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Abstract: Electric vehicle (EV) powertrains consist of power electronic components as well as electric
machines to manage the energy flow between different powertrain subsystems and to deliver the
necessary torque and power requirements at the wheels. These power subsystems can generate
undesired electrical harmonics on the direct current (DC) bus of the powertrain. This may lead to
the on-board battery being subjected to DC current superposed with undesirable high- and low-
frequency current oscillations, known as ripples. From real-world measurements, significant current
harmonics perturbations within the range of 50 Hz to 4 kHz have been observed on the high voltage
DC bus of the EV. In the limited literature, investigations into the impact of these harmonics on the
degradation of battery systems have been conducted. In these studies, the battery systems were
supplied by superposed current signals i.e., DC superposed by a single frequency alternating current
(AC). None of these studies considered applying the entire spectrum of the ripple current measured
in the real-world scenario, which is focused on in this research. The preliminary results indicate that
there is no difference concerning capacity fade or impedance rise between the cells subjected to just
DC current and those subjected additionally to a superposed AC ripple current.

Keywords: battery electric vehicle; powertrain; lithium-ion cells; battery degradation; ageing test;
AC current ripple; real word data

1. Introduction

A battery electric vehicle (BEV) powertrain typically consists of power subsystems, based on
power electronics switches (e.g., insulated gate bipolar transistors (IGBT) and field effect transistors
(FET) components). Furthermore, DC–DC and DC–AC bi-directional converters are integrated within
the powertrain, which operate at high switching frequencies, in the order of tens of kHz [1–4].
The commonplace is that operating currents within these power converters contain harmonics.
However, within the academic literature, little is reported about the impact of the current harmonics
on battery lifetime.

Uno et al. [5] investigated the qualitative impact of high-frequency cycling on the lifetime
performance of lithium-ion (Li-ion) cells. The authors found that the capacity of cells cycled at
frequencies below 10 Hz significantly deteriorated by circa 1.26% after 50 days of experimentation,
whereas the capacity decay of cells cycled at higher frequencies were identical to the corresponding
calendar degradation [5].

In [6], Bala et al. performed a short-term current ripple test, applied on lithium iron phosphate
(LFP) batteries; based on the results, the superposition of a low frequency (120 Hz) ripple on the
current creates only a slight difference in the cell temperatures. This is because of an increase in heat
generation caused within the cells due to the additional current ripple magnitude.
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Breucker et al. [7] investigated the effect of the current ripple on the ageing performance of Li-ion
batteries. Based on the test results, the current ripple does not appear to have a measurable long-term
impact on the battery resistance and power [7].

Prasad et al. [8] studied an accelerated cycle life test of PHEV Li-ion battery cells for low frequency
(120 Hz) ripple current superimposed on DC current. After 800 cycles, the sine charged battery capacity
was reduced by 3.9%, while the DC charged battery capacity reduced by 4.2%. The sine charging
was also shown to have 0.2% lower round-trip efficiency due to the higher RMS of the sine charging
current [8].

A recent study by Uddin et al. [9] stands out as one of a few to observe the detrimental
effect of a high-frequency current ripple on the aging of Li-ion cells. The authors found that higher
frequencies caused accelerated capacity and power fade, and additionally that the spread in performance
degradation was greater at higher frequencies.

Recently, Juang et al. [10] performed an experiment with 0.8 Ah cells with LiCoO2 cathodes and
graphite anodes. Seven cells were cycled for 300 cycles each, using two separate experiments. The root
mean square (RMS) value of the discharge current was found to have a statistically significant effect on
the degradation rate of Li-ion cells. The results show that the internal resistance of the cells increased
with the RMS current ripple magnitude. However, the frequency of the ripple did not have any effect;
even the value of the DC magnitude was found not to be significant.

Soares et al. [11] investigated the effect of real-world scenario current harmonics in a parallel
hybrid vehicle commercial powertrain. It was also found that the magnitude of the most prominent
harmonic could be approximated using a fitted, simple analytical expression which potentially could
enable prediction of the resulting harmonic content for different driving cycles.

Another recent study by Brand et al. [12] found at frequencies above 400Hz, no accelerated aging
was evident, but below 55 Hz, observed after 50 cycles an accelerated aging by 1–2%.

