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Abstract
Wepresent the non-equilibriumphase diagramof amodel which can demonstrate bothDicke–
Hepp–Lieb superradiance and regular lasing by varying the coherent and incoherent driving termsWe
find that the regions in the phase diagram corresponding to superradiance and standard lasing are
always separated by a normal region.We analyse the behaviour of the systemusing a combination of
exact numerics based on permutation symmetry of the densitymatrix for small to intermediate
numbers ofmolecules, and second order cumulant equations for large numbers ofmolecules.We find
that the nature of the photon distribution in the superradiant and lasing states are very similar, but the
emission spectrum is very different.We also show that in the presence of both coherent and
incoherent driving, a period-doubling route to a chaotic state occurs.

1. Introduction

When large numbers of emitters couple to light, there can be constructive interference effects which enhance
both emission and coupling to light. Such enhancement can arise either from the bosonic stimulation due to
occupation of the photonmode, or from constructive interference between emission pathways in the atoms, or
both. These effects have consequences both for the dynamics of an initially excited state, and for the possibility to
maintain steady states with coherentmatter and light. The term superradiance is used in the literature to describe
a variety of these phenomena, which are related, but distinct. The original use of the term superradiance by
Dicke [1] described the enhanced transient emission from a cloud of initially excited atomswhen the size of the
cloud is smaller than thewavelength of the emitted light. Later, it was noted that a relatedmodel, describing
many atoms placed in a singlemode cavity, can undergo a ground state phase transition from anormal state at
weak light–matter coupling to a superradiant (SR) state with amacroscopically occupied cavitymode [2–4].
However, the existence of this phase transition in the ground state of real systems is under debate due to the
effects of diamagnetic terms in theminimal couplingHamiltonian [5–11].

In spite of the debate regarding the ground state phase transition, a related phase transition certainly is
achievable using a Raman driven scheme [12, 13], which has been realised in recent experiments with ultracold
atoms in optical cavities [14–17]. In such a scheme, two low-lying states of the atom can be considered to form
an effective two-level system. These levels are then connected by Raman transitions, via virtually populated
excited levels of the atoms. The Raman scheme involves both light in the cavity and an external pump. This
means that the effective coupling between atoms and the cavitymode can be controlled by the strength of
external pump, circumventing the issues with the ground state transition. This driven dissipative system is able
to show a transition very similar to the ground state transition described above. These experiments prompted
much theoretical investigation [18–27] into the nature of the phase transition.

There aremany similarities between the steady state superradiance transition in theRaman driven context
described above and the transition seen in simplemodels of a two-level laser [28]. Both involve a transition from
a state with an empty cavity to amacroscopically occupied photonmode, and both operate due to external
driving balancing cavity loss.Microscopically, themain difference between them is in themechanism bywhich
the driving occurs. In a two-level description of a laser the upper level is populated via an incoherent pumping
process, while in theRaman drivenDickemodel the driving appears via ‘counter-rotating’ terms in the
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Hamiltonian, which provide a coherent pump. It is worth noting in this context that the SR laser discussed in
[29–31] corresponds to an incoherent pumping process [31], and is distinguished from a standard laser by
operating deep in the bad cavity limit of cavityQED.

In this paperwe look at theways inwhich these coherent and incoherent driving processes can interact and
lead to a rich phase diagramwith regions showing differing behaviours. By studying amodel which is able to
showboth steady-state superradiance and standard two-level lasing, wemay studywhether these limiting
behaviours can be continuously connected, andwhether other forms of lasing or superradiance exist when both
driving processes are combined.Wefind that the phase diagram as a function of both coherent and incoherent
pumping shows two distinct phases where the photonmode ismacroscopically occupied. These are
continuously connected to the SR phase and the lasing phase. The lasing phase can only occur in the region
where the spins are inverted and the SR phase below inversion.We go on to explore the behaviour in these two
regions using using a second order cumulant expansionwhich is valid at large (butfinite)N, backed up by exact
numerics based on permutation symmetry at intermediateN.Wefind 3 distinct parameter regions: when the
coherent pumping term is small wefind that the system transitions to a lasing state at large pumping.When the
coherent pumping is large there is a SR state which exists only when the incoherent pump isweak. Between these
two limits a crossover is seenwhere the system goes SR-normal-lasing as the incoherent pumppower is
increased.

