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Abstract

Eigenvectors of networked systems are known to reveal central, well-connected, network
vertices. Here we expand upon the known applications of eigenvectors to define
well-connected communities where each is associated with a prominent vertex. This
form of community detection provides an analytical approach for analysing the
dynamics of information flow in a network. When applied to the neuronal network of
the nematode Caenorhabditis elegans, known circuitry can be identified as separate
eigenvector-based communities. For the macaque’s neuronal network, community
detection can expose the hippocampus as an information hub; this result contradicts
current thinking that the analysis of static graphs cannot reveal such insights. The
application of community detection on a large scale human connectome (∼ 1.8 million
vertices) reveals the most prominent information carrying pathways present during a
magnetic resonance imaging scan. We demonstrate that these pathways can act as an
effective unique identifier for a subject’s brain by assessing the number of matching
pathways present in any two connectomes.

Author summary

The dynamic response of a network to stimulus can be understood by investigating that
system’s eigenvectors. The eigenvectors highlight the most prominent nodes; those that
are either a major source or destination for information in the network. Moreover by
defining a coordinate system based on multiple eigenvectors, the most prominent
communities can be detected with the most prominent node detected alongside those in
the community that funnel information towards it. These methods are applied to a
variety of brain networks to highlight the circuitry present in a flatworm (Caenorhabditis
elegans), the macaque and human subjects. Static graphs representing the connectomes
are analysed to provide insights that were previously believed to only be detectable by
numerically modelling information flow. Finally, we discovered that brain networks
created for human subjects at different times can be identified as belonging to the same
subject by investigating the similarity of the prominent communities.

Introduction 1

Understanding the brain’s function is a major pursuit of humanity, with mapping and 2

comprehending the human connectome the final goal. The work contained herein 3

develops tools that facilitate comprehension of the vast and, on the surface, 4

incomprehensible network of the brain with, in the case of humans, an estimated 100 5

billion neurons and 100 trillion synaptic connections [1]. Our ability to map neurons 6

and their connections is limited but ever improving. The magnetic resonance imaging 7
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(MRI) scans considered herein achieve a 1 mm resolution for in vivo human subjects [2] 8

but 0.1 mm has been achieved with in vivo diffusion MRI data [3]. Improving scan 9

resolutions will enable higher fidelity connectomes and in turn require analytical tools 10

that can cope with the increase in scale. These detailed scans can be converted into 11

graphs through pipelines that produce consistent connectomes allowing studies and 12

comparisons [4]. Connectome analysis has often been constrained to small graphs 13

(< 1000 vertices) with the results of these studies compared with existing intuitions and 14

knowledge gained through experimentation [5], [6]. These previous studies on small 15

connectomes have identified influential regions by performing numerical flow simulations 16

of information travelling throughout the brain, but such an approach would likely be 17

intractable on large graphs containing millions of nodes. 18

The application of graph theory on a networked system produces an abstract 19

representation, i.e. a graph comprising of edges and vertices, that can be analysed to 20

better understand the movement of information. It has been argued that graph theory 21

has some blindspots when considering the dynamics of information flow, see [6], with 22

centrality measures unable to achieve the same insights as numerical methods. 23

Eigenvector centrality, see [7], is a metric that captures important information on a 24

graph’s dynamics, in particular it highlights the vertices through which information 25

most frequently passes with this capability famously underpinning Google’s PageRank 26

development [8]. 27

Spectral analysis, and eigenvectors in particular, are a cornerstone of the 28

developments herein with eigenvector centrality adapted and expanded upon. This 29

expansion is based on incorporating multiple eigenvectors to produce a dynamics-based 30

method for community detection. A common approach for community detection is to 31

focus on the static topology of the graph, i.e. the distribution of edges in a graph. One 32

such example is Leicht-Newman community detection for directed graph [9] that 33

compares the density of edges with that of a graph where edges are distributed 34

randomly to determine whether clustering and, hence, community division is present. 35

In contrast to Leicht-Newman’s approach, dynamics-based community detection can 36

reveal communities of information flow that form in the presence of stimulus. These 37

communities are likely to be influenced by clustering but they are also affected by the 38

source and destination of information in the graph. Simulations of information flow are 39

an accepted approach for uncovering these dynamic processes [6, 10]. But analytical 40

solutions may be required if connectomes grow to capture the activity of billions of 41

neurons. 42

Results 43

C. Elegans Connectome 44

The Caenorhabditis elegans is a non-parasitic nematode that is transparent and 45

unsegmented with a long cylindrical body shape that grows to about 1 mm in length. A 46

wiring diagram of the C. elegans nervous system was updated by Varshney et al. to 47

contain 279 somatic neurons [5]. The full wiring diagram includes chemical synapses, 48

gap junctions, and neuromuscular junctions. Varshney et al. examined the undirected 49

electrical gap junction network (containing 890 edges with a giant component of 248 50

vertices) and analysed the network’s eigenvectors to identify circuits that were 51

highlighted in previous experimental studies. One such example was the identification of 52

two distinct circuits by the eigenvector, vL3, associated with λ3 where vL indicates an 53

eigenvector of the Laplacian matrix. The circuit designation of vertices being 54

determined by the sign of their entry in vL3. Here we extend these intuitions from a 55

single dimension to multiple by examining the eigenvector entries vL2, vL3 and vL4 as 56
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displayed in Fig. 1. This approach is the basis of the community detection method 57