A new research paper published recently by Bessman et al. [13] studied the effect of different
frequencies on aging in 28 Ah commercial nickel manganese cobalt oxide (NMC)/graphite prismatic
Li-ion battery cells. The tested frequencies were 1 Hz, 100 Hz, and 1 kHz, all with a peak amplitude of
21 A. After completion of the test (circa 2000 cycles), about 80% of the initial capacity remained and no
increase in resistance was observed. No capacity or power fade was observed in this study.

While some of the abovementioned studies indicated that AC ripple current has a negative impact
to some degree on aging behavior of Li-ion cells, others have found the opposite. However, all of
them have considered distinct frequencies, based on different sine signals, independently. This does
not reflect the real-world scenario. In addition, limited attention was provided while selecting the
amplitude of the superimposed AC signal, which represents a real-world scenario, as in a real-world
situation the Li-ion battery of a BEV powertrain can be exposed to the single signal AC+DC waveform,
which includes all unwanted frequencies. Thus, this paper investigates the impact of the real-world
AC ripple waveform, which contain all unwanted harmonics in one ripple signal, on the Li-ion battery
ageing performance.

This paper is structured as follows: The real-world situation current data measurements on the
battery link of a battery electric vehicle are presented in Section 2. The test platform and experimental
set-up design details are explained in Section 3. Within Section 4, the ageing cycling test procedure
that includes the characterisation method is presented. The experimental results, discussion and
conclusions are presented in Sections 5–7 respectively.

2. Real-World Situation Data Measurement

A powertrain architecture of a BEV is considered in this study; in BEV architecture, the battery
system is electrically connected with the electrical machine through power electronics for the EV
propulsion. Figure 1 shows a simplified architecture of a BEV powertrain configuration (i.e., power
electronics, battery and electric motor systems). For adapting the battery voltage to the DC bus voltage
(in general high voltage), a bidirectional DC–DC converter is employed. For the torque and speed
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control of the electrical machine, a bidirectional DC–AC converter is employed, and the power is
controlled for electric machine current regulation. The following research papers explain the operating
principle of each subsystems in detail [1–4].
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Figure 1. BEV powertrain architecture.

Its known that three phase AC electric machines (e.g., induction machine, permanent magnet
synchronous motor) are the most commonly used for a BEV powertrain. The electrical machine
is powered from a bidirectional converter, producing an AC current waveform at the output to
supply the electric machine, using power switches (MOSFET or IGBT). It is well known that power
electronics converters generate unwanted harmonics over a wide frequency range (i.e., high and low
frequency), depending on the system topology and the control strategy of the converter. Within the
BEV powertrain, a low-pass filter is commonly used to eliminate these harmonics. Unfortunately,
it is almost impossible to eliminate them, only attenuate them. Within a BEV powertrain, the power
electronics devices (i.e., IGBT) are modulated using a high switching frequency—within the range of
10–50 kHz. AC electrical machines used for BEV propulsion are also known to produce low-frequency
harmonics, and these harmonics are present on the DC bus conducting through the power electronics
devices. The machines generate both odd and even harmonics, but the predominance is odd harmonics.

For this research study, a real-world scenario battery current dataset was measured, for circa 100 s,
based on both the steady and transient load profile, in order to analyse the battery current harmonics
content (Figure 2a,b).
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For the purpose of data analysis and dataset bandwidth, the measured dataset was sampled at
10 kHz for the required resolution. To analyse the power spectrum of the current waveform for each
frequency, and by using Welch’s algorithm [14], the measured dataset was converted into the frequency
domain. This will be a benefit for power electronics and power filter improvement, with future
EV powertrains.

From power spectrum density analysis, based on Welch’s algorithm, five frequencies were
highlighted, i.e., 0.25 mHz, 100 mHz, 1.95 kHz, 2.013 kHz and 4.025 kHz, related to noise power density
ratio of 70, −2.3, −1.086, 14, and 11.73 dB/Hz, respectively (Figure 2c). Fourier analysis highlights five
frequencies, i.e., 59.94 Hz, 1.948 kHz, 2.008 kHz, 3.956 kHz and 4.026 kHz, with amplitudes of 0.7%,
1.9%, 0.5%, 1.2% and 0.5%, respectively, based on a nominal current value of 250 A (Figure 2d).