The structure of this paper is as follows. In section 2we present themodel we use and give somemotivation
for how it could be experimentally realised. In section 3we give themeanfield equations and showhow these can
be used to calculate the stability of the normal state. Then in section 4we go beyond thesemean field equations to
derive the second order cumulant equationswhich allow us to examine second ordermoments of the
distribution.We then go on, in section 5 to showhow these results compare to exact solutions using
permutation symmetricmethods, these also allowus to calculate highermoments such as the Fano factor and
probability distribution for occupation of the photonmode through both the SR and lasing transitions. In
section 6we calculate the emission spectrumof themodel, finding a distinct qualitative difference between the
behaviours in the lasing and SR regions of the phase diagram. In section 7we show that a deeper understanding
of the relation between lasing and SR states can be reached by considering the phase diagram as a function of the
frequency of the photonmode. This reveals that themodel actually has four distinct phases: the normal SR and
lasing phasewhich typically occur for positive photon frequency but also an inverted version of each state which
occurwhen the photon is inverted. This also leads us to uncover some interesting chaotic dynamics which occur
in themeanfield and cumulant equations. Finally, in section 8we present our conclusions.

2.Model

Weexamine amodel which can showbothDicke superradiance and a standard lasing transition. Themodel has
theHamiltonian

H a a g a a g a a
2
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which describes a single photonmode (annihilation operator a) interactingwith an ensemble of two level atoms
(described by the Pauli operators is ). A schematic diagram showing a possible realisation of thismodel in a cold
atom setting is shown infigure 1 alongwith the four level schemewhich can produce thismodel after adiabatic
elimination of the upper (detuned) levels [12].

This scheme allows us to separate the co- and counter-rotating terms of the light–matter interaction [12] to
have prefactors g and g ¢ respectively. Themaster equation for the densitymatrix, ρ, of the system is given by:
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which includes photon loss at rateκ, incoherent loss of atomic excitations at rate G and an incoherent pumping
process at rate G as standard Lindblad termswith x x x x x1 2 , r r= -[ ] { }† † .We note that both the atomic
pumping and dissipation terms could in principle be engineered using the sameRaman scheme as illustrated in
figure 1, but not involving the cavity—i.e. spontaneous Raman processes involving real emission from excited
states of the atoms. Inmost experiments [14–17], such terms are deliberately suppressed, by using the fact that
the strength of this incoherent Raman process scales as the inverse square of the laser detuning from the atomic
resonance, while the coherent terms scale only as the inverse of the detuning. In general, allowing real decay also
induces additional dephasing terms i

z s[ ]which have been discussed elsewhere [25, 26]. Here, for simplicity,
we neglect additional dephasing, and focus on the competition between incoherent and coherent driving
processes.
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It is clear that when g g= ¢, 0G = this is the regular openDickemodel whichwe have previously studied
[26]. Thismodel has a phase transition to a SR state which spontaneously breaks a 2 symmetry which exists
since themodel is invariant under the exchange a→−a, i

x
i
xs s - . The presence of the two loss termsκ and

Gmodify the phase transition by slightly shifting the critical point to [25–27]
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In contrast, if g 0¢ = then this shows a regular lasing transition at a particular value of Gwhich for smallκ is
when G G  . This transition breaks aU(1) symmetry inwhich the equations are invariant under the
transformation a aei f, ei i

is s f- - .
By varying g ¢ and G, the behaviour can be continuously varied between the two cases described above. This

allows us to understand how the physics crosses over between these two limits, and to identify probes to
experimentally distinguish between the lasing and superradiance that both occur in thismodel. Our aim in the
remainder of this paper will be to study thismodel with increasing levels of sophistication, in order to identify
the phases that occur, and to characterise the behaviour in each phase.

