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Abstract

Although face detection has been well addressed in the last decades, despite the

achievements in recent years, effective detection of small, blurred and partially

occluded faces in the wild remains a challenging task. Meanwhile, the trade-off

between computational cost and accuracy is also an open research problem in

this context. To tackle these challenges, in this paper, a novel context enhanced

approach is proposed with structural optimization and loss function optimiza-

tion. For loss function optimization, we introduce a hierarchical loss, referring

to “triple loss” in this paper, to optimize the feature pyramid network (FPN)

[1] based face detector. Additional layers are only applied during the training

process. As a result, the computational cost is the same as FPN during in-

ference. For structural optimization, we propose a context sensitive structure

to increase the capacity of the prediction network to improve the accuracy of

the output. In details, a three-branch inception subnet [2] based feature fusion

module is employed to refine the original FPN without increasing the computa-

tional cost significantly, further improving low-level semantic information, which

is originally extracted from a single convolutional layer in the backward path-

way of FPN. The proposed approach is evaluated on two publicly available face

detection benchmarks, FDDB and WIDER FACE. By using a VGG-16 based
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detector, experimental results indicate that the proposed method achieves a

good balance between the accuracy and computational cost of face detection.

Keywords: Face detection, Small face, Face feature fusion, Single shot

detection, Efficiency-accuracy balance

1. Introduction

Face detection is a basic task in various computer vision and face related

applications [3]. At the first beginning, handcrafted feature extractor played

an important role, such as Haar-like features proposed by Viola-Jones [4], in

which the face image is segmented to several patches via multi-scale sliding5

windows. For each patch, the classification work is conducted by a two-class

cascade classifier. Based on this pipeline, the following subsequent works [5,

6, 7, 8] improve the accuracy by optimizing the cascade detectors. Limited

by the complexity of Haar-like features, cascade classifier is only sensitive to

the frontal face. To improve the robustness, deformable part models (DMP)10

[9, 10] build features by considering the relationship of deformable facial parts.

However, handcrafted features are effective only on specific poses and angles,

which are unable to handle multi-scale and multi-angle faces [11, 12] in the wild.

Thanks to the breakthrough on the convolutional neural networks (CNN), which

extract features automatically without manual work, a series of CNN based15

models are proposed on object detection. Faster-RCNN [13] finds that an end-

to-end CNN is more robust and accurate than handcrafted object detector. To

increase the inference speed, Single Shot Detector SSD [14] proposed a multi-

stage prediction structure, which could predict objects from low-level to high-

level feature maps. However, as the low-level feature maps are in lack of semantic20

information [1], SSD has difficulty in detecting small objects. To tackle this

drawback, feature pyramids are proposed, with a “backward path”, which can

link the high-level feature map to the low-level feature map for more effective

feature fusion. Due to different requirements of applications, Faster-RCNN,

SSD and Feature Pyramid Network(FPN) are widely used in face detection25
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[15, 16, 17, 18, 19, 20, 21, 22, 23, 24].

Though previous CNN based face detectors have made a remarkable process,

detection of hard faces is still a challenging task. Compared with easily detected

faces, the resolution of hard faeces is always low, which are interfered by, such

as, blurry, occlusion, illumination and makeup. Those interferences cause the30

lack of visual consistency [22]. Existing methods tackle this challenge from both

structure and loss function optimizations in the deep learning framework. Struc-

ture optimization aims to improve the performance by enhancing the capability

of feature extraction, which can be conducted in two ways. The first is to apply

a deeper CNN feature extractor (backbone) [18, 25, 26], e.g. ResNet-101 [27],35

ResNet-152 [27], ResNeXt-101[28] and DenseNet [29]. The second is to assign a

subnet in the backward pathway [21, 22, 23, 25] to enhance the merged feature

extraction. As the scale of the network grows larger [18, 25, 30], the accuracy on

the hard face detection improves, but the computational cost increases at the

same time. Instead of increasing the scale of the model, the loss optimization40

strategy [31, 20, 30, 22, 21, 25] optimizes the weights of each layer by assign-

ing multiple tasks during the training, such as key point [31], attention [20],

segmentation [30], and head-body detection [22].

In this paper, we optimize the performance on hard face detection through

optimization of both the structure and the loss function. For structure op-45

timization, we propose a new feature fusion module (FFM) embedded in the

backward pathway to make full use of the high-level and low-lever features. To

avoid increasing the computational cost significantly, we utilize both dilated

convolution and small-size-kernel convolution (1-by-N and N-by-1 kernels) in

the FFM. For loss optimization, we propose a “triple loss” training strategy,50

which covers three resources in the training process: i.e. forward path (the

first level), backward path (the second level) and the extended path (the third

level). The first two paths are the same as FPN and the feature maps of the ex-

tended path are simply extracted from the features of the backward path, by an

additionally proposed FFM. However, during inference, only results predicted55

from the second level will be considered, i.e. all the irrelevant layers will be
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discarded. Through this training and inference strategy, the proposed network

suppressed the increase of computational cost when compared with other FPN

based methods [20, 22, 21, 30, 23, 25]. By taking VGG-16 [32] as the backbone,

the proposed model achieves comparable results with other models which uti-60

lize much deeper backbones. When evaluated on the WIDER FACE database,

compared with other VGG-16 based face detector, the proposed method reaches

the state-of-the-art on the hard subset. Although accuracy and computational

cost seem to conflict to each other in face detection, by using the proposed

FFM and the triple loss training, we can reach a good balance between these65

two metrics. Experimental results show that, without considering the non-

maximum-suppression (NMS), the proposed method can detect faces by taking

29.7ms for a VGA-resolution image.