3. Test Platform and Experimental Set-Up Design

3.1. Li-ion Test Cells Description

In the ageing study presented in this paper, six commercial 21,700 Li-ion cells were used.
The capacity of the cells were 5 Ah, where the energy was 18.2 Wh, and the low internal resistance
was around 25 mΩ. The charge and discharge cut off voltage were 4.2 and 2.5 V, respectively.
The manufacturer recommended maximum continuous charge and discharge current rates were 0.7
and 1.3 Crate, respectively, at 25 ◦C.

3.2. Test Cycle Description

To undertake the research problem within the real-world condition, a scaled waveform of the AC
ripple current, measured in real-world conditions, was used in this work, it includes all measured
harmonics into one ripple signal. Two different cases were taken into account in this experimental
study, based on two different excitation signals, for cycling the cells under study. These were:

- A DC signal (IDC) without harmonics to proceed as both the reference case and to emulate the
model of Li-ion cell supply within a BEV test study.

- A DC signal (IDC) superposed by an AC ripple signal based on all harmonics frequency
(IAC), as the real-world scenario battery current waveform (IRipple), with the same shape
(see Figure 2b—Equations (1) and (2)), and scaled magnitude (e.g., for f = 3.9 kHz, the IAC
= 0.012 p.u, see Section 2).

IRipple = IDC + IAC (1)

where
IAC =

∑
i

∣∣∣IAC,i
∣∣∣ sin(2π fit + θi) i = 1, 2, 3, 4 and 5. (2)

IDC is the magnitude of the DC current (A),
∣∣∣IAC,i

∣∣∣ is the magnitude of the ith harmonics of the
ripple signal (A), fi is the frequency of the ith harmonics of the ripple signal (Hz), t is the time (s),
and θi is the phase of ith harmonics of the ripple signal (rad).

Three cells were tested at the same time for each case to validate the robustness of the obtained
results and the test method, and the efficacy of the conclusions made, so six cells in total were tested.
The cells were cycled with 90% DOD for both test cases. They were discharged using DC component of
1 Ccycle (where Ccycle is the de-rated battery C-rate defined after each characterisation test, initial value
is defined as 5A) from 95% state of charge (SOC)cycle to 5% SOCcycle based on the standard constant
current (CC)—constant voltage (CV) strategy (CCCV). Following a rest period of 20 min, each cell
was then charged using the CCCV strategy. The cells were charged with a DC rate of 0.7 Ccycle from
5% SOCcycle until 95% SOCcycle was reached using the Coulomb counting strategy. The test signal is
summarised in Table 1.
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Table 1. Definition of the DC part of the cycle, where Ccycle is the de-rated ampere–hour rating of the
cell (updated after each characterisation test) and SOCcycle is the state of charge defined using Ccycle.

Mode Description Time

Discharge 1 Ccycle discharge from 95% SOCcycle until 5% SOCcycle is
reached based on CCCV discharge strategy. Circa 54 min

Rest No current 20 min

Charge 0.7 Ccycle charge from 5% SOCcycle until 95% SOCcycle is
reached based on CCCV charging strategy. Circa 77 min

Rest No current 20 min

It is noteworthy that current magnitudes defined in the Section 2 are expressed relative to
the de-rated capacity of each cell (Ccycle), the value of which was repeatedly measured at ageing
characterisation points after 50, 100, 150, 200, 250 and 300 complete charge—discharge cycles.
Using Ccycle accounts for the capacity fade during the test and ensures that the safe operating
limits expressed by the manufacturer are adhered to. An example illustration of the current profile
used to cycle the cells is shown in Figure 3. The total time to complete one charge–discharge cycle is
approximately 171 min.
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AC cycle (for illustrative purposes).

3.3. Experimental Test Rig Description

Figure 4 shows the experimental test rig configuration. It was based on seven main components:

• Power amplifier (with associated monitoring and control system) to generate the AC ripple
waveform, it based on AETECHRON (Model 7228),

• Maccor cell cycler to generate the DC load profile,
• dSPACE MicroAutobox II equipment, to control power amplifier and log current

probe measurement,
• Current probe, to measure superposed current (i.e., DC+AC),
• Cells under test, to perform ageing test,
• AC coupling capacitance, to connect the power amplifier output and the cells,
• Thermal management rig, to maintain the ambient temperature at it desired value (i.e., 25 ◦C),

it based on LAUDA (Model Proline RP845C).
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Figure 4. Experimental test rig description.