3.Mean-field stability analysis

We start our analysis by looking at themean-field equations for the cavity and the spins. As demonstrated in
previouswork [26], evenwith dephasing and dissipation, themean-field analysis gives a reasonable picture of
the states that can arise. This decomposition requires us to break correlations between the different parts of the
system atfirst order, resulting in the following set of equations,
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where TG = G + G ( ).When g 0¢ = these are just theMaxwell–Bloch equations for a laser [32].
The normal state has a 0ns nssá ñ = á ñ =- and z

Tnssá ñ = G - G G ( ) . Linearising around this solutionwith
a a a nsd = á ñ - á ñ , s nsd s s= á ñ - á ñ- - etc gives the followingmatrix
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This 4×4matrix equation arises since aá ñcouples both sá ñ+ and its conjugate sá ñ- .Wemay ignore the
equation ofmotion for zsá ñ since this only couples to itself in the linearised system, and so does not contribute to
the stability analysis.

When the real part of (at least) one of the eigenvalues of thismatrix becomes positive the normal state is
unstable to perturbations and the photonmode acquires amacroscopic occupation. This linear stability
approach allows us to very quickly explore large regions of parameter space. Infigure 2we explore this phase
diagram as a function of both the coherent pumping term g ¢ and the incoherent pumping term G. In order to

Figure 1. Schematic diagramof themodel we consider. Left: cartoon showing the loss processes involved. Right: example energy level
diagram for the four level system. The two levels which remain after adiabatic elimination are the lower black and blue levels.
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show the full range of G G  (i.e. from0 to¥)we vary the incoherent pumpwhile keeping the total decay of the
spins, TG , constant, so that 1TG G = corresponds to G G = ¥  .

We see that there are two distinct regions inwhich the normal state is unstable, one, at small values of G, is
continuously connected to the SR regionwhile the other, at small g ¢, is connected to the lasing transition.We
label these regions ‘SR’ and ‘laser’ respectively on the phase diagram.We see that, evenwhen the photon loss rate
is very small, these two regions are always separated by a (possibly small)normal regionwhich is always present
exactly at the point where the spins become inverted G = G . Themain change asκ is reduced is to the shape of
the lasing regionwhichwe seemove towards the inversion line as the losses are reduced.Wenote that the lasing
region can never cross this line from abovewhile the SR region never crosses it frombelow.

Infigure 2, for the regionswhere the normal state is unstable, we also indicate whether there exists only a
single unstablemode, or a pair of unstablemodes. In the latter case, this corresponds to a complex conjugate pair
of eigenvalues, and describes amodewhich oscillates as well as becoming unstable. Aswewill discuss further
below, this is exactly as expected for the laser, as the frequency of the lasingmode generallymatches the cavity
frequency, and so the lasing solution is expected to be time dependent (oscillatory) in the framewe areworking
in. Thismeans that the instability to lasing should involve an eigenvaluewith an imaginary part, corresponding
to the lasing frequency. Since eigenvalues come in complex conjugate pairs, the instability in this case is aHopf
bifurcation, where a complex conjugate pair of eigenvalues simultaneously become unstable. In contrast, the
‘standard’ SR state is expected to be stationary, and the instability to it thus corresponds to amodewhich grows
without oscillating, thus a singlemode is unstable at the phase boundary. The phase diagramobserved is
compatible with this observation, howevermore complicated behaviourwill be seen below.

4. Second order cumulant expansion

Whilemean-field theory is useful to determine the structure of the phase diagram, it can only capture the
behaviour in the limit N  ¥. As such, it is not always possible to directly comparemean-field theory results to
exact results atfiniteN.We can go beyondmean-field theory by finding the equations for all the second
moments of the photon and atomic distributions. This approach allows us to describe quantities such as the
photon number accurately andwithout the need to explicitly break symmetries in the initial conditions. Indeed,
inwriting these equationswewill choose to keep only those terms that respect the symmetries in the problem.
This approach is directly analogous to the semiclassical approach used in laser theory [32], which considers
equations ofmotion for the photon number, while incorporating both spontaneous and stimulated processes.

