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Abstract: A closed-form solution to the angles-only initial relative orbit determination 
(IROD) problem for space rendezvous with non-cooperated target is developed, where a 
method of hybrid dynamics with the concept of virtual formation is introduced to 
analytically solve the problem. Emphasis is placed on developing the solution based on 
hybrid dynamics (i.e., Clohessy-Wiltshire equations and two-body dynamics), obtaining 
formation geometries that produce relative orbit state observability, and deriving the 
approximate analytic error covariance for the IROD solution. A standard Monte Carlo 
simulation system based on two-body dynamics is used to verify the feasibility and 
evaluate the performance proposed algorithms. The sensitivity of the solution accuracy to 
the formation geometry, observation numbers is presented and discussed. 
 
Keywords: Space rendezvous, relative orbit determination, angles-only measurement, 
covariance analysis. 

1 Introduction 
Gauss’ initial orbit determination problem using angles-only observations is well known. 
An Earth-based position-known observer gathers line-of-sight angles information (i.e., 
pairs of azimuth and elevation angles) of a space target over a period time. Theoretically, 
Gauss’ method can be applied to space rendezvous mission when the chaser’s positions are 
known. However, Gauss’ method is naturally iterative and has no known closed-form 
solution [Battin (1987); Curtis (2010)]. Moreover, if the target and chaser are in similar 
orbits, Gauss’ method may be ill-conditioned and suffer from numerical problems. 
Analytic solution to the IROD problem may be possible if the linear relative motion dynamics 
such as Clohessy-Wiltshire (CW) equations [Clohessy and Wiltshire (1960)] are applied. 
Unfortunately, the angels-only IROD problem during proximity operations suffers from a 
state observability problem for the short of range measurements [Woffinden and Geller 
(2009)]. To overcome the observability problem, Chen et al. [Chen and Xu (2011)] proposed 
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a two-sensor scheme with double line-of-sight measurements are utilized to solve the IROD 
problem by using the basic theorem of triangle geometry. Newman et al. [Newman, Lovell, 
Pratt et al. (2014); Newman, Lovell and Pratt (2014)] successfully applied second-order 
relative motion models to the IROD problem. Perez et al. [Perez, Geller and Lovell (2018)] 
established sphere-frame-based dynamics to analyze the angles-only IROD problem, 
however closed-form solution is still not achieved. Grzymisch et al. [Grzymisch and Ficher 
(2014)] proposed the orbital maneuver method to improve the state observability. Gaabarri 
et al. [Gaabarri, Sabatini and Palmerini (2014)] took advantage of the reference image 
information of the target to solve the angles-only problem. Geller et al. [Klein and Geller 
(2012); Geller and Klein (2014); Geller and Perez (2015)] demonstrated an angles-only 
IROD solution for orbital proximity operations by taking advantage of the lever-arm-effect 
of the offset camera. Gong et al. [Gong, Li, Li et al. (2018)] improved the IROD performance 
of the lever-arm-effect algorithm. However, this scheme is limited by the fact that the lever-
arm cannot be too large for most spacecraft [Gong, Geller and Luo (2016)].  
The objectives of this paper are to develop closed-form solution for the angles-only IROD 
problem during space rendezvous phase based on hybrid dynamics with the concept of 
virtual distributed, with which no orbital maneuver, double line-of-sight or lever-arm are 
required. Additionally, the emphasis is also focused on analyzing observable conditions of 
the orbital state, developing analytic expressions for the IROD state error mean and 
covariance, evaluating the performance of the IROD algorithm in a standard two-body 
environment, and determining the better formation geometries which may be potentially 
used for on-board applications. While contributions due to 2J  and higher-order gravity 
terms, atmospheric drag, solar radiation pressure are important, these effects are specific 
to spacecraft orbit selection, mass and geometry, which is beyond the scope of this paper. 
The formulation of the IROD problem is presented in Section 2 and its general solution is 
presented in Section 3. The state observability is analyzed in Section 4 while the linear error 
covariance analysis for the proposed algorithm is presented in Section 5. The results of Monte 
Carlo simulation and performance analysis for different formation geometries and measuring 
conditions are presented in Section 6. Conclusions are presented in Section 7. 

