%................30%................40%.................50%
..............60%.................70%................80%..................90%
.....................100%
-- Estimating the coefficients under the alternative (H1) --
Coefficients estimation in progress (% finished approx.): 0%....1%........10%
...................20%................30%................40%.................50%
..............60%.................70%................80%..................90%
.....................100%

MooN bootstrap will take approximately 40 minutes (100 replications).
(each dot . indicates one replication)

1 2 3 4 5
.................................................. 50
.................................................. 100

H0: all heaping probability parameters are zero
H1: at least one heaping probability parameters is greater than zero

[ The Bootstrap Critical Values ]
QLR Statistic 10% 5% 1%

24.981152 25.4834 25.5324 26.1653

The Stata output table reports the test statistic along with the corresponding boot-
strapped critical values at 10%, 5% and 1% levels.11 In this example, we fail to reject
the null hypothesis at the 10% significance level, which suggests that there is no clear
evidence of heaping.

In addition, we employ the IUP rule to test the null that at least one heaping

11. heapmph stores 1st, 5th, 10th, 90th, 95th and 99th percentiles of the bootstrap empirical distribution
function in e(). See the help file to this command for details.
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probability parameter is equal to zero (Hπ2
0 ). In detail, we sort the p-values of all

heaping parameters (p1 and q1) displayed in the regression output. The largest p-value
is 0.492 in our example, so we do not reject the null at any conventional significance
level, hence we have to continue to use M out of N subsampling scheme. Otherwise, if
the null hypothesis was rejected, one could simply do inference based on the standard
normal distribution.

5.3 heapop command for the ordered probit model with heaping

Basic syntax

The syntax and corresponding options of Stata command heapop are identical to those
of the heapmph command (see Section 5.2).

Model estimation

The heapop command estimates an ordered probit model with heaping, and can be
also employed to deal with the duration outcome data. The heapop command requires
also four compulsory options to define the pattern of heaping, i.e., kbar(), jbar(),
hstar(), and rbar(), as introduced in Section 5.2 for the heapmph command. In the
case of ordered choice or count data, the censor() option can be used to indicate the
maximum number of possible choices or counts. If censor() is left unspecified, Stata
by default uses the maximum value of the dependent variable as censor().

This section attaches example usages of the heapop command under the same spec-
ification of the heaping pattern as used in Section 5.2.

We first request Stata to implement the heapop command to estimate the model:

Example

. heapop duration age m school m, hstar(5) jbar(3) kbar(12) rbar(1)

Coefficients estimation in progress (% finished approx.): 0%....1%........10%
...................20%................30%................40%.................50%
..............60%.................70%................80%..................90%
.....................100%

Initial temperature: 1 Final temperature: 0.000000010
Consecutive rejections: 45 Number of function calls: 34,215
Total final loss: 593.206 Observations: 250

MooN bootstrap will take approximately 23 minutes (100 replicates).
(each dot . indicates one replication)

1 2 3 4 5
.................................................. 50
.................................................. 100

Bootstrap Std. Normal Bootstrap
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Coef. Std. Err. z P>|z| [95% Conf. Interval]

exp(gamma)
gamma0 .2721881 .075306 3.61 0.000 .2617512 .282625
gamma1 .3747939 .0963867 3.89 0.000 .3614354 .3881524
gamma2 .4633893 .1222535 3.79 0.000 .4464458 .4803327
gamma3 .4146261 .1156667 3.58 0.000 .3985955 .4306567
gamma4 .3467341 .6549929 0.53 0.597 .2559567 .4375114
gamma5 .5220416 .3889637 1.34 0.180 .4681339 .5759492
gamma6 .4701779 .9988004 0.47 0.638 .3317512 .6086046
gamma7 .3721548 .1083006 3.44 0.001 .3571451 .3871645
gamma8 .6864175 .1918713 3.58 0.000 .6598255 .7130095
gamma9 .694045 1.225619 0.57 0.571 .5241829 .8639071

gamma10 .6801856 .5940031 1.15 0.252 .597861 .7625103
gamma11 .3868165 .8571374 0.45 0.652 .2680233 .5056097
gamma12 .8342315 .5854894 1.42 0.154 .7530868 .9153762
gamma13 1.68294 2.923839 0.58 0.565 1.277717 2.088163
gamma14 1.991177 .6263514 3.18 0.001 1.90437 2.077985