Communities of Dynamic Response (CDR) detailed in Algorithm 1. The circuits or, as 58

they will be referred to from hereon, communities identified by Varshney et al. [5] are 59

clearly visible in Fig. 1 and labelled as members of the positive vL3 community (orange) 60

or the negative vL3 community (yellow). 61

The one dimensional approach of Varshney et al. is only effective in certain cases as 62

it can only ever identify two communities. For example, vL6 presented in Fig. 2 (b) 63

could be employed to separate the vertices into two groups, but by employing CDR with 64

three dimensions (vL5, vL6 and vL7), shown in Fig. 2 (a), a more nuanced picture 65

emerges where multiple communities are present. The community found by [5] from vL3 66

is marked with yellow vertices in Fig 1 and contains ASIL, AIAL, ASIR, AWAL, AIAR, 67

AWAR & ADFR. This same community is not identifiable using vL6 in isolation but is 68

depicted in light blue vertices in Fig. 2, which supports the validity of the community 69

designations detailed by the CDR method. 70

Macaque Connectome 71

The CDR relies on eigenvectors to detect communities in a network. These eigenvectors 72

capture the dynamics of the system and, hence, the CDR can also be exploited to 73

determine prominent vertices in a network. 74

Mǐsić et al. [6] state that the hippocampus (CA1) of the macaque has long been 75

(a) (b)

Fig 1. Visualisation of vertex placement in eigenvector space, where vL2, vL3 and vL4

are associated with λ2, λ3 and λ4 of the Laplacian matrix for the undirected electrical
junction network of the C. elegans. Community designation (see Algorithm 1) is noted

using vertex colour.
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(a) (b)

Fig 2. Visualisation of vertex placement in eigenvector space, where vL5, vL6 and vL7

are associated with λ5, λ6 and λ7 of the Laplacian matrix for the undirected electrical
junction network of theC. elegans. Community designation (see Algorithm 1) is noted

using vertex colour.

known to neuroscientists to hold an influential role in the brain’s decision making 76

architecture. Mǐsić et al. cite a number of graph theory based studies that have failed 77

to identify the hippocampus as an important hub for humans [11–13] and for the 78

macaque [14–17]. Stating that these “analyses of anatomical and functional whole-brain 79

networks have largely failed to demonstrate the topological centrality of the hippocampus.” 80

The conclusion of that study was “the functional capacity of a given region or 81

subnetwork cannot be fully discerned by only analyzing the static structural connectivity 82

of the brain”. Functional capacity is understood to be an assessment of how effectively a 83

region can carry out a given function. In the case of the hippocampus, this would be an 84

assessment of its ability to receive information from across the whole network. 85

The CoCoMac database [18] supplied the connectome used by Mǐsić et al. [6], which 86

contained 242 vertices representing neuronal areas with each edge carrying equal 87

weighting. The CDR will demonstrate that, contrary to the claims of [6], the influence 88

of the hippocampus (CA1) can be discerned by analysing the structural connectivity of 89

the brain. 90

TFM is most prominent vertex in the macaque connectome, as shown in Fig. 3, and 91

it belongs to a community of two vertices (TFM and CA1) that are highlighted in pink. 92

CA1 is therefore part of the most prominent pathway for information in this 93

connectome. CA1’s influence is further enhanced by being connected to TFL, which is 94

the second most prominent vertex according to vL1. CA1 receives one of the two 95

outgoing connections from TFL, whilst also being the only receptor of information from 96

TFM. The reason why TFM and TFL have large values of vL1 is that they are 97

bottlenecks for information in the network with information from across the graph 98

arriving at these two nodes and only having three paths to choose from, two of which 99

lead to the CA1. A large indegree would be an intuitive identifier of prominent vertices, 100
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Fig 3. vL1 and vL2 are the first and second left eigenvectors associated with λ1 and λ2
of the Laplacian matrix for the CoCoMac network. Community designation according
to Algorithm 1 is noted using vertex colour.

