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Abstract

The Sidorenko conjecture gives a lower bound on the number of homomorphisms
from a bipartite graph to another graph. Szegedy [28] used entropy methods to prove
the conjecture in some cases. We will refine these methods to also give lower bounds
for the number of injective homomorphisms from a bipartite graph to another bipartite
graph, and a lower bound for the number of homomorphisms from a k-partite hyper-
graph to another k-partite hypergraph, as well as a few other similar problems.

Next is a generalisation of the Kruskal Katona Theorem [19, 17]. We are given in-
tegers k < r and families of sets A ⊂ N(r) and B ⊂ N(r−1) such that for every A ∈ A,
at least k distinct subset of A of size r − 1 are in B. We then ask the question of what
is the minimum size of A as a function of the size of B? In the case where 0 ≤ k ≤ 3,
we will be able to find an exact solution. Then for k ≥ 4 we will make a lot of progress
towards finding a solution.

The next chapter is to do with Turán-type problems. Given a family of k-hypergraphs
F , ex(n,F) is the maximum number of edges an F-free n-vertex k-hypergraph can have.
We prove that for a rational r, there exists some finite family F of k-hypergraphs for
which ex(n,F) = Θ(nk−r) if and only if 0 ≤ r ≤ k − 1 or r = k.

The final chapter will deal with the implicit representation conjecture, in the special
case of semi-algebraic graphs. Given a graph in such a family, we want to assign a name
to each vertex in such a way that we can recover each edge based only on the names
of the two incident vertices. We will first prove that one ‘obvious’ way of storing the
information doesn’t work. Then we will come up with a way of storing the information
that requires O(n1−ε) bits per vertex, where ε is some small constant depending only on
the family.

v



Chapter 1

Introduction

1.1 Injectivity-like property added to the Sidorenko con-

jecture

Chapter 2 is about a result related to the Sidorenko conjecture. The Sidorenko conjec-

ture was asked by Sidorenko [24], and also by Erdos and Simonovits [26]. It states

that if G is a bipartite graph with e(G) edges and X is a graph with n vertices and

average degree d, then the number of homomorphisms from G to X is at least nde(G).

The conjecture has not been solved completely, but has for a large number of cases,

including paths, by Blackley and Roy [5], cycles, trees and complete bipartite graphs by

Sidorenko [23], and a few more exotic cases. In particular, Szegedy proved it for a very

general class of graphs [28] and Szegedy’s proof will be the one most useful to us, in

particular when it is applied to trees.

The Sidorenko conjecture is interesting because many problems in combinatorics re-

quire bounding subgraphs, and the Sidorenko conjecture, in the cases where it has been

proved, is a powerful tool for doing so. However, one complication when using it is

that the image of a homomorphism from G to X is not an actual copy of G: it can

self-intersect. The most extreme example of this is that since G is bipartite, there exists

a homomorphism that sends each side of the bipartition of G to a vertex, so therefore

a single edge is an image of this homomorphism. Usually in applications, we want to

exclude such things and require that the copies of H don’t self-intersect, or in other

words, we want the homomorphisms to be injective.

What we are doing here is we are first going to simply present Szegedy’s proof in the
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case where G is a tree. This is because we will use elements and intermediate results

from it to do the proof of the more general result. That is to say, we will provide a lower

bound for the number of injective homomorphisms from G to X. In fact, we will be

slightly more general, and count the number of homomorphisms with an ‘injective-like’

property P. The result we get is that as n, d→∞, the number of homomorphisms with

property P is at least cnde(G)(1 − o(1)), where c ≤ 1 is a constant that we give explic-

itly. The main reason for doing this generalisation is because we want to use it in two

other problems, which include some injective-like properties for copies of trees. These

two problems were actually the principal motivation for developing this modification to

Szegedy’s proof. We will present these two applications in sections 3 and 4.

1.2 A Kruskal-Katona type problem

The third chapter is about a variant on the Kruskal-Katona Theorem. In the Kruskal

Katona Theorem, we are given families of sets A ⊂ [n](r) and B ⊂ [n](r−1) such that for

every A ∈ A, there exist distinct B1, B2, ..Br ∈ B with Bi ⊂ A. Given b = |B|, we want

to maximise a = |A|. The Kruskal-Katona Theorem states that an optimal solution is

when both A and B are initial segments of the colexicographic ordering on sets of size r

and r − 1 respectively.

We want to consider the modified problem, posed by Bollobás and Eccles [6]

where instead of requiring all r subsets of A of size r − 1, we only require k of them for

some k < r: given families of sets A ⊂ [n](r) and B ⊂ [n](r−1) such that for every A ∈ A,

there exist distinct B1, B2, ..Bk ∈ B with Bi ⊂ A. Given b = |B|, we want to maximise

a = |A|.

The conjectured solution is that there exists some set S of size r−k and then A consists

of sets in an initial segment of colex on sets of size k that are then unioned with S. B
is similarly comprised of sets in an initial segment of colex on sets of size k − 1 that are

then unioned with S.

We observe that this conjecture is true in the cases k = 0, k = 1, k = 2. We also

prove the case k = 3 as long as b ≥ 406. For the case k ≥ 4, we prove the result for

infinitely many values of b but not all. We also prove that this conjecture is within an

additive constant of the real result.

The first few subsections are dealing with the trivial cases of k = 0 and k = 1 fol-
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lowed by the less trivial but still pretty straightforward case k = 2.

The next subsection deals with the case k = 3. A very rough idea about how the proof

goes is as follows: We first relate the values of a and b by counting the number of paths

of length 2 (a path of length 2 means 2 elements of A and 3 elements of B in a sequence

where two successive sets differ only by the addition or subtraction of a single element).

This proves the conjecture in the cases where |B| =
(
c
2

)
for some integer c. For other

values of |B|, we use stability to say things about a potential counter-example and even-

tually prove that any counter-example must ‘look’ a lot like the solution to the classical

version of Kruskal Katona. We can then apply the classical version of Kruskal Katona

to get even better bounds on a, and these are so tight that we end up having only

3 potential classes of counter examples. We finish up by looking at each of these 3 in

turn and realise none of them are possible. Therefore the conjecture holds for all b ≥ 406.

The final subsection deals with the case k ≥ 4 and this is where we use the modi-

fied version of Sidorenko from section 2. Unfortunately, this section contains a gap in

the proof which I only noticed late and which hasn’t been fixed. We make a conjecture

which if true, fixes the issue. Assuming this conjecture is true, the rest of the proof

is very similar to the case k = 3 but a few additional complications arise. A rough

outline is as follows: we start by bounding the number of paths of length k − 1 using

our Sidorenko result. This allows us to give some good bounds on a and b. This doesn’t

immediately give us a sharp bound like in the case k = 3, but it is still close enough to

allow us to use stability and it gives information about what a potential counter-example

would look like. It also ’looks’ a lot like a solution to the classical version of Kruskal

Katona, which is enough to let us apply the classical Kruskal Katona Theorem to get

even better bounds on a. These end up being so tight that for any k, that we can

prove the conjecture for infinitely many b. It also tells us that for every k, there exists

some constant τ(k) and then the real optimal value for a has to be within τ(k) of the

conjectured optimal value for a.

1.3 Rational Exponents for hypergraph Turán problems

The fourth chapter will be about the following result:

Given a family of k-hypergraphs F , ex(n,F) is the maximum number of edges

a k-hypergraph can have, knowing that said hypergraph has n vertices but contains no

copy of any hypergraph from F as a subgraph. We prove that for a rational r, there
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exists some finite family F of k-hypergraphs for which ex(n,F) = Θ(nk−r) if and only

if 0 ≤ r ≤ k − 1 or r = k,.

Finding ex(n, {F}) for a fixed graph or hypergraph F is known as the Turán prob-

lem. For ordinary (k = 2) non-bipartite graphs, we have a reasonable understanding:

Turán gave an exact solution when F is a complete graph [29], while Erdős and Stone

gave an asymptotic solution for any non-bipartite graph [12]: when H is a graph with n

vertices and chromatic number χ(H),

ex(n,H) =

(
1− 1

χ(H)− 1
+ o(1)

)(
n

2

)
.

However, for bipartite graphs and more general hypergraphs (k ≥ 3), very little is

known, not even asymptotically [25, 18]. For a lot of families of k-hypergraphs, ex(n,F)

is of order Ω(nk). However, there are some for which ex(n,F) is of order o(nk). We call

this case a degenerate Turán problem. Erdős [9] found some bounds for the extremal

number for the complete k-partite k-hypergraph with equal partitions of size l: there

exists a constant C such that for all n sufficiently large,

nk−C/l
k−1

< ex(n,K(k)(l, l, l..., l)) ≤ nk−1/lk−1
.

This implies that whenever F contains a k-partite k-hypergraph, this is a degenerate

Turán problem.

In 1979, Erdős [10] conjectured that for every rational r between 1 and 2, there ex-

ists a finite family of bipartite graphs F with ex(n,F) = Θ(nr) . This conjecture was

later proved in 2015 by Bukh and Conlon [8].

In 1986, Frankl [13] proved a related result for hypergraphs: for every rational r ≥ 1,

there exists some k ∈ N and some finite family F of k-hypergraphs such that ex(n,F) is

of order nr. (Side-note: the F that Frankl used also had the property that every F ∈ F
had exactly 2 edges.) .

In 2016, Ma, Yuan and Zhang [21] discovered an infinite family of k-hypergraphs for

which they could solve the Turán problem asymptotically. They proved that K
(k)
s1,s2,...,sk ,

the complete k-partite k-hypergraph with partition sizes s1, s2, ..., sk has ex(n,K
(k)
s1,s2,...,sk) =
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Θ(n
k− 1

s1s2s3...sk−1 ) whenever sk is sufficiently large..

The way this section is organised is by first constructing the set of hypergraphs that

will work for 0 ≤ r < 1. The construction is similar to that from [8]. The second

subsection is dedicated to proving that our construction satisfies the lower bound. We

use similar techniques to those used in [8] when they proved their lower bound. The

third subsection deals with proving the upper bound, and this is where our Sidorenko

result comes in. This ends up proving the upper bound in the case 0 ≤ r < 1. The last

subsection deals with generalising the result from 0 ≤ r < 1 to 0 ≤ r < k − 1. We also

show that r = k − 1 and r = k are both possible, but k − 1 < r < k is impossible.

1.4 Implicit representation conjecture for semi-algebraic

graphs

The fourth and final section is of a slightly different flavour.

A semi-algebraic family of graphs consists of a Euclidean space S and a set of poly-

nomial equalities and inequalities on S × S, the set of graphs in the family are exactly

those graphs whose vertices are points in S and whose edges are exactly those pairs of

points that satisfy all the polynomial equalities and inequalities.

For each vertex of a graph H with n vertices, we associate m(n) bits of information.

That means there is a sequence of functions Fn such that for every integer n, Fn is a

function from the set of graphs with n vertices to [2m(n)]n and there there is a function

Gn from [2m(n)] × [2m(n)] to {0, 1} such that for every pair of vertices x and y of H,

Gn(Fn(H)x, Fn(y)y) = 1 if and only if xy is an edge of H. The problem we want to solve

is to minimise m. This was posed in [16, 27].

After a short subsection detailing a few simple results about semi-algebraic graphs, we

prove that a ’natural’ hypothesis for F and G doesn’t actually work. This hypothesis is

to approximate the coordinates of all the vertices using algebraic numbers and then just

store these algebraic numbers. This builds upon the work by McDiarmid and Müller

[22], who proved that storing approximations to the coordinates as integers didn’t work

because there exists a sequence of graphs in a semi-algebraic family for which the max-

imum crossratio |a − b|/|c − d| is too large for the vertices to be stored using integers.
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Kang and Müller [15] improved upon this and showed that this crossratio was also too

large for the vertices to be stored using rational numbers, and that therefore storing ra-

tional approximations of the coordinates of the vertices doesn’t work. Our proof shows

that this crossratio is too large for the vertices to be stored using algebraic numbers.

The last subsection is about a completely different method, and we show that it does

improve upon the previous best known bound. It is loosely inspired by some of the

methods used in [2] to prove properties about algebraic graphs. Our method improves

the upper bound from n/2 + log2(n) (the trivial bound) to cn1−ε for some small con-

stant ε > 0 and some constant c. This is still far from the lower bound and conjectured

solution of O(log2(n)) but it is still a small improvement.

1.4.1 Definitions and notation

Here we collect some notation we will often use.

Definition 1. Given an integer k ≥ 2, a k-hypergraph G is a set of points (called the

vertices), together with a collection of k-subsets of the vertices (called the edges). For

such a k-hypergraph, let V (G) mean its vertex set, and E(G) its edge set. Also define

|G| = v(G) = |V (G)| to be its number of vertices and e(G) = |E(G)| to be the number

of edges.

Given two hypergraphs G and G′, their union G ∪G′ is defined to be the hyper-

graph that has V (G) ∪ V (G′) as its vertex set, and E(G) ∪ E(G′) as its edge set.

We say that G′ ⊂ G if V (G′) ⊂ V (G) and E(G′) ⊂ E(G).

Definition 2. Given k-hypergraphs G and X, a graph homomorphism (often shortened

to homomorphism) from G to X means a function f that assigns to each vertex of G

some vertex in X and that also preserves edges, i.e. for every edge {x1, x2..., xk} in G,

{f(x1), f(x2), ..., f(xk)} is also an edge of X.

The set of homomorphisms from G to X is denoted by Hom(G,X).

Definition 3. Given a homomorphism H ∈ Hom(G,X) and a subgraph G′ ⊂ G, the

restriction of H to G′ is the homomorphism H ′ ∈ Hom(G′, X) defined by H ′(x) = H(x)

6



for every vertex x ∈ G′.
In this case, we also call H an extension of H ′ from G′ to G.

Definition 4. A property P of homomorphisms is a function from Hom(G,X) to

{true, false} for some G and X.

If P is a property of homomorphisms, then we will denote by HomP(G,X) the set of

homomorphisms that satisfy property P.

For example, ‘injectivity’ is a property of homomorphisms from G to X for any choice

of G and X. A homomorphism H ∈ Hom(G,X) is injective if and only if H(x) 6= H(y)

for every choice of vertices x 6= y in G.

Definition 5. A discrete probability distribution µ on some countable set S is a function

from S to the real interval [0, 1] such that
∑

s∈S µ(s) = 1.

Definition 6. Given a discrete probability distribution µ on a countable set S and a

subset A of S, P(A) =
∑

s∈A µ(s) means the probability that event A will occur.

Definition 7. Given a discrete probability distribution µ on a countable set S and a

random variable B : S → R, the expectation of B is E(B) =
∑

s∈S B(s)µ(s) if it exists.

Definition 8. Given a discrete probability distribution µ on a countable set S, the

entropy of µ is defined to be D(µ) =
∑

s∈S − ln(µ(s))µ(s) if it exists.

Lemma 1. Given a probability distribution µ on a finite set S, we have:

D(µ) ≤ ln(|S|)

Proof of Lemma 1: The function −x ln(x) is concave on the interval between 0

and 1. This implies that D(µ)
|S| =

∑
s∈S − ln(µ(s))µ(s)

|S| ≤ − ln
(∑

s∈S µ(s)

|S|

) ∑
s∈S µ(s)

|S| =

− ln
(

1
|S|

)
1
|S| = ln(|S|)

|S| , and therefore D(µ) ≤ ln(|S|).
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Chapter 2

Injectivity-like property added to

the Sidorenko conjecture

2.1 Introduction

The Sidorenko conjecture states that if G is a bipartite graph with e(G) edges and X is

a graph with n vertices and average degree d, then the number of homomorphisms from

G to X is at least nde(G). Here, we will only be looking at the case where G = T is a

tree, for which there do exist a number of proofs, most notably the proof by Szegedy

[28] which uses entropy.

However, the number of homomorphisms is not that useful in applications because just a

single edge on its own is the image of a homomorphism from a bipartite graph. Generally,

in applications, we want a bound on the number of certain special types of homomor-

phisms, for example, we might want a bound on the number of injective homomorphisms.

We will denote these ’special’ homomorphisms we’re interested in by saying that they

have some property P. If P satisfies certain axioms (which we will shorten to saying if

P is injective-like), then we can find a lower bound on the number of our special homo-

morphisms satisfying P.

To best motivate how we will choose our axioms for being ’injective-like’, we will start

with an observation about homomorphisms in general. Suppose we have a subtree T ′ ( T

and a homomorphism H ∈ Hom(T ′, X). Let E be an edge in T that is not in T ′ but

is incident to it, say at some vertex t. Thus, T ′ ∪ E is a slightly larger subtree of T .

We want to find a homomorphism H ′ ∈ Hom(T ′ ∪ E,X) that extends H, or in other
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words, such that the restriction of H ′ to T ′ is exactly H. This means that we just

need to find a suitable image for E in X. The only restriction is that H ′(E) has to be

incident to H ′(t) = H(t). Therefore there are exactly deg(H(t)) possible choices for an

H ′ ∈ Hom(T ′ ∪ E,X) that extends H.

What happens if, instead of looking at all homomorphisms, we only look at injective

ones? What changes in the above observation is that at each step, we lose at most a

constant number of homomorphisms. Indeed, when we pick H ′(E), we need it to be in-

cident to H ′(t), giving deg(H(t)) possible choices, but we also need the other end to not

be any vertex in H(T ′). So we end up with between deg(H(t))− |V (T ′)| and deg(H(t))

possibilities for an H ′ ∈ Hom(T ′ ∪ E,X) that extends H.

The intuitive definition for P being ‘injective-like’ will essentially say that if we replace

Hom with HomP in the above observation, then we only lose a constant proportion of

homomorphisms compared to the regular case. At each step, we will have some real

positive constants c1 and c2 such that there are c1 deg(H(t)) − c2 possibilities for an

H ′ ∈ Hom(T ′ ∪ E,X) that extends H. More precisely:

Definition 9. Given a tree T and a graph X, a property P of homomorphisms from

subtrees of T to X is weakly injective-like if there exists some real positive constant

p ≥ 0, and for every subtree T ′ ⊂ T , there exists a real positive constant 0 < qT ′ ≤ 1

such that the following all hold:

• P holds for all vertex homomorphisms. In other words, if S is a tree with 1 vertex and

no edges, then Hom(S,X) = HomP(S,X).

• If S is a tree with 1 vertex and no edges, then qS = 1.

• Given any subtree T ′ ( T , an edge E incident to T ′ at t, and a homomorphism

H ∈ HomP(T ′, X), then the number of ways to extend H to some H ′ ∈ HomP(T ′∪E,X)

is at least deg(H(t))
qT ′∪E
qT ′
− p.

Definition 10. Given a tree T and a graph X, a property P of homomorphisms from

subtrees of T to X is strongly injective-like if, in addition to being weakly injective-

like, the number of ways to extend H to some H ′ ∈ HomP(T ′ ∪ E,X) is at most

deg(H(t))
qT ′∪E
qT ′

.

Example: Let T be an tree, X a graph, and let P be injectivity. We set f = v(T )− 1

and for every subtree T ′ ⊂ T , we set qT ′ = 1. We check the three bullet points:

• A homomorphism from a single vertex is always injective so the first bullet point holds.
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• The second bullet point holds trivially.

• For the third bullet point, suppose we have a homomorphism H ∈ HomP(T ′, X), and

we want to add a new edge E to T ′, incident to it at t and then get a new homomorphism

H ′ ∈ HomP(T ′ ∪ E,X). There are deg(H(t)) possibilities for this new edge to make a

homomorphism. However, not all the resultant homomorphisms are injective. For it to

be injective, we need the new vertex to NOT be any of the vertices in H(T ′). There

are at most v(H(T ′)) − 1 ≤ v(T ) − 1 = f edges that join H(t) to another vertex of

H(T ′) and as long as we avoid those we are fine. So there are at least deg(H(t)) − f
possibilities for H ′ ∈ HomP(T ′ ∪ E,X) that extends H so the third bullet point holds.

Thus, ’injectivity’ is weakly injective-like. But furthermore, the maximum number of

possibilities for H ′ ∈ HomP(T ′ ∪ E,X) that extends H is deg(H(t)) so injectivity is

strongly injective-like.

Theorem 1 (Szegedy [28]). Let X be a graph with n vertices and average degree d and

let T be a tree with e edges. Then |Hom(T,X)| ≥ nde.

Our main result is a modification of this to include a property P:

Theorem 2. Let T be a tree with e edges and let X be a graph with n ≥ 3 vertices and

average degree d. Suppose P is a strongly injective-like property with p and gT ′ as before.

Then |HomP(T,X)| ≥ ndeqT ·
(

1− e(e+ 2)(1 + q−1
T ) ln(n)p

d

)
.

We also conjecture that this also holds when P is weakly injective-like, though

we have been unable to prove it:

Conjecture 1. Let T be a tree with e edges and let X be a graph with n ≥ 3 vertices

and average degree d. Suppose P is a weakly injective-like property with p and gT ′ as

before. Then |HomP(T,X)| ≥ ndeqT ·
(

1− e(e+ 2)(1 + q−1
t ) ln(n)p

d

)
.

How are we going to go about proving Theorem 2? To start, it is useful to look

at Szegedy’s proof for Theorem 1 because our proof will use a lot of the same elements.

Once we have completed the proof of Theorem 1, we can move on to Theorem 2. To

give a rough idea of how both proofs work, we are going to proceed by induction on the

number of edges of T . The first step is to pick a vertex t1 in T , and think of it as a

tree T0, consisting of 1 vertex and no edges. Then pick an increasing sequence of trees

T0 ⊂ T1 ⊂ T2 ⊂ ... ⊂ Te = T such that Ti has exactly i edges. We will prove the result

in turn for T0, T1, T2 and continue until we eventually prove it for T . We will call the

ith edge that we add Ei, so Ti = Ti−1∪Ei. Moreover, we will label the vertex where the

10



new edge gets added by ti, so V (Ei)∩V (Ti−1) = {ti} for i ≥ 1. Note that a given vertex

can receive several labels, one label or no labels at all; in fact, the number of labels a

vertex has is always its degree minus 1 EXCEPT for the starting vertex, which has the

extra label t1.

This means that given a homomorphism H ∈ Hom(Ti−1, X), there are exactly deg(H(ti))

ways of extending H to some H ′ ∈ Hom(Ti, X). Moreover, if H ∈ HomP(Ti−1, X), there

are at least deg(H(ti))
qTi
qTi−1

− p ways of extending H to some H ′ ∈ HomP(Ti, X).

2.2 Proof of Theorem 1 (Szegedy)

We are going to define a probability distribution µi : Hom(Ti, X)→ [0, 1], by induction

on i. An element of Hom(T1, X) is just a single directed edge. There are nd directed

edges so there are nd elements of Hom(T1, X). µ1 is going to pick one uniformly at

random, so µ1(H) = 1
nd for any H ∈ Hom(T1, X).

For i > 1, pick H ∈ Hom(Ti−1, X). There are deg(H(ti)) possible choices for adding

an extra edge to be the image of Ei. For every one of these, say H ′, we define

µi(H
′) = µi−1(H)

deg(H(ti))
. We are essentially just picking one extra edge to add to Hi−1

uniformly at random amongst all the candidates.

Alternatively, µi(H
′) = 1

nd·
∏i

j=2 deg(H′(tj))
. This is also equal to 1

nd·
∏

s∈Ti
deg(H′(s))deg(s)−1

because every vertex s ∈ Ti has exactly deg(s) − 1 labels, when we exclude the extra

label t1. In particular, it doesn’t depend on which order we added the edges to the tree,

but only on what the final tree Ti looks like.

Given a vertex x ∈ X, we will define a probability distribution µ0(x) = deg(x)
nd . This

makes sense because under the identification of Hom(T0, X) to X, the definition of µ0

is consistent with the definition of µi for larger i and it satisfies the same properties.

11



•
•

Ti

Ti−1

ti
Ei

s •
•

H(Ti)

H(Ti−1)

H(ti)
H(Ei)

H(s)

X

→H

Diagram describing the sets used in the proof

2.2.1 Size of Hom(Ti, X)

We claim that this probability distribution has the following property for any given

vertex x ∈ X and any vertex s ∈ Ti:∑
H∈Hom(Ti,X) :H(s)=x

µi(H) = µ0(x). (2.1)

Indeed, when i = 1, we have:

∑
H∈Hom(T1,X) :H(s)=x

µ1(H) =
∑

F∈Hom(E1,X) :F (s)=x

1

nd
=

deg(x)

nd
= µ0(x).

