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Abstract

This thesis focuses on a class of information collection problems in stochastic op-

timisation. Algorithms in this area often need to measure the performances of

several potential solutions, and use the collected information in their search for

high-performance solutions, but only have a limited budget for measuring. A sim-

ple approach that allocates simulation time equally over all potential solutions may

waste time in collecting additional data for the alternatives that can be quickly

identified as non-promising. Instead, algorithms should amend their measurement

strategy to iteratively examine the statistical evidences collected thus far and fo-

cus computational efforts on the most promising alternatives. This thesis develops

new efficient methods of collecting information to be used in stochastic optimisation

problems.

First, we investigate an efficient measurement strategy used for the solution

selection procedure of two-stage linear stochastic programs. In the solution selection

procedure, finite computational resources must be allocated among numerous po-

tential solutions to estimate their performances and identify the best solution. We

propose a two-stage sampling approach that exploits a Wasserstein-based screening

rule and an optimal computing budget allocation technique to improve the efficiency

of obtaining a high-quality solution. Numerical results show our method provides

good trade-offs between computational effort and solution performance.

Then, we address the information collection problems that are encountered

in the search for robust solutions. Specifically, we use an evolutionary strategy to

solve a class of simulation optimisation problems with computationally expensive

blackbox functions. We implement an archive sample approximation method to

ix



reduce the required number of evaluations. The main challenge in the application

of this method is determining the locations of additional samples drawn in each

generation to enrich the information in the archive and minimise the approxima-

tion error. We propose novel sampling strategies by using the Wasserstein metric

to estimate the possible benefit of a potential sample location on the approxima-

tion error. An empirical comparison with several previously proposed archive-based

sample approximation methods demonstrates the superiority of our approaches.

In the final part of this thesis, we propose an adaptive sampling strategy

for the rollout algorithm to solve the clinical trial scheduling and resource alloca-

tion problem under uncertainty. The proposed sampling strategy method exploits

the variance reduction technique of common random numbers and the empirical

Bernstein inequality in a statistical racing procedure, which can balance the explo-

ration and exploitation of the rollout algorithm. Moreover, we present an augmented

approach that utilises a heuristic-based grouping rule to enhance the simulation ef-

ficiency by breaking down the overall action selection problem into a selection prob-

lem involving small groups. The numerical results show that the proposed method

provides competitive results within a reasonable amount of computational time.
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Chapter 1

Introduction and Background

The challenge of collecting relevant information to support decision-making arises

naturally in various real-world applications. An example is news article recommen-

dation. News websites often recommend a small set of news articles to visitors to

improve user satisfaction and increase website traffic. The background monitoring

system needs to identify the most popular content as quickly as possible by collect-

ing visitors’ preferences, which are determined based on clicks or search terms. In

this context, a contextual bandit algorithm could be utilised to improve the effi-

ciency of information collection [Li et al., 2010]. Artificial intelligence game playing

is another example in which efficient information collection is necessary. Google

DeepMind’s AlphaGo defeated Ke Jie, one of the best Go players, during the 2017

Future of Go Summit. Go is characterised by uncertain opponent actions and nu-

merous possible moves at each step. The challenge for AlphaGo was to determine

the best move by exploring the possible future outcomes of each move within a

limited time. To address this challenge, AlphaGo employed a sampling algorithm

called upper confidence bounds applied to trees to guide the measurement process

[Esteva et al., 2017]. Information collection problems also exist in the dose-finding

design. Pharmaceutical companies recruit participants to collect clinical data for

testing the safety and efficacy of experimental drugs in various dosages. However,

different participants might react differently to the experimental drugs. Companies

need an efficient clinical trial design to identify the optimal dosage that satisfies

pre-specified clinical goals [Thall, 2012].
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1.1 Review of Efficient Information Collection

The diversity of real-world problems pose numerous challenges in information collec-

tion that inspire new thoughts and research directions. Many research communities

have been formed to advance the state-of-the-art in measurement strategies and

resolve practical information collection problems through theoretical and method-

ological innovation. Powell and Ryzhov [2012] performed a comprehensive review of

efficient information collection approaches and their applications. In the following,

we review several studies that are more closely related to the works of this thesis.

Statistical ranking and selection (R&S) is one of research streams that have

devoted extensive efforts to address such information collection problems. This

research field is concerned with problems where a finite set of competing alterna-

tives, such as business rules, engineering designs or scheduling policies, is to be

compared within a certain amount of time. The goal of this process is to assign

evaluation time as efficiently as possible across alternatives to select the best alter-

native when evaluation time runs out. Three main approaches are often cited in

the literature, namely, indifference-zone, optimal computing budget allocation and

expected value-of-information. The indifference-zone method was firstly proposed

by Bechhofer [1954] and could find the best whenever there exists a zone between

the best and second best alternatives. The earliest version is not an anytime al-

gorithm, which means that a specified simulation rule (i.e. simulation replications

for each alternative) is followed to finish all requested simulations to ensure that a

probability guarantee is achieved. Kim and Nelson [2001] and Jeff Hong [2006] later

extended the idea of indifference zone to be a sequential procedure that can stop

whenever the simulation budget is exhausted, but it no longer has such probability

of correct selection guarantee. Recently, Fan et al. [2016] imposed an assumption

of unequal means and proposed a new indifference-zone formulation without the

need to specify the indifference zone. Optimal computing budget allocation is a

Bayesian decision-theoretic approach that iteratively maximise the probability of

correct selection. Chen [1995] first proposed this appraoch and applied the Bonfer-

roni inequality to create a lower bound approximation for the probability of correct

selection, so that the algorithm could evaluate the potential improvement by using

the predictive posterior distributions. Some recent works in this framework can be

found, for example, in Chen et al. [2000]; Fu et al. [2007] and Peng et al. [2016].

Moreover, some variants of optimal computing budget allocation take the expected

opportunity cost of wrong selection as the simulation objective (e.g. see He et al.

[2007] and Gao and Chen [2015]). Another class of Bayesian approach is so-called
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expected value-of-information that myopically collects the sampling information to

improve the decision-maker’s knowledge state. Chick and Inoue [2001] first proposed

a two-stage sampling procedure in the principle of expected value-of-information.

Chick et al. [2010] developed two sequential approaches that iteratively assign a

small amount of samples to several or one designs per sampling stage. Frazier et al.

[2009] later implemented this idea and proposed a so-called knowledge gradient

method to handle the the R&S problem with correlated normal beliefs. Scott et al.

[2011] extended the idea of knowledge gradient to account for continuous decision

variables. For a comprehensive review on R&S methods, readers are referred to

Branke et al. [2007].

The studies on multi-armed bandit (MAB) problems constitute another im-

portant research community. In the MAB problem, a slot machine with multiple

arms is given, each of which gives a stochastic reward when pulled. The distributions

for the stochastic rewards collected from various arms are unknown. The objective

is to play the arms one-by-one in an optimal sequence to maximise the expected to-

tal reward in the bandit process. A good balance between exploitation (pulling the

best arm given current information) and exploration (collecting more information to

find a better arm) is needed. The MAB problem was first studied during the Second

World War and is challenging to be solved optimally. Gittins [1979] proposed an

index policy that computes a so-called “Gittins index” for each arm and chooses the

arm with the largest index value at each period of the bandit process. The Gittins

index policy has been proved optimally for infinite-horizon stationary MAB prob-

lems with time-discounted rewards. Lai and Robbins [1985] further showed that

the Gittins index policy can be asymptotically optimal in the finite-horizon bandit

process. On the other hand, the Gittins index policy is no longer guaranteed to be

optimal for the restless bandit problem where selected and unselected arms respec-

tively will produce various rewards, and their states continue to evolve regardless of

the player’s actions. Papadimitriou and Tsitsiklis [1999] showed that the computa-

tional complexity of restless bandits is PSPACE hard. Whittle [1988] first studied

the restless bandits with time-average rewards. He applied the Lagrange relaxation

to reduce the complexity of solving the restless bandits model and thus received a

Whittle index policy. The success of Whittle’s method relies on a structural prop-

erty called “indexability”, which might not be hold for all restless bandits. In the

literature, the indexability property has been established for some special classes of

restless bandits, such as stochastic scheduling problems [Glazebrook et al., 2006],

bidirectional restless bandits [Glazebrook et al., 2013] and reinitialising restless ban-

dits [Villar, 2016]. For more details on the Gittins and Whittle index policies, we

3



refer readers to the book by Gittins et al. [2011]. Another class of index policies that

have received considerable attention in recent years is the upper confidence bound

policy. The index of each arm is calculated as the sum of empirical average reward

and a “bonus” term. Similar with Gittins-like index policies, the upper confidence

bound policies choose the arm with the highest index value at each period. For

the stationary MAB problems, the basic setting of the bonus term is defined by

Hoeffding confidence bounds [Auer et al., 2002]. In the literature, some variants of

bonus terms can be found, e.g. sample variance based confidence bounds [Audib-

ert et al., 2007], or relative entropy-based confidence bounds [Cappé et al., 2013].

Moreover, some studies were presented to deal with the case of restless bandits,

see Garivier and Moulines [2011] and Bouneffouf and Féraud [2016]. The research

on the use of efficient measurement strategies for optimisation problems is closely

related to our works. For instance, in the traffic network optimisation problems,

Ryzhov and Powell [2011] assumed the time taken to pass through an individual

edge is stochastic and applied the knowledge gradient policy to collect information

on the edges to find the shortest path. Ryzhov and Powell [2012] studied a gen-

eral linear programming problem with stochastic input parameters. One needs to

identify the location of the optimal solution by collecting relevant information on

input parameters. The challenge is that inaccurate estimations of input parameters

might mislead the simplex algorithm about vertex locations. Defourny et al. [2015]

assumed that the parameters of the objective function in a robust optimisation

model are unknown, and proposed an efficient measurement strategy to refine the

optimisation model. Moreover, efficient information collection methods are widely

used in the simulation optimisation problem. Jones et al. [1998] considered a sim-

ulation optimisation problem with expensive black-box functions, and proposed an

efficient global optimisation method to sequentially update a Kriging meta-model

of the black-box objective function. The basic idea of this method is similar with

that of the knowledge gradient policy, which evaluates the point that will lead to

the largest expected improvement with respect to the current best solution at each

simulation stage. Ahmed and Alkhamis [2002] combined the use of indifference zone

with simulated annealing to improve the algorithmic efficiency. Shi and Ólafsson

[2000] proposed a nested partitions method that systematically partitions the de-

cision space and collects information to identify the most promising region. For

finite-horizon Markov decision processes, Chang et al. [2005] proposed a multi-stage

adaptive sampling algorithm that utilises the upper confidence bound policy to

balance the exploration and exploitation when searching for optimal state-action

functions. Chang et al. [2007] presented a pursuit learning automata approach that

4



assigns equal probabilities of obtaining evaluations to all candidate actions at the

initial simulation stage and then sequentially increases the evaluation probabilities

for promising candidate actions.

1.2 Structure of Thesis and Contributions

This thesis deals with some aspects related to efficient information collection in

stochastic optimisation. Our focus is on sampling approaches that estimate the

performance of potential solutions and guide algorithms towards the most promising

solutions. The thesis structure and contributions are summarised as follows.

Chapter 2 studies the information collection problem that arises from the

post-processing procedure of two-stage stochastic programs. The sampling-based

stochastic programming model in the complex applications tends to be computa-

tionally challenging. Thus, a reasonable sample size needs to be identified, and

a group of approximate models can then be constructed using such a number of

samples. These approximate models can produce a set of potential solutions. We

consider the problem of distributing a finite computational budget among numerous

potential solutions for identifying the best solution. We propose a two-stage mea-

surement strategy: Firstly, we utilise a Wasserstein-based screening rule to remove

a number of inferior solutions from the simulation. The key to the success of this

screening rule is the quantitative stability of Wasserstein metric in stochastic pro-

grams. We can infer an upper bound performance of potential solutions by using

the Wasserstein distances between samples in the approximate models and those in

the actual model. Secondly, we apply optimal computing budget allocation to de-

termine the number of evaluations to be used for each solution. We conduct several

numerical experiments to examine the performance of our approach. The numerical

results indicate that the proposed approach outperforms existing approaches under

relatively limited run times.

In Chapter 3, we propose new sampling strategies in evolutionary algorithms

for finding the best mean solution to stochastic black-box optimisation problems.

In this chapter, we focus on input uncertainty, such as in manufacturing, where

the actual manufactured product may differ from the specified design but should

still function well. Estimating the mean performance of a potential solution in such

black-box setting is challenging, especially if the function is expensive to evaluate.

One measurement might take a few weeks or possibly even a month. In this con-

text, we implement an archive sample approximation method to reduce the required

number of evaluations when estimating the mean performance. The main challenge

5



lies in determining the best locations of additional samples to complement existing

simulation results and reduce the estimation error of mean performance. We use

Wasserstein distance to estimate the possible benefit of a potential sample location

on the estimation error, and propose new sampling strategies based on this metric

to guide evolutionary algorithms towards the promising region of decision space.

An empirical comparison with several previously proposed archive-based sample

approximation methods demonstrates the superiority of our approaches.

In Chapter 4, we focus on drug development and propose an adaptive sam-

pling strategy to support the rollout search process. Specifically, drug development

is a process of testing the safety and efficacy of experimental drugs in a series of

clinical trials, entrenched with a high uncertainty that an experimental drug will

eventually get market approval. The profitability of drug development relies on

effective strategic decision-making that comprises clinical trial scheduling and re-

source allocation across multiple drug projects. In this work, the drug development

problem is formulated as a discrete-time finite Markov decision process, and an

adaptive rollout algorithm is introduced for the curse of dimensionality arisen in the

stochastic dynamic program model. The proposed algorithm includes two innova-

tions. First, a base policy is used to obtain optimistic estimates of future outcomes

after taking a particular action at a state of the system. This policy utilises a rolling

horizon optimisation model to identify a specific action to be taken at each state of

the system and optimistically estimates the expected profit after a particular action

is implemented. We prove that the optimistic policy follows a sequential consis-

tency property and the performance of the rollout algorithm is at least as good as

the optimistic policy. Second, an adaptive sampling approach is proposed to ef-

ficiently identify the best action, which exploits the variance reduction technique

of common random numbers and the empirical Bernstein inequality in a statistical

racing procedure. Besides, we present an augmented adaptive sampling approach

that utilises a heuristic-based grouping rule to enhance the simulation efficiency by

breaking down the overall action selection problem into a selection problem involv-

ing small groups. The proposed algorithms can provide competitive results within

a reasonable computational time.

Chapter 5 summarises the contributions of this thesis and describes future

research directions.
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Chapter 2

Efficient Solution Selection for

Two-stage Stochastic Programs

2.1 Introduction

Real-life optimisation problems often involve uncertainties and require solutions that

can handle such uncertainties in the modelling process. Techniques such as the two-

stage linear stochastic programming with recourse (SPR) incorporate random data

within the model formulation and determine a solution that satisfies the constraints

and leads to the best expected objective function value for all possible scenarios.

The development of SPR can be traced back to research conducted in the 1950s and

1960s, e.g., Beale [1955], Dantzig [1955] and Wets [1966]. The successful applications

of SPR can be found in various sectors such as portfolio management [Dupačová,

1999; Miller and Ruszczyński, 2011], energy planning [Beraldi et al., 2008; Zhou

et al., 2013; Feng and Ryan, 2014], supply chain management [Joensson et al., 1993;

Santoso et al., 2005; Dillon et al., 2017], and transportation planning [Cheung and

Chen, 1998; Barbarosoǧlu and Arda, 2004; Liu et al., 2009].

SPR problems can become computationally intractable in numerous applica-

tions because each possible sample generated from random data is associated with

one or several decision variables and constraints within the model formulation. If

the sample space is considerably large or continuous, then determining an optimal

solution within a reasonable timeframe will be impossible for such a model. Studies

have proposed the utilisation of sample average approximation (SAA) to identify

approximate solutions to large-scale SPR problems, e.g., see Gürkan et al. [1994]

and Shapiro and Homem-de Mello [1998]. SAA leverages computational challenges

in such a way that a subset of samples generated from random data is used to con-
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struct approximate models, which provide potential solutions to the original SPR

model. Monte-Carlo sampling as well as several variance reduction techniques such

as quasi-Monte-Carlo sampling [Leövey and Römisch, 2015; Heitsch et al., 2016], im-

portance sampling [Parpas et al., 2015] and Latin hyper-cube sampling [Linderoth

et al., 2006] can be utilised to generate such samples. Moreover, some authors sug-

gested the generation of samples that should satisfy a specified criterion, such as

probability distances [Pflug, 2001; Dupačová et al., 2003] or moment discrepancies

[Høyland et al., 2003; Gülpınar et al., 2004].

Once samples are generated, various optimisation algorithms can be used to

solve the resulting SAA model. One approach is to utilise the simplex algorithm,

which is conveniently implemented by modern optimisation solvers. Alternatively,

some studies exploited the problem structure and proposed decomposition-based

optimisation algorithms, for instance, see Dantzig and Wolfe [1960] and Van Slyke

and Wets [1969]. Subsequently, numerous authors introduced advanced proce-

dures such as the multi-cut approach [Birge and Louveaux, 1988], the trust region

method [Linderoth and Wright, 2003], the regularised decomposition [Ruszczyński

and Świetanowski, 1997] and the level bundle method [Wolf et al., 2014; van Ackooij

et al., 2017] to improve the efficiency of utilising the decomposition principle. For

a comprehensive review on decomposition approaches, the readers are referred to

Rahmaniani et al. [2017].

The identification of high-quality solutions has been widely studied because

of their importance for performance-sensitive SAA users. The approximate solutions

can asymptotically converge to the optimal one as the number of samples gets suf-

ficiently large, for details, see Shapiro and Homem-de Mello [1998] and Homem-de

Mello and Bayraksan [2014]. Shapiro et al. [2002] showed that, given an arbitrary

number of samples, each solution has a certain probability of being the optimal

one, and the value is related to problem-specific factors and the number of sam-

ples. If the best solution is selected from several potential ones on the basis of

their performances, then the probability of determining the optimal solution is sig-

nificantly increased. Therefore, large quantities of samples and potential solutions

are both important in searching for high-quality SAA solutions. However, these

requirements may be difficult to satisfy simultaneously within a given period be-

cause they compete with each other on time allocations. As suggested by Lee et al.

[2006], a practical remedy is to determine a proper balance between these objectives

by using computing time allocation algorithms. The authors also showed that the

algorithmic efficiency significantly influences performance of the final solution. The

application of highly efficient optimisation approaches, such as the aforementioned
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decomposition-based method, is beneficial because the SAA user can implement

a large sample size to strengthen the approximation of random data and obtain

improved solutions within the same timeframe. Moreover, an effective solution se-

lection method is also important because it can promptly determine the best option

among a large group of potential solutions. However, only a limited number of

studies is concerned with solution selection for the SPR problems.

Defourny et al. [2013] applied a brute-force approach that runs extensive

simulations for each potential solution to identify a good policy in multi-stage linear

stochastic programming. Instead of individually evaluating solution performance,

Kleywegt et al. [2002] used a ranking and selection approach called indifference zone

to determine a good solution in two-stage stochastic discrete optimisation. The

indifference zone approach, which assigns simulation replications for each potential

solution on the basis of performance statistics and guarantees the overall procedure

at least a certain probability of selecting the best solution, was proposed by Nelson

et al. [2001]. However, this approach is not an anytime algorithm, which means that

a specified simulation rule (i.e. simulation replications for each potential solution)

is followed to finish all requested simulations so that a probability guarantee is

achieved. Also, this method is highly conservative and usually takes many more

samples than necessary [Branke et al., 2007].

In the present study, we propose a solution selection method for the large-

scale two-stage linear SPR problems that can deal with numerous potential solutions

and return fairly efficient solutions within a finite computational budget. The con-

tributions of this study are threefold.

• First, a Wasserstein-based screening (WS) approach is proposed to identify

potentially promising solutions. We demonstrate that the worst-case perfor-

mances of SAA solutions in the respective Wasserstein distance regions can be

ranked by using the Wasserstein distance between the sampling measure used

in the SAA model and the original probability measure. Solutions with small

distance values have good worst-case performances and thus be classified as

the most promising evaluated in the simulation.

• Second, an optimal computing budget allocation technique (OCBA) [He et al.,

2007] is used to determine how many simulation replications to use for each po-

tential solution. The technique is an anytime algorithm, which asymptotically

minimises the penalty of selecting an incorrect solution, so that the probability

of achieving a good potential solution is greatly increased. We then introduce

a new two-stage selection process called WS-OCBA, which integrates OCBA
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with WS to improve the simulation efficiency.

• Third, we conduct several numerical experiments to analyse performance of

WS and the WS-OCBA approaches. Results show that WS achieves a satis-

factory trade-off between the number of potential solutions in the promising

group and the performance loss. The findings also indicate that WS-OCBA
outperforms the existing approaches under relatively limited run times.

The remainder of this chapter is structured as follows. In Section 2.2 we

provide a brief overview of two-stage stochastic programming and introduce the

solution performance estimation procedure. Section 2.3 introduces the underlying

principle of WS-OCBA. In Section 2.4, we explain the underlying principle of

using Wasserstein distance in the solution screening. Section 2.5 discusses the

estimation process of Wasserstein distance. Section 2.6 describes the proposed

solution selection algorithm. In Section 2.7, we study the efficacy of our proposed

strategies. Section 2.8 concludes this chapter by summarising our findings.

2.2 Sample Average Approximation for Two-stage Lin-

ear SPR

2.2.1 Two-stage Linear SPR Formulation

Let ξ ∈ Rµ be a random vector with finite second moments. Specifically, random

vector ξ is defined on the probability space (Ξ,B(Ξ),P), where Ξ is the sample

space, B(Ξ) is the Borel sigma algebra with respect to Ξ, and P : B(Ξ) → [0, 1] is

the probability measure. Without loss of generality, a two-stage linear SPR problem

with fixed recourse can be formulated as

min
x∈X

f(x) = min
x∈X

c′x+

∫
Ξ
g(x, ξ) P(dξ) (2.1)

where c ∈ Rκ is a vector of constant parameters and X ⊂ Rκ represents a non-

empty convex feasible set. In addition, let g(x, ξ) denote the optimal value of the

second-stage decision problem, formulated as follows:

g(x, ξ) = min
y∈Rι

{q′y |Wy = H(ξ)− T (ξ)x, y ≥ 0} (2.2)

where q ∈ Rι and W ∈ Rµ×ι are a fixed vector and a fixed matrix, respectively.

Moreover, T (ξ) ∈ Rµ×κ and H(ξ) ∈ Rµ affinely depend on random vector ξ in this

study.
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We also make the following assumptions throughout this study:

A(1) Relatively complete recourse: For each tuple (x̂, ξ), the corresponding

second-stage decision problem (2.2) is feasible.

A(2) Dual feasibility: The set {π | π′W ≤ q} is not empty.

Assumption A(1) ensures the feasibility of the primal second-stage decision prob-

lem. Assumption A(2) implies dual feasibility in the second-stage decision problem.

Assumptions A(1) and A(2) represent necessary conditions for the stability result of

the Wasserstein metric (for detailed information, see Dupačová et al. [2003]) which

will be used in our approach.

For the two-stage linear SPR problems, properties of the probability space

majorly influence the computational burden. The problems, in the case of random

data with continuous sample space, are rarely solvable because the resulting model

formulation consists of an infinite number of second-stage decision variables and

constraints. Moreover, the SPR problems might still suffer from computational

intractability even when the probability distribution of random data is discrete. For

instance, consider random data with 10 components, each of which follows a uniform

distribution and can take 200 possible values. If we select one possible value for each

component according to its distribution and then combine them as one sample,

then the number of distinctive scenarios reaches 20010. Since the computational

complexity increases exponentially with the number of samples taken into account,

the optimal solution is difficult to obtain [Shapiro and Homem-de Mello, 1998]. The

SAA approach can be applied for identifying near-optimal solutions to the SPR

problem.

2.2.2 The Near-optimal Solution and its Performance Estimator

Suppose that a group of samples Ξ̂ = {ξ̂m : m = 1, . . . ,M} with respective proba-

bility values {Q(ξ̂m) : m = 1, . . . ,M} is generated from the random data, thereby

we can obtain the following approximate model,

min
x, y(ξ̂m)

c′x+

M∑
m=1

Q(ξ̂m)q′y(ξ̂m)

s.t. x ∈ X ,
Wy(ξ̂m) = H(ξ̂m)− T (ξ̂m)x, m = 1, . . . ,M,

y(ξ̂m) ≥ 0, m = 1, . . . ,M.

(2.3)
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The resulting solution is typically not the optimal solution for the original SPR

model, so it is important to evaluate its performance in the original model.

Let x̂ and f(x̂) denote a potential solution and its performance in the original

model, respectively. Mak et al. [1999] suggested using Monte-Carlo estimation to

infer the value f(x̂). Assume that we have K i.i.d batches of samples with size NE

and equal probabilities; that is, Ξ̃k = {ξ̃kn : n = 1, . . . , NE}, for k = 1, . . . ,K. We

can estimate a true solution performance for each batch k of samples by computing

the optimal value f̂kNE (x̂):

f̂kNE (x̂) =
1

NE

NE∑
n=1

min
y(ξ̃kn)

[
c′x̂+ q′y(ξ̃kn)

]
s.t. Wy(ξ̃kn) = H(ξ̃kn)− T (ξ̃kn)x̂

y(ξ̃kn) ≥ 0.

(2.4)

By averaging over all optimal values f̂kNE (x̂), for k = 1, . . . ,K, we obtain an estima-

tor of f(x̂) as

J (x̂) =
1

K

K∑
k=1

f̂kNE (x̂). (2.5)

Let σ2(f̂NE (x̂)) denote the unknown population variance of the optimal values of

SAA models with the first-stage decision x̂ and sample size NE . Mak et al. [1999]

demonstrated that J (x̂) is an unbiased estimator and follows the Central Limit

Theorem:

√
K

[
J (x̂)− f(x̂)

]
=
√
K

[
1

K

K∑
k=1

f̂kNE (x̂)− f(x̂)

]
→ N

(
0, σ2(f̂NE (x̂))

)
, (2.6)

when K → ∞. Note that N
(

0, σ2(f̂NE (x̂))

)
is a Gaussian distribution with vari-

ance σ2(f̂NE (x̂)) and zero mean. Then, the population variance σ2(f̂NE (x̂)) can be

estimated by using the following estimator as

V(x̂) =
K∑
k=1

[
f̂kNE (x̂)− J (x̂)

]2
K − 1

. (2.7)

In the SAA framework, the performance of an approximate solution depends

on the number of samples used to represent the random data; therefore, a sufficient

number of samples should be included in the model formulation. Moreover, rather

than focusing on only one solution, considering multiple potential solutions can be
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also beneficial for finding the optimal solution. In the following subsection, we will

introduce the solution selection problem.

2.2.3 Solution Selection Under a Fixed Computing Budget

Suppose that a group of potential solutions is given and a simulation is required to

select the best one as the final solution under the fixed computational budget. One of

the challenges we might encounter is that the “best” solution based on Monte-Carlo

estimation may not be really the best solution if insufficient information is available

for analysing the solution performance. In this study, we model the solution selection

process as a computing time allocation problem. Let {x̂λ : λ = 1, . . . ,Λ} denote a

set of potential solutions. The performance of each solution x̂λ is evaluated by Kλ

batch samples with size NE . The CPU time to compute each batch sample in (2.4) is

denoted by t(x̂λ, NE). Let the batch number Kλ for λ = 1, . . . ,Λ represent unknown

decision variables. Moreover, we define x̂s as the solution with best sample mean.

Given the total simulation budget T total, the computing time allocation problem

can be formulated as follows:

min
K1,K2,...,KΛ

f(x̂s)

s.t.
Λ∑
λ=1

t(x̂λ, NE)Kλ ≤ T total

x̂s = arg min

{
1

Kλ

Kλ∑
k=1

f̂kNE (x̂) : λ = 1, . . . ,Λ

}
Kλ ∈ N, λ = 1, . . . ,Λ.

(2.8)

It is challenging to solve the solution selection problem in the sense that its objective

function represents true performance of potential solutions.

2.3 Optimal Computing Budget Allocation

The OCBA technique is a class of heuristic methods for solving the solution selection

problem. We use an OCBA variant in which the correct selection evidence is defined

as expected opportunity cost [He et al., 2007]. Let us denote x̂b = arg max{f(x̂λ) :

λ = 1, . . . ,Λ} as the true best solution. Then, the expected opportunity cost E(OC)
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quantifies the penalty due to wrong selection and is defined as follows:

E(OC) = E
[
f(x̂s)− f(x̂b)

]
=

Λ∑
λ=1, λ6=s

Prob(x̂λ = x̂b)

[
f(x̂s)− f(x̂λ)

]
, (2.9)

where Prob(x̂λ = x̂b) denotes the probability of solution x̂λ being the true best

solution x̂b.

As Prob(x̂λ = x̂b) is unknown in practice, He et al. [2007] proposed to use an

upper bound approximation of E(OC) that can be estimated during the simulation

procedure.

Theorem 2.1. Let φ(·) and Φ(·) be the probability density function (PDF) and cu-

mulative distribution function of standard normal distribution, respectively. More-

over, Ks is the number of evaluated samples for the solution x̂s and Kλ is the

number of evaluated samples for solution x̂λ. The upper bound approximation of

expected opportunity cost (abbreviated as AEOC) is presented as follows:

E(OC) ≤ AEOC =
Λ∑

λ=1,λ 6=s

{
Vs,λ × φ(zs,λ) + δs,λ × Φ(−zs,λ)

}
(2.10)

where Vs,λ = V(x̂s)
Ks + V(x̂λ)

Kλ , δs,λ = J (x̂s) − J (x̂λ) and zs,λ =
−δs,λ√
Vs,λ

. Note that

V(x̂λ) and V(x̂s) are the estimation variances of solution x̂λ and x̂s, which can be

computed by Equation (2.7).

Proof. He et al. [2007] provided an upper bound approximation for the probability

Prob(x̂λ = x̂b) as follows,

Prob(x̂λ = x̂b) ≤ Prob
(
f(x̂λ) < f(x̂s)

)
. (2.11)

Hence, we can obtain

E(OC) ≤
Λ∑

λ=1,λ 6=s
Prob

(
f(x̂λ) < f(x̂s)

)[
f(x̂s)− f(x̂λ)

]

=

Λ∑
λ=1,λ 6=s

∫ +∞

0
t ηs,λ(t) dt = AEOC,

(2.12)

where ηs,λ denotes the PDF of random value N
(
f(x̂s)− f(x̂λ),Vs,λ

)
. As shown in
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He et al. [2007], we can apply the integration by parts method to compute (2.12) as

follows, ∫ +∞

0
t ηs,λ(t) dt = Vs,λφ(zs,λ) + δs,λΦ(−zs,λ). (2.13)

�

Given a finite computing budget, we aim to allocate the simulation budget to se-

quentially minimise the upper bound of expected opportunity cost. If we evaluate

one additional sample for the solution x̂λ, then the upper bound of expected oppor-

tunity cost will change to

ÂEOCλ =

Λ∑
λ′=1,λ′ 6=s

∫ ∞
0

x ηs,λ′,λ dx, λ = 1, . . . ,Λ, (2.14)

where ηs,λ′,λ is the PDF of the normally distributed random variable and defined as

N
(
f(x̂s)− f(x̂λ), V(x̂s)

Ks+1 + V(x̂λ
′
)

Kλ′

)
, if x̂λ = x̂s

N
(
f(x̂s)− f(x̂λ), V(x̂s)

Ks + V(x̂λ
′
)

Kλ′+1

)
, if x̂λ = x̂λ

′

N
(
f(x̂s)− f(x̂λ), V(x̂s)

Ks + V(x̂λ
′
)

Kλ′

)
, if x̂λ 6= x̂s and x̂λ 6= x̂λ

′
.

The above integration can be computed by using (2.10). Then, the possible reduc-

tion of AEOC can be computed as,

Yλ = AEOC− ÂEOCλ ≥ 0. (2.15)

Notice that the value Yλ for λ = 1, . . . ,Λ is always non-negative because the OCBA
procedure aims to greedily reduce E(OC) by sampling the performances of SAA

solutions. In other words, Yλ represents the estimated improvement on E(OC)

when evaluating the performance of SAA solution x̂λ. If the improvement for a

SAA solution is negative, then we will stop the sampling procedure. Next, the

sample would be assigned to the solution that leads to the maximum reduction of

AEOC, i.e.,

λ∗ = arg max{Yλ : λ = 1, . . . ,Λ}. (2.16)

The overall procedure is described in Algorithm 2.1. The OCBA technique can

reduce the overall simulation budget necessary to identify the best solution. How-

ever, the OCBA procedure might fail to identify the best solution given abundant
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potential solutions. For instance, if the limited computing budget runs out during

the initial estimation of Algorithm 2, then some solutions will not be evaluated. If

the best solution is one of those ignored, then it is not possible to correctly identify

the best solution. Moreover, the solution selection method is challenging when the

computing budget is insufficient in the sequential decision process because the initial

estimation has taken a large proportion of the computing budget. Then insufficient

estimation might mislead our choice of the final solution.

