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Abstract 

Biomacromolecular antifreezes distinguish ice from water, function by binding to specific planes 

of ice and could have many applications from cryobiology to aerospace where ice is a problem. 

In biology, antifreeze protein (AFP) activity is regulated by protein expression levels via 

temperature and light regulated expression systems but in the laboratory (or applications) the 

antifreeze activity is ‘always on’ without any spatial nor temporal control and hence methods to 

enable this switching represent an exciting synthetic challenge. Introduction of abiotic 

functionality into short peptides (e.g. from solid phase synthesis) to enable switching is also 

desirable, rather than on full-length recombinant proteins. Here truncated peptide sequences 

based on the consensus repeat sequence from Type I AFPs (TAANAAAAAAA) were 

conjugated to an anthracene unit to explore their photo-controlled dimerization. Optimization of 

the synthesis to ensure solubility of the hydrophobic peptide included the addition of a dilysine 

solubilizing linker. It was shown that UV-light exposure triggered reversible dimerization of the 

AFP sequence, leading to an increase in molecular weight. Assessment of the ice 

recrystallization inhibition activity of the peptides before and after dimerization revealed only 

small effects on activity. However, it is reported here for the first time that addition of the 

anthracene unit to a 22 amino-acid truncated peptide significantly enhanced IRI compared to the 

free peptide, suggesting an accessible synthetic route to allow AFP activity using shorter, 

synthetically accessible, peptides with photo-reactive functionality.  
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Introduction 

Antifreeze proteins (AFPs) are produced by a number of marine and insect species in cold 

habitats.1–3 AFPs have the remarkable effect of restricting ice crystal growth,2 allowing species 

like the right-eyed flounder to survive without freezing solid in icy waters. During the summer 

months, a gene circuit inhibits the synthesis of AFPs by the liver.4 In application areas (e.g. 

medicine) there is no simple way to gain localised, spatiotemporal control over AFP function and 

there is a need to study the impact of chemical-modification on the AFP peptide to introduce 

additional functionality. Switchable activity would be particularly desirable in numerous fields, 

such as cryosurgery, (used for moles, warts, and benign/malignant melanomas5) for localised 

cold-protection. Cryotherapy finds use in the treatment of tumours and cancerous growths on 

organs such as the lungs, kidneys, and liver, where the sudden low temperature and ice crystal 

growth causes catastrophic cell damage and shutting off the tissues blood supply resulting in 

tissue ischemia. 5–7 However, extensive damage to surrounding healthy tissues in both 

cryosurgery and cryoablation is a problem.8 Ice recrystallization inhibitors9–12 have been shown 

to increased post thaw recovery and viability after cryopreservation of a range of cells such as 

blood,13–16 islet cells,17 stem cells18 and various cell lines.19–21. However, it should be noted that 

antifreeze proteins can also cause increased cryo-damage depending on context and 

concentration; for example the formation of specular ice due to how AFPs bind ice crystals is 

actually destructive.22 The ability to either restrict ice growth (to preserve surrounding tissue) or 

promote specular ice (to increase damage to targeted regions) would both ultimately alleviate 

post-surgery symptoms and improve patient compliance as well as providing a tool for 

fundamental studies on ice crystal growth kinetics. Therefore, there is potential to develop an ice 

recrystallisation inhibitor with spatio-temporal control over its activity through the addition of 
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photo-reactive units, and to evaluate the impact of these modifications on function. Light is a 

desirable trigger, as it has high spatial resolution and the wavelengths can be tuned to different 

triggers. Such photo triggers have found wide application in areas such as cell-laden 

hydrogels,23,24 light triggered polymerization25–27 and even to gain control over gene level 

expression.28,29 

There are currently very few examples of stimuli-responsive control of IRI activity of AFPs, nor 

studies on the impact of abiotic functionality on the activity of AFPs. Ben and coworkers have 

developed azobenzene derived carbohydrate (fluoro)surfactants which showed moderate, but 

statistically significant photo-control of IRI.30,31 Sonnischen et al. have demonstrated the use of 

azobenzene linkages to reversibly deform antifreeze proteins upon exposure to light, modulating 

their IRI activity.32 Gibson and co-workers have used catechols to reversibly assemble polymeric 

IRIs through co-ordination of Fe3+ ions, leading to pseudo-star polymers with increased activity 

due to their increased molecular weight.33 Other than these isolated examples, there are no other 

reports, to the best of our knowledge, of dynamically controllable IRIs. In contrast, there is vast 

literature on the use of photo-reactive units to control materials properties. Azobenzene has 

featured heavily in the literature as a biological photoswitch, and Woolley et al. have reviewed 

its deployment in this context.34 Importantly, the ability to ‘red-’ or ‘blue-shift’ the 

photodimerization wavelengths of azobenzene’s through aromatic functional group substitution 

is particularly important, allowing for application in sensitive biological systems where UV 

exposure would otherwise cause harm. Azobenzene has found use in the photocontrol of the 

helical conformations and solution structures of several proteins and DNA, and has been applied 

to controlling protein cross-linking, DNA transcription, and protein activity.32,35,36 Azobenzene 

incorporation into peptides has also provided for the artificial introduction of a β-like turn in 
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normally α-helical structures through the application of a light stimulus.34 This ability to order, 

and disorder, a protein was exploited by Aemissegger et al., who demonstrated that the 

incorporation of an azobenzene motif could solicit the formation of a well-defined β-hairpin 

solution structure of a peptide when in the trans conformation, whilst the protein-photoswitch 

conjugate promoted peptide oligomerization when cis.37 Furthermore, azobenzene derived 

tethered ligands have also been applied to the selective activation and deactivation of biological 

receptors and ion channels, such as nicotinic acetylcholine,38 potentially providing a therapeutic 

effect.  