beta
age_m -.0854586 .010742 -7.96 0.000 -.0869474 -.0839699

school_m .0968189 .0027978 34.61 0.000 .0964311 .0972066

prob_left
p1 .7011283 .4484472 1.56 0.118 .6389767 .7632799

prob_right
q1 .6718045 1.121392 0.60 0.549 .5163875 .8272215

Unlike the table in Section 5.2, this table consists of only four panels as no unobserved
heterogeneity parameter has been estimated. Standard errors and bootstrap confidence
intervals are constructed as before in Section 5.2. The first panel contains again the
estimated baseline parameters (exp(gamma); cf. Section 5.2 for the specification), while
panel two provides estimates of the β coefficients. Note that the numerical differences in
the β coefficient estimates is likely to stem from the omission of unobserved heterogeneity
and the different functional form in this specification. Finally, panel three and four
contain the estimated heaping probabilities, which can both be seen to be statistically
insignificant.

Testing for the presence of heaping effects

Example

To test for the presence of heaping effects (Hπ1), we code:

. heapop duration age m school m, hstar(5) jbar(3) kbar(12) rbar(1) testpi1

-- Estimating the coefficients under the null (H0) --
Coefficients estimation in progress (% finished approx.): 0%....1%........10%
...................20%................30%................40%.................50%
..............60%.................70%................80%..................90%
.....................100%
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-- Estimating the coefficients under the alternative (H1) --
Coefficients estimation in progress (% finished approx.): 0%....1%........10%
...................20%................30%................40%.................50%
..............60%.................70%................80%..................90%
.....................100%

MooN bootstrap will take approximately 41 minutes (100 replications).
(each dot . indicates one replication)

1 2 3 4 5
.................................................. 50
.................................................. 100

H0: all heaping probability parameters are zero
H1: at least one heaping probability parameters is greater than zero

[ The Bootstrap Critical Values ]
QLR Statistic 10% 5% 1%

25.995373 26.2054 26.2146 26.2384

As in the previous section, we cannot reject the null Hπ1
0 at any conventional level

and thus proceed to test Hπ2
0 via the IUP rule. More specifically, we sort again the

p-values of all heaping parameters (p1 and q1) displayed in the regression output. Since
the largest p-value is 0.826, we do not reject the null at any conventional significance
level and continue to use M out of N subsampling for inference.

5.4 Further options

Here, we elaborate on a few additional options, which are available for both commands
heapmph and heapop.

Bootstrap options

The rep(integer) option allows users to specify the number of M out of N bootstrap
replications for calculating the standard errors. The default value is set at 100. In the
example shown in Section 5.2 , it takes 24 minutes to run 100 bootstrap iterations in
a 64 bit Stata 15 SE on a desktop computer with the Intel i7 quad-core processor with
4.0GHz.

When choosing the M in the M out of N bootstrap, users can set the option
moon(real) to select the share of M observations to be randomly drawn from the sample
of size N . Bickel and Sakov (2008) provide an in-depth discussion on the choice of the
M parameter. The heap packages, by default, set moon at 0.8 so that in each MooN
bootstrap iteration, 80% of the original sample are randomly kept.
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Optimization

The commands provided implements the Simulated Annealing (SA) algorithm to max-
imize the likelihood function of the model. The SA method, proposed by Kirkpatrick
et al. (1983), is a popular local search algorithm for stochastically approximating the
global optimum of a given objective function. The review of the algorithm and its tech-
nical details can be found in Dowsland and Thompson (2012), for example. The SA
algorithm is particularly useful for our model, and may be preferable to the conventional
Newton algorithm, since SA is better at locating global maximum when the likelihood
function is complex, as in our case.

The heap package self-contains the Mata function for SA method of Kirkpatrick
et al. (1983). In this function, we have designed 10 options for users to control settings
of the SA algorithm. For instance, sa verbosity(integer) allows the user to set the
maximum number of total iterations (the default is 8000) and the sa stopTemp (real)
option allows one to set the temperature at which to stop the searching algorithm (the
default is 1× 10−8). The full details about the settings are listed in the help file to this
command. Besides, the seed state for initializing the random number generator is set
to be 1000 by default, and can be adjusted in the seed(real) option.12

Display options

For diagnosing and monitoring purposes, we provide the following two options to display
the intermediate command outputs. First, the detail option can be used to display
a summary of heaping model specifications, and produce a table only for point esti-
mates before conducting the bootstrap. Second, the sa verbosity(integer) (DG: is
this correct?) option can be set to 1 for producing the final report of the simulated
annealing, and set to 2 for further displaying the temperature changes in each iteration.
The default value of this option is zero which suppresses all output.