For larger i, we have if s ∈ Ti−1:

∑
H′∈Hom(Ti,X) :H′(s)=x

µi(H
′) =

∑
H∈Hom(Ti−1,X) :H(s)=x
F∈Hom(Ei,X) :F (ti)=H(ti)

µi−1(H)

deg(H(ti))

=
∑

H∈Hom(Ti−1,X) :H(s)=x

µi−1(H).

and then this in turn is equal to µ0(x) by the induction hypothesis (2.1).

If s 6∈ Ti−1, then s ∈ Ei, so we get:
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∑
H′∈Hom(Ti,X) :H′(s)=x

µi(H
′) =

∑
H∈Hom(Ti−1,X)

F∈Hom(Ei,X) :F (ti)=H(ti) , F (s)=x

µi−1(H

deg(H(ti))

=
∑

F∈Hom(Ei,X) , F (s)=x

 ∑
H∈Hom(Ti−1,X) , H(ti)=F (ti)

µi−1(H)

deg(F (ti))

 .

Using the induction hypothesis (2.1) applied to F (ti) and ti, we get that this is

equal to:

∑
F∈Hom(Ei,X) , F (s)=x

(
deg(F (ti))

nd
· 1

deg(F (ti))

)
=

∑
F∈Hom(Ei,X) , F (s)=x

1

nd
=

deg(x)

nd
= µ0(x).

So by induction, the claim is proved.

Consider the entropy D(µi) =
∑

H∈Hom(Ti,X)− ln(µi(H))µi(H). It is maximal when

µi is uniform on Hom(Ti, X), therefore

D(µi) ≤
∑

H∈Hom(Ti,X)

− ln

(
1

|Hom(Ti, X)|

)
1

|Hom(Ti, X)|
= ln(|Hom(Ti, X)|).

We now want to calculate D(µi) to get a lower bound on |Hom(Ti, X)|. For i = 1,

we have µ1(H) = 1
nd for all H ∈ Hom(T1, X), so D(µ1) =

∑
H∈Hom(T1,X)− ln( 1

nd) 1
nd =

ln(nd).

For larger i, we have, for every element H ′ ∈ Hom(Ti, X), H ′ = H ∪ F , where H is

an element of Hom(Ti−1, X) and F is an element of Hom(Ei, X). Using the definition

of µi, we can rewrite D(µi) as:
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D(µi) =
∑

H∈Hom(Ti−1,X)
F∈Hom(Ei,X)
F (ti)=H(ti)

− ln

(
µi−1(H)

deg(H(ti))

)
µi−1(H)

deg(H(ti))

=
∑

H∈Hom(Ti−1,X)
F∈Hom(Ei,X)
F (ti)=H(ti)

[
− ln(µi−1(H))

µi−1(H)

deg(H(ti))

]

+
∑

H∈Hom(Ti−1,X)
F∈Hom(Ei,X)
F (ti)=H(ti)

[
ln(deg(H(ti)))

µi−1(H)

deg(H(ti))

]

=
∑

H∈Hom(Ti−1,X)

[− ln(µi−1(H))µi−1(H)]

+
∑

F∈Hom(Ei,X)
H∈Hom(Ti−1,X)
H(ti)=F (ti)

[
ln(deg(F (ti)))

µi−1(H)

deg(F (ti))

]
.

Using property (2.1) applied to F (ti) and H in the second term, we can rewrite this as:

D(µi) =
∑

H∈Hom(Ti−1,X)

[− ln(µi−1(H))µi−1(H)]

+
∑

F∈Hom(Ei,X)

[
ln(deg(F (ti)))

deg(F (ti))/nd

deg(F (ti))

]

= D(µi−1) +
∑
x∈X
|{F ∈ Hom(Ei, X) : F (ti) = x}|

[
ln(deg(x))

1

nd

]
= D(µi−1) +

∑
x∈X

[
ln(deg(x))

deg(x)

nd

]
= D(µi−1) +

∑
x∈X

[
ln

(
deg(x)

nd

)
deg(x)

nd

]
+
∑
x∈X

[
ln(nd)

deg(x)

nd

]
= D(µi−1)−D(µ0) + ln(nd).

Now we use the entropy inequality on µ0 to say that D(µ0) ≤ ln(n) and this gives

us:

D(µi) ≥ D(µi−1) + ln(d).
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So by induction, we have D(µi) ≥ ln(nd) + (i− 1) ln(d) = ln
(
ndi
)

and therefore

we have at least ndi homomorphisms from Ti to X. This proves Theorem 1.

Also notice that this is a stability result: if we are close to equality in Theorem 1,

that implies we need to be close to equality in the entropy inequality for µ0, which im-

plies that µ0 should be close to a uniform distribution. But µ0(x) = deg(x)
nd , so we would

need all the degrees to be close to equal. We have equality in Theorem 1 if and only if

the graph is regular, and we are close to equality only when the graph is close to regular.

2.3 Proof of Theorem 2

2.3.1 Probability of having property P

Given a random element H ′ of Hom(Ti, X) (chosen according to the probability distri-

bution µi), we want to know the probability it has property P. We’ll call this prob-

ability Pi. By our assumption on P, given an element H of Hom(Ti−1, X), there are

≥ deg(H(ti))
qTi
qTi−1

− p ways to extend it.

With that said, the probability of a homomorphism H ′ ∈ Hom(Ti, X) having property

P is at least:
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Pi ≥
∑

H∈HomP (Ti−1,X)

µi−1(H)

deg(H(ti))

[
deg(H(ti))

qTi
qTi−1

− p
]

=
qTi
qTi−1

 ∑
H∈HomP (Ti−1,X)

µi−1(H)

− p
 ∑
H∈HomP (Ti−1,X)

µi−1(H)

deg(H(ti))


≥ qTi

qTi−1

Pi−1 − p

 ∑
H∈Hom(Ti−1,X)

µi−1(H)

deg(H(ti))



=
qTi
qTi−1

Pi−1 − p


∑
x∈X

H∈Hom(Ti−1,X)
H(ti)=x

µi−1(H)

deg(x)


=

qTi
qTi−1

Pi−1 − p

[∑
x∈X

deg(x)

dn

1

deg(x)

]

=
qTi
qTi−1

Pi−1 − p ·
1

d
.

(We use property (2.1) again to go from the fourth line to the fifth.)

We claim that Pi ≥ qTi −
[∑i

j=1
qTi
qTj

]
p
d . When i = 0, we have P0 = 1 and qT0 = 1 by our

assumptions on P, which agrees with the formula. For larger i, we use induction and

have, from the above inequality,

Pi ≥
qTi
qTi−1

·

qTi−1 −

 i−1∑
j=1

qTi−1

qTj

 p
d
− p

d

= qTi −

 i−1∑
j=1

qTi
qTj

 p
d
− p

d

= qTi −

 i∑
j=1

qTi
qTj

 p
d
.

Thus,

Pi ≥ qTi − i
p

d
. (2.2)

16



We can also come up with an upper bound using similar methods:

Pi ≤
∑

H∈HomP (Ti−1,X)

µi−1(H)

deg(H(ti))
deg(H(ti))

qTi
qTi−1

=
qTi
qTi−1

∑
H∈HomP (Ti−1,X)

µi−1(H)

=
qTi
qTi−1

Pi−1

= ...

=
qTi
qT0

P0

= qTi

Therefore

qTi ≥ Pi ≥ qTi − i
p

d
. (2.3)

2.3.2 Size of HomP(Ti, X)

Step 1: Setting up a proof by induction

So we know the number of homomorphisms, and we know the probability that one of

them satisfies property P. From this, we want to find the number of homomorphisms

that satisfy P. This is slightly more complicated than it seems because µi is not uniform.

However, we can still find a lower bound. First, we will use the entropy inequality for

the induced probability distribution on Hom(Ti, X):

ln(|HomP(Ti, X)|) =
∑

H′∈HomP (Ti,X)

− ln

(
1

|HomP(Ti, X)|

)
1

|HomP(Ti, X)|

≥
∑

H′∈HomP (Ti,X)

− ln

(
µi(H)

Pi

)
µi(H)

Pi

ln(|HomP(Ti, X)|) ≥ ln(Pi) +

∑
H′∈HomP (Ti,X)− ln(µi(H

′))µi(H
′)

Pi
. (2.4)

So now we want to find a lower bound on
∑

H′∈HomP (Ti,X)− ln(µi(H
′))µi(H

′).
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Claim:

∑
H′∈HomP (Ti,X)

− ln(µi(H
′))µi(H

′) ≥ qTi · ln
(
ndi
)
− i(i+ 1)

ln(n)p

d
(2.5)

We will prove (2.5) by induction on i. For i = 1, we get:

∑
H′∈HomP (T1,X)

− ln(µ1(H ′))µ1(H ′) =
∑

H′∈HomP (T1,X)

− ln

(
1

nd

)
1

nd
≥

ln(nd)

nd

∑
H∈HomP (T0,X)

[
deg(H(t1))

qT1

qT0

− p
]

=
ln(nd)

nd

∑
x∈X

[deg(x)qT1 − p] =

ln(nd)

nd
[ndqT1 − np] ≥ qT1 ln(nd)− ln(n2)p

d
= qT1 ln(nd)− 2

ln(n)p

d

so it is true for i = 1.

Step 2: For larger i, expressing
∑

H′∈HomP (Ti,X)− ln(µi(H
′))µi(H

′) as a linear

combination of three terms

We proceed as follows:

∑
H′∈HomP (Ti,X)

− ln(µi(H
′))µi(H

′)

=
∑
x∈X

H∈HomP (Ti−1,X) :H(ti)=x
F∈Hom(Ei,X) :F (ti)=x

H∪F has P

− ln

(
µi−1(H)

deg(x)

)
µi−1(H)

deg(x)

≥
∑
x∈X

H∈HomP (Ti−1,X)
H(ti)=x

− ln

(
µi−1(H)

deg(x)

)
µi−1(H)

deg(x)

(
deg(x)

qTi
qTi−1

− p
)
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=
qTi
qTi−1


∑
x∈X

H∈HomP (Ti−1,X)
H(ti)=x

− ln

(
µi−1(H)

deg(x)

)
µi−1(H)



−p


∑
x∈X

H∈HomP (Ti−1,X)
H(ti)=x

− ln

(
µi−1(H)

deg(x)

)
µi−1(H)

deg(x)



=
qTi
qTi−1


∑
x∈X

H∈HomP (Ti−1,X)
H(ti)=x

− ln(µi−1(H))µi−1(H)



+
qTi
qTi−1


∑
x∈X

H∈HomP (Ti−1,X)
H(ti)=x

ln (deg(x))µi−1(H)



−p


∑
x∈X

H∈HomP (Ti−1,X)
H(ti)=x

− ln

(
µi−1(H)

deg(x)

)
µi−1(H)

deg(x)

 .

This is a linear combination of three terms; we will simplify each of these terms

separately.

The first term

∑
x∈X

H∈HomP (Ti−1,X)
H(ti)=x

− ln(µi−1(H))µi−1(H) =
∑

H∈HomP (Ti−1,X)

− ln(µi−1(H))µi−1(H).

And now by the induction hypothesis, we get:
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∑
x∈X

H∈HomP (Ti−1,X)
H(ti)=x

− ln(µi−1(H))µi−1(H) ≥ qTi−1 · ln
(
ndi−1

)
− i(i− 1)

ln(n)p

d
.

The second term

First of all, let s ∈ v(Ti) be arbitrary. Similarly to before, we pick a sequence of trees

{s} = T ′0 ⊂ T ′1 ⊂ T ′2 ⊂ ... ⊂ T ′i = Ti, where T ′j has exactly j vertices. We will call the

jth edge that we add E′j , so T ′j = T ′j−1 ∪ E′j . Moreover, we will label the vertex where

the new edge gets added by t′j , so v(E′j) ∩ v(T ′j−1) = {t′j}.

The quantity we will be looking at is
∑

H′∈HomP (T ′j ,X) ln (deg(H ′(s)))µj(H
′), which

matches the second term when j = i − 1 and s = ti. We will proceed by induction

on j:
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∑
x∈X

H′∈HomP (T ′j ,X)

H(s)=x

ln (deg(x))µj(H
′)

=
∑
x∈X

H∈HomP (T ′j−1,X)

H(s)=x
F∈Hom(E′j ,X)

F (t′j)=H(t′j)

F∪H has P

ln(deg(x))
µj−1(H)

deg(H(t′j))

≥
∑
x∈X

H∈HomP (T ′j−1,X)

H(s)=x

ln(deg(x))µj−1(H)

qT ′
j

qT ′
j−1

deg(H(t′j))− p

deg(H(t′j))

=
qT ′j
qT ′j−1


∑
x∈X

H∈HomP (T ′j−1,X)

H(s)=x

ln(deg(x))µj−1(H)



−p


∑
x∈X

H∈HomP (T ′j−1,X)

H(s)=x

ln(deg(x))
µj−1(H)

deg(H(t′j))



≥
qT ′j
qT ′j−1


∑
x∈X

H∈HomP (T ′j−1,X)

H(s)=x

ln(deg(x))µj−1(H)

− p
 ∑
H∈Hom(T ′j−1,X)

ln(n)
µj−1(H)

deg(H(t′j))
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=
qT ′j
qT ′j−1


∑
x∈X

H∈HomP (T ′j−1,X)

H(s)=x

ln(deg(x))µj−1(H)

− p


∑
y∈X

H∈Hom(T ′j−1,X)

H(t′j)=y

ln(n)
µj−1(H)

deg(y)



=
qT ′j
qT ′j−1


∑
x∈X

H∈HomP (T ′j−1,X)

H(s)=x

ln(deg(x))µj−1(H)

− p
∑
y∈X

ln(n)
deg(y)

deg(y) · nd



=
qT ′j
qT ′j−1


∑
x∈X

H∈HomP (T ′j−1,X)

H(s)=x

ln(deg(x))µj−1(H)

− p
ln(n)

d
.

Note that we used property (2.1) to go from the 6th line to the 7th line. Once

we have done this calculation for j going from i− 1 to 1, we end up with:

∑
H′∈HomP (Ti−1,X)

ln
(
deg(H ′(s))

)
µi−1(H ′)

≥
i−1∏
j=1

qT ′j
qT ′j−1

·


∑
x∈X

H∈HomP (T ′0,X)
H(s)=x

ln(deg(x))µ0(H)

− ln(n)

 i−1∑
j=1

i−1∏
l=j+1

qT ′j
qT ′j−1

 p
d

≥ qTi−1


∑
x∈X

H∈HomP (T ′0,X)
H(s)=x

ln(deg(x))µ0(H)

− (i− 1)
ln(n)p

d
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= qTi−1

[∑
x∈X

ln(deg(x))
deg(x)

dn

]
− (i− 1)

ln(n)p

d

= qTi−1

[∑
x∈X

ln

(
deg(x)

nd

)
deg(x)

dn
+ ln(nd)

deg(x)

dn

]
− (i− 1)

ln(n)p

d

= qTi−1 · [−D(µ0) + ln(nd)]− (i− 1)
ln(n)p

d
.

Using the entropy inequality on µ0, we get that D(µ0) ≤ ln(n) and so therefore

this is at least:

qTi−1 ln(d)− (i− 1)
ln(n)p

d
.

The third term

The third term is:

∑
x∈X

H∈HomP (Ti−1,X)
H(ti)=x

− ln

(
µi−1(H)

deg(x)

)
µi−1(H)

deg(x)

≤
∑
x∈X

H∈Hom(Ti−1,X)
H(ti)=x

− ln

(
µi−1(H)

deg(x)

)
µi−1(H)

deg(x)

=
∑
x∈X

H∈Hom(Ti−1,X)
H(ti)=x

− ln

(
µi−1(H)

deg(x)

)
µi−1(H) · d

deg(x)
+

∑
x∈X

H∈Hom(Ti−1,X)
H(ti)=x

ln(d)
µi−1(H)

deg(x)

=
1

d

∑
x∈X

H∈Hom(Ti−1,X)
H(ti)=x

− ln

(
µi−1(H) · d

deg(x)

)
µi−1(H) · d

deg(x)
+
∑
x∈X

ln(d)
deg(x)/nd

deg(x)
.

Note that because of property 2.1,∑
x∈X ;H∈Hom(Ti−1,X) :H(ti)=x

µi−1(H)·d
deg(x) =

∑
x∈X

deg(x)
nd

d
deg(x) =

∑
x∈X

1
n = 1 so µi−1(H)·d

deg(x)

is a probability distribution on Hom(Ti−1, X). That means we can do another entropy

inequality and get that this is less than or equal to:

23



∑
x∈X

H∈HomP (Ti−1,X)
H(ti)=x

− ln

(
µi−1(H)

deg(x)

)
µi−1(H)

deg(x)

≤ 1

d

∑
x∈X

H∈Hom(Ti−1,X)
H(ti)=x

− ln

(
1

|Hom(Ti−1, X)|

)
µi−1(H) · d

deg(x)
+
∑
x∈X

ln(d)
1

nd

=
1

d
ln(|Hom(Ti−1, X)|) +

ln(d)

d
.

We now need to bound |Hom(Ti−1, X)| from above. We don’t need to do anything

fancy for this: we just pick i vertices, and sometimes they will form a copy of Ti−1. This

implies that |Hom(Ti−1, X)| ≤ ni. Plugging this back into the formula gives:

∑
x∈X

H∈HomP (Ti−1,X)
H(ti)=x

− ln

(
µi−1(H)

deg(x)

)
µi−1(H)

deg(x)
≤ ln(nid)

d
≤ (i+ 1)

ln(n)

d
.

Putting the three terms back together again

Thus, by adding up the three terms back together again, we get:

∑
x∈X

H∈HomP (Ti−1,X) :H(ti)=x
F∈Hom(Ei,X) :F (ti)=x

H∪F has P

− ln

(
µi−1(H)

deg(x)

)
µi−1(H)

deg(x)

≥ qTi
qTi−1

[
qTi−1 ln

(
ndi−1

)
− i(i− 1)

ln(n)p

d

]
+

qTi
qTi−1

[
qTi−1 ln(d)− (i− 1)

ln(n)p

d

]
−p
[
(i+ 1)

ln(n)

d

]
≥ qTi

[
ln(ndi−1) + ln(d)

]
− ln(n)p

d

qTi
qTi−1

[i(i− 1) + (i− 1) + (i+ 1)]

= qTi ln(ndi)− ln(n)p

d
i(i+ 1).
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This completes the proof of proposition (2.5) by induction.

Finishing up the lower bound on |Mi|
Now we can combine (2.5) and (2.4), to get:

ln(|HomP(Ti, X)|) ≥ ln(Pi) +
qTi
Pi

ln
(
ndi
)
− i(i+ 1)

ln(n)p

d
.

Remember from (2.3) that qTi − i
p
d ≤ Pi ≤ qTi , so we get: ln(|HomP(Ti, X)|) ≥

ln
(
qTi − i

p
d

)
+

qTi
qTi

ln
(
ndi
)
− i(i + 1) ln(n)p

d . Using the concavity of the ln function close

to 1, we get:

ln(|HomP(Ti, X)|) ≥ ln
(
qTi − i

p

d

)
+
qTi
qTi

ln
(
ndi
)
− i(i+ 1)

ln(n)p

d

≥ ln
(
qTi − i

p

d

)
+ ln

(
ndi
)

+ ln

(
1− i(i+ 1)

ln(n)p

d

)
= ln

((
qTi − i

p

d

) (
ndi
)(

1− i(i+ 1)
ln(n)p

d

))
≥ ln

(
qTi · ndi ·

(
1− i(i+ 1)

ln(n)p

d
−
q−1
Ti
ip

d

))

≥ ln

(
qTi · ndi ·

(
1− i(i+ 1 + q−1

Ti
)
ln(n)p

d

))
.

Thus:

|HomP(Ti, X)| ≥ qTindi ·
(

1− i(i+ 1 + q−1
Ti

)
ln(n)p

d

)
.

Setting i = e, this is exactly the statement of Theorem 2.

�

2.4 Lower bound on the number of copies of a tight k-

hypertrees in a k-hypergraph

In this section, we will overview an important corollary of Theorem 2, where given some

tight k-hypertree, we will find a lower bound on the number of copies of this hypertree in

some larger k-hypergraph. But first, let us define what we mean by a tight k-hypertree:
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Definition 11. Given an integer k, a tight k-hypertree is a k-hypergraph whose edges

can be labelled E1, E2, E3, E4, ...Ee such that for every edge Ei, i > 1, there exists some

j(i) < i such that |Ei ∩ Ej(i)| = k − 1 but Ei\Ej(i) does not intersect any El for l < i.

Moreover, if j(i) = j(i′) for some i, i′, then Ei ∩ Ej(i) = Ei′ ∩ Ej(i′).

Remark: a tight k-hypertree with e edges has e+ k − 1 vertices.

• • • • • •

•

•

•

•

•

•

•

•

•

•

•

Example of a tight 3-hypertree T

The corollary we will prove in this section is as follows:

Corollary 1. For a tight k-hypertree T with e edges, and a larger k-hypergraph G with

n vertices such that the average degree of a k − 1-set in X is d, then there are at least(
n
k−1

)
(k − 1)! · (d/(k − 1))e ·

(
1−O

(
ln(n)
d

))
copies of T inside G.

To prove this, we first need a definition:

Definition 12. An ordered l-set x is a set of size l equipped with a bijection fx : x →
{1, 2, 3, ..., l}. We call this bijection the ordering of x.

For every set of size l, there are exactly l! orderings of it.

Proof of Corollary 1

We will define the graph X to have as its vertex set the collection of all ordered

(k − 1)-sets of vertices of G. This means that X has
(
n
k−1

)
(k − 1)! vertices.

The edges of X are defined to be the pairs of ordered (k − 1)-sets , (x, y) , such that

x ∪ y is an edge of G, and such that the two orderings agree on x ∩ y, in other words,

for all z ∈ x ∩ y, fx(z) = fy(z).

We’ll also define the function θ that sends graphs inX to the corresponding k-hypergraphs

in G, by sending each vertex to the corresponding (k−1)-sets and each edge to the corre-

sponding edge in G. Similarly, we’ll also define θ′ that sends a tree T to the corresponding

26



tight k-hypertree T in the exact same way.

• • • • •

•

•

•

•

•

•

•

•

•

•

•

A graph T such that θ′(T ) = T .

Given a particular tight k-hypertree T with e edges, why can we always find some

tree T with θ′(T ) = T ? That is to say, a tree whose vertices are k − 1-sets and whose

edges represent k-sets that contain both its incident vertices?

Well, for every edge Ei of T , we’ll have exactly one corresponding edge E′i in T . What

are its incident vertices? For every i > 1, define Ei ∩ Ej(i) to be one of them. If there

exists some i′ with j(i′) = i, then define Ei′ ∩ Ei to be the other one. Notice that if

i′′ also has j(i′′) = i, then this doesn’t change what this second vertex is. After this

process, we are left with a collection of edges, some of which have two incident vertices,

some of which still only have one. For each edge that still only has one incident vertex,

just pick a second incident vertex (different from the first) arbitrarily. We have thus con-

structed a tree T ′ with θ′(T ) = T . Also notice that T has the same number of edges as T .

We remove one leaf at a time from T to get a sequence of trees T1 ⊂ T2 ⊂ ... ⊂ Te = T

such that Ti has exactly i edges. There is a corresponding sequence θ′(T1) ⊂ θ′(T2) ⊂
θ′(T3) ⊂ ... ⊂ θ′(Te) such that θ′(Ti) has exactly i edges.

To use Theorem 2, we need some injective-like property P of homomorphisms. We

will say that H ∈ Hom(Ti, G) has P if and only if the image of H ◦ θ is a copy of

θ′(Ti). In particular, H ∈ Hom(T,G) has P if and only if the image of H ◦ θ is a copy

of T . On the diagram below, this is the equivalent of saying that there is an injective

homomorphism where the question mark is, and this homomorphism makes the diagram

commute.
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•

•

T ′ ∪ E

T ′

t
E

s

•

•

H(T ′ ∪ E)

H(T ′)

H(t)
H(E)

H(s)

X

→H

Diagram describing the sets used in the proof

θ′(T ′ ∪ E)

θ′(T ′)

θ′(t) θ′(E)

θ(H(T ′ ∪ E))

θ(H(T ′))

θ(H(t)) θ(H(E))

G

→
?

