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Scattering of light with angular momentum from an array of particles
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Understanding the scattering properties of various media is of critical importance in many applications,
from secure high-bandwidth communications to extracting information about biological and mineral particles
dissolved in sea water. In this paper we demonstrate how beams carrying orbital angular momentum can be used
to detect the presence of symmetric or chiral subsets of particles in disordered media. Using a generalized
Mie theory, we calculate analytical expressions for quasimonochromatic structured light scattered by dilute
distributions of micro- and nanoparticles. These allow us to determine the angular momentum of the scattered
field as a function of the angular momentum of the incident beam and of the spatial distributions of scattering
particles. Our numerical results show that we can distinguish structured from random distributions of particles,
even when the number density of ordered particles is a few percent of the total distribution. We also find that
the signal-to-noise ratio, in the forward direction, is equivalent for all orders of the Laguerre-Gaussian modes in
relatively dense (but still dilute) distributions of particles smaller than the beam waist and the Rayleigh range of
the beam.
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I. INTRODUCTION

Light carrying orbital angular momentum (OAM) has at-
tracted a great deal of interest due to its potential to enhance
many applications, including high-resolution imaging [1] and
optical trapping and manipulation of micro- and nanoparticles
[2]. It is also of significant interest as a resource in high-
capacity quantum communication and information systems.
Unlike the spin angular momentum associated with circular
polarization, OAM is not restricted to two orthogonal states.
Large amounts of information can then be carried by single
photons, creating an opportunity for new protocols for quan-
tum key distribution with significantly increased data transfer
rates [3].

As any communications system relies on the fidelity of
the signal after propagation, it is essential to understand the
effect of the medium that they travel through. In this case
we focus on the effect of propagation through scattering
media. Whether this be due to scattering by aerosols in the
atmosphere or by phytoplankton or mineral particles in natural
waters [4], scattering will contribute to both the coherence and
attenuation of the signal, resulting in a loss of information and
a reduction in the fidelity of the system.

While scattering is considered to be detrimental for ap-
plications in information transfer, the ability to measure the
power of the OAM states of the scattered light [5–10] may
provide a source of information about the properties of the
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scattering medium, from the size and type of the particulates
to their geometrical distribution, that has not yet been ex-
ploited. This may be of particular benefit for environmental
sensing and metrology, and ocean transmissometry, and may
even find applications in biological imaging. Another area
of potential application is nanophotonics, where some of the
unique features of the scattering of light carrying OAM can
reveal the fraction of ordered and disordered nanoparticles
within complex nanostructures.

In this paper we present a theory for quasimonochromatic
structured light scattered by dilute distributions of micro-
and nanoparticles that allows us to determine the angular
momentum components of the scattered field in the far-field
zone as a function of the total angular momentum of the
incident beam along its axis and of the dielectric properties
and spatial distributions of the scattering particles. For parax-
ial incident fields, we show that it is possible to detect the
presence of subsets of symmetric and chiral particles simply
by controlling the OAM of the incident beams and measuring
the resultant OAM of the scattered fields in the far field. This
may help us to detect objects hidden in scattering media [11]
or to visualize flows resulting in geometrically ordered con-
centrations of particles [12]. Here we consider both the case
of particles distributed over volumes with dimensions several
orders of magnitude larger than the wavelength of light and
the case of particles distributed over volumes with dimensions
of a few tenths of the wavelength. The first case is typical of
marine optics [4] and atmospheric science, or of nanophotonic
experiments with nanoparticles in solutions. The second case
is typical of experiments involving particles held in optical
traps or forming artificial nanophotonics structures [13–16].
We show that controlling the OAM of the incident beam
and measuring the power of the light scattered in different
OAM states allows us to identify the presence of subsets of
particles forming polygonal or chiral structures in both cases.
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FIG. 1. Schematic of a basic experimental setup where (a) an
incident beam, with a well-defined orbital angular momentum,
propagating along the direction k̂0, interacts with a distribution of
particles within a cylindrical volume, with dimensions L⊥ and L‖.
Light scattered by the particles, containing a spectrum of OAM
modes, is collected by a lens (L), with focal length f , and coupled
to an OAM mode sorter (MS). (c) The resulting signals are then
processed to determine the OAM spectrum of the scattered light.
(b) The coordinate system we adopt is shown for a particle located at
the position r.

We also demonstrate that OAM can be used to improve the
signal-to-noise ratio, a result that can be useful in reducing
the error due to scattering both in measures of absorption and
in communications applications.