Algorithm 2.1: The OCBA Procedure

input : potential solutions: {x̂λ : λ = 1, . . . ,Λ};
size of sample NE in the performance estimation;
number of samples K0 evaluated in the initial estimation.

output: best solution based on the simulation results.
1 while simulation budget is available do
2 Step 1: Initial Estimation ;
3 for λ = 1, . . . ,Λ do
4 evaluate the performance of solution x̂λ using K0 samples;

5 compute the performance statistics of solution x̂λ using (2.6) and
(2.7);

6 select the current best solution x̂s;

7 Step 2: Sequential Decision Process;
8 for λ = 1, . . . ,Λ do
9 compute the expected opportunity cost reduction Yλ as in (2.10)

and (2.14);

10 find λ∗ = argmax{Yλ, λ = 1, . . . ,Λ};
11 simulate one additional sample for solution x̂λ∗ and update its

statistics;

12 select the current best solution x̂s.

2.4 Wasserstein-based Solution Screening

When the number of potential solutions is large and the computing budget is insuf-

ficient to perform an initial simulation for every solution in the OCBA procedure,

it is natural to consider performing the simulation for a certain portion of potential

solutions. An important question is how to select a set of promising solutions for

the extensive simulation. In this paper, we propose to select those solutions through

the Wasserstein distance due to its low computational cost that allows it to be run

for every potential solution. Specifically, the potential solutions are sorted accord-

ing to their Wasserstein distances, and only the high-rank solutions are selected for
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extensive simulation. A similar paradigm called “ordinal transformation” is used in

a simulation optimisation study [Xu et al., 2016], wherein the authors considered

the simulation output on a user-defined low-fidelity model as the low-cost measure

for each potential solution. The potential solutions were clustered according to low-

fidelity simulation results and the extensive simulation was applied to select the best

solution cluster.

The Wasserstein distance metric, a kind of statistical metric for quantifying

the dissimilarity between two probability measures, is the key component of WS
method. The definition of Wasserstein metric can be found in Appendix A. This

metric has been widely applied in stochastic programming. One application is sce-

nario reduction wherein the Wasserstein distance is used as the quality indicator

of samples in the approximate model. Given a fixed number of samples used in

the approximate model, some authors proposed heuristics to select the “best” sam-

ples with minimum distance. For example, Dupačová et al. [2003] presented two

myopic scenario reduction heuristics for two-stage SPR, namely, forward selection

and backward reduction. Furthermore, Heitsch and Römisch [2009] extended these

heuristics for multi-stage SPR. In another application, the Wasserstein distance was

used to define an ambiguity set for stochastic programs with distributional uncer-

tainty [Mohajerin Esfahani and Kuhn, 2017]. In addition, the Wasserstein distance

was applied to reduce the optimality gap estimator bias, and this application bene-

fits testing the optimality of a given solution [Stockbridge and Bayraksan, 2013]. In

this study, we use the Wasserstein distance metric to roughly rank the performance

of potential solutions.

Before stating the main result, we first introduce the stability result of

stochastic programming.

Theorem 2.2. Assume that the solution sets of original model and SAA model are

singleton. Let x∗ and x̂ denote the unique solutions of the original model and SAA

model, respectively. Moreover, let P be the original probability measure, and Q
represent the sampling measure of a SAA model. The difference between measures

P and Q is quantified by the Wasserstein distance W (P,Q). Under assumptions

A(1) and A(2), there exit constants τ > 0 and ε > 0 such that

‖x∗ − x̂‖2 ≤
2τ

ε
W (P,Q).
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Proof. For details, see the proof of Theorem 1 introduced by Dupačová et al. [2003].

�

Theorem 2.2 utilises two constants τ and ε to establish the Lipschitz-like prop-

erty of SAA solutions with respect to changes in the probability measure. Next, we

will show the relationship between the solution performance and the corresponding

Wasserstein distance.

Theorem 2.3. Under assumptions A(1) and A(2), the performance difference be-

tween solutions x∗ and x̂ satisfies the following inequality:

f(x̂) ≤ f(x∗) + 〈|Lx̂| , τ̂W (P,Q)I〉 , (2.17)

where Lx̂ = E[πx̂(ξ)T (ξ)] + c with πx̂(ξ) = argmax{π′[H(ξ) − T (ξ)x̂] : π′W ≤ q},
τ̂ = 2τ

ε is a positive coefficient, and I ∈ Rκ is the all one vector.

Proof. Consider the two-stage SPR problem given in (2.1). Under assumptions

A(1) and A(2), the Proposition 2.3 introduced by Shapiro et al. [2009] proved that,

if function g(x̂, ξ) for x̂ ∈ X , ξ ∈ Ξ is finite, then the objective function f(·) will be

sub-differentiable at the point x̂. Let Lx̂ denote one of sub-gradients for solution x̂.

The following sub-gradient inequality holds,

f(x∗) ≥ f(x̂) + 〈Lx̂, x∗ − x̂〉. (2.18)

Shapiro et al. [2009] showed that the sub-gradient Lx̂ of a two-stage SPR problem

can be calculated as

Lx̂ = E[π′x̂(ξ)T (ξ)] + c,

where πx̂(ξ) represent a vector of dual decisions associated with constraints of the

second-stage problem (2.2). It is computed as follows,

πx̂(ξ) = arg max
π
{π′[H(ξ)− T (ξ)x̂] : π′W ≤ q}.

By substituting the sub-gradient and re-arranging both sides of inequality (2.18),

we obtain

f(x̂)− f(x∗) ≤ −〈E[π′x̂(ξ)T (ξ)] + c, x∗ − x̂〉. (2.19)

Since x̂ is a potential solution, f(x̂) cannot be smaller than f(x∗) for the minimisa-
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tion problem. Therefore, we can obtain

|f(x̂)− f(x∗)| ≤ 〈|E[π′x̂(ξ)T (ξ)] + c|, |x∗ − x̂|〉. (2.20)

Using Theorem 2.2, the distance between solutions x∗ and x̂ is upper bounded by

the Wasserstein distance W (P,Q) as follows,

‖x∗ − x̂‖2 =

√√√√ κ∑
κ′=1

(x∗κ′ − x̂κ′)2 ≤ 2τ

ε
W (P,Q) ≤ τ̂W (P,Q) (2.21)

where τ̂ = 2τ
ε is a positive coefficient. For each element of solutions x∗ and x̂, we

can write

τ̂W (P,Q) ≥

√√√√ κ∑
κ′=1

(x∗κ′ − x̂κ′)2 ≥
√

(x∗κ′ − x̂κ′)2 = |x∗κ′− x̂κ′ |, κ′ = 1, . . . , κ. (2.22)

Therefore, |x∗−x̂| can be approximated by using the Wasserstein distance, W (P,Q),

as follows,

|x∗ − x̂| ≤ τ̂W (P,Q)I. (2.23)

By combining inequality (2.23) with (2.19), we obtain (2.17). �

Theorem 2.3 implies that performance of potential solution x̂ is bounded by the

sub-gradient Lx̂ and the Wasserstein distance W (P,Q). The potential solution x̂

becomes the optimal solution x∗ for the actual problem if either probability measures

Q and P are identical or the sub-gradient at x̂ becomes zero.

As mentioned before, the Wasserstein distance W (P,Q) can be efficiently

estimated using Monte-Carlo estimation; however, the calculation of sub-gradients

Lx̂ for two-stage liner SPRs is computationally expensive. Next, we introduce the

worst-case solution performance in the Wasserstein-bounded region. We will use

this performance measure in the solution screening procedure.

Definition 2.1: Worst-case Solution Performance in the Wasserstein Re-

gion. Let Γ
(
x̂(Q)

)
represent a set possessing sub-gradients of all feasible solutions

within the bounded region {x : |x−x∗| ≤ τ̂W (P,Q)I}. The worst-case performance

Gw(x̂) of a given solution x̂ within its corresponding Wasserstein-bounded region can
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be determined as follows:

Gw(x̂) = max
L′∈Γ

(
x̂(Q)

) {f(x∗) +
〈∣∣L′∣∣ , τ̂W (P,Q)I

〉}
. (2.24)

Notice that Gw(x̂) is defined as a maximisation problem with respect to the sub-

gradient value L′. The next theorem states the applicability of the Wasserstein

distance in sequencing the worst-case performance of potential solutions.

Theorem 2.4. Consider a set of potential solutions {xλ : λ = 1, . . . ,Λ} with

respective Wasserstein distances {W (P,Qλ) : λ = 1, . . . ,Λ}. Let [λ] denote the λ-th

potential solution in the increasing sequence of Wasserstein distances as

W (P,Q[1]) ≤W (P,Q[2]) ≤ · · · ≤W (P,Q[Λ]). (2.25)

Then, the worst-case solution performances of these solutions satisfy,

Gw(x̂[1]) ≤ Gw(x̂[2]) ≤ · · · ≤ Gw(x̂[Λ]). (2.26)

Proof. Assume that the Wasserstein distances satisfy the sequence as in (2.25).

Since the inequality (2.23) can be written for all potential solutions x̂λ, we can

construct the same relationship as in sequence of{
x : |x− x∗| ≤ τ̂W (P,Q[1])I

}
⊆
{
x : |x− x∗| ≤ τ̂W (P,Q[2])I

}
⊆ · · · ⊆

{
x : |x− x∗| ≤ τ̂W (P,Q[Λ])I

}
.

(2.27)

Hence, the feasibility set of all sub-gradients at approximate potential solutions

holds the sequence of

Γ
(
x̂[1](Q)

)
⊆ Γ

(
x̂[2](Q)

)
⊆ · · · ⊆ Γ

(
x̂[Λ](Q)

)
. (2.28)

From (2.25) and (2.28), one can say that the solution with a smaller Wasserstein

distance leads to a smaller feasibility set and a small coefficient vector in the optimi-

sation problem (2.24). Hence, the same sequence order also holds for the worst-case

performances at potential solutions as stated in (2.26). �
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Theorem 2.4 indicates that the sequence of Wasserstein distances for SAA solu-

tions encapsulates the trend of the worst-case solution performances. We should

note that the rank of actual solution performances in general does not follow the

sequence of Wasserstein distances. Therefore, when the solution screening is applied

according to the sequence of Wasserstein distances, a performance loss that is caused

by eliminating the best solution might arise. We describe the performance loss as

follows.

Definition 2.2: Performance Loss. Let {x̂λ′ : λ′ = 1, . . . ,ΛP} denote a set

of promising solutions obtained from a specific screening procedure. If the com-

puting budget is restricted on those promising solutions, then the performance loss

(PL) due to screening out the best solution can be computed as

PL = min{f(x̂λ
′
) : λ′ = 1, . . . ,ΛP} −min{f(x̂λ) : λ = 1, . . . ,Λ}. (2.29)

If PL = 0, then the promising group contains the best solution. Otherwise,

PL is always greater than zero. The value PL reflects the quality of the promis-

ing group; thus, having a screening procedure that has a performance guarantee is

desirable. Next, we prove that the proposed screening approach provides an upper

bound for the performance loss.

Theorem 2.5. Assume that for a set of potential solutions {x̂λ : λ = 1, . . . ,Λ},
the corresponding set of Wasserstein distances {W (P,Qλ) : λ = 1, . . . ,Λ} possesses

an increasing sequence of distance values. In other words, the following inequalities

hold:

W (P,Q[1]) ≤W (P,Q[2]) ≤ · · · ≤W (P,Q[Λ]). (2.30)

Then, the Wasserstein-based screening provides the following upper bound for the

performance loss:

PL ≤ Gw(x̂[1])−min{f(x̂λ) : λ = 1, . . . ,Λ}. (2.31)

Proof. From (2.17) and (2.24), we can write the following inequality for each promis-

ing solution

f(x̂λ
′
) ≤ Gw(x̂λ

′
), ∀λ′ = 1, . . . ,ΛP . (2.32)
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Hence, from the definition of performance loss, it follows:

min{f(x̂λ
′
) : λ′ = 1, . . . ,ΛP} ≤ min{Gw(x̂λ

′
) : λ′ = 1, . . . ,ΛP}. (2.33)

This yields

PL = min{f(x̂λ
′
) : λ′ = 1, . . . ,ΛP} −min{f(x̂λ) : λ = 1, . . . ,Λ}

≤ min{Gw(x̂λ
′
) : λ′ = 1, . . . ,ΛP} −min{f(x̂λ) : λ = 1, . . . ,Λ}.

(2.34)

Clearly, selecting a promising subgroup of solutions out of the top ΛP of the lowest

Wasserstein distances (using Theorem 2.3) provides

PL ≤ Gw(x̂[1])−min{f(x̂λ) : λ = 1, . . . ,Λ}. (2.35)

So by combining with (2.34), we find that (2.31) holds. �

Theorem 2.5 implies that the Wasserstein-based screening provides a fixed upper

bound for the performance loss even without performing any simulation. The tight-

ness of the bound depends on the stability result of the Wasserstein distance.

2.5 Wasserstein Distance Estimation

In this section, we introduce a method of estimating Wasserstein distance in the

two-stage linear SPR problems. Let N denote the number of samples for original

probability measure, and M be the number of samples in the sampling measure. Ac-

cording to the definition of Wasserstein distance in Appendix A, the transportation

problem involves N ×M decision variables and N +M +N ×M linear constraints.

If the value of N is very large or even infinite, then the corresponding computa-

tional complexity will be intractable. In the context, we can replace the probability

measure P with a group of sampling measures, and take the average Wasserstein

distance between random measures and probability measure Q as the estimator of

W (P,Q). The following Lemma states that the bias of such an estimator is bounded.

Lemma 2.1. Let P i for i = 1, . . . , I denote the sampling measure induced by

NW realisations generated from the probability measure P. If we use the estimator

Ŵ (P,Q) =
1

I
I∑
i=1

W (P i,Q)
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to infer the Wasserstein distance value W (P,Q), then its bias satisfies the following

inequality, ∣∣∣W (P,Q)− Ŵ (P,Q)
∣∣∣ ≤ 1

I
I∑
i=1

W (P i,P). (2.36)

Proof. Since the Wasserstein distance is a metric, it satisfies the reverse triangle

inequality:

|W (P,Q)−W (P i,Q)| ≤W (P i,P). (2.37)

Next, we can compute the sum of inequalities (2.37) over all P i for i ∈ I as follows;

−
I∑
i=1

W (P i,P) ≤ I ×W (P,Q)−
I∑
i=1

W (P i,Q) ≤
I∑
i=1

W (P i,P). (2.38)

By dividing both sides of the above inequality by I, we obtain inequality (2.36).

�

Lemma 2.1 states that the absolute value of estimation bias is bounded by the aver-

age Wasserstein distance. We can increase the sample size of the sampling measure

to minimise the fluctuation of bias. The main benefit of using Lemma 2.1 is to re-

duce the computational burden due to the large sample number. We can now solve

a group of relatively small optimisation problems to infer the actual Wasserstein

distance W (P,Q). Each “small” optimisation problem only has NW ×M decision

variables and NW + M + NW ×M constraints. The overall Wasserstein distance

estimation procedure is described in Algorithm 2.2.

Algorithm 2.2: Wasserstein Distance Estimation Procedure

input : number of sampling measures I;
number of samples in each sampling measure NW .

output: estimated Wasserstein distance value Ŵ (P,Q).
1 generate I groups of i.i.d NW realisations from probability measure P;
2 for i = 1, . . . , I do
3 compute the Wasserstein distance W (P i,Q) using (A.1);
4 end

5 Ŵ (P,Q)← 1

I
I∑
i=1

W (P i,Q).
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2.6 The Proposed Two-stage Selection Approach

We propose a two-stage method that combines the Wasserstein-based screening

method with the optimal computing budget allocation. Algorithm 2.3 describes

integration of the solution screening approach into OCBA. The Wasserstein-based

solution screening method selects potential solutions that are then more closely

examined using OCBA. The solution screening procedure takes a proportion of

the computing budget. Thus, it is necessary to properly allot the computing bud-

get among different procedures; namely, solution screening, initial estimation, and

sequential allocation. We now highlight some rules for a practical application of

Algorithm 2.3.

Algorithm 2.3: The WS-OCBA Procedure

input : candidate solutions: {x̂λ : λ = 1, · · · ,Λ};
size of sample NE in the performance estimation;
number of samples I with size NW in Wasserstein distance;
number of promising solutions: ΛP ;
number of samples K0 evaluated in the initial estimation.

output: best solution based on the simulation results.
1 for λ = 1, · · · ,Λ do
2 run Algorithm 2.2 for solution xλ to estimate the corresponding

Wasserstein distance;

3 rank and select the top ΛP candidate solutions according to their
Wasserstein distances;

4 while computing budget is available do
5 implement the evaluation procedure as in Algorithm 2.1.

As shown in Algorithm 2.3, the Wasserstein-based solution screening selects

candidates that are then more closely examined using the OCBA algorithm. The

solution screening procedure takes a proportion of computing budget. Thus, it

is necessary to properly allot the computing budget for the procedures, namely,

solution screening, initial estimation, and sequential decision. We now highlight the

rules for the practical application of Algorithm 2.3.

• A proper computing budget allocation is important for WS and OCBA. The

solution screening process provides the sequence of potential solutions based

on their worst-case performances in the corresponding Wasserstein-bounded

region whereas the actual performance is exploited in OCBA. Therefore, we

should allocate the computing budget to OCBA such that there are sufficient

simulation replications to guarantee the accuracy of the selection procedure.
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Table 2.1: Complexity of benchmark problems

Problem Instances
D/C

Dim NS Optimal Values
1st stage 2nd stage

LandS 4/2 12/7 3 1× 106 225.620±0.020
Retail 7/0 70/22 7 1× 1011 154.410±0.770
20term 64/3 764/124 40 1.1× 1012 254298.572±38.743

SSN 89/1 706/175 86 1.1× 1070 9.840±0.100

• A large sample size is preferred for the Wasserstein distance estimation be-

cause it helps to reduce potential estimation bias; however, the computational

cost of the Wasserstein distance estimation should be controlled to a certain

level, which aims to secure sufficient computing budget in OCBA. The rule

of thumb is that, for a single solution, the computational cost of the Wasser-

stein distance estimation should be smaller than that of the initial estimation

in Algorithm 2.1, because the Wasserstein distance estimation is designed to

be a fast simulator. Otherwise, it might be wise to use the initial simulation

results for eliminating the inferior actions.

• The number of potential solutions to be run for simulation (i.e., promising

solutions) is determined by the computing budget to be allocated for OCBA.

We should guarantee to have sufficient computing budget for Step 2 of Algo-

rithm 2.1. Otherwise, the insufficient simulation may lead to selection errors.

2.7 Numerical Experiments

2.7.1 Overview of Test Instances

In this section, we describe four benchmark problem instances to be used for the

numerical experiments. Table 2.1 presents complexity of these instances in terms of

number of decision variables (D), constraints (C), dimension of uncertainties (Dim),

number of scenarios (NS) as well as the optimal values (mean ± standard error).

The corresponding problem descriptions are briefly summarised as below:

• LandS is an electricity planning problem [Louveaux and Smeers, 1988]. The

first-stage decisions are concerned with an allocation of four power terminals,

and the second-stage decisions are related to allocating the power supply to

various residential areas.

• Retail is taken from Herer et al. [2006], which is a supply chain optimisation
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problem involving multiple retailers and one supplier. The objective is to

design the optimal replenishment policy for each retailer.

• 20term, adopted from Linderoth et al. [2006], is a large-scale vehicle man-

agement problem. The first-stage decisions find the vehicle locations at the

beginning of the plan, and the second-stage decisions optimise the fleet trans-

portation plan on the basis of the initial vehicle locations.

• SSN [Sen et al., 1994] aims to design an optimal telecommunication network

that can minimise the number of lost demands. In view of randomness of the

communication demand in the network, the bandwidth between destination

and origin nodes must be sufficiently large to satisfy the customer demand.

Otherwise, that demand will be lost.

All test instances are minimisation problems, which are written in SMPS

format and publicly available online 1. This study implements an SMPS parser

that is based on the Julia programming language and the COIN-OR linear program

solver. All numerical experiments are computed on a machine with i7-6700K CPU

and 32GB memory.

2.7.2 Wasserstein Distance-based Screening with Various Numbers

of Promising Solutions

We adopt the following benchmark strategies to compare with WS:

• Random screening (RS): a fixed number of solutions is randomly selected

from the potential solutions.

• Moment discrepancy (MD): a fixed number of solutions is selected according

to the total discrepancy of the first four statistical moments (mean, variance,

skewness and Kurtosis) between measures P and Q.

The experimental settings are as follows. We implement SAA with 200 sam-

ples to generate 200 approximate solutions for each test instance. Table 2.2 shows

the statistical description of those approximate solutions. Figure 2.1 graphically

illustrates performances of the potential solutions in terms of the mean, range and

confidence intervals. We apply three strategies to select various numbers (from 1

to 200) of solutions and compute the corresponding performance loss (as discussed

in Section 2.4). The performance of each solution is evaluated with 30 groups of

1http://pages.cs.wisc.edu/~swright/stochastic/sampling/ and http://plato.asu.edu/

sd/instances/
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Table 2.2: Statistical description of potential solutions.

Problem Instances Mean Standard Deviation Maximum Minimum

LandS 225.659 0.029 225.823 225.639
Retail 156.034 2.225 172.673 154.393
20term 254318.492 20.011 254441.922 254305.193

SSN 10.990 0.375 12.496 10.385
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Figure 2.1: Box plots providing the mean (horizontal line in box), range (vertical
lines extending from box), and 95% confidence intervals (vertical extent of box) for
the performances of candidate solutions.

500,000 samples. For WS, the solution’s Wasserstein distance is estimated using

four samples with a size of 1,000.

The results in Figure 2.2 confirm the superiority of WS in all test instances.

The performance of RS and MD are worse than that of WS when the number of

promising solutions is less than 30 in test instances 20term, Retail and SSN. While

the MD approach outperforms RS in all benchmark problems except LandS. The

average performance losses obtained by three strategies coincide as the number of

promising solutions approaches 200. Moreover, the convergence of WS in LandS

and Retail is more rapid than that in SSN and 20term, indicating that the stability

of the quantitative result varies with the problem structure. The results also imply

that the required number of promising solutions for guaranteeing a relatively small

27



10 30 60 100 200
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

10 30 60 100 200
0

0.5

1

1.5

2

10 30 60 100 200
0

5

10

15

20

25

10 30 60 100 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 2.2: Comparison of average performance losses obtained by RS and WS
using various numbers of promising solutions.

performance loss changes with the problem structure. For example, more solutions

need to be included in the simulation procedure for 20term and SSN than LandS

and Retail.

2.7.3 Average Performance Comparison with Benchmark Algorithms

We also conduct numerical experiments to study the performance of the solution

selection algorithm in terms of the CPU time. The performance of WS-OCBA is

compared with that of the following approaches.

• OCBA is the standard OCBA algorithm as described in Algorithm 2.1 .

• EAS uses equal allocation and selection algorithm, which sequentially allocates

the same number of simulations to each candidate solution and selects the

current best solution based on the simulation results.

• WS-EAS employs EAS with the proposed Wasserstein-based solution screen-

ing procedure.

For each test instance, we utilise SAA with 200 samples to generate 200

candidate solutions and then apply all algorithms to identify the best candidate.
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This procedure is repeated 100 times to examine the average performance of each

algorithm. The detailed experimental settings are listed in Table 2.3. Figure 2.3

presents the convergence comparisons over 100 runs in terms of CPU time and

average solution performance. The computational costs of solution screening for the

WS-based algorithms are included in the comparison results.

Table 2.3: Experimental settings.

Problem
Algorithms

Solution Screening
NE C/E(s)

Initial Estimation

Instances ΛP I NW TC(s) K TC(s)

LandS

EAS
− − − −

50,000 1.5

− −
OCBA 5 1,460

WS-EAS
10 4 1,000 91

− −
WS-OCBA 5 1,460

Retail

EAS
− − − −

50,000 2.4

− −
OCBA 5 2,400

WS-EAS
10 4 1,000 105

− −
WS-OCBA 5 2,400

20term

EAS
− − − −

20,000 20.4

− −
OCBA 5 20,400

WS-EAS
10 4 1,000 128

− −
OCBA 5 20,400

SSN

EAS
− − − −

20,000 24.8

− −
OCBA 5 24,800

WS-OCBA
10 4 1,000 154

− −
WS-OCBA 5 24,800

ΛP : number of promising solution; I: number of samples for Wasserstein estimation;

NW : sample size for Wasserstein estimation; TC: total CPU time;

NE : sample size for performance evaluation; C/E: CPU time of each evaluation

K: number of samples used in the initial estimation.

As shown in Figure 2.3, the EAS algorithm provides the worst results for

all test instances among all algorithms because the equal allocation strategy might

spend unnecessary evaluations on candidate solutions with a large mean. We also

observe that EAS and OCBA exhibit similar convergence patterns on LandS (before

1,500s) and Retail (before 2,500s) whereas the overall patterns of EAS and OCBA
for 20term and SSN are almost identical. The reason behind this phenomenon could

be because OCBA has a sufficient computing budget to finish the initial estimation

on LandS and Retail, but it is not the case for test instances 20term and SSN (see

Table 2.3). When OCBA stays in the stage of initial estimation, its evaluation

behaviour (as described in Algorithm 2.1) is similar to EAS.
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Figure 2.3: Convergence comparison with respect to CPU time.

However, OCBA performs worse than any of theWS-based algorithms on all

test instances, indicating that WS enhances performance of the solution selection

algorithm for the case of numerous potential solutions. ForWS-OCBA, the compu-

tational cost for initial estimation is greatly reduced. We observe that WS-OCBA
achieves the fastest convergence in all test instances, as this algorithm has more

time to explore the performance of each promising solution compared with OCBA.
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Table 2.4: Average solution performance of the selected subset (mean ± std. err).

Problem CPU Algorithms

Instances Time (s) EAS OCBA WS-EAS WS-OCBA

LandS

1,000 225.648±0.002 225.647±0.001 225.648±0.002 225.647±0.001

2,000 225.648±0.001 225.645±0.001 225.644±0.001 225.643±0.001

3,000 225.647±0.001 225.645±0.001 225.643±0.001 225.641±0.001

Retail

1,000 154.556±0.013 154.545±0.017 154.499±0.009 154.449±0.003

2,000 154.545±0.012 154.506±0.008 154.490±0.009 154.431±0.001

3,000 154.554±0.013 154.490±0.006 154.479±0.003 154.408±0.001

20term

2,500 254334.892±1.041 254334.267±1.050 254333.018±0.894 254331.562±0.835

5,000 254334.172±0.952 254334.797±0.948 254332.134±0.707 254330.358±0.665

7,500 254335.117±0.936 254335.062±0.931 254331.255±0.792 254328.726±0.706

SSN

2,500 10.654±0.015 10.645±0.014 10.595±0.014 10.543±0.012

5,000 10.589±0.015 10.586±0.016 10.546±0.011 10.430±0.009

7,500 10.553±0.013 10.553±0.014 10.534±0.011 10.461±0.008
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We display the performance of the solutions obtained from the various algo-

rithms averaged over 100 repetitions in Table 2.4. Best results and those statistically

not different from best are highlighted in bold. The results confirm the importance

of adopting solution screening in the selection procedure for numerous potential so-

lutions. The WS-based algorithms significantly outperform the others in all bench-

mark problems, although all algorithms display similar performance in LandS and

20terms when the CPU time is 1,000s. Moreover, we find thatWS-OCBA performs

better than WS-EAS due to its advanced computing budget allocation scheme.

2.8 Conclusions

The solution selection problem for large-scale two-stage problems is challenging for

decision makers with a relatively limited computational budget when numerous po-

tential solutions are present. Thus, we may consider removing several potential

solutions from the simulation. This study shows that the worst-case solution per-

formance in the corresponding Wasserstein-based regions satisfies the sequence of

the corresponding Wasserstein distances. On the basis of this property, we propose

a new solution screening approach and integrate this approach with an optimal

computing budget allocation algorithm. Empirical results for various benchmark

problems demonstrate the benefit of the Wasserstein-based screening and the ad-

vantage of applying the optimal computing budget allocation algorithm in selecting

the near-best solutions.
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Chapter 3

Efficient Sampling Strategies

when Searching for Robust

Solutions

3.1 Introduction

Given its ubiquity in many real-world problems, optimisation under uncertainty has

gained increasing attention. Uncertainty may originate from various sources, such

as imprecise model parameters or fluctuations in environmental variables. In the

presence of uncertainty, it is often desirable to find a solution that is robust in the

sense of performing well under a range of possible scenarios [Beyer and Sendhoff,

2007]. More specifically, our paper considers searching for robust solutions in the

sense of high expected performance, given a distribution of disturbances to the

decision variables. This is a typical scenario for example in manufacturing, where

the actually manufactured products may differ from the design specification due to

manufacturing tolerances.

Evolutionary algorithms (EAs) have been applied to solve various optimi-

sation problems that involve uncertainties, see Jin and Branke [2005] for a survey.

There are also different concepts related to robustness, including optimising the

worst-case performance [Ong et al., 2006], robust optimisation over time [Fu et al.,

2015], and active robustness [Salomon et al., 2016]. The most widely researched

robustness concept however, and the concept we consider in this chapter, is to op-

timise a solution’s expected fitness (often called effective fitness in the literature)

over the possible disturbances [Beyer and Sendhoff, 2007].

To estimate an individual’s effective fitness, sampling has been widely adopted
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in practice, and two sampling methods can be distinguished. Implicit sampling refers

to the idea that because EAs are population-based, an over-evaluated individual due

to a favourable disturbance can be counterbalanced by an under-evaluated neigh-

bouring individual, and so simply increasing the population size should help guiding

the EA in the right direction, e.g. see Rattray and Shapiro [1998] and Beyer and

Sendhoff [2006]. In fact, as shown in Tsutsui and Ghosh [1997], under the assump-

tion of infinite population size and fitness-proportional selection, evaluating each

solution at a single disturbed sample location instead of its actual location is equiv-

alent to optimising the expected fitness directly. Beyer and Sendhoff [2006] proposed

to increase the population size whenever the algorithm gets stalled. Explicit sam-

pling, on the other hand, evaluates each individual multiple times and estimates its

fitness as the average of the sampled evaluations. Obviously, while averaging over

multiple evaluations increases the estimator accuracy, it is computationally rather

expensive. A recent analytical study on the efficiency (progress rate) of implicit

as well as explicit sampling-based evolution strategies can be found in Beyer and

Sendhoff [2017].

Because of the large computational cost of sampling in case of expensive

fitness functions, numerous studies have focused on allocating a limited sampling

budget to improve the estimation accuracy, allowing to reduce the number of sam-

ples needed without degrading the performance of the EA. One possible approach

for estimating effective fitness is to apply quadrature rules or variance reduction

techniques, e.g. see Branke et al. [2001]; Di Pietro et al. [2004]; Huang and Du

[2006] and Lee et al. [2009]. Some authors observed that allocating samples in a

manner that increases the probability of correct selection is more important than

the accuracy of estimation [Stagge, 1998; Branke and Schmidt, 2003].

Another approach, called archive sample approximation (ASA), stores all

past evaluations in a memory and uses this information to improve expected fitness

estimates in future generations (for further information, refer to Branke et al. [2001]

and Kruisselbrink et al. [2010]). ASA can also be combined with the above sampling

allocation methods to further enhance the accuracy of approximation. We have

recently proposed an improved ASA method that uses the Wasserstein distance

metric (a probability distance that quantifies the dissimilarity between two statistical

objects) to identify the sample that is likely to provide the most valuable additional

information to complement the knowledge available in the memory [Branke and Fei,

2016].

In this chapter, we propose a Wasserstein-based archive sample approxima-

tion (WASA) framework. The sampling strategy in our previous study Branke and
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Fei [2016] is one of many possible approaches in the WASA framework. Here, a new

sampling strategy based on WASA is presented, which improves the performance in

three ways:

1. A heuristic that considers what sample might provide the most valuable infor-

mation for all individuals in the population simultaneously, thereby enhancing

the performance of the final solution and accelerating the convergence of the

EA toward a high-performance solution;

2. Introducing the concept of an approximation region that could improve the

performance of the sampling strategy when few samples exist; and

3. Proposing a sample budget mechanism to adjust the sampling budget in the

WASA framework.

This chapter is structured as follows. Section 3.2 provides a brief overview

of existing archive sample approximation methods. We then present our new ap-

proaches to allocating samples in Section 3.3. These approaches are evaluated empir-

ically using benchmark problems, and their performances are compared with other

approaches in Section 3.4. This chapter concludes with a summary.

3.2 Archive Sample Approximation

The problem of searching for robust solutions can be defined as follows. Consider an

objective function f : x→ R with design variables x ∈ Rm. The noise is defined on

the probability space (Ξ,B(Ξ),P) where Ξ =
∏m
i [`i, ui] is a sample space, B(Ξ) is

the Borel σ-algebra on Ξ and P is the probability measure on B(Ξ). For a particular

solution x, location zx is random under this noisy environment, which is defined as:

zx = x+ ξ, ξ ∈ Ξ. (3.1)

We then define the induced probability space for zx as (Dx,B(Dx),Px), where Dx
is the disturbance region as the set covering all possible locations as a result of

disturbing solution x defined by:

Dx =

m∏
i=1

[xi + `i, xi + ui]; (3.2)

and Px is the probability measure defined so that, for φ ∈ B(Dx),

Px(φ) = P(Z−1
x (φ)). (3.3)
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Without loss of generality, for minimisation, the goal is to minimise the

effective fitness, that is, the expected performance over the disturbance region as

follows:

min
x∈X

feff (x) = min

∫
Dx
f(z)dPx(z). (3.4)

where X ⊂ Rm is the feasibility set.