The secondmoments of the photons obey the equations ofmotion

a a a a N g C g C2 Im Im , 8t
a ak¶ á ñ = - á ñ - + ¢+ -( [ ] [ ]) ( )† †

aa aa N gC g C2i 2i , 9t
a aw k¶ á ñ = - + á ñ - + ¢- +( ) ( ) ( )

Figure 2.Mean field stability of the normal state for different values of photon loss,κ. In thewhite region the normal state is stable,
while in the orange and black regions the stabilitymatrix has 1 and 2 unstable eigenvalues respectively. Parameters are 1w = , g= 0.9,

0.5TG = andκ as indicated. All quantities are in units of 0w . The normal state has a vanishing photon population, while the
superradiant (SR) and lasing states have amacroscopically occupied photonmode.
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while the photonmatter correlations are
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here e.g. C aa
is= á ñ+ + . There are alsomatter-matter correlations given by
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- gives the correlation between s+ at site i and s- at a different site j.We also need the
equation for zsá ñ, which does not break the symmetry, and takes a form similar to that in equation (6) but
without breaking the second order correlations,
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These reproduce the equations in [26]when g g¢ = and 0G = .
Infigure 3we showhow these equations can be used to examine the phase diagramwhichwas plotted in

figure 2.Wemay check that the regionwith amacroscopic photon number is in very good agreementwith that
predicted bymeanfield theory, with the SR dome at large g ¢ and small G and the lasing region at large G and
small g ¢. By looking at the spin state we see directly that the SR region is where the spins are not inverted and the
lasing region corresponds to spin inversion. The vertical white region infigure 3(b) shows exactly where this spin
inversion occurs. This is always at the point where G = G  (at least up to corrections of order Nk ) since here
the photons have no occupation and so the dynamics are purely determined by the driven atoms.

5. Comparison to exact results and higher order correlations

Tofind exact numerical solutions of this systemwe canmake use of the permutation symmetry of the individual
densitymatrix elements. This allows us tofind exact solutions at intermediateN. A full description of the
methodwe use can be found in [26]while the code can be found at [33]. Another librarywhich implements the
same algorithmhas also recently been released [34]. Similar techniques have been employed to study spin
ensembles [35], simple lasingmodels [36], coherent surface plasmons [37], the competition between collective
and individual decay channels [38], the behaviour of an ensemble of Rydberg polaritons [39], equilibrium
properties of amodel with a larger localHilbert space [40], subradiant states in theDickemodel [41] and to
explore the effect of individual losses on transient SR emission [42]. In this section, we use these exact solutions
both to check the validity of the cumulantmethod presented above and calculate higher ordermoments of e.g.

Figure 3.Phase diagramof (a)photon number and (b) spin inversion versus G and g ¢ calculated using the second order cumulant
equations. The parameters are the same as infigure 2(a)withN=500.
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the photon distributionwhich are neglected in the cumulant calculation. Indeed, from the exact results we can
calculate not onlymoments, but the full probability distribution of the photon number.

Results comparing exact numerics to the cumulant expansion are shown infigure 4. The top row shows a
sweep through the lasing region (below the SR dome), themiddle column goes through both the SR and lasing
regionswhile the top row shows a sweep above the lasing region. Thefirst two columns show the reduced photon
number a a Ná ñ† the spin inversion level zsá ñ, which allow comparison to themean-field and cumulant
approximations.We see that thematch between the cumulant equations and the exact solution is good across all
parameters, even at the relatively small value ofN=25 shownherewhich is far from the thermodynamic limit,
with only some small deviations at large pump strengths.

The third columnoffigure 4 shows the Fano factor of the photon distribution,

F
a aa a a a

a a
. 16

2

=
á ñ - á ñ

á ñ
( )