In summary, the main contributions of this paper can be summarized as

follows:70

1. Based on FPN, we design a training strategy which calculates losses through

different pathways, however, during inference, we only consider the backward

pathway, which increases the accuracy without adding additional computa-

tion cost.

2. We introduce a feature fusion module, consisting of a mixed network struc-75

ture to enhance the capability of feature extraction from the fused features.

3. When compared with other VGG-16 based face detector, we achieve superior

performance over a number of state-of-the-art methods on the hard subset

of WIDER FACE dataset and reach a balance between the accuracy and

speed. By using an appropriate anchor setting, the proposed method can80

reach the state-of-the-art on the easy and medium subsets, while keeping the

considerable performance on the hard subset.

The rest of the paper is organized as follows: Section 2 brings a brief intro-

duction of the recent works. Section 3 details the proposed FFM and triple

loss training strategy. Section 4 presents the experiment results, including the85

ablation learning, comparison analysis and further discussions. Finally, some
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concluding remarks are given in Section 5.

2. Recent Work

Back to 1990s, face detection became increasingly important in computer

vision, which has been wildly used in multiple applications such as face recog-90

nition, facial expression recognition, and face tracking [3]. At early stage, face

detection mainly extracted feature using a hand-crafted feature extractor, such

as Haar-like features [4], control point set [33] and the Deformable Part Model

(DPM) [9, 10]. These detectors reached promising detection accuracy and high

efficiency at the same time.95

Recently, results in [13, 17] indicate that CNN can extract more powerful

features than hand-crafted face detectors. As a result, CNN based face detectors

become dominating in face detection in the last decade [16, 20, 21, 22, 23, 30, 31].

Structures of CNN face detector. According to the structure of CNN, we

divide most of existing CNN face detectors into two categories, i.e. multi-step100

detectors (SSD-like [SSD], one stage only.) and single-step detectors (faster-

RCNN-like [13], containing one stage [18] or two [17]). A single-step detector

[14, 15, 16] produces a promising accuracy using the feature map, which is ex-

tracted from the deepest layer of its backbone. However, the stride of the deep

layer is often quite large (usually 16 [17] or 32 [34]). As a result, the informa-105

tion of tiny faces may vanish. To tackle this issue, multi-step detectors detect

faces on feature maps extracted from different depths of CNN, where shallow

layers are for detecting small faces and deeper layer for large faces. However,

due to the limitation caused by the insufficient capability of feature extraction,

shallow layers are not rich enough for extracting semantic information as deep110

layers [1]. In order to enrich the semantic information on shallow layers, [1] pro-

posed a top-down pathway, where the feature maps of deep layers and shallow

layers are fused together, using addition [16], element-wise multiplication [25]

or concatenation [34].
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Feature extraction module. Faster-RCNN [13] firstly presented a convolu-115

tional subnet for face detection, in which the subnet contains a single 3×3 con-

volutional layer, followed by two sibling 1 × 1 convolutional layers (also called

”detection head”) for classification and box regression, respectively. To reduce

the computational cost, SSD [14] replaced the two subnets in the Faster-RCNN

with a subnet with two 3 × 3 convolutional layers. To further increase the120

capabilities of classification and regression, based on the SSD detection head,

RetinaNet [35] inserts four additional 3× 3 convolutional layers before the last

two layers. However, a 4-layer subnet has significantly increased the computa-

tional cost: for a typical FPN-based face detector, there are in total 6 feature

maps which means 12 additional feature extraction subnets will be added. Even125

though the weights of subnets are shared in between, the computational costs

for each subnet are independent to each other. To balance the accuracy and the

computational cost, in recently proposed methods, a series of inception based

subnets [36] are introduced to replace the four-layer subnet. For example, FANet

[21] and Pyramidbox [22] have found that a simple two-branch inception module130

can keep the accuracy as retina head when using the SSD head. SRN [23] intro-

duced a four-branch residual-inception subnet [37], as a replacement of the first

two layers of Retina head. DSFD [25] applied the dilation convolution into the

subnet, which expands the receptive filed without increasing the computational

cost significantly.135

Loss function design. Imbalanced ratio of positive examples and negative

samples during training impedes the performance significantly, especially for

SSD-like detectors [35, 38, 39]. To address this issue, online hard example min-

ing (OHEM) [38] automatically selects hard-negative examples as three times of

positive examples. In order to further make use of easy-negative examples, Lin140

et al. [35] proposed a focal loss which weights the loss of examples according

to the difficulty of learning. Another two applicable strategies are multi-task

prediction and hierarchical learning. For multi-task prediction, detection head

will be assigned additional face-related prediction tasks, such as key points de-
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tection [31], had-body detection [22], face attention [20], and face segmentation145