Different censoring points for each observation

The option for variable censoring is vcensor(varname), where varname is a dummy
variable which equals to 1 if the observation is complete and is 0 if the observation is
right-censored.

Let uncensor dummy stand for a period-specific censoring indicator variable. uncensor dummy=1
if the observation’s spell is complete, and uncensor dummy=0 if the spell is right-
censored. For example, we randomly generate uncensor dummy from a Bernoulli(0.1)
distribution, and apply the heapmph command:

. generate byte uncensor dummy = uniform() <0.1

12. Another user-written Mata function is ‘simann’. We have not used this since, we did not know
how the function actually performed as the author did not disclose the source code of this function.
Additionally, the command was not flexible enough, since some of the parameters were fixed in
the ‘simann’ function. Based on the Matlab’s simulated annealing function, one of the authors
(Zizhong Yan) has programmed a more flexible Mata simulated annealing function for our heaping
command.
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. heapmph duration age m school m,vcensor(uncensor dummy) hstar(5) jbar(3) kbar(12)
rbar(2)

(output omitted)

Note that if neither vcensor(varname) nor censor (integer) is specified, the com-
mand by default will fix the right-censoring point at the maximum value of the depen-
dent variable in the usable sample.

6 Conclusion

Discrete time duration models are very popular among researchers. The Stata command
heapmph allows the estimation of a discrete time mixed proportional hazard model, when
the observed discrete durations exhibit abnormal concentrations at certain durations
points. An accompanying code heapop allows for heaping in an ordered probit model.
The underlying assumptions and the identification strategy used are discussed fully in
ACG.
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Figure 1: Stylized Example

Notes: (i) This stylized example allows the heaps at periods 10 and 15. (ii) DH is the
set of the reported durations on the heaping points. DH−1 stands for the set reported
duration points that are one period below the nearest heaping point. Similarly, DH+1

stands for the set of reported durations that are one period above the nearest heaping
point. Dτ refers to the correctly reported durations. (iii) The rounding probabilities of
heaping are p1 and q1 for DH−1 and DH+1 , respectively. (iv) The constant part of the
baseline hazard starts from period 12. By the asymmetric heaping, the constant baseline

hazard parameters (γt = ln
∫ t+1

t
λ0(s)ds) are at different levels for periods [12, 15) and

[15, 17). (v) In Stata output table in Section 5,2, gamma8”, “gamma9”,..., “gamma11” cor-
respond to the baseline hazard in period 8, 9,..., 11, respectively. “gamma12” corresponds
to the constant baseline hazard during periods [12, 15). “gamma13” is for period [15, 17)
and “gamma14” is for the period 17. The period 18 in this example is the right-censoring
date.
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Figure 2: Histograms of the duration variable in the example data for demonstrating
heapmph command (See Section 5.1)
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Notes: (i) The upper graph plots the unobserved true duration variable without the
heaping pattern. (ii) The lower graph presents the observed duration variable. In this
example, duration points 4, 9, and 11 are rounded up to 5, 10, and 15 with probability
0.7, respectively. Duration points 6, 11, and 16 are rounded down to 5, 10, and 15 with
the same probability 0.7, respectively. (i.e., p1 = q1 = 0.7) (iii) The right-censoring date
is the period 18 in this data.
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Table 1: Summary statistics for the variables used in the illustration of heapmph com-
mand

Variable Mean (SD)
Number of days of survival of the children exclu- 8.873
ding the censored observations (4.828)
Proportion of censored observations at 18 days 0.244

(0.430)
Age of mother at the birth of the child, in years 24.060

(5.120)
Mother’s education, in years 3.248

(4.135)
Proportion of children who were born during the 0.132
treatment period (0.339)
Total number of children 250

Notes: See Section 5.1 for the model that generated this data.
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1 Estimating the policy effect

In this Appendix, we discuss an additional feature of the command heapmph and heapop,
that allows the user to test for a shift in the baseline hazard in the duration model or the
threshold parameters in the ordered probit model, and/or the reporting probabilities,
perhaps due to a change in a binary variable.13 For example, one might be interested in
the analysis of the effects of a certain policy change on duration outcomes, and the bi-
nary indicator will then take the value of one for treated individuals. ACG’s main focus,
for example, is on whether the Janani Siraksha Yojana (JSY) program in India had any
effect on neo-natal mortality, as well as on women’s reporting behavior. The hypothesis
being that more accurate records are available on average, compared to before, as the
program encouraged women to deliver babies in health facilities.