Anthracene conjugates are another useful class of photo-triggers, as individual anthracene units 

are capable of ‘dimerizing’ via cycloaddition upon exposure to UV light. Some previous 

applications have included the incorporation of anthracene into DNA binding proteins,39 

increasing protein binding affinity when dimerized, whilst glycosylated anthracene derivatives 

have also shown promise as protein cleaving agents when irradiated.40 Summerlin and co-

workers have used anthracene to enable stimuli-induced changes in polymeric architecture.41 

Anthracene modified DNA has demonstrated dissimilar binding towards complementary DNA 

strands when dimerized, illustrating the potential role of DNA duplex formation in the control of 

a photochromic system.42 Of particular interest is that upon photo-irradiation anthracene 

undergoes a [4+4] cycloaddition43–45 resulting in a doubling of molecular weight, by bringing 

together two separate units. Antifreeze proteins,46 and antifreeze glyco proteins47 (as well as their 

mimics such as poly(vinyl alcohol)48 show molecular weight dependent activity and hence 

anthracene offers a route to tune size and hence function.  

Considering the above, this manuscript reports an investigation into the impact of incorporating 

the photo-responsive unit anthracene onto the chain ends of truncated antifreeze protein 
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sequences to evaluate the impact of end-group modifications on activity and the subsequent 

photo-dimerization. Truncated peptides from the consensus sequence of Type I antifreeze 

proteins are employed, and the conjugation to anthracene optimized. A range of characterization 

methods are employed to demonstrate successful conjugation of the anthracene and that photo-

mediated dimerization can occur. The installation of an (IRI inactive) 11 – amino acid AFP-

inspired sequence demonstrated no IRI activity in either the dimeric or monomeric forms. 

However, an otherwise similarly inactive 22 – amino acid sequence was shown to be IRI active 

upon the addition of the anthracene end group showing that addition of the photo-responsive 

units can bring additional activity also. After successful photo-mediated dimerization there was 

only a small change in activity between monomeric and dimeric forms. These results show that 

minimalistic AFPs sequences can be employed as IRIs by incorporating end-group functionality, 

which also brings the opportunities to modulate their properties by light. 

 

 

 

 

 

 

 

Experimental Section 

Materials 
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Fmoc-Lys-ε-(Boc)-OH, N-α-Boc-L-asparagine, L-asparagine tert-butyl ester hydrochloride were 

purchased from Fisher Scientific UK Limited (Loughborough, UK) and NH3Cl-Lys-ε-(NHBoc)-

OMe was purchased from Fluorochem Limited (Glossop, UK). Dichloromethane, EDCI, 

OxymaPure™, triethylamine, hydrochloric acid solution (12M), sodium chloride, sodium 

hydroxide, sodium hydrogen carbonate, sodium carbonate, magnesium sulphate, sodium 

sulphate, acetonitrile, mercaptoacetic acid, 25% sodium methoxide in methanol, methanol, 

acetone, hexane, 9-anthracene carboxylic acid, dimethyl formamide, dimethyl acetamide, diethyl 

ether, alanine, ethyl acetate, 4-nitrophenyl chloroformate, benzylamine, N-Boc-ethylenediamine, 

1,4-dioxane, N-hydroxysuccinimide, Amberlyst IR120 resin (hydrogen form), DMAP, propargyl 

alcohol, sodium ascorbate, CuSO4, tert-butanol, Amberlyst(R) A26 hydroxide form were 

purchased from Sigma Aldrich Co Ltd (Gillingham, UK). AFP11 and AFP22 were purchased from 

Peptide Protein Research Limited (Bishops Waltham, UK). Celite 545 was purchased from VWR 

Limited (Lutterworth, UK). PVAc was provided by Christopher Stubbs in the Gibson Group 

(University of Warwick, UK). All were used without further purification. Phosphate-buffered 

saline (PBS) solution was prepared using preformulated tablets in 200 mL of Milli-Q water 

(>18.2 Ω mean resistivity) to give [NaCl] = 0.138 M, [KCl] = 0.0027 M, and pH 7.4. 

Antifreeze protein type I was provided by Dr. Muhammad Hasan, obtained by recombinant 

expression in E.coli. from barfin plaice.49 Sequence: 

DTASDAAAAAAATAAAAAAAAATAKAAAEAAAATAAAAR, Mw: 3285.53 g.mol-1 
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Physical and analytical methods 

1H and 13C NMR Spectra (300 – 400 MHz and 75 – 100 MHz, respectively) were recorded using 

a Bruker DPX-300/400 Spectrometer under standard NMR conditions. Chemical shifts were 

recorded in ppm and referenced to solvent residual peaks, using MestReNova NMR 

Spectroscopy software. 

ESI MS experiments were performed on an Agilent 6130B Single QUAD ESI-LC MS 

spectrometer in either positive or negative mode with an H2O/MeOH (80:20) eluent feed, with 

samples dissolved in water, methanol or acetonitrile, unless otherwise stated. 

