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Summary. We describe the most recent statistical methodology used to produce the 17th
English Life Table, covering the period 2010–2012. Crude mortality rates are smoothed, or
graduated, by using a combination of a generalized additive model and low dimensional para-
metric models.The approach to graduation acknowledges uncertainty, particularly in the highest
age groups, by model averaging, using a simplified version of a full Bayesian analysis.
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1. Introduction and review

The decennial life tables, known as the English Life Tables (ELTs), are official publications which
have been produced after every decennial census since 1841 (with the exception of 1941 when no
census was carried out). The ELTs are designed to provide a snapshot of the mortality experience
in England and Wales, by age and sex in the 3-year period around the census year. National life
tables have a wide variety of applications including social planning, development of government
policy, research and insurance. In this paper, we describe the statistical methodology underlying
the production of the 17th version of the ELTs. Our approach provides a coherent solution to
the issue, which arises in any life table estimation, that data are sparse at the highest ages, where
population numbers are small.

Suppose that yx is the number of deaths in England and Wales of either males or females
observed aged x at last birthday (equivalently, age at death in [x, x+1/) in a given time period
T . The age x is restricted to be an integer. Let Ex+t denote the total exposure of (male or female)
individuals exact age x+ t, where 0 � t < 1 within T . Then the classic central exposure to risk
for integer age x is given by

EC
x =

∫ 1

0
Ex+t dt:

When T is a calendar year, it is common to approximate EC
x by the mid-year exposure, i.e. the

number of individuals aged in [x, x+1/ at the mid-point of T .
The observed (or empirical) central mortality rate m̃x is given by

m̃x = yx

EC
x

:
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This is a statistic which can be thought of as a raw estimator of the underlying central mortality
rate

mx = E[Yx]
EC

x

, .1/

where E[Yx] is the expected value of the random variable describing the number of deaths at age
x, calculated under a statistical model. Under the approximation that the force of mortality μ.x/

(the hazard function for the lifetime random variable) is piecewise constant, taking a common
value across each whole year of age [x, x+1/, then

mx =

∫ 1

0
Ex+tμ.x+ t/dt

EC
x

=
μ.x+ 1

2 /

∫ 1

0
Ex+t dt

EC
x

=μ.x+ 1
2 /: .2/

for all t ∈ [0, 1/ and x, following the convention of denoting a constant force of mortality by its
value at the mid-point of the age range concerned.

The life tables are based on graduated (smoothed) estimates of mx, or related functions. Grad-
uation is carried out because the crude estimates m̃x typically fluctuate because of the natural
variability in the mortality process within the population at risk. This can lead to undesirable
features, such as mortality estimates failing to follow a monotonically increasing pattern over
middle and old ages. Graduation is particularly important at the oldest ages, where exposure
numbers are small and data are sparse.

Over the history of production of the decennial life tables, various methods have been used for
graduation, as statistical methodology has become more sophisticated and computation more
straightforward. Typically, infant mortality has been estimated separately (a feature we maintain
here). Most recently, for the 13th–16th ELTs, a spline-based method has been used to graduate
over most of the range of x (age), with various methods used to extrapolate into the highest ages,
where data are sparse, or non-existent. For example, for the 14th and 16th ELTs, a variable knot
cubic spline was fitted, with knot positions determined according to some optimality criterion.
For the 15th ELTs, a smoothing spline approach was adopted. For extrapolating to the highest
ages, the methods used have often required arguably ad hoc assumptions about mortality rates
at particular ages; for example, the 16th ELTs assume m120 =2 (see Office for National Statistics
(2009)). One of the main aims in developing the graduation for the 17th ELTs was to avoid
having to make such assumptions. A detailed review of methods used in graduating mortality
rates at old ages in previous ELTs can be found in Gallop (2002).

More widely, modelling of mortality patterns by age, for subsequent use in life tables, has
a long history. Modern attempts date back to Gompertz (1825) and Makeham (1867), and to
their observation that the logarithm of mortality rates can be approximated by a linear func-
tion of age, at least for the middle decades of human life. The Gompertz–Makeham model
has been subsequently extended several times to allow for a specific shape of mortality during
childhood, adolescence and young adulthood, especially for men. Attempts to build a model
for the whole lifespan date back at least to Thiele (1871); one of the best-known contempo-
rary generalizations, proposed by Heligman and Pollard (1980), who modelled mortality rate
as an eight-parameter function of age, implements in practice several ideas of Thiele (1871),
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also with respect to specifying the model in terms of mortality odds. Given possible problems
with the identifiability of the model parameters, Dellaportas et al. (2001) proposed to estimate
the Heligman–Pollard model within a Bayesian framework. There are further extensions of the
Heligman–Pollard model, e.g. by Kostaki (1992), designed to eliminate some inherent biases in
its estimation. The methods for dealing with incomplete mortality data, chiefly for developing
countries, include borrowing patterns observed for example for other countries in the past, as in
the case of empirical life tables (Coale and Demeny, 1966). A modification of this approach was
proposed by Brass (1971), whereby the logits of age-specific mortality rates from an empirical
table (treated as a mortality ‘standard’) are modified by a linear function to estimate the logits
of rates for the population under study. This approach, based on relational life tables, offers
a greater flexibility in adjusting the estimates to a particular context, which belong to a wider
class of the standard indirect methods that are recommended by the United Nations for con-
ducting analysis for countries with sparse or low quality data (United Nations, 1982, 1983). The
Brass approach has been extended by Anson (1991), who has shown that the various types of
empirical life tables can be grouped into families governed by two key parameters: one related
to the overall mortality level, and the other summarizing the shape of the distribution by age.
Another modification was proposed by Murray et al. (2003), who used two additional sets of
correction factors, distinguishing between childhood and adult mortality, to fine-tune the Brass
approach.

