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Electrodeposition of Fe-Sn alloys from a chloride-based electrolyte  

The conditions for electrodeposition of Fe-Sn alloys from a novel, environmentally 

friendly, ferrous chloride-based electrolyte were studied. The influence of the pH 

on the electrolyte stability and deposit stoichiometry was discussed. Anodic 

stripping voltammetry (ASV), XRD and SEM/EDX were used to characterize the 

electrodeposited phases. The results from ASVs indicated the possibility to deposit 

at least two different phases at high overpotentials. Hull cell depositions in an 

electrolyte with a Sn to Fe ratio 1:1 and a pH value of 2.8 showed regular 

deposition of Fe-Sn. Fe-rich deposits (54.84 at %) were obtained from an 

electrolyte with Sn to Fe ratio 1:10. The XRD results were compatible with the 

electrochemical investigations. In all studied samples β-Sn, FeSn2 and Fe5Sn3 were 

detected. The presence of ferromagnetic Fe5Sn3 was not influenced by the Sn to Fe 

ions ratio in the electrolyte.  

Keywords: tin-iron electrodeposition; ferrous-stannous electrolyte; anodic 

stipping voltammetry; Hull cell; chloride; XRD 

 

Introduction 

Nowadays, the alloys used most frequently for magnetic materials are iron based 

with nickel and cobalt [1]. However, Ni is highly allergenic and Co(II) salts are 

carcinogenic and materials of very high concern according to European Chemicals 

Agency [2]. Fe-Sn alloys are a potential alternative to these classical magnetic materials. 

In the binary thermal equilibrium diagram of Fe-Sn five intermetallic compounds are 

found, namely: FeSn2, FeSn, Fe3Sn2, Fe5Sn3 and Fe3Sn [3]. The iron-rich compounds 

Fe3Sn2, Fe5Sn3 and Fe3Sn are ferromagnetic [3] and, due to their low cost and low harm 

to health and environment, interesting for industrial usage. Possible applications of the 

Fe-Sn alloy deposits are magnetic recording [4,5] or corrosion protection coatings [6]. 

Different Fe-Sn phases were obtained by mechanical milling [7], alloying [8] or co-

sputtering [9,10]. Literature research showed almost no records in the field of 



electrodeposition of Fe-Sn [11].   

In our previous research we were studying the mechanism of electrodeposition of 

Fe-Sn from ferric salts and tartrate as a single complexing agent [12]. However, the 

electrochemical equivalent of Fe3+ is lower than the one of Fe2+. Therefore, in the present 

study, the conditions for Fe-Sn electrodeposition from a ferrous, chloride based 

electrolyte are discussed. Influence of the pH and Sn-Fe ion ratio in the electrolyte on the 

deposit morphology and stoichiometry is described. Anodic stripping was used to 

characterize the possible electrodeposited phases of Fe-Sn. In all the deposited samples a 

ferromagnetic Fe5Sn3 was detected. 

Materials and Methods 

The conditions of co-deposition of Fe-Sn were studied in a chloride-based 

electrolyte ( 

  



Table 1). Electrochemical experiments were carried out in a standard 300 ml 

electrochemical cell with a three electrodes setup. The working electrode was a gold 

tipped rotating disc electrode (RDE, 0.1 cm radius). A platinum wire was used as a 

counter electrode. A saturated calomel electrode (SCE), connected via a Luggin capillary, 

was used as a reference electrode. In the text all the potentials were recalculated to the 

standard hydrogen electrode (SHE) as a reference. The electrolyte temperature was kept 

constant at 60°C with a water bath. All the experiments were carried out using an 

μAutolab II (Metrohm) potentiostat, controlled with the NOVA 2.0 software. The surface 

of the RDE was wet polished with 4000 grid silicon paper and washed with DI water 

before each experiment. Electrolyte pH was adjusted with 10% H2SO4. 