Absorption UV/Vis (Ultra-violet/visible spectroscopy) spectra were acquired on an Agilent 

Technologies Cary 60 Variable Temperature UV-Vis spectrophotometer at room temperature 

fitted with Holographic Grating (27.5 × 35 mm, 1200 lines/mm, blaze angle 8.6° at 240 nm), a 

double beam, Czerny-Turner monochromator, 1.5 nm fixed spectral bandwidth, full spectrum 

Xenon pulse lamp single source, dual silicon diode detectors, quartz overcoated optics, non-

measurement phase stepping wavelength drive, room light immunity. Analysis undertaken using 

Agilent CaryWin UV Scan software. All sample spectra were acquired in Hellma Analytics High 

Precision Quartz UV Cuvettes. Machine was zeroed and solvent background subtracted. 

Irradiation experiments were carried out in a Vilber Lourmat™ Biolink™ BLX UV Crosslinker 

(Vilber, Germany) containing 5 x 8 W tubes (365 nm). 

HPLC experiments were conducted on an Agilent 1260 Infinity II LC System (Bioinert) fitted 

with a quaternary pump and C18 reverse phase column. Detection was carried out with the UV 

module, and the UV lamp set at 213 nm. All samples were dissolved in methanol with an 
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injection volume of 100 µL, flow rate of 1 ml/min, and gradient solvent system (Initial: 100% 

MeOH to 50:50% MeOH/H2O), at room temperature, over a 30-minute run time. 

Circular Dichroism experiments were conducted on a standard Jasco J-1500 CD Spectrometer 

utilising 1 mm quartz cuvettes containing 200 µL of appropriately diluted aqueous sample, with 

measurements taken in the 260 – 180 nm range at a voltage not exceeding 600. Solvent (water) 

backgrounds were subtracted. 

Fluorescence measurements were made using a BioTek Synergy HT multi-detection microplate 

reader and Gen5 software (BioTek Instruments, Winooski, VT). 

Dynamic light scattering was conducted using a NanoZs (Malvern Instruments, UK). Scattered 

light was detected at 173º and the observed count rates recorded. Hydrodynamic radii (where 

appropriate) were determined using the manufacturer's software. Diameters are an average of 3 

measurements using at least 10 scans. 

Wide-angle X-ray scattering ( WAXS) experiments were performed using a Xenocs Xeuss 2.0 

equipped with a micro-focus Cu Kα source collimated with Scatterless slits. The scattering was 

measured using a Pilatus 300k detector with a pixel size of 0.172 mm x 0.172 mm. The distance 

between the detector and the sample was calibrated using silver behenate (AgC22H43O2), giving a 

value of 0.161(3) m. The detector was fixed at an angle of 36° giving a 2θ range of 18.5 to 47.5°. 

Samples were mounted in 1.0 mm quartz capillaries (Capillary Tube Supplies Ltd). 
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Synthetic Procedures 

Synthesis of methyl N2-(N2-(((9H-fluoren-9-yl)methoxy)carbonyl)-N6-(tert-butoxycarbonyl)-

L-lysyl)-N6-(tert-butoxycarbonyl)-L-lysinate (1) 

 

NHFmoc-Lys-ε-(NHBoc)-OH (0.5 g, 1.07 mmol) was dissolved in DCM (20 mL) with stirring, 

to which EDCI (0.246 g, 1.2 eqv, 1.28 mmol), OxymaPure™ (0.182 mg, 1.2 eqv, 1.28 mmol), 

and TEA (0.18 mL, 1.2 eqv, 1.28 mmol) were added. NH3Cl-Lys-ε-(NHBoc)-OMe (0.348 g, 1.1 

eqv, 1.17 mmol) was subsequently added, and the reaction mixture stirred at RT for 18 hours. 

The crude mix was subsequently extracted with dilute hydrochloric acid solution (x2 , 25 mL, 

pH 5 – 6), then saturated sodium hydrogen carbonate solution (x2, 30 mL), and finally brine (x1, 

30 mL). The organic phase was dried over MgSO4, filtered, and condensed in vacuo. The white 

solid was then crystallized from diethyl ether (30 mL), washed, filtered, and condensed in vacuo, 

yielding a colorless solid. 520 mg (68.6%). 1H NMR (400 MHz, CDCl3) δ = 7.82 – 7.21 (m, 8H), 

6.82 (s, 1H), 5.71 (s, 1H), 4.75 (s, 2H), 4.56 (s, 1H), 4.38 (d, J = 5.7 Hz, 2H), 4.21 (t, J = 6.7 Hz, 

2H), 3.73 (s, 3H), 3.22 – 2.98 (m, 4H), 1.86 (s, 2H), 1.71 (s, 2H), 1.58 – 1.24 (m, 26H). 13C 

NMR (100 MHz, CDCl3) δ = 172.71 (MeOC=O), 171.89 (NHC=O), 156.32 (2 x Boc C=O + 

Fmoc NHC=O), 143.95 (Fmoc), 141.37 (Fmoc), 127.83 (Fmoc), 127.21 (Fmoc), 125.22 (Fmoc), 
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120.08 (Fmoc), 79.27 (C-tert) 67.27 (COC=ONH), 54.73 (alpha-C), 52.53 (OMe), 52.21 (alpha-

C), 47.21 (CH-Pent-Fmoc), 40.05, 32.23, 31.59, 29.56, 29.51, 28.54 (6 x CH3), 22.52, 22.37. m/z 

(ESI, +ve) Expected 733.4, Observed 733.5 [100%, Na+]. 