There have been several directions in which the methods for modelling mortality have been
extended. The use of semiparametric methods based on splines, at least for the main body of
the mortality function, was suggested by Hsieh (1991), who combined the approach with a
quadratic function and a Gompertz model for the oldest ages, and with a separate estimation
for infant mortality, to cover the whole life table. Tabeau et al. (2002) reviewed the various
parametric functions that have been used to model mortality and discussed the applicability
of different parametric models to estimating the age, period and cohort effects of mortality.
Elaborate methods designed for specific data sets are available in Andreev et al. (2003) for the
Kannisto–Thatcher database on old age mortality, and in Wilmoth et al. (2007) for the human
mortality database (see also Thatcher et al. (1998) for methods specifically related to older age
groups). Despite these, and other, detailed studies involving parametric models for mortality in
the literature, there remains no consensus favouring any particular approach to the graduation
of mortality data; see, for example, Thatcher (1999), Thatcher et al. (1998), Olshansky and
Carnes (1997) and Pollard and Valkovics (1992). This uncertainty is something that we address
specifically in the context of our proposed methodology for the 17th ELTs.

Smoothing has become part of the standard statistical toolbox, and the facility to include
smooth functions of covariates in a regression model is included in standard software. In partic-
ular, the generalized additive model (GAM) framework allows smooth functions of one or more
explanatory variables to be included in a regression model. A smooth term in a regression model
is typically included as a cubic spline with a large number of knots. Each knot requires a model
parameter and there can be as many as one per observed value of the covariate. Smoothness
is then enforced by maximizing a penalized likelihood where the penalty is a function of the
roughness of the resulting spline regression function, typically the integrated squared second
derivative. The degree of penalization controls the smoothness of the resulting fit, and this is
usually determined by generalized cross-validation (Wood, 2006).

Given the widespread adoption of this approach for smooth function estimation, we view it
as a natural approach for the graduation of the life table. Spline-based smoothing is an integral
part of many of the graduation approaches that were discussed above. In developing a model,
our focus is on how to manage the transition between the age range where a smoothing spline
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works well, and the oldest ages, where the sparsity of the data results in the smoothing spline fit
being less reliable, leading us to consider other model-based methods. One important question
is at what age the transition from one model to another occurs and how to incorporate the
uncertainty about this transition age in the modelling. This can be thought of as a change point
problem, where we use the observed data to inform us about the location of the change. To
incorporate the associated uncertainty, it is natural to consider a Bayesian approach, where
the estimated mortality rates are obtained by integrating over other unknowns, including in
this case the position of the change point; see, for example, Carlin et al. (1992) and Ghosh et
al. (2009). Carlin et al. (1992) provided hierarchical Bayes change point models and discussed
how to fit these models by using Markov chain Monte Carlo methods. They also presented an
example of changing linear regression models. Ghosh et al. (2009) proposed parametric and
semiparametric Bayesian change point models to analyse cancer rates.

In Section 2, we present the raw mortality data for England and Wales for 2010–2012 and
illustrate the smoothing spline graduation. In Section 3, we introduce our methodology for
mortality estimation at older ages, and how a smooth transition from the smoothing spline to
an old age model is attained. In Section 4, we present our data analysis. The life table is in
Section 5 and our conclusions are in Section 6.

The programs that were used to analyse the data can be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

2. Exploratory data analysis

The crude central mortality rates (on a logarithmic scale) are presented in Fig. 1. Several features
are immediately apparent. As would be expected, mortality rates for males are higher than for
females throughout the age range, but with some convergence at older ages. Mortality decreases
throughout the first few years of life, with a particularly steep drop between ages 0 and 1 years.
From about age 10 years onwards mortality increases, with a particularly steep increase in late
teenage years, particularly pronounced for males, and attributable to a higher rate of death from
accidents (sometimes referred to as the ‘accident hump’). Compared with the variability across
ages, the variability between crude mortality rates across the 3 years of observation is much
less. Although we expect mortality rates to drift downwards over time, this drift is sufficiently
small as to be only weakly visible across a 3-year timespan. For the purposes of this paper, we
choose to ignore this effect. The final feature of note, of particular interest here, is the fact that
crude mortality rates exhibit much greater variability in the highest (over 100 years) age groups.
The issue with the older age groups is not poor quality of the data in the sense of inaccuracies,
but more that the observed numbers of deaths are low because of low exposures (population
numbers) at these ages. This presents issues for estimation and extrapolation which will be the
main subject of this paper.

