

Enabling Robotic Adaptive Behaviour Capabilities for New

Industry 4.0 Automated Quality Inspection Paradigms

Carmelo Mineo, Momchil Vasilev, Bruce Cowan, Charles N. MacLeod, S. Gareth

Pierce

Department of Electronic and Electrical Engineering, University of Strathclyde

Glasgow, Scotland, G1 1XW, United Kingdom

Telephone: +44 (0) 141 548 2350

carmelo.mineo@strath.ac.uk

Cuebong Wong, Erfu Yang

Design Manufacture & Engineering Management, University of Strathclyde

Glasgow, Scotland, G1 1XJ, United Kingdom

Ramon Fuentes and Elizabeth J. Cross

Dynamics Research Group, University of Sheffield

Sheffield, England, S1 4ET, United Kingdom

Abstract

The seamless integration of industrial robotic arms with server computers, sensors and

actuators can revolutionize the way automated Non-Destructive Testing (NDT) is

performed and conceived. Achieving effective integration and the full potential of robotic

systems presents significant challenges, since robots, sensors and end-effector tools are

often not necessarily designed to be put together and form a holistic system. This paper

presents recent breakthroughs, opening up new scenarios for the inspection of product

quality in advanced manufacturing. Many years of research have brought to software

platforms the ability to integrate external data acquisition instrumentation with industrial

robots for improving the inspection speed, accuracy and repeatability of NDT. Robotic

manipulators have typically been operated by predefined tool-paths generated through

off-line path-planning software applications. Recent developments pave the way to data-

driven autonomous robotic inspections, enabling real-time path planning and adaptive

control. This paper presents a toolbox with highly efficient algorithms and software

functions, developed to be used through high-level programming languages (e.g.

MATLAB, LabVIEW, Python) and/or integrated with low-level languages (e.g. C#, C++)

applications. The use of the toolbox can speed-up the development and the robust

integration of new robotic NDT systems with real-time adaptive capabilities and is

compatible with all 6-DOF KUKA robots, which are equipped with Robot Sensor

Interface (RSI) software add-on. The paper describes the architecture of the toolbox and

shows two application examples, where performance results are provided. The concepts

described in the paper are aligned with the emerging Industry 4.0 paradigms and have

wider applicability beyond NDT.

Key words: Automated and robotic NDT, Autonomous inspection, Industry 4.0.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/287604994?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

1. Introduction

Quality inspection of critically important parts is always required in manufacturing (e.g.

in the aerospace industry). Manual inspection requires highly trained workers and is time-

consuming. Therefore, it is often a production bottleneck. Automating the inspection with

robots has become an industrial priority to speed up inspection in the production chain

[1]. However, robots do not come without its fair share of challenges [2]. All major robot

suppliers offer support for the installation of new robots, through the provision of detailed

reference manuals. However, a robot arm is only one component of robotic systems

targeted to NDT within manufacturing processes. Such systems comprise sensors, end-

effectors, additional hardware (e.g. laser cutting, welding, coating equipment, etc.), data

acquisition systems and software. The system integration phase is often a challenge,

which could slow down the advent and the growth of robotic sensing solutions.

Furthermore, there is a growing gap in the skillset of workers in the manufacturing

industry for efficiently operating the robotised NDT systems. The current trends of

Industry 4.0 comprise the introduction of cyber-physical systems and the implementation

of collaborative robots into the manufacturing processes [3, 4]. New integration

approaches will play an important role to enable adaptive robotic behaviours and allow

robots to work in dynamic and unstructured situations. The current robot controllers often

allow the internal implementation and customization of algorithms to interface the robot

manipulator with external sensors. However, they do not support advanced mathematical

tools (such as matrix operations, optimization, and filtering tasks). It is also hard to

integrate them with external hardware and software modules. A possible way to overcome

these drawbacks is to build a software abstraction layer upon the proprietary robot

programming languages. Moving towards this direction and focusing on KUKA

hardware, several toolboxes have been presented in the past few decades for the

modelling and control of robot systems [5-9]. However, such software toolboxes are only

compatible with robots using controllers of second generation (KRC2) and third

generation (KRC3), which are now outdated. Unfortunately, a robust and efficient

software interfacing toolbox does not exist for KUKA robots based on the fourth

generation of robot controllers (KRC4). Moreover, whilst some of the existing toolboxes

could be adapted to support KRC4 robots, such toolboxes can solely be used within the

MATLAB environment. That does not offer the optimal level of flexibility to integrators

and researchers.