  



Table 1: Electrolyte composition. Metal ion concentration (Sn + Fe) was kept constant at 

0.11 M with different Sn:Fe ion ratio. 

3Na citrate x 2H2O (Sigma Aldrich) 0.27 M 

KNa tartrate x 4H2O (Sigma Aldrich) 0.09 M 

(NH4)2 SO4 (Sigma Aldrich) 0.45 M 

SnCl2 x2H2O (Sigma Aldrich)  

FeCl2x 4H2O (Alfa Aesar)  

 

The deposition potential of Sn was measured from an electrolyte containing only 

0.11 M of Sn as an electroactive substance. Polarization measurements for this electrolyte 

were performed on a static RDE with a scan rate of 5 mV/s, starting at the OCP and 

continued into the cathodic direction until -1.25 V vs. SHE. Anodic stripping 

voltammograms (ASVs) in the single metal Sn electrolyte were carried out at the pH 

value that has been present in the electrolyte initially and it has not been further adjusted. 

The deposition potential of Fe in a chloride-based electrolyte was determined in 

an electrolyte containing 0.11 M of Fe as an electroactive species. Since hydrogen 

evolution is a significant side reaction of Fe deposition, the reduction potential of Fe could 

not be determined directly. For this purpose, a series of ASVs with the scan rate of 30 

mV/s were carried out. Fe was electrodeposited during the cathodic polarisation sweep. 

The cathodic reverse potential was varied from -0.35 V to -1.25 V vs. SHE with the step 

of -0.1 V. . The appearance of the Fe anodic stripping  peak indicated the position of the 

Fe reduction potential. The measurements were first carried out in an electrolyte with 

non-adjusted pH with the value of 6.0 and afterwards at a pH of 2.8. 



Anodic stripping voltammetry as an in-situ technique for characterization of 

electrodeposited Fe-Sn layers was used. Electrodeposition of the layers was performed 

via cathodic polarization of the stationary, gold disc electrode. Electrolytes with Sn to Fe 

ratio 1:1, 1:3 and 1:10 were tested at the pH of 2.8. In the electrolyte with Sn to Fe ratio 

1:3 the cathodic potential was changed from -0.95, -1.05 to -1.25 V. Current density 

transients were recorded on a gold tipped RDE at the potential −0.75 V vs SHE with 100 

rpm for 300 s.  

The metal speciation was calculated in Visual MINTEQ 3.1 [13]. The oxidation 

of Fe2+ to Fe3+ was not considered in the chemical equilibrium modelling. Consequently, 

Hyperquad Simulation and Speciation (HySS) software [14] was used for the calculation 

of species´ concentration and visualization. 

Galvanostatic Fe-Sn deposits were obtained from Hull cell experiments which 

were carried out in a standard 267 ml cell (Kocour). A constant current of 1 A was applied 

for 10 minutes on a brass substrate. For this purpose, electrolytes (pH~2.8) with Sn to Fe 

ion ratios 1:1 and 1:10 were prepared. Attempts to achieve smoother deposits from the 

Sn:Fe electrolyte 1:10 were made by adding 1.6 mg/l of alkoxylated β-napthol [15] 

(ABN). The electrodeposited dendrites were collected on a double side adhesive carbon 

tape and investigated with SEM/EDX. In order to study the phase composition and overall 

stoichiometry of the compact underlying layer, the dendrites were mechanically removed 

by rubbing with an isopropanol wetted cotton pad. The SEM/EDX investigation was 

performed on the 1x1cm sample cut along the 40 mA/cm2 zone of the Hull cell electrode. 

In the nominal current densities the SEM/EDX samples were cut between 33.78 and 48.44 

mAcm-2[16]. 

The surface topography and the deposit stoichiometry were analysed with the 

scanning electron microscope (SEM) Hitachi S-4800 equipped with an energy dispersive 



X-ray detector (EDX). The phase composition of the deposits was studied with an X-ray 

diffractometer Empyrean PANalytical using a grazing incidence geometry. The samples 

were scanned at 10-100° 2 θ with CuKα radiation and the incidence angle of 2°. The 

scanning step of the scintillation detector with a long plate collimator was 0.02°. 

 

Results and discusion 

Polarization curves in the tin electrolyte are depicted for various pH values 

(Figure 1). A significant cathodic shift of the tin reduction potential from approximately 

-0.28 V to -0.54 V with a change of pH from 2.2 to 8.0 was observed. According to the 

Nernst equation, a possible explanation could be either the change of the metal-complex 

character or the increase of the tin-complexes stability [17]. Simulation of the electrolyte 

speciation (Figure 2a) showed a changed distribution of Sn complexes in this pH region. 

