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Abstract
Existing sparse representation-based visual tracking methods detect the target positions by minimizing the recon-
struction error. However, due to complex background, illumination change, and occlusion problems, these methods
are difficult to locate the target properly. In this article, we propose a novel visual tracking method based on
weighted discriminative dictionaries and a pyramidal feature selection strategy. First, we utilize color features and
texture features of the training samples to obtain multiple discriminative dictionaries. Then, we use the position
information of those samples to assign weights to the base vectors in dictionaries. For robust visual tracking, we
propose a pyramidal sparse feature selection strategy where the weights of base vectors and reconstruction errors
in different feature are integrated together to get the best target regions. At the same time, we measure feature
reliability to dynamically adjust the weights of different features. In addition, we introduce a scenario-aware
mechanism and an incremental dictionary update method based on noise energy analysis. Comparison experi-
ments show that the proposed algorithm outperforms several state-of-the-art methods, and useful quantitative and
qualitative analyses are also carried out.
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Introduction

As a subtask of computer vision, visual target tracking has

always drawn many attentions for decades, and many

advanced methods have been explored. However, complex

situations such as occlusions, target deformation, rotation,

scale changes, and cluttered background, and so on, make

visual target tracking still a challenging task and the exist-

ing methods cannot always track the targets precisely. The

current trackers can be typically divided into two types, that

is, generative methods1–5 and discriminative methods.6–17

They usually sample a set around the target object to

describe the appearance characteristics, and search for
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candidate targets by maximizing the similarity or find the

decision boundaries of the target and the background.

To get the satisfied tracking performance, two key

issues need to be addressed. First, since the appearance

of the target changes frame by frame throughout the

video sequence, the most discriminating samples in the

current frame may not last for a long time and tend to

result in a model overfitting. So, the improvement of

long-term tracking performance is an important issue.

Second, Unpredictable target deformation and back-

ground clutter in the sampling region cause a negative

impact on the selection of candidate samples. Thus, the

elimination of these obstacles to advance tracking per-

formance in the case of small target samples is also an

important issue.

To address both issues, sparse representation-based

tracking solutions have been proposed, such as L1

tracker.5 Because of insensitivity to the target noise, this

kind of methods has a strong tracking robustness when

target deformation occurs. However, single-feature and

the initial discriminative dictionary do not satisfy com-

plex tracking scenarios. Moreover, the object localization

under the frequent online updating often brings drift-away

problems as some negative samples are mis-tracked.

These problems remain difficult in the literature of sparse

representation-based trackers. Hence, a natural question is

how we can augment positive samples in the feature space

to capture target appearance variations in the temporal

domain.

In this work, we take advantage of the recent progress

in discriminative dictionary learning method label con-

sistent K-SVD (LC-KSVD)18,19 to facilitate the diction-

ary learning and to propose a novel tracking method

with weighted dictionaries incremental learning and pyr-

amidal feature selection strategy. In summary, this work

has the following main steps. Firstly, we model the dis-

criminative dictionaries from positive and negative sam-

ples based on two feature descriptors, where different

features correspond to different dictionaries. Secondly,

according to the center distance from the training sam-

ples to the target, we assign Gaussian weights for each

basis vector in different feature dictionaries, which are

used to measure the similarity of spatial structure to

improve the accuracy of sparse feature selection.

Finally, we select the best sample region by similarity

measurement and fusion of the multiple features recon-

struction error of candidate samples.

The article is organized as follows. We introduce the

research background in the “Introduction” section and

review the related work in the “Related work” section.

Afterwards, the “Proposed method” section describes the

proposed method in detail, including dictionary represen-

tation and construction, incremental dictionary updating,

and adaptive feature fusion strategy. The experiments are

given in “Experimental results and comparison.” We

conclude the article and discuss future work in the

“Conclusion and future work” section.