Following previous practice, the mortality rate at age 0 years (infant mortality) is estimated
separately, using a simple function of the crude mortality rate which accounts for the fact that
infant deaths are disproportionately concentrated in the earlier weeks of life. Therefore, we
focus on estimating mortality rates mx for ages x > 0. As discussed in Section 1, we consider a
cubic smoothing spline, fitted as a GAM in standard software (we used the mgcv package in
R; Wood (2015)) to be a straightforward and natural approach for graduation. The full model
is described in Section 3. Fig. 1 thus also presents the estimated mortality function m̂x that
is obtained by fitting a GAM incorporating a cubic smoothing spline for age x, penalized by
integrated squared second derivative.

Over the majority of the age range, the estimated m̂x-function looks to be a reasonably smooth
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Fig. 1. Crude central mortality rates for England and Wales (2010–2012), together with rates estimated
by a penalized cubic smoothing spline, fitted as a GAM: upper— , males, 2010; , males, 2011; , males,
2012; , males, GAM; lower— females, 2010; , females, 2011; , females, 2012; , females,
GAM

function which, at the same time, adheres acceptably well to the crude mortality rates—it passes
the ‘eyeball’ test. At the very highest ages, there are reasons to be less satisfied. Firstly, the sparsity
of the data (low exposures, and correspondingly low numbers of observed deaths) mean that
the uncertainty about mx is much greater at high ages. The smoothing spline fit does account for
this, but any spline fit is largely determined locally, by observed mortality rates at neighbouring
ages, all of which are prone to high variability at the highest ages. Second, it is noticeable that
the estimated female mortality exceeds male mortality beyond age 107 years and, although this
possibility cannot be ruled out, it is likely that this is simply just due to the lack of available
data to estimate mortality accurately at these ages. A further issue with using these fits for life
table estimation is that such estimation requires us to extrapolate the estimate of the mortality
rate function to ages beyond the extremes of the observed data. Although any extrapolation
should be undertaken with caution, this is particularly true of extrapolating a smoothing spline
estimated on sparse data. In the next section, we develop a methodology which provides a more
robust fit at the highest ages, and hence a more credible extrapolation.

3. Methodology

3.1. The basic smoothing model
Statistical graduation proceeds by estimating the central mortality rate mx, defined in equation
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(1), under some model which imposes a degree of smoothness on the mx-series as a function of
x. For example, a Poisson regression or smoothing model is formulated as

Yx ∼Poisson.EC
x mx/

where the exposures EC
x are included in the model through offset terms, and the rates mx are

modelled (typically by using a logarithmic link function) by a parametric formula, or as a smooth
term in a GAM. For a large non-uniform population, such as England and Wales, a Poisson
model, with its implicit assumption that the variance is equal to the mean, is too inflexible for
modelling and rarely fits observed data well. Therefore, we prefer a negative binomial model,
of the form

Yx ∼NB.EC
x mx, α/

where E[Yx] =EC
x mx and α is a dispersion parameter such that var[Yx] =EC

x mx + .EC
x mx/2=α:

Hence, for the observed death counts {yx, x> 0} we have the log-likelihood

l.m, α/=
n∑

x=1
α log

(
α

EC
x mx +α

)
+

n∑
x=1

yx log
(

EC
x mx

EC
x mx +α

)
+

n∑
x=1

log{Γ.α+yx/}−n log{Γ.α/}

.3/

where n is the largest age for which EC
x > 0. Then, in a generalized additive (smoothing spline)

model, the mortality rates mx are modelled as

log.mx/= s.x;β/ .4/

where s.x;β/ is a linear (in β) function representing regression on a spline basis at a fixed set of
knots. The spline coefficients β are estimated by maximizing the penalized log-likelihood

p.β, α/= l[{s.x;β/; x=1, : : : , n}, α]−λ

∫
|s′′.x;β/|2dx

as a function of β where λ, the parameter controlling the ‘roughness penalty’, is chosen to
provide the optimal (by cross-validation) predictive fit of the model.

Then, the graduated estimates m̂x are obtained as

m̂x = exp{s.x; β̂/}

and it is these estimates which are displayed as the curves in Fig. 1.