but TFL has only the 20th highest indegree in the network. The outdegree is also a 101

critical factor, as a vertex with a high outdegree and indegree will pass on much of the 102

information it receives and not act as a bottleneck. This claim is supported by the ratio 103

of outdegree to indegree (O : I) being significantly higher for TFM and TFL than any 104

other vertex, where the ratio is 34 and 20.5 respectively. The next closest vertices, when 105

sorted by O : I ratio, are as follows: DG (ratio of 9), 28m (8), D9 (7.7), TSA (7.3), and 106

M2-HL (6). These vertices are clearly prominent in Fig. 3 but the order according to 107

the O : I ratio differs from vL1. 108

The CoCoMac network employs a uniform weighting for all edges. A macaque’s 109

brain will have variable weights for the edges between different neuronal areas. 110

Therefore, it is possible that if edge weights were known for this network, and the edge 111

between TFM and CA1 had a large weighting, then the hippocampus (CA1) could be 112

the largest element of vL1. But given the lack of edge weighting information present, an 113

intuition is applied for this network that the highest vL1 vertices are the main 114

information collators (bottlenecks). These collator vertices tend to have relatively low 115

outdegree and pass information onto an influential region. This intuition can be tested 116

by defining the collation vertices as prominent vertices (PV) and vertices they pass 117

information on to as Outgoing Connection vertices (OCN). Table 1 details the PVs and 118

OCNs for a number of prominent vertices from Fig 3. A clear example of an OCN as a 119

known influential region is the M2-HL vertex as the PV that is connected to the M1-HL 120

as the OCN. In this case, the supplementary motor cortex (M2-HL) is acting as the 121

information collator that then provides information to the primary motor cortex 122

(M1-HL), which is the most influential region for motor control. 123

A numerical flow model applied to the network in [6] produced a list of the most 124

traversed edges in the graph, which are detailed in Table 2 alongside the vL1 ranking of 125
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Table 1. Prominent vertices from Fig 3.

Prominent vertex (PV) Outgoing Connection vertex (OCN)
Acronym Merged Brain Region Acronym Merged Brain Region

TFM Temporal area TF (medial part) CA1 Hippocampus
TFL Temporal area TF (lateral part) CA1, Pros. Hippocampus, Prosubiculum
TSA Transitional sensory area 23c, 31,

PECg
Area 23c, Area 31, Parietal
area PE (cingulate part)

D9 Dorsal area 9 32, 14,
M9

Area 32, Orbitofrontal area
14, Medial area 9

28m Medial entorhinal cortex TG Temporopolar area TG
M2-HL Supplementary motor

cortex M2, hindlimb area
M1-HL Primary motor cortex M1,

hindlimb area
DG Dentate gyrus ENT Entorhinal cortex

the vertices at either end of the edge. It is evident from the table that the outgoing 126

connection vertex is ranked highly, and for the most part in vL1 order. The only change 127

in vL1 order, for the outgoing vertices, could be attributed to vertex D9 having two 128

highly traversed edges. Whilst the lower ranked neuronal area 28m only has the one and 129

so more traffic accumulates on that edge. This lends further support to the claim that 130

the vertices ranked by vL1 can be viewed as bottlenecks for information from across the 131

whole network, as many of the PV vertices funnel information in bulk to certain 132

locations. Again it is worth noting that insights into the role of PV vertices are limited 133

by the absence of edge weight information. 134

Table 2. Most traversed edges with vertex vL1 rankings.

Traversed
edge

ranking

Edge
Description

Outgoing
vertex vL1

ranking

Incoming
vertex vL1

ranking

1 TFM to CA1 1 22
2 TFL to CA1 2 22
3 TFL to Pros 2 50
4 TSA to 31 3 12
5 TSA to 23c 3 29
6 TSA to PECg 3 13
7 28m to TG 5 49
8 D9 to 14 4 47
9 D9 to 32 4 41
10 M2-HL to M1-HL 6 33

Human Functional Connectome 135

The effectiveness of analysing brain connectomes, with network eigenvectors, has been 136

demonstrated with the C. elegans and the macaque connectomes. The CDR shall now 137

be employed on a series of connectomes generated by Roncal et al. [19] from magnetic 138

resonance imaging (MRI) scans carried out by Landman et al. [2]. The voxels are 139

defined as the intersection points on a three dimensional grid where each point is 1 mm 140

apart from its neighbours. Each voxel is taken as a vertex in the network, resulting in a 141

graph of 1,827,240 vertices. The edges of the network are undirected and defined as any 142

two vertices that are connected by at least a single fibre where an edge weight of 1 143
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represents a single fibre connection. This results in a network of weighted edges with 144

some edges representing thousands of fibres connecting two regions. 145

Landman et al. scanned each subject twice, with a short break between scan and 146

rescan [2]. Landman et al. used 21 healthy volunteers, but one of the voxelwise 147