Related work

In this section, we briefly review the relevant literature of

object tracking algorithms in recent year, including deep

learning-based tracking methods11–17,20,21–23,24 and sparse

representation-based tracking method.1,3,5,6,25–28,30,31

The main advantage of deep learning-based tracking

methods lies in their powerful characterization of depth

features. It brings a new research direction for solving

various challenges in visual tracking. Wang and

Yeung20 proposed deep learning tracker and performed

unsupervised off-line depth pretraining on large-scale

natural image data sets. The idea of transfer learning

reduces the requirement of training samples and

improves the performance of the tracking algorithm.

Then, they propose structured output-deep learning

tracker11 and use convolutional neural network (CNN)

model to solve the sensitivity of model updating. Qi

et al.12 proposed a novel CNN-based tracking method,

which considers the features from all CNN layers and

hedge these features into a single stronger one. Further-

more, they propose a hedging deep feature-based track-

ing framework13 which use correlation filters to feature

maps of each CNN layer to construct a weak tracker and

design a Siamese network to define the loss of each

weak tracker. The tracker achieves favorable perfor-

mance on challenging image sequences.

To solve the imbalance between positive and negative

samples in video tracking, Zhang et al.14 proposed an

attribute-based CNN with multiple branches, where each

branch is responsible for classifying the target under a

specific attribute. The tracker reduces the appearance

diversity of the target under each attribute and thus

requires fewer data to train the model. Qi et al.15 proposed

to integrate the point-to-set/image-to-imageSet distance

metric learning (DML) into visual tracking. The point-

to-set DML is conducted on CNN features of the training

data, and the tracking result is located by the minimal

distance to the target template. Because the methods

based on matching tracking cannot deal with the problem

of target rotation in the plane very well, Zhong et al.16

proposed a hierarchical tracker that learns to move and

track by a coarse-to-fine verification. The coarse level

utilizes a recurrent CNN-based deep Q-network to learn

data-driven searching policies. The idea of learning target

position from coarse to fine is helpful to deal with target

scale change and improve the accuracy of tracking target

border. The authors also apply this idea to multi-person

tracking and propose a deep alignment network-based

multi-person tracking method17 with occlusion and

motion reasoning which achieves good performance.

Wang et al.24 proposed a deep learning-based hybrid
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spatiotemporal saliency feature extraction framework for

saliency detection from video footages.

Sparse representation-based tracking methods show

strong robustness in some tracking scenarios. Therefore,

many visual tracking methods5,25,27,31,32 based on sparse

representations have been proposed. Local sparse repre-

sentations are widely used in visual tracking.28,29,33 Zhang

et al.30 summarized and evaluated some classical tracking

methods based on sparse representation. The process of

sparse representation-based trackers can be roughly

divided into two stages. The first stage acquires a sparse

sample set around the target, and the second stage uses a

classifier to classify each sample as a target or back-

ground. However, the positive samples obtained from the

first frame of video are far from meeting the requirement

of label data volume in classifier training, and the positive

and negative samples are imbalanced greatly, which

makes it impossible to capture the rich appearance

changes of the target. These limitations are also reflected

in some deep learning-based trackers21–23 that use this

two-stage framework.

In the target tracking process, a good model update

strategy can improve the tracking effect and tracking abil-

ity. Lu et al.26 used incremental subspace learning meth-

ods to reconstruct a new template and then utilized it to

replace the old one. However, the updated base vector will

gradually degrade in the scene where noise or occlusion

exists. In addition, Mei and Ling5 replaced the least

important template with the current template based on the

frequency of use of the dictionary template. Han et al.27

updated the dictionary template in a random replacement

manner.

The combination of multiple features enhances the char-

acterization capabilities of the model and is applied to

many different classification tasks. From the perspective

of visual attention saliency, Yan et al.34,35 used Gestalt rule

to guide the saliency detection by characterizing human

visual system (HVS) features and forming targets and pro-

posed a method to cognitively detect and track salient

objects from videos by combining red-green-blue (RGB)

image and thermal image. The proposed fusion-based

approach can successfully detect and track multiple human

objects in most scenes regardless of any light change or

occlusion problem. Lan et al.25 used an unreliable feature

detection method to detect unreliable features. However,

the representation of reliable features is still suppressed

by the joint sparse framework, and different features are

limited to similar sparse patterns. Mai and Ling5 fused

multiple features for appearance modeling and detect the

outlier particles. The same sparse pattern is used for all

features of the non-outlier particles.