As the theory is necessarily very mathematical, we start
by giving an outline of our method and our main theoret-
ical results. We then present a number of numerical results
highlighting the main features and capabilities of our theory.
For the sake of simplicity and to facilitate the comparisons
between theory and experiments, our numerical results have
been obtained using distributions of gold nanospheres as these
are used in many experiments. However, we stress that our
theory is applicable to any type of scattering particles and
host medium, provided multiple scattering can be neglected.
For the interested reader, we then present a detailed outline of
our theory.

II. OVERVIEW OF THEORY AND MAIN RESULTS

We consider an experimental setup, as shown in Fig. 1,
where light beams propagating along the z axis are incident
on distributions of micro- and nanoparticles with dielectric
permittivity εr and magnetic permeability μr immersed in a
uniform isotropic dielectric medium with different electro-
magnetic properties. Using a generalized Mie theory, we cal-
culate the far-field scattering of both random and symmetric
distributions of particles in which multiple scattering can be
neglected and we can safely consider the total scattered field
as the coherent sum of the fields scattered by the individual

particles. Our theory is applicable to any type of scattering
particle and host medium and is developed for arbitrary parti-
cles and beams.

From a physical point of view, the key issue is that we
expand the field scattered by particles in different positions
in electric and magnetic multipolar waves [17] SH

jm and SE
jm,

where, for each particle, j = 1, 2, . . . is the total angular
momentum with respect to the center of the particle and
m = ±1,±2, . . . is its component parallel to the direction of
propagation of the incident beam in nondimensional units.
However, jz, the total angular momentum of the scattered
waves SH

jm and SE
jm along the axis of the incident beam, is

not m and depends on the distance between the centers of
the off-axis scattering particles and the axis of the incident
beam. The essential features of scattering from dilute distri-
butions of particles depend on this property and on the fact
that waves scattered by different particles are coherent. Due
to the coherent addition of the scattered waves, structured
incident beams can be used to induce collective scattering
that reveals the spatial structure of the particles’ distributions.
More specifically, one can detect the presence of subsets of
particles arranged with the rotoreflection symmetry of regular
polygons with N sides, or chiral structures. It is also possible
to detect the position of the symmetry axes of two- and
three-dimensional arrays and chiral structures by displacing
the particles with respect to the incident beam’s axis and
measuring the spread of the scattered light power over the
component of OAM along the beam axis of the scattered field,
lz. The resolution on the transverse position of symmetry axes,
or the centers of chiral structures, is of a few percent of the
transverse dimension of the incident beam.

For the incident beams considered here, the main theoret-
ical results depend on the angular momentum of the incident
beam and the types and distributions of the particles. The main
results can be summarized as follows.

(i) The multipolar waves SH
jm and SE

jm, scattered by ev-
ery particle, combine in a scattered wave with total angular
momentum along the axis of the beam jz = u + � + m. In
nondimensional units, jz = 0,±1,±2 . . . is the total angular
momentum along the beam’s axis z; � = 0,±1,±2, . . . is
the component of OAM of the incident Laguerre-Gauss beam
along its axis; u defines the spatial harmonics of the multipole-
multipole distributions exp(iuϕ), where ϕ is the azimuthal
angle.

(ii) For light, the component of the spin along the propa-
gation axis takes three values: sz = 0 for polarization ẑ and
sz = ±1 for polarization ê±. The component of OAM along
the beam axis of the scattered field, lz, can also take three
values for any given jz, as lz = jz − sz.

(iii) In the forward and backward directions, only the terms
with both u = −� and sz = m = ±1 do not vanish.

(iv) In the forward direction most particles scatter in phase.
The positions of the particles only affect the scattering am-
plitude in the forward direction through the slowly varying
amplitude of the incident field.

(v) In the backward direction the scattered fields of most
particles will cancel out. This is due to rapidly varying phase
terms that depend on the coordinates of the particles along the
direction of propagation of the incident beam. The exceptions
to this are particles that either all lie on a plane orthogonal to
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the propagation axis or are periodically distributed along the
direction of propagation of the incident beam, as the fields
scattered by these particles add in phase in the backward
direction.