2 Problem formulation 
Fig. 1 illustrates the formation geometry and vector quantities associated with the IROD 
problem, where vC  is the virtual chaser which does not have a camera on-board, rC  is the 
real observer and also named chaser which has a camera mounted in the center of mass. As 
we can see from the figure, this kind of geometry looks like the case shown in Geller  et al. 
[Geller and Perez (2015)], i.e., the observer rC  seems to be a flying camera offset from the 
center of mass of chaser vC  and the offset is changing with time. However, it has been 
deduced that if both of the chaser and offset camera satisfy the CW equations the 
observability of the orbital state is not possible [Geller and Klein (2014)]. But actually this 
hypothesis was made under the assumption of the chaser and the camera are close to each 
other and CW dynamics is used. Thus, in this paper the observability problem will be tried 
to be solved by the use of nonlinear orbit propagation of the observer rC .  
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The same as previous work, the relative motion of the chaser rC  with respect to the target 
is still governed by the analytic solution to the CW equations in the LVLH (Local Vertical 
Local Horizontal) reference frame. The origin of a rotating LVLH reference frame is co-
located with the target center-of-mass. The axes of the LVLH frame are aligned with the 
chaser inertial position vector (z-axis or radial), the normal to the orbit plane (y-axis or 
cross-track), and the along-track direction (x-axis, in the direction of the v-bar or along-
track, completes the orthogonal set).  
The position of the chaser center-of-mass relative to the target center-of-mass in LVLH 
coordinates is denoted by ( )tr , and the velocity of the chaser relative to the target as 
observed from a rotating LVLH frame is denoted by ( )tv . Vectors without a superscript 
are assumed to be coordinatized in LVLH coordinates. The motion of the chaser with 
respect to the target, whether on a flyby orbit, a circumnavigation/football orbit [Woffinden 
and Geller (2009)], or any other coasting trajectory, is governed by the analytic solution to 
the CW equations 

( ) ( ) (0) ( ) (0) ( ) ( ) (0) ( ) (0)rr rv vr vvi i i i i iφ φ φ φ= + = +r r v v r v  (1) 

where (0)r , (0)v  are the position and velocity at 0t = , ( )ir , ( )iv  are the position and 
velocity at time it , and ( )iφ  is a shorthand notation for transition matrix partition 0( )it tφ − . 
Moreover, an alternative description of the LOS measurement expressed in the LVLH 
frame can be given by 

( )( )
( )los
ii
i

=
ri
r

 (2) 

Target

Earth
rR

vR

rC
vC

tR

rvr

vilosi
r

 
Figure 1: Problem set up and formulation  

3 Solution to the angles-only IROD problem 
Consider the first LOS observation of Spacecraft rC , (0)i . The solution for the initial 
position v (0)r  and r (0)r  must satisfy 

v rv 1(0) (0) (0)k+ =r r i  (3) 

r 1(0) (0)k=r i  (4) 

where 1k  is some unknown scale factor of (0)i , and the baseline rv (0)r  is calculated as 
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rv r v(0) (0)( (0) (0))LVLH
inertialT= −r R R  (5) 

where v (0)R  and r (0)R  are the inertial position vectors of the Spacecraft vC  and rC , 
LVLH

inertialT  is the transformation matrix from the inertial frame to LVLH frame. The value of 

rR  will be given by on-board GPS receiver, but the value of vR  (or the orbit of rC ) will 
be propagated by absolute orbit dynamics with a given initial state v (0)R  and v (0)V  

.
v v

.
v v( )