[30]. Different from multi-task prediction, tasks of the hierarchical learning are

the same as the ordinary object detection training yet predicting objects from

different “pathways”. FANet [21] applied the FPN [1] structure in evaluation

but predicted faces from one forward and two backward pathways during train-

ing. DSFD [25] narrowed the range of prediction layers to two pathways and150

assigning different anchor sizes for each pathway. SRN [23] cascaded prediction

results from both pathways, which reduced easy-false-positive examples signifi-

cantly.

However, existing methods cannot well balance the accuracy and the compu-

tational cost. Large scale models, with multiple pathways and deep backbones155

[20, 23, 25, 30], improve the accuracy with a sacrifice of computational cost.

On the other hand, the structures of high-efficiency face detectors are always

shallow [34]. As a result, the accuracy is not high enough in some dense de-

tection scenes [12]. To address this issue, we propose a novel context enhanced

approach as detailed in the next section.160

3. The Proposed Approach

In this section, we will present the proposed triple loss training strategy, as

well as the feature fusion module for face detection. First, the whole network

structure will be illustrated, followed by the structure of the proposed feature

fusion module. After that, the triple loss training strategy will be detailed.165

3.1. Overall Network Structure

Figure 1 illustrates the structure of the proposed network, which is composed

of three levels according to the predicted outputs of triple loss. In the first level,

feature maps are generated through a pre-trained backbone. As the triple loss

is designed for generalized face detection, in this paper, we mainly consider170

VGG-16 [32] as used in [16, 21, 22]. As a result, following the structure in SFD

[16], feature maps of the first layer are generated through “Conv3-3”, “Conv4-

3”, “Conv5-3”, “Conv-fc7”, “Conv6-2”, and “Conv7-2”, where the first four are
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Figure 1: The proposed network structure trained with the “triple loss” training strategy.

from VGG-16, and the last two are from newly added layers. Two newly added

layers are for detecting large scale faces, which are the same as used in SSD and175

SFD. The reduced sizes of feature maps related to the original image are 4, 8,

16, 32, 64, and 128.

Feature maps from the deeper layer have more semantic information ex-

tracted [1]. In order to obtain more semantic information for low-level feature

maps, we normalize feature maps using 1 × 1 convolutional kernels in the top-180

down routine as suggested in [25]. From “Conv3-3” to “Conv6-2”, we up-sample

normalized feature map from up-layer and conduct elementwise product with

the current one. After that, a feature fusion module is deployed to enhance

the capability of feature extraction and increase the receptive field. Hence, fea-

ture maps extracted by FFM are used to form the second level. Results in185

[21, 22, 23, 25] show that such a module is helpful for improving the perfor-

mance of the detector, and our experiments as detailed in Section 4 have also

verified this point. The third level is simply extracted from the second level by

8



a proposed additional FFM without any top-down connection, whilst there are

two top-down connections in FANet. However, our experimental result shows190

that our method outperforms FANet by 0.3% in detecting small faces without

assigning the top-down connection at the third level.

Letting the feature map of the layer j (j ∈ [1, 6]) from the level i (i ∈
[1, 3]) be Φ(i,j), the feature map of the next level Φ(i+1,j), in FANet, can be

mathematically defined as:

Φfusion = feleprod
(
f1×1

(
Φ(i,j)

)
, f1×1

(
Φ(i,j+1)

))
Φ(i+1,j) = f1×1 (fconcat (finception (Φfusion)))

(1)

where f1×1, feleprod and fconcat indicate the operations of 1 × 1 convolution,

element-wise production, and feature concatenation respectively; Φfusion is the

fused feature map after elementwise production; and finception indicates a incep-

tion subnet structure. On the other hand, in our proposed method, the feature

map in level 2 and level 3 can be expressed by:

Φfusion = feleprod
(
f1×1

(
Φ(1,j)

)
, f1×1

(
Φ(1,j+1)

))
Φ(2,j) = f1×1 (fconcat (finception (Φfusion)))

Φ(3,j) = f1×1

(
fconcat

(
finception

(
Φ(2,j)

))) (2)

Similar to [14, 16, 21, 22, 23] feature maps of the first level are

extracted from the forward path. For the second level, as given in

Eq. 2, the initial feature map and the feature map derived from its195

upper layer are convolved by a 1×1×256 kernel, respectively. The two

normalized feature maps are fussed via elementwise product, which

is taken as the inputs to the FFM of the second level. Afterwards, it

will pass a three-branch inception subnet, which is the dominant part

for FFM and will be detailed in the next section. The outputs from200

different branches are concatenated and the number of channels is

normalized to 256. We denote the feature maps of the second level as

{P2-1, P3-1, P4-1, P5-1, P6-1, P7-1}. For the third level, we simply

assign a single FFM for each layer, where the input of each FFM is
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Input 256