The specifications/requirements, resolution, accuracy and quantity requirements for the main
component of the test-rig are drawn in Table 2.

Table 2. Test rig components specification.

Component Specifications/Requirements Resolution Accuracy Quantity

Power amplifier AETECHRON 7228 5 Vdc, 15 Adc, 75 W, up to 100 kHz 0.1% 1

Maccor Cycler channel 0–5 Vdc, 0–15 Adc, 0–75 W, 16 bits 0.2% 6

Lithium Cells 3.63 Vdc, 5 Ah (INR21700 M50) - - 6

Coupling capacitor 1000 µF—100 V—100 kHz - - 6

Cooling system (Lauda) Liquid flow: 25 L/min ±0.1 ◦C 0.1% 1

Current sensors DC+AC, Up to 100 kHz, 15 Adc 75 mV/A 0.2% 6

Temperatures sensors (T type) −10 ◦C to 100 ◦C 0.1 ◦C 0.5% 6

MicroAutoBox II 1401/1513 (900 MHz/16 MB) 16 bits - 1

The main function of the test-rig is to supply each cell separately, using a defined DC cycle profile
and a superposed AC ripple current waveform for each cell. It is mandatory to choose a robust
precision very low-noise power amplifier for this study, since the main purpose of this research is to
study the impact of the current ripple on the ageing of Li-ion cells. The main characteristics of the
test-rig are discussed below:

• The battery cycler (both positive and negative terminals) were directly connected to the cells
under test, to provide the DC current profile, while the power amplifier was capacitively coupled
to the cells under experiment, as illustrated in Figure 4.

• The power amplifier used was a high precision, voltage controlled AC current source, manufactured
to ensure a total harmonic distortion of less than 0.1 from DC to 30 kHz—it provided a small
signal frequency response gain of +0 to −1.0 dB from DC to the bandwidth frequency of 400 kHz.

• The Hall effect current probes were connected to the positive terminal of the cells to measure
the DC waveform superposed to the AC ripple component. The AC ripple current was applied
during charging and discharging operations and it was turned off during rest time, using the
control system within the MicroAutobox II. The current ripple magnitude and frequency supplied
to the cells under test when measured at intervals over the period of the test was stable to within
the ±1% of the amplitude and 10−6% of the frequency.
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• The cycling (charge–discharge process) profile to supply the cells under experiment used a DC
waveform at a desired Crate and was ensured through the cycler control software. The cycler unit
provided data logging (current and voltage) at a sample rate of 10 Hz with a 16-bit measurement
resolution of current and voltage (1.5 mA and 76 µV respectively).

• A cooling system based on a LAUDA (Proline RP845C) unit was used for radial surface cell
temperature control during the test, by embedding the cells into a dielectric oil (Kyr 51).
The oil-cooled temperature into box was stable at 25 ± 0.5 ◦C.

4. Ageing Cycling Test Procedure

The cells (six in total) are referenced by an ID number 1 to 6. Cells 1–3 were cycled using a DC
power signal, by using only the cycler. Cells 4–6 were cycled using DC superposed by an AC current
ripple (see Figure 3). The result from cells 1–3 are used as reference to quantify the impact of the
AC ripple on the cell degradation (cells 4–6). To track the degradation, a characterization test was
performed on the cells at the beginning of the experiment. Then cycling using DC and DC+AC signal
was started. After every 50 cycles, the characterization test was repeated. Before the 300 cycles were
completed (Figure 5). The characterization test procedure is explained below:

Energies 2020, 13, x FOR PEER REVIEW 7 of 13 

 

provided data logging (current and voltage) at a sample rate of 10 Hz with a 16-bit measurement 
resolution of current and voltage (1.5 mA and 76 µV respectively). 

• A cooling system based on a LAUDA (Proline RP845C) unit was used for radial surface cell 
temperature control during the test, by embedding the cells into a dielectric oil (Kyr 51). The oil-
cooled temperature into box was stable at 25 ± 0.5 °C. 