III. NUMERICAL RESULTS

In this section we show how incident beams carrying OAM
can be used to extract information about the spatial structure
of distributions of scattering particles. A schematic showing
the essential components of the type of experimental setup
we envisage is shown in Fig. 1: With respect to the theory
developed here, the key features are provided by the OAM
sorters that determine the OAM of the incident beam and
enable measurements of the distribution of the scattered field
power over different OAM values [5–10]. This problem has
several very different spatial scales that need to be considered
carefully: the wavelength λ of the incident and scattered fields,
the largest dimension of the particles Rt , the transverse and
longitudinal dimensions of the distribution L⊥ and L‖, and
the transverse dimension of the incident beam w0 and its
coherence length Lc. We consider only arrays of particles
with interparticle distances such that multiple scattering can
be neglected [18] and with L‖ < Lc, where the total scattered
field is the coherent sum of all the fields scattered by each
particle. We note that the latter condition is not a limit to
this theory. For the case L‖ > Lc the distribution can be
divided into sections of length Lc with the total field being
the incoherent sum of the resulting fields from each section.

Our numerical results are obtained by considering paraxial
Laguerre-Gaussian beams and spheres with radii r � w0, zR,
where w0 is the beam waist and zR is the corresponding
Rayleigh parameter zR = kw2

0/2. As we show later in Sec. IV,
only corrections to the paraxial fields of order k−2 affect the
scattered fields; for the cases considered here, corrections of
this order can be safely neglected. For simplicity, we consider
only the “purely azimuthal” LG�p modes (p = 0), although
the radial modes could provide additional information, as
discussed in Sec. IV.

As mentioned above, our theory is applicable to any type of
scattering particles and host medium. However, again for the
sake of simplicity and to facilitate the comparisons between
theory and experiments, our numerical results have been
obtained using distributions of gold nanospheres with radii
of 80 nm. We use the Lorentz-Drude dielectric function [19]
to model the electromagnetic response of the particles. As a
result of their size and dielectric function these particles have
a spectrally resolved Mie-type resonance with a peak around
670 nm for the scattered fields. Using a different dielectric
function would affect the position of the resonance [20],
but would not affect the ability to identify spatial properties
of the particles’ distributions which depends on the general
properties of the scattering process.

A. Ordered and disordered particle distributions

We first consider particles distributed over volumes with
dimensions much larger than the wavelength, as is the case
in nanophotonics with large numbers of nanoparticles in
colloids or in marine optics. In particular, we investigate

(a) nanoparticles randomly distributed within a cylindrical
volume, with radius of cross section proportional to w0; (b)
particles regularly distributed, on layers orthogonal to the
z axis, along lines with the symmetry of regular n-sided
polygons; and (c) combinations of the two previous types
of distributions. Information on the distribution of particles
is most easily extracted from either backward or forward
scattering, so we consider these simple cases first. We use
the index t to label the spheres and the azimuthal moments
of the particles’ distribution, defined as |∑t exp(iuϕt )|/N , to
identify random, partially ordered, and ordered distributions.
The azimuthal moments are especially useful when consid-
ering two-dimensional structures and for forward scattering,
where the scattered fields depend very weakly on the position
of the particles along the z (beam) axis. For identical parti-
cles, the azimuthal moments are proportional to the volume
integral of the azimuthal Fourier components of the particles’
distributions, as we show in Sec. IV. In Figs. 2(a)–2(c) we plot
the azimuthal moments of the distribution of particles: For
the random distribution the zeroth-order moment is dominant,
while for the ordered distribution with twofold symmetry, the
even-order moments are all of equal amplitude. The presence
of the twofold symmetry is clearly evident even when the
number of ordered particles is only 4% of the total distri-
bution. In Figs. 2(d)–2(f) and 2(g)–2(i) we plot the forward
and backward scattering θ = 0, π , respectively, for incident
beams with OAM � ranging from 0 to 8 for each of these
distributions. Our results illustrate that only the terms with
u = −� and either ê+, m = 1 or ê−, m = −1 do not vanish.
Note that the forward scattering intensity shown is propor-
tional to the modulus squared of the sum of the scattering
amplitudes of the jm electric and magnetic multipoles in
the forward direction due to the −� spatial harmonics of the
distribution. For forward scattering, the scattered fields only
depend on the positions of the particles over the long length
scales w0 and zR of the paraxial incident beam, so many
particles add up in phase. For backward scattering, however,
the scattered fields depend on the z coordinates of the particles
along the beam’s axis over the short length scale λ/2. The
relative phases depend on the wavelength of the incident field
and for most wavelengths the backward scattered fields of
random distributions are not in phase. There are, however,
some wavelengths for which partial coherence gives rise to
larger values of the backward scattered field. Fields scattered
by particles lying on a plane orthogonal to the beam axis are
in phase; hence we observe interference fringes for symmetric
distributions over two or more planes orthogonal to the beam
axis. As the fields scattered by a random distribution of
particles effectively cancel out at most wavelengths, these
interference fringes dominate the scattering response even
when the symmetric distribution comprises a small fraction
of the total number of particles. Therefore, by scanning the
wavelength and measuring the interference fringes in the
backscattered field the presence of ordered particles, on planes
orthogonal to and periodically spaced along the incident beam
axis, can be readily identified.