1× 1× 96

1× 7× 128

7× 1× 160

3× 3× 256
3× 3× 160
rate = 2

1× 1× 128

concat

1× 1× 256

Figure 2: The proposed feature fusion module (F-block in Figure 1).

the feature map derived from the second level, to obtain the feature205

maps of the third level. Feature maps of the third level are labeled as

{P2-2, P3-2, P4-2, P5-2, P6-2, P7-2}, see in Figure 1. The structure

of FFM on the third level is the same as the second level without

weight sharing.

3.2. Feature Fusion Module210

In this paper, we propose a feature fusion module to enhance the capability

of feature extraction, where the fused feature map is extracted through the

backward pathways, as well as to increase the receptive field. At present, the

mostly used backbone for face detection are VGG-16 [15, 16, 21, 22] and ResNet

[20, 23, 25, 30], where the kernel shapes are 3 × 3 and ×1. As a result, the215

effective receptive filed of each layer is in a square shape. However, experimental

results in [40] indicate that for some non-square objects (i.e. aspect ratio is

not 1), the shapes of effective receptive field may not be the typical shape
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of squares. As illustrated in [23], this issue seems not crucial for frontal face

detection, because the aspect ratio is about 1. However, this is important220

for multi-pose face detection as the aspect ratios can vary between 0.5 and 2.

To tackle this challenging problem, we present a feature fusion module with

multiple shapes of kernels. The structure of the proposed FFM is shown in

Figure 2. Following the design in [21, 22, 23, 25], we use the inception structure

[2] in the proposed feature fusion module, which consists of three branches. The225

first branch has a single 3 × 3 convolutional layer to smooth feature as in [1].

Inspired by RFB [40] and DSFD [25], the second branch consists of two dilation

convolutional kernels, in order to further increase the receptive field sparsely. As

illustrated in [23] a densely feature extractor is also important for refining the

effectiveness of the receptive field. However, using N ×N kernels will increase230

the computational cost significantly. Hence, to balance the computational cost

and detection accuracy, in the third branch, we employ a 1 × N and N × 1

structure to extract dense features. At the end of the module, feature maps

from the three sub-networks are concatenated together and then smoothed by a

1-by-1 convolutional layer. Experimental results show that the proposed FFM,235

using the combination of dilation convolution and 1×N (with N ×1), performs

better than the existing ones [21, 22, 23, 25].

3.3. Triple Loss Training Strategy

In this section, we will introduce the proposed triple loss training strategy in

details. As described in Section 3.1, feature maps are splitted into three levels.

During training, we assign a classification layer and a regression layer on each

feature map in all three layers. To improve the inference efficiency, we only use

two 3× 3 convolutional layers for classification and regression (detection head)

separately [20, 23, 25], without a retina head [35]. We define the triple loss

function (TL) as follows:

TL(Φ(1,1),Φ(1,2), ...,Φ(2,j), ...Φ(i,j),A)

=

3∑
i=1

ωiL(Φ(i,1),Φ(i,2), ...,Φ(i,j), Ai)
(3)
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where Ai and ωi denote respectively the anchor setting and the adjusting pa-

rameter with respect to level i (i ∈ [1, 3]) as there exist three levels in triple loss.

Experimental result shows that the magnitudes of the loss from all three levels

are the same, i.e. the contribution of each level to the loss is the same, which is

similar to those reported in [25] and [21]. We use the cross-entropy loss (as in

[20, 22, 25]) and the smooth L1 loss [13] to determine the classification loss and

the regression loss, respectively. To be more specific, the total loss function of

each level can be expressed as below:

TL(p, p∗, t, t∗) =
3∑

i=1

1

Nconf
Li
conf (pi, p

∗
i )

+
1

Nloc
[p∗i = 1]Li

loc(ti, t
∗
i )

(4)

where, for level i, Li
conf and Li

loc are the confidence prediction loss and the

localization loss terms, respectively; pi, p∗i , ti and t∗i refer respectively to the240

predicted probability, ground truth probability, predicted regression target and

ground truth box regression target. The Iverson bracket indicates a function

[p∗i = 1] outputs 1 when the condition holds true, i.e. only the regression loss of

positive instances will be minimized during the training.

The anchor setting is another key factor that affects the performance of face245

detector. As suggested in [25], assigning small anchor size on the forward path-

way improves the prediction performance, even it is not used during inference.

Hence, the anchor sizes of the first level are halved compared with the following

levels, as shown in Table 4. The aspect ratio is set as 1.25 for all three levels as

suggested in [23].250

During inference, we only use the second layer to conduct face detection.