 

Synthesis of methyl N6-(tert-butoxycarbonyl)-N2-(N6-(tert-butoxycarbonyl)-L-lysyl)-L-

lysinate (2) 

 

1 (1.4 g, 1.97 mmol) was dissolved in acetonitrile (10 mL), whilst mercaptoacetic acid (700 µL, 

0.928 g, 10.07 mmol, 5.1 eqv) was added dropwise to a 25% solution of sodium methoxide in 

methanol (900 µL, 0.852 g, 15.76 mmol, 8 eqv) at 0ºC. To this pre-stirred solution, the solution 

of 1 in acetonitrile was added, and the combined mixture stirred for 12 hours, with heating at 

50ºC. The mixture was then acidified to pH 5 – 6 with hydrochloric acid solution (1M) added 

dropwise, and the precipitated salts were filtered. The filtrate was subsequently condensed in 

vacuo, redissolved in methanol (5 mL), and the mercaptoacetic acid-dibenzofulvene by-product 

precipitated from water (20 mL). The milky-mixture was then filtered through a pad of Celite 

with water eluent, and the filtrate condensed in vacuo. Isolation of 2 followed through 

dissolution of the dry filtrate in acetone (10 mL) and then precipitation from hexane (30 mL), 

giving an off-white solid. 350 mg (36.4%). m/z (ESI, +ve) Expected 511.3, Observed 511.4 
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[100%, Na+]. 1H NMR (300 MHz, CH3OH+D2O) δ = 4.18 (t, J = 6.7 Hz, 1H), 3.82 (s, 1H), 3.55 

(s, 3H), 2.90 – 2.77 (m, 4H), 2.02 (d, J = 2.4 Hz, 1H), 1.77 – 1.52 (m, 4H), 1.35 – 1.09 (m, 26H). 

13C NMR (101 MHz, MeOD) δ = 173.76 (MeOC=O), 173.16 (NHC=O), 158.51 (2 x Boc C=O), 

128.50, 127.96, 126.12, 120.72, 79.82 (C-tert), 58.29, 55.94, 54.68, 53.28, 52.79 (OMe), 41.01, 

34.91, 33.63, 31.97, 30.60, 30.44, 28.79 (6 x CH3), 24.12, 23.12, 18.38. 

 

Synthesis of methyl N2-(N2-(anthracene-9-carbonyl)-N6-(tert-butoxycarbonyl)-L-lysyl)-N6-

(tert-butoxycarbonyl)-L-lysinate (3) 

 

Anthracene-9-carboxylic acid (356 mg, 1.60 mmol, 2.2 eqv) was dissolved in DMF (30 mL) with 

stirring, and EDCI (154 mg, 0.86 mmol, 1.2 eqv), OxymaPure™ (114 mg, 0.86 mmol, 1.2 eqv), 

and TEA (112 µL, 0.86 mmol, 1.2 eqv) were added. 2 (350 mg, 0.72 mmol) was subsequently 

added, and the reaction mixture stirred at RT for 18 hours. The crude mix was then condensed to 

low volume in vacuo ( ~ 5 mL) and diluted with chloroform (30 mL), before being extracted 

with dilute hydrochloric acid solution (x2 , 25 mL, pH 5 – 6), then saturated sodium hydrogen 

carbonate solution (x2, 30 mL), and finally brine (x1, 30 mL). The organic phase was then re-

acidified to pH 5 – 6 with hydrochloric acid solution (1M) and a column was packed with pre-

rinsed Amberlyst beads (A26 hydroxide form). The acidified mix was then poured through the 
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column, eluting and washing with THF (3 x 10 mL). The collected eluent was then dried over 

MgSO4, filtered, and condensed in vacuo, yielding an orange oil. 140 mg (28.2%). m/z (ESI, –

ve) Expected 691.4, Observed 691.4 [100%, M-H+]. 1H NMR (400 MHz, CDCl3) δ = 8.52 (s, 

1H), 8.09 – 7.11 (m, 9H), 5.09 – 4.74 (m, 1H), 4.43 (m, 1H), 4.23 – 3.88 (m, 1H), 3.40 (s, 3H), 

3.23 – 2.97 (m, 5H), 2.11 – 1.58 (m, 9H), 1.55 – 0.76 (m, 26H). 13C NMR (101 MHz, CDCl3) δ 

= 174.54 (MeOC=O), 168.62 (NHC=O), 156.25 (2 x Boc C=O), 154.32 (Anthracene NHC=O), 

135.56 – 119.72 (Anthracene), 79.07 (C-tert), 57.43, 56.87, 56.49 – 55.84, 54.79, 52.35 (OMe), 

50.32, 46.71, 45.63 – 45.14, 42.30, 41.17, 40.60, 40.02, 39.11, 37.34, 35.60, 35.25, 34.06, 33.82, 

33.62, 33.47, 32.46, 29.80, 28.45 (6 x CH3), 27.61, 27.42, 26.64, 26.26, 25.16, 22.60, 22.00, 

15.66, 15.43, 15.21, 14.89, 14.23, 13.43. 