=





=R V

V g R
 (6) 

where g  is the acceleration due to gravity acting on the virtual spacecraft vC  which is 
based on a point-mass gravity model [Kaplan (1976)]. 
Similarly, for the second and third LOS observations the solution for the initial position 
and velocity v (0)r , v (0)v , r (0)r , r (0)v  must satisfy 

v v rv 2(1) (0) (1) (0) (1) (1)rr rv kφ φ+ + =r v r i  (7) 

r r 2(1) (0) (1) (0) (1)rr rv kφ φ+ =r v i  (8) 

v v rv 3(2) (0) (2) (0) (2) (2)rr rv kφ φ+ + =r v r i  (9) 

r r 3(2) (0) (2) (0) (2)rr rv kφ φ+ =r v i  (10) 

where 2k  and 3k  are also unknown scale factors of (1)i  and (2)i , respectively. Then, 
when 3N ≥  observations are available during a coasting period, the thi  observation also 
satisfies 

v v rv 1( ) (0) ( ) (0) ( ) ( )r ir rvi i i k iφ φ ++ + =r v r i  (11) 

1r r( ) (0) ( ) (0) ( )irr rvi i k iφ φ ++ =r v i  (12) 

Let 1 v v r r[ , , , (0) , (0) , (0) , (0) ]T T T T T
Nk k= X r v r v , then the vector Eqs. (3)-(12) 

represent 6N equations with 12N +  unknowns. Rearranging and writing the result in 
matrix form produces 
A =X B  (13) 
where 

3 1 3 1 3 3 3 3 3 3 3 3

3 1 3 1 3 3 3 3

3 1 3 1 3 3 3 3

3 1 3 1 3 3 3 3 3 3 3 3

3 1 3 1 3 3 3 3

(0) 0 0 0 0 0
0 (1) 0 (1) (1) 0 0

0 0 ( 1) ( 1) ( 1) 0 0
(0) 0 0 0 0 0

0 (1) 0 0 0 (1) (1)

rr rv

rr rv

rr rv

I

A
N N N

I

φ φ

φ φ

φ φ

× × × × × ×

× × × ×

× × × ×

× × × × × ×

× × × ×

− 
 − − 
 

=  
− − − − − 

 −
 

− − 





       







i
i

i
i

i 

 (14) 
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rv

rv

12 1

(0)

( 1)N

×

 
 
 =
 −
 
 



r

B
r

0

 (15) 

Then, the least-squares solution to this set of over-determined equation is 


1( )T TA A A B−=X  (16) 

After that, unique values for the initial position (0)r  and velocity (0)v  can be extracted.  

 

0
(0)
(0)

C
 

= = 
 

r
x X

v
 (17) 

where 

( ) 6 66 60 NC I ×× +
 =  

 (18) 

Thus, Eqs. (16)-(17) represents a simple algorithm that can be used to determine the 
solution to the angles-only IROD problem based on 3N ≥  observations for any relative 
motion coasting trajectory, and for any known constant or time-varying chaser orientation. 

4 Observability analysis 
Conceptually, the relative state X  can be uniquely determined from the measured LOS 
time history, the angles-only IROD problem is said to be observable. By contrast, it is said 
to be unobservable if more than one set of states share the same LOS time history. The goal 
of this section was to analytically analyze the initial relative state’s observability criteria 
of the angles-only IROD problem based on proposed algorithm.  
Firstly, as shown in Eq. (5), the baseline rvr  is calculated from the inertial position of the 
two spacecraft. But if it is propagated by CW dynamics, i.e., 

rv r v r v( ) ( )[ (0) (0)] ( )[ (0) (0)]rr rvi i iφ φ= − + −r r r v v  (19) 
Then substituting Eq. (19) into Eq. (11) yields 

r r 1( ) (0) ( ) (0) ( )rr rv ii i k iφ φ ++ =r v i  (20) 

