

Manuscript version: Author's Accepted Manuscript

The version presented in WRAP is the author's accepted manuscript and may differ from the published version or Version of Record.

Persistent WRAP URL:

http://wrap.warwick.ac.uk/130772

How to cite:

Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Publisher's statement:

Please refer to the repository item page, publisher's statement section, for further information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

1	Metabolic inflexibility in women with polycystic ovary syndrome: A systematic		
2	review		
3	Michael Rimmer ¹ , Bee K Tan ² , Helena Teede ^{3,4} , Shakila Thangaratinam ⁵ , Bassel H.Al		
4	Wattar ^{5,6}		
5			
6	¹ MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK		
7	² University of Leicester		
8	³ National Health and Medical Research Council Centre for Research Excellence in		
9	PCOS, Monash Centre for Health Research and Implementation, Monash University		
10	Melbourne, Vic., Australia		
11	⁴ Endocrine and Diabetes Units, Monash Health, Melbourne, Vic., Australia		
12	⁵ Women's Health Research Unit, Barts and the London School of Medicine and Dentistry,		
13	Queen Mary University of London, London UK		
14	⁶ Warwick Medical School, University of Warwick, Coventry, UK		
15			
16	Short Title: Metabolic inflexibility in PCOS		
17	Corresponding author: Bassel H.Al Wattar - Women's Health Research Unit, Barts and		
18	the London School of Medicine and Dentistry, Queen Mary University of London,		
19	London UK		
20	b.wattar@qmul.ac.uk		
21			
22			
23	Keywords:		
24	Metabolic flexibility, inflexibility, polycystic, syndrome, systematic review.		
25			

26 Abstract:

27 **Context:** Polycystic ovary syndrome (PCOS) is a risk factor for dysglycemia, insulin 28 resistance, and type 2 Diabetes Mellitus (T2DM). Inefficient energy oxidation, metabolic 29 inflexibility, is a marker of blunted metabolism. We conducted a systematic review on 30 metabolic inflexibility in women with PCOS. 31 **Evidence Acquisition:** We searched MEDLINE, EMBASE and Cochrane central 32 (inception-October 2018) for studies evaluating metabolic inflexibility and reporting on 33 changes in Respiratory Quotient (ΔRQ). We extracted data and assessed quality using The 34 Newcastle-Ottawa Scale. 35 Evidence Synthesis: We included five prospective cohort studies (461 women). Three 36 compared PCOS women to unaffected subjects, one to women with obesity or T2DM, and 37 one to adolescent girls; all had medium quality. Three studies showed higher metabolic 38 inflexibility in women with PCOS (Δ RQ range 0.05-0.098) compared to unaffected 39 subjects. Women with PCOS had similar metabolic inflexibility compared to those with 40 T2DM ($\Delta RQ 0.05\pm0.03$ vs 0.06±0.04, p=0.98) and obesity (p=0.06). Inflexibility was 41 higher in hyperandrogenemic women with PCOS ($\Delta RQ 0.091 \pm 0.060 \text{ vs } 0.120 \pm 0.010$, 42 p=0.014). ΔRQ was lower in PCOS women with insulin resistance vs those with normal 43 insulin sensitivity (0.04±0.02 vs. 0.07±0.04, p=0.007). 44 **Conclusions:** Women with polycystic ovary syndrome appear to have higher metabolic 45 inflexibility associated with hyperandrogenemia and insulin resistance.

46

48 Introduction

49 Polycystic ovary syndrome (PCOS) is the commonest endocrine disorder affecting women of reproductive age with an estimated prevalence between $8-13\%^{-1}$. It is a known risk 50 51 factor for dysglycemia; 75% to 95% of women with PCOS demonstrate insulin resistance, 52 with a four-fold increased risk for developing gestational and type 2 diabetes mellitus $(T2DM)^{2,3}$. 53 54 Impaired glucose metabolism could be attributed to the increased insulin resistance, 55 inadequate glucose uptake in target tissues, impaired glycogen synthesis and inefficient switching from lipids to glucose oxidation in affected subjects⁴. Additionally, the reduced 56 57 metabolic capability to switch from lipid oxidation in fasting conditions to lipid 58 availability in glucose rich conditions, termed metabolic inflexibility, leads to lipids 59 accumulation in ectopic tissues (e.g skeletal muscles) inducing lipotoxicity with 60 worsening insulin resistance ⁵. Thus a vicious cycle of hyperinsulinemia, ectopic fat storage in peripheral tissues and inefficient metabolism develops ⁶. 61 62 Evidence of metabolic inflexibility is well documented in obese and diabetic subjects suggesting an association with insulin resistance ⁵. Hypothesising a common pathway, 63 64 women with PCOS might have a disposition for both insulin resistance and metabolic 65 inflexibility. We conducted a systematic review of the literature to evaluate the available 66 evidence on metabolic inflexibility in women with PCOS. 67

68 Methods:

69 We undertook a systematic review using a prospectively registered protocol

70 (CRD42018116809) and reported in line with the PRISMA guidelines ⁷.