The detection heads of the first and the third levels, as well as the additional

feature fusion modules in the third level, are discarded. Hence, the proposed face

detector will not add additional parameters and computational cost compared

to other FPN based methods [20, 21, 22, 25].255
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4. Experiment Results and Discussions

We first analyze the proposed method in detail to clarify the effectiveness

of our contributions. We evaluate the final model on two commonly used face

detection benchmark datasets, FDDB [11], and WIDER FACE [12].

4.1. Training Datasets and Hyperparameters260

The ablation learning is conducted on the WIDER FACE dataset [12], which

consists of 393,703 annotated face bounding boxes in 32,203 images. Images in

WIDER FACE are splitted into three sub-datasets: training, validation and

test dataset. Performance is evaluated in terms of average precision (AP) with

the Interception-of-Union (IoU) set to 0.5. Instead of describing the result by a265

single mean average precision (mAP) over the whole validation dataset or test

dataset, there are three subsets according to the detection difficulty levels: Easy,

Medium, and Hard, based on the detection rate of EdgeBox [41]. The training

dataset, which has 12,880 images, is applied as the only training dataset in

this paper. Results of ablation learning are compared on the validation dataset270

with 3,226 images. In the end, we will evaluate the proposed model on the test

datasets.

During training, we adopt the same data augmentation method as [22, 25]:

At first, we conduct random flipping, colour distortion, etc., which is the same

as in SSD [14]. For image resizing, with a probability of 0.6, we conduct the275

original image resize method as introduced in SSD. Otherwise, we resize the

image using data-anchor-sampling as in Pyramidbox [22]. To balance the ratio

of positive and negative training instances, we use the online hard example

mining (OHEM) in a similar way as [14, 16, 22, 25] and assign the ratio of

positive: negative is set as 1:3. In the end, a 640 × 640 patch will be resized280

from each cropped image patch. We also tried image expansion [16, 23] in

augmentation but the results seemed quite poor. We deduce that expansion

may not fit for low batch size training. As a result, we do not apply expansion

in this paper.

13



The backbone network is initialized by the pretrained VGG on ImageNet.285

All newly added convolution layers’ parameters are initialized by the ‘xavier’

method [42]. We use SGD with momentum and weight decay set as 0.9 and

0.0005 to train our models. The batch size is set to 12. The learning rate is

initialized to 1e-3 and is decayed by 10 when at 80K and 100K steps, respec-

tively. During inference, the settings of hyper parameters are the same as in290

[14, 16, 22, 25]. The second level predicts the top 5K high confident detec-

tions, followed by non-maximum suppression, with the Jaccard overlap of 0.3,

to produce the top 750 high confident bounding boxes per image.

4.2. Model Analysis

In this section, a series of ablation experiments will be conducted on the295

WIDER FACE dataset to analyze how each contribution module improves the

performance in detail. For a fair comparison, we use the same parameter set-

tings, including anchor setting, training hyper parameters, data augmentations,

etc., for all the experiments.

As the structures of recent proposed face detectors [20, 21, 22, 23, 25] contain300

both down-top and top-down pathway as FPN, we use FPN as a baseline to make

a fair comparison. The anchor setting of the baseline is the same as SFD and

PyramidBox, which is [16, 32, 64, 128, 256, 512], and the aspect ratio is 1.25 as

in [23]. All models in this section are trained on the training set and evaluated

on the validation set.305

4.2.1. Feature Fusion Module

First, we will show how the proposed feature fusion module improves the per-

formance of the baseline. In Table 1, we compare the performance of different

feature fusion modules on the WIDER FACE validation dataset. As observed,

with the same backbone (VGG-16) and the network structure (FPN), the pro-310

posed feature fusion module surpasses the baseline by 0.7%, 1.1% and 4% on

the easy, medium and hard subsets, respectively. When compared with other

feature fusion modules, the proposed module reaches the best on the medium
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and the hard subsets, which leads the state-of-the-art method by 0.1% on the

medium subset and 0.4% on the hard subset, respectively. We deduce that such315

improvement of increased accuracy is contributed by the combination of dilated

convolution and the ordinary convolution. Under a similar computational cost,

dilated convolution increases the receptive field of the feature map significantly

[40]. However, a large receptive field may also harm the performance of small

object detection [22].320

To balance the performance on various scales, a concatenation of feature

maps from both convolutional layers is needed. We notice that when compared

with CPM [22], the proposed feature fusion module lags by 0.1% on easy subset.

We deduce that this is caused by the larger output channel number of CPM:

the number of the output channels from CPM is 512, which is the double of our325

proposed FFM. This large scale of the subnet will consume a huge amount of

computational cost, which will be shown in Section 4.2.5 later. On the contrary,

our FFM is more light-weighted, reaching the balance between accuracy and

the inference efficiency. To validate the performance of the proposed FFM

on a larger number of output channels, we keep the structure unchanged but330

expand the output channels to 512 and add batch normalization [36] before

each convolutional layer as used in CPM, labelled as “FFM-512” in the table.

As seen, when we double the number of output channels, the proposed FFM

outperforms the CPM on all three subsets.