† † †

†

Calculating this quantity requires evaluatingmoments beyond second order, so is not accessible fromourmean-
field or cumulant approaches. The Fano factor is one possiblemeasure of the dispersion (spread) of the photon
number distribution. For any coherent (Possonian) state the Fano factor is 1. Thismeans that in the
thermodynamic limit of an ideal laser the Fano factor of the lasing state is unity both above and below threshold.
Directly at threshold the fluctuations give an infinite value for F [43]. However, it is known that finite size effects
andfinite non-radiative loss (i.e.finiteβ factor) smear out the peak in the Fano factor so that it can become a very
broad feature [43]. This is the effect we see here, where in the lasing phase the Fano factor is elevated far above
unity by a very broad feature. The peak associatedwith the transition to the SR state is howevermuch narrower.
This can be clearly seen in the Fano factor at g g¢ = where the structure ismade up from these two peaks. This
also explains why the cumulant expansion is less accurate in the lasing phase than it is in the SR phase: the
cumulant expansion only describes the behaviour of approximately Gaussian states, which the lasing phase we
see does not satisfy.

Infigure 5we show the full probability distribution of the photonmode, P(n), for the same sets of parameters
as infigure 4, i.e. withN=25. This allows us to seemore clearly exactly what happens to the photon distribution

Figure 4.Photon number (left column), spin inversion (middle column) and Fano factor (right column) for three different values of
g ¢. Top row: g g0.1¢ = , below the supperradiant dome.Middle row g g¢ = where both supperradiance and lasing are observed for
different values of G. Bottom row g g3¢ = above the lasing region. The solid black lines are exact numerical results forN=25, the
dashed black lines show the cumulant expansion forN=25while the dashed red lines are the cumulant expansion close to the
thermodynamic limit,N=500. All other parameters are the same as infigure 2.
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aswe go through the various thresholds. In the lasing regime as the pumppower is increased the distribution
moves to larger and larger n. The Fano factor does not drop down to 1 in this regime since for the parameters
chosen here the peak of P(n) only reaches n=4 at the largest pump strength. The opposite effect is seen in the
SR regimewhere increasing pumping kills the coherent state. In the crossover regimewe see both effects: at small
pumping the SR phase is present which is killed by the incoherent drive, but at larger pumping a coherent state
again appears as the systemundergoes a transition to a lasing state.

6. Two-time correlations and emission spectrum

The emission spectra of light–matter systems can reveal subtle features of the dynamics not available from the
steady state behaviour. Awell known example of this is theMollow triplet, seen in the fluorescence from a
resonantly driven two-level system [28]. By examining the spectrumof the light which escapes the cavity wemay
be able to see the difference between the SR and lasing phases.

The simplest quantity to look at, accessible fromboth our exact numerics and the cumulant expansion is the
emission spectrumwhich is the Fourier transformof the g t1 ( )( ) correlation function,

S a t a t0 e d . 17tiòn = á ñ n

-¥

¥
( ) ( ) ( ) ( )†

Wecan obtain this quantity fromour exact numerics using the quantum regression theorem.Wefind the steady
state ssr as before and then initialise using the state a ssr . The correlation function is then given by the time
evolution of a† from this state [28]. The spectrum is then obtained by taking a Fourier transform.

In the largeN limit wemay also use the second order cumulant equations and quantum regression theorem
to calculate the same quantity. To do this wemust solve thematrix equation
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A similar approachwas taken in [39] to calculate correlation functions of an ensemble of Rydberg polaritons.
Here z

sssá ñ is the steady state value of the spin inversion and the initial condition for this problem is given by the
relevant quantities from the secondmoment equations.

These twomethods then allow us to calculate the spectrum as shown infigure 6. The simplest interpretation
can be found by looking at the results of the cumulant expansion atN=500 (the right-hand column in
figure 6).When the counter-rotating term isweak (i.e. g g0.1¢ = ), and the incoherent pump is strong, the
spectrumhas a single peak at the cavity frequencywhich getsmore intense as the pumping is increased. This

Figure 5.P(n) distribution of the steady state photon densitymatrix for the same parameters as infigure 4 atN=25. The coherent
driving in each panel is (a) g g0.1¢ = , (b) g g¢ = , (c) g g3¢ = .
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monochromatic emission is typical of a simple laser.Wemay also note that the emergence of this non-zero
single frequency in the lasing state is directly related to theHopf bifurcation that leads to the lasing state. In the
crossover region, g g¢ = at lowpumppowers (in the SR dome)we see a triplet like structure, reminiscent of the
Mollow triplet, with the sideband at a frequency which is not simply set by the cavity. As the incoherent pumping
is increased the spectrum changes to lookmore that seen for the case of the laser. At large g g3¢ = (above the
lasing region in figure 2)we see a very similar structure but the residual peak at the cavity frequency ismuch
weaker. This peak is still present since the cumulant calculations are done at finiteN and the parameters chosen
are relatively close to the lasing region of the phase diagram. TheN=25 results form the exact numerics in the
left-hand columnoffigure 6 show a similar qualitative behaviour but the relatively small value ofNmeans that
the features are less easy to distinguish.