So when N  observations can be obtained, Eq. (13) is reduced to 

A =X 0  (21) 

where A  is a matrix depending on line-of-sight and transition matrix. 
Thus, according to the linear system theorem [Strang (2014)], the unique physical solution 
cannot be determined from Eq. (21) whatever A  is full rank or not, which means 
unobservable. On contrast, it will be observable if the baseline rvr  is calculated by Eq. (5). 
The reason is Eq. (5) stands for the orbital propagation of high-order relative motion 
dynamics. And as concluded in Woffinden [Woffinden (2008)], the angles-only navigation 
system will has some observability if the nonlinear dynamics is used. But if spacecraft vC  
and rC  are so close to each other, e.g., hundreds meters away, Eq. (5) will get a similar 
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result with CW dynamics which leads to be unobservable. Therefore, it is better to have a 
longer distance, especially have a larger altitude difference between vC  and rC   in order 
to improve the observability. 
Secondly, as shown in Eq. (13), if column vector B  is zero vector, i.e., rv ≡r 0 , Eq. (13) is 
homogeneous. Then, the initial orbit cannot be uniquely solved. Thus, the necessary 
condition for Eq. (13) has unique physical solution is  

rv ≡/r 0  (22) 

Further, if vector rvr  is parallel to the line-of-sight, the column vector B  is dependent with 
system state X . Then the initial orbit is unobservable. For example, if there have three 
observations and 

rv r(0) (0)m=r r  (23) 

rv r r(1) (1) (0) (1) (0)rr rvn nφ φ= +r r v  (24) 

rv r r(2) (2) (0) (2) (0)rr rvk kφ φ= +r r v  (25) 

where m , n  and k  are unknown scale factors respectively. 
Then the column vector B  can be re-expressed as 

G=B X  (26) 

3 3 3 3

3 3

3 3

0 0
0 (1) (1)
0 (2) (2)

rr rv

rr rv

mI
G n n

k k
φ φ
φ φ

× ×

×

×

 
 =  
  

 (27) 

Substituting Eq. (26) into Eq. (13) produces 
( )A G− =X 0  (28) 

Thus, the initial orbit cannot be solved from Eq. (28) whatever the coefficient matrix 
( )A G−  is full rank or not. As a result, the sufficient and necessary condition of 
observability is the projection of the baseline rvr  in the LVLH frame cannot be parallel to 
the line-of-sight, i.e., 

rv × ≡/r i 0  (29) 

5 Linear error covariance analysis 
As shown in Eqs. (13)-(15), the IROD solution requires the knowledge of line-of-sight i  
and baseline rvr . The measured values of these variables i  and rvr  contain errors which 
will lead to estimation errors in the initial relative orbit. Thus, it is very important to figure 
out how the IROD estimation error and covariance propagate in terms of measurement 
errors. In the following subsections, the actual measurement models and error models will 
be built and utilized to do the linear error covariance analysis. 
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5.1 Measurement models 
Firstly, it is assumed that the measured value of the unit LOS vector ( )ji  from spacecraft 

rC  contains camera measurement error j  modeled by zero mean Gaussian noise with a 
standard deviation camσ . The measured value of line-of-sight is given by 

( ) [ ]( ) ( ) ( ) ( )j jj j j j = − × = + × i I i i i    (30) 

where [ ]×  is a skew-symmetric cross-product matrix operator and j  is a time label.  

Secondly, the calculation of the baseline rvr  requires the inertial-to-LVLH transformation 

matrix LVLH
inertialT  and both the inertial positions of spacecraft vC  and rC . According to the 

development of the navigation technologies, errors in the chaser inertial position and 
velocity vector will be small if there is an average GPS receiver on-board which is very 
commonly used on low-earth orbital spacecraft. Thus, the position error of rC  can be 
modeled by zero mean Gaussian noise with a standard deviation gpsσ , i.e., 

2
r gps~ (0, )NδR σ . Besides, it is supposed that the position error of vC  is also modeled by 

a zero mean Gaussian noise with a standard deviation posσ , i.e., 2
v pos~ (0, )NδR σ . Then, 

the measured baseline 12r  can be modeled as follows: 

rv rv r v( ) ( ) ( )( )LVLH
inertial j jj j T j δ δ= + −r R Rr  (31) 

As a result of LVLH
inertialT  is calculated from the estimated inertial position and velocity of vC  

andδR  is small, it is assumed that LVLH
inertialT  is known perfectly and its error can be negligible. 