3.2. Models for older ages and extrapolation
To obtain a more robust fit at older ages, and to extrapolate the mortality function mx beyond
the range of the observed data, we propose to use a parametric model. The use of a separate
model for graduating mortality rates over the highest age ranges has been proposed for example
by Wilmoth et al. (2007) for a fixed threshold. The simplest and best-known parametric model
for human mortality at old ages is the log-linear Gompertz model

log.mx/=β0 +β1x, x�x0, .5/

where x0 is a suitable threshold; it is clear from examination of Fig. 1 that model (5) cannot
reasonably apply to all x> 0. Therefore our model combines models (4) and (5) as

log.mx/=
{

s.x;β/, x<x0,
β0 +β1x, x�x0:

.6/
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An alternative to model (5) is a Makeham model, of the form

mx =γ0 + exp.β0 +β1x/, x�x0:

This, or model (5) alone, might be extended by allowing higher order polynomials either inside
the exponential function (extra β-parameters) or outside (extra γ-parameters), and incorporated
in a model like model (6). However, we are already proposing a smoothing spline for modelling
age-specific variation in mortality across the majority of the age range. A model at the highest
ages should be able to be robustly fitted where data are sparse, and we prefer such a model to be
as simple as possible. Hence, our preference is for model (6) with x0 chosen so that the fit of the
model across the age range where it is applied is comparable, in terms of predictive accuracy,
with the fit of the GAM.

A competing model to model (5) which has been applied in life table construction for obtaining
smooth estimates at oldest ages, and extrapolation, is a logistic model of the form

mx = β2exp.β0 +β1x/

1+ exp.β0 +β1x/
, x�x0: .7/

With this model, which was proposed by Beard (1963), which is a special case of an earlier model
of Perks (1932) (see also Pitacco (2016)), mortality rates flatten off, converging to a limiting rate
β2 as x→∞.

There is a link between the model of Beard (1963) and the concept of ‘frailty’, describing the
differences in mortality rates between individuals in a population and thus being a source of
unobserved heterogeneity with respect to mortality (see Haberman and Olivieri (2014) or Pitacco
(2016) for recent overviews). Frailty is often operationalized by an individual level parameter
(random effect) applied multiplicatively to the overall mortality rates m for all individuals in a
population (Vaupel et al., 1979; Manton et al., 1986). Model (7) can result, for example, from
incorporating a gamma-distributed frailty parameter in the Gompertz model (6). A special case
of this model, with β2 =1, is used in graduating the human mortality database (Wilmoth et al.,
2007). Following Wilmoth et al. (2007) we set β2 =1 and therefore our logistic model combines
models (4) and (7) as

mx =
⎧⎨
⎩

exp{s.x;β/}, x<x0,
exp.β0 +β1x/

1+ exp.β0 +β1x/
, x�x0:

.8/

Hence we have two possible models, models (6) and (8), both of which require the choice of
a threshold age x0 to determine the age range over which the parametric component will be
fitted and applied. In practice, we have no fundamental reason to prefer one model over the
other, or to apply a particular value of x0. Rather, we would prefer to base our decision on the
observed data. Furthermore, given the sparsity of the data at the highest ages, there is likely
to be considerable uncertainty about this choice. Ideally, we would like our final graduation to
acknowledge this uncertainty, where appropriate.

3.3. Bayes and partial Bayes model averaging
Arguably the most natural approach to incorporate model uncertainty into estimates is a
Bayesian approach. In general, suppose that we use k = 1, : : : , K to index possible models for
observed data y, with each model k specifying a probability density pk.y|θk/ for the observed
data y. Here θk denotes the unknown parameters of model k, which in the present context are
the parameters β of the GAM, the parameters (β0, β1) of the old age mortality function and
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the negative binomial dispersion parameter α. Then, the Bayesian approach under model un-
certainty updates a prior probability distribution over the models to a posterior distribution, in
the light of observed data. The posterior distribution accounts for how well the various models
fit the data and is used explicitly in weighting the models in estimates of any quantity of interest,
such as a mortality rate here, which has a constant interpretation across models. Precisely, a
prior probability distribution p.k/, representing our prior beliefs concerning which model is
most appropriate, is updated as

p.k|y/∝p.y|k/p.k/ .9/

where p.y|k/ is the marginal likelihood

p.y|k/=
∫

pk.y|θk/pk.θk/dθk: .10/

It is typical to assume prior neutrality (equiprobability) between models, so models are effectively
compared by using p.y|k/ (or log{p.y|k/}).

Under model uncertainty, the posterior probability distribution for mortality rates incorpo-
rates model uncertainty, as

p.mx|y/=∑
k

p.k|y/pk.mx|y/ .11/

which is a mixture of the posterior probability distributions for mx, obtained from the individual
models in the usual way, weighted by their posterior probabilities (9).

Graduated estimates of mx can then be obtained by using

E[mx|y]=∑
k

p.k|y/Ek.mx|y/ .12/

a weighted average of the posterior expectations Ek.mx|y/ under the various models, with the
weights given by the posterior model probabilities. This approach is often described as ‘model
averaging’; see Hoeting et al. (1999) for details. The final graduations fully integrate both model
uncertainty and uncertainty about the parameters of the constituent models.