71

72 Literature search

73 We searched major electronic databases (MEDLINE, EMBASE and Cochrane central) for 74 all primary studies evaluating metabolic inflexibility in women with PCOS from inception 75 until October 2018. We combined the following Mesh search terms using the Boolean 76 operators AND/OR to screen for relevant articles (polycystic ovary, polycystic ovaries, 77 PCO, polycystic ovarian syndrome, ovary, inflexibility, flexibility, metabolic, metabolism, 78 lipids, carbohydrate, clamp, oxidation) (Appendix 1). We did not employ any search 79 filters or language restrictions. We manually searched the bibliographies of relevant 80 articles to identify studies not captured by our electronic search. We contacted the authors 81 of relevant studies to obtain any missing additional data.

82

83 Study selection and inclusion

84 Two independent reviews (MR and BW) completed the study selection and inclusion 85 process in two stages, any discrepancies were resolved in consensus with a third reviewer 86 (ST). First, we screened titles and abstracts to identify potentially relevant articles; then 87 we reviewed full copies of relevant articles against our inclusion criteria. We included all 88 primary studies of any design reporting on the metabolic inflexibility (or flexibility) 89 between women with and without PCOS using respiratory exchange ratio or respiratory 90 quotient (RQ) as surrogate markers to evaluate metabolic inflexibility. We excluded 91 studies on animals, case reports, case series, and studies with no appropriately matched 92 comparison groups.

93

94 *Quality assessment of the included studies*

We used the Newcastle-Ottawa Scale (NOS) ⁸ to assess the quality of the included studies
in duplicate by two reviewers (MR) and (BW). Studies were awarded a maximum of four
stars for selection, two for comparability and three for assessment of outcomes. Those

98 which scored four stars for selection, two stars of comparability and three stars for
99 assessment of outcomes were considered to be of high quality. Scores of one star or less
100 for selection, comparability or outcome assessment were considered to be of low quality.
101 Any other score combinations were considered of medium quality.

102

103 Data extraction and analysis

104 Two reviewers (MR and BW) extracted data in duplicate using a piloted electronic data 105 extraction tool on the study design, number of included participants, inclusion and 106 exclusion criteria of each study, protocols of the used euglycemic clamp and calorimetry 107 studies, journal of publication and year of publication. We extracted data on the reported 108 outcomes including insulin sensitivity, substrate oxidation (carbohydrate and protein), 109 levels of testosterone, free testosterone, sex hormone binding globulin, free androgen 110 index. luteinizing hormone, body mass index, fat mass, and free fat mass. We reported the 111 findings narratively using natural frequencies and percentages. All analyses were 112 conducted in Microsoft Excel 2013 (Microsoft Inc, Washington 2013). 113 114 Results 115 Characteristics of included studies 116 Our electronic search revealed 17 potentially relevant citations, we removed three 117 duplicates and assessed 14 articles in full against our inclusion criteria. We included five 118 prospective cohort studies reporting on 461 women (Figure 1). Two were carried out in the United States of America, two in Poland and one in Italy. All were published in 119 120 specialist journals on endocrinology, nutrition, or metabolism.

121

122 All studies were relatively small with a median sample size of 98 (range 42-122). Three 123 compared women with PCOS to unaffected women with normal weight, one to 124 overweight or obese women and women with T2DM, and one study compared adolescent 125 girls with PCOS to unaffected subjects (Table 1). All included women were diagnosed 126 with PCOS based on the National Institute of Health or Rotterdam criteria⁹. All studies 127 evaluated metabolic inflexibility by calculating the difference between the mean RQ in the 128 fasting state and the mean RQ in the insulin rich state. Metabolic inflexibility was 129 diagnosed in the group with a significantly lower mean difference (ΔRQ). All studies 130 employed a calometric breath analysis to evaluate lipid oxidation and used euglycemic 131 clamp studies to evaluate carbohydrate oxidation between fasting and insulin rich status 132 (Table 1).