5.2 Analytic error covariance 
First of all, the estimation error of initial relative orbit state is given by  

( )C Cδ δ= − =e X X X  (32) 

where X  denotes the estimation value of the initial state and X  is the true value of the 
initial state given by 

A+=X B  (33) 

where A+  is pseudo-inverse of A .  

Letting A A Aδ= + ,  δ= +B B B , substituting into Eq. (13) and neglecting second-order 
terms produces 

( )A AAδ δ δ+ += −X B B  (34) 

Substituting Eq. (34) into Eq. (32) produces the following expression for the estimation 
error 
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( )CA AAδ δ δ+ += −e B B  (35) 

where Aδ  and δB can be obtained by substituting the measurement models into the 
definition of A  and B . Then, these two variables can be expressed as  

A BA H Hδ δ= =， B ν  (36) 

v,0

r,00 3 1 3 12

v, 13 1 1 3 12

r, 1

0 0
,

0 0 NN

N

δ
δ

δ
δ

× ×

−× − ×

−

 
 …      = =    …   
  

   

R
R

ν
R
R






 (37) 

3 3 3 3

3 3 3 3

3 3 3 3

3 3 3 3

3 3 3 3

[ ]
[ ]

[ ]

(0) 0 0
0 (1) 0

0 0 ( 1)
(0) 0 0
0 (1) 0

[ ]
[ ]

AH
N

× ×

× ×

× ×

× ×

× ×

× 
 × 
 

=  
− × 

 ×
 

×  





   







i
i

i
i

i

 (38) 

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

6 3 6 3 6 3 6 3 6 3 6 3

(0) (0) 0 0 0 0
0 0 (1) (1) 0 0

0 0 0 0 ( 1) ( 1)
0 0 0 0 0 0

B

T T
T T

H
T N T N

× × × ×

× × × ×

× × × ×

× × × × × ×

− … 
 − … 
 =
 

… − − − 
 … 

      
 (39) 

where T  is a shortcut for the inertial-to-LVLH transformation matrix LVLH
inertialT . 

Substituting Eq. (36) into Eq. (35) yields 

1 2H H A Bδ += +e ν   (40) 

where 1 BH CA H+=  and 2 AH CA H+= − . Since the   and ν  are zero mean and 
uncorrelated, the mean estimation error is given by 

6 1[ ]E δ ×= =M e 0  (41) 
and the covariance of the estimation error is given by 

( )( ) 1 0 1 2 1 2
T T TP E H H H Hδ δ = − − = Λ + Λ e M e M  (42) 

where the expressions for 0 [ ]TEΛ = νν  and 1 [ ]T T
N NEΛ = XX   are as the following 

respectively 
2
pos 3 3 3 3 3 3 3 3

2
3 3 gps 3 3 3 3 3 3

0
2

3 3 3 3 pos 3 3 3 3
2

3 3 3 3 3 3 gps 3 3

0 0 0

0 0 0

0 0 0

0 0 0

I

I

I

I

σ

σ

σ

σ

× × × ×

× × × ×

× × × ×

× × × ×

 …
 

… 
 Λ =  
 …
 

…  

    
 (43) 
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2
1 3 3 3 3

2
1 cam2

2
3 3 3 3

0

0 N

k I

k I

σ
× ×

× ×

 …
 

Λ =  
 … 

    (44) 

Although the expressions for the mean and covariance of the estimation error in Eqs. (41)-
(42) are expressed in terms of ( )ii  and ( )LVLH

inertialT i , in practice, for real-time on-board 

applications, these expressions will need to be substituted by ( )ii  and ( )LVLH
inertialT i . 