In this article, we propose a novel multifeatures

dictionary-based sparse tracking method, where a spe-

cific feature dictionary is built upon hybrid features

with the ability of independently maintaining. Then an

incremental dictionary update strategy is proposed to

reduce the redundancy of sparse dictionaries while

increasing the diversity of positive samples. The output

of these dictionaries responses in a different sparse pat-

tern for the final comprehensive decision during the

tracking process.

Proposed method

In this section, the proposed method including three mod-

ules is introduced. The main framework of our method is

shown in Figure 1. We maintain two sets of samples (posi-

tives and negatives) to construct weighted feature
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Figure 1. The main tracking process of the proposed approach.
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dictionaries. In the tracking process, the samples are spar-

sely decomposed by the weighted dictionaries, and the

weights of the samples can be obtained and used to select

candidate samples. By comparing the reconstruction errors

of these candidate samples, we can select the most similar

sample as the tracking result.

Dictionary representation and construction

In sparse representation theory, dictionary is composed of

super-complete base vectors to obtain a more concise rep-

resentation of the appearance of the target. For this purpose,

three types of sets, that is, the positives T, the backgrounds

B, and the noise L are integrated together. The initial dic-

tionary D of the samples at the first frame can be repre-

sented as D ¼ ½DT ;DB;DL�, where DT, DB, and DL are the

sets of T, B, and L, respectively. In the tracking process, a

candidate sample y can be represented by the sparse repre-

sentation (equation (1))

y � Dγ ¼
h
DT ;DB;DL

i z

v

e

2
64

3
75 ð1Þ

where D is the discriminative dictionary, z is the target

coefficient, v is the background coefficient, e is the noise

coefficient, and γ is the sparse coding. In this article, the

LC-KSVD18 method is used to unify dictionary learning

and classification labeling.

Figure 2 shows the construction process of the initial

dictionary. The center of the initial target is set as the

center of the circle, pixels in the range of radius r0 are

sampled as positive samples, and pixels in the range of

radius between r1 and r2 are dense sampled to obtain

negative samples which contain the background context

around the target.

For the positive and negative samples sampled in the

first frame, we extract two kinds of features to form two

initial dictionaries respectively. After that, we utilize the

correspondence between the sample template and the dic-

tionary base vector and assign the Gaussian weight to each

base vector by calculating the center distance d(i) between

sample templates and the target center. The weight of the

ith base vector is defined as follows

WðiÞ ¼ expð�d2ðiÞ=2s2Þ ð2Þ

where a is the standard deviation of normal distribution.

This weight reflects the similarity between the target and

the samples. Finally, we get the weighted discriminative

dictionaries, and each discriminative dictionary corre-

sponds to a weight table.

Incremental dictionary updating

In many existing tracking methods, the appearance

model of target is often updated to reduce the negative

impact of target and background changes in the frames.

In the sparse decomposition, the coefficient γ of sample

contains the most representative information, where the

noise factor indicates the situation of target occlusion

and tracking drift to some extent. To this end, an incre-

mental dictionary updating strategy is proposed to mea-

sure the change of target or scene by analyzing the noise

energy u (the sum of the noise coefficients e). The larger

the noise energy is, the more significant the deformation

of the target or the greater the change of the scene

causes.

In the frame t, the average noise energy expression for

all samples can be represented as uk;t ¼
P

iu
i
k

n
, where ui

k is

the noise energy of the ith sample, n is the number of all

samples, and k is the feature tag (k ¼ 1 denotes color

feature and k ¼ 2 denotes noncolor feature). We define a

dynamic threshold to analyze changes of the target and

scenes, which are defined as follows

PfU k > xak g ¼ a ð3Þ

where xak is the upper quantile of set Uk (all uk;t from the

first frame to current frame) and reflects the overall

level of noise energy during the tracking process. If the

tracked average noise energy uT
k exceeds the threshold,

it indicates that the background changes too much in the
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Figure 2. Initial dictionary learning and the structure of multiple dictionaries.
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current frame. Meanwhile, we also set the minimum

update interval m to make the tracking process more

efficient and the interval between two updates must be

more than m frames.