4. Ageing Cycling Test Procedure 

The cells (six in total) are referenced by an ID number 1 to 6. Cells 1–3 were cycled using a DC 
power signal, by using only the cycler. Cells 4–6 were cycled using DC superposed by an AC current 
ripple (see Figure 3). The result from cells 1–3 are used as reference to quantify the impact of the AC 
ripple on the cell degradation (cells 4–6). To track the degradation, a characterization test was 
performed on the cells at the beginning of the experiment. Then cycling using DC and DC+AC signal 
was started. After every 50 cycles, the characterization test was repeated. Before the 300 cycles were 
completed (Figure 5). The characterization test procedure is explained below: 

 
Figure 5. Experimental procedure. 

Characterisation Procedure 

The characterization test is a collection of three key tests, i.e., capacity test, hybrid pulse power 
test (HPPT) and electrochemical impedance spectroscopy (EIS) test. The test conditions are explained 
below: 

(1) The retained capacity measurement test was performed under different fully discharged current 
rates (i.e., 0.1, 1, 2 and 3 Crate), with 1 h rest time. The test was performed at an ambient 
temperature of 25 °C, and it took circa 2 days to complete the test, 

(2) A HPPT was then performed. The test was performed under two current pulse Crates, (i.e., 4 and 
2 Crate), with 1 h rest time. Two SOC levels (i.e., 80% and 20%) were performed for this test. This 
test was performed at an ambient temperature of 25 °C, and it took circa half a day of testing, 

(3) An EIS test was performed under different frequencies (from 0.01 Hz to 10 kHz) at two SOC 
levels (i.e., 80% and 20%). This test was performed at an ambient temperature of 25 °C; it took 
circa 1 day of testing. 

The cycling and characterization tests were performed at an ambient temperature of 25 °C. 
  

Figure 5. Experimental procedure.

Characterisation Procedure

The characterization test is a collection of three key tests, i.e., capacity test, hybrid pulse power
test (HPPT) and electrochemical impedance spectroscopy (EIS) test. The test conditions are explained
below:

(1) The retained capacity measurement test was performed under different fully discharged current
rates (i.e., 0.1, 1, 2 and 3 Crate), with 1 h rest time. The test was performed at an ambient
temperature of 25 ◦C, and it took circa 2 days to complete the test,

(2) A HPPT was then performed. The test was performed under two current pulse Crates,
(i.e., 4 and 2 Crate), with 1 h rest time. Two SOC levels (i.e., 80% and 20%) were performed for this
test. This test was performed at an ambient temperature of 25 ◦C, and it took circa half a day
of testing,

(3) An EIS test was performed under different frequencies (from 0.01 Hz to 10 kHz) at two SOC levels
(i.e., 80% and 20%). This test was performed at an ambient temperature of 25 ◦C; it took circa
1 day of testing.

(4) The cycling and characterization tests were performed at an ambient temperature of 25 ◦C.
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5. Experimentation Results

5.1. Capacity Measurement Test Results

Figure 6 present the capacity degradation in % and the energy degradation in % as a function
of cycle number and the total energy throughput in Wh. The capacity and energy of each cell were
normalized against the initial capacity and energy, respectively, before beginning the experiment,
to remove cell-to-cell variation. After circa 150 cycles, all cells lost an average of 20% of their original
capacity in Ah, and energy in Wh. From 150 cycle or 4200 Wh energy throughput, cell degradation is
accelerated, as can be seen in Figure 6a. As charge–discharge was performed, using de-rated C-rate,
every cycle was done with a smaller amount of energy throughput, which can be seen from Figure 6b.
At 250 cycles, a significant difference in capacity can been seen—an average 38% of difference between
cells 2 and 4 (at 22% of retained capacity) and cells 1, 3 and 5 (circa 60% of retained capacity). All cells
lost circa 82% of capacity after having been cycled 300 times, which is equivalent to 5576 Wh for cells 2
and 4, 6810 Wh for cells 1, 3 and 5, and 6073 Wh for cell 6.
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Figure 6. Normalized capacity fade as a function of number of cycles for normal condition group
(i.e., cells 1–3) versus AC ripple condition group (i.e., cells 3–5) and retained energy versus total
energy throughput.