networks was unavailable for this paper therefore subject 127 is not included. The 20 148

remaining subjects are aged between 22 - 61 years with an even gender split. For each 149

subject the first ten eigenvectors were analysed, those corresponding to the largest 150

eigenvalues in magnitude of the adjacency matrix (equivalent to the smallest non-zero 151

eigenvalues of the Laplacian matrix). A prominent pathway was detected for each of the 152

ten first eigenvectors. The pathway was identified as the most prominent community 153

according to the CDR approach. Prominence being determined by which community 154

contained the vertex with the largest eigenvector entry in magnitude; referred to as the 155

prominent vertex (PV). 156

Subject 113 157

The eigenvector pathways of a 28 year old, right-handed, female (subject ID 113 [2]) are 158

listed in Table 3. The top ten eigenvectors of scan 1 are displayed in the table alongside 159

the closest matching pathways from scan 2. Fig. 4 displays only the matching pathway 160

pairs if they achieved a percentage match of 60% or greater, therefore the pathways v1, 161

v2, v3, v4, v5, v7 & v10 are displayed for scan 1 and v2, v3, v6, v8 & v10 are shown for 162

scan 2. Fig. 4 demonstrates that overlapping pathways may not include a similar 163

number or distribution of vertices. This difference in length and density makes it more 164

difficult to create an accurate metric for matching pathways. The metric developed here 165

considers a threshold distance for all the vertices of one path to the nearest vertex in 166

another and is described in more detail in the Materials and Methods Section. The 167

percentage of matching vertices is detailed for subject 113 in Table 3. This table reveals 168

that five of scan 2’s eigenvector pathways overlap with pathways in scan 1 where the 169

majority of their vertices are neighbouring voxels. Table 3 also includes the distance 170

between PVs from the pathways under comparison, which reveals that the majority of 171

PVs are in close proximity as well. 172

Table 3. Comparison of first ten eigenvector pathways of scan 1 with the closest
matching pathway from scan 2, for subject 113.

Eigenvector %
match

PV Dist.
[mm]Scan 1 Scan 2

1 8 76 2.2
2 2 100 9.4
3 8 94 2
4 10 61 3.7
5 3 87 3
6 10 22 8.7
7 8 76 3.2
8 1 0 43.3
9 1 0 13.3
10 6 60 3.3

The distribution of high weight edges in scan 1 and scan 2, for subject 113, are 173

displayed in Fig. 5. The highest weighted edges are in a similar location for scan 1 and 174

scan 2 with these locations also coinciding with the location of the top eigenvector 175

pathways shown in Fig. 4. In spite of these similarities, a clear difference in the 176

distribution and weightings of edges can be seen when comparing Fig. 5 (a) & (b). 177
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(a) (b)

(c)

Fig 4. Human brain of subject 113 represented by x,y,z outlines from a brain surface
model. Prominent matching pathways from scan 1 (v1, v2, v3, v4, v5, v7 & v10) and scan
2 (v2, v3, v6, v8 & v10) are displayed in green and blue respectively. The most prominent

vertex for each eigenvector pathway is marked with a large circle or cross. (a) View
from above; (b) View from behind; (c) View from the side with eigenvectors labelled.

These differences make subject identification difficult if considering only Fig. 5. 178

However, the eigenvector pathways are not significantly affected by the change in edge 179

weighting/distribution and, as a result, subject identification is possible with multiple 180

pathways shown to be a high percentage match indicating that the scans belong to the 181

same subject. 182

Whilst the differences highlighted in Fig. 5 did not affect shape and direction of the 183

pathways, it did influence the number of vertices present in the pathways where there 184

were less than a third the number of vertices in scan 2’s pathways than scan 1. This is a 185
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(a)

(b)

Fig 5. Brain of subject 113 represented by x,y,z outlines from a surface model. The
3500 highest traffic edges are displayed and coloured according to their weighting (a)

View from side for scan 1; (b) View from side for scan 2.

result of scan 2 producing few relatively high weighted edges (> 1400) and a majority of 186

low weight edges (< 600), whereas scan 1 has a more even distribution with the highest 187

weighted edge only ∼ 1400 but with many edges above 1000. This uneven distribution 188

translates into the eigenvector entries where scan 2 contains only a few high entry 189

values whilst scan 1 has a more even distribution. The reduction in pathway size is, 190

therefore, due to fewer vertices in scan 2 achieving the threshold eigenvector entry value 191

to be included in the pathway, see the Materials and Methods Section. 192

Subject Comparison 193

In the work by Roncal et al. [19] the Frobenius norm was used to demonstrate the 194

similarity of the scan-rescan matrices. In Fig. 6 (a) the Frobenius norm of the difference 195

between scan 1 and scan 2 graphs, referred to as the Frobenius Distance, is displayed for 196