In some experiments, weak scattered fields make the use of
detection angles larger than those necessary to estimate for-
ward and backward scattering. In order to draw a comparison
with such experiments we consider now measurements made
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FIG. 2. Shown from left to right are N = 4 × 104 particles randomly distributed, 1.6 × 103 particles distributed with twofold symmetry
over two parallel lines, and 4.16 × 104 particles obtained by combining the two previous distributions. (a)–(c) Plots of the azimuthal moments
of the particles’ distribution |∑t exp(iuϕt )|/N for the three distributions of gold nanoparticles with 80-nm radius. For random distributions, the
u = 0 moment is always much larger than the others. For particles distributed with an even (twofold) symmetry the odd azimuthal moments
vanish. The mixed distribution shows a dominant zero moment with weak even moments. (d)–(f) Forward and (g)–(i) backward scattering
for the three distributions above for incident beams with OAM � ranging from 0 to 8. Note that for identical particles, forward and backward
scattering only happen when u = −�.

collecting light scattered within a cone of half-angle 5◦ in both
the forward and backward directions. Experimentally, these
calculations would correspond to measures made using OAM
mode sorters [5–10].

In Fig. 3 we plot the scattered power with specific values
of the OAM lz emitted in both the forward and backward
directions. As a consequence of the theoretical properties
given above, we find that scattered waves with an arbitrary
value of lz are originated by azimuthal harmonics of the
multipole-multipole distributions with u = lz + sz − (� + m).
In the local plane-wave approximation m = ±1 when the
incident beam has circular polarization ê±. For wide angles,
for any given pair of values of � and lz, the azimuthal har-

monics that contribute to the scattered power for incident
beam polarization ê∓ are u = lz − �, lz − � ± 1, lz − � ± 2,
while all these five azimuthal harmonics contribute to the
scattered power for incident beam linear polarization. For
narrow detection cones in the forward or backward direction,
we see from Eqs. (C6) and (C7) that the dominant terms are
those with u = lz − � and the same polarization as the incident
beam. This explains why the dominant peak, corresponding to
the largest harmonic with u = 0, is always observed at lz = �.

We also remark that higher-order incident beams have an
equivalent signal-to-noise ratio, compared to a fundamental
Gaussian mode, for suitably dense (but still dilute) distribu-
tions of particles. This is to be expected, as the scattering
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FIG. 3. Power of scattered light with defined OAM within a small cone, with a half-angle of 5◦, in both the forward and backward
directions. Each column corresponds to the same distributions as in Fig. 2. The rows show results for different incident beams (LG�p) with
p = 0 and � = 0, 1, 2. In each figure the purple (yellow) bars represent the forward (backward) scattered power.

process is consistent for all values of the OAM of the incident
beam. However, further investigation would be required for
particles with dimensions greater than, or comparable to, the
wavelength of the incident light.

B. Regular arrays of particles

We now investigate the application of OAM beams to
nanophotonic arrays of a few wavelengths in size. While
the relation between azimuthal Fourier components of the
particles’ distribution and lz is simpler for narrow detection
cones, as discussed above, for arrays of this size this approach
requires the use of very tightly focused beams in order to
maintain a good overlap between the incident beams and the
structure for all values of � and detect the contribution of the
azimuthal moments with higher u. Theoretically, this can be

investigated using the general theory developed in this paper
together with the beam expansion coefficients of nonparaxial
beams [21]. Alternatively, we can use a Gaussian beam, with
� = 0, which always has a good overlap with small structures,
and increase the detection angle. In this way the presence of
azimuthal order in the distribution is reflected in the OAM
states of the scattered field. Measuring the distribution of
scattered power on the OAM states can be realized by placing
the particles and the sorter in the focal planes of a lens so
that the sorter can separate the OAM states as in the paraxial
regime [6].