This work presents a cross-platform software toolbox, designed to facilitate the

integration of KUKA robotic arms with sensors, actuators and software modules using an

external server computer. The platform, named Interfacing Toolbox for Robots Arms

(ITRA), contains fundamental functionalities for robust connectivity, real-time control

and auxiliary functions to set or get key functional variables.

2. Interfacing toolbox

ITRA is a C++ based dynamic link library (DLL) of functions. It runs on a remote

computer connected with KRC4 robots through a User Datagram Protocol (UDP/IP)

socket. All embedded functions can be used through high-level programming language

platforms (e.g. MATLAB, Simulink and LabVIEW) or implemented within a low-level

language (e.g. C#, C++), providing the opportunity to speed-up flexible and robust

integration of robotic systems.

 3

2.1 Architecture

Figure 1 shows the architecture of the KRC4 controllers and of the ITRA toolbox. The

graphic user interface (GUI) allows the user to write and execute robot programs, through

defining robot bases, tool parameters and by jogging the robot arm. This GUI runs within

an embedded version of Windows XP®. Hidden from the user is a separate operating

system called VxWorks®. This is a real-time operating system, which is designed for

embedded applications and is developed by Wind River Systems [10]. The VxWorks

system controls all robot drives and is used in this platform because of its multi-tasking

capabilities, real-time performance and reliability.

Figure 1. Architecture of the KRC4 controller and of the ITRA toolbox.

ITRA is compatible with all KRC4 robots equipped with a KUKA software add-on known

as Robot Sensor Interface (RSI) [11]. RSI runs under the VxWorks operating system in a

real-time manner. It was purposely developed by KUKA to enable the communication

between the robot controller and an external system (e.g. a sensor system or a server

computer). Cyclical data transmission from the robot controller to the external system

(and vice-versa) takes place in parallel to the execution of the KUKA Robot Language

(KRL) program. Using RSI makes it possible to influence the robot motion or the

execution of the KRL program by processing external data. The robot controller

communicates with the external system via the Ethernet UDP/IP protocol. No fixed data

frame is specified. The user must configure the template of the structure and the content

of the data packets in an XML file, stored in the robot controller. Typical data packets

sent as ASCII packets by RSI to the external system can include feedback Cartesian or

axial coordinates, status of digital I/O signals and real-time operating parameters (e.g.

drives currents and torques). Typical data packets received from the external system can

include a number of Boolean, integer or double precision variables.

The data packet received from the external system is processed within each machine cycle

according to a data processing algorithm defined in the RSI configuration. That is

generated through an object-based programming software application known as “RSI-

Visual”, using a library of RSI objects. Each RSI object performs a specific function with

its signal inputs and makes the result available at its signal outputs. The linking of the

signal inputs and outputs from multiple RSI objects creates a signal flow, which is called

“RSI context”. In the KRL program, the RSI context can be loaded and the signal

processing parallel to program execution can be activated and deactivated. The signal

processing is performed at the RSI cycle rate (every 12ms or 4ms).

 4

When the RSI context is activated, external data are processed by RSI and forwarded to

a portion of the KRC memory that can be accessed by the KRL program. Appended to

the end of every packet sent by RSI is a number identified as the Interpolation Cycle

Counter (IPOC), which indicates the current timestamp of the data packet. RSI expects

the external system to extract this timestamp and append it to the return packet, which

must be received by the RSI context within the same cycle. If RSI does not receive the

IPOC number back within the cycle duration, the packet is deemed late [11].