Synthesis of methyl N2-(N2-(anthracene-9-carbonyl)-N6-(tert-butoxycarbonyl)-L-lysyl)-N6-

(tert-butoxycarbonyl)-L-lysine (4) 

 

3 (140 mg, 0.20 mmol) was dissolved in methanol/water (1:1, 20 mL) and a large excess of 

sodium hydroxide added (500 mg, 62.5 eqv), and the mixture stirred at RT for 18 hours. The 

mixture was then acidified with hydrochloric acid solution (1M), dropwise, until pH 5 – 6. The 

mixture was then condensed in vacuo, and the product precipitated and isolated from acetone, 

giving a pale yellow solid. 100 mg (73.7%). m/z (ESI, -ve) Expected 677.4, Observed 677.3 

[100%, M-H+]. 1H NMR (300 MHz, CDCl3) δ = d 8.42 – 7.00 (m, 9H), 5.22 (s, 1H), 4.84 (s, 
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2H), 4.59 – 3.92 (m, 4H), 3.83 (s, 1H), 3.68 – 3.51 (m, 1H), 3.12 – 2.81 (m, 5H), 2.65 (d, J = 5.5 

Hz, 1H), 1.97 – 1.52 (m, 4H), 1.52 – 1.11 (m, 29H). 13C NMR (75 MHz, CDCl3) δ = 173.95 

(NHC=O), 157.74 (2 x Boc C=O), 156.89 (Anthracene NHC=O), 135.71 – 125.24 (Anthracene), 

79.16 (C-tert), 69.76, 69.12, 55.38, 42.92, 39.07, 37.59, 36.06, 34.41, 33.85, 29.73, 28.54 (6 x 

CH3), 23.82, 14.28, 13.52. 

 
 
Representative / Optimized Procedure for Conjugative Coupling 

 

4 (30 mg, 0.044 mmol) was dissolved in dry DMF or DMAc and DCM (1:1, 5 mL) under a flow 

of dry nitrogen, and EDCI (17 mg, 2 eqv, 0.088 mmol) added, followed by N-

hydroxysuccinimide (10 mg, 2 eqv, 0.088 mmol). The mixture was allowed to stir for 30 minutes 

to allow for the formation of 5 in-situ. Then, the antifreeze protein (AFP-22•TFA, 5 mg) or other 

species for conjugation was dissolved up in dry DMF or DMAc (2.5 mL) under a flow of dry 

nitrogen, and injected into the main flask, followed by a large excess of TEA (100 µL). The flask 

was then stirred for 4 days under dry nitrogen, with heating at 50ºC. The flask was subsequently 

cooled, exposed to air, and a large excess of sodium methoxide/methanol solution added (2 mL) 

– giving pH 12 and a fluorescent pink color change, and then stirred for 1 hour. After which, the 

flask was acidified to pH 1 with HCl (6M), resulting in decolorization, and stirred for 1 further 

hour. After the removal of the protecting/end groups, the mixtures were then diluted with 
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methanol (3 mL) and water (50 mL) and dialysed against water for 3 days (1 kDa dialysis 

tubing), with regular water changes. Upon completion, sedimentation was apparent, and the 

dialysis bags continued to fluoresce under long wave ultraviolet light, indicating the presence of 

a conjugated/large molecular weight anthracene unit within the bag. Both species were then 

reacidified to pH 2 with HCl (6M) and condensed in vacuo to give the final photoconjugate 

products, 6b (AFP-22, 5.7 mg) and 9 (PVA, 12.5 mg). The initial candidates 6a (AFP-11, 1 mg) 

and 6c (Ala8, 3.5 mg) were similarly prepared, but through a modified procedure. Mass 

Spectrometry of 6c (as the Di-ε-Lys-Fmoc protected derivative) indicated a single peak present 

at 1613.8 m/z (100%), corresponding to the [Conjugate Mass + Cl• – H+]. 
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Results and Discussion 

A synthetic route to the peptide-anthracene (photo-responsive unit) conjugate in the 9- position 

was devised (Figure 1), restricting the total number of possible photodimers to 2 and favoring the 

head-to-tail (ht) isomer, due to the steric hindrance of the protein chains avoiding head-to-head 

(hh). Truncated 11 or 22-residue peptides (termed AFP11 and AFP22 from this point) based on the 

consensus repeat sequence of a Type I AFP were obtained from (commercial) solid phase 

peptide synthesis; TAANAAAAAAA.46 A dilysine linker was devised to be added between the 

anthracene and AFP to ensure that the conjugates produced were water soluble, especially 

considering the hydrophobicity of the alanine-rich AFP and anthracenes. Due to the presence of 

lysine in the variable positions of some AFP Type I strains (*TAA*AAAAAAA),46 it was 

hypothesized that adding this di-amino acid lysine linker before the protein would be a tolerated 

modification. This would also act to prevent the steric bulk of the anthracene rings hindering the 

threonine residue which is essential for AFP activity,2,50 or even in self-assembled peptide 

mimics.51  



 

17 

 

Figure 1. Proposed truncation and photo-dimerization strategy. A) Amino acid sequence 

truncation; B) Overall strategy to modulate AFP size via photo-dimerization of anthracene end-

groups. Amino acid codes; A = alanine, T = threonine, N = asparagine. B indicates variable 

position. 