Figure 7 shows the difference in surface temperature, for all cells (i.e., cells 1–3 for DC set group)
compared to cells 4–6, which were cycled through AC ripple waveform. Notice, after 250 cycles,
the cells could only be discharged for around 35 min. The temperature rise (after 250 cycles) at the end
of discharge (35 min) was 34 ◦C for cells 1, 3 and 5, and circa 31 ◦C for cells 2 and 4, while cell 6 had a
peak of temperature of 32.5 ◦C. This was much higher compared to fresh cells, for which by the end of
the 35 min discharge the temperature was 34 ◦C, and by end of complete discharge (55 min) it was only
31 ◦C. This indicates a significant rise in internal resistance, which contributed to the Ohmic heat loss.
However, a discrepancy can been seen between the temperature rise pattern of cells 1, 3 and 5 and cells
2,4 and 6 due to the discrepancy in the capacity degradation evolution, whether at the beginning, or
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after 300 cycles. This observation indicates a similar internal resistance degradation for both cases
(i.e., set of cells 1 and 5, and set of cells 2 and 4), and the degradation mechanisms might be the same.
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5.2. HPPT Results

Figure 8 depicts the total DC resistance evolution versus the number of cycles and energy
throughput. The resistance was measured from the voltage drop at the end of the 10 sec pulse
current, performed as part of HPPT. The resistance measurement was carried out at 80% and 20% SOC.
Following the similar trend of capacity degradation, a sharp rise in resistance was observed beyond the
150 cycle/4200 Wh energy throughput. The average cell resistances at 80% and 20% SOC were 32.1 mΩ
and 34.6 mΩ, respectively, which increased to 94 mΩ and 110 mΩ, respectively, after 300 cycles.
A three-fold resistance growth was observed. However, no significant differences between the cells
with and without superimposed AC signal were observed. This indicates little impact of the AC ripple
current on DC resistance growth.
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5.3. EIS Test Results

During the initial characterization test, an EIS measurement test was performed for all fresh cells
(six cells). Figure 9a,d shows the impedance spectrums of every new cell at 80% and 20% SOC, and
the comparison between cells 1 and 5 is shown in Figure 9b,c and Figure 9e,f at 80% and 20% SOC,
respectively. From the primary observation, no significant difference between the cells can be seen.
The change in impedance spectrum for cell 1 (DC only) and cell 5 (DC+AC) with ageing after 250 cycles
is shown in Figure 9c,f for both 80% and 20% SOC, respectively. It can be seen that the semicircles shift
to the right and the shape changes with degradation. The shift along the x-axis indicates a change in
pure Ohmic resistance, whereas the change in the shape of the semicircle mainly indicate a change in
the double layer capacitance, change transfer resistance and solid electrolyte interphase (SEI) layer,
further explained in [15].
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Figure 9. Electrochemical impedance spectroscopy (EIS) plots, for (a) all fresh cells at 80% SoC, (b) Cell
1 and cell 5 at 80% SoC—fresh cells, (c) change of impedance spectrum with degradation after 250 cycles
of cell1 and cell 5 at 80% SoC, (d) all fresh cells at 20% SoC, (e) Cell 1 and cell 5 at 20% SoC—fresh cells,
(f) change of impedance spectrum with degradation after 250 cycles of cell 1 and cell 5 at 20% SoC.

An horizontal shift in the EIS plots has been shown between cell 1 and cell 5, of circa 0.9 mΩ and
0.5 mΩ at 80% and 20% SOC, respectively. This small difference is negligible, because the difference in
resistance measured falls within the 0.35 standard deviation of the initial values, when the cells were
fresh before testing.
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As shown in Figure 10, the Bode representation confirms that there is negligible effect of the
AC ripple on the cells. The magnitude and phase angles of both the fresh and aged cells do not
show any variation between the frequencies of 10−2 to 104 Hz, except for high frequencies due to the
measurement noise.Energies 2020, 13, x FOR PEER REVIEW 11 of 13 
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Figure 10. Bode plot shows impedance vs. frequency and phase vs. frequency for cells 1 (black) and
5 (red) at 80% SOC, for (a) fresh cells, and (b) after 250 cycles were performed.

The Ohmic resistance R0 is measured when the imaginary part of impedance Im(Z(f)) equals
zero, and the transfer resistance Rt, is measured where the negative imaginary part has its local
minimum. Its value corresponds to the sum of R0 and Rct, where Rct is the charge transfer
resistance. The Ohmic resistance R0, charge-transfer resistance Rct, and total resistance Rt (≡R0 + Rct)
numerical values, obtained from the EIS test, at 80% of SOC, for all cells (six cells), are summarised
in Table 3. Again, the results indicate that, whether or not there is presence of an AC ripple current,
there is no apparent difference in the degradation, measured through Ohmic (R0) and charge-transfer
(Rct) resistances.