ITRA is a C++ language DLL, designed to get feedback parameters from one or more

robots simultaneously, to monitor the status of the running KRL robot programs and

trigger the progress of the robotic tasks from a server computer. The C++ language was

chosen to develop the DLL, since it is particularly suitable to develop highly robust

communication and data processing algorithms that run in a reliable real-time manner.

The ITRA DLL and its detailed reference manual can be downloaded through the

permanent link given in appendix and additional details have been reported by the authors

in [12]. A general description of the ITRA functions is given below. The reader can refer

to the schematic representation given in Figure 1. Once ITRA is loaded into a hosting

programming environment (e.g. LabView or MATLAB), the DLL constructor initializes

fundamental variables to support UDP/IP connection with the robots. These are private

variables that cannot be accessed by the hosting application. However, a certain level of

control of the DLL internal operating parameters is available through some of the public

DLL functions (described below), which allow specifying the number of robots to

manage, their IP addresses and the directory that the DLL uses to store data. Only one

socket is prepared by the DLL constructor, to communicate with all robots. The

connection socket is open through the “openConn” function (see below). At this stage,

the DLL does not manage any data packets received from the robots. Since each RSI

XML packet must get a reply packet from the external system, the DLL needs to run a

background thread that receives the RSI packets, parses the data, extracts the packet IPOC

numbers and mirrors them to the robots. Such thread is critically important to maintain a

robust communication with the robots. It is hereafter referred to as RSI-Manager Thread

(RMT). RMT cyclically checks if data are available on the UDP socket. As soon as an

XML packet is in the socket, the RMT takes a high-resolution clock timestamp and

downloads the packet from the socket, decoding the IP address of the KRC that sent it.

Then, the XML packet is parsed to extract the Cartesian and axial coordinates, the status

of the digital outputs and the packet IPOC number.

It may be necessary to store the parsed positional feedback. Since writing data to files can

cause disrupting delays in the RMT, the ITRA DLL uses a secondary auxiliary thread,

hereafter referred as Saving Thread (ST). The transfer of the parsed data packets takes

place through FIFO (first-in first-out) queues. These are container adaptors specifically

designed to operate in a FIFO context, where elements are inserted into one end of the

container and extracted from the other end [13]. Each data packet is enqueued jointly with

the timestamp taken at the time of reception. The ST continuously looks for new packets

in the queues and saves them into files, emptying the containers. Since these queues are

used to hold robot feedback data, they are referred as “feedback queues” in Figure 1.

Besides sending each received data packet and its timestamp to a queue, a copy of the

timestamped data is temporarily stored into a structured array containing the latest packets

received from each robot controller. The setRobFeedbackOutput function (see below)

allows enabling/disabling the logging of the positional feedback for each robot,

 5

specifying the data format to be sent to file. The ST creates a separate text file (.txt) for

each connected robot, appending the feedback positional packets to the end of the files.

The hosting application can use the public functions of the ITRA DLL. These functions

support the development of simple and complex integration software platforms,

comprising modules like data acquisition, multiple robot task synchronization, interfacing

with sensors, data visualization, robot path control and graphical user interfaces. ITRA

contains 25 public functions, which can be divided in four groups (see Table 1).

Table 1. List of ITRA functions divided into groups

 Function names Description Run time [µs]