Evaluation of model-averaged graduations by using equation (12) can be computationally
demanding, typically requiring Markov chain Monte Carlo methods or alternative Bayesian
computational tools. We propose a relatively simple graduation methodology which captures
the important aspects of equation (12), i.e. the incorporation of model uncertainty, while being
easy to implement within standard statistical software such as R. This involves, as the first step,
replacing equation (12) by

m̂x =∑
k

p.k|y/m̂.k/
x .13/

where m̂.k/
x are the (penalized) maximum likelihood estimates (MLEs) of mx under model k.

In the absence of strong prior information about mx, and particularly for age groups x with
large exposures EC

x , this is a relatively mild approximation, as we are simply replacing posterior
means by MLEs which are likely to be close.

The second stage of our approach represents a greater departure from the conventional
Bayesian approach and deals with the computation of model probabilities p.k|y/. In the conven-
tional Bayes approach these are computed via expressions (9) and (10). Our approach is based
on the concept of the ‘partial Bayes factor’ (see O’Hagan and Forster (2004), section 7.32).
The partial Bayes factor has been proposed as an alternative Bayesian approach for calculating
the marginal likelihood (10) in examples where the requirement is to compute Bayesian model
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probabilities in the presence of a vague or diffuse prior distribution pk.θk/ for the model param-
eters of one or more models. In such cases, an alternative is to split the data y into two subsets,
which we shall call yt (training) and yv (validation). Then, the training data yt are considered
as having been observed a priori, so expressions (9) and (10) are modified to

p.k|y/∝p.yv|k, yt/p.k/ .14/

and

p.yv|k, yt/=
∫

pk.yv|θk/pk.θk|yt/dθk: .15/

Here, we assume that, as in our models, Yx are independent given θk, so that pk.yv|θk, yt/ =
pk.yv|θk/. Note that the posterior distributions for the model parameters θk arising from this
modification are unaffected, as pk.θk|y/=pk.θk|yt, yv/∝pk.yv|θk, yt/pk.θk|yt/, so sequentially
updating, using yt first followed by yv, makes no difference. However, the posterior model
probabilities are not preserved, because we now use the prior model probabilities p.k/ rather
than p.k|yt/ in distribution (14), even after observing yt. This can be considered as deferring any
consideration of model uncertainty until after the training sample yt has been observed, and only
at that point specifying prior probabilities (typically discrete uniform) to models; hence, only the
validation data yv contribute directly to updating the prior model probabilities. For a detailed
discussion of partial, or cross-validatory, Bayes factors, see Chakrabarti and Ghosh (2007). The
use of a posterior model probability (14) based on the predictive density of validation data given
a training sample, in the model-averaged prediction (12), is equivalent to the approach that was
proposed by Eklund and Karlsson (2007) and adopted by Feldkircher (2012).

Our final adjustment, again designed for ease of computation, is to replace pk.θk|yt/, the
density for θk after observing the training sample, in equation (15), by a point mass at θ̂

′
k, the

(penalized) MLE for θk based on the training data yt only. Hence, we use

p.yv|k, yt/=pk.yv|θ̂′
k/

in place of marginal likelihood (15), leading to

p.k|y/∝pk.yv|θ̂′
k/p.k/ .16/

in place of distribution (14). Therefore models are evaluated on the basis of how well they predict
the validation data, on the basis of parameters estimated by using the training data. Together
with equation (13), and assuming a discrete uniform prior distribution p.k/ over models, this
leads to model-averaged estimates

m̂x =
∑
k

pk.yv|θ̂′
k/m̂.k/

x

∑
k

pk.yv|θ̂′
k/

: .17/

This approach avoids the need for integration, at the cost of ignoring uncertainty about
the model parameters in the computation of the (partial) marginal likelihood (but only in
this aspect). It is clear that model (17) provides a graduation which can account for model
uncertainty, while requiring only standard (penalized) maximum likelihood estimation using
both the full and training data, together with computation of the validation data likelihood.

3.4. Practical partial Bayes graduation
Graduation using model (17) requires us to estimate the parameters of each model k by using
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both the training data yt and the full data y. Here, a model k comprises a choice of x0 ∈{1, xmax}
together with a choice of either a Gompertz (6) or logistic (8) model. Here xmax represents the
oldest age at which the transition from semiparametric (smooth GAM) to parametric model
is allowed. In practice, we set xmax to be n − 4 where n is the oldest age at which EC

x > 0 (106
years for males; 109 years for females) to ensure that the parametric model is always estimated
by using at least four data points.