133

134 Quality of included studies

Overall, the quality of included studies was medium; three studies scored highly for the selection process, and two were of low quality. The majority of studies (80%, 4/5) had a medium quality for comparability, primarily due to small sample size with a limited variation in the comparison cohorts in view of the varied phenotype of PCOS in the general population. Most studies (60%, 3/5) had an adequate assessment of outcomes and follow up process. (Figure 2) (Appendix 2).

141

142 Metabolic flexibility

143 Three of the included studies showed evidence of metabolic inflexibility in women with

144 PCOS compared to healthy, overweight or obese unaffected women ^{10,11} (Table 2), or to

healthy adolescents ($\Delta RQ \ 0.05 \pm 0.01 \text{ vs } 0.095 \pm 0.009$, p=0.004)¹². Hyperandrogenemic

146 women with PCOS had worse metabolic inflexibility compared to those with normal

147	androgen profile ($\Delta RQ \ 0.091 \pm 0.060 \text{ vs } 0.120 \pm 0.010, \text{ p}=0.014$) ¹¹ . Women with PCOS
148	demonstrated similar metabolic inflexibility to unaffected women with T2DM (ΔRQ
149	0.05 ± 0.03 vs. 0.06 ± 0.04 , p=0.98) ¹⁰ .
150	
151	In contrast, two studies from the same research group suggested no difference in
152	metabolic flexibility between women with PCOS and healthy adults ^{13,14} . Both studies had
153	a high risk of bias for cohort selection (Appendix 2). Due to variations in the included
154	controls and selective outcomes reporting, a quantitative pooling of data was not possible
155	(Table 2).
156	
157	Metabolic and endocrine outcomes
158	All included studies reported higher insulin resistance in women with PCOS compared to
159	unaffected subjects ^{10–12} , with similar levels compared to unaffected obese women and
160	those with T2DM 10,13,14 .
161	
162	Fasting glucose levels were higher in women with PCOS ^{10,11} , but this was not consistent
163	across all included cohorts ^{12,14} . There was mixed evidence on the efficiency of glucose
164	and lipid oxidation in women with PCOS with some studies reporting significantly higher
165	glucose oxidation before the CLAMP study and reduced lipid oxidation before and during
166	the CLAMP study ¹² . A clear conclusion could not be reached, due to variations in
167	reporting across studies.
168	
169	Three studies reported lower levels of sex hormone binding globulin in women with
170	PCOS compared to matched controls ^{10–12} . This was associated with an increase in both

total ^{11,12} and free testosterone ^{10–12}. Similarly, free androgen index was higher in women
with PCOS compared to unaffected lean and obese women ^{10,14} (Table 2).

173

174 **Discussion**

175 The findings of our review support an overall association between PCOS and metabolic 176 inflexibility, however, this was not consistent in all studies included. Inflexibility was reported in both adult and adolescent women with PCOS suggesting an association 177 178 independent to age. It was more pronounced with high BMI, hyperandrogenemia, and 179 worsening insulin resistance, signifying an impaired metabolism with worsening features 180 of PCOS. Insulin resistance and blunted carbohydrates oxidation were common features in 181 all included women, thus a common pathway of inappropriate energy oxidation, metabolic 182 inflexibility and response to insulin in women with PCOS is apparent.

183

184 Strengths and limitations

185 To our knowledge, our review is the first to synthesis evidence on the prospect of 186 metabolic inflexibility in women with PCOS. We used a prospective protocol following a 187 standardised methodology and a comprehensive search strategy. We included all studies 188 reporting on elements of metabolic inflexibility and reported on all relevant outcomes 189 across included studies. We assessed the quality of in included studies and extracted data 190 in duplicate. The main limitation of this review was the small number of included studies 191 and the limited number of women included. PCOS has varied phenotypes and thus, the 192 population reported on in this review might not fully represent all women with PCOS. 193 There was variation in the reported outcomes with few studies reporting primary 194 quantitative endpoints in a standardised manner which limited our ability to pool data 195 quantitatively.

197 Wider implications

198 Women presenting with symptoms and signs of PCOS often suffer from delayed diagnosis 199 and fragmented care ¹⁵. The associated metabolic risk factors are seldom discussed or 200 evaluated at diagnosis, driven by a heterogeneous care provision for women with PCOS 201 across disciplines. Our findings help to define the metabolic risks associated with a 202 diagnosis of PCOS, aligned with the known increased insulin resistance, T2DM and 203 cardiovascular risk factors. The majority of included studies reported worsening metabolic 204 inflexibility with higher BMI, and hyperandrogenemia, thus, establishing those risk 205 factors at the time of diagnosis could facilitate a more targeted management plan and 206 better response to treatment.