Figure 6. Spectrum, S n( ), at various points in the phase diagram. The left column are exact results forN=25while the right-hand
column show the results from the cumulant expansion atN=500. The top row (a), (b) have g g0.1¢ = , themiddle row (c), (d) is at
g g¢ = , while the bottom row (e), (f) have g g3¢ = . The pumping strengths in each case are, for the black curves 0.2G = G , red

0.4G = G , and blue 0.8G = G . Other parameters are the same as infigure 2.

Figure 7. Spectrum, S n( ), as a function of photon frequencyω (a) in the lasing regime g g0.1¢ = , 0.8 TG = G , (b) in the SRphase
g g2¢ = , 0.2 TG = G . All other parameters as in figure 2.
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In contrast to the steady statemeasurements discussed in previous sections, we see here that the emission
spectrumof the cavity provides an easy way to identify the differences between the SR and lasing regimes. This
difference can be particularly clearly seen in the spectrum as a function of cavity frequencyω. Infigure 7we show
this calculated both in the lasing phase and the SR phase. In the laser the location of the peak is approximately
linear in the cavity frequency consistent with the interpretation of this being aweak light–matter coupling effect,
while in the SR phase the sideband has amore complex dependence on the detuning.

7. Blue detuning and inverted states

In themodel we consider, the effective cavity frequency,ω, is actually the detuning between the cavity and
external pump frequency (see the level diagram infigure 1). As such, it is reasonable to ask how the behaviour
changes when this detuning is negative, i.e. when the pump is blue detuned from the cavitymode. Fromprevious
work, we know that if only photon loss is present then the normal state in this parameter range is inverted [21].
In this sectionwe therefore discuss what happens to this inverted regimewhen there is incoherent pumping and
decay of the spins.

Infigure 8we show the phase diagram as a function of both the incoherent pumping rate and photon
detuning for various values of g ¢. If g g¢  then the only phase that is present is the normal lasing state which
appears at large G and for resonant frequencies 0w w» . In themiddle column offigure 8we see thatwhen
g g= ¢more phases appear, both above and below inversion.When 0w > we see the normal SR and lasing
phases at small and large G respectively. At negativeωwe see two very similar phases but at opposite sides of the
phase diagram. To understand thesewe note that themodel has a duality under the replacements w w« - ,
g g« ¢, G « G : such a transformation leaves the steady states unchanged up to an inversion of zs . This then
means that the two phases seen at negativeω are the same as thosewhenω is positive but with photon creation
and annihilation swapped, i.e. the inverted lasing phase at small G is where the dominant process is photon and
spin excitation creation via the term g a s¢ +† in theHamiltonian. This state is similar to one discussed in [44, 45]
where a parametric drive is used to engineer similar behaviour.

Figure 8.Phase diagram versusω at different values of g ¢. Left column g g0.1¢ = , centre g g= ¢ and right g g3¢ = . The top row
shows themean field phase diagram, as infigure 2, where again orange indicates a single unstablemode, while black indicates a pair of
unstablemodes. Themiddle and bottom rows show the photon number and spin inversion, zsá ñ, from the cumulant expansion, as in
figure 3. All other parameters are the same as in figure 2.
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In this region of parameter spacewe see some artefacts in the results found by time evolving the cumulant
expansion (most visible in the spin dynamics). These artefacts reflect the fact the photon number and spin
inversion do not reach a steady state, but instead one has limit cycles and chaotic dynamics.We discuss this
behaviourmore below. As g ¢ is increased furtherwe see that the phases below inversion—the normal SR and
inverted lasing phases—coalesce, while the two phases at large G are suppressed. Indeed, by the point g g3¢ = ,
shown in the right-hand column offigure 8, the standard lasing phase has completely vanished. Although the SR
and lasing phases join continuously to each other at g g3¢ = , one can nonetheless distinguish two distinct
behaviours on crossing the phase boundary: it remains the case that one can distinguishwhether a single
eigenvalue or a pair of eigenvalues becomes unstable. At this largest value of g ¢, the absence of a steady state
photon number extends over a wider portion of the phase diagram at negativeω.