Table 3. The EIS results summary (Values in mΩ) shows Ohmic resistance R0, charge-transfer resistance
Rct and total resistance Rt (≡R0 + Rct) at 80% SOC. Cells 3–5 failed after 250 cycles, during the final
HPPT test, therefore they were not used for the last EIS test.

Cases Cell N◦
0 Cycle 250th Cycle

R0 Rct Rt R0 Rct Rt

DC signal
Cell 1 24.0 2.7 26.7 32.6 10.3 42.9
Cell 2 23.9 2.6 26.5 62.9 31.4 94.3
Cell 3 23.9 2.4 26.3 34.7 10.9 45.6

DC+AC signal
Cell 4 24.0 2.5 26.5 47.3 48.8 96.1
Cell 5 23.5 2.6 26.1 30.8 11.1 41.9
Cell 6 23.5 2.8 26.3 43.6 30.4 74.0

Further work is ongoing to ascertain the cause of the cell failure through appropriate post-mortem
analysis and X-ray computerized tomography (CT) scan procedures.
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6. Discussion

The obtained results from the characterization tests, i.e., retained capacity measurement (Figure 6),
retained power measurement (Figure 8), and impedance spectrum measurements (Figures 9 and 10)
suggest that there is little impact of the presence of AC ripple current on degradation. The identification
of the key degradation mechanisms cannot be achieved without autopsy and in situ measurements;
however, the key degradation mechanisms are likely to be the loss of cycleable lithium.

Previously, it was shown that the high frequency AC ripple current could contribute to the growth
of the surface film (i.e., SEI layer) [16]. However, the same conclusion cannot be made based on the
results presented here. This is likely to be related to the amplitude of the AC ripple current. If the AC
ripple current led to activating a particular degradation mechanism e.g., SEI growth, then it is likely to
accelerate with the increased amplitude. In this study, the AC ripple current amplitude employed
was relatively lower than the values used in previous studies, however the values represented the
real-world scenario, which was measured as part of this study.

Another aspect of this study focused on if the AC ripple current contributed to degradation; this
might have been too small to measure within the measurement accuracy. Otherwise, the degradation
by the DC signal was too high, such that that the ratio of the degradation from the DC and AC signal
was too high to distinguish the AC contributions. There is a strong possibility of such mechanisms
happening. The cell cycle life test done be the manufacturer with 0.33 C charge-discharge, between
100% and 0% SOC, at 25 ◦C, reported less than 20% capacity degradation. In comparison, in this
study, a higher charge (0.7 C) and discharge (1 C) were used. This likely accelerated the ageing
mechanisms, therefore the cells without any superimposed AC ripple current lost around 20% capacity
after 150 cycles. This fold accelerated degradation of the cells might have suppressed the degradation
contribution from the AC ripple current. This hypothesis can only be confirmed through autopsy and
in situ measurement of the electrodes, which the authors plan to perform in the future.

7. Conclusions

In this paper, for the first time, the long-term impact of a real-world AC ripple current profile
on lithium-ion cell degradation has been studied. In contrast to the previous studies, this research
employed a real-world profile and an amplitude of the ripple current representing real-world values.
Six cells in total were cycled, three cycled using DC current, and three were cycled using DC + AC
ripple current. The results show minimal impact of AC ripple current on degradation, based on
both capacity fade and impedance rise. These results contrast with current knowledge regarding the
impact of AC current on battery degradation. After 300 full charge–discharge cycles, the average
retained capacity of the cells, for both cases, was circa 17%, and the average rise in impedance was
circa 300% for both cases. However, at this stage, the underlying causality between AC ripple and the
cell degradation performance still cannot be confirmed. Defining this causality is the focus of ongoing
research within the university, by extending the experimental study for different cell variants and
chemistry (LTO, Mixed oxide, NCM, . . . etc., for cylindrical and pouch format) using different cells
capacities (i.e., 2.2, 3.4, 13, 17.5 and 40 Ah), to identify/clarify the ability to transfer the obtained results
to other cell chemistries, and also integrating a real-world driving cycle scenario within the ageing
experiment, to try to be close to the real-world application.
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