As the fitness formulation is unknown in many industrial applications, the

integral cannot be computed directly. In practice, we can numerically compute this

integral using sampling techniques. Let N denote the number of realisations to

represent the disturbance region, and Ẑx = {zn| n ∈ N} be the realisations. The

empirical probability measure (i.e. probability distribution) of these samples is a

discrete probability measure, which can be defined so that, for φ ∈ B(Ẑx),

P̂x(φ) =
1

|N |
∑
n∈N

1φ(zn), (3.5)

where 1φ(·) is the indicator function. If the sample size |N | is sufficiently large, the

effective fitness can be well estimated as follows:

feff (x) ≈
∑
n∈N

f(zn)P̂x(zn). (3.6)

However, if evaluating the fitness function is computationally expensive, this may

not be possible.

The ASA approach originally proposed in Branke [2001] that saves previously

evaluated points in the search space and their corresponding fitness values in an

archive A. Generally, the archive A is a set of ordered pairs (z, ρ), where z is the

sample location and ρ is its fitness value. The archive information can be reused

when estimating the expected fitness of a new solution. ASA performs three main

steps during a fitness evaluation.

1. The previously evaluated points which are in the solution’s disturbance region

are retrieved from the archive. Given the disturbance region Dx, the available

archive information can be identified as

Ax = {(z, ρ) ∈ A| z ∈ Dx}.

2. A sampling strategy is used to determine at what additional locations samples

should be collected. Let Cx denote the new sample locations. It is desirable to
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Figure 3.1: Illustration of integrating ASA into an EA.

select a set of sample points Cx which maximise our knowledge of the fitness

landscape in the disturbance region.

3. All samples located within the disturbance region Dx need to be assigned

probabilities. Then, the estimated effective fitness f̂eff (x) can be calculated

as

f̂eff (x) =
∑
a∈Ax

a(2)Qx(a(1))︸ ︷︷ ︸
Archive information

+
∑
c∈Cx

f(c)Qx(c)︸ ︷︷ ︸
New information

where Qx(·) is the point probability; a(1) and a(2) represent the first and second

elements of the ordered pair in the archive Ax.

The overall procedure integrating ASA into an EA is visualised in Figure 3.1.

In the simplest ASA, the sampling strategy randomly evaluates new points

within the disturbance region and assigns equal probabilities to all available samples,

see, e.g., Branke et al. [2001]. However, if the distribution of available samples in the

disturbance region is not representative of Dx, the resulting estimation of effective

fitness may be very biased. In an attempt to fill “holes” in the disturbance region,

the authors in the studies of Kruisselbrink et al. [2010]; Saha et al. [2011] and

Cervantes et al. [2017] proposed to iteratively pick a sample point that has maximal

distance from any archive sample point in the disturbance region.

3.3 The Wasserstein-based Archive Sample Approxima-

tion

Given the archive samples, we aim to provide an accurate estimation of effective

fitness for each individual by sampling additional locations. The estimation error
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with respect to effective fitness is defined as follows:

eeff (x) = |feff (x)− f̂eff (x)|. (3.7)

In reality, estimation error cannot be computed given that the actual effective fitness

feff (x) is unknown. Therefore, we use Wasserstein distance as an upper bound

approximation for the estimation error. We call this framework Wasserstein-based

archive sample approximation.

In the following subsections, we first explain the principle behind WASA

and describe the underlying sampling problem of WASA. Then, we enhance the

description of the sampling strategy used in our previous work [Branke and Fei,

2016] and propose a new population-based myopic sampling strategy.

3.3.1 The Upper Bound Approximation for Estimation Error

As discussed in Section 3.2, the effective fitness of a particular solution can be

numerically computed by using a set of samples. If the number of samples is large

enough, the corresponding empirical probability measure will converge to the actual

probability. Given that the computational cost of evaluating a sample is expensive,

we aim to approximate this “large” empirical probability measure with a “smaller”

discrete probability measure. The challenge is how to estimate the corresponding

estimation error. Since the actual effective fitness cannot be computed in practice,

the estimation error cannot be obtained directly.

In the following, we provide an upper bound approximation of the estimation

error that can be calculated without requiring any fitness information.

Theorem 3.1. Let P̂ and Q be two discrete probability distributions with samples

G = {gj | j ∈ J } ⊆ X and H = {hk| k ∈ K} ⊆ X , and corresponding probabilities

{P̂(gj)| j ∈ J } and {Q(hk)| k ∈ H}, respectively. Moreover, let W (P̂,Q) denote

the Wasserstein distance between probability distributions P̂ and Q. The effective

fitness is numerically computed by using the probability measure P̂; and Q is the

probability measure approximating P̂. If the fitness function f : x→ R is Lipschitz

continuous over domain X , then the estimation error satisfies∣∣∣∣∣∣
∑
j∈J

f(gj)P̂(gj)−
∑
k∈K

f(hk)Q(hk)

∣∣∣∣∣∣ ≤ α W (P̂,Q) (3.8)

where α ≥ max
j∈J ,k∈K

|f(gj)− f(hk)|
d(gj , hk)

is a positive constant and d(gj , hk) is the Eu-
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clidean distance between gj and hk.

Proof. The effective fitness can be numerically computed by using the probabil-

ity measure P̂; and Q is the probability measure approximating P̂. Hence, the

estimation error can be written as∣∣∣∣∣∣
∑
j∈J

f(gj)P̂(gj)−
∑
k∈K

f(hk)Q(hk)

∣∣∣∣∣∣ . (3.9)

Let ψ be one of joint probabilities with marginal probability distributions P̂ and Q
such that the following equations hold∑

j∈J
ψj,k = Q(hk) (3.10)

and ∑
k∈K

ψj,k = P̂(gj). (3.11)

The sample sets G and H are independent of the probability measures Q and P̂,

respectively. Hence, we can obtain∑
j∈J

f(gj)P̂(gj) =
∑
k∈K

∑
j∈J

f(gj)ψj,k (3.12)

and ∑
k∈K

f(hk)Q(hk) =
∑
k∈K

∑
j∈J

f(hk)ψj,k. (3.13)

Substituting (3.12) and (3.13) in (3.9), we obtain∣∣∣∣∣∣
∑
j∈J

f(gj)P̂(gj)−
∑
k∈K

f(hk)Q(hk)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
k∈K

∑
j∈J

f(gj)ψj,k −
∑
k∈K

∑
j∈J

f(hk)ψj,k

∣∣∣∣∣∣ , ∀ψ ∈ Ψ.

(3.14)
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From the definition of Lipschitz continuity, we can continue∣∣∣∣∣∣
∑
j∈J

f(gj)P̂(gj)−
∑
k∈K

f(hk)Q(hk)

∣∣∣∣∣∣
≤
∑
k∈K

∑
j∈J
|f(gj)− f(hk)|ψj,k,∀ψ ∈ Ψ

≤ α
∑
j∈J

∑
k∈K

d(gj , hk)ψj,k,∀ψ ∈ Ψ,

(3.15)

where constant α is chosen such a way that

α ≥ max
j∈J ,k∈K

|f(gj)− f(hk)|
d(gj , hk)

.

Since the measure ψ can be any joint joint probabilities with marginal probability

distributions Q and P̂, we can have various upper bounds for the estimation error.

Given the constant α, the tightest bound can be found by

min
ψj,k
{
∑
j∈J

∑
k∈K

d(gj , hk)ψj,k} (3.16)

which is exactly the definition of Wasserstein distance in Appendix A. Hence, we

can write∣∣∣∣∣∣
∑
j∈J

f(gj)P̂(gj)−
∑
k∈K

f(hk)Q(hk)

∣∣∣∣∣∣ ≤ αmin
ψ∈Ψ
{
∑
j∈J

∑
k∈K

d(gj , hk)ψj,k} = αW (P̂,Q).

(3.17)

�

Theorem 3.1 implies that the estimation error with respect to two discrete prob-

ability measures can be upper bounded by the Wasserstein distance.

3.3.2 Probability Redistribution in the Wasserstein Metric

This section introduces the probability redistribution in Wasserstein metric. Sup-

pose that the Wasserstein distance between probability measures P̂ and Q needs to

be calculated, but the probability values for sample set H can be adjustable. We aim

to identify the optimal probability values, which result in the smallest Wasserstein

distance value. The probability redistribution problem M(G,H) can be formulated
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as follows,

M(G,H) = min
Q(hk)

W (P̂,Q)
.
=

min
ψ,Q(hk)

∑
k∈K

∑
j∈J

d(gj , hk)ψj,k

s.t.
∑
k∈K

ψj,k = P̂(gj), ∀j∑
j∈J

ψj,k = Q(hk), ∀k∑
k∈K

Q(hk) = 1

Q(hk) ≥ 0, ∀k
ψj,k ≥ 0, ∀j, k.

(3.18)

The above optimisation problem can be regarded as a transportation problem with

fixed locations. We can solve it by using the following Proposition.

Proposition 3.1. The optimal solution of (3.18) is

Q(hk)
∗ =

∑
j∈J

1gj (hk)P̂(gj), ∀k (3.19)

where 1gj (hk) is an indicator function and defined as1gj (hk) = 1, if hk is the closest sample to gj

0, otherwise.
(3.20)

And, the corresponding Wasserstein distance is

M(G,H) =
∑
j∈J

P̂(gj) min
hk

d(gj , hk). (3.21)

Proof. For details, see the proof of Proposition 2.1 introduced by Dempster et al.

[2011]. �

Algorithm 3.1 summaries the overall procedure for computing the Wasser-

stein distance after optimal probability redistribution.
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Algorithm 3.1: Efficient method for computing M(G,H)

input : samples G = {gj |j ∈ J } with probabilities {P̂(gj)|j ∈ J };
samples H = {hk| k ∈ K}.

output: Wasserstein distance after redistribution M(G,H);
optimal probabilities {Q(hk)∗| k ∈ K} for samples H.

1 for j ∈ J , k ∈ K do
2 compute Euclidean distance between samples gj and hk;
3 end
4 compute the distance value M(G,H) via (3.21);
5 compute the optimal probabilities {Q(hk)∗| k ∈ K} as in (3.19).

3.3.3 The WASA Sampling Problem

In this subsection, we introduce the sampling problem in WASA. Let xl for l ∈
Λ = {1, . . . , λ} denote the l-th individual from a particular population during the

EA search process. Using similar notation as in Section 3.2, let Zl for l ∈ Λ be

the random location of individual xl, which is defined on the probability space

(D̂l,B(D̂l),Pl). We then generate a large set Ẑl = {zn,l ∈ D̂l| n ∈ N} to represent

the disturbed locations of each individual. The empirical probability measure of

these disturbed locations is denoted by P̂l. Note that these large sample sets are

used only when computing the Wasserstein distance value and as a set of candidates

for evaluation.

Given an archive A that consists of previously evaluated solutions, the avail-

able archive samples for individual xl can be retrieved as follows:

Al = {(z, ρ) ∈ A| z ∈ D̂l}. (3.22)

Then, the previously evaluated sample locations Sl can be identified as

Sl = {a(1)| a ∈ Al}. (3.23)

The optimal sampling problem is to minimise the total effective fitness estimation

error over all individuals at the present EA’s generation by searching:

• the best additional sample locations Cl; and

• the optimal probability measure Ql on B(Cl ∪ Sl).

We can formulate the aforementioned problem by using the following optimisation
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model:
min
Cl,Ql

∑
l∈Λ

eeff (xl) =
∑
l∈Λ

|feff (xl)− f̂eff (xl)|

s.t. feff (xl) =
∑
n∈N

f(zn,l)P̂l(zn,l),∀l

f̂eff (xl) =
∑
a∈Al

a(2)Ql(a
(1)) +

∑
c∈Cl

f(c)Ql(c), ∀l∑
a∈Al

Ql(a
(1)) +

∑
c∈Cl

Ql(c) = 1, Ql(·) ≥ 0,∀l
∑
l∈Λ

|Cl| = B, Cl ⊆ Ẑl, ∀l.

(3.24)

As previously discussed, some fitness information in (3.24) is unavailable.

Therefore, the optimal sampling problem cannot be directly solved. By using The-

orem 3.1, the objective function of the optimal sampling problem can be bounded

by

∑
l∈Λ

eeff (xl) =
∑
l∈Λ

∣∣∣∣ ∑
n∈N

f(zn,l)P̂l(zn,l)−
[ ∑
a∈Al

a(2)Ql(a
(1)) +

∑
c∈Cl

f(c)Ql(c)

]∣∣∣∣
≤ α

∑
l∈Λ

W (P̂l,Ql).

(3.25)

Then, we obtain the formulation of WASA sampling problem as follows,

min
Cl,Ql

α
∑
l∈Λ

W (P̂l,Ql) = min
Cl

α
∑
l∈Λ

M(Ẑl, Cl ∪ Sl)

s.t.
∑
l∈Λ

|Cl| = B, Cl ⊆ Ẑl, ∀l.
(3.26)

As α only appears in the objective function of (3.26), it can be disregarded because

it does not influence the choice of optimal decision. Hence, the optimisation model

in (3.26) can be re-written as

min
Cl,Ql

∑
l∈Λ

W (P̂l,Ql) = min
Cl

∑
l∈Λ

M(Ẑl, Cl ∪ Sl)

s.t.
∑
l∈Λ

|Cl| = B, Cl ⊆ Ẑl, ∀l.
(3.27)

This new formulation is referred to as the WASA sampling problem. Essen-

tially, we minimise the upper bound approximation of the estimation error in order

to provide heuristic sample locations without requiring any fitness information. In

the derivation process, we use a constant α to represent the Lipschitz constants
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which are unknown in the black-box objective function. Since α only appears in the

objective function, we ignore it in the subsequent analysis. However, this approach

might result in a loose upper bound. In the future work, we can surrogate-based

approaches to estimate these Lipschitz constants and achieve a tighter upper bound

approximation for the estimation error.

The WASA sampling problem is a nonlinear and non-convex optimisation

problem. The optimal solution for this approximate problem formulation can be

found by repeatedly solving the following four related steps:

1. Fixing the cardinality |Cl| for l ∈ Λ such that
∑
l∈Λ

|Cl| = B.

2. Selecting the new samples Cl from Ẑl.

3. Constructing the sample set Yl for each individual xl as follows,

Yl = Sl ∪ Cl, ∀l. (3.28)

4. Computing the Wasserstein distance M(Ẑl,Yl) for l ∈ Λ by applying Algo-

rithm 3.1 to solve the following optimisation model.

min
Ql,ψz,y

∑
z∈Ẑl

∑
y∈Yl

d(z, y)ψz,y

s.t.
∑
y∈Yl

ψz,y = P̂l(z), ∀z ∈ Ẑl∑
z∈Ẑl

ψz,y = Ql(y), ∀y ∈ Yl

∑
y∈Yl

Ql(y) = 1

Ql(y) ≥ 0, ∀y ∈ Yl
ψz,y ≥ 0, ∀z ∈ Ẑl, y ∈ Yl.

(3.29)

Generally, the optimal solution of the WASA sampling problem cannot be

obtained within a reasonable time. For instance, there exist two individuals x1 and

x2 at a particular EA’s iteration. Consider that the cardinalities of Ẑ1 and Ẑ2 are

200. Given the sampling budget B = 2, we have three ways to allocate this sampling

budget to x1 and x2.

(|C1|, |C2|) ∈ {(1, 1), (2, 0), (0, 2)}.
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If we should take one sample from Ẑ1 and one from Ẑ2, then we have 40, 000

sample combinations. In case of taking two samples from Ẑ1 or two from Ẑ2, 19, 900

combinations are found. This basically results in 79, 800 repetitions for performing

the four related steps to find the optimal solution. The small case shows that

heuristic approaches to solve the WASA sampling problem are needed.

In the next subsection, we introduce two Wasserstein-based sampling strate-

gies aimed at efficiently making sampling decisions for the above WASA sampling

problem.

3.3.4 Equal Fixed Sampling Strategy

A straightforward way to simplify the WASA sampling problem is to consider each

individual separately, and allocate to each individual the same fixed number of new

samples. We call this strategy Equal Fixed Sampling (EFS). The sampling budget

in EFS must be an integral multiple of the number of individuals. EFS is an iterative

method that determines one new sample point at each step. Algorithm 3.2 describes

the overall procedure of incorporating the EFS strategy into WASA.

For individual xl, EFS first retrieves previously evaluated information Al
from the archive A and identifies the archive sample locations Sl by using (3.23).

Then, EFS constructs the candidate sets Yn,l for n ∈ N by uniting one of the

individual’s disturbed locations zn,l with archive points as follows:

Yn,l = zn,l ∪ Sl, ∀n ∈ N . (3.30)

EFS evaluates the Wasserstein distance value VEFS(zn,l) of each disturbed location

zn,l as

VEFS(zn,l)
.
= M(Yn,l, Ẑl), ∀n ∈ N . (3.31)

EFS next selects and evaluates the new sample point z∗ resulting in the smallest

value, i.e.,

z∗ = arg min{VEFS(zn,l)| n ∈ N}. (3.32)

The fitness of this point is evaluated and the new sample information will be added

into the archive A. The process repeats until the algorithm runs out of sampling

budget for this individual.

When this iterative process has been completed, EFS retrieves the archive

samples A∗l from the updated archive. The previously evaluated sample locations for
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Figure 3.2: Description of computing VEFS in EFS.

the individual xl can be identified as follows,

Y∗l = {a(1)| a ∈ A∗l }. (3.33)

Now we compute the optimal probabilities Ql for Y∗l by using (3.29). Then, the

estimated effective fitness of each individual can be calculated as

f̂eff (xl) =
∑
a∈A∗l

a(2)Ql(a
(1)). (3.34)

Figures 3.2 and 3.3 illustrate EFS by using a 2D example. Let us consider

the solution located at (0, 0), which is represented as a grey solid hexagon, assume

the sampling budget of this solution is one, and the disturbance region is from

−1 to 1 in x- and y-directions. We approximate the disturbance region by using

Latin hypercube sampling to generate 6 disturbances. The corresponding disturbed

locations of this solution are represented by grey solid circles. In the disturbance

region, there are two archive points which are depicted as black solid circles. We

now calculate the VEFS value of each disturbed location. The results are shown in

Figure 3.2. We can find that the best sample point is the grey solid circle whose VEFS

value is 0.8486. Figure 3.3 describes how to determine the probabilities of samples

used to estimate the effective fitness. The probability of each disturbed location is

0.1667 because the total number of disturbed locations is six in this example. The

black solid circle located at (0.1600, 0.2000) is the point closest to the grey solid
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Figure 3.3: Description of calculating optimal probabilities in EFS.

circle (−0.1863, 0.1745). According to probability re-allocation rules (3.19), the new

probability for this black solid circle is 0.1667. The new sample point marked by a

triangle is the best representation of the two grey solid circles. However, the new

probability of this point is 0.5000 because this point is also the nearest to itself. The

new probabilities of the other black solid circles can be assigned following the same

procedure.

3.3.5 Population-based Myopic Sampling Strategy

EFS may spend unnecessary sampling on an individual that already has a small

Wasserstein distance value but ignores the needs of an individual with large Wasser-

stein distance value. This inefficient sampling allocation frequently appears in the

search process because of the exploration and exploitation strategies used in the

EAs. The current promising area on the decision space is exploited repeatedly, and

the archive set already contains adequate information for approximating the effective

fitness landscape of individuals in this area. However, the archive does not contain

information on previously unexplored areas, and in those areas new sampling is

indispensable.

To alleviate this problem, we propose here population-based myopic sam-

pling (PMS). The key idea is to allow sampling, at each step, the disturbed loca-

tion of any individual that greatly minimises the average Wasserstein distance over

the entire population. This sampling strategy is particularly effective when distur-
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Algorithm 3.2: The procedure of including EFS into WASA

input : set of disturbed locations Ẑl = {zn,l| n ∈ N} with empirical

probability measure P̂l for l ∈ Λ, sampling budget B, archive A.
output: estimated effective fitness f̂eff (xl) for l ∈ Λ.

1 for l ∈ Λ do
2 retrieve archive information Al using (3.22);
3 end
4 for j ∈ J do
5 identify sample locations Sl from Al as in (3.23);
6 end
7 for b ∈ {1, . . . , B/λ} do
8 for n ∈ N do
9 construct the candidate set Yn,l using (3.30);

10 compute the VEFS(zn,l) value via (3.31);

11 end
12 find z∗ = arg min{VEFS(zn,l)| n ∈ N};
13 evaluate the fitness of the best location f(z∗);
14 update the archive A ← A∪ (z∗, f(z∗));
15 end
16 for l ∈ Λ do
17 retrieve the archive information A∗l as in (3.22);
18 construct the archive sample set Y∗l via (3.33);
19 calculate the probability measure Ql on Y∗l using (3.29);

20 compute the effective fitness f̂eff (xl) as in (3.34).

21 end

bance regions partially overlap one another, because one additional sample point

might contribute to improving the fitness estimate for several individuals. PMS

furthermore introduces the concept of an approximation region which may be cho-

sen different from the disturbance region and allows the use of archive samples also

outside the immediate disturbance region. Finally, since the budget in a generation

no longer needs to be a multiple of the population size, we introduce a mechanism

to adapt the sampling budget of each generation depending on the change in the

average Wasserstein distance over the entire population. Algorithm 3.3 describes

the overall procedure of including PMS into WASA. In the following, we present the

core ingredients of PMS, including approximation region, myopic sampling location

selection, and sampling budget adjustment.

Approximation region

Generally, ASA begins with the search of available archive points which are located

within the individual’s disturbance region. If no or few archive points in the distur-

bance region, one ad-hoc method is to use archive points that are slightly outside
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Algorithm 3.3: The procedure of including PMS into WASA

input : set of disturbed locations Ẑl = {zn,l| n ∈ N} with empirical

probability measure P̂l for l ∈ Λ, sampling budget B, archive A,
approximation region parameter κ, average Wasserstein
distance W̄ t−1.

output: estimated effective fitness f̂eff (xl) for l ∈ Λ, average Wasserstein
distance W̄ t.

1 initialise b← 0 ;
2 for l ∈ Λ do
3 set approximation region Rl via (3.35);
4 end
5 while b < Bupper do
6 retrieve archive samples Al for l ∈ Λ using (3.22);
7 identify sample locations Sl from Al for l ∈ Λ via (3.23);
8 for l ∈ Λ, n ∈ N do
9 for m ∈ Λ do

10 construct the candidate set Yl,n,m as in (3.36);
11 end
12 compute the VPMS(zn,l) value via (3.37);

13 end
14 find z∗ = arg min{VPMS(zn,l)| n ∈ N , l ∈ Λ};
15 evaluate the fitness of the best location f(z∗);
16 update the archive A ← A∪ (z∗, f(z∗));
17 compute the W̄ t value using (3.40);

18 end
19 if W̄ t−1 > W̄ t and b > Blower then
20 b = Bupper //stop sampling;
21 else
22 set b← b+ 1;
23 end
24 for l ∈ Λ do
25 retrieve the archive information A∗l as in (3.22);
26 construct the archive sample set Y∗l via (3.33);
27 calculate the probability measure Ql on Y∗l using (3.29);

28 compute the effective fitness f̂eff (xl) as in (3.34).

29 end
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the disturbance region. Although the utilisation of those archive points goes against

the setting of disturbance region, the estimation of the effective fitness might be im-

proved. In PMS, we call this enlarged region approximation region. Let Rl denote

the approximation region of individual xl. Given the sample space Ξ of noise, the

size of approximation region Rl is controlled by a parameter κ (κ ≥ 1), which is

defined as follows,

Rl = {xl + ς| ς ∈
m∏
i=1

[κ ∗ `i, κ ∗ ui]}. (3.35)

Obviously, the larger κ, the more archive samples are used for fitness estima-

tion. On the other hand, if κ is chosen too large, the archive points may be located

too far from the individual’s disturbance region, thereby causing unpredictable er-

rors in effective fitness estimation. So, κ needs to be chosen carefully.

Figure 3.4 illustrates the benefit of including additional archive points. The

solution is located at (0, 0), whilst its disturbance region is from −1 to 1 in x-

and y-directions. The black solid circles denote the archive points, among which

three are located within and two outside the disturbance region. The grey solid

circles represent the disturbed locations of this solution. If we restrict ASA to

the disturbance region, the minimum Wasserstein distance we can obtain from the

three black solid points and one grey solid point to be additionally evaluated is

2.276. If we set the approximation region parameter κ as 120%, the grey squiggle

in Figure 3.4 denotes the extension region with respect to the solution’s disturbance

region. Two additional archive points can be used to estimate effective fitness.

Accordingly, the best Wasserstein distance value we can obtain from the five black

and one grey points reduces to 1.2935. This example demonstrates that an enlarged

approximation region may reduce the Wasserstein distance.

Myopic sampling location selection

Given the archive samples of each individual, PMS myopically selects the best sam-

pling point. This myopic strategy iteratively builds candidate sets by combining a

new sample at one disturbed location of any individual with the archive samples of

any individual, as described in the following equation:

Yl,n,m = zn,l ∪ Sm, (3.36)

with n ∈ N , m ∈ Λ and l ∈ Λ. The myopic selection criterion is based on the

average Wasserstein distance for the entire population. Let VPMS(zn,l) represent

the Wasserstein distance value by sampling the disturbed location zn,l. Then, we
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Figure 3.4: Using approximation region in WASA.

can write the VPMS(zn,l) value as follows:

VPMS(zn,l) =
∑
m∈Λ

1Rm(zn,l)M(Yl,n,m, Ẑm) (3.37)

where 1Rm(zn,l) is an indicator function, defined as1Rm(zn,l) = 1, if zn,l ∈ Rm
0, otherwise

(3.38)

that controls that a sample only contributes to an individual’s Wasserstein distance

calculation if it is within its approximation region.

Figure 3.5 explains how to compute the VPMS value in the PMS strategy.

As shown in Figure 3.5, two candidate solutions x1 and x2 are respectively located

at (−0.666,−0.333) and (0.666, 0.333). The disturbance region of each solution is

represented by 6 Latin hypercube samples (grey solid circles). The approxima-

tion region parameter κ is set to be 130%. The grey squiggle is the extension

region with respect to the disturbance region. Given the budget to sample one

new point, we need to determine which grey point is the best sampling location

for these two solutions (x1 and x2) when it is combined with the archive points

(black). Note that the grey points outside the overlapped approximation region, for

instance, (−1.5340,−0.6312), only contribute to one solution. The VPMS value for
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Figure 3.5: The VPMS value computation in PMS.

each grey point is shown in Figure 3.5. It can be observed that the sample location

(0.3000, 0.5100) (triangle) allows for the smallest average Wasserstein distance for

these two solutions.

Sampling budget adjustment

PMS allows the automatic reduction of the sampling budget used during an itera-

tion of the EA if the archive already provides plenty of information on candidate

individuals. The sampling budget is adaptively determined by the average Wasser-

stein distance over all individuals. We attempt to decrease this average distance

monotonically. Considering a progressing evolution, we like to derive improved esti-

mates for effective fitness. Given VPMS(zn,l) for n ∈ N and l ∈ Λ, the best sampling

location can be identified as follows:

z∗ = arg min{VPMS(zn,l)| n ∈ N , l ∈ Λ}. (3.39)

Then, we can compute the Wasserstein distance W̄ at the current population t as

follows:

W̄ t =
∑
l∈Λ

1Rl(z
∗)M(z∗ ∪ Sl, Ẑl) + (1− 1Rl(z∗))M(Sl, Ẑl). (3.40)

PMS stops sampling for the current population when the current average Wasser-

stein distance using the usable samples is less than the recorded average Wasserstein
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distance of the previous population t− 1. In other words,

W̄ t < W̄ t−1. (3.41)

In practical use, we suggest to assign lower and upper limits for the number

of new samples evaluated in each iteration. The lower limit ensures that a minimum

additional knowledge on the underlying fitness landscape is collected in each itera-

tion. It also prevents getting permanently stuck in an artificial optimum of a false

approximation model. The upper bound prevents the spending of a large number

of samples in the current population. Given that EAs are iterative search methods,

the samples must also be allocated to the future population rather than extensively

sampling the fitness for the current population.

3.4 Empirical Results

In this section, we examine the effect of varying algorithmic parameters on the

performance of the PMS strategy. Moreover, we empirically compare the WASA

strategies with several other ASA approaches from the literature using a variety of

benchmark problems with different landscape features as well as a real-life robust

design problem. All results are averaged over 30 independent runs with different

random seeds.

3.4.1 Experimental Setup for Artificial Benchmark Problems

Overview of Artificial Benchmark Problems

We have chosen six artificial benchmark problems from the literature. Figure 3.6

provides one-dimensional visualisations of the original and effective fitness land-

scapes. The test problems have different characteristics:

• TP 1, taken from Paenke et al. [2006], has a discontinuous unimodal original

fitness landscape. The peaks of the original and effective fitness landscapes

are asymmetric and located next to each other. This problem characteristic

can test an algorithm’s ability to precisely identify the peak of effective fitness
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at the discontinuous landscape.

f(x) = min 1 +
1

5

5∑
i=1

Q1(xi), xi ∈ [0, 10],U(−0.5, 0.5)5

with

Q1(xi) =

2−xi
6 , xi ≤ 8

0, otherwise

• TP 2, adopted from Paenke et al. [2006], can be viewed as the continuous

version of TP 1.

f(x) = min 4.5 +
5∑
i=1

Q2(xi), xi ∈ [0, 10],U(−1, 1)5

with

Q2(xi) =

−(8− xi)0.1e−0.2(8−xi), xi < 8

0, otherwise

• TP 3, adopted from Branke [2001], has multimodal original and effective

fitness landscapes. The global optimum of the original fitness (x = 1) is a

local optimum of the effective fitness landscape, and vice versa. Poor effective

fitness estimates in the early phase of optimisation may misdirect the EA

towards the wrong region.

f(x) = min 5−
5∑
i=1

Q3(xi), xi ∈ [−2, 2],U(−0.2, 0.2)5

with

Q3(xi) =


−(xi + 1)2 + 1.4− 0.8 |sin(6.283xi)| −2 < xi < 0

0.6 · 2−8|xi−1| + 0.958887− 0.8 |sin(6.283xi)| 0 ≤ xi < 2

0 otherwise

• TP 4, taken from Paenke et al. [2006], has two global minima in the effec-

tive fitness landscape. The global minimum of the original fitness is a local
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maximum of the effective fitness.

f(x) = min 0.6 +
1

5

5∑
i=1

Q4(xi), xi ∈ [0, 1],U(−0.05, 0.05)5

with

Q4(xi) =


−0.5e−0.5

(xi−0.4)2

0.052 , 0 ≤ xi < 0.4696

−0.6e−0.5
(xi−0.5)2

0.022 , 0.4696 ≤ xi < 0.5304

−0.5e−0.5
(xi−0.6)2

0.052 , otherwise

• TP 5, adapted from Paenke et al. [2006], combines the problem characteristics

of TP 2 and TP 3.

f(x) = min

5∑
i=1

Q5(xi)− 2, xi ∈ [0, 10],U(−1, 1)5

with

Q5(xi) = 1 + 2sin(10e(−0.2xi)xi)e
(−0.25xi)

• TP 6, taken from Tsutsui and Ghosh [1997], has the global minima of the

effective fitness landscape as being the local minima of the original fitness

landscape.

f(x) = min 1− 1

5

5∑
i=1

Q6(xi), xi ∈ [0, 1],U(−0.0625, 0.0625)5

with

Q6(xi) =

e−2(
xi−0.1

0.8
)2 ln 2| sin(5πxi)|0.5, 0.4 < xi ≤ 0.6

e−2(
xi−0.1

0.8
)2 ln 2 sin6(5πxi), otherwise

Evolutionary Algorithm

Essentially, the archive-based approximation is a part of the EA’s fitness evalua-

tion procedure. Therefore, it is straightforward to integrate our proposed sampling

strategies into any evolutionary algorithm. We have adopted the covariance ma-

trix adaptation evolution strategy (CMA-ES), proposed by Hansen and Ostermeier

[2001], for the experiments. CMA-ES is one of advanced single-objective evolution-

ary strategies. We implement the CMA-ES algorithm that is based on the MATLAB

55



0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8 9 10
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

Figure 3.6: 1-D visualisation of original and effective fitness of the 5-D test problems.
Solid line: original fitness landscape. Dash line: effective fitness landscape.

CMA-ES Parameters Selected Settings

(µ, λ) (4, 8)

initial standard deviation 1
4 search interval width

recombination equally weighted recombination

initial point centre of search interval

total number of evaluations 1, 600

Table 3.1: The CMA-ES parameter settings.

toolbox [Hansen]. We have modified the fitness evaluation procedure in this toolbox

and integrated the various sampling strategies. The used parameter settings of the

CMA-ES toolbox are listed in Table 3.1.

Solution Selection & Performance Measure

We employ the best observed individual, i.e. the individual with best estimated

effective fitness, at the final generation as the solution that would be reported to

the decision-maker. The actual effective fitness of the selected solution is evaluated

by 10, 000 Monte-Carlo samples generated from the underlying noise. Moreover, we

look at the algorithm’s convergence and the average effective fitness over the whole

run. Ideally, we would expect the sampling approach to have a fast convergence and

to provide a high-quality solution at the final generation.
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Disturbance Generation for WASA

The performance of WASA is closely associated with the way the approximate un-

certainty set Ẑl is generated. We use 243 Latin hypercube disturbances for all

individuals within a generation, which reduces the variance in comparing the effec-

tive finesses in an uncertain environment. To avoid over-fitting to a specific set of

disturbances, we change the set of disturbances at each iteration of the EA.