↓θ′ ↓θ

We need to check that P is strongly injective-like. The first thing we need is to de-

fine some constant p, which we’ll pick to be p = e − 1. For every subtree T ′ of T , we

also need some qT ′ ; we will pick qT ′ = (k − 1)−e(T
′). Note that when T ′ consists of just

a single vertex, qT ′ = 1, so the second bullet point of Definition 9 (weakly injective-like)

is immediately satisfied.

The second thing we need to check is that every homomorphism H from the single

vertex T0 to X satisfies P. But θ′(T0) is a collection of k − 1 distinct points, while H

picks out a single vertex of X. All the vertices in X are ordered (k−1)-sets of vertices in

G so θ(H(T0)) is indeed a collection of k − 1 distinct points and hence a copy of θ′(T0).

So the first bullet point of Definition 9 does hold.
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To check the last bullet point, we are given a subtree T ′ ⊂ T , an edge E incident

to T ′ at t, and homomorphism H ∈ HomP(T ′, X). We are asked to count the number of

homomorphisms H ′ ∈ HomP(T ′ ∪ E,X) that extend it. Because H has P, we already

know that H ◦ θ is a copy of θ′(T ′). We want to add the image of E to it, which should

be an edge of X that is connected to H(T ′) at H(t). In G, this translates to adding an

edge, θ(H(E)) of G that is connected to θ(H(T ′)) at θ(H(t)), and then picking some

(k − 1)-subset of that new edge to be θ(H(s)). When does this have property P ?

Consider θ′(T ′ ∪ E). It is the same thing as θ′(T ′) but with an extra edge added,

θ′(E), that is connected to it at θ′(t), and we also have a (k − 1)-subset of that new

edge, θ′(s) . P requires that the image of H ′ ◦ θ is a copy of θ′(T ∪E), and this implies

that θ(H(s)) matches θ′(s). There were k − 1 choices for θ(H(s)) and only one of them

works. So out of all the deg(H(t)) possible choices for the new edge, exactly 1/(k − 1)

of them have the right type of vertex at the other end.

However, that is not all we need to have property P. It also needs to not self-intersect.

To make sure that θ(H(T ′ ∪E)) doesn’t self-intersect, we need to make sure that when

we picked θ(H(E)), that it didn’t intersect H(T ′) anywhere except for H(t). Since

we are only adding 1 more vertex, we just need to make sure that this new ver-

tex is not any of the vertices in θ(H(T ′))\θ(H(t)). That means there are at most

v(T ′)−k+1 ≤ v(T )−1−k+1 = v(T )−k = e−1 choices that make θ′(Ti) self-intersect.

Now if θ(H(s)) matches θ′(s) and if θ(H(T ′ ∪ E)) doesn’t self-intersect, then it is an

actual copy of θ′(T ′ ∪ E) and thus we satisfy property P. All in all, this means there

are at least deg(H(ti))
1

k−1 − (e − 1) = deg(H(ti))
qT ′∪E
qT ′
− p possible choices for H ′. So

the last bullet point does indeed hold.

All this shows that P is weakly injective-like. But now given any homomorphism H,

only 1/(k − 1) of extensions of H have the right type of vertex at the other end. So

there are at most deg(H(t))/(k − 1) = deg(H(t))
qT ′∪E
qT ′

possible extensions of H. So P
is in fact strongly injective-like. This means that we can apply theorem 2. It says that:
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|HomP(T,X)|

≥
(

n

k − 1

)
(k − 1)! · de · 1

(k − 1)e
·
(

1− e(e+ 2)(1 + k − 1) ln

((
n

k − 1

)
(k − 1)!

)
e− 1

d

)
≥

(
n

k − 1

)
(k − 1)! · (d/(k − 1))e ·

(
1− (e− 1)e(e+ 2)(k − 1)k

ln(n)

d

)
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Chapter 3

Kruskal-Katona-type problem

3.1 Introduction

The Kruskal-Katona Theorem was proved in the 1960s by Kruskal and Katona [19, 17].

In the Theorem, we have families A ⊂ N(r) and B ⊂ N(r−1) such that for every A ∈ A,

there exist distinct B1, B2, ..Br ∈ B with Bi ⊂ A. Given a = |A|, we want to minimise

b = |B|, or equivalently, given b, we want to maximise a. The Kruskal Katona Theorem

states that an optimal solution is when A is an initial segment of the colexicographic or-

dering on sets of size r, and B is the corresponding initial segment of the colexicographic

ordering on sets of size r − 1.

Definition 13 (Colexicographic ordering or colex). The colexicographic ordering of sets

of size r is a total ordering where A < B if the largest element of B\A is larger than the

largest element of A\B.

Example: When r = 4, the first sets in the colex ordering are:

{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 4, 6}, ...

More specifically, we can calculate what a or b is based on the other. To do so, we

need to write them as a binomial sum. Pick some integers cr−1 > cr−2 > cr−3 > ... > c1

in such a way as to make the following decomposition of b into binomials hold:

b =

(
cr−1

r − 1

)
+

(
cr−2

r − 2

)
+

(
cr−3

r − 3

)
+ ...+

(
c1

1

)
.

Then the maximum a is given by:
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(
cr−1

r

)
+

(
cr−2

r − 1

)
+

(
cr−3

r − 2

)
+ ...+

(
c1

2

)
.

Conversely, given a =
(
cr−1

r

)
+
(
cr−2

r−1

)
+
(
cr−3

r−2

)
+ ...+

(
c1
2

)
+
(
c0
1

)
, the minimum for

b is
(
cr−1

r−1

)
+
(
cr−2

r−2

)
+
(
cr−3

r−3

)
+ ...+

(
c1
1

)
+ [1 if c0 > 0].

Note that, given any integers d and r, there exists a unique set of cr > cr−1 > cr−2 >

... > c1 that satisfy d =
(
cr−1

r−1

)
+
(
cr−2

r−2

)
+
(
cr−3

r−3

)
+ ...+

(
c1
1

)
. Indeed, we have the formula(

x
s

)
+
(
x−1
s−1

)
+
(
x−2
s−2

)
+ ...+

(
x−s+1

1

)
=
(
x+1
s

)
− 1 for any x and s. So we can construct this

set of cis it by first picking cr−1 such that satisfies
(
cr−1

r−1

)
≤ d <

(
cr−1+1
r−1

)
. We subtract(

cr−1

r−1

)
from d and then repeat the operation to find cr−2. The remainder is between 0

and
(
cr−1

r−2

)
− 1 so when we pick cr−2, it will be strictly less than cr−1. Repeat in the

same way to find cr−3, cr−4, ... c1. Therefore such a decomposition exists for all d.

As for uniqueness, we note that if we pick a different decomposition, there is some

largest i where we picked different values for ci. Say we use ci + t instead of ci. Then(
cr−1

r−1

)
+ ...+

(
ci+t
i

)
> d by definition of how we picked ci to be the maximum number that

worked. If on the other hand, we use ci− t instead of ci, then the maximum number we

can get is
(
cr−1

r−1

)
+ ...+

(
ci−t+1

i

)
− 1 < d so this also doesn’t work. Therefore the choice

of cis is unique.

In 2015, Bollobás and Eccles [6] asked if the Kruskal-Katona Theorem could be gener-

alised: instead of every subset of A being in B, we instead required only k out of the r

possible. In this case, we call the maximum value for a given r, k and b to be f(r, k, b).

They considered one configuration in particular: let A be of the form {S ∪X} where X

runs over an initial segment of the colex on sets of size k and S is just some set of size

r − k (that doesn’t intersect any of the Xs). Meanwhile let B be defined in the same

way as {S ∪Y } where Y runs over the corresponding initial segment of the colex on sets

of size k − 1. These collections of sets have the property that for every A in A, there

exist B1, B2, ..., Bk in B with Bi ⊂ A.

This example gives a very similar formula to the Kruskal Katona Theorem. It shows

that for any ck−1 > ck−2 > ... > c1,

f

(
r, k,

(
ck−1

k − 1

)
+

(
cr−2

k − 2

)
+

(
ck−3

k − 3

)
+ ...+

(
c1

1

))
≥
(
cr−1

k

)
+

(
ck−2

k − 1

)
+

(
ck−3

k − 2

)
+ ...+

(
c1

2

)
.
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Bollobàs and Eccles conjectured that this configuration is actually the optimal

one when a and b are large. They did also note that this conjecture cannot be extended

to small values of a and b, because they found an example that shows that f(5, 4, 13) = 6.

If you tried to use the conjecture, it would tell you the answer is 7, which is incorrect.

So the example is not optimal for small values of a and b; however, they still think this

example is optimal when a and b are large enough.

In this chapter, the general methodology we will use will be to consider the set B
to be the vertices of a k-hypergraph and A to be its edges. An vertex B ∈ B is incident

to an edge A ∈ A is and only if B ⊂ A. We will first start by doing the easy cases of

k = 0, k = 1, k = 2 and k = 3, which are all done using similar methods, although it

gets more complicated as k increases.

Theorem 3. (the cases where k ≤ 3)

• For 0 = k ≤ r, then for all a, the minimum value for b is 0.

• For 1 = k ≤ r, the minimum value for b is 1 if a ≥ 1, otherwise it is b = 0 if a = 0.

• For 2 = k ≤ r, f(r, 2, b) =
(
b
2

)
.

• For 3 = k ≤ r, f
(
r, 3,

(
c2
2

)
+
(
c1
1

))
=
(
c2
3

)
+
(
c1
2

)
whenever c2 > c1 and c2 ≥ 29.

Note that this is still missing the cases where c2 < 29; however there are only

finitely many of these so they can in theory be solved by simply checking every single

case. After this, we will move on to the case where k ≥ 4. Unfortunately, there is a

small gap in the proof which I only noticed late, so this case is not completely proved.

The piece that is missing is that we need Conjecture 1 to be true in order to get the

proof to work. It uses the same method, and if Conjecture 1 is true, it should end up

giving exact results for an infinite number of values for b:

Theorem 4. If Conjecture 1 is true (from chapter 2), then given 4 ≤ k, there is some

constant µ depending only on k such that for all r ≥ k, if ck−1 > ck−2 > ... > c1 > µ,

then:

f

(
r, k,

(
ck−1

k − 1

)
+ ...+

(
c1

1

))
=

(
ck−1

k

)
+ ...+

(
c1

2

)
.

Our method would also allow us to get to within some additive constant of the

answer for all b:

Theorem 5. If Conjecture 1 is true, then given 4 ≤ k, there is a constant τ depending
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only on k such that for all r ≥ k, if b =
(ck−1

k−1

)
+...+

(
c1
1

)
, for some ck−1 > ck−2 > ... > c1,

then the maximum value for a is between:

[(
ck−1

k

)
+ ...+

(
c1

2

)]
≤ f(r, k, b) ≤

[(
ck−1

k

)
+ ...+

(
c1

2

)]
+ τ.

Remark: Bollobás and Eccles also proposed the weaker conjecture that

f
(
r, k,

(
x
k−1

))
≤
(
x
k

)
whenever x is a positive real such that

(
x
k−1

)
an integer. We do

end up proving this in the cases k ≤ 3. k = 0, 1, 2 are just corollaries of Theorem 3

while k = 3 is found during the proof of the Theorem 3. However, for the case k ≥ 4,

Theorems 4 and 5 are still the best we have so far.

3.2 The case k = 0

This one is trivial and you’ll obviously have B = ∅ regardless of what A is.

3.3 The case k = 1

This one is similarly trivial: the optimum will be b = 1 regardless of what a ≥ 1 is. This

can be achieved by letting B be an arbitrary set B of size r − 1, and A an arbitrary

collection of a sets of size r all of which contain B.

3.4 The case k = 2

For any pair of elements in B, there will be at most 1 element in A that contains both

(which if it exists will be their union). Since every element of A does contain a pair of

elements of B, we have |A| ≤
(|B|

2

)
so f(r, 2, b) ≤

(
b
2

)
.

This matches Bollobás’s and Eccles’s construction for the lower bound. Pick any some

S of size r − 2 (all of whose elements are larger than b) and then define B to be

{S ∪ {i} : i ≤ b} and A to be {S ∪ {i, j} : i, j ≤ b}. This shows that f(r, 2, b) ≥
(
b
2

)
and therefore f(r, 2, b) =

(
b
2

)
.
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3.5 The case k = 3

Given a valid configuration (A,B), we can construct a k-hypergraph with b vertices cor-

responding to elements of B. There are a edges corresponding to elements of A; each one

of these contains at least k elements of B, and these k vertices are going to be the ver-

tices the edge is incident to (if there are more than k of them, pick k of them arbitrarily).

Also, given two sets B1 and B2, we define the distance d(B1, B2) between them as

|B14B2|/2 (so two adjacent vertices are at distance 1 from each other). Note that given

2 such sets at distance 1, there is at most one single edge that contains both: B1 ∪B2.

3.5.1 Number of paths of length 2

Consider our 3-hypergraph with b vertices and a edges. The average degree is 3a
b .

Paths of length 2 Let the path of length 2, P2 be the hypergraph consisting of 2 edges

intersecting in a single point C (which we’ll call the center), and with two distinguished

points, one on each edge that are not the center: B1 andB2; we’ll call these the endpoints.

•

•

• •

•

C

B1

B′1 B′2

B2

A1 A2

Figure 3.1: The hypergraph P2

We want to count the number of P2s. First, we’ll pick out the center C ∈ B.

Then there are deg(B) possible choices for A1, then deg(B)− 1 choices for A2. Finally,

we have 2 choices each for B1 and B2. So overall, the number of P2s is:
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|{H : H ∼= P2}|

=
∑
C∈B

4 deg(C)(deg(C)− 1)

=
∑
C∈B

4 deg(C)2 −
∑
C∈B

4 deg(C)

≥
4
(∑

C∈B deg(C)
)2∑

C∈B 1
− 4

∑
C∈B

deg(C) (3.1)

=
4(3a)2

b
− 4(3a)

=
36a2

b
− 12a.

Now given any C ∈ B, set ε1(C) = 4
[
deg(C)−

∑
B∈B deg(B)/b

]2
. We have:

∑
C∈B

ε1(C) = 4
∑
C∈B

deg(C)2 − 8

[∑
C∈B

deg(C)

] [∑
B∈B deg(B)

b

]
+ 4b

[∑
B∈B deg(B)

b

]2

= 4
∑
C∈B

deg(C)2 − 4
(
∑

C deg(C))2

b
.

This is exactly the error in the above inequality (3.1), so the number of copies of P2 is

therefore exactly 36a2

b − 12a+
∑

C∈B ε1(C).

Paths of length 2 connecting points at distance 2 Now given a path of length

2, how often are the two endpoints at distance 2 and how often are they at distance 1?

We claim that the number of copies of P2 with endpoints at distance 2 is at least half

of all copies of P2. To see this, suppose we are given a copy of P2 whose endpoints B1

and B2 (see Figure 1) are at distance 1. Then we can write B1 = C ∪ {x1}\{y1} and

B2 = C ∪ {x2}\{y1}. Then B′2 = C ∪ {x2}\{y2} so B′2 and B1 are at distance 2. Using

a similar reasoning, B2 and B′1 are at distance 2; however, B′1 and B′2 might still be at

distance 1: we don’t know. At any rate, for every copy of P2 whose endpoints B1 and

B2 are at distance 1, we can pick a unique corresponding copy of P2 whose endpoints

are B1, B′1 at distance 2. Therefore at least half of all copies of P2 have endpoints at

distance 2, which is at least 18a2

b − 6a+
∑

C∈B
ε1(C)

2 copies.
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Given a vertex C, we will define ε2(C) to be the number of copies of P2 having cen-

ter C whose endpoints B1 and B2 are at distance 2 from each other but also that

B1, B′1 are at distance 2 from each other. With this addition we can be more precise

and say that the number of copies of P2 whose endpoints are at distance 2 is at least
18a2

b − 6a+
∑

C∈B
ε1(C)

2 +
∑

C∈B
ε2(C)

2 .

Distance 2 pairs Now given two points B and B′ at distance 2, there are at most 4

paths of length 2 from B to B′ (because there are at most 4 possible centres). Therefore

the number of ordered pairs of points (B,B′) is at least the number of paths from one

vertex to another at distance 2 from it, divided by 4.

Given B ∈ B, let ε3(B) to be the number of points B′ at distance 2 from B such

that there are 3 or fewer paths of length 2 from B to B′. Using this, we get:

|{H : H ∼= P2; d(B1, B2) = 2}| ≥ 4|{(B,B′) : d(B,B′) = 2}| − 4
∑
B∈B

ε3(B).

And thus the total number of ordered pairs of points (B,B′) at distance 2 from

each other is:

|{(B,B′) : d(B,B′) = 2}|

≥ 9a2

2b
− 3a

2
+
∑
C∈B

ε1(C)

8
+
∑
C∈B

ε2(C)

8
+
∑
C∈B

ε3(C).

We also know that the number of ordered pairs of points (B,B′) at distance 1

is at least 6a (6 from each edge). We set ε4(B) to be the number of points at distance

1 from B such that there is no edge connecting them. So 6a +
∑

B ε4(B) is the total

number of ordered pairs at distance 1. Finally, let ε5(B) be the number of points at

distance at least 3 from B, so
∑

B ε5(B) is the total number of ordered pairs of points at

distance at least 3. Together with our calculated ‘number of ordered pairs at distance 2’,

this accounts for every possible ordered pair of points. We know that the total number

of such pairs is b(b− 1). Thus:
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b(b− 1) ≥ 9a2

2b
− 3a

2
+ 6a+

∑
C∈B

[
ε1(C)

8
+
ε2(C)

8
+ ε3(C) + ε4(C) + ε5(C)

]
.

We know that all the εi(B)s are non-negative so we get the inequality:

b(b− 1) ≥ 9a2/b− 3a

2
+ 6a =

9a2/b+ 9a

2
.

Solving this for a gives:

a ≤ −3 +
√

8b+ 1

6
b. (3.1)

When we set b =
(
c
2

)
, this inequality gives us a ≤

(
c
3

)
. This is tight. Indeed, we

can look at the configuration from the hypothesis: let S be a set of size r−3 (that doesn’t

contain any of 1,2,3,...,c) and let B = {S∪{i, j}|i, j ≤ c} andA = {S∪{i, j, k}|i, j, k ≤ c}.
Then this is a valid configuration and has b =

(
c
2

)
and a =

(
c
3

)
.

Remark: This formula is exactly the same as f
(
r, 3,

(
x
2

))
≤
(
x
3

)
for every real x ≥ 3

such that
(
x
2

)
is a positive integer, thereby proving the weaker conjecture in the case

k = 3.

3.5.2 The existence of a large nice hypergraph when a is close to the

upper bound

For this section, we will assume that c2 ≥ 29. If we set b =
(
c2
2

)
+c1 and a =

(
c2
3

)
+
(
c1
2

)
+1

for some c1 < c2, then this means that the sum of all the εi(C) are small. In fact, we

get: ∑
C∈B
b

[
ε1(C)

8
+
ε2(C)

8
+ ε3(C) + ε4(C) + ε5(C)

]

= (b− 1)− 9a2

2b2
− 9a

2b
.

This is an average, so in particular, there exists a vertex B for which :

ε1(B)

8
+
ε2(B)

8
+ ε3(B) + ε4(B) + ε5(B) ≤ (b− 1)− 9a2

2b2
− 9a

2b
.

38



And for brevity, we’ll set

γ = (b− 1)− 9a2

2b2
− 9a

2b
=
c2

2 − c2 + 2c1 − 2

2
− 9

2

(a
b

)2
− 9

2

(a
b

)
(3.2)

.

We will try to bound γ from above so as to guarantee having small εs

We have a
b = 1

3
c32−3c22+2c2+3c21−3c1+6

c22−c2+2c1
=

c2−2−2c1/c2+3c21/c
2
2

3 + 1
3
−c1+7c21/c2−6c31/c

2
2+6

c22−c2+2c1
.

But −c1 +7c2
1/c2−6c3

1/c
2
2 +6 can be written as 6+c1(−1+7z−6z2) for z = c1/c2 which

is between 0 and 1. The minimum of the function −1 + 7z−6z2 for z between 0 and 1 is

-1, and therefore a
b ≥

c2−2−2c1/c2+3c21/c
2
2

3 + 1
3

6−c1
c22−c2+2c1

. And now as long as c1 ≥ 7, we have

0 > 6−c1
c22−c2+2c1

≥ 6−(c2−1)
c22−c2

= 7−c2
c2(c2−1) ≥ −

1
c2

. So we know that a
b ≥

c2−2−2c1/c2+3c21/c
2
2

3 − 1
3c2

.

If c1 ≤ 6, then 6−c1
c22−c2+2c1

is positive or zero so a
b ≥

c2−2−2c1/c2+3c21/c
2
2

3 . Regardless of which

case we’re in, we will have a
b ≥

c2−2−2c1/c2+3c21/c
2
2−1/7

3

Using this, we can also say that if c1 ≥ 7, that(a
b

)2

(
c2 − 2− 2c1/c2 + 3c2

1/c
2
2

3
− 1

3c2

)2

=
c2

2 − 4c2 − 4c1 + 6c2
1/c2 + 4 + 8c1/c2 − 8c2

1/c
2
2 − 12c3

1/c
3
2 + 9c4

1/c
4
2

9

−2− 4/c2 − 4c1/c
2
2 + 6c2

1/c
3
2

9
+

1

9c2
2

=
c2

2 − 4c2 − 4c1 + 6c2
1/c2

9
+

2 + 8c1/c2 − 8c2
1/c

2
2 − 12c3

1/c
3
2 + 9c4

1/c
4
2

9

+
4 + 4c1/c2 − 6c2

1/c
2
2

9c2
+

1/c2
2

9

Notice that the function 2 + 8z − 8z2 − 12z3 + 9z4 = (3z2 − 2z − 2)2 − 2 ≥ −2;

taking z = c1/c2 gives a lower bound of −2
9 for the second term of the above inequality.

We also look at the function 4 + 4z − 6z2 which is concave and valued at 4 when z = 0

and 2 when z = 1; so this function is always at least 2 when 0 ≤ z ≤ 1; 0 ≤ c1/c2 ≤ 1 so

setting z = c1/c2 gives a lower bound of 2
9c2

for the third term of the above inequality.

Using these, we end up with:
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(a
b

)2
≥ c2

2 − 4c2 − 4c1 + 6c2
1/c2

9
− 2

9
+

2

9c2
+

1

9c2
2

.

And finally:

(a
b

)2
≥ c2

2 − 4c2 − 4c1 + 6c2
1/c2 − 2

9
.

In the case where c1 ≤ 6, we get:(a
b

)2

≥ c2
2 − 4c2 − 4c1 + 6c2

1/c2 + 4 + 8c1/c2 − 8c2
1/c

2
2 − 12c3

1/c
3
2 + 9c4

1/c
4
2

9

=
c2

2 − 4c2 − 4c1 + 6c2
1/c2

9
+

1

9

(
3
c2

1

c2
2

− 2
c1

c2
− 2

)2

≥ c2
2 − 4c2 − 4c1 + 6c2

1/c2

9

So regardless of whether c1 ≥ 7 or c1 ≤ 6, we know that

(a
b

)2
≥ c2

2 − 4c2 − 4c1 + 6c2
1/c2 − 2

9
.

Now we go back to γ, which was, if you recall from 3.2, equal to
c22−c2+2c1−2

2 −
9
2

(
a
b

)2− 9
2

(
a
b

)
. Now that we have good bounds on a

b and
(
a
b

)2
, we can find a good bound

on γ:

γ =
c2

2 − c2 + 2c1 − 2

2
− 9

2

(a
b

)2
− 9

2

(a
b

)
≤ c2

2 − c2 + 2c1 − 2

2
− c2

2 − 4c2 − 4c1 + 6c2
1/c2 − 2

2
− 3c2 − 6− 6c1/c2 + 9c2

1/c
2
2 − 3/7

2

=
6c1 − 6c2

1/c2 + 45/7 + 6c1/c2 − 9c2
1/c

2
2

2

=
6c1 − 6c2

1/c2 + 52/7

2
− (3c1/c2 − 1)2

2
< 3c1 − 3c2

1/c2 + 4

≤ 3c2

4
+ 4

≤ c2

So as long as c2 ≥ 16, we know that γ < c2. We assumed at the start that c2 ≥ 29

40



so we will indeed have γ < c2.