In
it

ia
li

ze
rs

 setNumRob Set number of robots to manage 24.58

setRobIP Set IP address of robot(s) 7.81

setRobConnType Set connection type (receive or receive/send) 6.03

setOutputDir Set directory for saving feedback file 16.30

setRobFeedbackOutput Set format of positional feedback to store 5.74

N
et

w
o

rk
in

g
 openConn Open connection socket 91.03

isDataAvailable Check if data are available in the socket 9.17

startRSIManager Start RSI Manager Thread (RMT) 1185.81

terminateRSIManager Terminate RMT 8.75

closeConn Close connection socket 49.48

G
et

te
rs

isRSIRunning Check if RSI is running on a specific robot 26.55

isRobotTaskActive Check if the robot task is active 11.99

isRobStill Check if the robot is still 12.04

isRobMoveRequired Check if a robot move is required 55.85

isDataAcquRequired Check if data acquisition is required 9.02

getCurrPos Get current robot position 45.79

getTimestamp Get current time 8.25

S
et

te
rs

allowRobotStart Allow robot to start its task 26722.90

allowRobMove Allow robot to move 10333.85

allowRobotFinish Allow robot to finish its task 23976.75

requRealTimeEnd Request termination of real-time control 98249.93

requRobTaskEnd Request termination of current robot task 11981.29

setCartPos Set target position in Cartesian space 24.80

setAxialPos Set target position in joint space 24.81

setToolPathFromFile Set external control tool-path from file 7414.96

2.2 Initializers

The functions referred as “Initializers” are designed to set internal fundamental operating

parameters of the DLL (e.g. number of robots, IP addresses, type of connection and output

directory).

2.3 Networking

The networking functions allow opening the UDP connection, checking if data are

available in the socket, starting the RMT to manage the connection with the robots,

terminating the background service threads when they are no longer required and closing

the connection. The saving thread is automatically launched and terminated together with

the RSI-manager thread.

2.4 Getters

The “Getters” are functions to retrieve data required by the hosting application. They

query the structured array containing the latest packets received from the robot

controllers. The function to get the current robot position accesses the requested element

of the array and retrieves the parsed Cartesian and axial coordinates, returning them to

 6

the hosting application as an array of double precision values. These can be used to

monitor the robot position remotely from the server computer or to encode sensor data in

a real-time fashion. Other getters return a Boolean value (TRUE or FALSE); these ITRA

functions operate on the status of the four digital outputs inserted by RSI into the XML

packets. The function that gets the current clock time (the current timestamp) is the only

function that does not query the array with the latest packets. It retrieves the current value

of the internal DLL performance counter, which runs in a high-resolution clock. The DLL

performance counter uses the same clock used to timestamp the received packets sent to

the feedback queue and (optionally) stored into files. Getting access to the same clock

used to add a timestamp to each feedback positional packet is critical in many

applications, for example when it is necessary to encode sensor data through interpolated

robot positions.

2.5 Setters

The “Setters” are functions to influence the execution of predefined KRL programs and/or

to control the robot tool-path. When called by the hosting applications, these functions

generate command data packets addressed to one of the connected robots. The index of

the target robot is given to the setters as an input. The generated command packets are

sent to reserved FIFO queues, separated from the feedback queues. Such containers are

referred as “command queues” (see Figure 1); they are also initialized by the ITRA

constructor as soon as the DLL is loaded into the hosting application. The command

packets are dequeued by the RSI-Manager Thread. After parsing the RSI packet received

from the i-th robot controller, the RMT looks for command packets available in the i-th

command queue. If the queue is not empty, the packet at the front of the queue is dequeued

and its content is concatenated into a string, according to the XML format expected by

the RSI context. Through some of the setters, the hosting application can trigger a robot

to start its task, continue the task (e.g. after a phase during which the robot must be still)

or allow the robot to terminate the task and return to the home position. Such type of

control is achieved through acting on four Boolean variables. Moreover, ITRA has

functions to set command coordinates in Cartesian-space and in the robot joint-space.

External robot control is achieved by transmitting the command coordinates and the

preferred robot speed and acceleration through eight double precision variables.

3. Automated and autonomous robotic inspections

The architecture of the introduced interfacing DLL supports the integration of a wide

range of applications, especially in the field of “Robotically Enabled Sensing”. ITRA has

been used to integrate robotic NDT inspection systems and enables the possibility to

investigate new inspection approaches. This section presents two application examples to

demonstrate the use of ITRA. The first example regards a system with three robotic

manipulators, used to perform automated photogrammetric and ultrasonic inspection of

large high-value manufacturing parts. In this application, the robots follow predefined

tool-paths, programmed in KRL through commercial off-line path-planning software.