In the weak acidic and neutral region, within the pH values of 4.0 and 7.0, Sn is mostly 

deposited from the [Sn(tart)2]
2+ complex. The observed shift in the Sn deposition potential 

in this pH region is caused by the increased stability of the [Sn(tart)2]
2+ complex [12]. On 

the other hand, in the more acidic pH region (pH values from 2.0 to 4.0), Sn is present in 

form of different complexes, such as [Sn(tart)2]
2+, [Sn(tart)], [SnCl]+ or [SnCl2]. The shift 

of the Sn reduction potential in this case is caused by the change of the concentrations of 

the various Sn complexes. 

The anodic stripping voltammetries (ASV) were measured in the single metal Sn 

electrolyte with two different cathodic return potentials (-0.75 V and -1.25 V) at the initial 

electrolytes´ pH with the value of 5.2 (Figure 3). For both return potentials, three stripping 

peaks (A, B and C) were observed. The peak C can be assigned to the passivation of Sn 

[18,19], peak B refers to the oxidation of Sn and thus its height depends on the amount of 

the reduced Sn [15]. The consecutive shoulder can be explained by the higher amount of 



reduced Sn at the return potential of -1.25 V in comparison to the amount of Sn reduced 

at return potential of -0.75 V.  

The Fe reduction potential was determined from the ASVs by changing the 

cathodic reverse potential (Figure 4). ASVs were performed in electrolytes with the pH 

values of 6.0 and 2.8. In the anodic branch, two peaks (D and E). were observed. The 

stripping peak D was detected, for the first time, in both pH values, when the electrode 

was polarized cathodically up to -0.85 V vs SHE. No striping peak was detected with the 

cathodic return point of – 0.75 V, which indicates, that the reduction potential of Fe lies 

between -0.75 and -0.85 V vs SHE  

(Figure 4). The potential of the peak D was shifted towards more positive values with the 

decrease of the electrolyte pH. Although the electrolyte speciation does not consider the 

possibility of oxidation of Fe2+ to Fe3+, it can indicate a possible mechanisms of Fe2+ 

reduction (Figure 2 b). At the pH value of 6.0, most of the Fe2+ ions should be present in 

the form of the [Fe(citr)]- complex with the stability constant of 5.89 [14]. On the other 

hand, at the pH value of 2.8, Fe is predominantly reduced from the [Fe(SO4)] (logK=2.8) 

and [FeH(citr)] with the stability constant, logK of 10.17 [14]. Therefore, it can be 

assumed, that the observed shift in the stripping peak D at the pH of 2.8, can be result of 

oxidation of Fe to [FeH(citr)]. Additionally, the peak E around +0.2 V was observed in 

single Fe electrolyte at the pH value of 6.0. Similar to peak E, the stripping peak A was 

detected in the single Sn electrolyte at the pH value of 5.2 (Figure 3). Analogous to the 

Fe stripping peak D, the potential of E was shifted towards more positive values when 

the electrolyte pH decreased to 2.8 (Figure 4). In our previous work [12] we have studied 

the mechanism of Fe-Sn electrodeposition from a similar electrolyte with tartrate as the 

single complexing agent. In the AVs of Fe, no additional stripping peaks such as E were 

observed. Moreover, the supporting electrolyte [12] did not have any anodic response. 



This leads us to the assumption, that the origin of the peaks A and E could be in the 

oxidation of a citrate related species (Figure 2 d). However, for better understanding of 

the origin of stripping peaks A and E, more detailed analyses have to be performed.  

For an alloy deposition of two different metals to occur, the difference between their 

standard reduction potentials E0 should be less than 0.2 V [20]. If the alloy deposition of 

two metals is not possible, there is a need to shift their reduction potentials towards each 

other. Most common methods for bringing together two different reduction potentials are: 

changing the concentration of one of the metal species and thus altering its activity; 

changing the character and stability constants of the metal complexes; and usage of the 

selective surface active additives, which can increase the reduction overpotential of the 

more noble metal [20]. In the case of Sn2+ and Fe2+, the difference between standard 

reduction potentials E0 is -0.3 V [21]. A similar difference in the reduction potentials of 