Using γ to restrict what the families looks like We know from the definition of

γ (3.2) that ε1(B) ≤ 8γ so using the definition of ε1, we get 4|deg(B) − 3a/b|2 ≤ 8c2

so |deg(B)−3a/b| ≤
√

2c2. The degree of B is therefore pretty close to its expected value.

Now we also know that the number of points B′ at distance 2 from B is b − 1 −
2 deg(B) − ε4(B) − ε5(B) since ε4(B) is the number of points at distance 1 from B

and ε5(B) is the number of points at distance at least 3. We want to count the

number of such points that have all 4 possible paths between it and B. This is just

b− 1− 2 deg(B)− ε4(B)− ε5(B)− ε3(B).

Again using the definition of γ (3.2), we know that ε3(B) + ε4(B) + ε5(B) is less

than γ and thus less than c2 so the number of points B′ at distance 2 from B with all

4 possible paths between B and B′ is at least b − 1 − 2 deg(B) − c2. We’ll call such a

configuration an octahedron.

We’ll say that the deg(B) edges adjacent to B are B ∪ {x1}, B ∪ {x2}, ...B ∪ {xdeg(B)},
and say that the 2 deg(B) vertices at distance 1 from B on these edges are:

B∪{x1}\{y1}, B∪{x1}\{z1}, B∪{x2}\{y2}, B∪{x1}\{z2}, ..., B∪{xdeg(B)}\{ydeg(B)}, B∪
{xdeg(B)}\{zdeg(B)}

We’ll now colour the edges incident to B as follows: every edge incident to B has

vertices of the form B,B ∪ {x}\{y} and B ∪ {x}\{z}. The colour of this edge is defined

to be {y, z}. This colouring is useful because of its relationship to the octahedrons.

Indeed, an octahedron is formed of the 6 points: B,B∪{xi}\{yi}, B∪{xi}\{zi}, B∪
{xj}\{yj}, B ∪ {xj}\{zj} and B ∪ {xi, xj}\{yi, zi} and also requires that {yi, zi} =

{yj , zj}. That means that each octahedron contains 2 edges of the same colour. Fur-

thermore, given a pair of edges of the same colour, there can only be at most 1 octahedron

that contains both. So the number of octahedrons is smaller than the number of pairs

of edges of the same colour.

We’ll define s to be the size of the largest colour class. How large must s be?

If s is fixed and s ≥ deg(B)/2, then the maximum number of octahedrons is
(
s
2

)
+(

deg(B)−s
2

)
= s2+ deg(B)2−deg(B)

2 −deg(B)s. We know that this quantity is at least as large
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as the actual number of octahedrons, which is in turn larger than b− 1− 2 deg(B)− c2.

So we have:

s2 − deg(B)s+
−2b+ 2 + 2c2 + 3 deg(B) + deg(B)2

2
≥ 0.

We will use this inequality to find a lower bound on s. First, however, we need to

find what deg(B) can be. Note that if we differentiate s2−deg(B)s+−2b+2+2c2+3 deg(B)+deg(B)2

2 ≥
0 by deg(B), we get −s + 3

2 + deg(B). Since s ≤ deg(B), this is always positive and

therefore we can without loss of generality assume that we are in the worst case scenario

where deg(B) is the maximum it can possibly be.

We know one upper bound on deg(B): deg(B) ≤ 3a/b +
√

2c2, but it isn’t very nice

to work with. So we simplify 3a
b =

c32−3c22+2c2+3c21−3c1
c22−c2+2c1

= c2 − 2 − 2c1/c2 + 3c2
1/c

2
2 +

−c1+7c21/c2−6c31/c
2
2+6

c22−c2+2c1
= c2 − 2 + (−2c1/c2 + 3c2

1/c
2
2) +

6+c2(−c1/c2+7c21/c
2
2−6c31/c

3
2)

c22−c2+2c1
. Looking

at the function 2z + 3z2 for 0 ≤ z ≤ 1 ,this is has a maximum of 1 at z = 1. Mean-

while, the function −z + 7z2 − 6z3 is smaller than 1 on the same interval. Therefore
3a
b ≤ c2 − 2 + 1 + 6+c2

c22−c2+2c1
≤ c2 − 1 + 6+29

292−29
≤ c2.

So we have an upper bound for deg(B): deg(B) ≤ c2 +
√

2c2. And remember that we

could assume without loss of generality that deg(B) was maximal, so we set deg(B) =

c2 +
√

2c2. We were trying to find a lower bound on s using the inequality s2−deg(B)s+
−2b+2+2c2+3 deg(B)+deg(B)2

2 ≥ 0. This is a quadratic which we can solve:

s ≥
deg(B) +

√
4b− 4− 4c2 − 6 deg(B)− deg(B)2

2

=
c2 +

√
2c2 +

√
2c2

2 − 2c2 + 4c1 − 4− 4c2 − 6(c2 +
√

2c2)− (c2 +
√

2c2)2

2

=
c2 +

√
2c2 +

√
2c2

2 − 12c2 + 4c1 − 4− 6
√

2c2 − c2
2 − (2c2)3/2 − 2c2

2

=
c2 +

√
2c2 +

√
c2

2 − 14c2 + 4c1 − 4− 6
√

2c2 − (2c2)3/2

2

≥
c2 +

√
2c2 +

√
c2

2 − 14c2 − 4− 6
√

2c2 − (2c2)3/2

2
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=
c2 +

√
2c2 +

√
(c2 −

√
2c2 − 8)2 − 22

√
2c2 − 68

2

≥ c2 +
√

2c2 +
√

(c2 −
√

2c2 − 8)2

2

=
2c2 − 8

2
= c2 − 4

So this colour class of size s encompasses most of the neighbourhood of B when

c2 ≥ 29. In fact, there are at most deg(B) + 4 − c2 points of the neighbourhood that

are outside. Since deg(B) ≤ c2 +
√

2c2, that means there are at most 4 +
√

2c2 points in

the neighbourhood of B outside our colour class. We’ll say that the colour of this large

colour class is {y, z}. Finally, we’ll define S = B\{y, z} and define the nice hypergraph

to be the set of all vertices and edges that contain S as a subset. Our nice hypergraph

contains our large colour class as well as all the octahedrons related to it.

We ask ourselves how many octahedrons do we have in the nice hypergraph? We know

that there are at least b − 1 − 2 deg(B) − c2 octahedrons that contain B in total. The

maximum number of octahedrons containing B that are not in the nice hypergraph is(
deg(B)−s

2

)
≤
(

4+
√

2c2
2

)
= 12+7

√
2c2+2c2
2 . Therefore the number of octahedrons in our big

colour class is at least b−1−2 deg(B)−c2− 12+7
√

2c2+2c2
2 = b−7−2 deg(B)−2c2−7

√
c2/2 .

That’s almost all the vertices in the graph! Remembering the 2 deg(B) vertices adjacent

to B and B itself, that means there are only 6 + 7
√
c2/2 + 2c2 vertices left unaccounted

for. Since c2 ≥ 29, this is less than 4c2. Before we finish up the proof, we will need one

more lemma, which also covers the example case where b =
(
c2
2

)
and a =

(
c2
3

)
.

3.5.3 Example case where b =
(
c2
2

)
and a =

(
c2
3

)
Lemma 2. The optimal configuration when k = 3, b =

(
c2
2

)
and a =

(
c
3

)
is of the form:

A = {S ∪ T |T ∈ {x1, x2, ..., xc2}(3)}
B = {S ∪ T |T ∈ {x1, x2, ..., xc2}(2)}.

Proof:

First of all, since there was equality in this case, that means that γ = 0 and thus

all the error terms εi are also zero. This implies that the degree of every vertex is ex-

actly 3a/b = c2 − 2 and for every vertex B, the number of vertices at distance 2 from it
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is exactly b − 1 − 2 deg(B). Finally, we know that the every single one of these points

forms an octahedron with B and 2 points in the neighbourhood of B.

We can write the neighbourhood of B as B ∪ {xi}\{y} and B ∪ {xi}\{z} for all i

between 1 and c2 − 2. Finally, we can write every other point of the graph in the form

B ∪ {xi, xj}\{y, z} for all 1 ≤ i < j ≤ c2 − 2.

Let S = B∪\{y} and thenA is exactly the family {S∪{t1, t2, t3}|t1, t2, t3 ∈ {y, z, x1, x2, ..., xc2−2}}
while B is exactly the family {S ∪ {t1, t2}|t1, t2 ∈ {y, z, x1, x2, ..., xc2−2}}.

�

3.5.4 Other cases

As a reminder, at this stage we know that there is a large ‘nice hypergraph’ of vertices

that all contain S as a subset. We’ll say that there are exactly β vertices not in our nice

hypergraph (which leaves b−β vertices in the nice hypergraph). We know that β < 4c2.

How many edges can there be in this graph now that we have this information? There

are 3 types of edges, depending on how many vertices are in the nice hypergraph:

• The edges that are entirely contained in the nice hypergraph. We shall call these

nice edges. All the vertices in the nice hypergraph contain S so by the Kruskal Katona

Theorem, the most edges entirely contained within is when they form an initial segment

of the colex ordering. So if we write b−β =
(
d2

2

)
+
(
d1

1

)
, then we have at most

(
d2

3

)
+
(
d1

2

)
nice edges. Because β < 4c2 and c2 ≥ 29, we have b − β > c22−c2+2c1

2 − 4c2 ≥
c22−9c2

2 ≥(
c2−5

2

)
. Therefore d2 ≥ c2 − 5.

• The edges that that contain 1 or 2 vertices from the nice hypergraph and 2 or 1 from

outside. We shall call these linking edges. There are at most β of them because given

any point T outside the nice hypergraph, the only potential edge that can connect to

elements in the nice hypergraph is T ∪ S.

• The edges entirely outside the nice hypergraph. We’ll call these outside edges. If we

just apply our earlier result (3.1), we get that there are at most −3+
√

8β+1
6 β of them.

In total, we have at most
(
d2

3

)
+
(
d1

2

)
+ 3+

√
8β+1
6 β edges in our hypergraph. We shall try

to go for a contradiction and assume the number of edges is also equal to
(
c2
3

)
+
(
c1
2

)
+ 1.

This implies that:
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(c2 − d2)
c2

2 + c2d2 + d2
2 − 3c2 − 3d2 + 2

6
+ (c1 − d1)

c1 + d1 − 1

2
≤ 3 +

√
8β + 1

6
β.

And β = (c2 − d2) c2+d2−1
2 + (c1 − d1). Let φ = c2 − d2; we know that 0 ≤ φ ≤ 4.

Replace all instances of d2 with c2 − φ in the inequality. We end up with:

φ
(
3c2

2 − 3φc2 + φ2 − 6c2 + 3φ+ 2
)

+ 3(c1 − d1)(c1 + d1 − 1) ≤ (3 +
√

8β + 1)β. (3.3)

And β = φ
(
c2 − φ+1

2

)
+ (c1 − d1).

Case 1: 2 ≤ φ ≤ 5

We know that 0 ≤ c1 ≤ c2 − 1 and 0 ≤ d1 ≤ d2 − 1 so (c1 − d1)(c1 + d1 − 1) ≥
−d1(d1−1) ≥ −(d2−1)(d2−2) = −(c2−φ−1)(c2−φ−2) = −(c2−1)(c2−2)+φ(2c2−3)−φ2

and β ≤ φ
(
c2 − φ+1

2

)
+c2−1 = (φ+1)(c2−φ/2)−1. Putting these back into inequality

3.3, we get:

φ
(
3c2

2 − 3φc2 + φ2 − 6c2 + 3φ+ 2
)
− 3(c2 − 1)(c2 − 2) + 3φ(2c2 − 3)− 3φ2

≤ (3 +
√

8(φ+ 1)(c2 − φ/2)− 7)[(φ+ 1)(c2 − φ/2)− 1].

So:

(3φ− 3)c2
2 + (−3φ2 + 9)c2 + (φ3 − 7φ− 6)

≤ 3(φ+ 1)(c2 − φ/2)− 3 +
√

8(φ+ 1)(c2 − φ/2)− 7[(φ+ 1)(c2 − φ/2)− 1].

Therefore:

(3φ− 3)c2
2 + (−3φ2 − 3φ+ 6)c2 + (φ3 + 3/2φ2 − 11/2φ− 3)

≤
√

8(φ+ 1)(c2 − φ/2)− 7[(φ+ 1)(c2 − φ/2)− 1].

For φ = 2, this gives us 3c2
2−12c2 ≤

√
24c2 − 31(3c2−4) which is false for c2 ≥ 29.
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For φ = 3, this gives us 6c2
2 − 30c2 + 21 ≤

√
32c2 − 55(4c2 − 7) which is false for

c2 ≥ 20.

For φ = 4, this gives us 9c2
2− 54c2 + 63 ≤

√
40c2 − 87(5c2− 11) which is false for

c2 ≥ 18

For φ = 5, this gives us 12c2
2− 84c2 + 132 ≤

√
48c2 − 127(6c2− 16) which is false

for c2 ≥ 18

We assumed that c2 ≥ 29 so therefore none of these cases can occur.

Case 2: φ = 1

Then inequality 3.3 becomes:

(
3c2

2 − 9c2 + 6
)

+ (c1 − d1) (3c1 + 3d1 − 3) ≤ (3 +
√

8β + 1)β. (3.4)

where β = c2 − 1 + (c1 − d1) ≤ 2c2 − 2 so that implies:

(
3c2

2 − 12c2 + 9
)

+ 3c2
1 − 3d2

1 + 6(d1 − c1) ≤ 8c
3/2
2 .

But now 3c2
2 − 8c

3/2
2 − 12c2 + 9 ≥ 3(c2 − 4/3

√
c2 − 4)2 so this implies that

d1 ≥ c2 − 4/3
√
c2 − 4. We also get that c1 ≤ 1

3

√
8c

3/2
2 + 12c2 − 9 < c2/2.

Replacing d1 = c2 − ε in inequality 3.4, we get:

(6ε− 6)c2 + 3c2
1 − 6c1 − 3ε2 − 6ε+ 9 ≤

√
8c1 + 8ε− 7(c1 + ε− 1).

And we know that 2 ≤ ε ≤ 4/3
√
c2 + 4 < c2/2. Since

√
8c1 + 8ε− 7 <

√
8c2, we

can say that:

−3ε2 + ε(6c2 −
√

8c2 − 6) + 3(c1 − 1)2 −
√

8c2(c1 − 1)− 6c2 + 6 ≤ 0.

The value for c1 that minimises the left hand side is c1 = 1 +
√

2c2/3 so we can without

loss of generality assume that is what c1 is, and that gives us:

−3ε2 + ε(6c2 −
√

8c2 − 6)− 20/3c2 + 6 ≤ 0.

If we set ε to be at its maximum value: ε = 4/3
√
c2+4, we get the left hand side is

8c
3/2
2 +(12−8

√
2/3)c2−(40+8

√
2)
√
c2−2 which is positive for c2 ≥ 29. Similarly, when
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ε is at its minimum value, ε = 2, we have −18 + 16/3c2 − 4
√

2c2 which is also positive

for c2 ≥ 29. As this function is a quadratic polynomial with a negative leading term, it

is concave and therefore this inequality does not hold for any valid ε. So therefore this

case cannot occur.

Case 3: c2 = d2 but c1 6= d1

Then we can simplify (3.3) further to (3c1 + 3d1 − 6) ≤
√

8c1 − 8d1 + 1 so either

c1 +d1 ≤ 2 or 3c1−6 ≤
√

8c1 + 1 so 9c2
1−43c1 +35 ≤ 0 so c1 ≤ 3 in either case. Looking

at each subcase individually, we get the following cases:

• Case 3.1. d1 = 0 and c1 = 3. In this case, our potential counter-example consists

of 3 vertices outside the nice hypergraph with one outside edge and three linking edges

(one per vertex), which is one more than the
(

3
2

)
= 3 we expected. But this configuration

is actually impossible.

Indeed, if we remove these 3 outside vertices and their 4 edges, we’re left with a(
c2
2

)
vertices and

(
c2
3

)
edges so by Lemma 2, there is only a single unique solution:

B = {S ∪ T |T ∈ {x1, x2, ..., xc2}(2)} and A = {S ∪ T |T ∈ {x1, x2, ..., xc2}(3)}.
Also note that each of the 3 linking edges is only incident to one of the outside vertices,

which means that its two other endpoints are inside the nice hypergraph. Say they are

S ∪ {x1, x2} and S ∪ {x1, x3}. Then the linking edge has to be S ∪ {x1, x2, x3}. But

this is one of the nice edges that we’ve already counted. Contradiction. Therefore this

configuration is indeed impossible.

• Case 3.2. d1 = 0 and c1 = 2. In this case, our potential counter example consists

of 2 vertices outside the nice hypergraph with two linking edges, which is one more than

the
(

2
2

)
= 1 we expected. This configuration is also impossible.

Similarly to the last bullet point, we note that if we remove the 2 extra vertices and

edges, we are left with families of the type: B = {S ∪ T |T ∈ {x1, x2, ..., xc2}(2)} and

A = {S ∪ T |T ∈ {x1, x2, ..., xc2}(3)}. But also each of the 2 linking edges has to be of

the form S ∪ {x1, x2, x3}, which is not a linking edge at all, but rather a nice edge that

we have already counted. Contradiction.

• Case 3.3. d1 = 0 and c1 = 1. In this case, our potential counter example consists

of 1 vertex outside the nice hypergraph with one linking edges, which is one more than

the
(

1
2

)
= 0 we expected. This configuration is also impossible and the proof is identical

to the last two bullet points.
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• Case 3.4. d1 = 1 and c1 = 2. In this case, our potential counterexample can ac-

tually work. However it has
(
c2
3

)
+
(

1
2

)
+ 1 edges which is the same as

(
c2
3

)
+
(

2
2

)
that our

usual example gives us so it doesn’t give any improvement.

So in conclusion, we have proved the conjecture in the case k = 3 and for c2 ≥ 29.

This finishes the proof of Theorem 3.

Remark: we did not answer the question of what happens when c2 < 29; however,

this is only finitely many cases so it could in theory be solved by simply checking all the

cases individually.

3.6 The case k ≥ 4

In this section, we are going to prove Theorems 4 and 5. Unfortunately, it does require

Conjecture 1 (from Chapter 2) to be true instead of Theorem 2 as was expected. Simi-

larly to the case k = 3, we again define the distance d(B1, B2) = |B14B2|/2.

We will follow what we did in the case k = 3 except we will be looking at pairs of

points at distance k − 1 from each other, instead of pairs at distance 2, and the paths

joining them together will have length k − 1 instead of length 2.

Here, we will assume that conjecture 1 is true and use it. The graph X will be the

one that has B as vertices. We know that every element A of A contains at least k

elements of B as subsets, so pick k of them arbitrarily, then connect these k vertices by

edges. Thus, the graph has exactly ak(k−1)/2 edges, making the average degree of this

graph be k(k − 1)ab .

The tree T will be a path Pk−1 of length k − 1. The sequence of subtrees we use to

construct it will just be made up of all the shorter paths: P0 ⊂ P1 ⊂ P2 ⊂ ... ⊂ Pk−1.

If H is a homomorphism from Pj to X, then look at the two endpoints of the path, say

B and B′. When B and B′ are at distance j from each other, we’ll say that Pj has

property P.
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Pick qPi = (k−1)!
(k−i−1)!(k−1)i

and f = (k − 1)/4.

We need to check that P is weakly injective-like. The first bullet point of the definition

of weakly injective-like (definition 9) is that property P holds for all homomorphisms of

P0. But a single vertex is always at distance 0 from itself so this is true.

Setting i = 0 we get qP0 = 1 so the second bullet point is satisfied.

For the final bullet point, we are given a homomorphism H : Pi−1 → X satisfying P and

asked to count the number of ways extend it to some H ′ : Pi → X in order to continue

satisfying property P. Let the image of H consist of vertices B0, B1, B2, ..., Bi−1, so now

we are looking for some vertex Bi to extend the path, i.e. Bi = Bi−1 ∪ {xi}\{yi} with

an edge between Bi and Bi−1. Given a specific choice of xi, there are exactly k − 1

choices of yi that make (Bi, Bi−1) an edge, and so there are exactly deg(Bi−1)
k−1 choices

for xi. But not all of these choices satisfy property P. How many of them do? Well,

because H satisfies P, we know that Bi−1 is at distance i − 1 from B0 so we can write

Bi−1 = B0 ∪ {x1, x2, ..., xi−1}\{y1, y2, ..., yi−1}. To make Bi = Bi−1 ∪ {xi}\{yi} be at

distance i from B0, it suffices that xi is not any of the yjs and that yi is not any of the

xjs. So after excluding these cases, there are at least deg(Bi−1)
k−1 − (i − 1) choices for xi,

followed by at least k− i choices for yi. The overall number of choices for H ′ is therefore

at least deg(Bi−1)(k−i)
k−1 − (i−1)(k−i)

k−1 ≥ deg(Bi−1)(k−i)
k−1 − k−1

4 .

This proves that P is weakly injective-like. So if Conjecture 1 is true, then we

can apply it. It tells us that the number of paths in X joining two points at distance i

from each other is at least b · [k(k− 1)a/b]i ·
∏i
j=1

k−j
k−1 ·

(
1−

(
ln(b)b
a

))
, or to put it more

neatly:

|HomP(Pi, X)| ≥ (k − 1)!

(k − i− 1)!

(
ak

b

)i
b

(
1−O

(
b ln(b)

ka

))
. (3.5)

3.6.1 Upper bound on a as a function of b

Given any pair of vertices at distance i from each other, say B and

B′ = B ∪ {x1, x2, ..., xi}\{y1, y2, ..., yi} there are at most i!2 paths of length i between

them. This is because to get a path of length i, you need to pick some sequence of the

xjs and yjs and you then follow the path by adding the next xj and subtracting the
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next yj at each step; this then determines the path uniquely. So therefore the number

of pairs of vertices at distance i from each other is at least |HomP (Ti,X)|
i!2

. So the total

number of pairs, (which is equal to b(b− 1) ), is at least
∑k−1

i=1
|HomP (Ti,X)|

i!2
. Thus:

b(b− 1) ≥
k−1∑
i=1

(
ak

b

)i (k − 1)!

(k − i− 1)!i!2
b

(
1−O

(
b ln(b)

a

))

b− 1 ≥
(
ak

b

)k−1

/(k − 1)! +O

((
ak

b

)k−2

ln(b)

)

ak

b
≤ (b(k − 1)!)1/(k−1) +O(ln(b))

a ≤ bk/(k−1) (k − 1)!1/(k−1)

k
+O(b ln(b).)

This matches our canonical example where a =
(
c
k

)
and b =

(
c

k−1

)
to within

O(b ln(b)). Indeed, the canonical example has ak
b = c − k + 1 and b(k − 1)! = c(c −

1)...(c − k + 2) = ck−1 + O(ck−2), so (b(k − 1)!)1/(k−1) = c + O(1), therefore ak
b =

(b(k − 1)!)1/(k−1) +O(1) in our canonical example.

3.6.2 Using stability to gather information about our sets

This is similar to what we did in the case k = 3. Suppose we have a valid configuration

with b vertices and a = bk/(k−1) (k−1)!1/(k−1)

k

(
1 +O

(
ln(b)

b1/k−1

))
edges. We will go through

the proof to see what properties we can deduce of A and B.

Nice pairs

We know from (3.5) that

|HomP(Tk−1, X)| ≥ (k−1)!

(
ak

b

)k−1

b

(
1−O

(
b ln(b)

ka

))
= (k−1)!2b2

(
1−O

(
ln(b)

b1/(k−1)

))
.