The treat(varname) option of heapmph and heapop commands allows the user to
account for the effect of a policy change on duration outcomes where varname is the
name of the binary indicator variable. The treatment indicator variable is the actual
treatment status for the 250 children randomly chosen from the original ACG data set,
and as reported in Table 1, 13.2% of the children in our sample, were born during the
treatment period. Since the data set used here are the same as that discussed in Section
5.2, we would expect to not reject the null hypothesis of zero treatment effects on the
gamma parameters and the misreporting probabilities.

Example

In the data example used in this paper, the jsy dummy variable is the indicator for
whether the JSY program was in place at the time of birth of the child. Taking the
example of heapmph command, we code:

. heapmph duration age m school m, treat(jsy dummy) censor(18) hstar(5) jbar(3)
kbar(12) rbar(1)

Coefficients estimation in progress (% finished approx.): 0%....1%........10%
...................20%................30%................40%.................50%
..............60%.................70%................80%..................90%
.....................100%

Initial temperature: 1 Final temperature: 0.000000010
Consecutive rejections: 252 Number of function calls: 14,911
Total final loss: 509.181 Observations: 250

MooN bootstrap will take approximately 15 minutes (100 replicates).
(each dot . indicates one replication)

1 2 3 4 5
.................................................. 50
.................................................. 100

Bootstrap Std. Normal Bootstrap
Coef. Std. Err. z P>|z| [95% Conf. Interval]

13. Similar tests can also be carried out in the ordered probit model, where the treatment is allowed
to shift the gamma parameters and also the mis-reporting probabilities. In order to save space, we
do not report an example using the heapop command here.
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exp(gamma)
gamma0 .1229606 .4263486 0.29 0.773 .0638716 .1820495
gamma1 .0386019 .2927666 0.13 0.895 -.0019735 .0791773
gamma2 .1268302 .3835026 0.33 0.741 .0736794 .1799809
gamma3 .1383078 .3970532 0.35 0.728 .083279 .1933366
gamma4 .0875479 .5449995 0.16 0.872 .0120148 .1630809
gamma5 .0173866 2.212301 0.01 0.994 -.2892226 .3239959
gamma6 .5470309 2.963335 0.18 0.854 .1363337 .9577282
gamma7 .3435419 .733828 0.47 0.640 .2418385 .4452453
gamma8 .6535276 1.153605 0.57 0.571 .4936461 .813409
gamma9 .2636071 2.474182 0.11 0.915 -.0792969 .6065112

gamma10 .2316901 3.614136 0.06 0.949 -.2692036 .7325839
gamma11 1.36546 4.803913 0.28 0.776 .6996713 2.031248
gamma12 1.093716 2.02697 0.54 0.589 .8127926 1.37464
gamma13 3.628725 10.84573 0.33 0.738 2.125584 5.131866
gamma14 12.31933 16.26165 0.76 0.449 10.06558 14.57308

exp(gamma_tr)
gamma_treat0 1.756707 1.980838 0.89 0.375 1.482177 2.031237
gamma_treat1 1.315527 2.658768 0.49 0.621 .9470402 1.684013
gamma_treat2 1.342548 1.891511 0.71 0.478 1.080398 1.604698
gamma_treat3 .9620915 2.02116 0.48 0.634 .681973 1.24221
gamma_treat4 1.401458 3.599703 0.39 0.697 .9025645 1.900351
gamma_treat5 1.691805 3.873919 0.44 0.662 1.154907 2.228703
gamma_treat6 1.808029 3.684712 0.49 0.624 1.297354 2.318704
gamma_treat7 .5005411 1.533699 0.33 0.744 .2879813 .7131009
gamma_treat8 .6602585 1.314985 0.50 0.616 .4780109 .8425061
gamma_treat9 .0465493 6.273625 0.01 0.994 -.8229308 .9160294
gamma_tre~10 .5768342 4.701807 0.12 0.902 -.0748031 1.228471
gamma_tre~11 .8627947 3.274777 0.26 0.792 .4089338 1.316656
gamma_tre~12 1.450397 2.087993 0.69 0.487 1.161016 1.739778
gamma_tre~13 -.4097875 5.926568 -0.07 0.945 -1.231168 .411593
gamma_tre~14 -2.876843 3.571297 -0.81 0.421 -3.371799 -2.381886