20 subjects from Landman et al.’s study [2]. The most similar matrices are highlighted 197

for each column where the majority of the matches are scan-rescan pairs for the same 198

subject. When considering the most similar matrices for each row; the lowest Frobenius 199

distance pair involved scan 2 of subject 113 for most of the scan 1 subjects, excluding 200
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(a)

(b)

Fig 6. Comparison of scan 1 and 2 for Landman et al. [2] subjects where the most
similar graph pairs are highlighted with a white outline. (a) Frobenius Distance where
the most similar graph pairs are shown for each column (b) Mean number of matching
pathways where the most similar graph pairs are for both row and column comparisons.

subject 239, 422 & 742 that matched with their scan-rescan pair. 201

The eigenvector pathways were used in a similar manner to assess whether pathways 202

matched, using the percentage match and PV distance categories shown in Table 3. 203

Given the criteria in the Materials and Methods Section the mean number of matching 204

pathways is presented in Fig. 6 (b). The Frobenius Distance can be seen in some cases 205

to highlight a scan-rescan match, but the pathway matching approach is successful in 206

every case with the matches clearly distinguished from non-matching pairs for both row 207

and column comparisons. 208

The subject with the lowest number of matching pathways, as detailed in Fig. 6 (b), 209

is subject 849. Subject 849’s best match is still the scan-rescan pair, but it also 210

produced a lower mean number of matching pathways than some comparisons that were 211
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not scan-rescan pairs, such as the comparisons between subject 142 and subject 492. 212

Investigating the pathways of subject 849 reveals that the shape and position of the 213

pathways appear to be similar, see Fig. 7, which would have produced a high number of 214

matching pathways. But the pathways are, with one exception, slightly offset from each 215

other despite mostly matching in terms of shape, direction and length. It is this offset 216

that reduces the mean number of matching pathways to 1.4 when visually there appears 217

to be at least 4 matches, possibly 5. There are always errors in the images produced 218

from MRI scans, even when using the same equipment and procedure, with small errors 219

occurring because of slight changes in image orientation and magnetic field 220

instability [20]. It is possible that these offsets are a result of such errors. 221

(a) (b)

(c)

Fig 7. Human brain of subject 849 represented by x,y,z outlines from a brain surface
model. Prominent vertices from scan 1 are displayed in green with scan 2 marked in

blue. The most prominent vertex for each eigenvector is marked with a circle or cross.
View from the side with eigenvectors labelled.
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Discussion 222

We found that incorporating multiple eigenvectors in the detection of communities 223

produced a more nuanced picture of a system’s circuitry than had previously been 224

achieved by using a single eigenvector. The communities detected are, due to their 225

eigenvector-based nature, ordered by their effectiveness at channelling information to 226

key vertices. For the small neuronal networks, of the C. elegans and the macaque, this 227

problem is tractable for numerical flow simulations that model where and how 228

information flows. Eigenvectors were able to produce similar findings to these numerical 229

models where in the case of the macaque (CoCoMac graph) the hippocampus was 230

demonstrated to be an influential region, despite previous claims that it was not 231

possible to gain such information from analysing only the static network topology. This 232

eigenvector approach was able to identify prominent pathways in large graphs, with 233

millions of vertices, where numerical flow analysis is likely to be intractable. By 234

comparing the number of matching pathways individuals can be identified from twenty 235

subjects in the Landmann et al. scan-rescan dataset. This capability could have the 236

potential to provide a quantative evaluation of how a subjects cognitive approach to a 237

task changes over time. Since the most prominent pathways remain similar between 238

scan and rescan, this method could assess if there were changes to the pathways used to 239

accomplish the task every time the task was repeated. 240

The results of graph based analysis, and therefore the eigenvector method presented, 241

is limited by the network that has been constructed. In particular, for human brains, 242

undirected networks are the most prevalent but approaches do exist for the creation of 243

directed connectomes from MRI scans. Without a directed network the insights 244

available are limited as the true dynamics of the brain are concealed with key 245

information lost by ignoring the imbalance in the outdegree to indegree ratio of vertices. 246