3.4.2 Performance of the PMS Strategy with Various Approxima-

tion Region Parameters

We numerically study the effect of using various approximation region parameters

(κ=100%, 120% and infinity). The lower and upper limits of the sampling budget at

each iteration are fixed at 4 and 8, respectively. Figure 3.7 presents the convergence

of the average effective fitness of the best observed solution.

As can be seen, the convergence towards high-performance solutions can be

accelerated by using a proper approximation region parameter. Given the same

amount of evaluations, PMS-120% performs better than PMS-100%. The superi-

ority of using PMS-120% is significant before 1, 000 evaluations, because early in

the run, information in the archive is sparse, and the wider approximation region

can use more archive samples in the individual’s effective fitness estimation. At

the end of the run, the PMS-120% strategy is able to find better solutions than all

other strategies in all test problems, indicating that a proper setting of the approx-

imation region prevents CMA-ES from early convergence towards local optima by

incorporating more archive samples in the effective fitness estimation.

In all benchmark problems, the average effective fitness of using PMS-infinity

deteriorates during the first 100 evaluations, though this value is improved quickly

at later evaluations. The reason is that the new sampling locations determined

by PMS-infinity are always located at the centre of a cluster of individuals when

the archive is empty or contains only few samples, which actually misleads the EA

search process. This negative effect becomes serious in test problems TP 5 and TP

6, because the problem characteristics demand that the robust approach is able to

identify the correct search area early on. Otherwise, the EA search process converges

towards local optima.

To support Figure 3.7, Table 3.2 reports on the average effective fitness ob-

tained over all 1, 600 evaluations of the run. Again, we can observe that PMS-120%

provides the fastest convergence pattern among these three strategies for all test

functions. PMS-infinity displays good convergence in TP 1, 2 and 4. Addition-
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Figure 3.7: Convergence comparison with respect to evaluations for various approx-
imation region parameters.

Table 3.2: Average effective fitness over 1,600 evaluations.

Test Problem
Mean ± Std. err.

PMS-100% PMS-120% PMS-infinity

TP 1 0.150±0.003 0.140±0.003 0.145±0.002
TP 2 0.674±0.014 0.634±0.014 0.651±0.014
TP 3 0.901±0.015 0.848±0.025 0.890±0.021
TP 4 0.192±0.001 0.190±0.001 0.191±0.001
TP 5 0.528±0.009 0.495±0.018 0.527±0.022
TP 6 0.458±0.006 0.452±0.006 0.469±0.008

Best results and those statistically not different from best are highlighted in bold.

ally, Table 3.3 presents the performance of the final solution at the end of the EA

search process. These results show that PMS-120% has the best performance in

all benchmark problems, and PMS-infinity presents a performance advantage over

PMS-100%. However, PMS-infinity performs worse than PMS-120% in most of the

test functions. The results confirm the theoretical ground discussed in Section 3.3,

namely that a moderate increase of the approximation region beyond the distur-

bance region is useful, but too much may lose its benefit.
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Table 3.3: Effective fitness of the solution at 1,600 evaluations.

Test Problem
Mean ± Std. err.

PMS-100% PMS-120% PMS-infinity

TP 1 0.104±0.006 0.098±0.002 0.099±0.001
TP 2 0.561±0.007 0.533±0.006 0.548±0.005
TP 3 0.676±0.031 0.569±0.022 0.659±0.027
TP 4 0.182±0.002 0.177±0.002 0.177±0.001
TP 5 0.358±0.011 0.301±0.009 0.337±0.004
TP 6 0.431±0.009 0.413±0.006 0.436±0.007

Best results and those statistically not different from best are highlighted in bold.
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Figure 3.8: Convergence comparison with the evaluations for various sampling bud-
get limits.

3.4.3 Performance of the PMS Strategy with Various Sampling

Budget Limits

In this experiment, we investigate the convergence pattern with varying lower and

upper sampling budget limitations. We consider the setting where the sampling

budget per generation is allowed to change between 4 and 8 as default, which is

abbreviated as the PMS-[4, 8] strategy. We firstly test the effect of rising the lower

limit of PMS-[4, 8]. As such, we consistently use 8 evaluations throughout the search

process and denote this strategy as PMS-[8, 8]. Secondly, we study the impact of

increasing the upper limit on the convergence behaviour. Therefore, we include

PMS-[4, 10] in this experiment, whose upper limit is set to 10. The approximation

region is fixed at 120% of each direction of an individual’s perturbed region. Fig-
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Table 3.4: Average effective fitness over 1,600 evaluations.

Test Problem
Mean ± Std. err.

PMS-[4, 8] PMS-[4, 10] PMS-[8, 8]

TP 1 0.140±0.003 0.152±0.002 0.151±0.003
TP 2 0.634±0.014 0.628±0.012 0.629±0.005
TP 3 0.848±0.025 0.897±0.021 0.876±0.027
TP 4 0.190±0.001 0.194±0.001 0.193±0.001
TP 5 0.495±0.018 0.540±0.029 0.514±0.028
TP 6 0.452±0.006 0.457±0.008 0.453±0.008

Best results and those statistically not different from best are highlighted in bold.

Table 3.5: Effective fitness of the solution at 1,600 evaluations.

Test Problem
Mean ± Std. err.

PMS-[4, 8] PMS-[4, 10] PMS-[8, 8]

TP 1 0.098±0.002 0.094±0.001 0.093±0.003
TP 2 0.533±0.006 0.498±0.009 0.535±0.002
TP 3 0.569±0.022 0.542±0.028 0.565±0.031
TP 4 0.177±0.002 0.175±0.001 0.176±0.001
TP 5 0.301±0.009 0.269±0.018 0.294±0.016
TP 6 0.413±0.006 0.410±0.008 0.413±0.008

Best results and those statistically not different from best are highlighted in bold.

ure 3.8 displays the results of the various sampling strategies for all test problems.

As shown in Figure 3.8, PMS-[4, 8] and PMS-[8, 8] have similar convergence

patterns at early search iterations because both strategies implement eight evalu-

ations when the archive has few usable samples. Nevertheless, the convergence of

PMS-[4, 8] becomes faster than that of PMS-[8, 8] once the archive has a sufficient

number of samples, indicating that PMS-[4, 8] saves evaluations when the average

Wasserstein distance is monotonically decreasing anyway. Moreover, we observe that

the convergence of PMS-[4, 10] is slow at early iterations. This is because PMS-[4, 10]

is allowed to spend more evaluations exploring the correct search directions at early

iterations.

Again, Table 3.4 and 3.5 summarise the overall performance and the ef-

fective fitness value of the final solution, respectively. We observe that strategies

PMS-[4, 8] and PMS-[8, 8] perform similarly at the end of EA search process, but

PMS-[4, 8] converges faster than PMS-[8, 8], indicating that our sampling budget

adjustment can save evaluations without sacrificing the performance of the final

solution. PMS-[4, 10] provides the best final solution in all test problems, but con-

verges more slowly.
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3.4.4 Average Performance Comparison

We verify the performance of the proposed strategies, namely EFS and PMS, by

comparing with the following archive-based approaches from the literature:

1. SEM: The strategy randomly samples one location within the individual’s

perturbed area [Tsutsui and Ghosh, 1997].

2. SEMAR: This is the SEM strategy integrated with the archive sample ap-

proximation strategy [Branke, 2001].

3. ABRSS: This strategy is based on an archive sample approximation approach

consisting of two main steps. For each disturbed location, the first step is to

identify the closest sample point in the archive, and the second step is to check

whether this disturbed location is also the closest disturbed location of its se-

lected archive sample point [Kruisselbrink et al., 2010]. If this is the case,

the selected archive sample point will be used in the effective fitness estima-

tion; otherwise, this disturbed location will be considered for an additional

sampling.

4. ABRSS+OP: This strategy implements ABRSS to determine the additional

sample points, but assigns the optimal probabilities that are obtained from

the Wasserstein distance for all sample points involved in the effective fitness

estimation.

Note that all sampling strategies are inserted into the same CMA-ES, so that all

performance differences can be attributed to the sampling strategy alone.

We first examine the reduction in the approximation error achieved by var-

ious archive-based strategies. Given that SEM does not employ previously evalu-

ated samples, this approach is excluded. We randomly generate 20 solutions and

30 available archive samples in this experiment. Second, we compute the average

approximation error over these solutions before and after employing any sampling

strategy. The sampling budgets for all strategies are identical and fixed at 20. Fig-

ure 3.9 summarises the changes of approximation error between before and after

the sampling strategy implementation. EFS and PMS strategies effectively decrease

the average approximation error for all test problems. The approximation errors

obtained by ABRSS, ABRSS+OP, and SEMAR are larger than those obtained by

those WASA strategies. Moreover, the results show that the non-WASA strategies,

in several functions, cannot successfully reduce the approximation error, e.g., their

approximation errors slightly increase in TP 5. The reason is that sampling bias
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Figure 3.9: Comparison of approximation error reduction achieved various sampling
strategies.

may affect the benefit of including additional samples. Assuming that the archive

samples around a specific solution are negatively biased, if we include additional neg-

atively biased samples and simply average these samples, the approximation would

degrade. Nevertheless, the Wasserstein metric in WASA strategies, to some extent,

diminish the bias effect by adjusting the probabilities of archive samples and new

samples.

Next, we study the convergence of various sampling strategies in the CMA-

ES search process. The PMS strategy sets the approximation region parameter κ as

120% and fixes the lower and upper limits for the number of samples per iteration

at 4 and 8, respectively. Figure 3.10 displays the computational results of using

various bounds for the sampling budget. Moreover, in Figure 3.11, we report the
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Figure 3.10: Convergence comparison of different sampling strategies with respect
to evaluations.

average approximation error over the course of the run, which is defined by the mean

squared error between the true and estimated effective fitness.
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gies with respect to evaluations.
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Table 3.6: Average effective fitness over 1,600 evaluations.

Test Problem
Mean ± Std. Err.

SEM SEMAR ABRSS ABRSS+OP EFS PMS

TP 1 0.260±0.006 0.171±0.007 0.156±0.004 0.160±0.006 0.144±0.003 0.140±0.003
TP 2 1.018±0.008 0.728±0.017 0.702±0.017 0.676±0.010 0.625±0.015 0.634±0.014
TP 3 1.304±0.024 1.121±0.035 1.164±0.031 1.012±0.040 0.902±0.035 0.848±0.025
TP 4 0.213±0.001 0.199±0.001 0.200±0.001 0.198±0.001 0.196±0.001 0.190±0.001
TP 5 1.280±0.010 0.853±0.021 0.783±0.022 0.753±0.031 0.497±0.018 0.495±0.018
TP 6 0.519±0.007 0.485±0.008 0.471±0.008 0.474±0.011 0.462±0.007 0.452±0.006

Best results and those statistically not different from best are highlighted in bold.

Table 3.7: Effective fitness of the solution at 1,600 evaluations.

Test Problem
Mean ± Std. Err.

SEM SEMAR ABRSS ABRSS+OP EFS PMS

TP 1 0.267±0.020 0.100±0.006 0.098±0.003 0.096±0.006 0.095±0.003 0.098±0.002
TP 2 1.000±0.052 0.548±0.011 0.554±0.024 0.535±0.007 0.528±0.002 0.533±0.006
TP 3 1.131±0.075 0.873±0.054 0.823±0.071 0.769±0.042 0.682±0.031 0.569±0.022
TP 4 0.205±0.004 0.187±0.009 0.184±0.003 0.185±0.002 0.181±0.003 0.177±0.002
TP 5 1.005±0.076 0.662±0.044 0.479±0.057 0.434±0.053 0.335±0.012 0.301±0.009
TP 6 0.471±0.013 0.455±0.011 0.429±0.009 0.430±0.011 0.428±0.005 0.413±0.006

Best results and those statistically not different from best are highlighted in bold.
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As shown in Figure 3.10, the SEM approach provides the worst results for all

test problems, because this approach does not use an archive and one new sample

is not sufficient to estimate the effective fitness. Compared to SEM, the archive-

based approaches show a good convergence on most test problems. SEMAR and

ABRSS exhibit similar convergence behaviour on most test problems. Since the

ABRSS+OP approach implements the optimal probabilities, its convergence is faster

than ABRSS and SEMAR in the most of test problems. Nevertheless, ABRSS+OP

performs worse than the WASA-based strategies, i.e., EFS and PMS, indicating that

the Wasserstein distance metric provides an advantage in selecting good sampling

locations. Additionally, the results demonstrate the good performance of PMS which

converges faster than EFS over the first 1, 000 evaluations in all problems.

The effective fitness of the best observed solution obtained from various

strategies averaged over 1, 600 evaluations is reported in Table 3.6. The results

confirm the importance of good sampling strategy design. We find that the WASA

sampling strategies converge faster than other methods. For strategies PMS and

EFS, we observe that the convergence of PMS is more rapid than EFS for all test

problems except TP 2 and 6. Table 3.7 displays the performance of the final solution

obtained from various approaches. The result once again confirms the superiority

of WASA sampling strategies and the performance advantage of PMS over EFS.

The results of average estimation error in Figure 3.11 confirm our findings

from previous convergence comparisons. The SEM approach consistently exhibits

large effective fitness estimation errors. The SEMAR and ABRSS strategies reduce

the average estimation error when the number of evaluations is small, because they

reuse past sampling information. However, SEMAR and ABRSS lack a good mech-

anism to determine the probability weights for the samples used in the effective

fitness estimation. This deficiency might lead to biases in the estimation. In some

cases, the average estimation errors of SEMAR and ABRSS are actually increasing

over the run. By contrast, the approaches that adopt optimal probabilities, i.e.

ABRSS+OP, EFS and PMS, keep decreasing the average estimation error through-

out the run; and PMS is the fastest approach in decreasing the average estimation

error.

3.4.5 Robust Multi-point Airfoil Shape Optimisation under Uncer-

tain Manufacturing Errors

Finally, we test the proposed strategies on a simple real-world problem. We con-

sider a multi-point airfoil shape optimisation problem with manufacturing errors.

Although advances in high-performance computing have reduced the CPU time with
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Figure 3.12: The baseline shape of the robust design problem.

respect to the performance evaluation of airfoil shape, this robust optimisation prob-

lem still requires a significant computational effort because algorithms might need

thousands of evaluations under various possible manufacturing errors. Therefore, it

is an ideal testbed for examining the performance of various sampling approaches

under the condition of limited evaluation budget.

We consider the subsonic 2-D airfoil design problem, which is a variant ob-

tained from Ong et al. [2006]. The baseline shape is NACA 0012 airfoil [Abbott and

Von Doenhoff, 1959], which is illustrated in Figure 3.12. We implement 10 Hicks-

Henne bump functions, for details see [Hicks and Henne, 1978], fi(z) for i = 1, . . . , 10

with the upper and lower surfaces of NACA 0012 (denoted as ybu(z) and ybl (z)) to

parameterise the upper surface yu(z) and the lower surface yl(z). They are defined

as follows:

yu(z) = ybu(z) +
6∑
i=1

θifi(z)

and

yl(z) = ybl (z) +
10∑
i=7

θifi(z),

where z is a non-dimensional abscissa, and θi is the design variable on the i-th

Hicks-Henne bump function. These Hicks-Henne bump functions combined with

design variables can be used to tune the upper and lower surfaces. The definitions

of Hicks-Henne bump functions and the ranges of the design variables can be found

as follows.

f1(z) = sin4(πzln 0.5/ ln 0.05), θ1 = [−0.001, 0.001]

f2(z) = sin4(πzln 0.5/ ln 0.15), θ2 = [−0.006, 0.006]
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f3(z) = sin4(πzln 0.5/ ln 0.30), θ3 = [−0.009, 0.009]

f4(z) = sin4(πzln 0.5/ ln 0.45), θ4 = [−0.009, 0.009]

f5(z) = sin4(πzln 0.5/ ln 0.60), θ5 = [−0.006, 0.006]

f6(z) = sin4(πzln 0.5/ ln 0.80), θ6 = [−0.002, 0.002]

f7(z) = sin4(πzln 0.5/ ln 0.10), θ7 = [−0.001, 0.001]

f8(z) = sin4(πzln 0.5/ ln 0.10), θ8 = [−0.007, 0.007]

f9(z) = sin4(πzln 0.5/ ln 0.55), θ9 = [−0.007, 0.007]

f10(z) = sin4(πzln 0.5/ ln 0.80), θ10 = [−0.002, 0.002]

The “fitness” of the airfoil shape is defined as the average lift-to-drag ra-

tio over three flow velocities (M1 = 0.5 mach, M2 = 0.55 mach and M3 = 0.6

mach) when Reynolds number (Re) and Angle of Attack (AoA) are 300, 000 and 4◦,

respectively. Thus, the fitness function f(θ) can be written as follows:

f(θ) =
1

3
(C1 + C2 + C3)

where

C1 = CL/D(M1, Re,AoA, θ1, · · · , θ10)

C2 = CL/D(M2, Re,AoA, θ1, · · · , θ10)

C3 = CL/D(M3, Re,AoA, θ1, · · · , θ10)

where CL/D denotes the lift-to-drag ratio. We assume that all design variables are

affected by uniformly disturbed manufacturing errors. The range of manufacturing

error for all design variables is fixed as [−0.001, 0.001]. The overall robust design

problem can be formulated as

max feff (θ) = E[f(θ + ξ)] = E
[1
3

(Ĉ1 + Ĉ2 + Ĉ3)
]

where

Ĉ1 = CL/D(M1, Re,AoA, θ1 + ξ1, · · · , θ10 + ξ10)

Ĉ2 = CL/D(M2, Re,AoA, θ1 + ξ1, · · · , θ10 + ξ10)

Ĉ3 = CL/D(M3, Re,AoA, θ1 + ξ1, · · · , θ10 + ξ10)

ξi ∈ U(−0.001, 0.001), i = 1, . . . , 10.

In this experiment, the airfoil shape of lift-to-drag ratios at various Mach
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Figure 3.13: Convergence comparison of various sampling strategies with respect to
evaluations in the robust airfoil shape optimisation problem.

numbers are evaluated by Drela’s XFOIL [Drela, 1989]. This software is an open-

source aerodynamic analysis package for subsonic isolated airfoils, which allows the

use of relatively lower computational effort than advanced CFD programs. For this

problem, we fix the (µ, λ) parameters in CMA-ES at (5, 10) and choose the total

evaluations as 1,200. The lower and upper limits of the evaluation budget at each

iteration for the PMS strategy are fixed at 5 and 10, respectively; whereas the

evaluation budget of other sampling approaches is fixed at 10, that is, each solution

is evaluated once. The other experimental setup is exactly same as in previous

experiments. Figure 3.13 shows the convergence of the average effective fitness of

the currently best solution based on the estimated effective fitness values.

As can be seen in Figure 3.13, the convergence of WASA sampling strategies

is considerably faster than other sampling approaches, which clearly confirms the su-

periority of WASA sampling strategies in this real-world problem. The non-WASA

sampling strategies (SEM, SEMAR, ABRSS and ABRSS+OP) exhibit similar con-

vergence patterns. For EFS and PMS, the solutions at 400 evaluations are even

better than the solutions obtained from the other sampling approaches after 1, 200

evaluations. In comparison to EFS, we observe that PMS provides a good conver-

gence rate at the first 200 evaluations due to its advanced sample selection method in

the WASA framework, which is consistent with the results of artificial test functions

presented in Section 3.4.

Table 3.8 reports both the average effective fitness over 1,200 evaluations

(abbreviated as A.E.F.) and the effective fitness of the solution at 1,200 evaluations
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Table 3.8: Performance of various sampling approaches in the robust airfoil shape
optimisation problem.

Method
Mean ± Std. Err.

A.E.F. E.F.

SEM 67.665±0.434 71.410±0.434
SEMAR 66.140±1.011 71.657±0.305
ABRSS 66.359±0.721 71.638±0.311

ABRSS+OP 67.742±0.987 72.035±0.277
EFS 68.453±0.239 72.614±0.089
PMS 69.257±0.233 72.780±0.068

Best results and those statistically not different from best are highlighted in bold.

(abbreviated as E.F.). The results show that PMS provides the fastest convergence

among the six approaches. The convergence of EFS is worse than that of PMS but

still much better than those of the non-WASA approaches. The optimal probabilities

used in the effective fitness estimation have improved performance of ABRSS+OP

in this test problem. Compared to ABRSS and SEMAR, ABRSS+OP has a faster

convergence and provides better final solutions, though it is still worse than the

WASA sampling strategies.

3.5 Conclusions

When using evolutionary algorithms to search for a robust solution, estimating the

effective fitness is challenging. Storing previous evaluations in an archive and using

this information to improve the fitness estimate, the so-called archive sample approx-

imation method, has been proposed by several authors to improve the estimation

accuracy without increasing the sampling budget. The crucial part is the sampling

strategy, i.e., to decide what new solutions should be evaluated. In this chapter, we

used the Wasserstein distance metric to approximate an upper bound for the error

and proposed two Wasserstein-based sampling strategies to suggest promising sam-

pling locations. Minimising the upper bound cannot guarantee minimisation of the

actual error, however, knowing that we have no information on the fitness function

apart from previous samples, it is a promising approach. One sampling strategy con-

siders the sampling contribution from each individual’s perspective, and allocates

an equal number of evaluations to each individual. The second strategy approxi-

mates the sampling contribution for all individuals. The empirical results on various

benchmark problems demonstrate the benefit of using our new sampling strategies

and the advantage of considering the population contribution.
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Chapter 4

Efficient Rollout Algorithms for

Clinical Trial Scheduling and

Resource Allocation in Drug

Development under Uncertainty

4.1 Introduction

Research and Development (R&D) investments in new drug development have dra-

matically increased over the last few decades due to growing public healthcare de-

mands [Paul et al., 2010]. However, pharmaceutical companies are struggling in

recouping their investments due to the low R&D productivity. The average return

on R&D investments over the mid-to-large cap pharmaceutical companies dropped

from 17.4% to 11.9% during 2013− 2017 [Terry and Lesser, 2018]. No single cause

of this recession in profitability has yet been identified because the new drug devel-

opment process is influenced by a set of complex factors. For example, cycle times

have steadily increased. The pursuit of new treatments in complex disease areas

requires an additional time. Statistical studies have shown that the median interval

duration of passing all clinical tests was 5.9 years during 1999−2001 while this figure

increased to 9.1 years for the period of 2008−2012 [Kaitin and Cairns, 2003; Schuh-

macher et al., 2016]. In addition to this, innovative treatments are often associated

with low success rates. Hay et al. [2014] showed that only one of ten experimen-

tal drugs was finally approved by the regulatory authority. Not surprisingly, long

cycle times coupled with low success rates translate into high overall expenditures.

Paul et al. [2010] noted that “without a dramatic increase in productivity, today’s
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pharmaceutical industry cannot sustain sufficient innovation to replace the loss of

revenues due to patent expirations for successful products”. In this context, research

on how to improve productivity will be highly beneficial for R&D managers in the

pharmaceutical industry.

The development of new drugs involves important decisions such as clinical

trial scheduling and resource allocation. A drug’s clinical trial consists of three

stages, namely Phases I, II and III. As soon as an experimental drug passes Phase III,

the firm can submit a new drug application to the regulatory authority for a market

approval. Nevertheless, the economic value obtained from an approved drug is to be

decreased because the patent protection for innovative drugs generally lasts up to 20

years. Once a drug patent expires, a dramatic decline in product revenue may occur

because generic alternatives (i.e., a copied drug that works similarly to the brand-

name drug) may enter the market at a considerably lower price [Munos, 2009]. The

pharmaceutical companies are thus usually eager to complete all requested clinical

trials within the shortest time possible to recoup their R&D investments during the

window spanning between a drug’s commercial launch and its patent expiry. The

main challenge is the uncertainty for resource planning. If an experimental drug

fails at a particular test, then it will be withdrawn from the drug portfolio, and any

further testing will be abandoned. Therefore, R&D managers must consider the

consequence that some trial failures will seriously damage the overall profitability

of the drug pipeline.

The decision-theoretic models have attracted considerable interest from the

pharmaceutical industry because of their ability to improve the efficiency of drug

project management and to facilitate timely completion of a drug project. Related

studies mostly assume that the resource level of each trial is fixed before it starts,

and additional resources are not allowed during the trial execution, e.g., see Schmidt

and Grossmann [1996]; De Reyck and Leus [2008] and Colvin and Maravelias [2008].

Nevertheless, the new drug development is a race against time, and additional re-

sources may be required to accelerate ongoing trials and maximise product revenue

during the exclusive marketing period. For example, pharmaceutical companies may

compress the development time by hiring additional staff, operating many test sites,

or advertising medical research via social media and television commercials to at-

tract clinical trial volunteers. Although these acceleration measures request further

resources and increase overall cost, they may provide possible benefits of completing

the drug project within a shortened time span. R&D managers can gain additional

strategic flexibility by adjusting the resource level for ongoing trials to account for

cases when a drug pipeline has idle resources.
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In this study, we investigate effective drug development strategies by using

a discrete-time finite Markov decision process (MDP) model. We propose a rollout

algorithm that applies an adaptive sampling approach to assign the simulation bud-

get for candidate actions and determines the action to be taken at each state of a

decision tree. Through this sampling approach, a search tree is expanded by using

an optimistic policy for estimating possible outcomes after the selected actions are

implemented. Our contributions to the current literature in terms of modelling and

solution techniques are threefold.

• First, we consider a clinical trial scheduling and resource allocation (CTSRA)

problem, wherein the success or failure of a clinical trial is uncertain and

the revenue to be received for drug projects depends on their approval times.

We provide a stochastic dynamic programming model to formulate the CT-

SRA problem which aims to maximise the expected profit gained from drug

projects over the exclusive marketing period. We assume that a firm has a

finite amount of resources to complete drug projects, each of which comprises

three clinical trials. Each clinical trial requires a certain amount of time to

complete testing and has a specific resource requirement to ensure that the

test proceeds smoothly. The firm can apply acceleration measures to compress

the development time during the execution of a clinical trial on the ground

of future potential profits. To the best of our knowledge, this clinical trial

scheduling and resource allocation problem has not been considered in the

literature yet.

• Second, we investigate problem-specific structures of the CTSRA model and

propose an optimistic policy to guide the look-ahead search of rollout algo-

rithms in a decision tree. The optimistic policy determines the actions for

unexplored states in a rolling horizon fashion and provides an upper bound

estimation of expected cumulative reward for rollout algorithms to identify

the best action to be taken at the current state. We prove that the optimistic

policy follows a sequential consistency property, thereby indicating that the

performance of rollout algorithm is at least as good as the optimistic policy.

• Third, we introduce an adaptive sampling approach that exploits a variance re-

duction technique of common random numbers (CRN) as well as the empirical

Bernstein inequality in a statistical racing procedure to balance the exploration

and exploitation of the rollout algorithm. Specifically, the adaptive sampling

approach calculates all pairwise differences between distinct candidate actions

and applies the empirical Bernstein inequality to infer the confidence intervals
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of each pairwise difference to be a certain significance level. Then inferior

candidate actions are not re-evaluated during the simulation. This procedure

is repeated until the simulation budget is exhausted. We further tailor the

adaptive sampling strategy by developing a heuristic-based grouping rule that

classifies candidate actions into separate groups on the basis of their resource

usages. Our numerical experiments show that the adaptive sampling strategy

integrated with the heuristic-based grouping rule can improve the efficiency of

finding better actions.

The remainder of this chapter is structured as follows. In Section 4.2, we

review the related studies. Section 4.3 introduces the MDP formulation used in this

study. Section 4.4 explains the overall rollout algorithm framework. We describe

the optimistic policy in Section 4.5 and the adaptive sampling strategies in Section

4.6. In Section 4.7, we study the efficacy of the proposed methods. Section 4.8

concludes the chapter by summarising our findings.

4.2 Review of Related Literature

The new drug development problem has been broadly considered as a resource-

constrained project scheduling problem with uncertain trial outcomes and widely

studied since the early 1990s. Schmidt and Grossmann [1996] applied a mixed-

integer linear program to formulate a drug development problem with stochastic

activity durations and costs. Choi et al. [2004] developed a dynamic programming

formulation of a clinical trial scheduling problem with stochastic activity durations

and proposed several state reduction approaches to improve efficiency of the approx-

imate solution algorithm. Zapata et al. [2008] developed a simulation-optimisation

framework for a drug development problem with discrete time-resource trade-offs,

which can be seen as an extension of classical drug development problems in which

the duration of each trial depends on resource usage. The resource allocation for

on-going trials in this study cannot be adjusted, which might restrict the strategic

flexibility of R&D managers. De Reyck and Leus [2008] introduced stochastic pro-

gramming approaches in drug development with deterministic activity durations.

Verderame et al. [2010] and Christian and Cremaschi [2015] later proposed several

heuristic techniques to solve the stochastic programming models. Kouvelis et al.

[2017] considered continuous-time MDPs to address an optimal investment problem

for drug projects in Phase III clinical tests.

Among the solution methods, the rollout algorithm, which was first intro-

duced by Bertsekas et al. [1997], is a lookahead search technique used to approxi-

74



mately solve MDP models. The success of this algorithm mainly relies on creative

use of a base policy to estimate future outcomes after a candidate action has been

taken at a particular state. Therefore, the algorithm is sensitive to estimation errors

caused by the base policy. Bertsekas et al. [1997] considered deterministic MDPs

and showed that the rollout algorithm does not degrade the performance of the

base policy when this policy satisfies sequentially improving or consistency proper-

ties. Secomandi [2008] generalised these results for stochastic MDPs. These studies

also showed that the rollout algorithm is comparable to other approximate dynamic

programming approaches for addressing various real-world problems, such as the

multidimensional knapsack problem [Bertsimas and Demir, 2002], revenue manage-

ment [Bertsimas and Popescu, 2003] and transportation problem [Secomandi, 2001;

Goodson et al., 2013]. For a comprehensive review on the rollout algorithm, the

interested readers are referred to Goodson et al. [2017].

To the best of our knowledge, the sampling approaches within the rollout

algorithm have not been explored, although they are widely used to leverage sim-

ulation challenges arising from MDP solution algorithms. For instance, the Monte

Carlo tree search [Browne et al., 2012] and multi-stage adaptive sampling algorithm

[Chang et al., 2005] used bandit-based strategies to guide the growth of the search

tree toward optimal actions. Moreover, some population-based direct policy search

algorithms exploit a statistical racing procedure to improve the efficiency of identi-

fying elite actions, e.g., see Heidrich-Meisner and Igel [2009] and Busa-Fekete et al.

[2014]. Statistical racing was originally designed to address a model selection prob-

lem [Maron and Moore, 1997]. All candidate models are considered as competitors

in a race, and their performances are quantified with Hoeffding inequality-based con-

fidence intervals. During the simulation, certain candidate models performing worse

than others are eliminated from the race. The race continues until the winner has

been found. Given that Hoeffding inequality-based confidence intervals are relatively

conservative, Audibert et al. [2009] and Szepesvári [2010] suggested the empirical

Bernstein inequality for inferring a tighter confidence interval in the statistical racing

procedure. In this study, we exploit CRN and the empirical Bernstein inequality in

statistical racing to determine the best action. In particular, the proposed method

is different from the canonical statistical race considering the confidence interval for

the performance of a potential action, whereas the pairwise differences of all action

pairs are used to eliminate the inferior actions in our approach.
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4.3 Problem Statement

In this section, we first introduce the necessary notations, assumptions and sys-

tem dynamics, and then move on to the dynamic programming formulation of the

CTSRA problem.

4.3.1 Notation and Problem Description

Table 4.1: Description of notation.

Sets/indicies

T time periods, indexed by t ∈ T = {1, . . . , T}
I drug projects, indexed by i ∈ I = {1, . . . , I}
J development stages,

indexed by j ∈ J = {1 (Phase I), 2 (Phase II), 3 (Phase III)}
K resource types, indexed by k ∈ K = {1, . . . ,K}
L project acceleration measures, indexed by ` ∈ L = {1, . . . , L}

Uncertainties

ξi,j ∈ {0, 1} 1 if task (i, j) is successfully completed
pi,j success probability of task (i, j)

Model Parameters

hi,j,k amount of resources of type k to conduct task (i, j)

ĥ`i,j,k amount of resources of type k to use acceleration l for task (i, j)
%i,j time required to complete task (i, j) without using any acceleration

%̂`i,j processing time reduction if measure l is used for one time period for task (i, j)
ci,j cost of conducting task (i, j)

ĉ`i,j cost of acceleration measure l is used for task (i, j)
Γi maximum revenue if drug project i gets the market approval
γpi loss due to the shortened patent life for experimental drug i

γdi loss due to the reduced market shares for experimental drug i

Actions

xi,j,t ∈ {0, 1} 1 if task (i, j) starts at time t

y`i,j,t ∈ {0, 1} 1 if acceleration measure ` is used for task (i, j) at time t

States/auxiliary
variables

rk,t amount of resources of type k that is available at time t
φi,j,t remaining time to complete the task (i, j) at time t
di,j,t ∈ {0, 1} 1 if task (i, j) is ready to be performed at time t
ei,j,t ∈ {0, 1} 1 if task (i, j) is processing at time t
1i,j ∈ {0, 1} 1 if task (i, j) is completed at the current time period

Table 4.1 summarises the notation used for the formulation of the CTSRA

problem. We assume that a firm has a set of experimental drugs (indexed as i ∈ I)

that must be tested in clinical trials over a finite planning horizon of T periods.