The anthracene-dilysine unit was synthesized as shown in Scheme 1. Condensation coupling 

between two orthogonally protected lysine units using 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDCI) and OxymaPure™ gave the dipeptide 1 in good 

yield (68%). Subsequent removal of the Fmoc protecting group in the presence of a methyl ester 

to give intermediate 2 was performed with mercaptoacetic acid and sodium methoxide, with the 

mercaptoacetic acid scavenging the dibenzofulvene (DBF) by-product. The anthracene motif was 

then installed under similar EDCI/Oxyma coupling conditions and the methyl ester cleaved with 

hydroxide to give 4. Due to the presence of N-Boc protecting groups on the lysine side chains, 

and the lone free amine in the antifreeze peptide stretch, 4 was suitable for direct EDCI/NHS 
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coupling to the N-terminus of the peptides, before N-Boc protecting group removal after AFP 

conjugation.  

 

Scheme 1. Optimized synthetic route for the synthesis of the anthracene-photoconjugates. EDCI 

- 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide. TEA – Triethylamine. MAA – 

Mercaptoacetic acid. ACN – Acetonitrile. DMF – Dimethyl formamide. THF – Tetrahydrofuran. 

NHS – N-Hydroxysuccinimide. AFP-Antifreeze peptide. TFA – Trifluoroacetic acid. 

Prior to conjugating the antifreeze protein to the photoresponsive unit, 4, it was necessary to 

estimate the overall solubility of the AFP-photoconjugate. AFP Type I is > 70 % alanine and 

hence has low overall solubility and model compounds were necessary to ensure that the lysine 

linkers provided the needed solubility. Oligo-alanine was obtained by the in situ ring opening 

polymerization of L-alanine N-carboxy anhydride (NCA). To enable NCA formation, the method 

of Endo et al.52 was used whereby the carboxylic acid was activated by functionalization with 

para-nitrophenyl chloroformate. Subsequent addition of benzyl amine (as the initiator) led to the 
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formation of the NCA, inducing ring opening polymerization. Poly(alanine) was obtained with a 

MnSEC of 790 g.mol-1 and dispersity of 1.1 Đ, of approximately 8 repeat units. This molecular 

weight was close to that of AFP11 and hence was suitable for initial studies. Scheme 2. Note, the 

low dispersity was of purified isolated oligoalanine, and the purification contributed to this 

fractionation. 

 

Scheme 2. Synthesis of poly(alanine) via in-situ N-carboxyanhydride ring opening 

polymerization. DMAc – Dimethyl acetamide. BnNH2 – Benzylamine. NO2PhOH – 4-

Nitrophenol. 

Attachment of the poly(alanine) stretch to 4 was achieved by condensation coupling, and when 

deprotected, was soluble in aqueous solution at a concentration of 3.5 mg.mL-1. This indicated 

that the similarly hydrophobic and alanine rich antifreeze peptides would likely have reasonable 

solubility when conjugated. However, the conjugate visibly aggregated in phosphate buffered 

saline, demonstrating higher solubility when in saline alone (0.137 M NaCl), and hence saline 

was used for all subsequent IRI activity studies. It is crucial to note that saline is essential in the 

assays used later, and its omission can lead to false positives.10,53  

Attachment of the truncated antifreeze proteins (AFP11 or AFP22) to 4 was then performed, by 

the preparation of the N-hydroxysuccinimide ester, followed by NHS displacement by the N-

terminus of the peptides. Due to the presence of threonine in the AFP peptide stretch, subsequent 
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hydrolysis by sodium methoxide followed, as despite the low reactivity of threonine’s α-alcohol 

group, it was necessary to ensure that it had not formed any unwanted ester linkages. The Boc 

groups were subsequently removed with hydrochloric acid to give the final products (6a; AFP11 / 

6b; AFP22) as the dihydrochloride salt, which were dialysed to remove low molecular weight 

contaminants, reacidified, and isolated as a solid salt. Mass spectrometry of conjugate 6b 

(hereafter referred to as PC-AFP22) indicated an absence of unconjugated peptide (which 

possesses a high molecular weight, above the MWCO of the dialysis tubing), therefore indicating 

complete conversion. With these anthracene conjugates to hand, their photo-responsive behavior 

could be explored. Figure 2 shows the UV-Vis absorption spectra of the unconjugated 

anthracene-dilysine dihydrochloride salt in both water and methanol. 
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Figure 2. UV-Vis Spectra of unconjugated anthracene-dilysine dihydrochloride in A) H2O and 

B) MeOH. 

 

The UV-Vis showed the expected anthracene multiplet in the 340 – 390 nm region, with λmax ≈ 

365 nm, in both H2O and MeOH. In order to establish the extent of dimerization upon irradiation 

and ensure complete formation of the photoproduct, UV exposure trials were then conducted. 

The anthracene-dilysine-poly(alanine) photoconjugate, 6c, hereafter referred to as PC-Ala, was 

initially used to trial the photo dimerization processes, as shown in Figure 3. 
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Figure 3. UV-Visible spectra showing effect of photo-irradiation, and dimerization, on PC-Ala. 

After 24 hour exposure of PC-Ala, in aqueous solution, to both a high powered UV cross-linker 

and a fibre optic UV lamp (both at 365 nm), a complete loss of the multiplet in addition to the 

loss of the satellite peak at 255 nm was observed. This is consistent with cycloaddition induced 

dimerization of the anthracene motifs and provided proof of principle that the peptide 

conjugation does not inhibit this process due to steric hindrance.  