In scene detection, we use the dynamic threshold of

noise energy to judge the intensity of the scene change.

Based on the target noise energy and the average noise

energy, we can determine whether to perform a dictionary

update. If the update condition is met, we use the samples

of the first frame and the samples of the detected frame to

obtain a new weighted dictionary Dk
0. The new dictionary

will be used for the next frame tracking task.

The incremental dictionary update trigger mechanism

is shown in Figure 3(a). We divide the positive samples

into two categories: static samples and dynamic samples.

The samples obtained in the first frame are static samples,

and the samples obtained in the trigger update mechanism

are dynamic samples. When the number of positive sam-

ples is larger than that of current negative samples, we use

a new positive sample set to randomly replace one group

of the dynamic samples to reduce the impact of sample

imbalance and maintain the efficiency of dictionary

learning.

Figure 3(b) shows the changes of threshold curve and

noise energy curve in sequence David 3. Five frames with

large changes of target pose and background are selected as

examples for illustration. It can be seen that the selected

examples occur when the noise energy value is higher than

the threshold value. Hence, our updating strategy can detect

and reduce the impact of the background change in real

time through the analysis of noise energy for better tracking

performance.
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Adaptive feature fusion strategy

In this section, we introduce the pyramid feature selection

strategy to locate the target tracking position, as shown in

Figure 4. We use a pyramidal selection strategy in the

feature selection. First, we select WN groups of samples

with the largest similarity weights as candidate samples CSj

(j is the tag of the candidate samples). The sample similar-

ity weight can be obtained in the sparse decomposition

process. Then, we compare the comprehensive reconstruc-

tion error of the candidate samples to select the best sample

as the tracking result.

In the current frame, all samples Si (i ¼ 1, 2, . . . , n) are

sparsely resolved by different feature dictionaries Dk (k ¼
1, 2) to obtain sparse coefficients γi

k , where k is a feature

tag. The similarity weights W i
k and reconstruction errors R

j
k

are normalized into [0,1] to eliminate the inconsistency of

different feature weights. Each sample Si has k feature

sparse coefficients. The weight values corresponding to the

maximum values of the k feature sparse coefficients are

used as the similarity weights W i
k (k ¼ 1, 2). Therefore,

we fuse these two weights into a composite weight wi,

which is defined as follows

tW i ¼
X

k
CkW i

k ð4Þ

Ck ¼ 1� uT
k =xakX2

k¼1
uT

k =xak

ð5Þ

In equation (4), we set the dynamic feature weight para-

meters Ck based on the feature reliability. Then we select a

few candidate samples CSj which have the largest synthetic

weights among all samples and the maximum value of

synthetic weights is denoted as WN. When the noise energy

is relatively large, the feature weight Ck is relatively small.

The definition of Ck is shown in equation (5). uT
k is the k-

feature average noise energy of the current frame, and xak is

the k-feature noise energy threshold defined in equation (3).

Then we use the synthetic reconstruction error to select

the best sample from candidate samples. The expression of

the synthetic reconstruction error is as follows

Rj ¼
Y

k
R

j
k ð6Þ

where R
j
k represents the reconstruction error of the sample

sj in k-feature, j is the label of the candidate samples.

Finally, we select the one with the smallest synthetic recon-

struction error in the candidate samples as our tracking

result.

Experimental results and comparison

In this section, the public sequences of VOT201736 and

OTB10037 are used for the parameter setting and tracking

performance evaluation of our method, respectively.

Firstly, we experiment with eight RGB sequences of

VOT2017,36 analyze the parameter settings in the feature

selection, and discuss the optimal combination of features.