In our model, T denotes the drug patent expiration time (usually 20 years). The

76



Commercial 
launch

Phase I

Clinical Trials

Failure Failure Failure

Pass Pass

Pass

Experimental drugs

Phase II Phase III

Stop trial and exclude it from drug portfolio

Figure 4.1: An illustration of the clinical trials process.

drug development process mainly involves three stages, namely, Phases I, II, and

III clinical tests that are denoted as j = 1, 2 and 3 respectively. A task (i, j) refers

to the clinical trial j of experimental drug i. For task (i, j), the firm is expected

to take %i,j time periods to prove the safety and efficacy of experimental drug if no

acceleration measure is used. The possible outcome of task (i, j) can be either a

success or a failure. If an experimental drug fails at any phase of its trial, then it

will be removed from the drug portfolio, and testing the remaining phases will be

abandoned. However, as long as the experimental drugs pass Phase III, the firm can

submit the new drug application to regulatory agencies for market approval. The

entire process of drug development is illustrated in Figure 4.1.

A set of indivisible and reusable resources, indexed as k ∈ K, is initially

given, which might be the research staff, experimental devices, and laboratories.

The resources are shared among development tasks, each of which has specific re-

quirements hi,j,k for resource type k ∈ K. The development cost ci,j needs to be

paid when task (i, j) is conducted. Moreover, several acceleration measures (indexed

with ` ∈ L) can be utilised with additional cost ĉ`i,j to compress the cycle time for

task (i, j). These acceleration measures can be increasing staff number, operating

additional test sites, increasing advertising expenditures, or offering high-value mon-

etary incentives. We assume that the processing time will decrease a certain amount

of time %̂`i,j if acceleration measure ` is used for task (i, j).

At each period, we can start processing available tasks of which the prede-

cessor tasks have been successfully completed and use acceleration measures for the

tasks in progress. Let xi,j,t be a binary variable representing whether task (i, j)

is conducted at time t, and y`i,j,t denote a binary variable that represents whether
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acceleration measure l is used for task (i, j) at time t. Note that the scheduling

action xi,j,t is irrevocable and remains in force until a clinical test is completed; and

the action y`i,j,t lasts for a single period. For the sake of readability, we write the

aforementioned action variables at time t in a two-tuple at = (Xt, Yt) where Xt and

Yt respectively denote the sets of xi,j,t and y`i,j,t for i ∈ I, j ∈ J and ` ∈ L.

States of the system comprise the status of resources as well as tasks. Let

rk,t denote the amount of type k resource that is available at time t, and di,j,t

be a binary variable that takes 0 if task (i, j) is not available at time t, and 1

otherwise. In particular, di,1,1 = 1, i ∈ I represents that the Phase I clinical test of

all drug projects is ready to be performed at the beginning of the planning horizon

t = 1. Moreover, we consider two auxiliary variables in order to describe the system

dynamics. Let binary variable ei,j,t represent whether task (i, j) is in progress at

time t and φi,j,t denote the remaining time to complete task (i, j) at time t. At the

initial stage t = 1, we have φi,j,1 = %i,j for i ∈ I and j ∈ J . We define a state St of

the system as four-tuple:

St = (Dt, Et,Rt,Φt)

whereDt = {di,j,t| i ∈ I, j ∈ J }, Et = {ei,j,t| i ∈ I, j ∈ J },Rt = {rk,t| k ∈ K} and

Φt = {φi,j,t| i ∈ I, j ∈ J }. Moreover, ξ is a vector involving all possible trial out-

comes, where ξi,j is a binary variable that takes 1 if task (i, j) is successful and 0,

otherwise. We assume that the outcome ξi,j of task (i, j) follows a Bernoulli dis-

tribution with success probability pi,j . The state St can be recursively updated as

follows:

f(St, at, ξ)
.
=

{
(Dt+1, Et+1,Rt+1,Φt+1)| di,1,t+1 = di,1,t − xi,1,t, ∀i ∈ I, (4.1)

di,j,t+1 = ξi,j−1 × 1i,j−1 + (di,j,t − xi,j,t)× (1− 1i,j−1), ∀i ∈ I, j ∈ {2, 3}, (4.2)

ei,j,t+1 = ei,j,t + xi,j,t − 1i,j , ∀i ∈ I, j ∈ J , (4.3)

rk,t+1 = rk,t +
∑
i∈I

∑
j∈J

(1i,j − xi,j,t)× hi,j,k, ∀k ∈ K, (4.4)

φi,j,t+1 = max{0, φi,j,t − (xi,j,t + ei,j,t +
∑
`∈L

y`i,j,t × %̂`i,j)}, ∀i ∈ I, j ∈ J
}
, (4.5)

where 1i,j is an indicator function that takes a value of 1 if φi,j,t > 0 and φi,j,t+1 ≤ 0.

Equations (4.1) and (4.2) express that the successive tasks at time t+1 become per-

formable only when the predecessor tasks have been successfully completed. Equa-

tion (4.3) implies that the state of a clinical trial will be marked as “in progress” at
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the next period if the trial has started, but not completed yet. The number of avail-

able resources is then updated as in Equation (4.4). At the next period, resources

of the completed and on-going tasks will be recovered and deducted, respectively.

The auxiliary variables Φt are updated as in Equation (4.5).

4.3.2 Dynamic Programming Formulation

On the basis of state variables, the feasible action space At at time t can be defined

as

At .=
{

(Xt, Yt)| xi,j,t ≤ di,j,t, ∀i ∈ I, j ∈ J , (4.6)

y`i,j,t ≤ xi,j,t + ei,j,t, ∀i ∈ I, j ∈ J , ` ∈ L, (4.7)∑
i∈I

∑
j∈J

(xi,j,t × hi,j,k +
∑
`∈L

y`i,j,t × ĥ`i,j,k) ≤ rk,t, ∀k ∈ K
}
. (4.8)

Constraint (4.6) refers to the possible action xi,j,t for task (i, j) at time t to be

selected from the performable tasks. Constraint (4.7) expresses that acceleration

measures can be only implemented for any ongoing clinical trials. The regulation

measure in which all possible resource allocation plans do not exceed the capacity

is presented in Constraint (4.8).

Let Rvi,t be the projected revenue to be received from drug project i if it

already passed the Phase III clinical trial. As suggested by Colvin and Maravelias

[2008], the projected revenue Rvi,t needs to be discounted due to the shortened

patent life and reduced market shares. Let γpi and γdi respectively denote the loss

per period resulting from shortened patent life and reduced market shares for drug

project i. The projected revenue Rvi,t is defined as

Rvi,t = Γi − γpi × t− γdi ×max{0, t−
∑
j∈J

%i,j} (4.9)

where Γi denotes the maximum projected revenue when drug i is approved. Note

that the penalty γpi immediately occurs at the beginning of planning horizon, while

the penalty γdi only happens if the actual completion time is greater than the ear-

liest completion time. Early completions can lead to comparatively high projected

revenues, and also propel the completion of the drug development process to the

earliest time possible. Given a state St, the reward function can be defined in terms
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of projected revenues and expenses after an action at ∈ At has been undertaken:

R (St, at, ξ) .
= total projected revenues - development costs

=
∑
i∈I

[
Rvi,t × 1i,3 × ξi,3 −

∑
j∈J

(ci,j × xi,j,t +
∑
`∈L

y`i,j,t × ĉ`i,j)
]
.

(4.10)

The optimal action at state St is obtained by solving the following Bellman’s equa-

tion:

Vt(St) = max
at∈At

E

{
R(St, at, ξ) + Vt+1(f(St, at, ξ))

}
(4.11)

where Vt(St) denotes the expected cumulative reward from state St until the terminal

state to be satisfied.

Bellman’s equation (4.11) is difficult to solve using analytical solution meth-

ods because the reward-to-go function does not have a compact representation. The

computational difficulty of finding an optimal policy grows exponentially as the

number of possible state increases. To illustrate such challenge, let us consider an

example of a no-possible delay case where we have 5 drug projects. There are several

possible ways of assigning resources to each clinical trial. If there exists 10 possible

processing times for each task given various resource allocation strategies, then we

have up to (410)5 states. If the simplification assumption is abandoned, then the

number of possible states obviously increases further.

4.4 The Rollout Algorithm

The rollout algorithm is a look-ahead search method to approximately solve Bell-

man’s equation (4.11). Let us consider the rollout algorithm applied on the state

St. The search process relies on a decision tree whose structure is illustrated in Fig-

ure 4.2. The top layer of the decision tree is root node St, which can be specified as a

non-terminal state. At root node St, several candidate actions may satisfy resource

constraints. After a candidate action at ∈ At has been performed, the system state

is represented as a child node St+1 = f(St, at,W ) at the next period. Afterwards,

the rollout algorithm utilises a base policy to guide movement at the child node.

The base policy can be comprised of either a heuristic rule, a mathematical program

or a search method.

Consider that child node St+1 has a set of drug projects Ĩ ⊆ I that have not

failed in any clinical tests in the past. The awaiting tests of drug i ∈ Ĩ are denoted

as J̃i = {j′i ≤ j ≤ 3} where j′i is the current development stage of drug project i. Let
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Figure 4.2: An illustration of the decision tree structure.

Π denote a base policy that provides an action δΠ(Sτ ) at child node Sτ for τ ≥ t+ 1.

By using the base policy Π, one possible trajectory after taking action at ∈ At at

root node St can be written as follows:{
(St,St+1, . . . ,ST )

∣∣ St+1 ∈ f(St, at, ξ̂), . . . ,ST ∈ f(ST−1, δ
Π(ST−1), ξ̂)

}
. (4.12)

where ξ̂ ≡ (ξ̂i,j)i∈Ĩ,j∈J̃i is a particular sample of random task outcomes ξ. We can

employ the Markovian property to compute the cumulative reward ZΠ(St, at, ξ̂) that

is received on the abovementioned trajectory:

ZΠ(St, at, ξ̂) = R(St, at, ξ̂) +
T∑

τ=t+1

R(Sτ , δΠ(Sτ ), ξ̂). (4.13)

By generating M possible trajectories {ξ̂1, ξ̂2, . . . , ξ̂M}, the reward-to-go function

V (St) in (4.11) can be approximated by

Vt(St) = max
at∈At

E

{
R(St, at, ξ̂) + Vt+1(f(St, at, ξ̂))

}

≈ max
at∈At

1

M

M∑
m=1

{
R(St, at, ξ̂m) +

T∑
τ=t+1

R(Sτ , δΠ(Sτ ), ξ̂m)

}

≈ max
at∈At

1

M

M∑
m=1

{
ZΠ(St, at, ξ̂m)

}
.

(4.14)
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We can obtain a rollout decision rule at the current root node by solving the approx-

imate reward-to-go function. The running time complexity of the rollout algorithm

is O(M × |At|) where |At| denotes the size of action feasibility set at the root node

St. If the rollout algorithm is applied to each possible state of the system, then we

obtain a so-called rollout policy ΠR to nearly solve the CTSRA problem.

4.5 The Optimistic Policy

In this section, we present a base policy called “optimistic policy” to guide the moves

of the rollout algorithm at the child nodes. The optimistic policy (denoted as ΠO)

is based on the rolling horizon optimisation framework (see Sethi and Sorger [1991]

and Chand et al. [2002]), which replaces the uncertain outcome of drug projects with

their sample-based approximations in a mathematical programming model and pe-

riodically updates the model formulation as the system state evolves. Moreover,

we adopt the following assumption for reducing the computational difficulty of ob-

taining an optimistic policy. Suppose that the search process remains at the child

node St+1. We ignore the resource capacity constraints at the lower-layer nodes

Sτ for τ > t + 1, whilst preserving the capacity constraint for the child node St+1.

In such a way, we obtain an upper bound estimation for the expected cumulative

reward after taking a particular action at the child node St+1 because the delay

due to resource shortage for any drug project is not taken into account. Subse-

quently, Proposition 4.1 describes the formulation of the optimistic policy based on

the rolling horizon framework.

Proposition 4.1. For task (i, j), where i ∈ Ĩ and j ∈ J̃i, let gi,j describe the corre-

sponding time periods to complete this task, and ĝli,j denotes time periods when the

acceleration measure l is used for this task. In addition, let R̃i be the expected profit

of drug project i for i ∈ Ĩ if it passes the Phase III clinical test. The corresponding

development cost associated with drug project i is denoted by C̃i,j for j ∈ J̃i. The

optimistic policy produces an action δΠ(St+1) = {(xi,j′i,t+1, y
`
i,j′i,t+1)|i ∈ Ĩ, ` ∈ L} for
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child node St+1 by solving the following linear mixed-integer programming model:

max
gi,j ,ĝ

`
i,j ,C̃i,j

xi,j′
i
,t+1,y

`
i,j′
i
,t+1

∑
i∈Ĩ
R̃i =



[
Rvi,t+1+

∑
j∈J̃i

gi,j −
∑
j∈J̃i

C̃i,j
]
×
∏
j∈J̃i

pi,j−∑
j∈J̃i

C̃i,j × (1− pi,3)×
∏

j∈{1,2}
pi,j−∑

j∈{1,2}
C̃i,j × (1− pi,2)× pi,j′ − C̃i,1 × (1− pi,1), if j′i = 1[

Rvi,t+1+
∑
j∈J̃i

gi,j −
∑
j∈J̃i

C̃i,j
]
×
∏
j∈J̃i

pi,j−∑
j∈J̃i

C̃i,j × (1− pi,3)× pi,2 − C̃i,2 × (1− pi,2), if j′i = 2[
Rvi,t+1+gi,3 − C̃i,3

]
× pi,3 − C̃i,3 × (1− pi,3), if j′i = 3

(4.15)

s.t. (Development Times)

gi,j′i ≥ φi,j′i,t+1 − xi,j′i,t+1 −
∑
`∈L

%̂`i,j′i
× (y`i,j′i,t+1 + ĝ`i,j′i

), ∀i ∈ Ĩ (4.16)

gi,j ≥ %i,j −
∑
`∈L

%̂`i,j′ × ĝ`i,j , ∀i ∈ Ĩ, j ∈ J̃i\{j′i} (4.17)

(Development Costs)

C̃i,j′i ≥ ci,j′i × di,j′i,t+1 +
∑
`∈L

ĉ`i,j′i
× (ĝ`i,j′i

+ y`i,j′i,t+1), ∀i ∈ Ĩ (4.18)

C̃i,j ≥ ci,j +
∑
`∈L

ĉ`i,j× ĝ`i,j , ∀i ∈ Ĩ, j ∈ J̃i\{j′i} (4.19)

ĝ`i,j ∈ N, ∀i ∈ Ĩ, j ∈ J̃i, ` ∈ L; gi,j ∈ N, C̃i,j ∈ R, ∀i ∈ Ĩ, j ∈ J̃i

(xi,j′i,t+1, y
`
i,j′i,t+1) ∈ At+1, ∀i ∈ Ĩ, ` ∈ L

Proof. Consider that optimistic decision rule is applied to the child node St+1.

Our goal is to identify the actions xi,j′i,t+1 and yi,j′i,t+1 should be taken at this node.

Following the notations used in Section 4.2, we first start deriving the objective

function. For drug project i ∈ Ĩ at time t + 1, the completion time of Phase III

clinical test can be stated as

t+ 1 +
∑
j∈J̃i

gi,j .
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Failure Failure

Phase II

Failure

Phase III
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pi,1 ⇥ pi,2
<latexit sha1_base64="cb5dgiR1vNpxhVyFuf3NaODKodw=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWARXEhJiqArKbhxWcE+oA1hMp22QyeTMHMjlJiFv+LGhSJu/Q13/o3TNAttPTBw7jn3cu+cIBZcg+N8W6WV1bX1jfJmZWt7Z3fP3j9o6yhRlLVoJCLVDYhmgkvWAg6CdWPFSBgI1gkmNzO/88CU5pG8h2nMvJCMJB9ySsBIvn0U+yk/dzPcBx4yjfOynvl21ak5OfAycQtSRQWavv3VH0Q0CZkEKojWPdeJwUuJAk4Fyyr9RLOY0AkZsZ6hkphlXprfn+FTowzwMFLmScC5+nsiJaHW0zAwnSGBsV70ZuJ/Xi+B4ZWXchknwCSdLxomAkOEZ2HgAVeMgpgaQqji5lZMx0QRCiayignBXfzyMmnXa65Tc+8uqo3rIo4yOkYn6Ay56BI10C1qohai6BE9o1f0Zj1ZL9a79TFvLVnFzCH6A+vzB+kQlVw=</latexit><latexit sha1_base64="cb5dgiR1vNpxhVyFuf3NaODKodw=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWARXEhJiqArKbhxWcE+oA1hMp22QyeTMHMjlJiFv+LGhSJu/Q13/o3TNAttPTBw7jn3cu+cIBZcg+N8W6WV1bX1jfJmZWt7Z3fP3j9o6yhRlLVoJCLVDYhmgkvWAg6CdWPFSBgI1gkmNzO/88CU5pG8h2nMvJCMJB9ySsBIvn0U+yk/dzPcBx4yjfOynvl21ak5OfAycQtSRQWavv3VH0Q0CZkEKojWPdeJwUuJAk4Fyyr9RLOY0AkZsZ6hkphlXprfn+FTowzwMFLmScC5+nsiJaHW0zAwnSGBsV70ZuJ/Xi+B4ZWXchknwCSdLxomAkOEZ2HgAVeMgpgaQqji5lZMx0QRCiayignBXfzyMmnXa65Tc+8uqo3rIo4yOkYn6Ay56BI10C1qohai6BE9o1f0Zj1ZL9a79TFvLVnFzCH6A+vzB+kQlVw=</latexit><latexit sha1_base64="cb5dgiR1vNpxhVyFuf3NaODKodw=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWARXEhJiqArKbhxWcE+oA1hMp22QyeTMHMjlJiFv+LGhSJu/Q13/o3TNAttPTBw7jn3cu+cIBZcg+N8W6WV1bX1jfJmZWt7Z3fP3j9o6yhRlLVoJCLVDYhmgkvWAg6CdWPFSBgI1gkmNzO/88CU5pG8h2nMvJCMJB9ySsBIvn0U+yk/dzPcBx4yjfOynvl21ak5OfAycQtSRQWavv3VH0Q0CZkEKojWPdeJwUuJAk4Fyyr9RLOY0AkZsZ6hkphlXprfn+FTowzwMFLmScC5+nsiJaHW0zAwnSGBsV70ZuJ/Xi+B4ZWXchknwCSdLxomAkOEZ2HgAVeMgpgaQqji5lZMx0QRCiayignBXfzyMmnXa65Tc+8uqo3rIo4yOkYn6Ay56BI10C1qohai6BE9o1f0Zj1ZL9a79TFvLVnFzCH6A+vzB+kQlVw=</latexit><latexit sha1_base64="cb5dgiR1vNpxhVyFuf3NaODKodw=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWARXEhJiqArKbhxWcE+oA1hMp22QyeTMHMjlJiFv+LGhSJu/Q13/o3TNAttPTBw7jn3cu+cIBZcg+N8W6WV1bX1jfJmZWt7Z3fP3j9o6yhRlLVoJCLVDYhmgkvWAg6CdWPFSBgI1gkmNzO/88CU5pG8h2nMvJCMJB9ySsBIvn0U+yk/dzPcBx4yjfOynvl21ak5OfAycQtSRQWavv3VH0Q0CZkEKojWPdeJwUuJAk4Fyyr9RLOY0AkZsZ6hkphlXprfn+FTowzwMFLmScC5+nsiJaHW0zAwnSGBsV70ZuJ/Xi+B4ZWXchknwCSdLxomAkOEZ2HgAVeMgpgaQqji5lZMx0QRCiayignBXfzyMmnXa65Tc+8uqo3rIo4yOkYn6Ay56BI10C1qohai6BE9o1f0Zj1ZL9a79TFvLVnFzCH6A+vzB+kQlVw=</latexit>

pi,1 ⇥ pi,2 ⇥ pi,3
<latexit sha1_base64="c/96B7iKjzqhsBsNkCetBr7l3Kc=">AAACDnicbVDLSsNAFL2pr1pfUZduBkvBhZSkCrqSghuXFewD2hAm00k7dPJgZiKUkC9w46+4caGIW9fu/BunaRa29cDAuefcy517vJgzqSzrxyitrW9sbpW3Kzu7e/sH5uFRR0aJILRNIh6Jnocl5SykbcUUp71YUBx4nHa9ye3M7z5SIVkUPqhpTJ0Aj0LmM4KVllyzFrspO7czNFAsoBLlZWOxvMhcs2rVrRxoldgFqUKBlmt+D4YRSQIaKsKxlH3bipWTYqEY4TSrDBJJY0wmeET7moZYL3PS/JwM1bQyRH4k9AsVytW/EykOpJwGnu4MsBrLZW8m/uf1E+VfOykL40TRkMwX+QlHKkKzbNCQCUoUn2qCiWD6r4iMscBE6QQrOgR7+eRV0mnUbatu319WmzdFHGU4gVM4AxuuoAl30II2EHiCF3iDd+PZeDU+jM95a8koZo5hAcbXL7tomz8=</latexit><latexit sha1_base64="c/96B7iKjzqhsBsNkCetBr7l3Kc=">AAACDnicbVDLSsNAFL2pr1pfUZduBkvBhZSkCrqSghuXFewD2hAm00k7dPJgZiKUkC9w46+4caGIW9fu/BunaRa29cDAuefcy517vJgzqSzrxyitrW9sbpW3Kzu7e/sH5uFRR0aJILRNIh6Jnocl5SykbcUUp71YUBx4nHa9ye3M7z5SIVkUPqhpTJ0Aj0LmM4KVllyzFrspO7czNFAsoBLlZWOxvMhcs2rVrRxoldgFqUKBlmt+D4YRSQIaKsKxlH3bipWTYqEY4TSrDBJJY0wmeET7moZYL3PS/JwM1bQyRH4k9AsVytW/EykOpJwGnu4MsBrLZW8m/uf1E+VfOykL40TRkMwX+QlHKkKzbNCQCUoUn2qCiWD6r4iMscBE6QQrOgR7+eRV0mnUbatu319WmzdFHGU4gVM4AxuuoAl30II2EHiCF3iDd+PZeDU+jM95a8koZo5hAcbXL7tomz8=</latexit><latexit sha1_base64="c/96B7iKjzqhsBsNkCetBr7l3Kc=">AAACDnicbVDLSsNAFL2pr1pfUZduBkvBhZSkCrqSghuXFewD2hAm00k7dPJgZiKUkC9w46+4caGIW9fu/BunaRa29cDAuefcy517vJgzqSzrxyitrW9sbpW3Kzu7e/sH5uFRR0aJILRNIh6Jnocl5SykbcUUp71YUBx4nHa9ye3M7z5SIVkUPqhpTJ0Aj0LmM4KVllyzFrspO7czNFAsoBLlZWOxvMhcs2rVrRxoldgFqUKBlmt+D4YRSQIaKsKxlH3bipWTYqEY4TSrDBJJY0wmeET7moZYL3PS/JwM1bQyRH4k9AsVytW/EykOpJwGnu4MsBrLZW8m/uf1E+VfOykL40TRkMwX+QlHKkKzbNCQCUoUn2qCiWD6r4iMscBE6QQrOgR7+eRV0mnUbatu319WmzdFHGU4gVM4AxuuoAl30II2EHiCF3iDd+PZeDU+jM95a8koZo5hAcbXL7tomz8=</latexit><latexit sha1_base64="c/96B7iKjzqhsBsNkCetBr7l3Kc=">AAACDnicbVDLSsNAFL2pr1pfUZduBkvBhZSkCrqSghuXFewD2hAm00k7dPJgZiKUkC9w46+4caGIW9fu/BunaRa29cDAuefcy517vJgzqSzrxyitrW9sbpW3Kzu7e/sH5uFRR0aJILRNIh6Jnocl5SykbcUUp71YUBx4nHa9ye3M7z5SIVkUPqhpTJ0Aj0LmM4KVllyzFrspO7czNFAsoBLlZWOxvMhcs2rVrRxoldgFqUKBlmt+D4YRSQIaKsKxlH3bipWTYqEY4TSrDBJJY0wmeET7moZYL3PS/JwM1bQyRH4k9AsVytW/EykOpJwGnu4MsBrLZW8m/uf1E+VfOykL40TRkMwX+QlHKkKzbNCQCUoUn2qCiWD6r4iMscBE6QQrOgR7+eRV0mnUbatu319WmzdFHGU4gVM4AxuuoAl30II2EHiCF3iDd+PZeDU+jM95a8koZo5hAcbXL7tomz8=</latexit>

pi,1 ⇥ pi,2 ⇥ (1� pi,3)
<latexit sha1_base64="k22pNndAf4Go10r/iSH9GAlyKqM=">AAACEnicbVDLSgMxFM3UV62vUZdugkVoQcukCrqSghuXFewD2mHIpJk2NJMZkoxQhn6DG3/FjQtF3Lpy59+YTgfR6oHAuefcy809fsyZ0o7zaRWWlldW14rrpY3Nre0de3evraJEEtoiEY9k18eKciZoSzPNaTeWFIc+px1/fDXzO3dUKhaJWz2JqRvioWABI1gbybOrsZeyYzSFfc1CqmBW1r/LCjrJlNNp1bPLTs3JAP8SlJMyyNH07I/+ICJJSIUmHCvVQ06s3RRLzQin01I/UTTGZIyHtGeowGahm2YnTeGRUQYwiKR5QsNM/TmR4lCpSeibzhDrkVr0ZuJ/Xi/RwYWbMhEnmgoyXxQkHOoIzvKBAyYp0XxiCCaSmb9CMsISE21SLJkQ0OLJf0m7XkNODd2clRuXeRxFcAAOQQUgcA4a4Bo0QQsQcA8ewTN4sR6sJ+vVepu3Fqx8Zh/8gvX+BYuWnBY=</latexit><latexit sha1_base64="k22pNndAf4Go10r/iSH9GAlyKqM=">AAACEnicbVDLSgMxFM3UV62vUZdugkVoQcukCrqSghuXFewD2mHIpJk2NJMZkoxQhn6DG3/FjQtF3Lpy59+YTgfR6oHAuefcy809fsyZ0o7zaRWWlldW14rrpY3Nre0de3evraJEEtoiEY9k18eKciZoSzPNaTeWFIc+px1/fDXzO3dUKhaJWz2JqRvioWABI1gbybOrsZeyYzSFfc1CqmBW1r/LCjrJlNNp1bPLTs3JAP8SlJMyyNH07I/+ICJJSIUmHCvVQ06s3RRLzQin01I/UTTGZIyHtGeowGahm2YnTeGRUQYwiKR5QsNM/TmR4lCpSeibzhDrkVr0ZuJ/Xi/RwYWbMhEnmgoyXxQkHOoIzvKBAyYp0XxiCCaSmb9CMsISE21SLJkQ0OLJf0m7XkNODd2clRuXeRxFcAAOQQUgcA4a4Bo0QQsQcA8ewTN4sR6sJ+vVepu3Fqx8Zh/8gvX+BYuWnBY=</latexit><latexit sha1_base64="k22pNndAf4Go10r/iSH9GAlyKqM=">AAACEnicbVDLSgMxFM3UV62vUZdugkVoQcukCrqSghuXFewD2mHIpJk2NJMZkoxQhn6DG3/FjQtF3Lpy59+YTgfR6oHAuefcy809fsyZ0o7zaRWWlldW14rrpY3Nre0de3evraJEEtoiEY9k18eKciZoSzPNaTeWFIc+px1/fDXzO3dUKhaJWz2JqRvioWABI1gbybOrsZeyYzSFfc1CqmBW1r/LCjrJlNNp1bPLTs3JAP8SlJMyyNH07I/+ICJJSIUmHCvVQ06s3RRLzQin01I/UTTGZIyHtGeowGahm2YnTeGRUQYwiKR5QsNM/TmR4lCpSeibzhDrkVr0ZuJ/Xi/RwYWbMhEnmgoyXxQkHOoIzvKBAyYp0XxiCCaSmb9CMsISE21SLJkQ0OLJf0m7XkNODd2clRuXeRxFcAAOQQUgcA4a4Bo0QQsQcA8ewTN4sR6sJ+vVepu3Fqx8Zh/8gvX+BYuWnBY=</latexit><latexit sha1_base64="k22pNndAf4Go10r/iSH9GAlyKqM=">AAACEnicbVDLSgMxFM3UV62vUZdugkVoQcukCrqSghuXFewD2mHIpJk2NJMZkoxQhn6DG3/FjQtF3Lpy59+YTgfR6oHAuefcy809fsyZ0o7zaRWWlldW14rrpY3Nre0de3evraJEEtoiEY9k18eKciZoSzPNaTeWFIc+px1/fDXzO3dUKhaJWz2JqRvioWABI1gbybOrsZeyYzSFfc1CqmBW1r/LCjrJlNNp1bPLTs3JAP8SlJMyyNH07I/+ICJJSIUmHCvVQ06s3RRLzQin01I/UTTGZIyHtGeowGahm2YnTeGRUQYwiKR5QsNM/TmR4lCpSeibzhDrkVr0ZuJ/Xi/RwYWbMhEnmgoyXxQkHOoIzvKBAyYp0XxiCCaSmb9CMsISE21SLJkQ0OLJf0m7XkNODd2clRuXeRxFcAAOQQUgcA4a4Bo0QQsQcA8ewTN4sR6sJ+vVepu3Fqx8Zh/8gvX+BYuWnBY=</latexit>

Figure 4.3: Probability of observing a particular trajectory for the single drug prod-
uct given decision rules at the lower layer child nodes.

The actual duration gi,j not only depends on development time %i,j , but also on

how many time periods the acceleration measure %̂`i,j′ is applied in the planning

process. Note that, for task (i, j′i), the development time is not only affected by

actions xi,j′i,t+1 and yli,j′i,t+1 at child node St+1 but also the time periods of using

acceleration measure ĝli,j′i
at lower-layer nodes Sτ for τ > t + 1. Constraints (4.16)

and (4.17) describe the calculation of actual duration gi,j in the optimistic policy.

As shown in (4.15), the optimistic policy aims to maximise the expected

profit over all possible task outcomes. The probability of various development out-

comes is shown in Figure 4.3. When this drug project remains at the second or third

clinical test, we can replace pi,1 and/or pi,2 by 1. Only in case of passing all clinical

tests, firm will receive revenue Rvi,t+1+
∑
j∈J̃i

gi,j of which calculation process can

be found in (4.9). The development cost depends on clinical tests and acceleration

measures. For task (i, j′i), the development cost C̃i,j′i can be calculated as in the

right hand side of Constraint (4.18). The first term implies the cost of performing

task (i, j′i) if it is ready to start. The second term is related to the total cost of using

acceleration measures. On the other hand, the development cost C̃i,j for j ∈ J̃i\{j′i}
that is not influenced by actions at node St+1 can be computed as in the right hand

side of Constraint (4.19). �

The complexity of solving the linear mixed-integer programming model depends

on the current development stage of each project. At the worst-case scenario,

all drug projects remain at the Phase I trial. In this case, the above model has

I × (J ×L+ 2× J + 1 +L) decision variables and I × (1 +L+ 2× J + J ×L) +K

linear constraints.

Next, we introduce the definition of a sequentially consistent policy, which

84



plays the key role in establishing rollout improvement property.

Definition 4.1: Sequentially Consistent Policy [Bertsekas, 2005]. A base

policy is sequentially consistent if this policy produces a partial trajectory

{
St,St+1,St+2, . . . ,ST

}
from state St, it also generates the same subsequent states

{
St+1,St+2, . . . ,ST

}
starting from state St+1.

Next, we investigate the performance improvement property when the optimistic

policy is used with the rollout algorithm.

Proposition 4.2. Suppose that the rollout policy ΠR is constructed by using

the rollout algorithm with the optimistic policy ΠO. The following inequality holds,

for any non-terminal states,

V ΠR(St) ≥ V ΠO(St), ∀t ∈ T . (4.20)

Proof. We prove that the inequality (4.20) holds by induction. Assume that

ZΠO
t (St, at, ξ̂m) is one possible trajectory generated by using the optimistic policy

ΠO. The optimistic policy is computed by solving a rolling horizon optimisation

model. The model parameters are only related to state variables. Therefore, it is

sufficient to say that the optimistic policy satisfies the property of sequential con-

sistency. As shown in (4.14), the reward-to-go of the rollout policy ΠR at the root

node St can be computed as follows:

V ΠR(St) =

max
at∈At

1

M

M∑
m=1

{
R(St, at, ξ̂m) +

T∑
τ=t+1

R(Sτ , δΠ(Sτ ), ξ̂m)|Sτ ∈ f(Sτ−1, δ
Π(Sτ−1), ξ̂m)

}

The actions produced by using the optimistic policy is one element of the feasible

action set on the root node St. Because the trajectories constructed by using the
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optimistic policy are sequentially consistent, the following inequality holds,

V ΠR(St)

≥ 1

M

M∑
m=1

{
R(St, δΠ(St), ξ̂m) +

T∑
τ=t+1

R(Sτ , δΠ(Sτ ), ξ̂m)|Sτ ∈ f(Sτ−1, δ
Π(Sτ−1), ξ̂m)

}
= V Π(St).�

Proposition 4.2 shows that the reward-to-go function computed by using the opti-

mistic policy ΠO and averaging all possible cumulative rewards received from state

St to any terminal state is as good as or better than that of purely using optimistic

policy ΠO.