sigma
sigma .1412589 .834647 0.17 0.866 .0255827 .2569351

beta
age_m -.0607541 .1016391 -0.60 0.550 -.0748406 -.0466677

school_m .1220928 .24783 0.49 0.622 .0877453 .1564403

prob_left
p1 .5884231 1.075745 0.55 0.584 .4393325 .7375137

prob_right
q1 .8144293 2.117911 0.38 0.701 .5209018 1.107957

prob_left_treat
p1D -.3078594 2.353369 -0.13 0.896 -.6340198 .0183009

prob_right_tr~t
q1D .9277816 .4917421 1.89 0.059 .8596296 .9959336

The specifications of the heaping pattern is same as the one in Section 5. This
Stata output table has the same format as the output table in Section 5.2. In par-
ticular, the panel exp(gamma treat) in this table reports the estimated baseline pa-
rameters for the treatment group units (i.e., exp(γ(2)(1))). Panels prob left treat
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presents the estimated change of the heaping probabilities (p
(2)
1 ) of the treatment group.

prob left right reports (q
(2)
1 ) of the treatment group.

Testing hypotheses

When estimating the policy effect, the heapmph command provides two options for
testing hypotheses as follows.

Test for the changes in the reporting behavior after the policy introduction

As outlined in Section 5 of ACG, first we would like to rule out that changes in the
reporting behavior (as a result of the policy introduction) confound any observable
effect of the program. Therefore, we start by testing Hπ3 , which under the null ((Hπ3

0 ))

postulates that all deviations p
(2)
1 and q

(2)
1 are jointly equal to zero.

Example

For instance, we could use the testpi3 option:

. heapmph duration age m school m, treat(jsy dummy) censor(18) hstar(5) jbar(3)
kbar(12) rbar(1) testpi3

-- Estimating the coefficients under the null (H0) --
Coefficients estimation in progress (% finished approx.): 0%....1%........10%
...................20%................30%................40%.................50%
..............60%.................70%................80%..................90%
.....................100%
-- Estimating the coefficients under the alternative (H1) --
Coefficients estimation in progress (% finished approx.): 0%....1%........10%
...................20%................30%................40%.................50%
..............60%.................70%................80%..................90%
.....................100%

MooN bootstrap will take approximately 36 minutes (100 replications).
(each dot . indicates one replication)

1 2 3 4 5
.................................................. 50
.................................................. 100

H0: treatment has not changed the exit probability
H1: over at least one period the exit probability decreased

[ The Bootstrap Critical Values ]
QLR Statistic 10% 5% 1%

22.797652 115.5279 160.6586 276.2059

Here, in this illustration, we cannot reject the null hypothesis that there is no change
in the heaping probability parameters after the policy introduction, at the 10% level.
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Test for whether the treatment has changed the exit probability

The heapmph command provides the testgamma2 option to test for the null hypothesis
(Hγ2

0 ) that treatment has not changed the exit probability (e.g., the probability of the
event happens) in any of the first (τ̄ −1) periods against the alternative (Hγ2

A ) that over
at least one period the exit probability decreased. For the technical details of this test,
see Section 5 of ACG.

Example

In Stata, we code:

. heapmph duration age m school m, treat(jsy dummy) censor(18) hstar(5) jbar(3)
kbar(12) rbar(1) testgamma2

-- Estimating the coefficients under the null (H0) --
Coefficients estimation in progress (% finished approx.): 0%....1%........10%
...................20%................30%................40%.................50%
..............60%.................70%................80%..................90%
.....................100%
-- Estimating the coefficients under the alternative (H1) --
Coefficients estimation in progress (% finished approx.): 0%....1%........10%
...................20%................30%................40%.................50%
..............60%.................70%................80%..................90%
.....................100%

MooN bootstrap will take approximately 26 minutes (100 replications).
(each dot . indicates one replication)

1 2 3 4 5
.................................................. 50
.................................................. 100

H0: no change in the heaping probability parameters after the policy (treatment) introduction
H1: a change in at least some rounding parameters

[ The Bootstrap Critical Values ]
QLR Statistic 10% 5% 1%

101.96437 241.9557 272.1655 306.3246

From the output tables, we find that the null of Hγ2
0 cannot be rejected at a 10%

significance level.