The AFP-derived candidates; 6a (PC-AFP11) and 6b (PC-AFP22) were subsequently irradiated in 

pure water under UV 365 nm light, and after 1 hour, complete conversion to the dimerised 

product was observed by UV-Vis Spectroscopy, Figure 4. Complete loss of the triplet was again 

observed, in conjunction with a shift in the satellite peak. Importantly, when irradiated, no visible 

solution change occurred – ruling out inadvertent precipitation of the photo product dimer, which 

would otherwise impact upon concentration. 
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Figure 4. UV-Visible spectra of the Anthracene-AFP photoconjugates upon photo-irradiation. 

 

Fluorescence analysis of the PC-AFP22 species showed a 72 % decrease in 360/40 nm emission 

post irradiation, providing additional evidence of successful dimerization. Mass spectrometry 

monitoring of the photo-dimerization process showed complete removal of the monomeric units, 

but no peaks associated with the dimer products were observed. Therefore, HPLC (high 

performance liquid chromatography) was used. HPLC analysis of the PC-AFP22 in its dimerized 

state relative to an undimerized 9-ACA control, Figure 5, indicated the presence of the dimeric 

form only (with small amount of aggregation also), as corroborated by literature confirming that 

a photo-driven process can be used to control the size of the AFP conjugates.54,55 
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Figure 5. HPLC chromatograms of A) 9-ACA Control; B) PC-AFP22 (6b) Dimer. 

 

Circular dichroism (CD) spectroscopy, Figure 6, was employed to further investigate the 

dimerization process. AFP11 showed a small degree of β-sheet character, as suggested by fitting 

analysis (ESI) and corroborated by literature,56 as would be expected for a short alanine-rich 

stretch. AFP22 was closer in nature to an α-helix (peak at 222 nm) which is seen for full length 
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Type I AFP. These differences in secondary structure are crucial to understanding the observed 

IRI activity (discussed below). When conjugated to the anthracene-dilysine, the PC-AFP22 

monomer had similar features to the free peptide but showed slight shifting and a stronger 

inclination in the second band at ~ 235 nm, implying some deviation in the secondary structure 

as a result of the attachment of the anthracene unit. This is possibly a result of helical seeding by 

the lysine residues and/or contributions from the aromatics in the 190 – 200 nm region. When 

irradiated with UV light (to induce dimerization), the same PC-AFP22 dimer had a weaker CD 

signature, retaining a slight inclination of its former (unirradiated) signal morphology. Given the 

system possesses a central chromophore which is geometrically achiral, it is possible that it only 

has a small electronic chirality arising from coupling with the peptide chromophores, as a result, 

the induced CD could be expected to be comparatively small – further corroborating 

dimerisation.57 

 

Figure 6.  Circular dichroism spectra of anthracene-AFP conjugates and free peptides. 
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With the photo-controlled dimerization process confirmed, the peptides could be evaluated for 

their IRI activity. IRI activity was determined by the ‘splat’ assay, whereby a polynucleated ice 

wafer is annealed at – 8 °C, and the average crystal size determined after 30 minutes. The assay 

enables separation of nucleation from growth, and data is reported as the mean grain size (MGS) 

relative to the saline control [Note – saline not PBS was needed for peptides for solubility, as 

discussed above]. Smaller crystal sizes indicate greater activity. 

 

Figure 7. Ice recrystallization inhibition activity of controls.  A) Recombinant Type AFP Type I 

(2 µg.mL-1). B) PC-Ala photoconjugates (both at 3.5 mg.mL-1) before and after irradiations. 

Error bars are +/- S.D from minimum of 3 repeats. % Mean Grain Area (MGA) of all the ice 

crystals in field of view is reported relative to the negative saline control 
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As a positive control, recombinant Type I antifreeze protein (Figure 7A and ESI) was shown to 

have significant IRI activity at very low concentration (~10% MGA at 2 µg.mL-1) highlighting 

the remarkable potency of these proteins. The PC-Ala had essentially no activity (and was 

statistically similar) in both the monomeric and dimerised states at 3.5 mg.mL-1 showing >80% 

MGA at its upper limit (7B). This enabled us to rule out the anthracene-dilysine having any 

intrinsic effect on IRI as amphiphilic molecules can inhibit ice growth.58,59,10 

The truncated antifreeze peptides of 22 and 11 residues (repeat sequence; TAANAAAAAAA) 

had less IRI activity at their solubility limits of 0.9 and 1 mg.mL-1 compared to the full sequence 

AFP as would be expected, Figure 8. AFP11 showed essentially no activity as both the peptide, 

the anthracene conjugate and as the dimer, indicating that this 11 residue sequence is too short to 

induce any IRI. The AFP22 also had essentially no IRI activity. But, unexpectedly, the addition of 

the anthracene unit appeared to ‘turn on activity’ with an MGA of ~ 30 % at just 0.6 mg.mL-1. 

This is an exciting result as it is the first example, to the best of our knowledge, of an AFP 

having its activity regulated by addition of an end group. For full length AFPs addition of fusion 

proteins (e.g. a large end-group) is a passive modification leading to no change in activity,60 and 

the same is seen using double hydrophilic blocks of poly(vinyl alcohol).61 This may offer a route 

to make minimal synthetic AFPs by modulation of the end groups, and will be studied in the 

future. Upon photo irradiation of PC-AFP22 there was only a small (negative) change in observed 

IRI activity which was not statistically significant. However this may indicate that further 

engineering could widen this activity gap between the monomeric and dimeric forms, allowing 

for enhanced photoswitchability. We have previously reported that changing the architecture of 

both AFPs and polymeric IRIs, from linear to nanoparticle lead to no change in activity which 

supports what is seen here.62,63–65 . Importantly, despite the increase in molecular weight, the 
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head-to-head assembly of the peptides after dimerization may explain why there is no increase in 

activity, disrupting the symmetry of the monomeric isoform and its matching of the prismatic ice 

face. 