To obtain the rollout policy ΠR, we need to identify the best action at each

state by repeatedly using the optimistic policy for all possible actions several times

to estimate and compare their expected performances over various task outcomes.

Finding a good action used for the root node remains challenging although the

computational effort is significantly reduced by adopting the resource constraint

relaxation. This motivates the use of adaptive sampling strategies in the rollout

algorithm to reduce the required number of evaluations.

4.6 Adaptive Sampling Strategies

In this section, we first describe the benefit of using CRN in the simulation proce-

dure and then introduce two adaptive sampling strategies that employ the variance

reduction technique of CRN and the empirical Bernstein inequalities in a statistical

racing procedure.

4.6.1 Variance Reduction using CRN

Suppose that performances of two candidate actions a1,t and a2,t need to be differen-

tiated at the root node St. Let Ξ1 = {ξ̃1,1, ξ̃1,2, . . . , ξ̃1,M} and Ξ2 = {ξ̃2,1, ξ̃2,2, . . . , ξ̃2,M}
denote the samples of uncertain task outcomes that have been explored for actions

a1,t and a2,t, respectively. To compare their performances, we can estimate the

sample mean µ̂1,2 as performance difference between a1,t and a2,t:

µ̂1,2 =
1

M

M∑
m=1

[
ZΠO(St, a1,t, ξ̃

1,m)−ZΠO(St, a2,t, ξ̃
2,m)

]
. (4.21)
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Let Var(a1,t) and Var(a2,t) denote variances of the cumulative rewards of actions

a1,t and a2,t, respectively. The covariance between two groups of cumulative rewards

is denoted as Cov(a1,t, a2,t). Sample variance of estimator µ̂1,2 can be computed as

Var1,2 = Var1 + Var2 − 2× Cov1,2. (4.22)

If Ξ1 and Ξ2 are two independent samples, then Cov(a1,t, a2,t) becomes zero. On

the other hand, if CRN is used for sample generation (i.e. Ξ1 = Ξ2), then the

covariance term is likely to be positive [Law et al., 1991]. And thus the variance of

the differences is smaller than with independent samples, making it easier to detect

significant differences.

4.6.2 New Sampling Strategy

We now present a CRN-based sampling strategy (denoted as CB) that iteratively

eliminates inferior actions from simulation by comparing the Bernstein-based con-

fidence interval for the sample mean of differences between two distinct actions.

Algorithm 4.1 describes the overall procedure of integrating CB within the rollout

algorithm. The main steps of the CB strategy are explained as follows.

Consider a set of surviving candidate actions A ⊆ At in the statistical racing.

For action an,t ∈ A, let Ξ denote a set of uncertain task outcomes (samples) explored

in the previous simulation stages. Since CB applies the setting of common random

number, surviving candidate actions should have explored the exactly same sam-

ples. Let Z = {ZΠO(St, an,t, ξ̂)| an,t ∈ A, ξ̂ ∈ Ξ} correspond to the expanded search

tree, i.e. a set of cumulative rewards for each candidate action collected from the

trajectories generated by using the optimistic policy ΠO and samples Ξ. First, the

CB sampling strategy computes the sample mean as performance difference between

two distinct candidate actions an,t and an′,t as follows;

µ̂n,n′ =
1

|Ξ|
∑
ξ̂∈Ξ

[
ZΠO(St, an,t, ξ̂)−ZΠO(St, an′,t, ξ̂)

]
, (4.23)

and the sample variance is calculated as follows,

Varn,n′ =

∑
ξ̂∈Ξ

[
(ZΠO(St, an,t, ξ̂)−ZΠO(St, an′,t, ξ̂)− µ̂n,n′)2

]
|Ξ| − 1

. (4.24)

The CB strategy employs the empirical Bernstein inequality proposed by Audibert

87



Algorithm 4.1: An integration of CB into the rollout algorithm

input : root node St, optimistic policy ΠO, a set of candidate actions A,
significance level α, expanded search tree Z,
evaluated test outcomes Ξ, indifference coefficient β.

output: action with the highest sample mean, updated search tree Z.
1 simulation stage:
2 if an action has not been evaluated yet, then perform an initial estimation for

this action;
3 while |A| > 1 do
4 if simulation budget has been reached then
5 go to the final selection stage
6 else
7 for all distinct an,t, an′,t ∈ A do
8 compute µ̂n,n′ and Varn,n′ using (4.23) and (4.24);
9 calculate the upper confidence bound as in (4.25);

10 end
11 if an,t ∈ A satisfies the criterion in (4.27), then A← A\{an,t};
12 generate a new CRN sample ξ̂ of uncertain task outcomes;
13 for an,t ∈ A do

14 compute the cumulative reward ZΠO

t (St, an,t, ξ̂) using (4.13);

15 update the search tree Z ← Z ∪ ZΠO

t (St, an,t, ξ̂);
16 end

17 end

18 end

et al. [2009] to construct a confidence interval for the sample mean µ̂n,n′ as[
µ̂n,n′ − CIαn,n′ , µ̂n,n′ + CIαn,n′

]
(4.25)

where

CIαn,n′ =

√
2× Varn,n′ × log(3/α)

|Ξ| +
3×Θn,n′ × log(3/α)

|Ξ| .

Here α ≥ 0 denotes the significance level and Θn,n′ is the greatest performance gap

between actions an,t and an′,t. Let Zmax(an,t) and Zmin(an,t) denote the largest and

smallest cumulative rewards of action an,t, respectively. The value of Θn,n′ can be

calculated by

Θn,n′ = max

{∣∣Zmax(an,t)− Zmin(an′,t)
∣∣, ∣∣Zmax(an′,t)− Zmin(an,t)

∣∣}. (4.26)

Before conducting simulation, the largest and smallest cumulative rewards of an ac-

tion are unknown, but can be roughly estimated by using a small batch of simulation

results.
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Next, the sampling algorithm identifies whether any candidate action should

be removed from the next simulation stage. The inferior actions do not help to im-

prove our knowledge about potentially promising actions and need to be eliminated

from the simulation procedure to reduce the computational effort. The candidate

action an,t ∈ A will be eliminated if the related upper confidence bounds satisfy the

following elimination criterion. Given an indifference coefficient β ≥ 0, if

µ̂n,n′ + CIαn,n′ ≤ β, ∀an′,t ∈ A\{an,t}, (4.27)

holds, then the sampling strategy updates the candidate set A by eliminating action

an,t. If this is not the case, candidate action an,t will be reserved in the statisti-

cal racing procedure. At the end of the current simulation stage, we generate a

new sample of uncertain task outcomes, compute the cumulative rewards for all

remaining actions, and update the expanded search tree Z.

The sampling algorithm iteratively performs the simulation and elimination

procedure until the stoping rule is satisfied. CB utilises the number of surviving

candidates to define the stoping rule as follows

|A| ≤ 1.

Once the search is interrupted, a candidate action must be chosen for use in the

current root node. Let Wn denote the samples of uncertain task outcomes explored

for candidate an. In the last simulation stage, we select the candidate action with

largest expected cumulative reward.

We illustrate the elimination mechanism of the CB sampling strategy in Fig-

ure 4.4. Assume that the root node St has three candidate actions a1,t, a2,t and

a3,t, and the indifference coefficient β is fixed at 0.1. We now compute the sample

mean of differences between any two distinct actions by using information of the

expanded search tree. The upper confidence bounds of sample means are shown in

Figure 4.4. The results show that a1,t and a2,t are competing actions at the current

simulation stage. On the other hand, a3,t is worse than the other two actions. The

upper confidence bounds for µ3,1 and µ3,2 are −0.4 and 0.05, respectively. Both

upper bounds are smaller than the indifference coefficient β. We can stop further

sampling for action a3,t.

4.6.3 Augmented Sampling Strategy

Now, we introduce another sampling method to improve the efficiency of finding

the best candidate in the case of numerous candidate actions at relatively small
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Elimination Simulation via Optimistic Policy

Candidate actions a1,t
<latexit sha1_base64="ZRJaEfYFJWDAOCEKXIruyZdhCFU=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvOitgv2ANpTNdtMu3WzC7kQooT/CiwdFvPp7vPlv3LQ5aOuDgcd7M8zMCxIpDLrut1NaW9/Y3CpvV3Z29/YPqodHbROnmvEWi2WsuwE1XArFWyhQ8m6iOY0CyTvB5Db3O09cGxGrR5wm3I/oSIlQMIpW6tBB5l3gbFCtuXV3DrJKvILUoEBzUP3qD2OWRlwhk9SYnucm6GdUo2CSzyr91PCEsgkd8Z6likbc+Nn83Bk5s8qQhLG2pZDM1d8TGY2MmUaB7Ywojs2yl4v/eb0Uwxs/EypJkSu2WBSmkmBM8t/JUGjOUE4toUwLeythY6opQ5tQxYbgLb+8StqXdc+tew9XtcZ9EUcZTuAUzsGDa2jAHTShBQwm8Ayv8OYkzovz7nwsWktOMXMMf+B8/gDvNo9Q</latexit><latexit sha1_base64="ZRJaEfYFJWDAOCEKXIruyZdhCFU=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvOitgv2ANpTNdtMu3WzC7kQooT/CiwdFvPp7vPlv3LQ5aOuDgcd7M8zMCxIpDLrut1NaW9/Y3CpvV3Z29/YPqodHbROnmvEWi2WsuwE1XArFWyhQ8m6iOY0CyTvB5Db3O09cGxGrR5wm3I/oSIlQMIpW6tBB5l3gbFCtuXV3DrJKvILUoEBzUP3qD2OWRlwhk9SYnucm6GdUo2CSzyr91PCEsgkd8Z6likbc+Nn83Bk5s8qQhLG2pZDM1d8TGY2MmUaB7Ywojs2yl4v/eb0Uwxs/EypJkSu2WBSmkmBM8t/JUGjOUE4toUwLeythY6opQ5tQxYbgLb+8StqXdc+tew9XtcZ9EUcZTuAUzsGDa2jAHTShBQwm8Ayv8OYkzovz7nwsWktOMXMMf+B8/gDvNo9Q</latexit><latexit sha1_base64="ZRJaEfYFJWDAOCEKXIruyZdhCFU=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvOitgv2ANpTNdtMu3WzC7kQooT/CiwdFvPp7vPlv3LQ5aOuDgcd7M8zMCxIpDLrut1NaW9/Y3CpvV3Z29/YPqodHbROnmvEWi2WsuwE1XArFWyhQ8m6iOY0CyTvB5Db3O09cGxGrR5wm3I/oSIlQMIpW6tBB5l3gbFCtuXV3DrJKvILUoEBzUP3qD2OWRlwhk9SYnucm6GdUo2CSzyr91PCEsgkd8Z6likbc+Nn83Bk5s8qQhLG2pZDM1d8TGY2MmUaB7Ywojs2yl4v/eb0Uwxs/EypJkSu2WBSmkmBM8t/JUGjOUE4toUwLeythY6opQ5tQxYbgLb+8StqXdc+tew9XtcZ9EUcZTuAUzsGDa2jAHTShBQwm8Ayv8OYkzovz7nwsWktOMXMMf+B8/gDvNo9Q</latexit><latexit sha1_base64="ZRJaEfYFJWDAOCEKXIruyZdhCFU=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvOitgv2ANpTNdtMu3WzC7kQooT/CiwdFvPp7vPlv3LQ5aOuDgcd7M8zMCxIpDLrut1NaW9/Y3CpvV3Z29/YPqodHbROnmvEWi2WsuwE1XArFWyhQ8m6iOY0CyTvB5Db3O09cGxGrR5wm3I/oSIlQMIpW6tBB5l3gbFCtuXV3DrJKvILUoEBzUP3qD2OWRlwhk9SYnucm6GdUo2CSzyr91PCEsgkd8Z6likbc+Nn83Bk5s8qQhLG2pZDM1d8TGY2MmUaB7Ywojs2yl4v/eb0Uwxs/EypJkSu2WBSmkmBM8t/JUGjOUE4toUwLeythY6opQ5tQxYbgLb+8StqXdc+tew9XtcZ9EUcZTuAUzsGDa2jAHTShBQwm8Ayv8OYkzovz7nwsWktOMXMMf+B8/gDvNo9Q</latexit>

a2,t
<latexit sha1_base64="UqP5RGgvLVjPiAfTYNkWS2Nxe3c=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkFPRY8KK3CvYD2lA22027dLMJuxOhhP4ILx4U8erv8ea/cdvmoK0PBh7vzTAzL0ikMOi6305hY3Nre6e4W9rbPzg8Kh+ftE2casZbLJax7gbUcCkUb6FAybuJ5jQKJO8Ek9u533ni2ohYPeI04X5ER0qEglG0UocOstoVzgblilt1FyDrxMtJBXI0B+Wv/jBmacQVMkmN6Xlugn5GNQom+azUTw1PKJvQEe9ZqmjEjZ8tzp2RC6sMSRhrWwrJQv09kdHImGkU2M6I4tisenPxP6+XYnjjZ0IlKXLFlovCVBKMyfx3MhSaM5RTSyjTwt5K2JhqytAmVLIheKsvr5N2req5Ve+hXmnc53EU4QzO4RI8uIYG3EETWsBgAs/wCm9O4rw4787HsrXg5DOn8AfO5w/wvY9R</latexit><latexit sha1_base64="UqP5RGgvLVjPiAfTYNkWS2Nxe3c=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkFPRY8KK3CvYD2lA22027dLMJuxOhhP4ILx4U8erv8ea/cdvmoK0PBh7vzTAzL0ikMOi6305hY3Nre6e4W9rbPzg8Kh+ftE2casZbLJax7gbUcCkUb6FAybuJ5jQKJO8Ek9u533ni2ohYPeI04X5ER0qEglG0UocOstoVzgblilt1FyDrxMtJBXI0B+Wv/jBmacQVMkmN6Xlugn5GNQom+azUTw1PKJvQEe9ZqmjEjZ8tzp2RC6sMSRhrWwrJQv09kdHImGkU2M6I4tisenPxP6+XYnjjZ0IlKXLFlovCVBKMyfx3MhSaM5RTSyjTwt5K2JhqytAmVLIheKsvr5N2req5Ve+hXmnc53EU4QzO4RI8uIYG3EETWsBgAs/wCm9O4rw4787HsrXg5DOn8AfO5w/wvY9R</latexit><latexit sha1_base64="UqP5RGgvLVjPiAfTYNkWS2Nxe3c=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkFPRY8KK3CvYD2lA22027dLMJuxOhhP4ILx4U8erv8ea/cdvmoK0PBh7vzTAzL0ikMOi6305hY3Nre6e4W9rbPzg8Kh+ftE2casZbLJax7gbUcCkUb6FAybuJ5jQKJO8Ek9u533ni2ohYPeI04X5ER0qEglG0UocOstoVzgblilt1FyDrxMtJBXI0B+Wv/jBmacQVMkmN6Xlugn5GNQom+azUTw1PKJvQEe9ZqmjEjZ8tzp2RC6sMSRhrWwrJQv09kdHImGkU2M6I4tisenPxP6+XYnjjZ0IlKXLFlovCVBKMyfx3MhSaM5RTSyjTwt5K2JhqytAmVLIheKsvr5N2req5Ve+hXmnc53EU4QzO4RI8uIYG3EETWsBgAs/wCm9O4rw4787HsrXg5DOn8AfO5w/wvY9R</latexit><latexit sha1_base64="UqP5RGgvLVjPiAfTYNkWS2Nxe3c=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkFPRY8KK3CvYD2lA22027dLMJuxOhhP4ILx4U8erv8ea/cdvmoK0PBh7vzTAzL0ikMOi6305hY3Nre6e4W9rbPzg8Kh+ftE2casZbLJax7gbUcCkUb6FAybuJ5jQKJO8Ek9u533ni2ohYPeI04X5ER0qEglG0UocOstoVzgblilt1FyDrxMtJBXI0B+Wv/jBmacQVMkmN6Xlugn5GNQom+azUTw1PKJvQEe9ZqmjEjZ8tzp2RC6sMSRhrWwrJQv09kdHImGkU2M6I4tisenPxP6+XYnjjZ0IlKXLFlovCVBKMyfx3MhSaM5RTSyjTwt5K2JhqytAmVLIheKsvr5N2req5Ve+hXmnc53EU4QzO4RI8uIYG3EETWsBgAs/wCm9O4rw4787HsrXg5DOn8AfO5w/wvY9R</latexit>

a3,t
<latexit sha1_base64="t9aan+vRs75TO6P6lz5I65OkHMk=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5TECnoseNFbBfsBbSib7aZdutmE3YlQQn+EFw+KePX3ePPfuG1z0NYHA4/3ZpiZFyRSGHTdb6ewtr6xuVXcLu3s7u0flA+PWiZONeNNFstYdwJquBSKN1Gg5J1EcxoFkreD8e3Mbz9xbUSsHnGScD+iQyVCwShaqU37We0Cp/1yxa26c5BV4uWkAjka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctVTTixs/m507JmVUGJIy1LYVkrv6eyGhkzCQKbGdEcWSWvZn4n9dNMbzxM6GSFLlii0VhKgnGZPY7GQjNGcqJJZRpYW8lbEQ1ZWgTKtkQvOWXV0nrsuq5Ve/hqlK/z+Mowgmcwjl4cA11uIMGNIHBGJ7hFd6cxHlx3p2PRWvByWeO4Q+czx/yRI9S</latexit><latexit sha1_base64="t9aan+vRs75TO6P6lz5I65OkHMk=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5TECnoseNFbBfsBbSib7aZdutmE3YlQQn+EFw+KePX3ePPfuG1z0NYHA4/3ZpiZFyRSGHTdb6ewtr6xuVXcLu3s7u0flA+PWiZONeNNFstYdwJquBSKN1Gg5J1EcxoFkreD8e3Mbz9xbUSsHnGScD+iQyVCwShaqU37We0Cp/1yxa26c5BV4uWkAjka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctVTTixs/m507JmVUGJIy1LYVkrv6eyGhkzCQKbGdEcWSWvZn4n9dNMbzxM6GSFLlii0VhKgnGZPY7GQjNGcqJJZRpYW8lbEQ1ZWgTKtkQvOWXV0nrsuq5Ve/hqlK/z+Mowgmcwjl4cA11uIMGNIHBGJ7hFd6cxHlx3p2PRWvByWeO4Q+czx/yRI9S</latexit><latexit sha1_base64="t9aan+vRs75TO6P6lz5I65OkHMk=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5TECnoseNFbBfsBbSib7aZdutmE3YlQQn+EFw+KePX3ePPfuG1z0NYHA4/3ZpiZFyRSGHTdb6ewtr6xuVXcLu3s7u0flA+PWiZONeNNFstYdwJquBSKN1Gg5J1EcxoFkreD8e3Mbz9xbUSsHnGScD+iQyVCwShaqU37We0Cp/1yxa26c5BV4uWkAjka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctVTTixs/m507JmVUGJIy1LYVkrv6eyGhkzCQKbGdEcWSWvZn4n9dNMbzxM6GSFLlii0VhKgnGZPY7GQjNGcqJJZRpYW8lbEQ1ZWgTKtkQvOWXV0nrsuq5Ve/hqlK/z+Mowgmcwjl4cA11uIMGNIHBGJ7hFd6cxHlx3p2PRWvByWeO4Q+czx/yRI9S</latexit><latexit sha1_base64="t9aan+vRs75TO6P6lz5I65OkHMk=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5TECnoseNFbBfsBbSib7aZdutmE3YlQQn+EFw+KePX3ePPfuG1z0NYHA4/3ZpiZFyRSGHTdb6ewtr6xuVXcLu3s7u0flA+PWiZONeNNFstYdwJquBSKN1Gg5J1EcxoFkreD8e3Mbz9xbUSsHnGScD+iQyVCwShaqU37We0Cp/1yxa26c5BV4uWkAjka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctVTTixs/m507JmVUGJIy1LYVkrv6eyGhkzCQKbGdEcWSWvZn4n9dNMbzxM6GSFLlii0VhKgnGZPY7GQjNGcqJJZRpYW8lbEQ1ZWgTKtkQvOWXV0nrsuq5Ve/hqlK/z+Mowgmcwjl4cA11uIMGNIHBGJ7hFd6cxHlx3p2PRWvByWeO4Q+czx/yRI9S</latexit>

St
<latexit sha1_base64="Yejht4qN8O2d5S/bRaznNC0IRJ4=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuCG91VtA9oh5JJ0zY0kxmTO4Uy9DvcuFDErR/jzr8x085CWw8EDufcyz05QSyFQdf9dgpr6xubW8Xt0s7u3v5B+fCoaaJEM95gkYx0O6CGS6F4AwVK3o41p2EgeSsY32R+a8K1EZF6xGnM/ZAOlRgIRtFKfjekOGJUpg+zHvbKFbfqzkFWiZeTCuSo98pf3X7EkpArZJIa0/HcGP2UahRM8lmpmxgeUzamQ96xVNGQGz+dh56RM6v0ySDS9ikkc/X3RkpDY6ZhYCezkGbZy8T/vE6Cg2s/FSpOkCu2ODRIJMGIZA2QvtCcoZxaQpkWNithI6opQ9tTyZbgLX95lTQvqp5b9e4vK7W7vI4inMApnIMHV1CDW6hDAxg8wTO8wpszcV6cd+djMVpw8p1j+APn8wchAJJX</latexit><latexit sha1_base64="Yejht4qN8O2d5S/bRaznNC0IRJ4=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuCG91VtA9oh5JJ0zY0kxmTO4Uy9DvcuFDErR/jzr8x085CWw8EDufcyz05QSyFQdf9dgpr6xubW8Xt0s7u3v5B+fCoaaJEM95gkYx0O6CGS6F4AwVK3o41p2EgeSsY32R+a8K1EZF6xGnM/ZAOlRgIRtFKfjekOGJUpg+zHvbKFbfqzkFWiZeTCuSo98pf3X7EkpArZJIa0/HcGP2UahRM8lmpmxgeUzamQ96xVNGQGz+dh56RM6v0ySDS9ikkc/X3RkpDY6ZhYCezkGbZy8T/vE6Cg2s/FSpOkCu2ODRIJMGIZA2QvtCcoZxaQpkWNithI6opQ9tTyZbgLX95lTQvqp5b9e4vK7W7vI4inMApnIMHV1CDW6hDAxg8wTO8wpszcV6cd+djMVpw8p1j+APn8wchAJJX</latexit><latexit sha1_base64="Yejht4qN8O2d5S/bRaznNC0IRJ4=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuCG91VtA9oh5JJ0zY0kxmTO4Uy9DvcuFDErR/jzr8x085CWw8EDufcyz05QSyFQdf9dgpr6xubW8Xt0s7u3v5B+fCoaaJEM95gkYx0O6CGS6F4AwVK3o41p2EgeSsY32R+a8K1EZF6xGnM/ZAOlRgIRtFKfjekOGJUpg+zHvbKFbfqzkFWiZeTCuSo98pf3X7EkpArZJIa0/HcGP2UahRM8lmpmxgeUzamQ96xVNGQGz+dh56RM6v0ySDS9ikkc/X3RkpDY6ZhYCezkGbZy8T/vE6Cg2s/FSpOkCu2ODRIJMGIZA2QvtCcoZxaQpkWNithI6opQ9tTyZbgLX95lTQvqp5b9e4vK7W7vI4inMApnIMHV1CDW6hDAxg8wTO8wpszcV6cd+djMVpw8p1j+APn8wchAJJX</latexit><latexit sha1_base64="Yejht4qN8O2d5S/bRaznNC0IRJ4=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuCG91VtA9oh5JJ0zY0kxmTO4Uy9DvcuFDErR/jzr8x085CWw8EDufcyz05QSyFQdf9dgpr6xubW8Xt0s7u3v5B+fCoaaJEM95gkYx0O6CGS6F4AwVK3o41p2EgeSsY32R+a8K1EZF6xGnM/ZAOlRgIRtFKfjekOGJUpg+zHvbKFbfqzkFWiZeTCuSo98pf3X7EkpArZJIa0/HcGP2UahRM8lmpmxgeUzamQ96xVNGQGz+dh56RM6v0ySDS9ikkc/X3RkpDY6ZhYCezkGbZy8T/vE6Cg2s/FSpOkCu2ODRIJMGIZA2QvtCcoZxaQpkWNithI6opQ9tTyZbgLX95lTQvqp5b9e4vK7W7vI4inMApnIMHV1CDW6hDAxg8wTO8wpszcV6cd+djMVpw8p1j+APn8wchAJJX</latexit>

EliminatedDrug 1

Drug 2

Trial I Trial II Trial III

Drug 1

Drug 2

Trial I Trial II Trial III

a1,t
<latexit sha1_base64="ZRJaEfYFJWDAOCEKXIruyZdhCFU=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvOitgv2ANpTNdtMu3WzC7kQooT/CiwdFvPp7vPlv3LQ5aOuDgcd7M8zMCxIpDLrut1NaW9/Y3CpvV3Z29/YPqodHbROnmvEWi2WsuwE1XArFWyhQ8m6iOY0CyTvB5Db3O09cGxGrR5wm3I/oSIlQMIpW6tBB5l3gbFCtuXV3DrJKvILUoEBzUP3qD2OWRlwhk9SYnucm6GdUo2CSzyr91PCEsgkd8Z6likbc+Nn83Bk5s8qQhLG2pZDM1d8TGY2MmUaB7Ywojs2yl4v/eb0Uwxs/EypJkSu2WBSmkmBM8t/JUGjOUE4toUwLeythY6opQ5tQxYbgLb+8StqXdc+tew9XtcZ9EUcZTuAUzsGDa2jAHTShBQwm8Ayv8OYkzovz7nwsWktOMXMMf+B8/gDvNo9Q</latexit><latexit sha1_base64="ZRJaEfYFJWDAOCEKXIruyZdhCFU=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvOitgv2ANpTNdtMu3WzC7kQooT/CiwdFvPp7vPlv3LQ5aOuDgcd7M8zMCxIpDLrut1NaW9/Y3CpvV3Z29/YPqodHbROnmvEWi2WsuwE1XArFWyhQ8m6iOY0CyTvB5Db3O09cGxGrR5wm3I/oSIlQMIpW6tBB5l3gbFCtuXV3DrJKvILUoEBzUP3qD2OWRlwhk9SYnucm6GdUo2CSzyr91PCEsgkd8Z6likbc+Nn83Bk5s8qQhLG2pZDM1d8TGY2MmUaB7Ywojs2yl4v/eb0Uwxs/EypJkSu2WBSmkmBM8t/JUGjOUE4toUwLeythY6opQ5tQxYbgLb+8StqXdc+tew9XtcZ9EUcZTuAUzsGDa2jAHTShBQwm8Ayv8OYkzovz7nwsWktOMXMMf+B8/gDvNo9Q</latexit><latexit sha1_base64="ZRJaEfYFJWDAOCEKXIruyZdhCFU=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvOitgv2ANpTNdtMu3WzC7kQooT/CiwdFvPp7vPlv3LQ5aOuDgcd7M8zMCxIpDLrut1NaW9/Y3CpvV3Z29/YPqodHbROnmvEWi2WsuwE1XArFWyhQ8m6iOY0CyTvB5Db3O09cGxGrR5wm3I/oSIlQMIpW6tBB5l3gbFCtuXV3DrJKvILUoEBzUP3qD2OWRlwhk9SYnucm6GdUo2CSzyr91PCEsgkd8Z6likbc+Nn83Bk5s8qQhLG2pZDM1d8TGY2MmUaB7Ywojs2yl4v/eb0Uwxs/EypJkSu2WBSmkmBM8t/JUGjOUE4toUwLeythY6opQ5tQxYbgLb+8StqXdc+tew9XtcZ9EUcZTuAUzsGDa2jAHTShBQwm8Ayv8OYkzovz7nwsWktOMXMMf+B8/gDvNo9Q</latexit><latexit sha1_base64="ZRJaEfYFJWDAOCEKXIruyZdhCFU=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvOitgv2ANpTNdtMu3WzC7kQooT/CiwdFvPp7vPlv3LQ5aOuDgcd7M8zMCxIpDLrut1NaW9/Y3CpvV3Z29/YPqodHbROnmvEWi2WsuwE1XArFWyhQ8m6iOY0CyTvB5Db3O09cGxGrR5wm3I/oSIlQMIpW6tBB5l3gbFCtuXV3DrJKvILUoEBzUP3qD2OWRlwhk9SYnucm6GdUo2CSzyr91PCEsgkd8Z6likbc+Nn83Bk5s8qQhLG2pZDM1d8TGY2MmUaB7Ywojs2yl4v/eb0Uwxs/EypJkSu2WBSmkmBM8t/JUGjOUE4toUwLeythY6opQ5tQxYbgLb+8StqXdc+tew9XtcZ9EUcZTuAUzsGDa2jAHTShBQwm8Ayv8OYkzovz7nwsWktOMXMMf+B8/gDvNo9Q</latexit>

a2,t
<latexit sha1_base64="UqP5RGgvLVjPiAfTYNkWS2Nxe3c=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkFPRY8KK3CvYD2lA22027dLMJuxOhhP4ILx4U8erv8ea/cdvmoK0PBh7vzTAzL0ikMOi6305hY3Nre6e4W9rbPzg8Kh+ftE2casZbLJax7gbUcCkUb6FAybuJ5jQKJO8Ek9u533ni2ohYPeI04X5ER0qEglG0UocOstoVzgblilt1FyDrxMtJBXI0B+Wv/jBmacQVMkmN6Xlugn5GNQom+azUTw1PKJvQEe9ZqmjEjZ8tzp2RC6sMSRhrWwrJQv09kdHImGkU2M6I4tisenPxP6+XYnjjZ0IlKXLFlovCVBKMyfx3MhSaM5RTSyjTwt5K2JhqytAmVLIheKsvr5N2req5Ve+hXmnc53EU4QzO4RI8uIYG3EETWsBgAs/wCm9O4rw4787HsrXg5DOn8AfO5w/wvY9R</latexit><latexit sha1_base64="UqP5RGgvLVjPiAfTYNkWS2Nxe3c=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkFPRY8KK3CvYD2lA22027dLMJuxOhhP4ILx4U8erv8ea/cdvmoK0PBh7vzTAzL0ikMOi6305hY3Nre6e4W9rbPzg8Kh+ftE2casZbLJax7gbUcCkUb6FAybuJ5jQKJO8Ek9u533ni2ohYPeI04X5ER0qEglG0UocOstoVzgblilt1FyDrxMtJBXI0B+Wv/jBmacQVMkmN6Xlugn5GNQom+azUTw1PKJvQEe9ZqmjEjZ8tzp2RC6sMSRhrWwrJQv09kdHImGkU2M6I4tisenPxP6+XYnjjZ0IlKXLFlovCVBKMyfx3MhSaM5RTSyjTwt5K2JhqytAmVLIheKsvr5N2req5Ve+hXmnc53EU4QzO4RI8uIYG3EETWsBgAs/wCm9O4rw4787HsrXg5DOn8AfO5w/wvY9R</latexit><latexit sha1_base64="UqP5RGgvLVjPiAfTYNkWS2Nxe3c=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkFPRY8KK3CvYD2lA22027dLMJuxOhhP4ILx4U8erv8ea/cdvmoK0PBh7vzTAzL0ikMOi6305hY3Nre6e4W9rbPzg8Kh+ftE2casZbLJax7gbUcCkUb6FAybuJ5jQKJO8Ek9u533ni2ohYPeI04X5ER0qEglG0UocOstoVzgblilt1FyDrxMtJBXI0B+Wv/jBmacQVMkmN6Xlugn5GNQom+azUTw1PKJvQEe9ZqmjEjZ8tzp2RC6sMSRhrWwrJQv09kdHImGkU2M6I4tisenPxP6+XYnjjZ0IlKXLFlovCVBKMyfx3MhSaM5RTSyjTwt5K2JhqytAmVLIheKsvr5N2req5Ve+hXmnc53EU4QzO4RI8uIYG3EETWsBgAs/wCm9O4rw4787HsrXg5DOn8AfO5w/wvY9R</latexit><latexit sha1_base64="UqP5RGgvLVjPiAfTYNkWS2Nxe3c=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkFPRY8KK3CvYD2lA22027dLMJuxOhhP4ILx4U8erv8ea/cdvmoK0PBh7vzTAzL0ikMOi6305hY3Nre6e4W9rbPzg8Kh+ftE2casZbLJax7gbUcCkUb6FAybuJ5jQKJO8Ek9u533ni2ohYPeI04X5ER0qEglG0UocOstoVzgblilt1FyDrxMtJBXI0B+Wv/jBmacQVMkmN6Xlugn5GNQom+azUTw1PKJvQEe9ZqmjEjZ8tzp2RC6sMSRhrWwrJQv09kdHImGkU2M6I4tisenPxP6+XYnjjZ0IlKXLFlovCVBKMyfx3MhSaM5RTSyjTwt5K2JhqytAmVLIheKsvr5N2req5Ve+hXmnc53EU4QzO4RI8uIYG3EETWsBgAs/wCm9O4rw4787HsrXg5DOn8AfO5w/wvY9R</latexit>

a3,t
<latexit sha1_base64="t9aan+vRs75TO6P6lz5I65OkHMk=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5TECnoseNFbBfsBbSib7aZdutmE3YlQQn+EFw+KePX3ePPfuG1z0NYHA4/3ZpiZFyRSGHTdb6ewtr6xuVXcLu3s7u0flA+PWiZONeNNFstYdwJquBSKN1Gg5J1EcxoFkreD8e3Mbz9xbUSsHnGScD+iQyVCwShaqU37We0Cp/1yxa26c5BV4uWkAjka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctVTTixs/m507JmVUGJIy1LYVkrv6eyGhkzCQKbGdEcWSWvZn4n9dNMbzxM6GSFLlii0VhKgnGZPY7GQjNGcqJJZRpYW8lbEQ1ZWgTKtkQvOWXV0nrsuq5Ve/hqlK/z+Mowgmcwjl4cA11uIMGNIHBGJ7hFd6cxHlx3p2PRWvByWeO4Q+czx/yRI9S</latexit><latexit sha1_base64="t9aan+vRs75TO6P6lz5I65OkHMk=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5TECnoseNFbBfsBbSib7aZdutmE3YlQQn+EFw+KePX3ePPfuG1z0NYHA4/3ZpiZFyRSGHTdb6ewtr6xuVXcLu3s7u0flA+PWiZONeNNFstYdwJquBSKN1Gg5J1EcxoFkreD8e3Mbz9xbUSsHnGScD+iQyVCwShaqU37We0Cp/1yxa26c5BV4uWkAjka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctVTTixs/m507JmVUGJIy1LYVkrv6eyGhkzCQKbGdEcWSWvZn4n9dNMbzxM6GSFLlii0VhKgnGZPY7GQjNGcqJJZRpYW8lbEQ1ZWgTKtkQvOWXV0nrsuq5Ve/hqlK/z+Mowgmcwjl4cA11uIMGNIHBGJ7hFd6cxHlx3p2PRWvByWeO4Q+czx/yRI9S</latexit><latexit sha1_base64="t9aan+vRs75TO6P6lz5I65OkHMk=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5TECnoseNFbBfsBbSib7aZdutmE3YlQQn+EFw+KePX3ePPfuG1z0NYHA4/3ZpiZFyRSGHTdb6ewtr6xuVXcLu3s7u0flA+PWiZONeNNFstYdwJquBSKN1Gg5J1EcxoFkreD8e3Mbz9xbUSsHnGScD+iQyVCwShaqU37We0Cp/1yxa26c5BV4uWkAjka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctVTTixs/m507JmVUGJIy1LYVkrv6eyGhkzCQKbGdEcWSWvZn4n9dNMbzxM6GSFLlii0VhKgnGZPY7GQjNGcqJJZRpYW8lbEQ1ZWgTKtkQvOWXV0nrsuq5Ve/hqlK/z+Mowgmcwjl4cA11uIMGNIHBGJ7hFd6cxHlx3p2PRWvByWeO4Q+czx/yRI9S</latexit><latexit sha1_base64="t9aan+vRs75TO6P6lz5I65OkHMk=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5TECnoseNFbBfsBbSib7aZdutmE3YlQQn+EFw+KePX3ePPfuG1z0NYHA4/3ZpiZFyRSGHTdb6ewtr6xuVXcLu3s7u0flA+PWiZONeNNFstYdwJquBSKN1Gg5J1EcxoFkreD8e3Mbz9xbUSsHnGScD+iQyVCwShaqU37We0Cp/1yxa26c5BV4uWkAjka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctVTTixs/m507JmVUGJIy1LYVkrv6eyGhkzCQKbGdEcWSWvZn4n9dNMbzxM6GSFLlii0VhKgnGZPY7GQjNGcqJJZRpYW8lbEQ1ZWgTKtkQvOWXV0nrsuq5Ve/hqlK/z+Mowgmcwjl4cA11uIMGNIHBGJ7hFd6cxHlx3p2PRWvByWeO4Q+czx/yRI9S</latexit>