4.2.2. Triple Loss Training335

In this section we evaluate the performance of the triple loss training strategy

in detail. We will conduct an ablation learning to show how each level affects

the model. We use SSD as the baseline, which calculates the loss only using the

first level. We calculate the loss from the second and the third level separately,

where the proposed feature fusion module will be applied. Finally, level by level,340

we combine the losses from different levels into training. During evaluation, for

single level loss training, we obtain the result from that training level, while

for multi-level training, we use the result from the deepest level. Experimental
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Table 1: Effectiveness of various feature fusion approaches in terms of AP.

Component Easy Medium Hard

Baseline [21] 94.3 92.9 83.8

+CEM [21] 94.8 93.6 84.4

+CPM [22] 95.1 93.9 87.4

+RFE [23] 94.9 93.8 87.2

+FEM [25] 94.9 93.9 87.5

+FFM (Ours) 95.0 94.0 87.8

+FFM-512 (Ours) 95.2 94.0 87.9

results are given in Table 2.

From the first three rows in Table 2, it is clear to see that the accuracy345

increases as the scale of the network increases, when using the single level loss

training. However, the incensement between levels decreases at the same time.

To balance the computational cost of training and the evaluation accuracy, we

do not add the fourth level in the experiment. We deduce that the contribution

from the fourth layer might be minor for face detection.350

When using multi-level training, which is shown in the last two rows, we

find out that the performance of the model is increased significantly. When

compared with the models trained on a single level (on the third level), the

performance of the model measured using detection accuracy, trained via triple

loss, is increased by 0.6%, 0.5%, 1.7% on the three subsets, respectively. Exper-355

imental results indicate that when the scale of the model is fixed, the multi-level

training strategy helps to increase the performance of the model, especially on

the medium and the hard subsets.
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Table 2: Results of the triple loss on the WIDER FACE validation subset.

Component Easy Medium Hard

1st level 94.0 93.0 83.5

2nd level 95.0 94.0 87.8

3rd level 95.2 94.3 88.0

1+2 levels 95.6 94.7 89.1

1+2+3 levels 95.8 94.8 89.7

4.2.3. Prediction Level

Predicting using the third-level feature map increases the performance. How-360

ever, it also increases the computational cost. As the anchor in the second and

the third levels are identical, it is possible to predict via the second level. When

evaluating through the second level, feature maps from the third level will be

omitted hence the total computational cost is reduced. The result comparison

of different prediction levels is presented in Table 3. In this test, after trained365

using triple loss, the model predicts result through the second and the third

level separately. Compared the result predicted from the third level, the AP

predicted through the second level is the same on the easy subset, and 0.1%

better on the medium and hard subset. This indicates that the third level is

essential during training but seems unnecessary during evaluation. In summary,370

the proposed triple loss training strategy improves the AP without increasing

the computational cost during inference.

Furthermore, to validate the performance of multi-level prediction, we also

collect the prediction results predicted from both the second and the third levels,

which is shown in the last row of Table 3. Apparently, prediction from two levels375

does not bring an increase but a decrease on the prediction result. On the other

hand, as prediction heads from both levels are applied, this will increase the

computational cost. As a result, multi-pathways inference is not utilized in the
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Table 3: Comparison of results on different prediction levels.

Prediction Level Easy Medium Hard

3rd 95.8 94.8 89.7

2nd 95.8 94.9 89.8

2nd + 3rd 95.7 94.7 89.5

model.

4.2.4. Effect of Anchor Design380

As anchor design is a key factor of the box size regression [21, 23, 25],

we discuss how the anchor size affects the performance. In DSFD, experi-

mental results show that a smaller anchor size on the forward pathway (first

level), which is halved compared to the backward pathway, can further im-

prove the performance. Motivated by this observation, we fix the anchor size385

by [8, 16, 32, 64, 128, 256], as suggested in DSFD, on the first level and vary the

anchor sizes on the second level and the third level. Based on the findings in

Section 4.2.3, we use the second level as the prediction level during inference.

Experimental results are shown in Table 4. When we increase the anchor

size progressively, the third level impedes the final prediction during inference.390

We then swap the anchor size between the second level and the third level. As

a result, the model further improves the AP by 0.4% and 0.3% on the easy and

medium subsets respectively (see row 2 of Table 4), when compared with the

identity setting (row 1). It is not surprising to see the poor performance on the

hard subset because the large anchor size is unsuitable for detecting small faces,395

which mainly belong to the hard subset. Consequently, we double the number of

anchors in the second level, as shown in row 3, to gain benefits of both designs.

In summary, the identity setting is important for hard face detection, while

progressive setting brings increase on the other two subsets.
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Table 4: Comparison of results on different anchor assignments.