 

Figure 7. Ice recrystallization inhibition activity of AFP and conjugates. A) Native AFP11 and 

PC-AFP11 derivatives (1 mg.mL-1); B) Free AFP22 (0.9 mg.mL-1) and the PC-AFP22 derivatives 
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(at 0.6 mg.mL-1). Error bars are +/- S.D from minimum of 3 repeats. % Mean Grain Area (MGA) 

reported relative to saline control. 

Whilst the truncated AFPs used in this study are significantly less active than full length AFP, 

their activity is actually high compared to most reported synthetic mimics.10,11 Figure 9 shows a 

comparison of the activity of the short peptides compared to poly(vinyl alcohol)56, as reported by 

Congdon et al.66, which is amongst the most active synthetic IRIs to-date.48 We hypothesise that 

the increase in IRI activity is not simply due to the increased hydrophobicity, which has been 

shown by Ben et al. to be crucial in low-molecular weight IRIs.67 We hypothesise this is due to 

the effect of the end-group to stabilise the secondary structure of the AFP22, shown in the CD 

spectra in Figure 6. Figure 9B shows example cryo-micrographs of the effect of photo-

dimerization on the activity of PC-AFP22 highlighting the visible change in ice crystal size, even 

though the magnitude is too low for applications. Additionally we used wide angle x-ray 

scattering (WAXS) to probe the change in ice growth rates (this method enables 100’s of crystals 

to be tested). In agreement with the ‘splat’ assay, there was a small difference in the rate of ice 

growth between the irradiated forms, but this gap is not large enough for any application (ESI). 

Nonetheless it does show that controlling peptide assembly offers a route to photo-control of IRI 

activity. Attempts to further characterize the material by SAXS (small angle x-ray scattering) did 

not lead to reliable data due to the low solubility of the material and hence further structural 

analyses were not possible. We also explored photo-dimerization of anthracene-terminated 

poly(vinyl alcohol)11 as a polymeric equivalent. Similarly to the PC-AFP22, the dimerization did 

not result in a significant change in activity (Supporting Information). This suggested that the 

spacer used may break the sequence required for extended ice-face binding, acting as a flexible 

junction, and hence being less active than linear PVA22 would be expected to be. Consequently, 
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the AFP-dimer may also suffer from this junction preventing both blocks engaging with ice. This 

work help guide the future development of IRI’s with spatio-temporal control over activity. 

 

Figure 9. A) Ice recrystallization inhibition activity summary of peptides compared to full length 

AFP. Example cryomicrographs of ice wafers for the PC-AFP22 conjugate in B) dimer (0.6 

mg.mL-1);  (C) and monomer (0.6 mg.mL-1); (D), free AFP22 sequence (0.9 mg.mL-1). Error bars 

are +/- S.D from minimum of 3 repeats. % Mean Grain Area (MGA) reported relative to saline 

control. 
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Conclusions 

This work reports the synthesis and characterization of a panel of anthracene-conjugated peptides 

derived from the consensus repeat sequence of Type I antifreeze proteins. The synthetic route 

was optimised to include an additional di-lysine linker to ensure the conjugates were sufficiently 

water soluble, as the truncated peptides themselves are alanine-rich and display limited aqueous 

solubility. The truncated peptides alone were found to have no ice recrystallization inhibition 

activity at their solubility limit, as did the anthracene conjugate of the 11-amino acid peptide. 

However, the 22-mer was found to have a remarkable, and unexpected, increase in ice 

recrystallisation inhibition activity upon addition of the anthracene unit. This result was exciting 

as it shows that minimal peptides derived from AFP sequences (obtainable from solid phase 

synthesis rather than recombinant expression) may be useful IRIs, with their activity modulated 

by addition of non-peptide chain-end functionality. We hypothesise that the enhancement seen 

was due to the anthracene stabilising the secondary structure in the short peptide, supported by 

circular dichroism measurements, rather than aggregation. The overall activity of this adduct was 

comparable to poly(vinyl alcohol) which is the most active polymeric inhibitor known, 

highlighting the activity gain by this end-group modification. The anthracene conjugates were 

also explored for their photo-switchability under UV-light. Using UV-Vis spectroscopy, CD 

spectroscopy and HPLC photo-dimerization was shown to be very efficient with close to 100 % 

dimerization occurring. The ice recrystallisation inhibition activity before and after irradiation 

was very similar with only a small change in grain size, suggesting the dimerization process is 

partially tolerated but does not enhance activity. These results will help guide the development of 

externally-controllable ice growth modifiers as well as inspire a new range of minimal AFP 

mimetic peptides for application in biomedicine.  
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Supporting Information 

Additional experimental information, assays, characterization data, and synthetic procedures can 

be found in the electronic supporting information (ESI) associated with this manuscript. This 

material is available free of charge via the internet at http://pubs.acs.org.  

The research data supporting this publication can be found at http://wrap.warwick.ac.uk. 
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