6 Monte Carlo simulation 
A Keplerian two-body dynamics Monte Carlo simulation system is built to verify the 
validation and evaluate the performance of the proposed algorithm. The truth model state 
vector for reference is a 12-dimensional vector defined by the inertial state (includes 
position and velocity) of the two vehicles [Gong, Geller and Luo (2016)]. In the following, 
the error covariance computational models is presented, the key parameters are set for the 
simulation and then the performance of the proposed IROD algorithm is analyzed.   

6.1 Error covariance computation models 
The true estimation error statistics are generated by selecting a fixed set of initial conditions 
for both spacecraft’s inertial state. The truth models generate the spacecraft’s trajectories 
and a LOS time-history. Then the error models in Subsection 3.1 are used to generate a set 
of observations that are processed by the proposed algorithms to obtain the orbital solution 
for the ith Monte Carlo run 0ˆ ( )ix . When n  Monte Carlo runs are available, the true error 
mean and covariance for the estimation are calculated by using the following models  

( )
1

1 n

true
i

i
n

δ δ
=

= = ∑M e e  (45) 

( ) ( )
1

1
1

n T

true
i

P i i
n

δ δ δ δ
=

   = − −   − ∑ e e e e  (46) 

where the estimation error for the thi  Monte Carlo run is ( ) ( )0 0ˆi iδ = −e xx . 

Further, it is more intuitive to know how good the range estimate is, because of the well-
known range observability problem of angles-only IROD and navigation during orbital 
proximity operations. Thus, 2-norm will be used to describe the accuracy of the proposed 
IROD algorithm 

( )
1

1

[ , , ]

n

d
i

d x y z

M i
n

δ

σ σ σ σ
=


=


 =

∑ e  (47) 

where xσ , yσ  and zσ  are square roots of the first three diagonal elements of trueP , i.e., the 
standard deviation of the error in the x , y , and z  directions.  

As a result of dM  and dσ  are sufficient to characterize the uncertainties of the relative 
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range estimate, IROD performance will be measured and presented by dM  and dσ  in the 
following section. 

6.2 Parameters setting 
First of all, the emphasis is placed on verifying the proposed IROD algorithm and testing 
the performances of different distributed formation but not discussing the effect of 
dynamics, so a circular target orbit is used and the initial orbital elements are as follows: 
semi-major axis, 6790.15 km; eccentricity, 0.001; inclination, 51.65 degree; ascending 
node, 281.65 degree; argument of perigee, 37.39 degree; true anomaly, 322.76 degree. 
The nominal initial position of virtual chaser vC  is in +v-bar direction and the 
corresponding velocity is zero, i.e., vC  is initialized as v-bar stationary with respect to the 
target. The initial relative orbit of rC  will be set in the simulation cases separately. 
Secondly, a summary of the other key parameters is provided in Tab. 1. The accuracy of 
GPS receiver is assumed to be 10 m/axis while the position uncertainty of virtual spacecraft 

vC  is supposed to be 1 m/axis. And the integration time-step is 1 sec, Monte Carlo runs n  
is 500 (which can roughly lead to more than 90% confidence), the number of observations 
N  varies from 3 to 21. Additionally, the line-of-sight uncertainty is chosen to medium 
level, i.e., 0.0001 ran/axis, according to the development of the optical sensor. 

Table 1: Key parameters 

Parameters Value 
GPS position uncertainty of 

rC   
σgps 10 m/axis 

Position uncertainty of vC  σpos 1 m/axis 
Line-of-sight uncertainty  σcam 0.0001 

 Number of Monte Carlo runs n  500 
Number of observations N  3 to 21 
Total simulation time fT  3000 s 
Integration time-step  1 s 

6.3 Angles-only IROD performance analysis 
The results of Case 1 are shown in Fig. 2. The initial positions of virtual vC  is 5 km 
downrange of the target in +v-bar direction. The initial relative position of Chaser rC  is 5 
km altitude in the +r-bar direction, and the relative orbit is changed by setting different 
initial velocity in the direction of along-track while the corresponding velocities are zero 
in the direction of radial and cross-track. It can be seen that the best estimation is achieved 
when the initial along-track velocity is zero. Further, the range estimate accuracy can be 
only several meters if more than 3 observations are available. And the larger the initial 
along-track velocity is, the worse the estimation is. When the initial along-track velocity is 