Then all 74 RGB sequences on the OTB10037 are used for

tracking performance evaluation. The experiment tracking

results of other benchmarking methods are primarily

derived from publicly available results data on the author’s

homepage and OTB10037 homepage. The computer envi-

ronment used by our method is Intel (R) Core (TM) i3-3.7

GHz, RAM-12 GB, and MATLAB R2017a.
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Feature-k
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Candidate 

Samples
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Sample 
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Reconstruction Error
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Figure 4. Feature selection process.
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Implementation details and analysis

The method of this article adopts uniform parameter

settings. The number of all samples obtained by Gaus-

sian sampling during the tracking process is 500 and the

sampling radius is 25. The sampling parameter of the

training sample is set to: r0 ¼ 4, r1 ¼ 7, r2 ¼ 15. The

Haar-like38 feature dimension is set to 150, and the his-

togram bin of a single color channel is set to 36. Corre-

spondingly, the color feature dimension of an RGB

frame is set to 108. The update time interval must be

greater than m ¼ 6 frames, and the noise energy thresh-

old parameter is a ¼ 0.2.

Feature selection. Two types of features (noncolor features

and color features) are used in our proposed model. In this

section, the performance of different feature fusion strategy

on eight RGB sequences (ball1, blanket, butterfly, crossing,

godfather, pedestrian1, sheep, and wiper) in VOT201732 is

investigated and useful analysis is also carried out.

Table 1 shows the performance of different feature

fusion strategies in terms of average center location errors

(CLEs). The CLE is the Euclidean distance between the

tracking result and the standard target position. In

general, dual feature fusion always outperforms single

feature. Feature CIE L*a*b* (LAB) performs poorly in

combination with other non-color features. It is worth

noting that histogram of orientation gradient (HOG) þ
hue-saturation-value (HSV) has the best performance in

the sequences of blanket, crossing, and wiper, but the

average performance is the second best which is 3.1

lower than the best one, that is, Haar-like þ HSV. There-

fore, Haar-like þ HSV is selected as feature fusion strat-

egy for our following experiments.

Candidate samples selection. In this section, we need to select

a small number of candidate samples to narrow the scope of

the target searching. These candidate samples are obtained

by the composite similarity weights, where the optimal

similarity weight values need to be determined. In this

section, we discuss the influence of the maximum value

of synthetic weights WN on the tracking effect. The experi-

mental results are shown in Table 2.

In order to ensure the rationality of the experiment, we

do not adopt the dictionary update strategy here. Based on

the above experimental data, we can obtain the curve of

CLE versus WN (Figure 5).

Table 1. The average CLEs for different dual feature combinations.a

Type Feature (s) ball1 blanket butterfly crossing godfather pedestrian1 sheep wiper Average

Color feature HSV 5.69 10.42 21.22 47.57 15.06 41.18 43.66 24.46 26.16
RGB 43.8 17.85 27.21 40.75 16.89 21.71 35.46 216.36 52.5
LAB 4.91 12.76 19.74 45.48 10.35 13.41 43.11 163.71 39.18

Noncolor feature Haar-like 12.4 49.04 76.42 37.05 9.27 96.55 6.48 25.68 39.11
HOG 62.21 40.11 41.9 19.67 19.56 66.26 93.36 70.48 51.69

Fusion of color feature and
noncolor feature

HOG þ HSV 7.15 9.54 22.15 17.91 10.13 12.08 76.79 15.61 21.42

HOG þ RGB 29.87 9.85 30.13 19.53 7.95 13.54 22.24 43.33 22.06
HOG þ LAB 5.28 9.75 19.77 30.41 8.65 10.39 41.28 81.83 25.92
Haar-like þ HSV 3.69 11.05 27.97 42.84 7.14 23.26 11.58 19.05 18.32
Haar-like þ RGB 4.07 16.31 44.41 28.99 6.89 22.14 12.38 36.81 21.5
Haar-like þ LAB 3.23 14.92 27.4 35.49 7.52 15.57 39.81 29.08 21.63

CLE: center location error.
aBold data represent the best results of single video tasks.