Estimation of the parameters of the GAM component of model (6) or (8), i.e. exp{s.x;β/} for
x < x0, is carried out by using the mgcv package in R (Wood, 2015), with a negative binomial
likelihood, including estimation of the negative binomial dispersion parameter α. Estimation
of the parameters of the log-linear model (6) for age groups x � x0 is carried out by using the
glm.nb function of the MASS library in R. Estimation of the parameters of the logistic model
(8) is carried out by maximizing the log-likelihood for age groups x�x0 directly. Finally, model
(17) requires computation of the likelihood on the basis of the validation data. This is simply a
case of evaluating m̂′

x by using model (6) or (8) and then evaluating model (3) for data yv.
It remains only to specify how data y (age-specific death counts for 2010, 2011 and 2012) are

split into training, yt, and validation, yv, data sets. We decided to keep each year (2010, 2011,
2012) intact and to include all observed deaths for a particular year in either yt or yv. Hence
models are evaluated based on the prediction for a given year or years, based on parameter
estimates for a complementary set of years. Furthermore, for symmetry, we chose to include
2010 and 2012 data in one set, and 2011 data in the other. Another reason for this was to protect
against downward drift in the mortality rates, so that the two data sets might be expected to
have similar mean mortality rates. The final choice, to make {2010, 2012} the training data
and {2011} the validation data, is slightly arbitrary but was motivated by having as accurate
as possible estimates θ̂

′
k to help to justify replacing pk.θk|yt/ by a point mass in equation (15).

Overall graduation is relatively insensitive to how the data are split into training and validation
data, as this split influences only the weights pk.yv|θ̂′

k/ in model (17) and not the graduations
for the individual models, m̂.k/

x .

4. Application to modelling England and Wales mortality data (2010–2012)

We first examine the analysis of models (6) and (8) separately. For model (6) with a log-linear
mortality function at old age, the (conditional) probabilities for various threshold ages x0 are
displayed in Fig. 2. The probability that the transition from an unstructured (GAM) model
to a parsimonious parametric form should happen at an age less than 85 years is negligible.
Thereafter the parametric model becomes more competitive. For males, the total probability
that a threshold is between 96 and 105 years is 0.80. For females, there is probability of around
0.1 that the threshold is at age x0 = 91 years but the bulk (0.81) of the total probability is on a
threshold being between 101 and 108 years.

In Fig. 3, we present the model-averaged graduation for ages 60 years and older, based on
model (6). This graduation incorporates uncertainty about the value of the threshold x0 by com-
puting the graduated estimates by using expression (13), where the model index k represents
different values of x0. Although models for males and females are fitted separately, the extrap-
olated (log-)mortality rates are very close. In fact the extrapolation shows the rates for females
overtaking those for males, but only by a very small amount relative to the overall uncertainty.
Note that, although all individual models are log-linear, their average, which is calculated on
the mortality scale via expression (13) is not log-linear, explaining the slight curvature in the
extrapolated mortality function.

For model (8) with a logistic mortality function at old age, the (conditional) probabilities for
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Fig. 2. Threshold probabilities plotted against threshold ages x0 for the log-linear old age model (6) (for
each potential threshold age x0, these represent the probability that x0 is the optimal threshold at which the
GAM, for mortality rates for England and Wales (2010–2012), is replaced by the log-linear old age model
(6)): �, males; , females

various threshold values x0 are displayed in Fig. 4. Now, thresholds below age 85 years are more
probable, although the probability that the transition from an unstructured (GAM) model to
a parsimonious parametric form should happen at an age less than 70 years remains negligible.
For females, there is a relatively narrow range of thresholds supported by the data, with the
total probability that x0 is between 85 and 91 years estimated as 0.84. For males, in contrast,
there remains considerable uncertainty about the threshold with almost all values of x0 � 75
years having non-negligible probability. The highest probability region for x0 is between 90 and
99 years, with a total probability of 0.43.

In Fig. 5, we present the model-averaged graduation for ages 60 years and older, based on
model (8). As in Fig. 3, this graduation incorporates uncertainty about the value of the threshold
x0 by computing the graduated estimates by using expression (13), where the model index k

represents different values of x0. Again models for males and females are fitted separately, and
here there is a slightly more pronounced deviation between the extrapolated (log-)mortality
rates. The extrapolation shows rates for females converging to the limiting value of 1 faster than
the rates for males, resulting in a crossover. Again, the estimated differences are small and occur
at ages beyond which very few data are available, and where uncertainty is greatest. It should
not be taken as evidence that female mortality exceeds male mortality at the highest ages.

Finally, we combine the analysis of models (6) and (8) into a single analysis, computing model
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Fig. 3. Crude central mortality rates for England and Wales (2010–2012) for ages 60 years and older,
together with smooth rates estimated by a model average of old age log-linear models for various threshold
ages x0: upper— , males, 2010; , males, 2011; , males, 2012; , males, smooth rates; lower— ,
females, 2010; , females, 2011; , females, 2012; , females, smooth rates

probabilities which quantify uncertainty both about threshold ages and about the relative merits
of the log-linear and logistic models for mortality in the highest age groups. The total probability
of log-linear models (6) across all threshold ages x0 is computed by using expression (16) to be
0.087 for females and 0.292 for males. Hence the data are generally more supportive of the
logistic model (8) with its implied limiting mortality rate than the log-linear model of ever-
increasing mortality. This is particularly so for females. For males, we remain more equivocal
about the relative merits of models (6) and (8). When we estimate mortality rates by using the
model-averaged combination of all the models, we obtain the estimates that are displayed in
Fig. 6. Again, males and females have been fitted separately, but as shown in Fig. 3 we see
convergence of estimated mortality rates until around age 120 years. Thereafter, the full model-
averaged mortality rate estimates for males and females diverge, because of the greater weight
on the log-linear model for males. Again, we caution against overinterpreting an extrapolation
this far beyond the range of observed data.