Sn and Fe was estimated from the single metal electrolytes at the initial pH. For Sn at the 

pH of 5.2 the reduction potential was estimated to be around -0.45 V (Figure 1). For Fe 

the reduction potential at the initial electrolyte pH value of 6.0 was located between -0.75 

and -0.85 V (Figure 4). The reduction potential of Sn at the lower pH is shifted towards 

more positives values (Figure 1) and with that, the difference between the reduction 

potentials of Fe and Sn is increasing. For this reason, the mixed Fe-Sn electrolyte with Fe 

to Sn ratio of 1:1 at the initial, non-adjusted pH value of 5.5 was chosen as optimal for 

Fe-Sn electrodeposition. Nevertheless, the mixed Fe-Sn electrolyte (pH~5.5) was 

changing the colour over time from light-yellow to orange-brownish, indicating the 

instability of the electrolyte. The current density transients were decreasing with every 

repetition. The value of the current density after 100 s of electrodeposition has changed 

from approximately -25 mAcm-2 at the first into half of its value in the third repetition 

(Figure 5 a). After 300 s of electrodeposition, the difference between the measured current 



density in the first and the third repetition was one order of magnitude. Such massive 

changes in the current density after each experiment are confirming the instability of the 

electrolyte. The change of the electrolyte colour as well as its instability can be related to 

the oxidation of the ferrous ion and the creation of ferric hydroxide species [22,23]. 

Formation of hydroxides results in a reduced concentration of electroactive metal species 

and therefore also to the decrease of current density (Figure 5 a).  

In order to suppress the oxidation of Fe2+ and the formation of hydroxides, the pH of 

the supporting electrolyte was adjusted to a value of around 3 before adding the Fe and 

Sn salts. This method of electrolyte preparation resulted in a Fe-Sn electrolyte with a Fe 

to Sn ratio of 1:1 at a pH of around 2.8. The colour of the electrolyte was light-green and 

did not change over time. The chronoamperometry results were reproducible(Figure 5). 

After 100 s of electrodeposition at -0.75 V, the recorded current densities were about -

200 mAcm-2, which is an order of magnitude higher than in the first measurement at the 

pH of 5.5 (Figure 5). The steep decrease in the recorded current densities over time 

indicates that the deposition at these conditions is not kinetically controlled and leads to 

a significant increase of the electrode’s active area. Moreover, an increase in noise 

indicates a massive hydrogen evolution (Figure 5 b).  

The change of the Fe-Sn (metal ion ratio of 1:1) electrolyte pH to 2.8 leads to an 

increase of its stability. On the other hand, it also causes the difference of the reduction 

potentials of Fe and Sn to increase to more than -0.4 V (Figure 1, Figure 4). In order to 

bring the reduction potentials closer together, the concentration of the more noble metal 

Sn was reduced. Electrolytes with Sn to Fe ratio of 1:1, 1:3 and 1:10 were tested. In these 

electrolytes, ASVs with different cathodic reverse potentials were performed in order to 

analyse the electrodeposited phases (Figure 6, Figure 7) and to determine the influence 

of the metal ion ratio in the electrolyte on the resulting electrodeposits. In the 



thermodynamic phase diagram of Fe-Sn [3], in addition to the Sn phase and the solid 

solution of Fe-Sn, five intermetallic phases are found. Therefore, in ASVs, several 

stripping peaks were expected to be observed. The results of the ASVs with a cathodic 

polarization up to -1.25 V are depicted in Figure 6. Three stripping peaks (I, II, and III) 

were observed, independent of the electrolyte composition. Additionally, a small peak at 

the potential ~0.2 V was observed in all studied electrolyte compositions (Figure 6, Figure 

7). Such a peak was also detected in the single Sn (peak A, Figure 3) and Fe (peak E, 

Figure 4) electrolytes. As it was already discussed above, the origin of this peak might be 

related to the oxidation of the citrate complexes, such as [H3(citr)], [H2(citr)]- or [H(citr)]2-