5±  m/s and 21 observations are available, dM  is about 1400 m while dσ  is smaller than 
20 m. Thus, the estimate error is about 28%  of the 5 km initial separation. 
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Figure 2: Results of Case 1: Left: error mean; Right: standard deviation 
Fig. 3 presents the results for Case 2. In order to make the simulation case being more close 
to the practical rendezvous circumstance, the chaser is initialized in the position where is 
35 km behind and 10 km below the target while the relative velocity is [5.9,0,-0.2]  m/s. 
And the IROD performance will be tested and analyzed by changing virtual spacecraft’s 
orbit. Its nominal initial positions are 1, 5, 15, 50 and 100 km downrange of the target in 
+v-bar direction, respectively. As shown in Fig. 2, dM  (the estimate error) nearly has no 
change when the initial virtual position varies from 1 km to 50 km, dM  is around 1600 m 
(about 4.4% of the initial separation) for 21 observations. dM  becomes smaller that is 
about 570 m for 21 observations, 1.6% of the initial separation. Further, the vbar stationary 
position of the virtual spacecraft almost have no influence on the estimate error std which 
is coincident with the conclusion made by covariance analysis, i.e., the estimate error 
covariance mainly depends on the level of the absolute positioning noise and LOS 
measuring noise. It can be seen that dσ  is about 60 m when the number of observations 
are more than 3.  

  

Figure 3: Results of Case 2, Left: error mean; Right: standard deviation 
Fig. 4 shows the results for Case 3. In this case, the radial position of the virtual spacecraft 
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varies from 0 km to 10 km while other conditions are the same with Case 2. It can be seen 
that the changing of the virtual spacecraft’s radial position also has slightly influence on dσ . 
However, dM  changed a lot, i.e., about 6 km for the case of 5 km radial position (16.5% of 
the initial separation) and 18 km for the case of 10 km radial position (49.5% of the initial 
separation) which are not acceptable. Thus, the virtual spacecraft’s v-bar stationary keeping 
is a good choice for the IROD problem. 

 

Figure 4: Results of Case 3: Left: error mean; Right: standard deviation 
Fig. 5 presents results for Case 4. The virtual spacecraft is initialized to do the oscillating 
flight along the cross-track direction while other conditions are the same with Case 2. The 
oscillating magnitude varies from 0 km to 100 km. And the initial position of the virtual 
spacecraft is 5 km downrange of the target in the +vbar direction. Again, dσ  shows the 
same trend with those of Cases 2 and 3. And it can be seen that the change of the oscillating 
magnitude has slight impact on the range estimation, i.e., when the oscillating magnitude 
increases, the estimate error increases a little bit. Therefore, it is better to assume the virtual 
spacecraft is co-planar with the target. 

 

Figure 5: Results of Case 4: Left: error mean; Right: standard deviation 
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7 Conclusions 
This paper presented a hybrid dynamics scheme with the concept of virtual distribution to 
analytically determine the initial relative orbit for angles-only rendezvous mission. 
Observable condition and approximately closed-form estimate error covariance were 
obtained by observability analysis and linear covariance analysis in the context of 
Clohessy-Wiltshire equations. And the detailed performance analysis of the proposed 
IROD algorithm was conducted and presented based on standard two-body Monte Carlo 
simulations and classical rendezvous missions. The simulation results has shown the 
possible potential of the proposed algorithm to analytically solve the angles-only IROD 
problem for rendezvous mission. 

Acknowledgement: This work is supported in part by the Natural Science Foundation of 
China (11802119), the National Postdoctoral Program for Innovative Talents 
(BX201700304), and Fundamental Research Funds for Central Universities (NT2019023). 

Conflicts of Interest: The authors declare that they have no conflicts of interest to report 
regarding the present study. 