ITRA is used to control the execution of the robot KRL programs, synchronize the data

acquisition with the robotic movement, timestamp the data packets and acquire robot

positional feedback. However, automated inspections can lead to the gathering of huge

data volumes, which can create a bottleneck in data analysis. The second application

 7

introduces a novel inspection approach, based on an autonomous scheme and the use of

ITRA, which enables external control of robotic arms.

3.1 Automated inspection through predefined robot tool-paths

ITRA has been used to integrate a robotic inspection prototype system, schematically

described in Figure 2 [14]. The robotic hardware of the system comprises three KUKA

KR90 R3100 extra HA manipulators. The integrated system is capable of performing

volumetric ultrasonic inspection of the part, through an ultrasonic probe manipulated by

Robot #1. The ultrasonic instrumentation is linked to the server computer via a PCI

Express bus. The camera and the projector are both connected via USB links.

Figure 2. Representation of the robotic inspection system [14].

ITRA has allowed using a single server computer for managing all aspects of the system,

controlling the execution of all robotic tasks simultaneously. Each robot KRL program

can change the status of four KRC digital outputs during its execution. The values of these

digital outputs are inserted by RSI into the packets sent to the external server computer.

The system is based on robots following predefined tool-paths (no external path control

is used). ITRA is simply used to track the execution of the KRL program, by tracking the

status of the KRC digital outputs. On the other hand, ITRA can pause or resume the

execution of the KRL programs by acting on the value of four Boolean flags, which are

sent by the RMT to the RSI context. This allows synchronizing the ultrasonic and

photogrammetric data acquisition with the robotic movements.

3.2 Autonomous inspection based on Bayesian optimisation and external control

Whilst the motivations for robot-based NDT are clear, and the relevant research is under-

way [1, 15, 16], little or nothing has been done in the way of performing autonomously

as opposed to automated inspections. In an automated inspection scheme (e.g. the

application described above in Section 3.1), the robot path is programmed prior to the

inspection, and the robot makes no decisions regarding what areas of a component it

should prioritise. The collected data are reported back to a human, in order to assess the

state of the component. However, increasing the use of automated inspections quickly

leads to the gathering of large quantities of data, which makes it inefficient, perhaps even

unfeasible for a human to parse the information contained in it. In an autonomous scheme,

on the other hand, a robot would make its own decisions regarding the path it should take

and should also continuously perform its own critical assessment of the component. This

section discusses an algorithm developed by the authors [17] that enables such

 8

autonomous inspection paradigms. Exploiting the robot’s external control capabilities

offered by ITRA has enabled the investigation of such an algorithm in realistic scenarios.

In [17], autonomy is achieved by guiding the robot to collect data only in locations of

either high uncertainty, or high probability of damage. The result is a robotic system that

forms its own picture, as data is collected, of whether the component being scanned

contains damage/defects, using the minimum possible number of observations to achieve

this. The algorithm combines ideas from Structural Health Monitoring (SHM), robust

outlier analysis, spatial statistics and optimisation (see Figure 3). First, damage-sensitive

features are extracted from the raw NDT data (e.g. time-of-flight and attenuation factors

in ultrasound signals). Then, novelty indices are computed for each observation. This

provides a dissimilarity measure between any given observations against the rest.

Figure 3. Flow diagram of the autonomous inspection system.

The decision of whether an observation belongs to a damaged or undamaged class can be

made by checking whether the novelty index falls above or below a suitable alarm

threshold. This still does not solve the problem of large data quantities; one may wish to

make that decision without having to collect observations across an entire specimen. This

can be time consuming and costly. Ideally, one would be able to predict the novelty

indices at unobserved locations. The autonomous inspection algorithm of [17] takes a step

further in this direction and applies the framework of Gaussian Processes (GPs), an

advanced probabilistic nonlinear regression technique. GPs provide a predictive model

that can estimate the novelty index at any given location, while quantifying uncertainty

for the predictions. The quantification of uncertainty is a key part of the autonomous

algorithm. As data arrives, the best potential locations for placing an observation are

judged in terms of high-predicted novelty indices and high uncertainty. At every iteration

of the algorithm, the best candidate location is the one that offers the most information

gain. This is the principle behind Bayesian optimisation. The resulting robotic system

implementing this algorithm will stop when a) damage has been found with high

probability or b) there is a negligible probability of gaining new information from placing

further observations. As a means of example, Figure 4 illustrates the application of this

 9

autonomous algorithm to a small 130 x 130 x 25mm steel plate, containing four small

sections of damage, introduced as flat-bottom holes drilled from the back wall of the plate.