S1,t
<latexit sha1_base64="jxl13G9usSUo+QhUdRQz14CcxIs=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBhZREBF0W3Oiuon1AG8JkOm2HTiZhZqKUmE9x40IRt36JO//GSZuFth4YOJxzL/fMCWLOlHacb6u0srq2vlHerGxt7+zu2dX9tooSSWiLRDyS3QArypmgLc00p91YUhwGnHaCyVXudx6oVCwS93oaUy/EI8GGjGBtJN+u9kOsxwTz9C7zU/dUZ75dc+rODGiZuAWpQYGmb3/1BxFJQio04VipnuvE2kux1IxwmlX6iaIxJhM8oj1DBQ6p8tJZ9AwdG2WAhpE0T2g0U39vpDhUahoGZjIPqha9XPzP6yV6eOmlTMSJpoLMDw0TjnSE8h7QgElKNJ8agolkJisiYywx0aatiinBXfzyMmmf1V2n7t6e1xo3RR1lOIQjOAEXLqAB19CEFhB4hGd4hTfryXqx3q2P+WjJKnYO4A+szx9Iu5QF</latexit><latexit sha1_base64="jxl13G9usSUo+QhUdRQz14CcxIs=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBhZREBF0W3Oiuon1AG8JkOm2HTiZhZqKUmE9x40IRt36JO//GSZuFth4YOJxzL/fMCWLOlHacb6u0srq2vlHerGxt7+zu2dX9tooSSWiLRDyS3QArypmgLc00p91YUhwGnHaCyVXudx6oVCwS93oaUy/EI8GGjGBtJN+u9kOsxwTz9C7zU/dUZ75dc+rODGiZuAWpQYGmb3/1BxFJQio04VipnuvE2kux1IxwmlX6iaIxJhM8oj1DBQ6p8tJZ9AwdG2WAhpE0T2g0U39vpDhUahoGZjIPqha9XPzP6yV6eOmlTMSJpoLMDw0TjnSE8h7QgElKNJ8agolkJisiYywx0aatiinBXfzyMmmf1V2n7t6e1xo3RR1lOIQjOAEXLqAB19CEFhB4hGd4hTfryXqx3q2P+WjJKnYO4A+szx9Iu5QF</latexit><latexit sha1_base64="jxl13G9usSUo+QhUdRQz14CcxIs=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBhZREBF0W3Oiuon1AG8JkOm2HTiZhZqKUmE9x40IRt36JO//GSZuFth4YOJxzL/fMCWLOlHacb6u0srq2vlHerGxt7+zu2dX9tooSSWiLRDyS3QArypmgLc00p91YUhwGnHaCyVXudx6oVCwS93oaUy/EI8GGjGBtJN+u9kOsxwTz9C7zU/dUZ75dc+rODGiZuAWpQYGmb3/1BxFJQio04VipnuvE2kux1IxwmlX6iaIxJhM8oj1DBQ6p8tJZ9AwdG2WAhpE0T2g0U39vpDhUahoGZjIPqha9XPzP6yV6eOmlTMSJpoLMDw0TjnSE8h7QgElKNJ8agolkJisiYywx0aatiinBXfzyMmmf1V2n7t6e1xo3RR1lOIQjOAEXLqAB19CEFhB4hGd4hTfryXqx3q2P+WjJKnYO4A+szx9Iu5QF</latexit><latexit sha1_base64="jxl13G9usSUo+QhUdRQz14CcxIs=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBhZREBF0W3Oiuon1AG8JkOm2HTiZhZqKUmE9x40IRt36JO//GSZuFth4YOJxzL/fMCWLOlHacb6u0srq2vlHerGxt7+zu2dX9tooSSWiLRDyS3QArypmgLc00p91YUhwGnHaCyVXudx6oVCwS93oaUy/EI8GGjGBtJN+u9kOsxwTz9C7zU/dUZ75dc+rODGiZuAWpQYGmb3/1BxFJQio04VipnuvE2kux1IxwmlX6iaIxJhM8oj1DBQ6p8tJZ9AwdG2WAhpE0T2g0U39vpDhUahoGZjIPqha9XPzP6yV6eOmlTMSJpoLMDw0TjnSE8h7QgElKNJ8agolkJisiYywx0aatiinBXfzyMmmf1V2n7t6e1xo3RR1lOIQjOAEXLqAB19CEFhB4hGd4hTfryXqx3q2P+WjJKnYO4A+szx9Iu5QF</latexit>

S2,t
<latexit sha1_base64="QA19rMO3A/hIGHcxyDRm8Am7kuI=">AAAB+nicbVDLSsNAFJ34rPWV6tLNYBFcSEmKoMuCG91VtA9oQ5hMp+3QySTM3Cgl5lPcuFDErV/izr9x0mahrQcGDufcyz1zglhwDY7zba2srq1vbJa2yts7u3v7duWgraNEUdaikYhUNyCaCS5ZCzgI1o0VI2EgWCeYXOV+54EpzSN5D9OYeSEZST7klICRfLvSDwmMKRHpXean9TPIfLvq1JwZ8DJxC1JFBZq+/dUfRDQJmQQqiNY914nBS4kCTgXLyv1Es5jQCRmxnqGShEx76Sx6hk+MMsDDSJknAc/U3xspCbWehoGZzIPqRS8X//N6CQwvvZTLOAEm6fzQMBEYIpz3gAdcMQpiagihipusmI6JIhRMW2VTgrv45WXSrtdcp+benlcbN0UdJXSEjtEpctEFaqBr1EQtRNEjekav6M16sl6sd+tjPrpiFTuH6A+szx9KQpQG</latexit><latexit sha1_base64="QA19rMO3A/hIGHcxyDRm8Am7kuI=">AAAB+nicbVDLSsNAFJ34rPWV6tLNYBFcSEmKoMuCG91VtA9oQ5hMp+3QySTM3Cgl5lPcuFDErV/izr9x0mahrQcGDufcyz1zglhwDY7zba2srq1vbJa2yts7u3v7duWgraNEUdaikYhUNyCaCS5ZCzgI1o0VI2EgWCeYXOV+54EpzSN5D9OYeSEZST7klICRfLvSDwmMKRHpXean9TPIfLvq1JwZ8DJxC1JFBZq+/dUfRDQJmQQqiNY914nBS4kCTgXLyv1Es5jQCRmxnqGShEx76Sx6hk+MMsDDSJknAc/U3xspCbWehoGZzIPqRS8X//N6CQwvvZTLOAEm6fzQMBEYIpz3gAdcMQpiagihipusmI6JIhRMW2VTgrv45WXSrtdcp+benlcbN0UdJXSEjtEpctEFaqBr1EQtRNEjekav6M16sl6sd+tjPrpiFTuH6A+szx9KQpQG</latexit><latexit sha1_base64="QA19rMO3A/hIGHcxyDRm8Am7kuI=">AAAB+nicbVDLSsNAFJ34rPWV6tLNYBFcSEmKoMuCG91VtA9oQ5hMp+3QySTM3Cgl5lPcuFDErV/izr9x0mahrQcGDufcyz1zglhwDY7zba2srq1vbJa2yts7u3v7duWgraNEUdaikYhUNyCaCS5ZCzgI1o0VI2EgWCeYXOV+54EpzSN5D9OYeSEZST7klICRfLvSDwmMKRHpXean9TPIfLvq1JwZ8DJxC1JFBZq+/dUfRDQJmQQqiNY914nBS4kCTgXLyv1Es5jQCRmxnqGShEx76Sx6hk+MMsDDSJknAc/U3xspCbWehoGZzIPqRS8X//N6CQwvvZTLOAEm6fzQMBEYIpz3gAdcMQpiagihipusmI6JIhRMW2VTgrv45WXSrtdcp+benlcbN0UdJXSEjtEpctEFaqBr1EQtRNEjekav6M16sl6sd+tjPrpiFTuH6A+szx9KQpQG</latexit><latexit sha1_base64="QA19rMO3A/hIGHcxyDRm8Am7kuI=">AAAB+nicbVDLSsNAFJ34rPWV6tLNYBFcSEmKoMuCG91VtA9oQ5hMp+3QySTM3Cgl5lPcuFDErV/izr9x0mahrQcGDufcyz1zglhwDY7zba2srq1vbJa2yts7u3v7duWgraNEUdaikYhUNyCaCS5ZCzgI1o0VI2EgWCeYXOV+54EpzSN5D9OYeSEZST7klICRfLvSDwmMKRHpXean9TPIfLvq1JwZ8DJxC1JFBZq+/dUfRDQJmQQqiNY914nBS4kCTgXLyv1Es5jQCRmxnqGShEx76Sx6hk+MMsDDSJknAc/U3xspCbWehoGZzIPqRS8X//N6CQwvvZTLOAEm6fzQMBEYIpz3gAdcMQpiagihipusmI6JIhRMW2VTgrv45WXSrtdcp+benlcbN0UdJXSEjtEpctEFaqBr1EQtRNEjekav6M16sl6sd+tjPrpiFTuH6A+szx9KQpQG</latexit>

S3,t
<latexit sha1_base64="UuNou5UCe4u2unsQYU5KMwoI+xA=">AAAB+nicbVDLSsNAFJ34rPWV6tLNYBFcSElU0GXBje4q2ge0IUym03boZBJmbpQS8yluXCji1i9x5984abPQ1gMDh3Pu5Z45QSy4Bsf5tpaWV1bX1ksb5c2t7Z1du7LX0lGiKGvSSESqExDNBJesCRwE68SKkTAQrB2Mr3K//cCU5pG8h0nMvJAMJR9wSsBIvl3phQRGlIj0LvPTsxPIfLvq1Jwp8CJxC1JFBRq+/dXrRzQJmQQqiNZd14nBS4kCTgXLyr1Es5jQMRmyrqGShEx76TR6ho+M0seDSJknAU/V3xspCbWehIGZzIPqeS8X//O6CQwuvZTLOAEm6ezQIBEYIpz3gPtcMQpiYgihipusmI6IIhRMW2VTgjv/5UXSOq25Ts29Pa/Wb4o6SugAHaJj5KILVEfXqIGaiKJH9Ixe0Zv1ZL1Y79bHbHTJKnb20R9Ynz9LyZQH</latexit><latexit sha1_base64="UuNou5UCe4u2unsQYU5KMwoI+xA=">AAAB+nicbVDLSsNAFJ34rPWV6tLNYBFcSElU0GXBje4q2ge0IUym03boZBJmbpQS8yluXCji1i9x5984abPQ1gMDh3Pu5Z45QSy4Bsf5tpaWV1bX1ksb5c2t7Z1du7LX0lGiKGvSSESqExDNBJesCRwE68SKkTAQrB2Mr3K//cCU5pG8h0nMvJAMJR9wSsBIvl3phQRGlIj0LvPTsxPIfLvq1Jwp8CJxC1JFBRq+/dXrRzQJmQQqiNZd14nBS4kCTgXLyr1Es5jQMRmyrqGShEx76TR6ho+M0seDSJknAU/V3xspCbWehIGZzIPqeS8X//O6CQwuvZTLOAEm6ezQIBEYIpz3gPtcMQpiYgihipusmI6IIhRMW2VTgjv/5UXSOq25Ts29Pa/Wb4o6SugAHaJj5KILVEfXqIGaiKJH9Ixe0Zv1ZL1Y79bHbHTJKnb20R9Ynz9LyZQH</latexit><latexit sha1_base64="UuNou5UCe4u2unsQYU5KMwoI+xA=">AAAB+nicbVDLSsNAFJ34rPWV6tLNYBFcSElU0GXBje4q2ge0IUym03boZBJmbpQS8yluXCji1i9x5984abPQ1gMDh3Pu5Z45QSy4Bsf5tpaWV1bX1ksb5c2t7Z1du7LX0lGiKGvSSESqExDNBJesCRwE68SKkTAQrB2Mr3K//cCU5pG8h0nMvJAMJR9wSsBIvl3phQRGlIj0LvPTsxPIfLvq1Jwp8CJxC1JFBRq+/dXrRzQJmQQqiNZd14nBS4kCTgXLyr1Es5jQMRmyrqGShEx76TR6ho+M0seDSJknAU/V3xspCbWehIGZzIPqeS8X//O6CQwuvZTLOAEm6ezQIBEYIpz3gPtcMQpiYgihipusmI6IIhRMW2VTgjv/5UXSOq25Ts29Pa/Wb4o6SugAHaJj5KILVEfXqIGaiKJH9Ixe0Zv1ZL1Y79bHbHTJKnb20R9Ynz9LyZQH</latexit><latexit sha1_base64="UuNou5UCe4u2unsQYU5KMwoI+xA=">AAAB+nicbVDLSsNAFJ34rPWV6tLNYBFcSElU0GXBje4q2ge0IUym03boZBJmbpQS8yluXCji1i9x5984abPQ1gMDh3Pu5Z45QSy4Bsf5tpaWV1bX1ksb5c2t7Z1du7LX0lGiKGvSSESqExDNBJesCRwE68SKkTAQrB2Mr3K//cCU5pG8h0nMvJAMJR9wSsBIvl3phQRGlIj0LvPTsxPIfLvq1Jwp8CJxC1JFBRq+/dXrRzQJmQQqiNZd14nBS4kCTgXLyr1Es5jQMRmyrqGShEx76TR6ho+M0seDSJknAU/V3xspCbWehIGZzIPqeS8X//O6CQwuvZTLOAEm6ezQIBEYIpz3gPtcMQpiYgihipusmI6IIhRMW2VTgjv/5UXSOq25Ts29Pa/Wb4o6SugAHaJj5KILVEfXqIGaiKJH9Ixe0Zv1ZL1Y79bHbHTJKnb20R9Ynz9LyZQH</latexit>

S1,t
<latexit sha1_base64="jxl13G9usSUo+QhUdRQz14CcxIs=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBhZREBF0W3Oiuon1AG8JkOm2HTiZhZqKUmE9x40IRt36JO//GSZuFth4YOJxzL/fMCWLOlHacb6u0srq2vlHerGxt7+zu2dX9tooSSWiLRDyS3QArypmgLc00p91YUhwGnHaCyVXudx6oVCwS93oaUy/EI8GGjGBtJN+u9kOsxwTz9C7zU/dUZ75dc+rODGiZuAWpQYGmb3/1BxFJQio04VipnuvE2kux1IxwmlX6iaIxJhM8oj1DBQ6p8tJZ9AwdG2WAhpE0T2g0U39vpDhUahoGZjIPqha9XPzP6yV6eOmlTMSJpoLMDw0TjnSE8h7QgElKNJ8agolkJisiYywx0aatiinBXfzyMmmf1V2n7t6e1xo3RR1lOIQjOAEXLqAB19CEFhB4hGd4hTfryXqx3q2P+WjJKnYO4A+szx9Iu5QF</latexit><latexit sha1_base64="jxl13G9usSUo+QhUdRQz14CcxIs=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBhZREBF0W3Oiuon1AG8JkOm2HTiZhZqKUmE9x40IRt36JO//GSZuFth4YOJxzL/fMCWLOlHacb6u0srq2vlHerGxt7+zu2dX9tooSSWiLRDyS3QArypmgLc00p91YUhwGnHaCyVXudx6oVCwS93oaUy/EI8GGjGBtJN+u9kOsxwTz9C7zU/dUZ75dc+rODGiZuAWpQYGmb3/1BxFJQio04VipnuvE2kux1IxwmlX6iaIxJhM8oj1DBQ6p8tJZ9AwdG2WAhpE0T2g0U39vpDhUahoGZjIPqha9XPzP6yV6eOmlTMSJpoLMDw0TjnSE8h7QgElKNJ8agolkJisiYywx0aatiinBXfzyMmmf1V2n7t6e1xo3RR1lOIQjOAEXLqAB19CEFhB4hGd4hTfryXqx3q2P+WjJKnYO4A+szx9Iu5QF</latexit><latexit sha1_base64="jxl13G9usSUo+QhUdRQz14CcxIs=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBhZREBF0W3Oiuon1AG8JkOm2HTiZhZqKUmE9x40IRt36JO//GSZuFth4YOJxzL/fMCWLOlHacb6u0srq2vlHerGxt7+zu2dX9tooSSWiLRDyS3QArypmgLc00p91YUhwGnHaCyVXudx6oVCwS93oaUy/EI8GGjGBtJN+u9kOsxwTz9C7zU/dUZ75dc+rODGiZuAWpQYGmb3/1BxFJQio04VipnuvE2kux1IxwmlX6iaIxJhM8oj1DBQ6p8tJZ9AwdG2WAhpE0T2g0U39vpDhUahoGZjIPqha9XPzP6yV6eOmlTMSJpoLMDw0TjnSE8h7QgElKNJ8agolkJisiYywx0aatiinBXfzyMmmf1V2n7t6e1xo3RR1lOIQjOAEXLqAB19CEFhB4hGd4hTfryXqx3q2P+WjJKnYO4A+szx9Iu5QF</latexit><latexit sha1_base64="jxl13G9usSUo+QhUdRQz14CcxIs=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBhZREBF0W3Oiuon1AG8JkOm2HTiZhZqKUmE9x40IRt36JO//GSZuFth4YOJxzL/fMCWLOlHacb6u0srq2vlHerGxt7+zu2dX9tooSSWiLRDyS3QArypmgLc00p91YUhwGnHaCyVXudx6oVCwS93oaUy/EI8GGjGBtJN+u9kOsxwTz9C7zU/dUZ75dc+rODGiZuAWpQYGmb3/1BxFJQio04VipnuvE2kux1IxwmlX6iaIxJhM8oj1DBQ6p8tJZ9AwdG2WAhpE0T2g0U39vpDhUahoGZjIPqha9XPzP6yV6eOmlTMSJpoLMDw0TjnSE8h7QgElKNJ8agolkJisiYywx0aatiinBXfzyMmmf1V2n7t6e1xo3RR1lOIQjOAEXLqAB19CEFhB4hGd4hTfryXqx3q2P+WjJKnYO4A+szx9Iu5QF</latexit>

S2,t
<latexit sha1_base64="QA19rMO3A/hIGHcxyDRm8Am7kuI=">AAAB+nicbVDLSsNAFJ34rPWV6tLNYBFcSEmKoMuCG91VtA9oQ5hMp+3QySTM3Cgl5lPcuFDErV/izr9x0mahrQcGDufcyz1zglhwDY7zba2srq1vbJa2yts7u3v7duWgraNEUdaikYhUNyCaCS5ZCzgI1o0VI2EgWCeYXOV+54EpzSN5D9OYeSEZST7klICRfLvSDwmMKRHpXean9TPIfLvq1JwZ8DJxC1JFBZq+/dUfRDQJmQQqiNY914nBS4kCTgXLyv1Es5jQCRmxnqGShEx76Sx6hk+MMsDDSJknAc/U3xspCbWehoGZzIPqRS8X//N6CQwvvZTLOAEm6fzQMBEYIpz3gAdcMQpiagihipusmI6JIhRMW2VTgrv45WXSrtdcp+benlcbN0UdJXSEjtEpctEFaqBr1EQtRNEjekav6M16sl6sd+tjPrpiFTuH6A+szx9KQpQG</latexit><latexit sha1_base64="QA19rMO3A/hIGHcxyDRm8Am7kuI=">AAAB+nicbVDLSsNAFJ34rPWV6tLNYBFcSEmKoMuCG91VtA9oQ5hMp+3QySTM3Cgl5lPcuFDErV/izr9x0mahrQcGDufcyz1zglhwDY7zba2srq1vbJa2yts7u3v7duWgraNEUdaikYhUNyCaCS5ZCzgI1o0VI2EgWCeYXOV+54EpzSN5D9OYeSEZST7klICRfLvSDwmMKRHpXean9TPIfLvq1JwZ8DJxC1JFBZq+/dUfRDQJmQQqiNY914nBS4kCTgXLyv1Es5jQCRmxnqGShEx76Sx6hk+MMsDDSJknAc/U3xspCbWehoGZzIPqRS8X//N6CQwvvZTLOAEm6fzQMBEYIpz3gAdcMQpiagihipusmI6JIhRMW2VTgrv45WXSrtdcp+benlcbN0UdJXSEjtEpctEFaqBr1EQtRNEjekav6M16sl6sd+tjPrpiFTuH6A+szx9KQpQG</latexit><latexit sha1_base64="QA19rMO3A/hIGHcxyDRm8Am7kuI=">AAAB+nicbVDLSsNAFJ34rPWV6tLNYBFcSEmKoMuCG91VtA9oQ5hMp+3QySTM3Cgl5lPcuFDErV/izr9x0mahrQcGDufcyz1zglhwDY7zba2srq1vbJa2yts7u3v7duWgraNEUdaikYhUNyCaCS5ZCzgI1o0VI2EgWCeYXOV+54EpzSN5D9OYeSEZST7klICRfLvSDwmMKRHpXean9TPIfLvq1JwZ8DJxC1JFBZq+/dUfRDQJmQQqiNY914nBS4kCTgXLyv1Es5jQCRmxnqGShEx76Sx6hk+MMsDDSJknAc/U3xspCbWehoGZzIPqRS8X//N6CQwvvZTLOAEm6fzQMBEYIpz3gAdcMQpiagihipusmI6JIhRMW2VTgrv45WXSrtdcp+benlcbN0UdJXSEjtEpctEFaqBr1EQtRNEjekav6M16sl6sd+tjPrpiFTuH6A+szx9KQpQG</latexit><latexit sha1_base64="QA19rMO3A/hIGHcxyDRm8Am7kuI=">AAAB+nicbVDLSsNAFJ34rPWV6tLNYBFcSEmKoMuCG91VtA9oQ5hMp+3QySTM3Cgl5lPcuFDErV/izr9x0mahrQcGDufcyz1zglhwDY7zba2srq1vbJa2yts7u3v7duWgraNEUdaikYhUNyCaCS5ZCzgI1o0VI2EgWCeYXOV+54EpzSN5D9OYeSEZST7klICRfLvSDwmMKRHpXean9TPIfLvq1JwZ8DJxC1JFBZq+/dUfRDQJmQQqiNY914nBS4kCTgXLyv1Es5jQCRmxnqGShEx76Sx6hk+MMsDDSJknAc/U3xspCbWehoGZzIPqRS8X//N6CQwvvZTLOAEm6fzQMBEYIpz3gAdcMQpiagihipusmI6JIhRMW2VTgrv45WXSrtdcp+benlcbN0UdJXSEjtEpctEFaqBr1EQtRNEjekav6M16sl6sd+tjPrpiFTuH6A+szx9KQpQG</latexit>

S3,t
<latexit sha1_base64="UuNou5UCe4u2unsQYU5KMwoI+xA=">AAAB+nicbVDLSsNAFJ34rPWV6tLNYBFcSElU0GXBje4q2ge0IUym03boZBJmbpQS8yluXCji1i9x5984abPQ1gMDh3Pu5Z45QSy4Bsf5tpaWV1bX1ksb5c2t7Z1du7LX0lGiKGvSSESqExDNBJesCRwE68SKkTAQrB2Mr3K//cCU5pG8h0nMvJAMJR9wSsBIvl3phQRGlIj0LvPTsxPIfLvq1Jwp8CJxC1JFBRq+/dXrRzQJmQQqiNZd14nBS4kCTgXLyr1Es5jQMRmyrqGShEx76TR6ho+M0seDSJknAU/V3xspCbWehIGZzIPqeS8X//O6CQwuvZTLOAEm6ezQIBEYIpz3gPtcMQpiYgihipusmI6IIhRMW2VTgjv/5UXSOq25Ts29Pa/Wb4o6SugAHaJj5KILVEfXqIGaiKJH9Ixe0Zv1ZL1Y79bHbHTJKnb20R9Ynz9LyZQH</latexit><latexit sha1_base64="UuNou5UCe4u2unsQYU5KMwoI+xA=">AAAB+nicbVDLSsNAFJ34rPWV6tLNYBFcSElU0GXBje4q2ge0IUym03boZBJmbpQS8yluXCji1i9x5984abPQ1gMDh3Pu5Z45QSy4Bsf5tpaWV1bX1ksb5c2t7Z1du7LX0lGiKGvSSESqExDNBJesCRwE68SKkTAQrB2Mr3K//cCU5pG8h0nMvJAMJR9wSsBIvl3phQRGlIj0LvPTsxPIfLvq1Jwp8CJxC1JFBRq+/dXrRzQJmQQqiNZd14nBS4kCTgXLyr1Es5jQMRmyrqGShEx76TR6ho+M0seDSJknAU/V3xspCbWehIGZzIPqeS8X//O6CQwuvZTLOAEm6ezQIBEYIpz3gPtcMQpiYgihipusmI6IIhRMW2VTgjv/5UXSOq25Ts29Pa/Wb4o6SugAHaJj5KILVEfXqIGaiKJH9Ixe0Zv1ZL1Y79bHbHTJKnb20R9Ynz9LyZQH</latexit><latexit sha1_base64="UuNou5UCe4u2unsQYU5KMwoI+xA=">AAAB+nicbVDLSsNAFJ34rPWV6tLNYBFcSElU0GXBje4q2ge0IUym03boZBJmbpQS8yluXCji1i9x5984abPQ1gMDh3Pu5Z45QSy4Bsf5tpaWV1bX1ksb5c2t7Z1du7LX0lGiKGvSSESqExDNBJesCRwE68SKkTAQrB2Mr3K//cCU5pG8h0nMvJAMJR9wSsBIvl3phQRGlIj0LvPTsxPIfLvq1Jwp8CJxC1JFBRq+/dXrRzQJmQQqiNZd14nBS4kCTgXLyr1Es5jQMRmyrqGShEx76TR6ho+M0seDSJknAU/V3xspCbWehIGZzIPqeS8X//O6CQwuvZTLOAEm6ezQIBEYIpz3gPtcMQpiYgihipusmI6IIhRMW2VTgjv/5UXSOq25Ts29Pa/Wb4o6SugAHaJj5KILVEfXqIGaiKJH9Ixe0Zv1ZL1Y79bHbHTJKnb20R9Ynz9LyZQH</latexit><latexit sha1_base64="UuNou5UCe4u2unsQYU5KMwoI+xA=">AAAB+nicbVDLSsNAFJ34rPWV6tLNYBFcSElU0GXBje4q2ge0IUym03boZBJmbpQS8yluXCji1i9x5984abPQ1gMDh3Pu5Z45QSy4Bsf5tpaWV1bX1ksb5c2t7Z1du7LX0lGiKGvSSESqExDNBJesCRwE68SKkTAQrB2Mr3K//cCU5pG8h0nMvJAMJR9wSsBIvl3phQRGlIj0LvPTsxPIfLvq1Jwp8CJxC1JFBRq+/dXrRzQJmQQqiNZd14nBS4kCTgXLyr1Es5jQMRmyrqGShEx76TR6ho+M0seDSJknAU/V3xspCbWehIGZzIPqeS8X//O6CQwuvZTLOAEm6ezQIBEYIpz3gPtcMQpiYgihipusmI6IIhRMW2VTgjv/5UXSOq25Ts29Pa/Wb4o6SugAHaJj5KILVEfXqIGaiKJH9Ixe0Zv1ZL1Y79bHbHTJKnb20R9Ynz9LyZQH</latexit>
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a1,t
<latexit sha1_base64="ZRJaEfYFJWDAOCEKXIruyZdhCFU=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvOitgv2ANpTNdtMu3WzC7kQooT/CiwdFvPp7vPlv3LQ5aOuDgcd7M8zMCxIpDLrut1NaW9/Y3CpvV3Z29/YPqodHbROnmvEWi2WsuwE1XArFWyhQ8m6iOY0CyTvB5Db3O09cGxGrR5wm3I/oSIlQMIpW6tBB5l3gbFCtuXV3DrJKvILUoEBzUP3qD2OWRlwhk9SYnucm6GdUo2CSzyr91PCEsgkd8Z6likbc+Nn83Bk5s8qQhLG2pZDM1d8TGY2MmUaB7Ywojs2yl4v/eb0Uwxs/EypJkSu2WBSmkmBM8t/JUGjOUE4toUwLeythY6opQ5tQxYbgLb+8StqXdc+tew9XtcZ9EUcZTuAUzsGDa2jAHTShBQwm8Ayv8OYkzovz7nwsWktOMXMMf+B8/gDvNo9Q</latexit><latexit sha1_base64="ZRJaEfYFJWDAOCEKXIruyZdhCFU=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvOitgv2ANpTNdtMu3WzC7kQooT/CiwdFvPp7vPlv3LQ5aOuDgcd7M8zMCxIpDLrut1NaW9/Y3CpvV3Z29/YPqodHbROnmvEWi2WsuwE1XArFWyhQ8m6iOY0CyTvB5Db3O09cGxGrR5wm3I/oSIlQMIpW6tBB5l3gbFCtuXV3DrJKvILUoEBzUP3qD2OWRlwhk9SYnucm6GdUo2CSzyr91PCEsgkd8Z6likbc+Nn83Bk5s8qQhLG2pZDM1d8TGY2MmUaB7Ywojs2yl4v/eb0Uwxs/EypJkSu2WBSmkmBM8t/JUGjOUE4toUwLeythY6opQ5tQxYbgLb+8StqXdc+tew9XtcZ9EUcZTuAUzsGDa2jAHTShBQwm8Ayv8OYkzovz7nwsWktOMXMMf+B8/gDvNo9Q</latexit><latexit sha1_base64="ZRJaEfYFJWDAOCEKXIruyZdhCFU=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvOitgv2ANpTNdtMu3WzC7kQooT/CiwdFvPp7vPlv3LQ5aOuDgcd7M8zMCxIpDLrut1NaW9/Y3CpvV3Z29/YPqodHbROnmvEWi2WsuwE1XArFWyhQ8m6iOY0CyTvB5Db3O09cGxGrR5wm3I/oSIlQMIpW6tBB5l3gbFCtuXV3DrJKvILUoEBzUP3qD2OWRlwhk9SYnucm6GdUo2CSzyr91PCEsgkd8Z6likbc+Nn83Bk5s8qQhLG2pZDM1d8TGY2MmUaB7Ywojs2yl4v/eb0Uwxs/EypJkSu2WBSmkmBM8t/JUGjOUE4toUwLeythY6opQ5tQxYbgLb+8StqXdc+tew9XtcZ9EUcZTuAUzsGDa2jAHTShBQwm8Ayv8OYkzovz7nwsWktOMXMMf+B8/gDvNo9Q</latexit><latexit sha1_base64="ZRJaEfYFJWDAOCEKXIruyZdhCFU=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvOitgv2ANpTNdtMu3WzC7kQooT/CiwdFvPp7vPlv3LQ5aOuDgcd7M8zMCxIpDLrut1NaW9/Y3CpvV3Z29/YPqodHbROnmvEWi2WsuwE1XArFWyhQ8m6iOY0CyTvB5Db3O09cGxGrR5wm3I/oSIlQMIpW6tBB5l3gbFCtuXV3DrJKvILUoEBzUP3qD2OWRlwhk9SYnucm6GdUo2CSzyr91PCEsgkd8Z6likbc+Nn83Bk5s8qQhLG2pZDM1d8TGY2MmUaB7Ywojs2yl4v/eb0Uwxs/EypJkSu2WBSmkmBM8t/JUGjOUE4toUwLeythY6opQ5tQxYbgLb+8StqXdc+tew9XtcZ9EUcZTuAUzsGDa2jAHTShBQwm8Ayv8OYkzovz7nwsWktOMXMMf+B8/gDvNo9Q</latexit>