Deceleration of mortality at older ages is an area of a vivid debate, which is intrinsically linked
to a more general discussion on the limits of human lifespan and life expectancy (Olshansky
et al., 1990; Oeppen and Vaupel, 2002). A comprehensive review by Pitacco (2016) lists three
competing hypotheses regarding the force of mortality at older ages: exponentially increasing,
non-exponentially (e.g. linearly) increasing or decelerating (levelling off or even declining). The
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Fig. 4. Threshold probabilities plotted against threshold ages x0 for the logistic old age model (8) (for each
potential threshold age x0, the symbols represent the probability that x0 is the optimal threshold at which the
GAM, for mortality rates for England and Wales (2010–2012), is replaced by the logistic old age model (8)):
�, males; , females

results that are presented in this paper for England and Wales support the deceleration hypoth-
esis, at population level, albeit with a large uncertainty. Besides, the use of logistic models has
an additional conceptual appeal, as they can be used to represent heterogeneity within cohorts
that is caused by differences in individual frailty (Pitacco, 2016). Furthermore, our approach
also allows for being agnostic about the pace of deceleration for both sexes, as it lets the data
determine the deceleration rates in a given population. Generally, we believe that Fig. 6 repre-
sents a graduation which provides an acceptable compromise between models (6) and (8) and
between models with different threshold ages x0.

The graduated rates in Fig. 6 are presented without any uncertainty measure associated
with them. This is simply because the standard life table presentation does not incorporate an
uncertainty analysis. However, we consider that extending the methodology that is described
here to provide uncertainty intervals is a valuable extension of the current approach and takes
advantage of our Bayesian model specification. This is especially important in regions where we
have sparse data, e.g. at older ages, as point estimates for these ages do not reflect the uncertainty
in estimation.

Our uncertainty intervals are posterior probability intervals calculated from the posterior
distribution for mx given in equation (11). This posterior distribution is a mixture, and we
approximate its quantiles by simulation, sampling models {k.j/} from the posterior distribution
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Fig. 5. Crude central mortality rates for England and Wales (2010–2012) for ages 60 years and older,
together with smooth rates estimated by a model average of old age logistic models for various threshold
ages x0: upper— , males, 2010; , males, 2011; , males, 2012; , males, smooth rates; lower— ,
females, 2010; , females, 2011; , females, 2012; , females, smooth rates

with model probabilities given by expression (16). Then corresponding mortality rates {m
.j/
x }

are sampled from their conditional (given model k.j/) posterior distribution, so

m.j/
x |k.j/, y ∼p.mx|k.j/, y/:

In computing the model-averaged mortality estimates in expression (17), we use a series of
approximations. Here, we sample from an approximate posterior distribution, which is a normal
distribution for log.mx/ with mean log.m̂.k/

x /, the (penalized) MLEs of mx under model k, and
standard deviation σ̂.k/

x , the predictive standard error of log.m̂x/ under model k. Hence, we use
the approximation

log.mx/∼N{log.m̂.k/
x /, .σ̂.k/

x /2}
under model k.

To apply this approach to our model-averaged graduation, where the models are given by
equations (6) and (8), we first sample a model k, which is determined by the choice between
model (6) and model (8) together with a threshold value x0. Then, we sample the corresponding
mortality rates mx from a normal distribution with mean m̂.k/

x and standard deviation σ̂.k/
x ,

which are the (penalized) MLEs and standard errors from the semiparametric GAM for ages
x � x0 and the MLEs and standard errors from the relevant parametric model, model (5) or
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Fig. 6. Crude central mortality rates for England and Wales (2010–2012) for ages 60 years and older,
together with smooth rates estimated by a model average of old age logistic and log-linear models for various
threshold ages x0: upper— , males, 2010; , males, 2011; , males, 2012; , males, smooth rates;
lower— , females, 2010; , females, 2011; , females, 2012; , females, smooth rates

model (7), for ages x < x0. Hence, uncertainty is quantified by simple computation involving
only generation from a discrete distribution over the model space, together with generating
normal variables with means and standard deviations given by the outputs of the standard
statistical procedures that are used to estimate mortality under each model. As the method does
not involve exact computation of the posterior distributions p.mx|k, y/, computation is much
more straightforward than under the fully Bayesian approach. Similarly, a parametric bootstrap,
which would require carrying out multiple repetitions of the complete analysis on resampled
death counts, would be computationally much more demanding. In the analysis below, we use
a simulation sample size of 100000.