Figure 4. a) Two-dimensional spatial PoD field as observations (n) are gathered, b) robotic system

used to test the autonomous inspection approach and c) PoD evolution with increasing n.

The proposed algorithm has been tested through the small-scale robotic system shown in

Figure 4c. The system is based on a KR6 R900 robot and was controlled by a laptop

computer, running ITRA and the described sequential algorithm within LabVIEW 2017.

A schematic diagram illustrating the logical workflow is given in Figure 3. The

application focused on ultrasound-based NDT; however, the presented ideas are

applicable to other types of testing. Pulse-echo inspection of a small specimen was

performed through a single-element ultrasonic probe. The robot was controlled through

the ITRA functions, by the target positions generated with the sequential algorithm.

Figure 4a shows an example of the resulting Probability of Damage (PoD). The four

defects are clearly shown by the four areas of high PoD. The illustration shows the

evolution of predictions as observations are collected (n is the number of observations).

One of the features of this algorithm is that if there is damage present, it will be found

with an optimally minimal number of observations. This is illustrated in Figure 4b, where

the (maximum) PoD is plotted against the number of observations. It is possible to

observe that in under 150 observations, the system has formed an opinion that there is

close to 100% PoD. Any further observations will serve to explore other areas for more

potential damage, and to place even more observations around the damaged areas to

confirm that measurements nearby are also damaged and to define the region of damage

in more detail. As a point of comparison, the robotic system carrying out the autonomous

algorithm took approximately 3 minutes to arrive at the decision of PoD=100%, with

3.5MB of supporting raw data. It is important to highlight that this is not just data; it is a

decision over the state of the component. In contrast, the same system running a standard

raster scan takes over 15 minutes to collect over 1 GB of data, all of which needs further

post-processing. Suitable algorithms to reduce the amount of time series data have also

been developed by these authors, using compressive sensing technology [17].

 10

4. Additional ITRA external control capabilities

The autonomous inspection system introduced in Section 3.2 gives an example of how

the ITRA-based robot’s external control can be used to reach target points and perform

an incremental autonomous inspection. It is important to note that such application does

not represent all real-time external control capabilities offered by ITRA.

Real-time robot motion control can be divided into two subproblems: (i) the specification

of the control points of the geometric path (path planning), and (ii) the specification of

the time evolution along this geometric path (trajectory planning). The software toolbox

allows achieving external control of robotic arms through three different approaches, each

offering specific performance. On the other hand, the path-planning subproblem is always

dealt with by the computer hosting ITRA, where processing of machine vision data and/or

other sensor data can take place to compute the robot target position. The trajectory-

planning subproblem can be managed by different actors of the system. In the first

approach (hereafter referred to as KRL-based approach), the trajectory planning takes

place at the KRL module level within the robot controller. This approach has been used

for the application in Section 3.2, to command every target coordinate to locations where

local NDT data acquisition is required. The second approach has trajectory-planning

performed within the external computer, soon after path-planning, and is referred as

Computer-based approach. The third approach relies on a real-time trajectory-planning

algorithm implemented into the RSI configuration. Therefore, trajectory planning is

managed by the RSI context and the approach is referred to as RSI-based. The latter

approach allows true real-time path control of KUKA robots based on KRC4 controllers.

This approach permits applying fast online modifications of planned trajectory, to adapt

to changes in the dynamic environment and react to unforeseen obstacles. Whereas the

path-planning takes place in the server computer, the trajectory planning has been

implemented through RSI configuration, employing the second-order trajectory

generation algorithm presented in [18].