Table 2. The average CLEs with different WN values.a

Sequences WN ¼ 1 WN ¼ 2 WN ¼ 3 WN ¼ 4 WN ¼ 5 WN ¼ 6 WN ¼ 7

ball1 5.066321 5.051257 4.621554 3.477649 4.148773 4.210412 3.893678
blanket 18.31654 10.40168 10.52438 11.24985 11.77508 15.84256 15.01424
butterfly 27.08312 28.87616 28.02551 30.88001 30.57644 30.84231 30.94732
crossing 45.38556 46.61894 47.04421 37.7282 42.01624 37.27262 35.52469
godfather 9.649543 7.13208 8.276668 7.635623 12.19341 7.387032 7.490803
pedestrian1 19.45411 20.88936 21.5531 19.13769 34.73961 15.42067 29.3694
sheep 35.82426 30.52743 22.04572 25.95596 27.32844 45.41071 22.90445
wiper 20.25632 24.19629 22.58765 20.48694 25.05795 26.48748 19.63991
Average 22.62947 21.71165 20.58485 19.56899 23.47949 22.85922 20.59806

CLE: center location error.
aSource: The parameter setting of the variable WN is from 1 to 7.
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In Figure 5, the broken line indicates the change in the

effect of a single video tracking. The histogram shows the

average tracking effect of all videos. As shown in Figure 5,

the average value is significantly increased when WN is

greater than 4 and the tracking results of some sequences

are also significantly changed, such as pedestrian1, sheep,

and so on. In the method evaluation experiment, we set WN

to 3 in the experiment.

Experimental evaluation

In the performance evaluation section, we mainly com-

pare the proposed method against eight state-of-the-art

methods including adaptive local sparse appearance

model-based tracker (ASLA1), incremental learning-

based tracker (IVT2), L1 sparse tracker using APG

(L1APG3), compress tracker (CT6), context tracker

(CXT7), online robust image alignment tracker (ORIA9),

online boosting tracker (OAB8), and tracking learning-

detection tracker (TLD10). The qualitative and quantita-

tive experimental results are carried out with a useful

analysis. All 74 RGB sequences on OTB10037 are used

as evaluating sequence set, and the distribution of all chal-

lenging attributes in the evaluating sequence set is shown

in Table 3.

Quantitative analysis. In this section, the tracking results

based on precision plots and success plots are used to com-

prehensively evaluate the performance of different meth-

ods on OTB100.37 The legend of precision plots shows the

values at the error threshold of 20 pixels, and the legend of

success plots show the area under curve (AUC) values. The

overlap score is a measure of the overlap range of the

tracking result and the ground truth tracking box, defined

as OS ¼ intersection area/union area, where intersection

area and union area are the intersection and union of two

regions, respectively.

Figure 6 shows the overall tracking precision plots

and success plots of all nine methods on 74 RGB

sequences of OTB100.37 The precision score and suc-

cess score of our approach are ranked first, higher than

the second methods by 10.6% and 7.4%, respectively.

As can be seen from the precision plots of one-pass

evaluation (OPE), as the location error threshold

increases, the precision of other trackers grows slowly,

and our algorithm improves a lot. In the precision plots

of OPE, the success score of our method is significantly

higher than the other methods.

Table 4 shows the performance of our method and

eight benchmarking methods in terms of success plots

and AUC scores on different attributes. The average

AUC value of our method, TLD and CXT trackers are

top 3 on 11 attributes. TLD and CXT trackers perform

well on attributes of fast motion (FM), motion blur

(MB), out of view (OV), and low resolution (LR) due

to dense sampling. ASLA tracker performs better on

occlusion (OCC), scale variation (SV), and non-rigid

object shape deformation (DEF) attributes by its local

representation.

Figure 7 shows the ranking of success plots of all bench-

marking methods on the 11 challenging attributes. On chal-

lenging attributes of SV, OCC, out-of-plane rotation

(OPR), DEF, FM, MB), OV, in-plane rotation (IPR), and

LR, the success plot of our method ranks the first. Despite

the lack of a scale-changing mechanism, our method still

has the best performance with 0.390 score on SV attribute.

In similar methods, ASLA using local information also has

a good score on SV attribute, but its score is lower than our

method by 3%.