We know that there are less than b2 pairs of points at distance k − 1. The maximum

number of paths in HomP(Tk−1, X) joining such a pair is (k − 1)!2. Most pairs should

have exactly (k−1)!2 paths; we’ll call this a nice pair. However, there might be some that

have less. We’ll say that there are ω pairs that are not nice. Then the number of paths

of length k−1 is less than (b2−ω)(k−1)!2 +ω[(k−1)!2−1] = b2(k−1)!2−ω. Combining

this with our inequality for HomP(Tk−1, X), this tells us that ω ≤ O
(
b2 ln(b)

b1/(k−1)

)
. So

almost all pairs at distance k−1 will be nice. The exceptions only make up a proportion
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of O
(

ln(b)

b1/(k−1)

)
of the total. We also get that |HomP(Tk−1, X)| ≤ (k − 1)!2b2.

So given a vertex B, the average number of points B′′ that create a nice pair with

it is b
(

1−O
(

ln(b)

b1/(k−1)

))
. We want to know how many vertices are close to that number.

To be more precise, lets say that there are b(1− δ) vertices B that have at least b(1− ε)
vertices B′′ at distance k − 1 from it (where ε and δ will be defined later). Then the

total number of pairs at distance k − 1 is:

b2
(

1−O
(

ln(b)

b1/(k−1)

))
≤ b(b− bε) + (b− bδ)(bε).

Reordering the inequality gives:

ε ≤ 1

δ
O

(
ln(b)

b1/(k−1)

)
.

So if we set δ = b−1/(2k−2) and ε = O
(

ln(b)

b1/(2k−2)

)
, then this works. Therefore

there are b
(
1− b−1/(2k−2)

)
vertices B that are part of at least b

(
1−O

(
ln(b)

b1/(2k−2)

))
nice

pairs. We’ll call this set of vertices B′.

Low degree

We know that the sum of the degrees of all the vertices is ka. Therefore the sum of

the degrees of vertices in B′ is at most ka. So the average degree of an element of B′ is

at most ka
b(1−b−1/(2k−2))

≤ (b(k − 1)!)1/(k−1)(1 + ε).

Therefore there exists a vertex B of B′ with degree less than (b(k − 1)!)1/(k−1)(1 + ε).

Colouring the edges incident to B

We know we have a vertex B that is part of at least b(1− ε) nice pairs, and moreover,

it has degree d ≤ (b(k − 1)!)1/(k−1)(1 + ε). We’ll denote the set of edges incident to B

by G = {B ∪ {x1}, B ∪ {x2}, ..., B ∪ {xd}}.

Each of the edges in G has k − 1 other vertices incident to it: B ∪ {xi}\{yi,1}, B ∪
{xi}\{yi,2}, ..., B∪{xi}\{yi,k−1}. We’ll also colour G by giving colour: {yi,1, yi,2, ..., yi,k−1}
to the edge B ∪ {xi}.

Now for every nice pair (B,B′′), there are (k − 1)!2 paths between them. B′′ is at
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distance k − 1 from B so write B′′ = B ∪ {t1, t2, ..., tk−1}\{w1, w2, ..., wk−1}. Now there

exist all (k−1)!2 possible paths between B and B′′, which means that B∪{t1}, B∪{t2},
..., B∪{tk−1} are all in G. Therefore , each ti is equal to some xj . Furthermore, all these

edges have the same colour: {w1, w2, ..., wk−1}. So therefore we know that for every nice

pair (B,B′′), there exists a corresponding set of k − 1 elements of G that all have the

same colour. Furthermore, given such a monochromatic set of k− 1 elements of G, there

is at most one B′′ that they correspond to. So the number of nice pairs containing B is

at most the number of monochromatic (k − 1)-sets of G.

We’ll say that the largest colour class of G has size d(1−α). Then the maximum number

of monochromatic (k− 1)-sets is
(
dα
k−1

)
+
(d(1−α)
k−1

)
= dk−1

(k−1)!(α
k−1 + (1−α)k−1 −O(1/d)).

We know that this number is at least b(1−ε) and so we plug in d ≤ (b(k−1)!)1/(k−1)(1+ε)

to get:

b(k − 1)!

(k − 1)!
(αk−1 + (1− α)k−1 −O(1/d))(1 + ε)k−1 ≥ b(1− ε)

(αk−1 + (1− α)k−1 −O(1/d)) ≥ 1− ε
(1 + ε)k−1

α ≤ k

k − 1
ε+O(ε2) +O(1/d).

Therefore, we know that there is a very large colour class of size d(1− kε
k−1 +O(ε2)+

O(1/d)), comprising nearly all elements of G. We’ll say its colour is {z1, z2, ..., zk−1}.

A nice hypergraph

We want to know how many elements of B′ are connected to our large colour class.

The maximum number of them that we don’t use in our large colour class is
(
α
k−1

)
≤(

kε
k−1

)k−1
dk−1

(k−1)! ≤
(
kε(1+ε)
k−1

)k−1
b. Therefore the number of vertices of B′ that are con-

nected to our large colour class is at least b

(
1− ε−

(
kε(1+ε)
k−1

)k−1
)

, so that is nearly all

points.

Now notice that every one of these vertices of B′ that is connected to our large colour

class contains B\{z1, z2, ..., zk−1} because that is the only way to connect it to edges in

G of that colour. We set S = B\{z1, z2, ..., zk−1} and we end up with a nice hypergraph

that comprises nearly all the vertices of B. So what we have is:
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Lemma 3. There exists a set S ∈ N(r−k) such that S is a subset of b(1− o(1)) elements

of B.

We’ll define our nice hypergraph D to consist of all the vertices and edges that

contain S as a subset.

3.6.3 Using classical Kruskal Katona to improve the bound further

At this point, we know that we have a large nice hypergraph of vertices D, all of which

contain S as a subset. We’ll say that there are λ vertices in B\D. We know that λ = o(b).

Our aim in this section is to bound λ by a constant. How many edges can we have in

our graph? To count them, we’ll separate them into 3 cases:

• The edges that are entirely contained within D. We can apply the classical version of

the Kruskal Katona Theorem to get an upper bound. To get that bound, we need to

write |D| = b− λ in the form
(dk−1

k−1

)
+
(dk−2

k−2

)
+ ...+

(
d1

1

)
. Then the maximum number of

edges is
(dk−1

k

)
+
(dk−2

k−1

)
+ ...+

(
d1

2

)
.

• The edges that are entirely contained within B\D. For these, we can just apply our

formula to say that there are at most λk/(k−1) (k−1)!1/(k−1)

k

(
1 +O

(
ln(λ)

λ1/(k−1)

))
of them.

• The edges that are incident to both D and B\D. Since these edges are incident

to some vertex in our nice hypergraph D, that vertex has to contain S as a subset,

therefore the edge also has to contain S. Now for every vertex B in B\D, S 6⊂ B, so the

only edge that can connect B to D has to be B∪S. In particular, it is unique. Therefore

the number of edges that fall under this case is at most λ.

If we add up everything, we get that the maximal number of edges is:(dk−1

k

)
+
(dk−2

k−1

)
+ ...+

(
d1

2

)
+O(λk/(k−1)), where λ = b−

[(dk−1

k−1

)
+
(dk−2

k−2

)
+ ...+

(
d1

1

)]
.

We want to compare this to what we would get with our hypothesis (which states that

λ = 0 is optimal). For this, you would write b =
(ck−1

k−1

)
+
(ck−2

k−2

)
+ ...+

(
c1
1

)
, and then the

number of edges would be:
(ck−1

k

)
+
(ck−2

k−1

)
+...+

(
c1
2

)
. So if we did have a counter-example

to our hypothesis, we would have:

[(
ck−1

k

)
+

(
ck−2

k − 1

)
+ ...+

(
c1

2

)]
−
[(
dk−1

k

)
+

(
dk−2

k − 1

)
+ ...+

(
d1

2

)]
= O(λk/(k−1))
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where λ =

[(
ck−1

k − 1

)
+

(
ck−2

k − 2

)
+ ...+

(
c1

1

)]
−
[(

dk−1

k − 1

)
+

(
dk−2

k − 2

)
+ ...+

(
d1

1

)]
.

We split into several cases depending on what ck−1 − dk−1 is.

Case 1: ck−1 − dk−1 ≥ 2

Then λ ≤
(ck−1+1

k−1

)
−
(dk−1

k−1

)
≤ (ck−1 +1−dk−1)

(ck−1

k−2

)
= (ck−1 +1−dk−1)O((ck−1)k−2).

Therefore the right hand side of the inequality is at most

(ck−1 + 1− dk−1)k/(k−1)O
(
(ck−1)k(k−2)/(k−1)

)
.

Meanwhile, the left hand side of the inequality is at least
(ck−1

k

)
−
(dk−1+1

k

)
≥ (ck−1 −

dk−1 − 1)
(dk−1+1

k−1

)
= (ck−1 − dk−1 − 1)Ω(ck−1

k−1).

Notice that (ck−1 − dk−1 − 1) ≥ 1, so to get the inequality to hold, we must have
(ck−1−dk−1+1)k/(k−1)

ck−1−dk−1−1 > Ω((ck−1)1/(k−1)) , so therefore ck−1 − dk−1 = Ω(ck−1). But we

know that λ = o(b) so (ck−1)k−1 − (dk−1)k−1 = o((ck−1)k−1) so ck−1 − dk−1 = o(ck−1).

This is a contradiction, so the inequality never holds when ck−1− dk−1 ≥ 2, so there are

no counter-examples of this type (as long as ck−1 is large).

Case 2: ck−1 − dk−1 = 1

We substitute dk−1 = ck−1 − 1 into the inequality to get:

(
ck−1 − 1

k − 1

)
+

[(
ck−2

k − 1

)
+ ...+

(
c1

2

)]
−
[(

dk−2

k − 1

)
+ ...+

(
d1

2

)]
< O(λk/(k−1))

where λ =

(
ck−1 − 1

k − 2

)
+

[(
ck−2

k − 2

)
+ ...+

(
c1

1

)]
−
[(

dk−2

k − 2

)
+ ...+

(
d1

1

)]
.

Then λ ≤
(ck−1

k−2

)
= O((ck−1)k−2). Therefore the right hand side is at most

O((ck−1)k(k−2)/(k−1)).

Meanwhile, the left hand side of the inequality is at least:(ck−1−1
k−1

)
−
(dk−2+1

k−1

)
=

(ck−1)k−1

(k−1)! −O((ck−1)k−2)− (dk−2)k−1

(k−1)! +O((dk−2)k−2). The only way to get this to be smaller
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than the right hand side is to have the
(ck−1)k−1

(k−1)! −
(dk−2)k−1

(k−1)! = O((ck−1)k−1−1/(k−1)) so

ck−1 − dk−2 = O((ck−1)1−1/(k−1))) = o(ck−1).

Now we try again except this time we can use the information that ck−1−dk−2 = o(ck−1).

We have λ ≤
(ck−1−1

k−2

)
+
(ck−2+1

k−2

)
−
(dk−2

k−2

)
≤ (ck−1−dk−2−1)

(ck−1−2
k−3

)
+
(ck−2+1

k−2

)
. We can

use Jensen’s inequality to deduce that the right hand side of the inequality is at most:

(ck−1 − dk−2 − 1)k/(k−1)O((ck−1)k(k−3)/(k−1)) +O((ck−2)k(k−2)/(k−1)).

Meanwhile, the left hand side of the inequality is at least:
(ck−1−1

k−1

)
+
(ck−2

k−1

)
−
(dk−2+1

k−1

)
≥

(ck−1− dk−2− 2)
(dk−2+1

k−2

)
+
(ck−2

k−1

)
= (ck−1− dk−2− 2)Ω((ck−1)k−2) + Ω((ck−2)k−1). The

only way this is smaller than the right hand side is if (ck−1 − dk−2 − 2)Ω((ck−1)k−2) <

(ck−1 − dk−2 − 1)k/(k−1)O((ck−1)k(k−3)/(k−1)). This implies that
ck−1−dk−2−2

(ck−1−dk−2−1)k/(k−1) <

O((ck−1)−2/(k−1)).

There are two solutions to this: either ck−1− dk−2− 2 = 0, or ck−1− dk−2 = Ω((ck−1)2).

But the second solution is clearly impossible, so the only possibility is dk−2 = ck−1 − 2.

We substitute this back into the inequality and we get:

(
ck−1 − 2

k − 2

)
+

[(
ck−2

k − 1

)
+ ...+

(
c1

2

)]
−
[(

dk−3

k − 2

)
+ ...+

(
d1

2

)]
< O(λk/(k−1))

where λ =

(
ck−1 − 2

k − 3

)
+

[(
ck−2

k − 2

)
+ ...+

(
c1

1

)]
−
[(

dk−3

k − 3

)
+ ...+

(
d1

1

)]
.

This looks remarkably like the inequality we had at the start of this case. In fact,

we can repeat the argument with a few changes to prove that dk−3 = ck−1 − 3. Then

we can continue using the same argument to prove dk−4 = ck−1− 4, ... all the way until

d1 = ck−1 − (k − 1). At this point, we’re left with:

(ck−1 − k + 1) +

[(
ck−2

k − 1

)
+ ...+

(
c1

2

)]
< O(λk/(k−1))

where λ = 1 +

[(
ck−2

k − 2

)
+ ...+

(
c1

1

)]
.

We need λk/(k−1) ≥ Ω(ck−1) so
(ck−2+1

k−2

)
≥ λ ≥ Ω((ck−1)(k−1)/k) so ck−2 ≥

Ω((ck−1)(k−1)/k/(k−2)). Because (k−1)2

k(k−2) > 1, the dominant term on the left hand side of
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the inequality is
(ck−2

k−1

)
. Therefore we end up with Ω((ck−2)k−1) < O((ck−2)k(k−2)/(k−1))

which is impossible for ck−2 large enough. ck−2 ≥ Ω((ck−1)(k−1)/k/(k−2)) so it’s also

impossible when ck−1 is large enough. So the inequality never holds and there are no

large counter-examples of this type.

Case 3: ck−1 − dk−1 = 0

We substitute dk−1 = ck−1 into the inequality to get:

[(
ck−2

k − 1

)
+ ...+

(
c1

2

)]
−
[(

dk−2

k − 1

)
+ ...+

(
d1

2

)]
< O(λk/(k−1))

where λ =

[(
ck−2

k − 2

)
+ ...+

(
c1

1

)]
−
[(

dk−2

k − 2

)
+ ...+

(
d1

1

)]
.

But O(λk/(k−1)) < O(λ(k−1)/(k−2)), so we get:

[(
ck−2

k − 1

)
+ ...+

(
c1

2

)]
−
[(

dk−2

k − 1

)
+ ...+

(
d1

2

)]
< O(λ(k−1)/(k−2))

where λ =

[(
ck−2

k − 2

)
+ ...+

(
c1

1

)]
−
[(

dk−2

k − 2

)
+ ...+

(
d1

1

)]
.

This new inequality is identical to our original except that we have k− 1 instead

of k. If ck−2 is large enough, then we can repeat our argument and either go to cases

1 and 2 and prove no counter-example exists, or go back through case 3 and reduce k

again (more formally, there exists a constant µ depending only on k such that if for any

i, di < ci > µ, then case 1 or 2 applies and there is no counter-example possible). If

all of ck−2, ck−3, ..., c1 are larger than µ, then we get ck−1 = dk−1, ck−2 = dk−2, ... ,

c1 = d1, which implies that b = b− λ so λ = 0.

This is exactly Theorem 4: there is some constant µ depending only on k such that

if b =
[(ck−1

k−1

)
+ ...+

(
c1
1

)]
, for some ck−1 > ck−2 > ... > c1 > µ, then the maximum

value for a is exactly: [(
ck−1

k

)
+ ...+

(
c1

2

)]
= f(r, k, b).

The only cases that aren’t covered by Theorem, is if there exists some i such that ci is
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smaller than µ. Without loss of generality, pick i to be the largest such. Then we know

that cj = dj for any j > i. Then we get:

λ ≤
[(
µ

i

)(
µ− 1

i− 1

)
+ ...+

(
µ− i+ 1

1

)]
− [0].

So λ is in fact bounded by a constant, which implies the following lemma:

Lemma 4. There is a constant λmax depending only on k such that there exists a subset

D of B of size at least b − λmax and a set S ∈ N(r−k) such that S is a subset of every

element of D.

And now Theorem 5 is just an easy corollary of this, since we have a bounded

number of vertices that aren’t in our nice hypergraph, these vertices can only form a

bounded number of extra edges, therefore there is a constant τ depending only on k

such that if b =
[(ck−1

k−1

)
+ ...+

(
c1
1

)]
, for some ck−1 > ck−2 > ... > c1, then the maximum

value for a is between:

[(
ck−1

k

)
+ ...+

(
c1

2

)]
≤ f(r, k, b) ≤

[(
ck−1

k

)
+ ...+

(
c1

2

)]
+ τ.
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Chapter 4

Rational Exponents for Turán

Hypergraph Problems

4.1 Introduction

Definition 14. Given an integer k ≥ 2 and a family F of k-hypergraphs, ex(n,F) is

defined to be the maximum number of edges across all k-hypergraphs that have n vertices

and do not contain any element of F as a subgraph.

In general, ex(n,F) can be anything from 0 (as in the case F = {E}, where E is

just a single edge) to
(
n
k

)
(as in the case where F is empty).

In this chapter, we will extend Bukh and Conlon’s [8] result to hypergraphs, ie,

we will prove that for every rational r between 1 and k, there exists a finite family of

k-hypergraphs F with ex(n,F) = Θ(nk−r). This is also an improvement on Frankl’s [13]

result since we now have a family of k-hypergraphs for all k ≥ r, instead of for just one

specific k. This is also of interest as an infinite family of k-hypergraphs for which the

answer to the Turán problem is known. Note that in the literature, this is commonly

formulated as ex(n,F) = Θ(nr) for some k ≥ r instead of Θ(nk−r) as we do. The reason

we prefer to exchange r and k − r is because it will make the calculations easier.

To prove this we will use similar methods as Bukh and Conlon [8], both in the

construction of F and for the lower bound. For the upper bound, we will use Theorem

2 from chapter 2.

We will at first only consider the case where 0 ≤ r < 1:
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Theorem 6. Given an integer k and a rational r, 0 ≤ r < 1, there exists some finite

collection of k-hypergraphs F such that ex(n,F) = Θ(nk−r).

Our section 4.2 deals with the construction of the family of hypergraphs F that

will solve Theorem 6. They will be hypergraph versions of the graphs from [8].

In section 4.3, we prove the lower bound, i.e. that ex(n,F) ≥ Θ(nk−r). This

involves constructing a hypergraph with n vertices and Θ(nk−
a
b ) edges but that does not

contain any copy of any hypergraph from F . The proof is again adapted from [8].

In section 4.4, we prove the upper bound, i.e. that ex(n,F) ≤ Θ(nk−r). However,

unlike in the first two sections, the proof from [8] cannot be easily extended to hyper-

graphs. We instead use Theorem 2 that we proved in chapter 2. When n is a sufficiently

large integer, this allows us to find some copy of an element of F in any hypergraph X

with n vertices and with at least Θ(nk−r) edges, thereby proving the upper bound.

In our final section, we consider what happens for other rs. We first extend the

result from 0 ≤ r < 1 to 0 ≤ r ≤ k − 1:

Theorem 7. Given an integer k and a rational r, 0 ≤ r < k − 1, there exists some

collection of k-hypergraphs F such that ex(n,F) = Θ(nk−r).

Observation: The case where k − 1 < r < k is impossible. This is a corollary

of the Sunflower Lemma [11], which involves hypergraphs called sunflowers. A sun-

flower is a k-hypergraph which contains a set of between 0 and k − 1 points, called the

kernel, such that any two edges of the sunflower intersect in exactly the kernel. The

Sunflower Lemma states that whenever F is a collection of k-hypergraphs such that for

all 0 ≤ i ≤ k− 1, F contains a sunflower with kernel size i, then ex(n, F ) is bounded by

a constant (independent of n). We shall provide more details in the final section.

Algebraic Geometry

The proof will use some algebraic geometry. What follows in this section is a brief

overview of the results we will use. See [14] for more information and proofs.

Definition 15. (1.1.2 in [14]) Given an algebraically closed field F, an affine algebraic

variety V (often shorted to just variety) over F is a set of the form:

V = {(x1, x2, ..., xn) ∈ Fn |P1(x1, x2, ..., xn) = P2(x1, ..., xn) = ... = Pm(x1, ..., xn) = 0},
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where P1, P2, ..., Pm are polynomials over F with n variables.

Lemma 5. (1.1.4 and 1.1.5 in [14]) If U and V are varieties over F, then U ∩ V and

U ∪ V are also varieties over F.

Definition 16. (1.1.10 in [14]) Given a variety V over F, we say that V is reducible

if there exist varieties U,U ′ ( V such that V = U ∪ U ′. If V is not reducible, we say it

is irreducible.

Lemma 6. (1.1.12a in [14]) A variety V can be decomposed uniquely (up to ordering)

into maximal irreducible components: V = U1 ∪ U2 ∪ ... ∪ Uk where the Ui are all irre-

ducible and such that for all i, j, Ui 6⊂ Uj .

That means that if we have two such decompositions V =
⋃k
i=1 Ui =

⋃l
j=1 U

′
j, then k = l

and for every 1 ≤ i ≤ k, there exists some 1 ≤ j ≤ l such that Ui = U ′j and vice-versa.

Furthermore, the number of components in such a decomposition is bounded above by

dm where m is the number of polynomials that generate the variety, and d is their max-

imum degree.

Definition 17. (1.2.15 to 1.2.17 in [14]) Given a non-empty irreducible variety V over

F, its dimension δ is the length of the longest sequence: V = Vδ ) Vδ−1 ) Vδ−2 ) ... )
V0 ) ∅, where every Vi is irreducible. This is well defined for every non-empty irreducible

variety.

When V is reducible, we say its dimension is the largest dimension of its irreducible

components.

It is fairly easy to see that a finite set of points has dimension 0, the space Fn

has dimension n, and that when V is a non-empty variety generated by k polynomials

in n variables: P1, P2, ..., Pm ∈ F[X1, X2, ..., Xn], then V has dimension at least n−m.

Although we require F to be algebraically closed for the theory to work, most

practical applications involve fields that are not algebraically closed. However, this isn’t

a problem because if F′ is an arbitrary field, then it has an algebraic closure F′. We can

then use properties of algebraic varieties over F′ to say things about the corresponding

set over F′:
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Definition 18. Given a variety V over an algebraically closed field F and a subfield

F′ ⊆ F (which might not be algebraically closed), the F′-rational points of the variety,

denoted by V (F′), are defined to be the points of V that can be written using elements of

F′, i.e.: V (F′) = V ∩ F′n.

Theorem 8. (Lang-Weil bound) [20] Let Fp be the finite field of order p, where p is a

power of a prime. Let V be an irreducible variety of dimension δ over Fp. Then V (Fp)
is either empty or has |V (Fp)| = pδ(1 +O(p−1/2))

4.2 The set of hypergraphs

Suppose we are given an integer k and some rational 0 ≤ r = a
b < 1 Since r is a rational

smaller than 1, b > a and both are positive integers. By multiplying a and b by some

constant, we can assume without loss of generality that b ≥ a− k+ 3. Now consider the

hypergraph as in the picture:

◦ ◦ ◦ ◦ ◦ ◦ ... ◦

•

•

•

•

•

•

•

•

•

•

•

... } b− a + k − 1

} a
Example of the hypergraph T in the case k = 3

It is essentially a hypergraph version of the graph from [8]. It is comprised of

an ordered set of a vertices (in white) with edges (in red) being sets of k vertices in a

row. We add to this b−a+k− 1 vertices (in black) and for each one, an edge (in green)

connecting it to k − 1 vertices in a row. This makes the total number of edges to be

b. These black vertices are as evenly spaced as possible (see picture below). Formally,

the ith black vertex is connected to the b1 + (i−1)(a−k+2)
b−a+k−2 cth (k − 1)-set of consecutive

white vertices. There is one exception, and that is the last (i.e. (b− a+ k− 1)th) black

vertex is connected to the last (i.e.: (a − k + 2)th) consecutive set of white vertices,

not, as the formula suggests, the (a− k + 3)th, because that one doesn’t exist. We call

the vertex-set of this hypergraph T , the subset of black vertices R and call these black

vertices the roots of T .
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sets of k − 1 consecutive
white vertices

black vertices (i.e., the roots)

[ [ [ [ [ [ ]
1 2 3

...
a− k + 1a− k + 2

1 2 3 4 5 ... b−
a+ k

− 4

b−
a+ k

− 3

b−
a+ k

− 2

b−
a+

k −
1

An example of how the roots are connected to the sets of k − 1 consecutive non-roots

In this picture for example, the second (k − 1)-set of non-roots is connected to both the 3rd
and 4th root but no others. When a root lands exactly on a border, it gets connected to the
(k − 1)-set corresponding to the interval on its right EXCEPT for the very last one, which
gets connected to the (k − 1)-set on its left (because there is nothing to the right)

4.2.1 T is balanced

Definition 19. Given a set S of non-roots, define ε(S) to be the number of edges that

contain a point of S.