Predefined anchor sizes:

A1: [16, 32, 64, 128, 256, 512]

A2: [32, 64, 128, 256, 512, 1024]

A3: [(16,32), (32,64), ..., (512,1024)]

Anchor applied Easy Medium Hard

A1 (2nd, 3rd) 95.8 94.9 89.8

A1 (2nd), A2 (3rd) 96.2 95.2 82.5

A3 (2nd), A2 (3rd) 96.1 95.0 88.6

4.2.5. Comparison with Other Face Detectors400

In this section, we compare the proposed method with other algorithms. The

APs of three subsets on the WIDER Face are given in Figure 3, of which the

model uses the identity anchor setting on the second and the third levels. As

the accuracy relates to the scale to backbone, we also summarize the backbones

of the state-of-the-art methods in Table 5. As observed, the proposed model405

reaches the best performance on the hard subset, when compared with other

VGG-16 based models; it also attains the best AP on the easy and medium

subsets, when using the progressively anchor setting (labelled by “TL-LA”).

Even when compared with the state-of-the-art methods on the hard subset, as

shown in Figure 4, the proposed method only sacrifices the accuracy by about410

0.6% but with much more computational saving.

4.2.6. Effects of Backbone

To evaluate the robustness of the proposed detector, we also validate the

performance on the Resnet-50, which is shown in the last two rows of Table

5. As most of the ResNet-based face detectors [20, 23, 25, 30] apply retinanet415

prediction head as in [35], for a fair comparison, we deploy both SSD predic-
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Figure 3: Precision-recall curves on WIDER FACE validation and test sets.

tion head and retinanet prediction head in the model. During the training, we

increase the batch size to 16 as DSFD did. Limited by the computational re-

source, we can only use a batch size of 12 when training on the retinanet head.

Compared with the retinanet, we increase the performance by more than 0.6%420

on all three subsets. By using the retinanet head, the performance has been fur-

ther improved by 0.3% and 0.2% on the easy and medium subset, respectively.

As for the decrease on the hard subset, we deduce it is caused by the decrease

of batch size because both batch size and training image size are crucial for

the final performance [48]. We will solve such issues when more computational425

resource is available in the future.

When compared with VGG-16, ResNet-50 outperforms on the easy subset

without using the large anchor setting. However, the hard set AP is lower by

1.2%. We deduce that this is caused by the nature of ResNet: the scales of the

hard set are always small, which are detected by the low-level feature maps. As430
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Table 5: Result comparison on the WIDER FACE validation set.

Methods Backbone Easy Medium Hard

ScaleFace [43] ResNet-50 86.8 86.7 77.2

HR [18] ResNet-101 92.5 91.0 80.6

Face R-FCN [44] ResNet-101 94.7 93.5 87.4

Zhu [26] ResNet-101 94.9 93.3 86.1

RetinaNet [23] ResNet-50 95.1 93.9 88.0

SRN [23] ResNet-50 96.4 95.2 90.1

DSFD [25] ResNet-152 96.6 95.7 90.4

RetinaFace [45] ResNet-50 96.5 95.6 90.4

RetinaFace [45] ResNet-152 96.9 96.1 91.8

CMS-RCNN [46] VGG16 89.9 87.4 62.4

MSCNN [47] VGG16 91.6 90.3 80.2

Face R-CNN [17] VGG19 93.7 92.1 83.1

SSH [15] VGG16 93.1 92.1 84.5

S3FD [16] VGG16 93.7 92.5 85.9

PyramidBox [22] VGG16 96.1 95.0 88.9

FANet [21] VGG16 95.6 94.7 89.5

TL (Ours) VGG16 95.8 94.9 89.8

TL-LA (Ours) VGG16 96.2 95.2 82.5

TL-res50 (Ours) ResNet-50 95.7 94.7 88.6

TL-res152 (Ours) ResNet-152 96.2 95.5 88.5

TL-res50-RH ResNet-50 96.0 94.9 88.4
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suggested in [48], ResNet reduces the feature map size earlier than VGG, conse-

quently losing the information of small objects. On the other hand, however, it

will be more efficient because of the early reduction of size. In summary, ResNet

based methods are more suitable for speed-prioritized applications, while VGG

backbone can be applied for detection of small faces.435

When compared with other ResNet-50 based detectors, the proposed method

outperforms most of them on easy and medium subsets, except for SRN and

RetinaFace [45]. In SRN, the prediction results from the first and the second

levels are cascaded to reduce the number of false positives and refine the po-

sitions of boxes, which improves the AP but also sacrifices the computational440

efficiency. However, with a slight decrease of the AP, the proposed method

can achieve a good balance between the AP and the computation cost, as dis-

cussed in the next section. RetinaFace [45] achieves the state-of-the-art

performance on the hard subset with the ResNet-152 used as back-

bone. For a fair comparison, RetinaFace with ResNet-50 as backbone445

is benchmarked with our proposed approach. As seen in Table 5, the

proposed method lags by 1.8% on hard subset than RetinaFace when

using ResNet-50 as backbone. The small difference is caused mainly

by extra information such as facial landmarks and 3D positions used

in RetinaFace, in addition to 2D face bounding box, which is the450

only information required in our proposed triple loss training model.