The AUC scores of our method are higher than the sec-

ond method ASLA by 5.8% and 7.4% on the attributes OPR

and DEF, respectively, which shows the effectiveness of

our feature selection mechanism in the target appearance

change. ASLA and TLD trackers use local information and

have good scores on OCC attribute, which are 5.1% lower

than our method. On attributes FM and MB, our method is

8.3% and 7.5% higher than the second method CXT,

respectively. The ASLA tracker used local information and

had the best results on background clutter (BC) and illumi-

nation variation (IV) attributes, and the success rate score

of ASLA is 0.397 which is better than other similar

methods.

Qualitative analysis. Figure 8 shows the tracking process of

eight similar trackers and our method in the several RGB

sequences. In Figure 8, our method has good tracking per-

formance on the attribute of MB and FM. In sequences

Deer and BlurOwl, although tracking drift sometimes

Figure 5. The average CLE variation for eight sequences. CLE:
center location error.

Table 3. The distribution of 11 challenging attributes in the
evaluating sequence set: IV, SV, OCC, DEF, MB, IPR, OPR, OV,
BC, LR, and FM.

IV OPR SV OCC DEF MB FM IPR OV BC LR

Frequency 32 47 49 42 37 26 32 34 11 24 8

IV: illumination variation; SV: scale variation; OCC: partial or full occlu-
sion; DEF: non-rigid object shape deformation; MB: motion blur; IPR:
in-plane rotation; OPR: out-of-plane rotation; OV: out of view; BC: back-
ground clutters; LR: low resolution; FM: fast motion.
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occurs, our approach can readjust the tracking position

through the positive and negative templates when drifting

is not severe. In general, OAB has a good tracking effect in

these two videos, but it is prone to have tracking drift

problems when the target moves fast, as shown by #0025

of Deer and #0390 of BlurOwl. CXT tracker can well

recognize the target information in these sequences, but

when the target blur and FM occur, the scale of the tracking

will be abnormal.

Sequences bolt, bolt2, and basketball are typical of

the target DEF. CT tracker is a tracking method based

on compressed sensing and has good performance in

target DEF, as shown in sequence bolt2. However, it

appears that many tracking failures occur in sequences

deer and BlurOwl, which indicates that CT tracker suf-

fers from target FM easily. Our method performs well in

the challenges of target DEF, but not in IV. As shown in

#0700 of sequence basketball, our method shows signif-

icant tracking drift when there is a noticeable illumina-

tion change.

In sequence David3, most trackers suffer from OCC and

BC, but our method can effectively deal with short-term

occlusion of a large area because the adaptive dictionary

update strategy minimizes occlusion interference. From the

sequences David3 and couple in Figure 6, we can see that

OAB, CT, and the proposed approach have good tracking

performance in the background changes. TLD has the prob-

lems of tracking drift and target lost. Both ORIA and CXT

trackers are affected by small-range occlusion, which

causes to tracking failure. In sequence David3 #0146, a

wide range of occlusions also leads to tracking failures of

CT and OAB. Our method effectively identifies the target

location in these cases and does a good job for the rest of

tracking tasks.

Table 4. The AUC value of all trackers in different attributes.a

Ours ASLA IVT OAB L1APG TLD CT ORIA CXT

IV 0.357 0.387 0.263 0.278 0.324 0.343 0.215 0.268 0.344
OPR 0.406 0.348 0.232 0.290 0.264 0.342 0.236 0.252 0.328
SV 0.390 0.360 0.241 0.308 0.287 0.348 0.225 0.247 0.345
OCC 0.408 0.357 0.265 0.299 0.295 0.357 0.208 0.263 0.311
DEF 0.387 0.313 0.171 0.252 0.253 0.292 0.204 0.170 0.240
MB 0.472 0.213 0.188 0.363 0.322 0.366 0.180 0.171 0.397
FM 0.452 0.218 0.165 0.366 0.298 0.358 0.183 0.162 0.369
IPR 0.409 0.356 0.222 0.311 0.290 0.343 0.241 0.263 0.373
OV 0.338 0.264 0.190 0.217 0.201 0.325 0.185 0.153 0.328
BC 0.380 0.397 0.225 0.261 0.291 0.271 0.252 0.185 0.293
LR 0.350 0.325 0.274 0.301 0.334 0.342 0.208 0.229 0.345
Average 0.395 0.322 0.221 0.295 0.287 0.335 0.212 0.215 0.334