207

208 The use of CLAMP studies is cumbersome, expensive and invasive; other measures of 209 insulin resistance lack accuracy as noted in the recent international evidence based 210 guideline on PCOS management¹⁵. There is a need to establish more efficient surrogate 211 markers of metabolic inflexibility for use in everyday clinical practice. Kim et al¹² 212 suggested a clinical model to evaluate metabolic inflexibility based on fasting insulin, 213 triglycerides, and adiponectin levels which explained 62% of the variance in metabolic 214 inflexibility in the study participants. Developing predictive models with standardised and 215 easy to record metabolic predictors could help to determine individual metabolic risk 216 factors in women newly diagnosed with PCOS¹⁶. Other methods could also be employed 217 to further evaluate the metabolic inflexibility in women with PCOS such as the measuring lactate and fat to carbohydrate oxidation in exercise settings ¹⁷. More studies are needed to 218 219 investigate the metabolic response to high-fat diets in women with PCOS as well as the

role of glucose disposal rate, adipose tissue lipid storage, and mitochondrial function on
 metabolic inflexibility ⁵.

222

223	Weight loss, lifestyle and exercise interventions were shown to improve the metabolic
224	inflexibility in individuals with obesity and T2DM ⁴ . Losing 10% of body weight with
225	lifestyle interventions ¹⁸ or 30% with bariatric surgery also improved the metabolic
226	performance and the associated insulin resistance in obese patients ¹⁹ . There is a need to
227	evaluate such interventions in women with PCOS to establish their feasibility and
228	effectiveness in alleviating the established risk factors associated with this condition. To
229	date, evidence on the benefit of lifestyle interventions in PCOS is varied and limited to a
230	specific range of outcomes ²⁰ . Adjusting lifestyle interventions to the individualised
231	metabolic characteristics of women with PCOS could increase their effectiveness and
232	improve compliance. Combining lifestyle interventions with insulin sensitising drugs such
233	as metformin or myoinositol could help to reduce the associated insulin resistance,
234	promote weight loss and stabilise the metabolic status in women with PCOS ^{21,22} .
235	
236	Our study summaries current evidence on metabolic inflexibility in women with PCOS.
237	However, larger cohorts with better adjustment for confounding factors (age, ethnicity,
238	BMI, baseline diet, and phenotype), more standardised reporting of relevant outcomes are
239	needed ²³ .
240	
241	Conclusion
242	Women with polycystic ovary syndrome appear to have higher metabolic inflexibility
2/3	compared to unaffected women associated with hyperendrogenemic and inculin resistance.

243 compared to unaffected women associated with hyperandrogenemia and insulin resistance.

244 More research is needed to investigate this metabolic feature among all PCOS phenotypes.

- **Disclosure of interest:** The authors report no conflict of interest
- 246 Acknowledgement: None
- **Funding:** BHA is funded through an NIHR lectureship.

251 **References**

252	1.	Bozdag G, Mumusoglu S, Zengin D, Karabulut E, Yildiz BO. The prevalence and
253		phenotypic features of polycystic ovary syndrome: a systematic review and meta-
254		analysis. <i>Hum Reprod</i> . 2016;31(12):2841-2855.
255	2.	Cassar S, Misso ML, Hopkins WG, Shaw CS, Teede HJ, Stepto NK. Insulin
256		resistance in polycystic ovary syndrome: a systematic review and meta-analysis of
257		euglycaemic-hyperinsulinaemic clamp studies. Hum Reprod. 2016;31(11):2619-
258		2631.
259	3.	Boomsma CM, Eijkemans MJC, Hughes EG, Visser GHA, Fauser B, Macklon NS.
260		A meta-analysis of pregnancy outcomes in women with polycystic ovary syndrome.
261		Hum Reprod Update. 2006;12(6):673-683.
262	4.	Corpeleijn E, Saris WHM, Blaak EE. Metabolic flexibility in the development of
263		insulin resistance and type 2 diabetes: effects of lifestyle. Obes Rev.
264		2009;10(2):178-193.
265	5.	Galgani JE, Moro C, Ravussin E. Metabolic flexibility and insulin resistance. Am J
266		Physiol Metab. 2008;295(5):E1009-E1017.
267	6.	Thyfault JP, Rector RS, Noland RC. Metabolic inflexibility in skeletal muscle: a
268		prelude to the cardiometabolic syndrome? J Cardiometab Syndr. 2006;1(3):184-
269		189.
270	7.	Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for
271		systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med.
272		2009;151(4):264-269.
273	8.	Wells G, Shea B, O'Connell D, et al. Newcastle-Ottawa quality assessment scale
274		cohort studies. 2015-11-19] http://www.ohri
275		ca/programs/clinical_epidemiology/oxford asp. 2014.