(Figure 2 Figure 2 d). Therefore, this peak was not considered to be significant in the 

stripping analyses of Fe-Sn and will be a subject of further investigation. The peak heights 

of I, II and III depended on the metal ion ratios in the electrolyte. The peaks II and III 

were reduced in size with the decreased amount of Sn ions in the electrolyte. On the other 

hand, the height of peak I increased with higher concentrations of Fe ions (Figure 6). The 

peak Nr I (~-0.4 V) appeared for the first time when the potential in the cathodic 

polarization reached -1.05 V vs SHE (Figure 7) and it was in good correlation to the 

stripping peak of Fe (Figure 6). This indicates that the peak Nr. I is probably related to 

the reduction of a Fe or Fe-rich intermetallic phase [24]. If both of the metals do not 

passivate in the investigated electrolyte, each stripping peak indicates a different 

intermetallic, intermediate or compound dissolution[24]. In the case of Fe, at the pH of 

2.8, no passivation was observed (Figure 4). For Sn in the acidic citrate buffers (pH 3 and 

4 ) a single anodic peak was observed, but it was also shown that it undergoes active 

dissolution-passivation process [25]. Therefore, it can be assumed that the three stripping 

peaks (I, II and III, Figure 6, Figure 7) belong to at least two different phases  with the 

possibility, that one of them is a Fe or Fe-rich intermetallic   phase [24,26]. 



A fast and an efficient way to perform electrodeposition with a range of current 

densities at once is a Hull cell. (Figure 8). Electrolytes with Sn to Fe ratio of 1:1 and 1:10 

were selected for these experiments. In the case of the Sn-Fe electrolyte with an 1:1 metal 

ratio, massive grey dendrites were present over the whole current density range of the 

Hull cell (0.4- 40 mAcm-2) (Figure 8). The tree-like  structure of the dendrites (Figure 9) 

indicates a fully diffusion controlled deposition [27]. With the increase of the Fe content 

in the electrolyte the morphology of the deposits slightly changed. The creation of the 

dendrites was suppressed below 10 mAcm-2 (Figure 8) and their character changed from 

tree- to needle, carrot- like (Figure 9), which indicates the change of the deposition 

mechanism from purely diffusion controlled to mixed activation-diffusion controlled 

[27]. It was observed, that the electrodeposition from an electrolyte with Sn to Fe ratio of 

1:1 follows normal deposition when samples with  

19.84 at% of Fe were deposited at 40 mAcm-2. Iron rich deposits (54.84 at %) were 

obtained from the electrolyte with an increased Fe content. Attempts to obtain 

homogeneous, smooth deposit were made by adding 1.6 mgL-1 ABN additive into the 

iron rich electrolyte. In our previous studies [15], we have shown that, due to the ABN 

adsorption on the cathode in the chloride electrolytes, it acts as a very effective inhibitor 

and grain refiner for Sn. In the case of the Sn-Fe electrolyte, the presence of 1.6 mgL-1 

ABN significantly reduced the amount of dendrites on the Hull cell (Figure 8). On the 

other hand, in comparison to the iron rich electrolyte without ABN, the ratio of Sn to Fe 

in both the dendrites and the layer increased (Figure 9). A possible explanation is that 

with the adsorption of the ABN on the cathode both the hydrogen evolution and the Fe 

reduction are suppressed. Nevertheless, the exact role of ABN in the Fe-Sn chloride based 

electrolyte could be a part of further investigations.  

 The results from the X-ray analyses of the electrodeposited layers are compatible 



with the findings from the ASVs. In all the studied electrolytes, three different phases 

were identified, namely: β-Sn and intermetallic phases FeSn2 and Fe5Sn3. The FeSn2 

phase is antiferromagnetic [3] and it was already electrodeposited by Chisholm et al.[11]. 

On the other hand the Fe5Sn3 phase exhibits ferromagnetic properties and is present in 

the thermodynamic phase diagram at temperatures above 1000 K [3]. The presence of the 

Fe5Sn3 phase was not influenced by the concentration of Fe in the electrolyte nor by the 

presence of ABN.  

Conclusion 

Due to their magnetic properties and low impact on human health and 

environment, Fe-Sn alloys are considered as one of the possible alternatives to nowadays 

used Fe based Ni, Co alloys. In the present work, the conditions for electrodeposition of 

Fe-Sn from a novel, green, ferrous chloride-based electrolyte were studied. It was 

observed, that due to the changing character of Sn complexes, the reduction potential of 

Sn depends on the electrolyte pH, while the reduction potential of Fe is independent of 

the pH value. Considering this dependency, the initial pH value of the mixed Fe-Sn 

electrolyte with the value of 5.5 was chosen as an optimum pH for Fe-Sn 

electrodeposition.  