It is known that the brain employs directed connections and without knowledge of these 247

it is difficult to uncover if a prominent vertex is a sink or source of information in the 248

graph. Indeed the Laplacian matrix, used for the analysis of the directed graphs, 249

emphasises this imbalance further as each diagonal element is equal to the sum of the 250

non-diagonal elements in its row i.e. the indegree of a vertex. But, as was displayed 251

previously with the investigation of C. elegans and their electrical junction network (see 252

the C. Elegans Connectome Section), insights can still be gained when using an 253

undirected graph. As noted in the previous section, another source of uncertainty comes 254

from the scan that generated the connectome where slight errors can affect the results, 255

in particular the location of prominent pathways in the brain. 256

It is possible to conject as to how such connectome analysis could be used. Each 257

pathway/community is associated with an eigenvector, the pathways are therefore 258

ranked by their associated eigenvalue with the first eigenvector/eigenvalue associated 259

with the largest dynamic response of the system. This provides a metric for ranking the 260

prominence of the pathways in the brain. It is possible that such a capability could be 261

applied as a quantitive assessment of, for example, a stroke victim’s progress in 262

retraining neural pathways to regain speech. The prominence of the relevant neural 263

pathways could be monitored to observe their growing prominence as the pathways are 264

retrained. This could provide a metric with which to measure progress and provide 265

further insight into the process of brain plasticity. This analysis could even form the 266

basis of the treatment itself, where it has been observed that improved understanding of 267

pathological circuitry has already guided deep brain stimulation used in the treatment 268

of Parkinson’s disease, depression, and obsessive compulsive disorder [21]. There is also 269

potential for employing noninvasive brain stimulation techniques, such as transcranial 270

magnetic stimulation, as a significant part of the challenge is in identifying specific 271

neural systems that should be targeted for intervention [21]. 272
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Materials and Methods 273

A graph is defined as G = (V, E), where there is a set of V vertices and E edges, which 274

are unordered pairs of elements of V for an undirected graph and ordered pairs for a 275

directed graph. The degree of a vertex is the number of edges connected to that vertex. 276

In the case of a directed graph, there is an indegree and outdegree; indegree is the 277

number of connections entering a vertex and outdegree is the number of connections 278

exiting a vertex. 279

The adjacency matrix, A, is a square n× n matrix when representing a graph of n 280

vertices. This matrix captures the network’s connections where aij > 0 (aij is the ijth 281

entry of the graph’s adjacency matrix) if there exists a directed edge from vertex i to j 282

and 0 otherwise. Variable edge weights contain information on the relative strength of 283

interactions, whilst uniform edge weighting either only represent the presence of a 284

connection or is a result of all the edges having the same information carrying capacity. 285

For an undirected graph, the adjacency matrix is symmetric with an edge (i, j) ∈ E 286

resulting in aij = aji > 0. 287

The Laplacian matrix is composed of the adjacency matrix and the degree matrix, 288

D, as 289

L = D −A

where the degree matrix is a diagonal matrix and the ith diagonal element is equal to 290

the outdegree of vertex i, which is equivalent to summing the elements of row i of A. 291

The eigenvectors of both the Laplacian and adjacency matrices are considered in this 292

work. The dominant eigenvalue, λ1, for the adjacency matrix is the largest eigenvalue in 293

magnitude while for the Laplacian matrix it is the smallest eigenvalue (λ1 = 0) [22]. 294

The eigenvector associated with λ1 is referred to as the first eigenvector, specifically the 295

first left eigenvector (FLE) when considering the Laplacian matrix of a directed graph. 296

The direction of an edge in this work defines the direction of travel for information. 297

Therefore, if an edge is going from vertex i to vertex j, information is travelling from i 298

to j. This is important as it affects the interpretation of the FLE. For example, if a 299

packet of information departs every vertex in the network then the largest elements of 300

the FLE are the vertices that information is funnelled towards. If the direction of 301

information travel along an edge was reversed then the FLE would identify the vertices 302

that are most effective sources for spreading information quickly across the whole 303

network. This knowledge has been used previously to allocate resources that drive a 304

network to a fast convergence to consensus [23], [24]. 305

Considering the eigenvectors that proceed the first eigenvector, they can be 306

understood to highlight vertices that collate information from across the whole network. 307

But each proceeding eigenvector represents a slower mode of response for the system, 308

therefore the vertices highlighted receive the information more slowly than the vertices 309

that were prominent according to the first eigenvector or any associated with a smaller 310

eigenvalue of the Laplacian matrix than the eigenvalue being considered. 311

Communities of Dynamic Response 312

The Communities of Dynamic Response (CDR) algorithm detects communities that 313

form in the presence of network stimulus. CDR is based on analysing three, usually 314

consecutive, eigenvectors and is presented in detail in Algorithm 1. The algorithm works 315

by assessing the coordinates for each vertex as defined by three chosen eigenvector 316

entries. The most prominent vertices are located furthest from the origin of this 317

eigenvector-based coordinate system and these vertices do not have an outgoing 318

connection to a vertex that is at a greater distance from the origin. This can be seen in 319

Fig. 8 (a) & (b) where communities are comprised of vertices that are each associated 320
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(a) vL1 against vL2 (b) vL2 against vL3