- 276 9. Carmina E, Azziz R. Diagnosis, phenotype, and prevalence of polycystic ovary
 277 syndrome. *Fertil Steril*. 2006;86:S7-S8.
- Broskey NT, Tam CS, Sutton EF, et al. Metabolic inflexibility in women with
 PCOS is similar to women with type 2 diabetes. *Nutr Metab (Lond)*. 2018;15(1):75.
- 280 11. Di Sarra D, Tosi F, Bonin C, et al. Metabolic inflexibility is a feature of women
- with polycystic ovary syndrome and is associated with both insulin resistance and
 hyperandrogenism. *J Clin Endocrinol Metab.* 2013;98(6):2581-2588.
- 283 12. Kim JY, Tfayli H, Michaliszyn SF, Arslanian S. Impaired Lipolysis, Diminished
- Fat Oxidation, and Metabolic Inflexibility in Obese Girls With Polycystic Ovary
 Syndrome. *J Clin Endocrinol Metab.* 2017;103(2):546-554.
- 286 13. Straczkowski M, Kowalska I, Adamska A, et al. Normal metabolic flexibility
- 287 despite insulin resistance in lean and obese women with polycystic ovary
- syndrome. In: *11th European Congress of Endocrinology*. Vol 20. BioScientifica;
 2009.
- 290 14. Adamska A, Karczewska-Kupczewska M, Nikolajuk A, et al. Normal metabolic
 291 flexibility despite insulin resistance women with polycystic ovary syndrome.
- *Endocr J.* 2013;60(9):1107-1113.
- Teede HJ, Misso ML, Deeks AA, et al. Assessment and management of polycystic
 ovary syndrome: summary of an evidence-based guideline. *Med J Aust*.
- 295 2011;195(6):65.
- 296 16. Dahlgren E, Janson PO, Johansson S, Lapidus L, Oden A. Polycystic ovary
- 297 syndrome and risk for myocardial infarction: evaluated from a risk factor model
- based on a prospective population study of women. *Acta Obstet Gynecol Scand*.
- 299 1992;71(8):599-604.
- 300 17. San-Millán I, Brooks GA. Assessment of metabolic flexibility by means of

301		measuring blood lactate, fat, and carbohydrate oxidation responses to exercise in
302		professional endurance athletes and less-fit individuals. Sport Med. 2018;48(2):467-
303		479.
304	18.	Kelley DE, Goodpaster B, Wing RR, Simoneau J-A. Skeletal muscle fatty acid
305		metabolism in association with insulin resistance, obesity, and weight loss. $Am J$
306		Physiol Metab. 1999;277(6):E1130-E1141.
307	19.	Friedman JE, Dohm GL, Leggett-Frazier N, et al. Restoration of insulin
308		responsiveness in skeletal muscle of morbidly obese patients after weight loss.
309		Effect on muscle glucose transport and glucose transporter GLUT4. J Clin Invest.
310		1992;89(2):701-705.
311	20.	Domecq JP, Prutsky G, Mullan RJ, et al. Lifestyle modification programs in
312		polycystic ovary syndrome: Systematic review and meta-Analysis. J Clin
313		Endocrinol Metab. 2013;98(12):4655-4663.
314	21.	Naderpoor N, Shorakae S, de Courten B, Misso ML, Moran LJ, Teede HJ.
315		Metformin and lifestyle modification in polycystic ovary syndrome: systematic
316		review and meta-analysis. Hum Reprod Update. 2015;21(5):560-574.
317	22.	Pundir J, Psaroudakis D, Savnur P, et al. Inositol treatment of anovulation in
318		women with polycystic ovary syndrome: a meta-analysis of randomised trials.
319		BJOG An Int J Obstet Gynaecol. 2018;125(3):299-308.
320	23.	Khan K. The CROWN Initiative: journal editors invite researchers to develop core
321		outcomes in women's health. BJOG. 2016;123 Suppl:103-104. doi:10.1111/1471-
322		0528.14363
323		