2 Policy analysis: using heapop command

Example

One might be interested in using the ordered probit model to estimate the effects of
a certain policy change on the heaping probabilities. We code:

. heapop duration age m school m, treat(jsy dummy) hstar(5) jbar(3) kbar(12) rbar(1)
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Coefficients estimation in progress (% finished approx.): 0%....1%........10%
...................20%................30%................40%.................50%
..............60%.................70%................80%..................90%
.....................100%

Initial temperature: 1 Final temperature: 0.000000010
Consecutive rejections: 0 Number of function calls: 17,079
Total final loss: 580.834 Observations: 250

MooN bootstrap will take approximately 17 minutes (100 replicates).
(each dot . indicates one replication)

1 2 3 4 5
.................................................. 50
.................................................. 100

Bootstrap Std. Normal Bootstrap
Coef. Std. Err. z P>|z| [95% Conf. Interval]

exp(gamma)
gamma0 .2201253 .1222564 1.80 0.072 .2031814 .2370692
gamma1 .3234947 .1733278 1.87 0.062 .2994727 .3475167
gamma2 .373393 .2060417 1.81 0.070 .3448371 .4019489
gamma3 .2748416 .1529418 1.80 0.072 .2536449 .2960382
gamma4 .1865983 .5957995 0.31 0.754 .1040247 .2691719
gamma5 .4966012 .6241665 0.80 0.426 .4100962 .5831063
gamma6 .3905122 .940318 0.42 0.678 .2601907 .5208336
gamma7 .4948187 .3479875 1.42 0.155 .4465901 .5430473
gamma8 .5846685 .3741055 1.56 0.118 .5328202 .6365169
gamma9 .3797094 1.122963 0.34 0.735 .2240747 .5353441

gamma10 .6438094 .7899548 0.81 0.415 .5343273 .7532916
gamma11 .5438619 1.104397 0.49 0.622 .3908003 .6969236
gamma12 .619283 .9040273 0.69 0.493 .4939912 .7445748
gamma13 1.587706 4.084947 0.39 0.698 1.021561 2.153851
gamma14 1.736305 1.103575 1.57 0.116 1.583357 1.889252

exp(gamma_tr)
gamma_treat0 -.0277171 3.423028 -0.01 0.994 -.5021246 .4466905
gamma_treat1 .4552177 2.410112 0.19 0.850 .1211932 .7892421
gamma_treat2 1.580163 1.246502 1.27 0.205 1.407406 1.752919
gamma_treat3 2.63764 1.641752 1.61 0.108 2.410105 2.865175
gamma_treat4 2.118725 2.607281 0.81 0.416 1.757375 2.480076
gamma_treat5 .1418619 1.802993 0.08 0.937 -.1080202 .391744
gamma_treat6 1.270889 2.182315 0.58 0.560 .9684354 1.573342
gamma_treat7 -2.791271 5.147388 -0.54 0.588 -3.504663 -2.07788
gamma_treat8 .4949781 .6722757 0.74 0.462 .4018055 .5881508
gamma_treat9 .2580867 5.021704 0.05 0.959 -.4378859 .9540594
gamma_tre~10 .8517118 3.613198 0.24 0.814 .350948 1.352476
gamma_tre~11 -.5838686 5.963755 -0.10 0.922 -1.410403 .2426656
gamma_tre~12 1.044385 .7260383 1.44 0.150 .9437617 1.145009
gamma_tre~13 .388965 3.01887 0.13 0.897 -.029429 .8073589
gamma_tre~14 .391813 .4705357 0.83 0.405 .3266001 .457026

beta
age_m -.075491 .0198171 -3.81 0.000 -.0782375 -.0727445

school_m .0978651 .0102829 9.52 0.000 .09644 .0992903

prob_left
p1 .5402499 .4846781 1.11 0.265 .4730769 .6074228
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prob_right
q1 .7557395 2.360927 0.32 0.749 .4285317 1.082947

prob_left_treat
p1D .1991267 1.050912 0.19 0.850 .0534778 .3447756

prob_right_tr~t
q1D -.5226667 2.121365 -0.25 0.805 -.816673 -.2286605

Similar to the Appendix 1, the heapop command provides two options for testing
hypotheses for the policy analysis.