Definition 20. A rooted k-hypergraph U with vertex set U and set of roots R is balanced

if for any subset S ⊂ U −R, we have:

ε(S)

|S|
≥ ε(U −R)

|U −R|
.

Notice that in the case of our hypergraph T (whose vertex set is T ), we have

ε(T −R) is the total number of edges in the hypergraph, i.e. ε(T −R) = b.

Lemma 7. The hypergraph T defined above is balanced.

Proof: First of all, if every edge of T contains an element of S, then the result is trivial

since |S| ≤ |T −R|. Without loss of generality, we can therefore assume that there is at

least one edge that doesn’t contain any element of S, which means there is a section of

length at least k − 1 that does not contain any element of S. Call this a hole. We also

separate S into a sequence of blocks, by which we mean a maximal sequence of elements

of S with no gaps between them.

Suppose we have a block directly to the left of a hole and also suppose that it

does not contain the leftmost vertex of T . Call this block B. What happens if we shift
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the entire block to the left? Because the black vertices (roots) are evenly distributed,

the number of green edges (edges containing roots) adjacent to B varies by at most 1.

The number of red edges (edges not containing roots) containing a point of B stays the

same unless we are reaching the left edge of T , in which case it goes down. If we do not

reach the left side of T , then that means there is another block in the way. In this case,

the edges containing points of that block and the edges containing points of B will start

to coincide. Regardless of which case we are in, when we do this step, the number of

red edges containing elements of S goes down by at least 1, while the number of green

edges changes by at most 1; therefore, the overall number of edges containing elements

of S goes down or stays constant, while |S| stays constant. Therefore we can assume

without loss of generality that this step has been completed.

By repeating this step multiple times, we can move blocks left until they merge

with other blocks, and then continue moving the bigger blocks until we eventually have

everything to the left of the hole is in one big block as left as it can go. By a similar

argument, everything to the right of the hole is in one big block as far right as it goes.

Say the big block on the left has size x and the one on the right has size y.

If the total number of vertices in the left big block is x then we get x red edges.

The green edges we get are those that connect to the first x (k − 1)-sets. Recall from

the definition, that the ith green edge connects to the b1 + (i−1)(a−k+2)
b−a+k−2 cth (k − 1)-set.

Therefore the number of green edges is the maximal i such that b1+ (i−1)(a−k+2)
b−a+k−2 c ≤ x, i.e.

s.t. (i−1)(a−k+2)
b−a+k−2 < x, i.e. i = dx(b−a+k−2)

a−k+2 e. Similarly, we can calculate the number of red

edges in the right big block as y and the number of green edges in it as by(b−a+k−2)
a−k+2 c+ 1.

Therefore ε(S) is at least |S|+ d |S|(b−a+k−2)
a−k+2 e = d|S| b

a−k+2e ≥ |S|
b
a . Thus, T is indeed a

balanced rooted hypergraph.

�

Definition 21. T ≤s, the sth power of the rooted hypergraph T , is defined to be the set

of all k-hypergraphs that are formed by taking the union of s copies of T such that all

the copies agree on the roots (that is to say, the ith root of the uth copy is the same as

the ith root of the vth copy for all i,u and v). For the non-roots (i.e., the s copies of

each non-root), any disposition is allowed: they can be distinct, they can coincide with

each other, or they can even coincide with different non-roots from other copies of T .

Definition 22. T s=T ≤s\T ≤s−1.
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Lemma 8. For any hypergraph H in T s, the number of edges in H is at least (|H|−|R|) ba .

Proof: We prove this lemma by induction on s. The case s = 1 is trivial since then

H = T .

Given H ∈ T s, we can write v(H) as v(H ′) ∪ S where H ′ is in T s−1 and S is

all the extra vertices from the sth copy of T that aren’t already included in H. We

can consider S as a subset of T − R. Since T is balanced, we have that the number of

edges containing an element of S is at least |S| ba . By induction, the number of edges

in H ′ is at least (|H ′| − |R|) ba . Therefore the total number of edges in H is at least

(|S|+ |H ′| − |R|) ba = (|H| − |R|) ba .

Therefore by induction, we have proved that H has at least |H −R| ba edges.

�

The set of hypergraphs F we will take to prove Theorem 6 is T p for p = 2(b2(b−
a+ k − 1) + ab+ b− 1)ab and a and b are such that r = a

b .

4.3 The lower bound

To prove that ex(n,F) ≥ Θ(nk−r), we need to construct a hypergraph G with at least

Θ(nk−r) edges but without any copies of F . The hypergraph we will take will also be a

hypergraph version of the graph from [8].

Denote s = b(b − a + k − 1) + a + 1, d = bs − 1 = b2(b − a + k − 1) + ab + b − 1.

Notice that now p = 2dab. Then pick a sufficiently large prime q.

The set of vertices of G is the disjoint union of k copies of Fbq : Fbq t Fbq t ... t Fbq.
Also pick uniformly independently at random a polynomials in k variables of degree at

most d: f1, f2, ..., fa: Fbq × Fbq × Fbq × ... × Fbq → Fq (there are k copies of Fbq). [Note:

picking a polynomial of degree at most d at random here means that for every coefficient

of degree ≤ d, pick an element of Fq uniformly at random and independently of the

others.] The edges of G are defined to be (x1, x2, ..., xk) such that fi(x1, x2, ..., xk) = 0

for all i.
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Thus G is k-partite and has kqb = N vertices. The edges of G are equiva-

lent to the rational points of the variety V (Fq), defined by a polynomials: f1, f2, ..., fa.

Now V (Fq) is either empty or contains some non-empty irreducible variety of same di-

mension as it. By the Lang-Weil bound [20], this irreducible variety has size at least

(1−Θ(q−1/2) · qdim(V ). Since we have only a polynomials defining the variety, we have

dim(V ) ≥ bk − a (unless it’s empty). Therefore, either there are 0 edges in G, or there

are at least Θ(qbk−a) = Θ(Nk−a
b ) edges in G, no matter which fis we choose.

Probability that G is empty

Suppose we have already picked all the non-constant coefficients of all the fis. Pick

some points (x1, x2, ..., xk) arbitrarily. Then for each fi, there is exactly one value for

the constant coefficient that makes fi(x1, ..., xk) = 0. The probability we pick it is 1/q.

Multiplying these together, the probability we pick exactly the right value for every fi is

1/qa because we picked the functions independently of each other. Therefore G contains

(x1, x2, ..., xn) (and in particular, is non-empty) with probability at least 1/qa. For the

next parts, we’ll only be considering the case where G is indeed non-empty.

Claim: This hypergraph is T p-free with positive probability.

Proof:

Given a copy A of a hypergraph H ∈ T ≤s in G, we know it has an ordered set of

b− a+ k − 1 roots. We’ll call this ordered set r(A) = (w1, w2, ..., wb−a+k−1) = w.

Before finding a suitable A ∈ T p, we’ll start by picking out a potential candidate

for r(A). This means we are arbitrarily picking an ordered set of b− a+ k − 1 vertices:

(w1, w2, ..., wb−a+k−1) = w. Now in some cases, some wis might be in the wrong parts

which makes it impossible for any copy of T to appear with those roots. We will assume

we are not in this case, and that the wis are all in the correct parts so that copies of T
are in fact possible. We will consider these wis as elements of Fbq.

Let C be the set of all copies of T in G that have w1, w2, ..., wb−a+k−1 as its

roots. We are interested in this because whenever we have a copy of a hypergraph of T p

with the given roots, that implies |C| ≥ p. For the moment, our goal will be to find an

upper bound for P(|C| ≥ p), since that will also be an upper bound on the probability
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of getting a copy of T p.

Lemma 9. If q is sufficiently large, then |C| ≥ p⇔ |C| ≥ q/2.

Proof: We will treat vertices of our hypergraph as elements in Fbq. Furthermore, we

will identify copies of T rooted at w with vectors of the form (x1, x2, ...xa), where the

xis represent the a non-roots in our copy of T in the correct order.

When is (x1, x2, ..., xa) in C? It is in C if and only if:

(1) all the sets of the form {xj , xj+1, ..., xj+k−1} that correspond to edges of T are ac-

tually edges in G.

(2) all sets of the {xj , xj+1, ..., xj+k−2, wl} that correspond to edges of T are actually

edges in G.

(3) xi 6= xj whenever those two vertices are in the same part

(4) xi 6= wj whenever those two vertices are in the same part.

The first condition is equivalent to ∀i,∀j, fi(xj , xj+1, ..., xj+k−1) = 0 whenever

this corresponds to an edge of T . So the set of {x1, x2, ..., xa} that satisfy condition (1)

form the rational points of a variety made up of at most a · (a− k + 1) equations, each

of degree at most d.

The second condition is equivalent to ∀i,∀j, fi(xj , xj+1, ..., xj+k−2, wl) = 0 when-

ever this corresponds to an edge of T . So similarly to the first case, the set of {x1, x2, ..., xa}
that satisfy condition (2) form the rational points of a variety made up of at most

a · (b− a+ k− 1) equations, each of degree at most d. Combining conditions (1) and (2)

gives a variety V made up of at most a · b equations, each of degree at most d.

The third and fourth condition together make up a system of at most
(
a
2

)
+ a ·

(b− a+ k− 1) complements of linear equations, so the set of (x1, x2, ..., xa)s that satisfy

these conditions is the complement of the rational points of a variety U made up of the

product of at most
(
a
2

)
+ a · (b− a+ k − 1) linear equations.

We have C ∼= V (Fq)\U(Fq), where V is a variety in a variables defined by at most

ab equations of degree at most d, and U is a variety in the same a variables defined by at

most
(
a
2

)
+a · (b−a+k−1) equations of degree 1. We can then split V into a number of

irreducible components V = V1∪V2∪...∪Vv, where v ≤ dab. Then C ∼= (V1(Fq)\U(Fq))∪
(V2(Fq)\U(Fq)) ∪ ... ∪ (Vv(Fq)\U(Fq)). Now for each irreducible component Vi, either
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Vi ⊂ U (in which case Vi\U = ∅, so we can ignore this component), or Vi ∩ U has

dimension strictly smaller than Vi. By the Lang-Weil bound (Theorem 8), |Vi(Fq)| =

(1 +O(q−1/2)) · qdim(Vi), while |Vi(Fq) ∩ U(Fq)| ≤ (1 +O(q−1/2)) · qdim(Vi∩U). Therefore

when q is large enough, we have 2qdim(Vi) > |Vi(Fq)\U(Fq)| ≥ 1
2q
dim(Vi). Adding all the

pieces up, we have 2v · qdim(V ) > |V (Fq)\U(Fq)| ≥ 1
2q
dim(V ). When dim(V ) ≥ 1, this

gives us |V (Fq)\U(Fq)| ≥ q/2. Otherwise, dim(V ) = 0 and |V (Fq)\U(Fq)| < 2v.

Since v ≤ dab, 2v ≤ p so |V (Fq)\U(Fq)| < p when dim(V ) = 0. Now the lemma

is proved: we either have |C| ≥ q/2 or |C| < p, as required.

�

Continuing on with the main proof, we have P(|C| ≥ p) = P(|C| ≥ q/2) =

P(|C|s ≥ (q/2)s), which by Markov’s inequality is ≤ E(|C|s)
(q/2)s . We now want to calculate

E(|C|s). Because T ≤s was defined to be the set of all graphs you can make by taking

the union of s copies of T all rooted at the same place, an element of |C|s corresponds to

a copy of an element H in T ≤s (obtained by taking the union). Also, for every element

H in T ≤s, let γs(H) be the number of ways of expressing it as a union of s copies of T .

This means that:

E(|C|s)) ≤
∑

H∈T ≤s

γs(H) · E(|{A ∈ Hom(H,G) : r(A) = w}|)

To get any further, we will need the following lemma:

Lemma 10. For any H ∈ T ≤s, we have E(|{A ∈ Hom(H,G) : r(A) = w}|)) =

qb·(|H|−|R|)−a·e(H). In other words, the expected number of copies of H rooted at w is

equal to qb·(|H|−|R|)−a·e(H)

Proof: Call m = |H| − |R|. We have: (x1, x2, ..., xm) forms a copy of H rooted at w if

and only if for all i, fi(xj1 , xj2 , ..., xjk) = 0 whenever this corresponds to an edge of H

and for all i, fi(xj1 , xj2 , ..., xjk−1,wjk
) = 0 whenever that corresponds to an edge of H.

The fis are independent from each other so we only need to find, for each i, the prob-

ability that fi(xj1 , xj2 , ..., xjk) = 0 whenever this corresponds to an edge of H and the

probability that fi(xj1 , xj2 , ..., xjk−1,wjk
) = 0 whenever that corresponds to an edge of H.

For simplicity, we shall call the e(H) points in (Fbq)k corresponding to edges of H:
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y1, y2, ..., ye(H) and fix them. We want to calculate P(∀j fi(yj) = 0), knowing that fi

is a random polynomial of degree ≤ d. We can first without loss of generality make a

change of variable π such that the first coordinate of each yj is different. To do so, we

proceed as follows: a change of variable is just a non-singular bk × bk matrix acting on

the yjs. The first coordinates of π(yj) is given by the dot product of yj with the first

row vector of π. Given any j and j′, the first coordinate of π(yj) is equal to the first

coordinate of π(yj′) if and only if the elements of first row vector of π satisfy some linear

equation. Thus by repeating this operation over all choices of j, j′, we get a set of
(
e(H)

2

)
linear equations in bk variables. The set of all possible first rows for π has size qbk − 1

(we have bk coordinates and the only thing we require is that not all of them are 0). The

set of all possible first rows that satisfy one particular linear equation has size qbk−1 − 1

(there is some variable that we can express as a function of the bk−1 others, and we still

disallow the 0). So if we disallow all first rows that satisfy one of the equations, we end

up with at least qbk − 1 −
(
e(H)

2

)
(qbk−1 − 1) possible first rows of π. Note that because

H ∈ T s, we have e(H) ≤ sb = d + 1, and since we assumed that q >
(
d+1

2

)
, we have(

e(H)
2

)
/q < 1. Thus, this number is positive, so there is some choice for a first row of

π that makes the first coordinate of each π(yj) different. From there, add on the other

bk − 1 rows of π arbitrarily just making sure that π is invertible. On top of replacing

the yjs, we’ll also be replacing fi with fiπ
−1 so that fi(yj) stays the same. Note that

because fi was chosen uniformly at random amongst polynomials of degree at most d

and because π is a bijection, fiπ
−1’s distribution is also uniform amongst polynomials

of degree at most d. Therefore without loss of generality, we can assume that the first

coordinate of the yjs are distinct. We’ll let zj be the first coordinate of yj .

Now suppose we are given a random polynomial of degree at most d : f(x1, x2, ..., xkb).

Consider the coefficients in front of the terms 1 , x1 , x2
1 , x3

1,... and x
e(H)
1 ; call them

c0,c1,...,ce(H) respectively. These cis are random variables chosen independently and

uniformly in Fq. We can write f as:

f = c0 + c1x1 + c2x
2
1 + ...+ ce(H)x

e(H)
1 + f ′

where f ′ consists of all the other terms that aren’t already written down. By let-

ting c′e(H)−1 = ce(H)−1 + ce(H)ze(H), we can rewrite ce(H)x
e(H)
1 + ce(H)−1x

e(H)−1
1 as

ce(H)x
e(H)−1
1 (x1− ze(H)) + c′e(H)−1x

e(H)−1
1 . Note that since ce(H)−1 was chosen uniformly

at random in Fq independent of all the other cs and independently of f ′, c′e(H)−1 also

has the same properties. We can repeat this process multiple times until we write f as:
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f = c′0+(x1−z1)
[
c′1 + (x1 − z2)

[
c′2 + (x1 − z3)

[
...
[
c′e(H)−1 + (x1 − ze(H))c

′
e(H)

]
...
]]]

+f ′

where all the c′is are uniformly chosen in Fq independently of each other and indepen-

dently of f ′.

Suppose we fix f ′. The polynomial is 0 at y1 if and only if c′0 = −f ′(y1), which

has probability 1/q. Then given that f(y1) = 0, the polynomial is 0 at y2 if and only if

c′1 =
c′0+f ′(y2)
z1−z2 , which also has probability 1/q (remember that all the zis were distinct

so we are not dividing by 0). We continue in this fashion by induction until we reach

f(ye(H)) is 0 with probability 1/q given that all the others are also 0. Multiplying ev-

erything together, we get that the probability that f(yj) = 0 for all j is q−e(H).

Going back to the last inequality, we get the probability that (x1, x2, ..., xm) forms a

copy of H rooted at w is equal to
∏a
i=1 q

−e(H) = q−a·e(H). Therefore, the expected

number of copies of H rooted at w is equal to qb·m−a·e(H) = qb·(|H|−|R|)−a·e(H) and the

lemma is proved.

�

Remember from Lemma 8 that for all Hs in T s, we have e(H) ≥ (|H| − |R|) ba ,

so by combining Lemmas 8 and 10 we get: E(|{A ∈ Hom(H,G) : r(A) = w}|) ≤ 1.

Putting this back in the previous inequality, we have:

E(|C|s) ≤
∑

H∈T ≤s

γs(H) · E(|{A ∈ Hom(H,G) : r(A) = w}|)

≤
∑

H∈T ≤s

γs(H)

which is a constant depending only on s. We will call this βs.

Again putting this back into the first inequality, we get: P(|C| ≥ p) ≤ E(|C|s)
(q/2)s ≤

2sβs
qs .

At this point, we know that when we pick w1, w2, ..., wb−a+k−1 at random (in

the correct parts), we have a probability of less than 2sβs
qs of finding a hypergraph of

T p rooted at w. Let D be the number of choices for w that do lead to finding such a
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hypergraph. E(D) ≤ k! · (qb)(b−a+k−1) · 2sβs
qs . But now remember that s was defined as

b(b− a+ k − 1) + a+ 1, so we get E(D) ≤ k!2sβs
qa+1 .

At this point we’re finally ready to reconsider the cases where G is empty. We can

split the expectation of D into the case where G is empty and the case where it is not:

E(D) = E(D |G empty) · P(G empty) + E(D |G non-empty) · P(G non-empty).

We clearly have no copies of the forbidden hypergraphs whenG is empty, so E(D |G empty) =

0. Meanwhile, we know from earlier that P(G non-empty) ≥ q−a. Putting this together,

we get:

E(D |G non-empty) ≤ E(D) · qa ≤ k!2sβs
q

Now this has order Θ(1/q) so when q is large enough, we get E(D |G non-empty) < 1.

This proves that there is some choice of f1, f2, ..., fb−a+k−1 for which G is non-empty

but that gives no elements of T p inside G.

Thus, we have constructed a hypergraph G with Θ(Nk−a
b ) edges and that does

not contain any element of T p. Thus, ex(n, T p) = Ω(nk−
a
b ) and the proof of the lower

bound is complete.

4.4 The upper bound

Suppose we are given a real number r and a k-hypergraph G with n vertices and nk−r/k!

edges. To get the upper bound, we need to find a copy of a graph in T p whenever

r ≤ O(a/b). In [8], they used the fact that given graph, we can pick a subgraph with

high minimal codegree. Here, we will notice that T is a tight k-hypertree (in fact, we

used T as our example of a tight k-hypertree in chapter 2.4) and therefore we can simply

apply Corollary 1 of Theorem 2.

Let c = b
√

2[(p− 1)a]!/[(p− 2)a]! and let X be a k-hypergraph with n vertices and at

least c
kn

1−r( n
k−1

)
edges. The average degree of a (k−1)-set inX is k· ckn

1−r·
(
n
k−1

)
/
(
n
k−1

)
=

cn1−r. T is a tight k-hypertree with b edges so by applying Corollary 1 of Theorem 2 to

this tells us that the number of copies of T in X is at least:
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(
n

k − 1

)
(k − 1)! · (cn1−r)b ·

(
1−O

(
ln(n)

cn1−r

))
so as long as n is large enough, this is strictly more than:

nb−a+(k−1) · c
b

2

Finishing up the upper bound

We know that there are strictly more than
(
nb+k−1−rb) cb

2 copies of T in any large

enough hypergraph X with n vertices and c
kn

1−r( n
k−1

)
edges. Now note that there are

only nb−a+k−1 possibilities for choosing distinct roots. Therefore, given a random or-

dered set of b − a + k − 1 vertices of X, the expected number of copies of T rooted at

them is strictly more than cb

2 . This is an average so we can pick a set of b − a + k − 1

vertices that have above average number of copies of T rooted at them. Now consider

the union of all these > cb

2 copies of T rooted at the same place. We claim that this

forms an element of T u for some u ≥ p.

An element of T ≤p−1 can have at most (p−1)a non-roots, which means that we can find

at most [(p − 1)a]!/[(p − 2)a]! copies of T in it (just choose the order of the vertices).

But now cb

2 = [(p − 1)a]!/[(p − 2)a]!, which means we have too many copies of T for

them to fit into T ≤p−1. Therefore it has to be an element of T ≤u\T ≤p−1 for some large u.

But now we can remove edges and vertices from our element of T ≤u\T ≤p−1 until we

find an element of T ≤p\T ≤p−1 = T p. Therefore we have found an element of T p insideX.

Therefore, if there are strictly more than
b
√

2[(p−1)a]!/[(p−2)a]!

k n1−r( n
k−1

)
= Θ(nk−r) edges

in the hypergraph X and n is sufficiently large, then we have a copy of a hypergraph of

T p inside X. Therefore ex(n, T p) ≤ O(nk−
a
b ). Combining this with the lower bound we

proved in the first section we get ex(n, T p) = Θ(nk−
a
b ) and the proof of Theorem 6 is

complete.

�
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4.5 The case where r ≥ 1

We will now try to prove Theorem 7, which is the generalisation of Theorem 6 from

0 ≤ r < 1 to 0 ≤ r < k − 1. To do so, we use the following lemma:

Lemma 11. Given a set of l-hypergraphs F (each of which contains 2 disjoint edges)

and some k > l, there exists some set F ′ of k-hypergraphs with

ex(n+ k − l,F ′) = ex(n,F) for all n.

Proof of Lemma 11: For a l-hypergraph F and vertices x1, x2, ..., xk−l, define the

k-hypergraph (F, x1, x2, ..., xk−l) to have vertices V (F )∪{x1, x2, ..., xk−l} and edges {E∪
{x1, x2, ..., xk−l} : E an edge of F}. We define (F , x1, x2, ..., xk−l) = {(F, x1, x2, ..., xk−l) :

F ∈ F}∪{k-hypergraphs with ≤ l + 2 edges that are not of the form (H,x1, x2, ..., xk−l)

for any H}. We claim that F ′ = (F , x1, x2, ..., xk−l)) will solve the problem.

Suppose G is a l-hypergraph with ex(n,F) edges that doesn’t contain any ele-

ment of F . Consider (G, y1, y2, ..., yk−l) for some vertices y1, y2, ..., yk−l. Then first of

all, every set of ≤ l + 2 edges of (G, y1, y2, ..., yk−l) is of the form (H, y1, y2, ..., yk−l)

because every edge contains y1, y2, ..., yk−l. Now suppose it contains a different element

of (F , x1, x2, ..., xk−l), say (F, x1, x2, ..., xk−l). Now F contains 2 edges that do not in-

tersect, so (F, x1, x2, ..., xk−l) contains two edges that intersect only at x1, x2, ..., xk−l.