(c) x-y plane

Fig 8. 50 vertex, 5 outdegree, k-NNR graph with vertex colour indicating communities
according to communities of dynamic response (Algorithm 1) and a black circle

highlighting the most prominent vertex in each community. Visualisation according to
(a) & (b) eigenvector space, where vL1, vL2 and vL3 are the first three left eigenvectors

of the Laplacian matrix; (c) vertex position in x-y plane.

with one of the most prominent vertices (highlighted by a black outline). The 321

communities are seen to spread from the origin of the plot out towards a prominent 322

vertex. 323

When considering the dynamics of the whole network, the FLE determines the most 324

prominent vertices where, as was explained in the previous section, it represents the 325

fastest response of the system. These prominent vertices in Fig. 8 are marked with a 326

black outline and represent the nodes with the largest, in this example, vL1 value that 327

are not connected to a node with a greater vL1 value. 328

The toy example in Fig 8 employs a k-Nearest Neighbour topology, whereby vertices 329

are randomly distributed on a plane before connecting to their five nearest neighbours. 330

The k-NNR topology is used since it is a good topology for demonstrating community 331

structure as the nearest neighbour rule encourages communities to form. 332
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Algorithm 1 Detecting communities of dynamic response

procedure Community Detection
Find the first three, normalised, eigenvectors of the Laplacian, L ∈ IRn×n,
(associated with the three smallest eigenvalues in magnitude) vL1, vL2 and vL3.
for i = 1 to N do

Set ei = [(vL1)i, (vL2)i, (vL3)i] and Si = |ei|.
end for
Sort all vertices from largest to smallest Si, where I is the index
and SI(1) = max(S).
Set p = 1.
for i = 1 to n do

Set N = I(i).
if vertex N has an outdegree > 0. then

Set o = {o1, ..., om} as a set of m vertices that have outward connections
ending at vertex N .
P oj→N is the scalar projection of eoj onto eN

(
i.e. (eN • eoj )/SN

)
.

if SN > P oj→N ∀ j = 1, 2, ...,m. then
Store vertices belonging to community p in Cp.
Cp = {n, o1, ..., om}.
Set list = Cp(2, ...,m).
while |list| > 0 do

Set K = list(1).
Set o = {o1, ..., om} as a set of m vertices that have outward
connections connected to vertex K.
for j = 1 to m do

P oj→N is the scalar projection of eoj onto eN .
PK→N is the scalar projection of eK onto eN .
Set Scomp = PK→n − P oj→N .
if Scomp > 0 and oj /∈ Cp then

Add vertex to lists of community vertices, i.e. CP = {Cp, oj}
and list = {list, oj}.

end if
end for
Remove list(1) from list.

end while
end if

end if
Set p = p+ 1

end for
for i = 1 to n do

c is a list of q communities where vertex i ∈ Cp.
if q > 1 then

for j = 1 to q do
k = Cc(j)(1)

P oi→k(j) is the scalar projection of eoi onto ek.
end for
Remove i from Cj ∀ j where P oi→k(j) 6= max(P oi→k)

end if
end for
A list of communities have been created where Cp contains a list of vertices

belonging to community p.
end procedure

October 24, 2018 15/18

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/457143doi: bioRxiv preprint first posted online Oct. 30, 2018; 

http://dx.doi.org/10.1101/457143
http://creativecommons.org/licenses/by/4.0/


Hippocampus in the Queueing Network 333

This section refers to the information flow model used by Mǐsić et al. [6] to investigate 334

the CoCoMac connectome. The model was setup as a discrete-event queueing network 335

where signals were continually generated, at randomly-selected grey matter vertices in 336

the network, and assigned randomly-selected destination vertices. The signals then 337

travelled through the network via white matter projections (edges). Grey matter 338

vertices were modelled as servers with a finite buffer capacity, such that if a signal unit 339

arrives at an occupied vertex, a queue will form. Upon reaching its destination vertex, 340

the signal unit was removed from the network. Mǐsić et al. used this numerical model to 341

show that the hippocampus (CA1) is a central hub. Demonstrating that the CA1 342

experiences a high throughput of signal traffic that places it in the top 3% for the total 343

number of signal units that arrive at a vertex, the mean number of signal units at a 344

vertex and the proportion of time a vertex is occupied by signals. 345

Human Brain Pathways 346

Matching Pathways 347

For the analysis of human connectomes, a prominent pathway was detected for each of 348

the ten first eigenvectors. Each pathway was selected as the most prominent community, 349

from the communities generated by the CDR algorithm (see Algorithm 1). Prominence 350

was determined based on which community contained the vertex with the largest 351

eigenvector entry in magnitude; referred to as the prominent vertex (PV). 352

For a given eigenvector, v, only community nodes with min (v) > 0.01 were included 353

in the pathway. This ensured that the pathways only included the most prominent 354

members of each community, which produced clearer results when performing a pathway 355

comparisons. 356

The metric developed considers the shortest distance from all the vertices of one 357

path to the nearest vertex that belonged to the other path. Vertices were considered 358

overlapping if they were from the same voxel or they were in an adjacent voxel (i.e. 359