Careful comparison of themeanfield and cumulant expansion phase diagrams reveal that close to the upper
boundary of the inverted SR phase there is a regionwheremean-field stability analysis shows that the normal
state is stable and yet the cumulant equations show amacroscopic photon population. The equations in this
regime are bistable: while the normal state is stable, there is also a stable SR solution to the equations.Hencewe
find that in this region of the phase diagram the results of the cumulant equations depend on the initial
conditions.

7.1. Evolution of chaotic attractors
To characterise the non-steady-state behaviour inmore detail we look at the dynamics of themeanfield
equations as the frequency of the photonmode is changed. These results are shown infigure 9.We plot the
dynamics of the photonmode using an initial conditionwithfinite aá ñ to break the symmetry (the normal state
with a 0á ñ = is always a solution to theMF equations, but in the SR phase this solution is unstable), and show
the behaviour after waiting sufficiently long that any transient behaviour has vanished. To plot the bifurcation
diagram [46] in the centre offigure 9we plot the value of aIm á ñeach time the photon crosses the aRe 0á ñ = line
from right to left.

In the regionwhereω is closest to zerowe see that the dynamics are regular, the photon amplitude undergoes
a simple periodic limit cycle which results in a single point in the bifurcation diagram. As the frequency is
decreased (away from0) the system goes through a sequence of transitions tomore complex (but still regular)
orbits which eventually lead to the chaotic region at around 2.0w = - . At larger negative detunings againwe
find that the dynamics become regular. At positive detunings, e.g. 0.33w = , the limit cycle transitions towards a
fixed point: as we approach this, the limit cycle distorts, and the time evolution pauses near the points that
ultimately become thefixed point values. Thesefixed points are indicated by crosses in this panel. The
occurrence of chaotic behaviourwithin the lasing region is not too surprising since it is known that in certain
limits theMaxwell-Bloch equations can bemapped to the Lorentz equations [47].

Figure 9.Bifurcation diagram versus cavity frequencyω calculated from themean field equations. Themain plot shows the values of
aIm á ñ recordedwhen aRe á ñ crosses the axis, for g g2.3 , 0.01¢ = G = , while the inset shows themean field stability phase diagram at

this value. The subplots show the long time dynamics of the photon at the frequencies indicated. All other parameters as in figure 2.
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8. Conclusions

Wehave examined in detail the steady state phase diagramof amodel which is able to continuously cross over
from standard two-level lasing toDicke superradiance by changing the balance between coherent and
incoherent pumping processes.We have seen that when the photon energy is positive these two phases are
distinct, the lasing phase only exists when the spins are inverted and the SR phase when the spins are not
inverted.

By using a combination of approaches:mean-field theory valid in the thermodynamic limit, a cumulant
expansionwhich gives access to the largeN asymptotics and exact numerics which reach intermediateNwehave
shown that while the steady state photon number is similar in the two phases the spectral properties of the
emission from the cavity are very different.

The phase diagram as a function of the effective photon energyω reveals twomore phases when 0w < . An
inverted lasing phase at weak incoherent pump strengths and an inverted SR phase at large incoherent pump.
This also revealed the evolution of the dynamics through a period doubling route to a chaotic attractor.

Future studies could examine the role of the nonlinearity which arises in theHamiltonian due to the ac Stark
shift of the cavitymode [19, 21, 27]. This is known to generate limit cycles in themean field dynamics, it would
be interesting to seewhat effect the incoherent processes considered here have on these phases.
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