5. Benchmarking

The run-time of all ITRA functions was investigated by loading the DLL into Matlab

2018a (64bit version), running within a computer with Intel i7-7700HQ CPU and 16GB

of RAM. The computer was linked to one KR6 R900 AGILUS robot running a KRL

module that contained all required lines to enable the execution of the ITRA functions.

Each function was executed 100 times, to record the mean run-time value. The right

column of Table 1, in Section 2.1, reports the resulting values in microseconds (µs).

5.1 External control reaction times

The performance of the three external control approaches was also tested. Reaction time

is the most important parameter in real-time control, since it measures the promptness of

the system. Reaction time in humans is a measure of the quickness the organism responds

to some sort of stimulus. The average reaction time for humans is 150ms to a haptic

stimulus [24]. Achieving small reaction time is crucial for robots that need to have real-

time adaptive behaviours to respond to dynamic changes and/or to interact with humans.

The external control latency (or reaction time) is defined herein as the time interval

between the instant a new target position becomes available on the external computer and

is sent to the robot via setToolPathFromFile, setCartPos or setAxialPos and the instant

the robot starts reacting to reach such commanded target. With ITRA running within

 11

Matlab and saving robot feedback positions through the saving thread, the reaction time

of each external control approach was measured 100 times through commanding the robot

to move to a target from a static position. The timestamp of the first robot feedback

positional packet, reporting a deviation greater or equal to 0.01mm from the original home

position, was compared with the timestamp taken by getTimestamp just before sending

the target position to the robot. The resulting reaction times are given in Table 2.

Table 2. Performance of External Control Approaches

External control approach RSI cycle Update rate Reaction time [𝒎s]

KRL-based 4 ms Variable 113.44

Computer-based 12 ms Variable 64.84

RSI-based 4 ms 250 Hz 30.03

The average robot reaction time given by the three approaches is always better than the

human reaction time. The first approach is 23% better than human reaction. The second

and the third approach are respectively 57% and 80% better. The update rate of the first

and second approach is variable, since a new target position can be commanded only after

the previous target is reached. The update rate of the RSI-based approach is equal to the

running frequency of the RSI context, so a new target position can be set every 4ms with

the robot expected to react within 30ms (±3ms).

6. Conclusions

The paper has presented a new Interfacing Toolbox for Robots Arms (ITRA). The ITRA

contains high-level functions for robust connectivity between multiple KRC4 KUKA

robots and a server computer. The toolbox is designed to speed-up efficient integration

of robotic systems. Crucially, the ITRA can be used to enable real-time adaptive robot

behaviour, maximizing the robot promptness and respecting constraints (maximum

accelerations and velocities). The paper has given application examples demonstrating

how the toolbox can be used to integrate NDT robotic systems and can play an important

role in the area of robotically enabled inspection. A novel paradigm for autonomous

robotic inspection was also introduced and demonstrated in practice. The concepts

described in the paper are aligned with the emerging Industry 4.0 and have wider

applicability beyond NDT. The ITRA allows controlling robot arms with update rates up

to 250Hz, achieving robot reaction times as short as 30ms. The benchmarking provided

accurate measurement of the run-time of all ITRA functions.

Appendix

A1 - ITRA library and user manual package: https://doi.org/10.15129/bfa28b77-1cc0-

4bee-88c9-03e75eda83fd

Acknowledgements

This work was funded by the UK Engineering and Physical Science Research Council

(EPSRC), through the grant EP/N018427/1 - Autonomous Inspection in Manufacturing

and Re-Manufacturing (AIMaReM project) and by Innovate UK (VIEWS project). The

Advanced Forming Research Centre (University of Strathclyde, Glasgow) has provided

additional support, through the Route to Impact funding scheme.