< 1.42 mm distance away). The percentage of vertices within this overlapping distance 360

was then calculated. To determine if a pathway matched a threshold percentage match 361

had to be achieved. For the results in this paper a mean value was taken for a range of 362

threshold values. Therefore the mean number of overlapping pathways was checked for a 363

range of percentage match thresholds from 50% to 90%, checked at 10% increments with 364

a requirement that the PV distance be less than 15 mm. PV distance is a comparison of 365

the point-to-point distance between the PV’s belonging to the matching pathways. 366

A pathway from one scan might be the closest match to multiple pathways from 367

another scan, in this case only the closest match would count with the other matches 368

ignored. For the example shown in Table 3, an eigenvector pathway has 7 matches with 369

both 1, 3 and 7 from scan 1, therefore two of these would be ignored for a 50% 370

matching criteria resulting in 5 matching pathways in total. 371

Frobenius Distance 372

When applying the Frobenius norm to the difference between two matrices it is often 373

referred to as the Frobenius distance and defined as 374

||A||F =

√√√√ n∑
i=1

n∑
j=1

|a1ij − a2ij |

where a1 and a2 are elements of the adjacency matrix for scan 1 and scan 2 respectively. 375
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12. van den Heuvel MP, Kahn RS, Goñi J, Sporns O. High-cost, high-capacity 405

backbone for global brain communication. Proceedings of the National Academy 406

of Sciences. 2012;109(28):11372–11377. 407

13. Gong G, He Y, Concha L, Lebel C, Gross DW, Evans AC, et al. Mapping 408

anatomical connectivity patterns of human cerebral cortex using in vivo diffusion 409

tensor imaging tractography. Cerebral cortex. 2008;19(3):524–536. 410

14. Sporns O, Honey CJ, Kötter R. Identification and classification of hubs in brain 411

networks. PloS one. 2007;2(10):e1049. 412

15. Honey CJ, Kötter R, Breakspear M, Sporns O. Network structure of cerebral 413

cortex shapes functional connectivity on multiple time scales. Proceedings of the 414

National Academy of Sciences. 2007;104(24):10240–10245. 415

16. Modha DS, Singh R. Network architecture of the long-distance pathways in the 416

macaque brain. Proceedings of the National Academy of Sciences. 417

2010;107(30):13485–13490. 418

October 24, 2018 17/18

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/457143doi: bioRxiv preprint first posted online Oct. 30, 2018; 

http://dx.doi.org/10.1101/457143
http://creativecommons.org/licenses/by/4.0/


17. Harriger L, Van Den Heuvel MP, Sporns O. Rich club organization of macaque 419

cerebral cortex and its role in network communication. PloS one. 420

2012;7(9):e46497. 421

18. Kötter R. Online retrieval, processing, and visualization of primate connectivity 422

data from the CoCoMac database. Neuroinformatics. 2004;2(2):127–144. 423

19. Roncal WG, Koterba ZH, Mhembere D, Kleissas DM, Vogelstein JT, Burns R, 424

et al. MIGRAINE: MRI graph reliability analysis and inference for connectomics. 425

In: Global Conference on Signal and Information Processing (GlobalSIP), 2013 426

IEEE. IEEE; 2013. p. 313–316. 427

20. Morey RA, Selgrade ES, Wagner HR, Huettel SA, Wang L, McCarthy G. 428

Scan–rescan reliability of subcortical brain volumes derived from automated 429

segmentation. Human brain mapping. 2010;31(11):1751–1762. 430

21. Fornito A, Bullmore ET, Zalesky A. Opportunities and challenges for psychiatry 431

in the connectomic era. Biological Psychiatry: Cognitive Neuroscience and 432

Neuroimaging. 2017;2(1):9–19. 433

22. Lutzeyer J, Walden A. Comparing Graph Spectra of Adjacency and Laplacian 434

Matrices. arXiv preprint arXiv:171203769. 2017;. 435

23. Punzo G, Young GF, Macdonald M, Leonard NE. Using network dynamical 436

influence to drive consensus. Scientific reports. 2016;6:26318. 437

24. Clark R, Punzo G, Macdonald M. Consensus speed optimisation with finite 438

leadership perturbation in k-nearest neighbour networks. In: Decision and 439

Control (CDC), 2016 IEEE 55th Conference on. IEEE; 2016. p. 879–884. 440

October 24, 2018 18/18

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/457143doi: bioRxiv preprint first posted online Oct. 30, 2018; 

http://dx.doi.org/10.1101/457143
http://creativecommons.org/licenses/by/4.0/