References 
Battin, R. H. (1987): An Introduction to the Mathematics and Methods of Astrodynamics, 
pp. 131-140. New York: AIAA. 
Chen, T.; Xu, S. (2011): Approach guidance with double-line-of-sight-measuring 
navigation constraint for autonomous rendezvous. Journal of Guidance, Control and 
Dynamics, vol. 34, pp. 678-687. 
Clohessy, W. H.; Wiltshire, R. (1960): Terminal guidance system for satellite rendezvous. 
Journal of the Aero/Space Sciences, vol. 27, no. 3, pp. 653-658. 
Curtis, H. D. (2010): Orbital Mechanics for Engineering Students. New York: Elsevier. 
Gasbarri, P.; Sabatini, M.; Palmerini, G. (2014): Ground tests for vision based 
determination and control of formation flying spacecraft trajectories. Acta Astronautica, 
vol. 102, pp. 378-391. 
Geller, D. K.; Klein, I. (2014): Angles-only navigation state observability during orbital 
proximity operations. Journal of Guidance, Control and Dynamics, vol. 37, no. 6, pp. 
1976-1983. 
Geller, D.; Perez, A. (2015): Initial relative orbit determination for close-in proximity 
operations. Journal of Guidance, Control, and Dynamics, vol. 38, no. 9, pp. 1833-1842. 
Gong, B. C.; Li, W. D.; Li, S.; Zheng, L. L. (2018): Angles-only initial relative orbit 
determination algorithm for noncooperative spacecraft proximity operations. Astrodynamics, 
vol. 2, no. 3, pp. 217-231. 
Gong, B. C.; Geller, D.; Luo, J. J. (2016): Initial relative orbit determination analytical 
covariance and performance analysis for proximity operations. AIAA Journal of Spacecraft 
and Rockets, vol. 53, no. 5, pp. 822-835. 



 
 
 
234                                                                                           CMES, vol.122, no.1, pp.221-234, 2020 
 
Grzymisch, J.; Ficher, W. (2014): Observability criteria and unobservable maneuvers for 
in-orbit bearings-only navigation. Journal of Guidance, Control and Dynamics, vol. 37, no. 
4, pp. 1250-1259. 
Kaplan, M. H. (1976): Modern Spacecraft Dynamics and Control. pp. 343-370, Wiley, 
New York. 
Klein, I.; Geller, D. (2012): Zero delta-V solution to the angles-only range observability 
problem during orbital proximity operations. Itzhack Y. Bar-Itzhack Memorial Symposium, 
Haifa, Israel. 
Newman, B.; Lovell, A.; Pratt, E.; Duncan, E. (2014): Quadratic hexa-dimensional 
solution for relative orbit determination. AIAA/AAS Astrodynamics Specialist Conference, 
San Diego, California. 
Newman, B.; Lovell, A.; Pratt, E. (2014): Second order nonlinear initial orbit 
determination for relative motion using Volterra theory. Proceedings of the AAS-AIAA 
Space Flight Mechanics Meeting, Santa Fe, New Mexico. 
Perez, A. C.; Geller, K. D.; Lovell, T. A. (2018): Non-iterative angles-only initial relative 
orbit determination with perturbations. Acta Astronautica, vol. 151, pp. 146-159. 
Strang, G. (2014): Linear Algebra and Its Applications. Elsevier Science. 
Woffinden, D. C.; Geller, D. K. (2009): Observability criteria for angles-only navigation. 
IEEE Transactions on Aerospace and Electronic Systems, vol. 45, no. 3, pp. 1194-1208. 
Woffinden, D. (2008): Angles-Only Navigation for Autonomous Orbital Rendezvous 
(Ph.D. Thesis). Utah State University. 
 
 
 
 


	Analytic Initial Relative Orbit Solution for Angles-Only Space Rendezvous Using Hybrid Dynamics Method
	Baichun Gong0F , Shuang Li1, *, Lili Zheng2 and Jinglang Feng3

	7 Conclusions
	References