References

[1] C. Mineo, S. Pierce, B. Wright, I. Cooper, and P. Nicholson, "PAUT inspection of complex-shaped

composite materials through six DOFs robotic manipulators," Insight-Non-Destructive Testing and

Condition Monitoring, vol. 57, pp. 161-166, 2015.

https://doi.org/10.15129/bfa28b77-1cc0-4bee-88c9-03e75eda83fd
https://doi.org/10.15129/bfa28b77-1cc0-4bee-88c9-03e75eda83fd

 12

[2] G.-Z. Yang, J. Bellingham, P. E. Dupont, P. Fischer, L. Floridi, R. Full, et al., "The grand challenges

of Science Robotics," Science Robotics, vol. 3, pp. 1-14, Jan. 2018.

[3] R. R. Murphy, T. Nomura, A. Billard, and J. L. Burke, "Human–robot interaction," IEEE robotics &

automation magazine, vol. 17, pp. 85-89, Jun. 2010.

[4] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, "Industry 4.0," Business &

Information Systems Engineering, vol. 6, pp. 239-242, 2014.

[5] P. I. Corke, Robotics, Vision and Control: Fundamental Algorithms in MATLAB. vol. 73. Berlin:

Springer, 2011.

[6] A. Breijs, B. Klaassens, and R. Babuška, "Automated design environment for serial industrial

manipulators," Industrial Robot: An International Journal, vol. 32, pp. 32-34, 2005.

[7] G. L. Mariottini and D. Prattichizzo, "EGT for multiple view geometry and visual servoing: robotics

vision with pinhole and panoramic cameras," Robotics & Automation Magazine, IEEE, vol. 12, pp.

26-39, 2005.

[8] M. Toz and S. Kucuk, "Dynamics simulation toolbox for industrial robot manipulators," Computer

Applications in Engineering Education, vol. 18, pp. 319-330, 2010.

[9] F. Chinello, S. Scheggi, F. Morbidi, and D. Prattichizzo, "Kuka control toolbox," Robotics &

Automation Magazine, IEEE, vol. 18, pp. 69-79, 2011.

[10] A. Barbalace, A. Luchetta, G. Manduchi, M. Moro, A. Soppelsa, and C. Taliercio, "Performance

comparison of VxWorks, Linux, RTAI and Xenomai in a hard real-time application," in Real-Time

Conference, 2007 15th IEEE-NPSS, 2007, pp. 1-5.

[11] KUKA, KUKA.RobotSensorInterface 3.2 Documentation - Version: KST RSI 3.2 V1, 2013.

[12] C. Mineo, C. Wong, M. Vasilev, B. Cowan, C. N. MacLeod, S. G. Pierce, et al., "Interfacing

Toolbox for Robotic Arms with Real-Time Adaptive Behavior Capabilities," 2019.

[13] B. Stroustrup, The C++ programming language: Pearson Education, 2013.

[14] C. Mineo, C. MacLeod, M. Morozov, S. G. Pierce, R. Summan, T. Rodden, et al., "Flexible

integration of robotics, ultrasonics and metrology for the inspection of aerospace components," in

AIP Conference Proceedings, 2017, p. 020026.

[15] C. Mineo, S. G. Pierce, P. I. Nicholson, and I. Cooper, "Robotic path planning for non-destructive

testing–A custom MATLAB toolbox approach," Robotics and Computer-Integrated Manufacturing,

vol. 37, pp. 1-12, 2016.

[16] C. Mineo, C. MacLeod, M. Morozov, S. G. Pierce, T. Lardner, R. Summan, et al., "Fast ultrasonic

phased array inspection of complex geometries delivered through robotic manipulators and high

speed data acquisition instrumentation," in Ultrasonics Symposium (IUS), 2016 IEEE International,

2016, pp. 1-4.

[17] R. Fuentes, C. Mineo, G. S. Pierce, K. Worden, and E. J. Cross, "A probabilistic compressive

sensing framework with applications to ultrasound signal processing," Mechanical Systems and

Signal Processing, 2018.

[18] R. Haschke, E. Weitnauer, and H. Ritter, "On-line planning of time-optimal, jerk-limited

trajectories," in Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International

Conference on, 2008, pp. 3248-3253.