Since any two edges of (G, y1, y2, ..., yk−l) intersect at y1, y2, ..., yk−l, that must mean

that y1, y2, ..., yk−l are the images of x1, x2, ..., xk−l in some order. Now taking that

copy of (F, x1, x2, ..., xk−l) in (G, y1, y2, ..., yk−l) and removing y1, y2, ..., yk−l from all the

edges, we end up with a copy of F inside G. This contradicts our original assumption

about G. Therefore (G, y1, y2, ..., yk−l) is a k-hypergraph with ex(n,F) edges that does

not contain any element of (F , x), so ex(n + k − l, (F , x1, x2, ..., xk−l)) ≥ ex(n,F), as

required.

Conversely, suppose that G is a k − hypergraph that doesn’t contain any element of

(F , x1, x2, ..., xk−l). Since every set of l+ 2 edges is of the form (H,x1, x2, ..., xk−l), that

means that the entire hypergraph is of the form (K,x1, x2, ..., xk−l) for some K.

Indeed, suppose for a contradiction that the hypergraph is not of that form. Pick two

edges e1 and e2. They intersect in at most k− 1 places. Pick k− l of those and call the

set S. Now the hypergraph is not of the form (H,x1, x2, ..., xk−l), so that means that

there is some other edge, e3, that doesn’t contain S. Now e1,e2,e3 intersect in at most

k − 2 places. Repeat the argument several times until we get edges e1, e2, e3, ..., el+2

that intersect in at most k − l − 1 places. Thus, we have l + 2 edges that are not of
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the form (H,x1, x2, ..., xk−l), contradicting our assumption. Therefore G must be of the

form (H,x1, x2, ..., xk−l).

Then thisK cannot contain any element F of F because otherwiseG = (K,x1, x2, ..., xk−l)

would contain (F, x1, x2, ..., xk−l). Therefore K has at most ex(n,F) edges, so G also

has at most ex(n,F) edges. Thus ex(n+ k − l, (F , x1, x2, ..., xk−l)) ≤ ex(n,F)

This proves that ex(n,F) = ex(n + k − l, (F , x1, x2, ..., xk−l)), completing the

proof of the lemma.

�

Proof of Theorem 7: Given a rational r, 0 ≤ r < k−1, let l = dk−re, and r′ = l−k+r,

so 0 ≤ r′ < 1. By Theorem 6, we know that there exists a set of l-hypergraphs F with

ex(n,F) = Θ(nl−r
′
). Remember in the proof of Theorem 6 that if b ≥ k (which we

could assume without loss of generality), then there were at least 2 disjoint edges in

every hypergraph of F . Now by applying Lemma 11, we get some set of k-hypergraphs

F ′ with ex(n,F ′) = Θ(nl−r
′
) = Θ(nk−r).

�

Remarks:

The case k > r > k − 1 is impossible :

Suppose that F is a collection of k-graphs which has ex(n,F) = Θ(nk−r) for some

k > r > k − 1.

Now consider X to be the k-hypergraph with n vertices defined as follows: it

consists of some set S of t vertices, for some 0 ≤ t ≤ k − 1. The other n− t vertices are

partitioned into b(n−t)/(k−t)c sets of size k−t, which we will call e1, e2, ..., eb(n−t)/(k−t)c.

The edges of the hypergraph are exactly ei∪S for 1 ≤ i ≤ b(n− t)/(k− t)c. This hyper-

graph X has the property that the intersection of any two edges is exactly S therefore

it is a sunflower. It also has Θ(n) edges, which is larger than c · nk−r for large enough

n. Therefore F must contain a subgraph of X. However, any subgraph of X must also

have the property that any the intersection of two edges is exactly S, i.e. it is another
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sunflower. We will call this sunflower Ft.

In this way, we get for all 0 ≤ t ≤ k − 1, a sunflower Ft in F with kernel size t.

The Sunflower Lemma [11] states that when this occurs, ex(n,F) has order O(1). This

contradicts our assumption that ex(n,F) = Θ(nk−r). Therefore it is indeed impossible

to have a collection of k-hypergraphs with ex(n,F) = Θ(nk−r) for any k > r > k − 1.

The case r = k is possible: The hypergraph family consisting of every sun-

flower with 2 edges has ex(n,E) = 1.

The case r = k − 1 is possible: Firstly, when k = 2, then we claim that the

path with 3 edges, P3, has ex(n, P3) = n or n− 1.

Indeed, suppose we are given a connected component in a P3-free graph G. This con-

nected component is either just a single vertex x or an edge xy or it contains 2 incident

edges, say xy and yz. If there is another edge in the component incident to x or z,

then it has to be incident to both because otherwise we have a P3, so we get a tri-

angle {xy, yz, zx} and we can no more edges to this. If we are not in the triangle

case, then all additional edges have to be incident to y. So we get a star centred at y:

{yz, yz, yt1, yt2, ...}.

So every component of G is either a triangle (3 vertices and 3 edges) or a star (k + 1

vertices and k edges for some k ≥ 0). So the number of edges has to be less than the

number of vertices. If the number of vertices n is divisible by 3, then ex(n, P3) = n

because we can use only triangles. Otherwise, we have to use a star at some point which

gives us ex(n, P3) = n− 1.

For larger k, we simply apply Lemma 11 to get a collection of k-hypergraphs F with

ex(n,F) = Θ(n) as required.

So in conclusion, the rationals r for which there exist some finite F with ex(n,F) =

Θ(nk−r) are exactly those in the set: {r ∈ Q : 0 ≤ r ≤ k − 1} ∪ {k}.
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Chapter 5

Implicit representation conjecture

for semi-algebraic graphs

5.1 Introduction

Definition 23. Suppose we are given a Euclidean space S, a finite set of symmetric

polynomials f1, f2, ..., fk on S × S, and a sentence T whose atomic formulae are f1 ≥
0, f2 ≥ 0, ..., fk ≥ 0. The semi-algebraic family of graphs associated with T is the set of

all finite graphs whose vertices are points s ∈ S and whose edges are exactly those pairs

of points s, s′ that satisfy T (s, s′).

Notice that f ≤ 0 is equivalent to −f ≥ 0, that f = 0 is equivalent (f ≥ 0 and

−f ≥ 0), that f > 0 is equivalent to (f ≥ 0 and not −f ≥ 0) and similarly for f < 0.

Therefore these formulas are also allowed.

For an example of a semi-algebraic family, the family of disk graphs consists of all

graphs whose vertices are closed disks in the plane and where edges indicate that two

disks intersect. The vertices can be viewed as points in R3: (x, y, r) where (x, y) are

the coordinates of the center of the disk and r is the radius. There is an edge between

(x1, y1, r1) and (x2, y2, r2) if and only if (x1 − x2)2 + (y1 − y2)2 ≤ (r1 + r2)2.

The family of unit disk graphs is defined in a similar way except all the radii are 1.

Essentially, semi-algebraic families of graphs are made up of graphs that are defined

geometrically or algebraically. They are very useful in graph theory because they are a

good way of constructing graphs with certain properties. Work on semi-algebraic graphs
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has mostly been focused on specific families, such as the aforementioned family of disk

graphs, which has applications in computational geometry [7]. However, there are a few

general results. In 2005, Alon, Pach, Pinchasi, Radoičić and Sharir proved that given

any semi-algebraic family of graphs, that every graph in it with n vertices contains two

subsets of vertices of size εn (where ε is a constant), such that either all edges between

them or no edges between them. They also proved that there exists either a complete

subgraph of size nδ or an induced empty subgraph of size nδ (where δ is another con-

stant). [2]

In 2013, Blagojević, Bukh and Karasev looked at algebraic methods while trying to

solve the Turán problem for the complete bipartite graph Ks,s and showed that one

particular ‘natural’ type of semi-algebraic graph cannot be used to construct a Ks,s-free

graph with Θ(n2−1/s) edges [4].

The problem we are trying to solve in this chapter is a special case of the Implicit Rep-

resentation conjecture, first posed by Kannan, Naor and Rudich in 1992 [16], which was

also asked by Spinrad in 2003 [27]. We want to come up with a method for storing graphs

using the least number of bits per vertex. A hereditary family of graphs is one in which

all induced subgraphs of every graph in the family are also in the family. Given such a

hereditary family of graphs G (for example: disk graphs or unit disk graphs), let G(n)

mean the subset of graphs which have exactly n vertices. For every n, we want a function

F (n) : G(n) → [2m]n, and a symmetric function G(n) : [2m]× [2m]→ {0, 1} such that for

every graph H ∈ G(n) and every pair of vertices i, j in H, we have G(F (H)i, F (H)j) = 1

if and only if there is an edge between i and j. Furthermore, we want to minimise

m = m(n), which is the amount of information per vertex. The Implicit Representa-

tion Conjecture states that if there exists a constant c such that the family G contains

less than 2cn ln(n) graphs of size n for all n, then there exists a constant c′ such that

m = c′ log2(n) will be sufficient for every graph of size n in the family. The Implicit

Representation Conjecture has been proved for a large number of families by Atminas,

Collins, Lozin and Zamaraev in [3].

A corollary of Warren’s Theorem (1968) [30, 1] shows that semi-algebraic families do

indeed have at most 2O(n ln(n)) graphs of size n, so do satisfy the conditions for the Im-

plicit Representation Conjecture. We’ll see the derivation of this corollary at the end of

section 5.2.
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The trivial lower bound for this problem matches the conjecture, at m = log2(n) since

that is the amount of information required to identify a vertex amongst n. More specifi-

cally, if we use less than log2(n) bits, then there are less than n possible options for what

the data can be, so by the pigeon-hole principle, there exist two vertices i and j with

F (H)i = F (H)j . This means that their neighbourhoods are identical. However, if we let

the graph be a path, then every vertex has a different neighbourhood, which is a contra-

diction. If the family is defined by the intersection of bounded non-trivial shapes (such

as the disk graph), then it is fairly easy to see that we can draw a path using these shapes.

A trivial upper bound that works for all graphs is m =
⌈
n−1

2

⌉
+ dlog2(n)e. To achieve

this, we write the vertices as 0, 1, ..., n − 1 in Z/nZ, and store this information using

dlog2(n)e bits. Then for every vertex i, let F (H)i be a list of
⌈
n−1

2

⌉
0s and 1s, with a 1

in the kth position if and only if there is an edge between i and i+ k. For every pair i

and j, G will then output the (j − i)th entry of F (H)i if j − i is between 1 and
⌈
n−1

2

⌉
and otherwise it will output the (i− j)th entry of F (H)j .

A natural idea we could have would be to store integer approximations of the coor-

dinates of all the vertices. This looks like a good idea because it is easy to store integers,

and because the function G(n) is easy to compute (just evaluate all the polynomial in-

equalities). Unfortunately this doesn’t work. In 2011, McDiarmid and Muller [22] proved

that there exist unit disk graphs with n vertices but for which every realisation of it on

the plane had to have four vertices a, b, c, d for which |a−b|
|c−d| > 22Ω(n)

. If a, b, c, d had

integer coordinates, then one of a or b has to have a coordinate of size at least 22Ω(n)
.

This requires 2Ω(n) bits to store which is even more than the trivial bound.

In 2012, Kang and Muller [15] improved upon this result in two ways. Firstly by showing

that the dimension k of the ambient space can be arbitrary, and secondly by replacing

the integer approximations by rational approximations. They showed that for any k ≥ 2,

there exist unit k-ball graphs with n vertices but for which every realisation of it in Rk

had to have four vertices a, b, c, d for which |a−b|
|c−d| > 22Ω(n)

. (A k-ball graph is defined

the same as a disk graph except that the ambient space is of dimension k instead of

2.) Then if a, b, c, d had rational coordinates, then one of these four points has to have

a coordinate with numerators or denominators of size at least
4
√

22Ω(n)
= 22Ω(n)

. This

requires 2Ω(n) bits to store, which is even more than the trivial upper bound. Thus, stor-

ing rational approximations of the coordinates of all the vertices doesn’t work in general.
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In the first part, we will go even further, and ask whether we can store the coordi-

nates as algebraic numbers instead of rational numbers or integers. However, this runs

into the same problems, as we’ll see shortly.

In our second part, we find a very minor improvement on the upper bound that does

work. It uses a result by Yao and Yao [31], and ideas about semi-algebraic sets from

Alon, Pach, Pinchasi and Radoicic [2].

Theorem 9. Given a semi-algebraic family of graphs G, there exists some constant ε > 0

such that we can store every graph of size n in the family using n1−ε bits per vertex for

n sufficiently large.

More specifically, for m = n1−ε there exists a series of functions F (n) : G(n) → [2m]n,

and a symmetric function G(n) : [2m]× [2m]→ {0, 1} such that for every graph H ∈ G(n)

and every pair of vertices i, j in H, we have G(F (H)i, F (H)j) = 1 if and only if there

is an edge between i and j.

5.2 Semi-algebraic graphs

5.2.1 Simplification of the problem

Secondly, we will note that we can reduce to the case where the semi-algebraic family

is defined by only one inequality. Indeed, if we have a semi-algebraic family defined by

k > 1 inequalities f1(x, y) ≥ 0, f2(x, y) ≥ 0, ..., fk(x, y) ≥ 0 and we have a graph G

in this family with vertices x1, ..., xn ∈ Rq. Then the edge set of G can be viewed as

the intersection of the edge sets of k semi-algebraic graphs G1, G2, ..., Gk, each with the

same vertex set and defined by inequalities f1(x, y) ≥ 0, f2(x, y) ≥ 0, ... , fk(x, y) ≥ 0

respectively. If we can store each of these Gis using m bits per vertex, then by con-

catenation, we can store G using k ·m bits per vertex. So without loss of generality, we

can assume that there is only a single polynomial inequality f(x, y) ≥ 0 that defines the

semi-algebraic family.

Also note that the complement of a graph can be stored using the same number of

bits as the original graph, by simply exchanging 0 and 1 in the output of the function

G. Therefore we can without loss of generality assume the single polynomial inequality

is of the form f(x, y) ≥ 0.
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Now suppose we have a semi-algebraic family of graphs whose vertices can be writ-

ten as living in the space Rq and where for any x, y ∈ Rq, (x, y) is an edge if and only if

f(x, y) ≥ 0 (where f is a polynomial). Let d be the degree of f . Now for every vertex x =

(x1, x2, ..., xq) in Rq, we can replace it with a point x̃ consisting of all the terms of degree

less than or equal to d, i.e.: x̃ = (1, x1, x2, ..., xq, x
2
1, x1x2, x1x3, ..., x

2
q , x

3
1, x

2
1x2, ..., x

3
q , ..., x

d
q).

This point exists in the space R(q+d
d ). We can then also rewrite the polynomial f(x, y) as

a bilinear function of x̃ and ỹ : f(x, y) = x̃TMỹ where M is a matrix (M is symmetric

because f was symmetric). Let Q be the dimension of M .

Note that given a fixed ỹ with Mỹ 6= 0, the set of solutions to the equation zTMỹ ≥ 0

forms a half-space. So whenever Mỹ 6= 0, the vertices adjacent to y are exactly those

in this half-space. If Mỹ = 0, then y is adjacent to every vertex of G. We can think of

these as living in some half-space whose boundary is ”far away”. So regardless of which

case we’re in, given any vertex y, the vertices adjacent to y are exactly those in some

half-space.

At this point, we already have everything we need about semi-algebraic graphs to com-

plete the proof; however, the ε that we will get in the final result will be a function of

the dimension Q of M so decreasing Q will improve the result slightly. So there is one

more thing we can do: it is a standard property of bilinear forms that we can diagonalise

them, and furthermore, we can make it such that there are only 1s, −1s and 0s on the

diagonal. So without loss of generality, we can assume that

M =



1 0 0 ... 0 0 ... 0

0 1 0 ... 0 0 ... 0

0 0 1 ... 0 0 ... 0

... ... ... ... ... ... ...

0 0 0 ... −1 0 ... 0

0 0 0 ... 0 −1 ... 0

... ... ... ... ... ... ... ...

0 0 0 ... 0 0 ... 0


We can delete those coordinates for which M has a zero on the diagonal because

they do not impact the result. So without loss of generality, M is a diagonal matrix with

only 1s and −1s on the diagonal. In particular, there are only Q+ 1 types of matrix in
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dimension Q. So solving the problem for just these few special cases is enough. Every

other semi-algebraic family is a combination of matrices of this type after a change of

basis.

Example 1:

For the unit disk graph in the plane, every vertex can be identified with its center:

(x, y). Then two disks (x1, y1) and (x2, y2) intersect if and only if (x1−x2)2+(y1−y2)2 ≤
4. There is only a single inequality, so if we put this in bilinear form, we get a single

matrix:

(x2
1, x1y1, y

2
1, x1, y1, 1)



0 0 0 0 0 −1

0 0 0 0 0 0

0 0 0 0 0 −1

0 0 0 2 0 0

0 0 0 0 2 0

−1 0 −1 0 0 4





x2
2

x2y2

y2
2

x2

y2

1


≥ 0

We can use a change of basis and then delete irrelevant coordinates to turn this

matrix into:

x′T


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

y′ ≥ 0

Note that the dimension of this matrix is Q = 4.

Example 2:

For the disk graph in the plane, every vertex can be identified with its center and

its radius: (x, y, r). Then two disks (x1, y1, r1) and (x2, y2, r2) intersect if and only if

(x1 − x2)2 + (y1 − y2)2 ≤ (r1 + r2)2. If we put this in bilinear form, we get
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(x2
1, y

2
1, r

2
1, x1, y1, r1, 1)



0 0 0 0 0 0 −1

0 0 0 0 0 0 −1

0 0 0 0 0 0 1

0 0 0 2 0 0 0

0 0 0 0 2 0 0

0 0 0 0 0 2 0

−1 −1 1 0 0 0 0





x2
2

y2
2

r2
2

x2

y2

r2

1


≥ 0

Using the change of basis, we can replace this by:

x′T


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 −1

y′ ≥ 0

So in this case we have Q = 5.

5.2.2 Proof that semi-algebraic families satisfy the conditions for the

Implicit Representation Conjecture

For this, we use Warren’s Theorem [30] [see for example [1, p.1763]]:

Theorem 10 (Warren, 1968). Suppose we have a set of k real polynomials in l variables

of degree at most d and k ≥ l. If we split Rl into regions depending on the signs of all

the polynomials (i.e.: whether each polynomial is negative, positive or 0 at a given point

in Rl), we end up with at most (8edk/l)l regions (where e is Euler’s constant).

Suppose we have a semi-algebraic family G, with associated Euclidean space S
and associated set of polynomial inequalities P and also let n be an integer. We want

to count the number of graphs in our family with n vertices. A graph G is in G if

and only if there exist n distinct points x1, x2, ..., xn in S, such that P(xi, xj) is true

if and only if (xi, xj) is an edge of G. So let QG be the set of polynomial inequalities:⋃
(i,j) edge P(xi, xj) ∪

⋃
(i,j) non-edge ¬P(xi, xj). Then G is in G if and only if there exist

x1, x2, ..., xn in S that satisfy QG(x1, x2, ..., xn). Notably, we can split Sn into regions

depending on the signs of the polynomials of QG, and then each region will have a unique

81



graph associated with it.

So how many regions are there? QG is a set of
(
n
2

)
|P| polynomial inequalities. The

number of variables of these polynomials is n ·dim(S), and the maximum degree is d. So

by Warren’s Theorem, the number of regions is at most

(
8ed(n2)|P|
n·dim(S)

)n·dim(S)

as long as

n is large enough. This is less than (4ed|P|n/dim(S))n·dim(S) ≤ 2cn ln(n) for some large

enough constant c. This completes the proof and shows that semi-algebraic families do

in fact satisfy the hypothesis of the Implicit Representation Conjecture.

5.3 The ‘algebraic points’ method doesn’t work for disk

graphs

A natural thing we can try to store disk graphs is to let the centers and radii of all the

circles be algebraic and just store these numbers. However, this turns out to be worse

than the trivial bound. This builds upon the paper [22] where they prove that storing

the centres and radii of all the circles as rational numbers doesn’t work.

An important part of the proof is that there exists an infinite family of disk graphs

such that for any disk representation of them, there are 4 centers x,y,z and t such that
|x−y|
|z−t| > 22Ω(n)

. This family was constructed in [22]. We claim that such an object re-

quires at least Ω(n) bits if the centres are algebraic.

First, how does one store an algebraic number? If x is an algebraic number, it has

a minimal integer polynomial it is a solution to:
∑imax

i=0 aix
i = 0. We can store each

ai in Θ(log2(|ai| + 1)) bits. Therefore storing the polynomial takes Θ(
∑k

i=0 log2(|ai| +
1)) + Θ(imax) bits. The polynomial also has imax solutions so we additionally need

Θ(log2(imax)) bits to indicate which solution it is. Therefore it overall takes

Θ(
∑imax

i=0 log2(|ai| + 1)) + Θ(imax) bits to store an algebraic number x. We’ll call this

number m(x).

For simplicity, we’ll consider the real plane on which our disk graph is drawn to be

C, so each center only requires a single algebraic number to describe it.
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Pick some integer m. What is the largest we can make |x − y| given that m(x) ≤ m

and m(y) ≤ m? First of all, we know that |x − y| ≤ |x| + |y|. Next, suppose that

x satisfies
∑kmax

k=0 ckx
k = 0. Then if |x| >

∑kmax−1
k=0 |ck|, we have |ckmaxx

kmax | >(∑kmax−1
k=0 |ck|

)
xkmax−1 ≥

∑kmax−1
k=0 |ckxk| ≥ |

∑kmax−1
k=0 ckx

k| which contradicts the fact

that
∑kmax

k=0 ckx
k = 0. Therefore we must have x ≤

∑kmax−1
k=0 |ck|. This is equal to

2log2((
∑kmax−1

k=0 |ck|) ≤ 2
∑kmax−1

k=0 log2(ci) ≤ 2m−1. So the most we can have |x− y| be is 2m.

Now what is the smallest we can make |x−y| for x 6= y? First, we will write x−y as the

solution to a polynomial. Say x is a solution to the polynomial
∑imax

i=0 aix
i while y is a

solution to the polynomial
∑jmax

j=0 bjy
j . Consider (aimaxbjmax(x− y))l for some integer l.

We can develop it into (aimaxbjmax)l
∑l

k=0

(
l
k

)
xk(−y)l−k. The sum of the absolute values

of the coefficients is |aimaxbjmax |l · 2l.

Now what we do is, starting from k = l and going down to k = imax, we replace all in-

stances of aimaxx
k with −

∑imax−1
i=0 aix

k−imax+i. Note that because we started with alimax

in every coefficient, we will be able to do this operation l times, which is bigger than the

l− imax + 1 required. So this will only halt when the only instances of x have exponent

less than imax. What does this do to the sum of the absolute values of the coefficients?

Well every time we do this operation, we multiply it by at most
∑imax−1

i=0 |ai|
|aimax |

. We know

that
∑imax−1

i=0 log2(|ai| + 1) ≤ O(m) so
∑imax−1

i=0 |ai| ≤ 2O(m) by concavity of the log2

function. Since we started with the sum of the absolute values of the coefficients at most

|aimaxbjmax |l∗2l and we do this operation l−imax+1 times, we end up with the sum of the

absolute values of the coefficients is at most |bjmax |l ∗ |aimax |imax−1 ∗ (2O(m))l−imax+1)∗2l.

Note also that |aimax | ≤ 2O(m) so we end up with the sum of the absolute values of the

coefficients is at most 2l ∗ |bjmax |l · 2O(ml)

We do the same operation with y, to end up with a linear formula for (aimaxbjmax)l(x−y)l

in terms of {xiyj |i < imax ; j < jmax}, and where the sum of all the absolute values of

all the coefficients is at most 2O(ml).

Now if we do this for all l between 0 and imaxjmax, then we have imaxjmax + 1 for-

mulae inside the linear space generated by {xiyj |i < imax ; j < jmax}. But this space

has dimension imaxjmax, so our formulae must be linearly dependent. Remembering

that each of our formulae represented some power of aimaxbjmax(x − y), this linear de-

pendence is equivalent to an integer polynomial of degree imaxjmax that is zero when
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evaluated at aimaxbjmax(x− y). Without loss of generality suppose that this polynomial

is minimal; say it has degree d. We’ll write this polynomial as µ(aimaxbjmax(x − y))d =∑d−1
k=0 λk(aimaxbjmax(x− y))k where µ and all the λs are integers. How big are the coef-

ficients of this polynomial?