Nevertheless, the Fe2+ based electrolyte with a pH of 5.5 was unstable, changing 

colour from light-yellow to orange- brownish, indicating the formation of ferric 

hydroxides. As a result the recorded current density transients were decreasing with each 

repetition of the measurement. The stability of the electrolyte was improved by 

decreasing the pH to a value of 2.8. At this pH value the results of ASVs indicated the 

possibility to deposit at least two different phases, one of them containing iron.  

The samples deposited from the electrolyte with a Sn to Fe ratio of 1:1 at the pH 

of 2.8 showed a regular deposition of Fe-Sn. At 40 mAcm-2 a deposit with 19.84 at% of 



Fe were obtained. With the reduction of Sn concentration in the electrolyte, the content 

of Fe in the deposit increased to 54.84 at%. XRD results of the electrodeposited samples 

were compatible with ASVs. In both deposits the following phases were detected: β-Sn, 

and the intermetallics FeSn2 and Fe5Sn3. The Fe5Sn3 has a hexagonal structure and 

exhibits ferromagnetic properties and therefore, it is interesting for further investigation. 

The Fe-Sn electrodeposition exhibits a complex interdependence of 

concentration, pH and deposition potentials. More detailed investigations of the Fe-Sn 

deposition mechanism could be performed in follow up studies.  
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Figure 1: Dependence of the electrolyte pH on the cathodic polarisation behaviour of 

the Sn electrolyte. Measured with a scan rate of 5 mV/s.  

  



 
   a)      b) 

 

  
   c)      d) 

Figure 2: Electrolytes speciations: a) 0,11 M Sn single metal b) 0.11 M Fe single metal 

c) mixed Sn-Fe electrolyte with Sn: Fe ratio 1:1. Depicted are only Sn and Fe complexes. 

d) mixed Sn-Fe electrolyte with Sn: Fe ratio 1:1. Depicted are only citrate and tartrate 

non-metal complexes. 
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Figure 3: Anodic stripping voltammetries (ASV) measured in the 0.11 M Sn electrolyte, 

pH value of 5.2 with two different cathodic reverse potentials.  

  



 

 

 

 

Figure 4: AVs with different cathodic reverse potential measured in the 0,11 M Fe 

electrolytes with the pH values of 6.0 (dashed) and 2.8 (full line). The anodic stripping 

peak D refers to the oxidation of Fe and was for the first time detected when the electrode 

was polarized cathodically up to -0.85 V vs SHE. 

  



 

  

Figure 5: Current density transients recorded at the potential of -0.75 V in the Fe-Sn 

electrolyte with Fe to Sn metal ratio 1:1 and pH value of 5.5 (left) and 2.8 (right). 

  



 

Figure 6: The influence of the Fe and Sn ion ratio in the electrolyte (pH~2.8) on the 

ASVs in comparison to the single metal Fe electrolyte. The Fe-Sn layers were polarized 

during the cathodic sweep up to the -1.25 V vs SHE. Consequently, anodic stripping up 

to +0.75 V vs SHE with the scan rate of 50 mV/s was performed. The vertical lines are 

marking the potentials of the stripping peaks in the electrolyte with Sn to Fe ratio 1:3 and 

cathodic reverse potential of -1.25 V. 

  



 

Figure 7: The influence of the cathodic reverse potential on the ASVs in the electrolytes 

with the electrolytes with the Sn:Fe ratio in the electrolyte 1:3 and 1:10. The vertical lines 

are marking the potentials of the stripping peaks in the electrolyte with Sn to Fe ratio 1:3 

and cathodic reverse potential of -1.25 V. 
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Figure 8: Influence of the electrolyte composition on the character of the Hull cell 

deposits. Nominal current densities on the Hull cells are marked in the Adm-2.  
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Figure 9: Topography images and stoichiometry of the electrodeposited dendrites and layers on the Hull cells at the nominal current density value 

of 40 mAcm-2.  

  



 

Figure 10: XRD diffractograms of the electrodeposited Sn-Fe from the electrolytes with 

Sn to Fe ions ratio 1:1 and 1:10, with and without the presence of ABN. The samples 

were obtained from a Hull cell deposition at a nominal current density value of 40 mAcm-

2. 