a2,t
<latexit sha1_base64="UqP5RGgvLVjPiAfTYNkWS2Nxe3c=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkFPRY8KK3CvYD2lA22027dLMJuxOhhP4ILx4U8erv8ea/cdvmoK0PBh7vzTAzL0ikMOi6305hY3Nre6e4W9rbPzg8Kh+ftE2casZbLJax7gbUcCkUb6FAybuJ5jQKJO8Ek9u533ni2ohYPeI04X5ER0qEglG0UocOstoVzgblilt1FyDrxMtJBXI0B+Wv/jBmacQVMkmN6Xlugn5GNQom+azUTw1PKJvQEe9ZqmjEjZ8tzp2RC6sMSRhrWwrJQv09kdHImGkU2M6I4tisenPxP6+XYnjjZ0IlKXLFlovCVBKMyfx3MhSaM5RTSyjTwt5K2JhqytAmVLIheKsvr5N2req5Ve+hXmnc53EU4QzO4RI8uIYG3EETWsBgAs/wCm9O4rw4787HsrXg5DOn8AfO5w/wvY9R</latexit><latexit sha1_base64="UqP5RGgvLVjPiAfTYNkWS2Nxe3c=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkFPRY8KK3CvYD2lA22027dLMJuxOhhP4ILx4U8erv8ea/cdvmoK0PBh7vzTAzL0ikMOi6305hY3Nre6e4W9rbPzg8Kh+ftE2casZbLJax7gbUcCkUb6FAybuJ5jQKJO8Ek9u533ni2ohYPeI04X5ER0qEglG0UocOstoVzgblilt1FyDrxMtJBXI0B+Wv/jBmacQVMkmN6Xlugn5GNQom+azUTw1PKJvQEe9ZqmjEjZ8tzp2RC6sMSRhrWwrJQv09kdHImGkU2M6I4tisenPxP6+XYnjjZ0IlKXLFlovCVBKMyfx3MhSaM5RTSyjTwt5K2JhqytAmVLIheKsvr5N2req5Ve+hXmnc53EU4QzO4RI8uIYG3EETWsBgAs/wCm9O4rw4787HsrXg5DOn8AfO5w/wvY9R</latexit><latexit sha1_base64="UqP5RGgvLVjPiAfTYNkWS2Nxe3c=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkFPRY8KK3CvYD2lA22027dLMJuxOhhP4ILx4U8erv8ea/cdvmoK0PBh7vzTAzL0ikMOi6305hY3Nre6e4W9rbPzg8Kh+ftE2casZbLJax7gbUcCkUb6FAybuJ5jQKJO8Ek9u533ni2ohYPeI04X5ER0qEglG0UocOstoVzgblilt1FyDrxMtJBXI0B+Wv/jBmacQVMkmN6Xlugn5GNQom+azUTw1PKJvQEe9ZqmjEjZ8tzp2RC6sMSRhrWwrJQv09kdHImGkU2M6I4tisenPxP6+XYnjjZ0IlKXLFlovCVBKMyfx3MhSaM5RTSyjTwt5K2JhqytAmVLIheKsvr5N2req5Ve+hXmnc53EU4QzO4RI8uIYG3EETWsBgAs/wCm9O4rw4787HsrXg5DOn8AfO5w/wvY9R</latexit><latexit sha1_base64="UqP5RGgvLVjPiAfTYNkWS2Nxe3c=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkFPRY8KK3CvYD2lA22027dLMJuxOhhP4ILx4U8erv8ea/cdvmoK0PBh7vzTAzL0ikMOi6305hY3Nre6e4W9rbPzg8Kh+ftE2casZbLJax7gbUcCkUb6FAybuJ5jQKJO8Ek9u533ni2ohYPeI04X5ER0qEglG0UocOstoVzgblilt1FyDrxMtJBXI0B+Wv/jBmacQVMkmN6Xlugn5GNQom+azUTw1PKJvQEe9ZqmjEjZ8tzp2RC6sMSRhrWwrJQv09kdHImGkU2M6I4tisenPxP6+XYnjjZ0IlKXLFlovCVBKMyfx3MhSaM5RTSyjTwt5K2JhqytAmVLIheKsvr5N2req5Ve+hXmnc53EU4QzO4RI8uIYG3EETWsBgAs/wCm9O4rw4787HsrXg5DOn8AfO5w/wvY9R</latexit>

a3,t
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Upper bound of Bernstein confidence interval for the pairwise 
difference between distinct candidate actions 

Figure 4.4: The use of the CB sampling strategy.

simulation budget. This method uses a heuristic-based grouping rule to adjust the

exploration priority in the simulation process.

We first introduce a heuristic-based grouping rule (abbreviated as HG) that

clusters the candidate actions according to their resource usages at the root node.

Algorithm 4.2 summarises the overall procedure using HG. Let r̂n,k be the number

of idle type k resources associated with candidate action an,t = (Xn,t, Yn,t) where

Xn,t = {xni,j,t| i ∈ I, j ∈ J } and Yn,t = {y`,ni,j,t| i ∈ I, j ∈ J , ` ∈ L}.

To cluster actions A ∈ At, we compute the idle type k resources for each action

an,t ∈ A by

r̃n,k = rk,t −
∑
i∈I

∑
j∈J

[
(
∑
`∈L

y`,ni,j,t × ĥ`i,j,k) + xni,j,t × hi,j,k
]
, ∀k ∈ K. (4.28)

Let us define sets Bx
n and By

n for candidate action an,t = (Xn,t, Yn,t) as follows,

Bx
n = {(i, j)| xni,j,t ∈ Xn,t, xni,j,t = 0}, (4.29)

and

By
n = {(i, j, `)| y`,ni,j,t ∈ Yn,t, y`,ni,j,t = 0} (4.30)
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Algorithm 4.2: Heuristic-based Grouping Rule (HG)

input : a set of candidate actions A
output: grouping results A0, A1, A2, . . .

1 set θ = 0;
2 while A 6= ∅ do
3 for an,t ∈ A do
4 compute the idle resources using (4.28);
5 identify unused scheduling and acceleration measures via (4.29) and

(4.30);
6 if set G(θ, an,t) is empty then

7 update Aθ ← Aθ ∪ an,t and A← A\{an,t} ;
8 end

9 end
10 set θ ← θ + 1

11 end

These sets basically identify unused scheduling and acceleration measures. respec-

tively. We define parameter θ ∈ N, which regulates the maximum number of unused

scheduling and acceleration measures that can be performed by using the idle re-

sources. A group of candidate actions associated with the parameter θ is denoted

as Aθ. The grouping procedure begins with θ = 0, which implies that no additional

scheduling and acceleration measures can be performed. We identify the affiliation

of each candidate action by verifying if the following set G(θ, an,t) associated with

candidate action an,t ∈ A is empty,

G(θ, an,t) =

{ ∑
(i,j,`)∈Byn

ȳ`,ni,j,t +
∑

(i,j)∈Bxn

barxni,j,t > θ, (4.31)

x̄ni,j,t ≤ di,j,t, ∀(i, j) ∈ Bx
n, (4.32)

ȳ`,ni,j,t ≤ x̄ni,j,t + ei,j,t, ∀(i, j, `) ∈ By
n, (4.33)∑

(i,j,`)∈Byn

ȳ`,ni,j,t × ĥ`i,j,k +
∑

(i,j)∈Bxn

x̄ni,j,t × hi,j,k ≤ r̃n,k, ∀k ∈ K, (4.34)

x̄ni,j,t ∈ {0, 1}, ∀(i, j) ∈ Bx
n; ȳ`,ni,j,t ∈ {0, 1}, ∀(i, j, `) ∈ By

n

}
.

Constraint (4.31) determines whether the number of unused scheduling and accel-

eration measures to be performed is more than θ. In Constraints (4.32), (4.33) and

(4.34), we regulate that performing used measures should satisfy the current state of

the system. The verification process can be regarded as solving a constraint satisfac-

tion problem. We examine the existence of a feasible solution by using the constraint
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Algorithm 4.3: Augmented Sampling Procedure HG-CB
input : root node St, optimistic policy ΠO, a set of candidate actions A,

significance level α, indifference coefficient β
output: action with the highest sample mean

1 run Algorithm 4.2 to cluster candidate actions: A0, A1, . . . ;
2 set a∗ = ∅;
3 Simulation stage:
4 while simulation budget exists do
5 for θ = 0, 1, . . . do
6 set Asim ← Aθ ∪ a∗;
7 run Algorithm 4.1 for Asim to identify the best candidate a∗;
8 end

9 end

propagation method [Apt, 2003]. The same steps are repeated for incremental values

of θ until all candidate actions have found their affiliations.

We now introduce an augmented sampling strategy (abbreviated as HG-CB)

as described in Algorithm 4.3, that takes advantage of the grouping rule HG. This

strategy starts the exploration from the group with smaller θ values. This is because

intuitively, it should be beneficial to avoid idle resources. Given the grouping results

A0, A1, A2, . . . and significance level α, we first use the CB strategy to identify the

best action a∗ from group A0. Then, we shift the simulation process to the group

A1. Let Asim denote the set of candidate actions for the new simulation problem.

At this new round, the set Asim is comprised of the best candidate a∗ identified from

the group A0 and candidate actions in the current group A1, i.e. Asim = {A1 ∪ a∗}.
After identifying the best action a∗ for Asim, HG-CB carries on the aforementioned

steps for the remaining groups.

4.7 Numerical Experiments

In this section, we describe the experimental setup and report computational re-

sults to demonstrate the efficacy of using the optimistic policy, and CB and HG-CB
sampling strategies in the rollout algorithm.

4.7.1 Experimental Setup

We have created three benchmark problems (abbreviated as BP-S, BP-M and BP-

L) for the numerical experiments. Data for these problems can be downloaded from
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Table 4.2: Description of test problems.

Problem Time Periods Resource Drug Acceleration Units of
Instances (weeks) Types Projects Measures Resources

BP-S 1040 2 5 30
type 1: 50
type 2: 60

BP-M 1040 2 7 42
type 1: 55
type 2: 65

BP-L 1040 2 10 90
type 1: 65
type 2: 65

the website1. A brief description of benchmark problems (in terms of resource types,

number of available resources, drug projects and acceleration measures) is presented

in Table 4.2. We assume that the planning horizon is 20 years, with each period

corresponding to one week. Therefore, this experimental setup yields T = 1040.

Two types of resources are allocated to drug projects. BP-S is assumed to have 50

and 60 units of types 1 and 2 resources, respectively. On the other hand, BP-M

has 55 units of type 1 resource and 65 units of type 2 resource, while BP-L has 65

units of types 1 and 2 resources. The test instances BP-S and BP-M respectively

involve five and seven drug projects and have two kinds of acceleration measures for

each clinical trial of a drug project. The large-sized benchmark problem BP-L has

10 drug projects and three acceleration measures for each clinical trial.

The algorithmic parameter settings of CB and HG-CB sampling strategies

is set as follows: the significance level α is fixed at 5 × 10−8 and the indifference

coefficient is set to be 1. Moreover, if any actions has not been explored, we apply

the CRN method to generate 20 samples of uncertain task outcomes and evaluate

the corresponding cumulative rewards.

We run the numerical experiments on a machine with Intel i7-6700K CPU

and 32GB memory. These experiments are coded in Python 3.6. The optimistic

decision rule at each state is obtained by using the CPLEX mathematical program-

ming solver of which the relative gap tolerance is set to be 0.005. The heuristic-based

grouping rule implemented is based on the CPLEX constraint programming solver.

4.7.2 Average Performance Comparison of Base Policies

We are first concerned with the performance of optimistic policy ΠO by comparing

with the following heuristic policies (used in the study of Choi et al. [2004]) as

1https://www.researchgate.net/publication/327108858_Benchmark_Problems_BP-S_BP-M_

BP-L.
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Table 4.3: Average cumulative rewards obtained by different base policies integrated
within the rollout algorithm.

Problems Sampling Base Policies

Instances Strategies ΠO ΠHSPT ΠHERP

BP-S
CB 3059.23 2235.95 2642.68
HG-CB 3089.81 2263.07 2713.41

BP-M
CB 5176.79 3952.51 3249.61
HG-CB 5226.67 4005.18 3413.08

BP-L
CB 8059.91 6135.72 6437.82
HG-CB 8211.53 6220.57 6575.74

The best results (highest rewards) are highlighted in bold.

benchmark approaches.

• High success probability task first (ΠHSPT ): This approach determines

the action for each child node according to the success probabilities of available

tasks.

• High expected revenue project first (ΠHERP): This is a greedy-like

scheduling heuristic that computes the conditionally expected profit of each

drug project without using any acceleration measures and gives priority to the

drug projects with highest conditionally expected profits.

The experimental settings are as follows. As the performance criterion for

the comparison of different base policies, we use the average cumulative reward over

various sample trajectories. For each problem instance, we generate 100 CRN sam-

ples of uncertain task outcomes to evaluate the performance of various base policies

integrated within the rollout algorithm. The CB and HG-CB sampling strategies are

implemented to support the rollout algorithm. We employ a measure of “average

evaluation” (a.e.) to specify the total simulation budget at each node. For instance,

if the root node has 200 candidate actions, 50 a.e. corresponds to 200×50 = 10, 000

simulation replications. In this experiment, the average evaluation of CB and HG-

CB at each state is fixed at 150. Table 4.3 displays the average cumulative rewards

obtained by different base policies integrated within the rollout algorithm. Table 4.4

presents the Bernstein confidence interval for the pairwise performance difference

between distinct base policies under the significance level α = 0.025.

As shown in Tables 4.3 and 4.4, the optimistic decision rule has the best

performance in all test problems, indicating the importance of considering the overall

profit of drug projects in the base policy design. We also observe that ΠHERP
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Table 4.4: Bernstein confidence interval for the pairwise performance difference
between distinct base policies (significance level α = 0.025).

BP-S

CB

⇧O ⇧HSPT ⇧HERP

HG-CB

⇧O ⇧HSPT ⇧HERP

⇧O 823.28±421.53 416.55±362.05 ⇧O 826.74±494.87 376.40±359.68
⇧HSPT -823.28±421.53 -406.73±542.19 ⇧HSPT -826.74±494.87 -450.34±465.92
⇧HERP -416.55±362.05 406.73±542.19 ⇧HERP -376.40±359.68 450.34±465.92

BP-M

CB

⇧O ⇧HSPT ⇧HERP

HG-CB

⇧O ⇧HSPT ⇧HERP

⇧O 1224.28±683.07 1927.18±556.90 ⇧O 1221.49±657.40 1813.59±528.26
⇧HSPT -1224.28±683.07 702.90±625.41 ⇧HSPT 1221.49±657.40 592.10±629.71
⇧HERP -1927.18±556.90 -702.90±625.41 ⇧HERP 1813.59±528.26 -592.10±629.71

BP-L

CB

⇧O ⇧HSPT ⇧HERP

HG-CB

⇧O ⇧HSPT ⇧HERP

⇧O 1924.19±794.92 1622.09±790.01 ⇧O 1990.96±891.40 1635.79±593.73
⇧HSPT 1924.19±794.92 -302.10±199.30 ⇧HSPT -1990.96±891.40 -355.17±319.58
⇧HERP -1622.09±790.01 302.10±199.30 ⇧HERP -1635.79±593.73 355.17±319.58

Table 4.5: Base policy comparison: average CPU time per decision in seconds

Problem Base Policies

Instances ΠO ΠHSPT ΠHERP

BP-S 0.51 0.32 0.38
BP-M 0.57 0.37 0.43
BP-L 0.63 0.45 0.46

presents a performance advantage over ΠHSPT in most test instances although the

difference is small relative to the difference of these two base policies to ΠO. In

particular, the differences between ΠHERP and ΠHSPT for the problem instances

BP-S and BP-M are not statistically significant at the 0.025 significance level when

applying the HG-CB sampling strategy. On average, ΠO is by 31% better than the

average other base policies. From the performance comparison of CB and HG-CB,

we observe that HG-CB contributes to the performance of all base policies more

than CB. This result confirms the advantage of integrating the grouping rule within

the sampling strategy.

Table 4.5 presents the average CPU time needed for various base policies to

identify an action in three test instances. The results show that the computational

effort of ΠO is slightly larger than that of ΠHERP and ΠHSPT . It is because ΠO

identifies the action by using the rollout horizon optimisation framework. The CPU

time of using ΠO policy at first several periods might be large, though we have

applied the complexity reduction method that ignores the resource constraints for

the future states.
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Table 4.6: Average cumulative rewards obtained by different sampling strategies at
varying simulation budget.

Problem Simulation Sampling Strategies

Instances Budgets (a.e.) CB HG-CB UCB1 ε-greedy Boltzmann

BP-S

50 2996.86 3021.26 2805.11 2924.57 2893.67
100 3037.17 3044.15 2832.02 2898.91 2894.89
150 3059.23 3089.81 2841.48 2902.54 2901.26

BP-M

50 5119.53 5181.02 5084.96 5126.18 5124.51
100 5148.67 5186.65 5091.78 5137.63 5141.66
150 5176.84 5226.67 5099.50 5155.84 5185.59

BP-L

50 8038.60 8123.52 7735.25 7826.10 7858.53
100 8048.68 8182.97 7739.52 7862.68 7961.68
150 8059.91 8211.53 7747.83 7930.93 8030.60

The best results (highest values) and those statistically not different from the best are
highlighted in bold.

4.7.3 Average Performance Comparison with Benchmark Sampling

Strategies

In this experiment, we investigate the average performance of the proposed sampling

strategies, namely CB and HG-CB. We consider the following bandit policies for the

performance comparison.

• The UCB1 algorithm is a sampling algorithm that uses the Chernoff-

Hoeffding confidence bound for estimating the expected cumulative reward

[Auer et al., 2002]. At each simulation stage, the algorithm performs a new

evaluation for the action with the largest upper confidence bound.

• The ε-greedy policy exploits the best action so far (with probability 1− ε)
and randomly simulates an action with probability ε [Kuleshov and Precup,

2014]. The ε is fixed at 0.05.

• The Boltzmann policy applies the Boltzmann distributions of each candi-

date action to determine the evaluation at each simulation stage [Fernández

and Veloso, 2006]. The temperature is specified as 0.05.

Note that all benchmark methods are non-CRN sampling strategies, which use in-

dependent samples in the simulation process.

We generate 100 CRN samples of uncertain task outcomes for each problem

instance. These samples are used to evaluate the average performances of various

sampling approaches so that all performance differences can be attributed to the
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sampling strategy alone. In this experiment, we consider three different average

evaluations of 50, 100 and 150 as simulation budgets for each sampling approach.

Table 4.6 presents the performance of various sampling methods on test instances

BP-S, BP-M, and BP-L in terms of average cumulative reward (from t = 1 to

t = 1040) over 100 samples of uncertain task outcomes. Table 4.7 reports the

Bernstein confidence intervals for the pairwise difference between sampling strategies

at the significance level α = 0.025.

The results show that both CB and HG-CB perform consistently better than

the other approaches in all test instances, because the CRN technique can induce

positive correlations for the pairwise comparison procedure and provides statisti-

cally fair comparisons for all candidate actions. The benchmark approaches using

independent samples display a very similar performance pattern. In the drug devel-

opment model, the sample of task uncertain outcomes significantly influences the

cumulative reward. When the performances of candidate actions are evaluated by

using different samples, the sampling strategies can be misled and tends to select

an incorrect candidate action. We also observe that HG-CB presents performance

advantages over CB for all test instances at three various simulation budgets. These

results once again confirm the advantage of integrating the heuristic-based grouping

rule with a sampling strategy.
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Table 4.7: Bernstein confidence interval for the pairwise difference between distinct strategies (significance level α = 0.025).

BP-S

50

CB HG-CB UCB1 ✏-greedy Boltzmann

100

CB HG-CB UCB1 ✏-greedy Boltzmann
CB -24.40±20.50 191.75±176.44 72.29±68.81 103.19±97.52 CB -6.98±10.51 205.15±169.40 138.26±94.82 142.28±137.51

HG-CB 24.40±20.50 216.15±181.80 96.69±63.71 127.59±84.27 HG-CB 6.98±10.51 212.13±178.71 145.24±126.58 149.26±135.72

a.e.

UCB1 -191.75±176.44 -216.15±181.80 -119.46±83.16 -88.56±69.71

a.e.

UCB1 -205.15±169.40 -212.13±178.71 -66.89±60.38 -62.87±53.84
✏-greedy -72.29±68.81 -96.69±63.71 119.46±83.16 30.9±34.2 ✏-greedy -138.26±94.82 -145.24±126.58 66.89±60.38 4.02±8.57

Boltzmann -103.19±97.52 -127.59±84.27 88.56±69.71 -30.9±34.2 Boltzmann -142.28±137.51 -149.26±135.72 62.87±53.84 -4.02±8.57

150

CB HG-CB UCB1 ✏-greedy Boltzmann
CB -30.58±28.11 217.75±197.45 156.69±119.32 157.97±104.64

HG-CB 30.58±28.11 248.33±185.91 187.27±155.84 188.55±142.63

a.e.

UCB1 -217.75±197.45 -248.33±185.91 -61.06±57.89 -59.78±54.59
✏-greedy -156.69±119.32 -187.27±155.84 61.06±57.89 1.28±5.61

Boltzmann -157.97±104.64 -188.55±142.63 59.78±54.59 -1.28±5.61

BP-M

50

CB HG-CB UCB1 ✏-greedy Boltzmann

100

CB HG-CB UCB1 ✏-greedy Boltzmann
CB -61.49±52.54 34.57±23.16 -6.65±8.21 -4.98±6.14 CB -37.98±32.26 56.89±54.40 11.04±10.63 7.01±9.52

HG-CB 61.49±52.54 96.06±79.30 54.84±46.51 56.51±49.36 HG-CB 37.98±32.26 94.87±72.10 49.02±45.34 44.99±43.41

a.e.

UCB1 -34.57±23.16 -96.06±79.30 -41.22±39.13 -39.55±34.87

a.e.

UCB1 -56.89±54.40 -94.87±72.10 -45.85±36.28 -49.88±45.86
✏-greedy 6.65±8.21 -54.84±46.51 41.22±39.13 1.67±3.35 ✏-greedy -11.04±10.63 -49.02±45.34 45.85±36.23 -4.03±8.33

Boltzmann 4.98±6.14 -56.51±49.36 39.55±34.87 -1.67±3.35 Boltzmann -7.01±9.52 -44.99±43.41 49.88±45.86 4.03±8.33

150

CB HG-CB UCB1 ✏-greedy Boltzmann
CB -49.83±41.87 77.34±69.50 21.00±17.56 -8.75±7.96

HG-CB 49.83±41.87 127.17±109.79 70.83±59.04 41.08±30.94

a.e.

UCB1 -77.34±69.50 -127.17±109.79 -56.34±48.93 -86.09±79.55
✏-greedy -21.00±17.56 -70.83±59.04 56.34±48.93 -29.75±28.08

Boltzmann 8.75±7.96 -41.08±30.94 86.09±79.55 29.75±28.08

BP-L

50

CB HG-CB UCB1 ✏-greedy Boltzmann

100

CB HG-CB UCB1 ✏-greedy Boltzmann
CB -84.92±70.16 303.35±276.59 212.50±207.44 180.07±196.07 CB -134.29±100.21 309.16±337.20 186.00±178.44 87.00±85.03

HG-CB 84.92±70.16 388.27±389.80 297.42±275.11 264.99±241.58 HG-CB 134.29±100.21 443.45±414.91 320.29±285.60 221.29±274.22

a.e.

UCB1 -303.35±276.59 -388.27±389.80 -90.85±98.47 -123.28±122.41

a.e.

UCB1 -309.16±337.20 -443.45±414.91 -123.16±102.49 -222.16±212.39
✏-greedy -212.50±207.44 -297.42±275.11 90.85±98.47 -32.43±43.58 ✏-greedy -186.00±178.44 -320.29±285.60 123.16±102.49 -99.00±96.31

Boltzmann -180.07±196.07 -264.99±241.58 123.28±122.41 32.43±43.58 Boltzmann -87.00±85.03 -221.29±274.22 222.16±212.39 99.00±96.31

150

CB HG-CB UCB1 ✏-greedy Boltzmann
CB -151.62±149.54 312.08±258.83 128.98±126.54 29.31±35.13

HG-CB 151.62±149.54 463.70±452.64 280.60±267.85 180.93±171.49

a.e.

UCB1 -312.08±258.83 -463.70±452.64 -183.10±179.30 -282.77±261.49
✏-greedy -128.98±126.54 -280.60±267.8 183.10±179.30 -99.66±85.91

Boltzmann -29.31±35.13 -180.93±171.49 282.77±261.49 99.66±85.91
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4.8 Conclusions

In this Chapter, we introduced a discrete-time finite MDP formulation of the clini-

cal trial scheduling and resource allocation problem, where the outcome of a clinical

trial is uncertain and the revenue of the approved drug depends on the project

completion time. In the proposed model, acceleration measures may be applied to

compress the processing time of a clinical trial. We propose an adaptive rollout

algorithm to identify a cost-effective scheduling and resource allocation strategy.

The adaptive rollout algorithm uses an optimistic policy to construct corresponding

search trees for estimating possible outcomes after the selected actions are imple-

mented. We show that the rollout policy is as good as or better than the optimistic

policy. To improve the simulation efficiency, we propose a CB sampling strategy to

guide the growth of the search tree for candidate actions. We show that CB can

terminate within a finite simulation budget and have a certain performance guar-

antee. Moreover, we introduce an augmented sampling strategy (HG-CB) that uses

a heuristic-based grouping rule to adjust the exploration priority in the simulation

procedure. In the numerical experiments, we demonstrate the advantage of applying

optimistic policy, CB and HG-CB in the rollout algorithm.
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Chapter 5

Summary and Future Work

In this thesis, we have developed new sampling strategies that address informa-

tion collection problems in three different stochastic optimisation frameworks. In

sampling-based stochastic programs, the information collection problem is related to

a post-processing procedure with numerous potential solutions and a relatively lim-

ited simulation budget. We develop a two-stage measurement strategy, in which the

key component is a Wasserstein-based screening rule that can remove non-promising

solutions from the simulation stage. The results show that the screening approach

can improve the efficiency of optimal computing budget allocation approach and

that better solutions can be found within the given computational budget.

In the context of stochastic black-box optimisation, an evolutionary strategy

is used to search for the solution with the best mean performance over a distur-

bance region. In each iteration, the evolutionary strategy identifies a promising

search direction by generating several potential solutions and comparing their mean

performances. To reduce the computational cost, we use an archive sample approxi-

mation approach that takes into account previous simulation results when estimating

the mean performance. A limited computational budget is available to evaluate the

fitness value of a few additional points in the decision space. In this context, it is

desirable to identify the best sampling locations that most improve the estimation

accuracy of solutions’ mean performances. We develop new sampling strategies that

use the Wasserstein distance metric to suggest promising sampling locations. We

empirically examine the performance of our new sampling strategies on six artifi-

cial benchmark problems and one robust airfoil shape optimisation problem. The

superiority of using our sampling strategies is confirmed in all test instances.

For the drug development problem investigated in this thesis, an adaptive

rollout algorithm is introduced to approximately solve the dynamic programming
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model. The adaptive rollout algorithm involves two methodological innovations.

One is an optimistic policy that utilises the rolling horizon optimisation framework

to find the appropriate move at the child nodes. Another innovation is the adaptive

sampling strategy that addresses the information collection problem arising from the

rollout algorithm. We exploit the common random number technique and empirical

Bernstein confidence bound in a statistical racing procedure to improve measure-

ment efficiency. Our results show that the adaptive sampling strategy contributes

to the performance of a rollout algorithm more than heuristic bandit strategies.

This thesis has presented several new sampling approaches and empirically

demonstrated their performance advantage over existing state-of-the-art approaches

on various test problems. Several potential extensions can be envisaged to the

proposed approaches.

• The two-stage measurement strategy in Chapter 2 might be tailored by devel-

oping a sophisticated method for choosing the number of potential solutions

to be evaluated in the second-stage simulation process. One also can include

some stopping rules to decide when to stop measurement. If the simulation

time is sufficient, then the optimal computing budget allocation approach can

be applied to the potential solutions that are eliminated by the first-stage

screening process. The screening rule may also be extended to multi-stage

stochastic programs.

• The efficient sampling strategies in Chapter 3 can be further developed in

several possible directions. The idea of sampling budget control can be refined

with more sophisticated control strategies. The approximation region is only

helpful at the beginning of the run, so the parameter controlling the extension

can be reduced over the run. Moreover, surrogate-based approaches can be

employed to estimate the gradient information and achieve a tighter upper

bound approximation for the estimation error.

• The adaptive sampling strategy in Chapter 4 can be integrated with the Monte

Carlo tree search algorithm to address more complex real-world problems,

such as playing board games [Silver et al., 2017], card games [Cowling et al.,

2012] and car-sharing problems [Jiang et al., 2017]. The upper confidence

bound policy is the dominant sampling approach of the Monte Carlo tree

search algorithm. However, in the rollout settings, the numerical results have

shown that our sampling strategy is better than the upper confidence bound

policy. It would be interesting to compare our sampling strategy with the

upper confidence bound policy in Monte-Carlo tree search.
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Appendix A

The Wasserstein Metric

The Wasserstein metric (also known as the Earth mover’s distance) is a statistical

distance between two probability measures, which can be computed by solving the

Monge-Kantorovich transportation problem [Villani, 2008]. The two probability

measures in the Wasserstein distance are considered as warehouses and destina-

tions. The distance value between two probability measures is determined by the

minimum transportation cost from warehouses to destinations. Let P and Q de-

note two discrete probability distributions with samples G = {gj | j = 1, . . . , J} and

H = {hk| k = 1, . . . ,K}. Let ψ represent the joint probability distribution with

marginal probabilities P and Q. The Wasserstein distance W (P,Q) between dis-

crete probability measures P and Q can be formulated as the following optimisation

problem.

W (P,Q) = min
ψj,k

K∑
k=1

J∑
j=1

d(gj , hk)ψj,k

s.t.

J∑
j=1

ψj,k = Q(hk), ∀k

K∑
k=1

ψj,k = P(gj), ∀j

K∑
k=1

Q(hk) = 1,

J∑
j=1

P(gj) = 1

ψj,k ≥ 0, ∀j, k,

(A.1)

where d(gj , hk) = ‖gj − hk‖2 is the Euclidean distance between gj and hk.
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gramming model for transportation network protection. Computers & Operations

Research, 36(5):1582–1590, 2009. doi:10.1016/j.cor.2008.03.001.

François V Louveaux and Yves Smeers. Optimal investments for electricity genera-

tion: A stochastic model and a test problem. Numerical Techniques for Stochastic

Optimization, pages 33–64, 1988. doi:10.1007/978-3-642-61370-8 24.

Wai-Kei Mak, David P Morton, and R Kevin Wood. Monte Carlo bounding tech-

niques for determining solution quality in stochastic programs. Operations Re-

search Letters, 24(1):47–56, 1999. doi:10.1016/s0167-6377(98)00054-6.

112

https://doi.org/10.2307/1269971
https://doi.org/10.1016/j.ejor.2005.02.052
https://doi.org/10.1007/s00158-008-0328-2
https://doi.org/10.1007/s10107-015-0898-x
https://doi.org/10.1145/1772690.1772758
https://doi.org/10.1007/s10479-006-6169-8
https://doi.org/10.1016/j.cor.2008.03.001
https://doi.org/10.1007/978-3-642-61370-8_24
https://doi.org/10.1016/s0167-6377(98)00054-6


Oden Maron and Andrew W Moore. The racing algorithm: Model selection for lazy

learners. Artificial Intelligence Review, 11(1-5):193–225, 1997. doi:10.1007/978-

94-017-2053-3 8.
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