We can work out what they are. Since the polynomial was chosen to be minimal,

we know that the formulas for (aimaxbjmax(x− y))k , k < d, are all linearly independent.

We can list all these formulas in an imaxjmax × d matrix of integers which we’ll call M ,

where the rows are linearly independent:


1

aimaxbjmax(x− y)

(aimaxbjmax(x− y))2

...

(aimaxbjmax(x− y))d−1

 =


1 0 0 0 ... 0

0 aimaxbjmax −aimaxbjmax 0 ... 0

0 0 0 a2
imax

b2jmax
... 0

. . . . ... .

. . . . ... .





1

x

y

x2

xy

y2

...

ximax−1yjmax−1


Meanwhile, we also have a similar formula for (aimaxbjmax(x−y))d, which takes the form

of a vector of integers of size imaxjmax. We’ll call this vector v:

(aimaxbjmax(x− y))d = v .



1

x

y

x2

xy

y2

...

ximax−1yjmax−1
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This formula is a linear combination of the rows of the above matrix:

∀l , µvl =
∑d−1

k=0 λkMk,l. If we let the vector of λks be λ (of length d), this formula can

be rewritten in vector and matrix form as:

µv = λM

Now pick some linearly independent subset C of the columns of the matrix of

size d. This gives us a d × d non-singular matrix M ′ Let πC be the matrix of the

orthogonal projection from the space generated by {xiyj |i < imax ; j < jmax} onto

the space generated by C. Thus, M ′ = MπC . Also let v’ be the image of v via

this projection, i.e. v′ = vπC . The above linear combination continues to hold after

projection:

µv′ = λM ′

But now we can find out exactly what our λks are by simply using the equation:

λ = µM ′−1v’ (remember that M ′ is non-singular).

We set µ = det(M ′), which will make all the λks be integers. We know that the sum of

the absolute values of all the coefficients of in each row of M and v are at most 2O(ml),

so we get that det(M ′) is at most d!(2O(ml))d = 2O(md2). Moreover, for every k < d each

λk is the determinant of a minor of M ′ so is also at most 2O(md2).

Putting this all together (remembering that d ≤ imaxjmax), we get an integer poly-

nomial that is 0 at aimaxbjmax(x − y), that has of degree at most imaxjmax, and where

all the coefficients are at most 2O(m[imaxjmax]2). Now both imax and jmax are ≤ O(m) so

this means the polynomial is of degree at most O(m2) with coefficients at most 2O(m5).

Say this polynomial is
∑kmax

k=0 ck(x− y)k.

If we assume that |x− y| < 1∑kmax
k=1 |ck|

, then |
∑kmax

k=1 ck(x− y)k| ≤
[∑kmax

k=1 |ck|
]
|x− y| <

1 ≤ |c0|, which contradicts the polynomial being 0. Therefore |x − y| ≥ 1∑kmax
k=1 |ck|

=

1
O(m2)

2−O(m5) = 2−O(m5)

The ratio between the smallest possible value of |x− y| and the largest is thus of order

2O(m5) ∗ 2O(m) = 2O(m5). When we use the special graph whose largest ratio is always at
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least 22Ω(n)
, we get that m must be of order at least 2Ω(n). This is worse than our trivial

upper bound of m = (1
2 + o(1))n.

5.4 An improvement on the upper bound

5.4.1 The case where f(x, y) 6= 0 for all vertices x,y

We’ll assume for the moment that for every pair of vertices (x, y), we never have

f(x, y) = 0; we shall deal with that case at the end.

In this case, for every vertex, the set of vertices adjacent to it is just a half-plane,

which has a hyperplane as boundary. This is useful because it means we can use the

following theorem:

Theorem 11 (Yao and Yao, 1985 [31]). Given a continuous and everywhere positive

probability density function on RQ, there exists a partition of RQ into 2Q regions, each

with mass equal to 1/2Q such that every hyperplane in RQ must not intersect the interior

of at least one of these regions.

Moreover, these regions are convex polyhedral cones and all the cones have a common

apex, called the center.

A corollary of this theorem is the discrete version of it:

Lemma 12. Given a finite set V of n points in RQ, there exists a partition of RQ into

2Q regions, each of which contains between bn/2Qc and bn/2Qc + 2Q − 1 of the points,

such that every hyperplane in RQ must avoid at least one of the interiors of a region.

Moreover, these regions are convex polyhedral cones and all the cones have a common

apex, called the center.

Proof of the lemma: Pick some small ε > 0. For every point x ∈ V , we’ll have

a continuous density function on the ball of radius ε centred at x whose total weight

is (1 − ε)/n. We’ll also have a continuous everywhere positive density function of to-

tal weight ε. Adding up all of these together gives a continuous everywhere positive

probability density function on RQ, which means we can apply Yao and Yao’s Theo-

rem. This splits the space into 2Q convex polyhedral cones with a common apex, and

such that each has total weight 1/2Q. Let Aε be the region inside the convex hull of the
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collection of balls of radius ε (i.e.: Aε is a bounded convex region of weight at least 1−ε).

Suppose we are given an ε, together with a polyhedral decomposition as in the lemma.

For every vertex of V , we say it borders a certain region if the ball of radius ε centred

around x intersects the region. The information about which vertices border which re-

gions will be called the configuration of the polyhedral decomposition. A single vertex

has at most 22Q possible configurations, so at most n22Q

possible configurations in total.

This is finite therefore as ε→ 0, there exists a configuration C that occurs infinitely of-

ten. So we can pick a decreasing sequence of εs together with a corresponding collection

of polyhedral cones in configuration C.

Since every face has to be between two regions, the number of faces is at most
(

2Q

2

)
.

So we can also pick some subsequence where all the decompositions have the same num-

ber of faces. Then there are only a finite number of ways in which to put these faces

together (i.e.: which face goes next to which face) so we can again pick some subsequence

where the decompositions all have the same number of faces and are arranged the same

way.

The remaining polyhedral decompositions all have centres (reminder: the center of a

polyhedral decomposition is the common apex of all its faces) by Yao and Yao’s The-

orem. These centres will stay inside Aε. To see why, assume not, and pick a tangent

hyperplane T to Aε that separates it from the center. Then every region of the polyhedral

decomposition has weight at least 2−Q so when ε < 2−Q, every region has to contain

stuff within Aε. Since every region also has an apex at the center, that means every

region has to cross T . That means T is a hyperplane that fails to avoid a region, con-

tradicting Yao and Yao’s Theorem. Therefore the center has to be within the bounded

region A, so there is a subsequence of εs such that the centres converge to some point M .

Now a given face of a decomposition in our sequence is a part of a hyperplane that

passes through the center of the decomposition. Moreover these centres converge to M

so the hyperplanes eventually have to pass within some small distance δ > 0 of M .

Since the space of hyperplanes passing within δ of M is compact, there is a hyperplane

H passing through C and a subsequence of decompositions such that our given face

converges to a part of H. Repeat for all the other faces of the decomposition.

If we take M together with all the hyperplanes passing through it that we constructed
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and put the faces where they’re supposed to be on the hyperplanes, we end up with a

polyhedral decomposition of the space. This also has the property that every vertex is

in the closure of all the regions that it is supposed to border according to configuration

C. Note that it is possible in the degenerate case for there to be some of the regions of

our new decomposition that have smaller dimension than the entire space, and thus we

might also have regions coinciding with each other. However, this will not be a problem,

as when this occurs, we will still be able to split up the vertices into sets each corre-

sponding to a region.

The important thing is that the polyhedral decomposition has the property that, for

every region, its closure contains at least n/2Q points. In fact, we can go further and

say that for any set T of t regions, the union of their closures contains at least tn/2Q

points. Then by Hall’s marriage Theorem, there exists a way of associating disjoint sets

of bn/2Qc points to each region such that the points are inside the closure of that region.

There are at most 2Q − 1 points left over, which we put in whichever region can accept

them.

We have therefore created a partition of the points of V into 2Q regions, such that

each region contains between between bn/2Qc and bn/2Qc + 2Q − 1 of the points, and

such that every hyperplane in RQ must avoid at least one of the interiors of a region.

Thus the lemma is proved.

�

The function F (n) that we construct will do two things: Given a vertex i, it will

provide an “address” A(i) that will make it easier to find. Secondly, it will provide a

tree structure B(i) which defines which addresses it has an edge to and which ones it

doesn’t. This takes the form of a tree with labels on all its nodes.

The address Apply Lemma 12 to split the space into 2Q regions, each of which con-

tains at most bn/2Qc + 2Q − 1 vertices. We’ll number these regions 1, 2, ..., 2Q and for

each vertex x, we will then store the information about which region it is in as the first

line of the address: A1(x). This takes Q bits per vertex.

Then repeat this process with every region, splitting each further into 2Q subregions,
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then splitting each subregions into 2Q subsubregions, etc. Continue until there are

only 4Q vertices in any given subregion. This will end in a number of steps s =

dlog2

(
n−2Q+1

4Q−2Q+1

)
/Qe = dlog2

(
n

4Q

)
/Q+log2

(
1−2Q/n+1/n
1−2−Q+2−2Q

)
/Qe steps. Now since Q ≥ 1,

1−2−Q+2−2Q ≥ 3/4 and 1−2Q/n+1/n ≤ 1 so log2

(
1−2Q/n+1/n
1−2−Q+2−2Q

)
/Q ≤ log2(4/3) < 1.

So overall we get the number of steps s is at most dlog2

(
n

4Q

)
/Q+1e = d log2(n)

Q − 2Q
Q +1e ≤

log2(n)
Q We then split this final subregion into its constituent points. Since there are at

most 4Q vertices in this subregion, this final decomposition also only takes 2Q bits.

Thus, each vertex x has a unique address A(x) which takes the form of a string of s+ 2

numbers: (i1, i2, ..., is+2) where each iw is an integer between 1 and 2Q. The total amount

of information stored in each vertex for the address ends up beingQ(s+2) ≤ log2(n)+2Q.

The tree-structure Given a vertex y, we will construct the labelled tree B(y) by

induction. At step 0, we start with just the root node and leave it without a label.

Throughout the construction, all the nodes in the tree can be matched onto certain

partial addresses. The root node gets matched onto the empty address.

Suppose we are at a certain step of the algorithm and that there exists an unlabelled

leaf node in the tree. Say it can be matched to the partial address (i1, i2, ..., il). The

first thing we do is give it 2Q child nodes. We will match each of these child nodes

to the addresses (i1, i2, ..., il, t) for every value of t between 1 and 2Q. Now because

the graph is semi-algebraic, we know that there exists some half-space such that for

every other vertex x, x is connected to y if and only if x is in that half-space. This

half-space has a hyperplane as its boundary, which we’ll call H. Remember that when

writing the address, we split the region (i1, i2, ..., il) into 2Q subregions using Lemma

12, so we know that H must avoid at least one of the interior’s of a subregion. We will

write a list of all the subregions whose interior it avoids on node (i1, i2, ..., il). Say it

avoids the interior of the tth subregion. Now this subregion’s interior is either entirely

contained within the half-space or it is entirely disjoint from it. In other words, either

all the vertices in the interior of the subregion are adjacent to y or none of them are.

In fact, because we assumed that f(x, y) 6= 0, for all x, y, H won’t pass through any of

the vertices, so this also extends to vertices on the boundary of the subregion. So we

know that either all vertices in the region are adjacent to y or none of them are. If all

the vertices are adjacent, we will write a “1” on the tth child node. Otherwise write

a “0” on the tth child node. Leave all the other child nodes unlabelled for the time being.
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Continue in this fashion until the only empty nodes in the tree correspond to sets of

size less than 4Q. This will eventually happen at step number s. For each of these

empty nodes, write down the size of the corresponding set on the node, and then creates

4Q child nodes, each with a ‘1’ or a ‘0’ to indicate whether it is or isn’t adjacent to y.

Thus, we will end up with a tree of depth at most s+ 1. This tree is comprised of some

nodes with 2Q child nodes; call these ”splitting nodes” (except the final splitting nodes

which have 4Q children instead). The rest of the nodes just have a single number, “0”

or “1” on them. We call these ”leaf nodes”.

The function G The function G is simple to construct. Given two vertices x and y,

look at x’s address. Say it is (i1, i2, ..., il+2). Now look at y’s tree. Travel through this

tree by starting at the root node, and at every step l, if we are at a splitting node, then

go to the ilth child node. Eventually we will reach a leaf node and at that point, we

should be able to read “1” or “0”. If there is a “1”, that means there is an edge between

x and y. If there is a “0”, that means there is not.

Information used What is the maximum amount of information required to store this

tree? The structure (whether a certain node has a child or not) is entirely determined

by the numbers written on each node, so we only have to count up the total information

stored in the numbers. We’ll work backwards from the end.

Each leaf node has either a “0” or a “1” so we have 1 bit per leaf node.

The final splitting nodes at the end have at most 4Q children, each requiring 1 bit, so

that’s 4Q bits for the children. It also stores how many children it has which requires an

additional 2Q bits. So 4Q + 2Q bits suffice to store a splitting node at depth l with all

its descendants.

Let α = 8Q − 2 · 4Q + 2 · 2Q − 3Q− 1. We will prove by induction that α(2Q−1)m−(Q+1)
2Q−2

bits suffices to to store a splitting node at depth s−m together with all its descendants.

When m = 0, it’s easy to check our choice of α makes this hold.

Now suppose we have a splitting node i which is at depth s−m for some m ≥ 1. How

much information suffices for it and all its descendants? Suppose it has a leaf nodes
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adjacent. Each of these uses 1 bit for itself, and another Q bits to be put on the list of

leaf nodes at i, for a total of a(Q+1) bits. The other 2Q−a nodes are all splitting nodes,

so by the induction hypothesis, each can be described using only α(2Q−1)m−1−(Q+1)
2Q−2

bits.

Totalling everything up, we get: α(2Q−1)m−1−(Q+1)
2Q−2

(2Q − a) + a(Q+ 1). Since a ≥ 1, we

get that this is less than: α(2Q−1)m

2Q−2
− (Q+1)(2Q−1)

2Q−2
+ (Q+ 1) = α(2Q−1)m

2Q−2
− Q+1

2Q−2
.

Therefore by induction, each splitting node at depth s − m together with all its de-

scendants can be described using only α(2Q−1)m

2Q−2
− Q+1

2Q−2
bits. Therefore the total number

of bits that suffices to store the entire tree is α(2Q−1)l

2Q−2
− Q+1

2Q−2

Summing it all up:

Summing the contribution from the address A(y) and the contribution from the tree

B(y), we get that the total maximum number of bits that suffices to store F (n)(y) is:

Q(s+ 2) +
α(2Q − 1)s

2Q − 2
− Q+ 1

2Q − 2

≤ α(2Q − 1)

(
log2(n)

Q

)
(2Q − 2)

(1 + o(1))

=
α

(2Q − 2)
2

log2(2Q−1)
(

log2(n)
Q

)
(1 + o(1))

= nlog2(2Q−1)/Q

(
α

(2Q − 2)
+ o(1)

)
= n

(1− 1

Q2Q
)(1+o(1))

(
α

(2Q − 2)
+ o(1)

)
= n

(1− 1

Q2Q
)(1+o(1))

When n is large, this is an improvement over the trivial upper bound of d(n −
1)/2e+ dlog2(n)e.
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5.4.2 The case where f(x, y) = 0

The reason the previous method might not work in this case is that x will be on the

hyperplane H corresponding to y, and it could happen that x is on the boundary of its

region, and that H is tangent to it. Then the interior of the region containing x would

be completely on one side of H, so if we used that method, we might erroneously get

information about the edge x, y.

•
x

{z : zTMy ≤ 0}

{z : zTMy ≥ 0}

H = {z : zTMy = 0}

A

B C

Example of a possible problem: H is the hyperplane corresponding to y, A is a region

labelled as negative, B and C are regions that will be subdivided, the vertex x is on H
and thus adjacent to y but is counted as being in region A, and thus erroneously

counted as non-adjacent to y.

The way we fix this is we will consider the boundaries of regions to be full re-

gions themselves, each of which will get their own addresses. However, the key thing

to note here is that every boundary region will have smaller dimension. More formally,

start with the closures of the 2Q regions of the original decomposition. If two regions

intersect, then their intersection gets subtracted from both of the original regions, and

is instead counted as a region of its own. Repeat this process until there are no more

intersections. Since there were 2Q parts originally, there are at most 22Q − 1 regions in

the new decomposition. Also for every d between 1 and Q, there are at most
(

2Q

1+Q−d
)

regions of dimension d.

Address When we store the address A(x) of a point x, we might need to write down

some of these new boundary regions in the address if x happens to be in one of them.

However, we claim that the address can still be written using only 2dlog2(n)e+2Q2 bits.

Indeed, every time we have a region of dimension Q with n points in it, we subdivide

it into 2Q subregions of dimension Q that contain at most n/2Q points and for every d
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between 1 and Q−1, at most
(

2Q

1+Q−d
)

subregions of dimension d, each of which contains

at most n points. There is a single region of dimension 0: the center of the decomposi-

tion, which obviously contains at most 1 point.

When n ≤ 2Q, then we can easily decompose using only dlog2(n)e bits, which is well

within the bound (by a factor of 2). For n is larger, there are 4 cases:

Case 1: subregions of dimension Q: For points in the subregions of dimension

Q, we use the induction hypothesis to say that the last part of the addresses can be

written in 2dlog2(n/2Q)e + 2Q2 bits. As there are 2Q such subregions, we can indi-

cate which one they are in using an additional Q bits. Finally, we use dlog2(Q)e bits

at the start to indicate what d is. Therefore their full addresses can be written using

2dlog2(n/2Q)e + 2Q2 + Q + dlog2(Q)e = 2dlog2(n)e − 2Q + 2Q2 + Q + dlog2(Q)e =

2dlog2(n)e+ 2Q2 − (Q− dlog2(Q)e) bits. Since Q ≥ dlog2(Q)e, this works.

Case 2: subregions of dimension d, where 1 ≤ d ≤ Q − 1: By the induction

hypothesis, the last part of the addresses of points in the subregions of dimension d can

be written using 2dlog2(n)e + 2d2 bits. As there are at most
(

2Q

1+Q−d
)

such subregions,

we can write identify which one it is using Q(1 +Q− d) bits. Finally, we use dlog2(Q)e
bits to indicate what d is. Therefore we can write the addresses of these points using

2dlog2(n)e + 2d2 + Q(1 + Q − d) + dlog2(Q)e = 2dlog2(n)e + 2Q2 + (2d2 − Qd − Q2 +

Q+dlog2(Q)e) bits. The worst case scenario for d is either when d = 1 or when d = Q−1.

When d = 1, we have the number of bits is 2dlog2(n)e+2Q2+(2−Q2+dlog2(Q)e).
But now for this case to even appear, we need, Q ≥ 2 soQ2 ≥ 2+dlog2(Q)e) so this works.

When d = Q− 1, we have the number of bits is 2dlog2(n)e+ 2Q2 + (−2Q+ 2 +

dlog2(Q)e). But as before, Q ≥ 2 so 2Q− 2 ≥ dlog2(Q)e) so this works.

Case 3: subregions of dimension 0 This only happens if x is directly at the center

of the decomposition. Then we don’t need any extra information to identify x. We only

need dlog2(Q)e bits to indicate that d = 0. This is well below 2dlog2(n)e + 2Q2 so this

easily works.

Therefore, by induction we can write down the new address of every vertex x using

2dlog2(n)e+ 2Q2 bits regardless of what subregions x is in.
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Tree Structure We also need to remake the tree structure B(y) using similar methods.

Instead of 2Q − 1 branches at every splitting node, we’ll end up with 1 +
∑Q

d=1

(
2Q

1+Q−d
)

branches. However, all the new branches will have far less information on them, with

the end result that the entire tree doesn’t require that much more information to store.

More precisely, we can store the tree for n vertices in dimension Q in F (Q,n) =

cQ(2Q−1)log2(n)/Q − c′Q(2Q−1−1)log2(n)/(Q−1) bits for some sufficiently large c′Q and cQ.

For the subregions of dimension Q, we do a similar thing to last time . We know

that there is at least one subregion of dimension Q that avoids the hyperplane H corre-

sponding to y, which means all the elements of this subregion are either all adjacent or

all non-adjacent from y. We’ll say that there are in fact a ≥ 1 subregions of dimension

Q that avoid H. We can identify each one using Q bits, and then we need to add 1 more

bit to say whether all elements are adjacent or non-adjacent to y. For all the others, we

know that since each contains at most n/2Q points, by the induction hypothesis that can

store all the information using F (Q,n/2Q) bits. In total, we can store this information

using a(Q + 1) + (2Q − a)F (Q,n/2Q) bits. Since F (Q,n/2Q) > Q + 1, the worst case

scenario is when a = 1.

For the subregions of smaller dimension, we know that there are less than 22Q of them.

Therefore we can identify each one using 2Q bits. Each of these also needs its internal

information storing. By the induction hypothesis, we can store each one using F (d, n)

bits where d is its dimension. Since d ≤ Q − 1, we we know that this is less than

F (Q − 1, n). In total, we can store all the information about these subregions using

22Q(2Q + F (Q − 1, n)) bits. Adding this all up, we get that we can store all the infor-

mation about a region of dimension Q with n points in it using information:
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(Q+ 1) + (2Q − 1)F (Q,n/2Q) + 22Q(2Q + F (Q− 1, n))

= (Q+ 1) + cQ(2Q − 1)(2Q − 1)log2(n/2Q)/Q

−c′Q(2Q − 1)(2Q−1 − 1)log2(n/2Q)/(Q−1) + 22Q+Q

+cQ−122Q(2Q−1 − 1)log2(n)/(Q−1) − c′Q−122Q(2Q−2 − 1)log2(n)/(Q−2)

≤ (Q+ 1 + 22Q+Q) + cQ(2Q − 1)log2(n)/Q +[
cQ−122Q − c′Q

(2Q − 1)

(2Q−1 − 1)Q/(Q−1)

]
(2Q−1 − 1)log2(n)/(Q−1)

≤ cQ(2Q − 1)log2(n)/Q +[(
Q+ 1 + 22Q+Q + cQ−122Q

)
− c′Q

(2Q − 1)

(2Q−1 − 1)Q/(Q−1)

]
(2Q−1 − 1)log2(n)/(Q−1)

If this ends up being less than or equal to cQ(2Q − 1)log2(n)/Q − c′Q(2Q−1 −
1)log2(n)/Q−1, then the induction would be complete. This is equivalent to:[(

Q+ 1 + 22Q+Q + cQ−122Q
)
− c′Q

(2Q − 1)

(2Q−1 − 1)Q/(Q−1)

]
≤ −c′Q

which is again equivalent to

c′Q

(
(2Q − 1)

(2Q−1 − 1)Q/(Q−1)
− 1

)
≥ Q+ 1 + 22Q+Q + cQ−122Q .

But now (2Q−1)

(2Q−1−1)Q/(Q−1) > 1 because (2Q−1)Q−1

(2Q−1−1)Q
> 1 because (2Q − 1)Q−1 >

(2Q−1 − 1)Q. Therefore we can pick a c′Q =
Q+1+22Q+Q+cQ−122Q

(2Q−1)

(2Q−1−1)Q/(Q−1)
−1

and it will work.

Then we can pick cQ large enough to make the initial conditions of the induction hold

(i.e.: when n < 2Q, we can describe everything using F (Q,n) bits). If we do this too,

then by induction, we’ll get for all n, we can describe everything using F (Q,n) bits.

Then by induction on Q, we’ll have a series of numbers cQ and c′Q such that we can

describe the entire tree using cQ(2Q − 1)log2(n)/Q − c′Q(2Q−1 − 1)log2(n)/(Q−1) bits.

This completes the proof. We have a method of storing the information about the

edges which uses O(nlog2(2Q−1)/Q) bits for every vertex.
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Examples

For the category of unit disk graphs, we haveQ = 4 which means this takesO(n0.976723)

bits per vertex.

For the category of disk graphs, we haveQ = 5, which means this takesO(n0.990839)

bits per vertex.

These are very close to the trivial upper bound of
⌈
n−1

2

⌉
+ log2(n) but are still a small

improvement over it when n is large.
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[10] Paul Erdős. On the combinatorial problems which I would most like to see solved.

Combinatorica, 1(1):25–42, 1981.
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