AUC: area under curve; ASLA: adaptive local sparse appearance model-based tracker; IVT: incremental learning-based tracker; OAB: online boosting
tracker; L1APG: L1 sparse tracker using APG; TLD: tracking learning-detection tracker; CT: compress tracker; ORIA: online robust image alignment
tracker; CXT: context tracker; IV: illumination variation; OPR: out-of-plane rotation; SV: scale variation; OCC: partial or full occlusion; DEF: non-rigid
object shape deformation; MB: motion blur; FM: fast motion; IPR: in-plane rotation; OV: out of view; BC: background clutters; LR: low resolution.
aBold data indicate the AUC scores are top three.

Figure 6. The comprehensive precision plots (left) and success plots (right) of comparison methods on 74 RGB sequences of
OTB100.37
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In the last two sequences, Lemming and DragonBaby

contain multiple challenge attributes such as SV, OCC,

rotation (IPR or OPR), and OV. It can be seen in Fig-

ure 6 that the tracking drift is easily occurred when the

target fast rotation, SV, and BC occur simultaneously.

In #1010 and #1078 of sequence Lemming, TLD, CXT,

and CT trackers have obvious tracking drift due to fast

rotation, while OAB and our method do not suffer

from that and perform better results. In #0084 and

#0096 of sequence DragonBaby, our method performed

well for target fast rotation and background

interference. CXT tracker has tracking scale anomalies,

and other methods have repeatedly experienced track-

ing drift and tracking failure. In sequence human8

#0054 and #0070, most trackers have tracking failures

when both illumination and scale changes occur. At the

#0101 and #0126 frames of sequence human8, the true

scale of the target is significantly smaller, and the

result area selected by our method contains a large

amount of background information. This situation

makes the performance of our tracker unstable and

prone to tracking failure.

Figure 7. Success plots of 11 challenging attributes on all 74 RGB sequences of OTB100.37
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Figure 8. Comparison of the proposed approach with eight benchmarking methods ASLA, IVT, OAB, L1APG, TLD, CT, ORIA, and
CXT. ASLA: adaptive local sparse appearance model-based tracker; IVT: incremental learning-based tracker; OAB: online boosting
tracker; L1APG: L1 sparse tracker using APG; TLD: tracking learning-detection tracker; CT: compress tracker; ORIA: online robust
image alignment tracker; CXT: context tracker.
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Conclusion and future work

This article proposes a novel visual tracking method based

on the weighted discriminative dictionaries and a pyrami-

dal feature selection strategy. We utilize color features and

noncolor features of the training samples to build multiple

discriminate dictionaries. Then, we use the position infor-

mation of samples to assign weights to the base vectors in

dictionaries. These weights are used to optimize the process

of target searching for selection of candidate samples, so

that the frequency of abnormal samples can be effectively

reduced. In the tracking process, for reducing the introduc-

tion of interference information in the dictionary and

improving the tracking efficiency, we gradually update the

dictionary based on noise analysis of the sparse coeffi-

cients. During the incremental update process, we sample

the pool to maintain the appearance change of the target

and obtain the current foreground and background infor-

mation. The positive sample pool also uses a random

replacement maintenance strategy to maintain the class

balance of the samples. Experimental results on the all

RGB sequences on OTB10037 show that the proposed

method is effective to deformation, occlusion, and other

challenges in object tracking.

We will further investigate this work. First, in the video

scene with cluttered background, the target is easy to be

misjudged. We plan to increase the fusion of three or more

features to enhance the accuracy of the target representa-

tion. Secondly, when the target scale changes, it is easy to

drift away even though there are different scales of sam-

pling. So, the mechanism of dealing with the change of

target scale should be further studied.
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