Example

First, to test for the changes in the reporting behavior after the policy introduction
(Hπ3), one can code:

. heapop duration age m school m, treat(jsy dummy) hstar(5) jbar(3) kbar(12) rbar(1)
testpi3

-- Estimating the coefficients under the null (H0) --
Coefficients estimation in progress (% finished approx.): 0%....1%........10%
...................20%................30%................40%.................50%
..............60%.................70%................80%..................90%
.....................100%
-- Estimating the coefficients under the alternative (H1) --
Coefficients estimation in progress (% finished approx.): 0%....1%........10%
...................20%................30%................40%.................50%
..............60%.................70%................80%..................90%
.....................100%

MooN bootstrap will take approximately 30 minutes (100 replications).
(each dot . indicates one replication)

1 2 3 4 5
.................................................. 50
.................................................. 100

H0: treatment has not changed the exit probability
H1: over at least one period the exit probability decreased

[ The Bootstrap Critical Values ]
QLR Statistic 10% 5% 1%

-2.3731951 1.9105 2.3122 4.7291

Example

Second, we test for whether the treatment has changed the exit probability (Hγ2):

. heapop duration age m school m, treat(jsy dummy) hstar(5) jbar(3) kbar(12) rbar(1)
testgamma2
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-- Estimating the coefficients under the null (H0) --
Coefficients estimation in progress (% finished approx.): 0%....1%........10%
...................20%................30%................40%.................50%
..............60%.................70%................80%..................90%
.....................100%
-- Estimating the coefficients under the alternative (H1) --
Coefficients estimation in progress (% finished approx.): 0%....1%........10%
...................20%................30%................40%.................50%
..............60%.................70%................80%..................90%
.....................100%

MooN bootstrap will take approximately 31 minutes (100 replications).
(each dot . indicates one replication)

1 2 3 4 5
.................................................. 50
.................................................. 100

H0: no change in the heaping probability parameters after the policy (treatment) introduction
H1: a change in at least some rounding parameters

[ The Bootstrap Critical Values ]
QLR Statistic 10% 5% 1%

22.219006 25.1267 26.0856 27.8067

3 Proportional hazard model as an EV ordered choice
model

In this Appendix we outline how the (continuous time) proportional hazard model can
be represented as Type I EV ordered choice model. This discussion draws heavily from
Han and Hausman (1990).

As in equation (1), denote the conditional hazard (without unobserved heterogene-
ity) by:

λi(τ
∗|zi) = λ0(τ∗) exp(z′iβ),

and let F (·) and S(·), respectively, be the distribution and survivor functions of our
duration variable τ∗ specified in continuous time. Using the discretized duration variable
and the relationship between a hazard function and the survivor function, the probability
of observing an uncensored duration of τ ∈ {1, ..., τ−1} in the proportional hazard model
is:

Pr (τi = τ) = Si (τ)− Si (τ + 1) = Fi (τ + 1)− Fi (τ)

= exp(−
∫ τ

0

λi(τ
∗|zi)dτ∗)− exp(−

∫ τ+1

0

λi(τ
∗|zi)dτ∗)

= exp(− exp(δτ+1 + z′iβ))− exp(− exp(δτ + z′iβ)). (6)
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Here, δτ denotes the log of the integrated baseline hazard given by:

δτ = ln

∫ τ

0

λ0(s)ds, τ = 1, ..., τ − 1. (7)

The relationship between these and the baseline hazard function parameters we saw
earlier, is given by:

exp(δτ ) =

∫ τ

0

λ0(τ∗)dτ∗ =

∫ 1

0

λ0(τ∗)dτ∗ + ....+

∫ τ

τ−1

λ0(τ∗)dτ∗

= exp
(
γ(0)

)
+ exp

(
γ(1)

)
+ ...+ exp

(
γ(τ − 1)

)
We next replace the assumption for the distribution of εi in (4)with Type I EV distri-
bution to obtain:

Pr(τi = τ) = Pr(κτ ≤ y∗i < κτ+1)

= exp(− exp(κτ+1 − z′iβ†))− exp(− exp(κτ − z′iβ†)) (8)

Comparing (6) with (8), we note that β = −β†. That is, a variable that has an effect of
increasing the exit rate (hazard) will obviously have a decreasing effect on the duration.
The ordered outcome model links neatly to the underlying hazard model in the case
of the proportional hazard specifications. There is no one-to-one relationship between
these two in other models such as the ordered probit or the ordered logit.

In summary, the ordered choice model derived by assuming a Type I EV distribution
for the underlying latent variable equation error εi, is equivalent to the discrete duration
model derived from a continuous time proportional hazard model.
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