On one hand additional features have led to significantly increased

dimension of the prediction layer (from 6 to 160) and the associated

computational cost. On the other hand, this inspires us to combine

3D information to further improve our model in the future. Further-455

more, the face landmark prediction in RetinaFace relies on supervised

training, which requires additional work for manual labelling the sam-

ples. In contrast, such extra labelling is avoided in our approach. We

also conduct the training using ResNet-152 as backbone, limited by

computational resources, we further reduce the batch size and the460

learning rate to 8 and 5e-4, respectively, whilst doubling the training
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Figure 4: Time consumption among the state-of-the-art methods.

epochs. As shown in Table 5, even the model is affected by the low

batch size in training, the proposed method slightly lags RetinaFace

(ResNet-152) by 0.7% and 0.6%, on easy and medium subset without

using any additional labelled samples. This has further validated the465

efficacy of the proposed approach.

4.2.7. Inference Speed

As described in the last section, the proposed triple training strategy and

FFM can balance between the detection accuracy and the computational cost.

Figure 4 illustrates the inference speed, accompany with the accuracy, among470

the-state-of-the-art methods. For a fair comparison, we deploy all the methods

on Pytorch [49] without conducting the non-maximum suppression. All the

tests are conducted on a single GTX1080Ti. As seen, a deep backbone [25]

or a heavy subnet for feature extraction [21, 22, 23] improves the detection

accuracy by sacrificing the speed. However, a light-weight network structure [16]475

seems insufficient. As a result, the proposed FFM can improve the accuracy by
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slightly increasing the computational cost during inference. Different from the

existing training methods [21, 23], the proposed triple loss training strategy only

increases the computational cost during training without affecting the inference

efficiency.480

4.2.8. Evaluation on FDDB

To validate the performance on multiple datasets, we also evaluate the model

on the FDDB dataset [11], where the proposed model is trained on the WIDER

FACE dataset. In FDDB, there are 5,171 faces in 2,845 images taken from the

faces in the wild dataset. Different from the WIDER FACE, faces in FDDB485

are labelled by ellipses. To show the robustness of the proposed method, we

did not train a repressor offline. Instead, we use the ellipses regressor in [16]

to transform the final prediction results from rectangle to ellipse. There exist

unlabelled faces in the original dataset. For a fair comparison, we add additional

annotations as in [16, 21, 22, 25] and report our results on discontinuous ROC490

curves [11], as shown in Figure 5. As seen, the proposed method achieves

98.4% when the number of false positives equals to 1,000. When compared

with other state-of-the-art methods [16, 21, 22, 25], the proposed method lags

by no more than 0.8% by applying a relatively light-weight backbone. By

applying a deeper backbone, FPN-based face detectors [16, 21, 23,495

48, 25, 45] all show a certain degree of improved performance. To

verify the performance of our approach under a deeper backbone,

additional experiments are conducted on the FDDB dataset using

the ResNet-152 as backbone, which is trained on the WIDER FACE

dataset. Due to limited available computational resources, we have500

selected a low batch size of 8 for comparison (learning rate = 5e-4,

training steps = 240k), where the accuracy achieved from ResNet-

152 and VGG-16 became 98.0% and 97.6%, respectively. This on

one hand has shown that a low batch size indeed leads to degraded

accuracy, as a larger batch size with VGG-16 can produce an accuracy505

of 98.4%. On the other hand, it validates that a deeper backbone can
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Figure 5: FDDB Discrete ROC Curves.

further improve the classification accuracy. As the proposed method

is also FPN-based, we deduce, by using the same batch size training,

its performance can also be further improved when using a deeper

backbone.510

5. Conclusion

In this paper, we proposed a novel training strategy, as well as an accuracy-

computational cost balanced feature fusion strategy for single shot face detector,

which is applied on the problem of unconstrained face detection.

We designed a feature fusion module to balance between the computational515

cost and the accuracy of the face detector. We combine both dilated convo-

lution and the small-kernel-size convolution in the module, which marginally

improves the accuracy, especially on small objects. Furthermore, we proposed
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a training strategy, which refers to triple loss training, for FPN based face de-

tector. During training, it takes the advantage of hierarchical loss from both520

forward and backward paths. During the evaluation module, however, only fea-

ture maps from the second level will be utilized, which improves the accuracy

without affecting the inference efficiency.

Experimental results indicate that the proposed FFM and the triple loss

training strategy are effective for identifying hard faces. Taking VGG-16 as the525

backbone, the proposed model achieves the state-of-the-art on the hard subset

of the WIDER FACE validation dataset, when compared with other VGG-16

based face detectors. By assigning a larger anchor size, the performance can be

further improved on the easy and medium subset. Without bells and whistles,

the proposed method achieves comparable results on multiple common face530

detection benchmarks, when compared with other large-scale face detectors.

As the performance of the proposed network relies heavily on the scales of

anchor setting, we will focus on the removal of anchor prior, i.e. anchor free

[50, 51], to the model, in the future.
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