Fig. 7 shows the 90% probability interval of model-averaged graduations for males and females
together with smooth rates. The interval before age 20 years is wider compared with the interval
for ages 20–100 years, indicating greater uncertainty associated with these estimates. However,
the highest uncertainty is at oldest ages. This is expected since there is a lack of data (observed
deaths) at these ages. To investigate this region in more detail we present the inset in Fig. 7. The
wide interval in this region is in line with the high variability of crude central mortality rates.
One reason that there is a wider probability interval for males at high ages, indicating higher
uncertainty for mortality rates for males in this region, is that there are fewer data for males
compared with females at these ages.
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Fig. 7. Smooth mortality rates estimated by a model average of old age logistic and log-linear models for
England and Wales (2010–2012) for various threshold ages x0 together with the 90% probability interval for
smooth rates (the inset additionally shows crude central mortality rates for England and Wales (2010–2012)
for ages 80 years and older): upper— , males, 2010; , males, 2011; , males, 2012; , males, smooth
rates; , males, 90% probability interval; lower— , females, 2010; , females, 2011; , females, 2012;

, females, smooth rates; , females, 90% probability interval

5. The life table

The key component of the life tables is the values lx, which represent the expected number of
survivors to exact age x from a birth population of size l0 =100000. The lx are derived indirectly,
from the mortality rates mx, via qx, which represent the conditional probability of death before
exact age x+1 given survival to exact age x. The relationship between l and q is straightforward
to derive as

lx = l0
x−1∏
z=0

.1−qz/, x=1, 2, : : : :

There are various standard ways for obtaining death probabilities q from mortality rates m,
depending on which assumptions we are willing to make. The simplest is to assume that the
force of mortality μ.x/ (the hazard function for the lifetime random variable) is approximately
piecewise constant, taking constant values across each whole year of age [x, x+1/. In practice
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mortality rates vary sufficiently smoothly with age that this is a reasonable approximation, and
an approximation which we strongly prefer to the alternative of assuming a piecewise linear
survival function in each [x, x + 1/, which typically implies a non-monotonic hazard at high
ages.

We have already shown that mx, given in model (1), can be expressed in terms of μ as in
model (2). Therefore the computation of qx by using graduated mx is now straightforward, as
the standard relationship between (constant) hazard and survival function gives

qx =1− exp{−μ.x+ 1
2 /}

=1− exp.−mx/:

As is conventional, life table columns are presented for ages for which l � 0:5. For the 17th ELTs,
this required extrapolation of mortality rates to ages 114 years for females and 112 years for
males. Clearly, this extrapolation goes well beyond the highest age at which we might reasonably
extrapolate a semiparametric smoothing model, such as a GAM. In producing the 17th ELTs,
we have made one small adjustment to the graduated rates that are provided by expression
(17). The graduated estimates give a negligible positive difference between rates for females and
males over a very narrow age range (112–115 years). Hence, the final entry of the life table for
males (at age 112 years) would show a lower mortality (in the fourth decimal place) than the
corresponding value for females. We have chosen to report the same value (based on the female
graduation) at age 112 years for males and females. The final graduated life tables, the 17th
ELTs, are available from Office for National Statistics (2015).

6. Conclusions

In this paper we have developed a method of graduation which takes advantage of the ease with
which a wide range of smooth and parametric models can routinely be fitted, while acknowl-
edging that in regions of sparse data there remains considerable uncertainty about the model
which should be used to estimate and extrapolate the mortality rates. This uncertainty should
be incorporated in estimation and this approach provides a computationally straightforward
approach for achieving this.

In the literature review we pointed out that the history of modelling mortality as a function
of age primarily uses non-parametric models for smoothing. This reflects the fact that mortality
is not a simple function of age across the whole range of ages. The simplest way of graduating
mortality rates would be to use a GAM over the whole age range; however, this raises the
question of how to extrapolate the rates where the data are sparse. The approach that is described
in this paper provides therefore a straightforward and coherent way of accurately and smoothly
estimating mortality rates across the whole age range, including older ages where data are sparse
or non-existent. This is naturally more complex than a single GAM, but with the benefit of not
overfitting the extra variability at higher ages.

The issue with the older age groups is not poor quality of data in the sense of data in-
accuracies, but more that the observed numbers of deaths are low because of low exposures
(population numbers) at these ages. Hence, there is greater natural (random) variability of the
observed (crude) log-mortality rates at those ages. At these ages, there is the potential for com-
plex smoothing models to overfit this extra variability. Where this becomes an issue, there is a
robustness–efficiency trade-off, which makes a simple parametric model a better choice. A sim-
pler model allows greater borrowing of strength across ages, which is important in the regions
of sparse data.

We provide an approach for determining the threshold age, at which transition between
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smoothing and simple parametric models is optimal, based on how well the resulting model
would predict unobserved mortality rates. Furthermore, our (partial) Bayesian approach allows
uncertainty about the threshold position to be coherently incorporated, so that the resulting
estimates are smooth. One other way of doing this would be to use a full Bayes model. However,
compared with the full Bayes method, our approach is very simple and computationally very
cheap as it requires no Markov chain Monte Carlo sampling and we use pre-existing R functions.
R code for the analyses in this paper is available from

http://wileyonlinelibrary.com/journal/rss-datasets
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