In Fig. 4 we plot the OAM states of the field scattered
by a square array of 7 × 7 identical spheres with a nearest-
neighbor distance of 870 nm as the collection angle of the
detector θD is increased. The incident beam has a waist of
w0 = 50 μm at focus. As the detection angle is increased, we
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FIG. 4. Effect of increasing the angle of detection θD on the
OAM states of the field scattered by a square array of 7 × 7 spheres.
The nearest-neighbor distance is 870 nm and the incident beam is a
Gaussian (� = 0) with beam waist w0 = 50 μm at focus. (a) The
azimuthal harmonics of the distribution are defined as in Fig. 2.
(b) Changing distribution of power Psca among the OAM states lz

of the scattered field. (c) Cartoon schematic of the described setup
where the black box indicates the polarization state of the incident
beam.

observe four regimes for the distribution of the scattered
power among the OAM states. First, for 0 < θD < 10◦, we ob-
serve the single OAM state lz = 0. Then, for 10◦ < θD < 30◦
the OAM states have a periodicity 4 originating from the four-
fold symmetry of the structure. For angles 30◦ < θD < 60◦
some of the scattered power goes into the OAM states corre-
sponding to the first harmonic of the structural symmetry lz =
±8. At these larger angles the distribution of power among the
OAM states qualitatively resembles the azimuthal moments of
the particle distribution. Finally, for θD > 60◦ there is energy
distributed across all the even-numbered OAM states.

In Fig. 5 we show the effect of displacing the array of
particles with respect to the beam axis. We consider the
same distribution as in Fig. 4 and a detection angle of 50◦.
As the offset between the beam/symmetry axes increases,
there is a clearly visible effect on the OAM states of the
scattered field, which now have strong peaks at lz = ±1.
This effect is also visible in the azimuthal moments of the
distribution, which are defined with respect to the beam axis
and so also change as the particles are displaced. From the
translation formulas (C1)–(C3) we see that the spread of the
scattered light power over lz increases with the displacement.
It is therefore possible to determine the position of an axis
of symmetry within the distribution of particles by finding
the position, with respect to the incident beam, that minimizes
the spread of the scatted light power over lz. Resolutions on
the position of the symmetry axis of a few percent of the
incident beam waist w0 can be achieved with this method,
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FIG. 5. Effect of displacing the symmetry axis of a square array
of particles away from the incident beam axis, by a distance �, on
the OAM states of the scattered field. The particle distribution and
incident field are the same as in Fig. 4 and the detection angle θD =
50◦. (a) The azimuthal harmonics u are defined with respect to the
beam axis and vary with �. (b) The array is displaced by up to 1 μm
and large relative variations in the power of the OAM states with
lz = ±1 give a sensitivity to displacements of 1% of the beam waist.
(c) Cartoon schematic of the described setup.

depending on the ability to translate the position of the par-
ticles, or beam, and the precision in measuring the variation
of the distribution of the scattered power over lz.

C. Chiral structures

Finally, we investigate how measuring the OAM of the
scattered fields provides a method to identify violations of
symmetry in distributions under reflection with respect to a
plane parallel to the beam axis, the y = 0 plane. To do so, we
study both two- and three-dimensional chiral distributions of
particles,1 specifically, particles arranged along a spiral and a
helical path, respectively.

We start with the former and recall that, for a distribution
confined to the xy plane, a reflection with respect to the
y = 0 plane transforms a right-handed structure into its left-
handed counterpart and vice versa. Such a reflection also
transforms m → −m, so the amplitude of the uth harmonic
of the distribution of one type of structure is the complex
conjugate of the other. Reflection symmetry breaking can be
detected in the OAM states of the scattered light using incident
beams with left and right circular polarization, as the power
scattered into an OAM state depends on different azimuthal

1As we consider only static (time-invariant) distributions of par-
ticles, we neglect time reversibility when determining the enan-
tiomeric (mirror image) form of these structures [22].

013100-6



SCATTERING OF LIGHT WITH ANGULAR MOMENTUM … PHYSICAL REVIEW RESEARCH 2, 013100 (2020)

(b)

θD

−10 −5 0 5 10

u

0

1
A

zi
m

u
th

a
l
m

o
m

en
ts(a)

−10 −5 0 5 10

lz

0

1

P
s
c
a

(a
rb

.
u
n
it

s)

(c)

−10 −5 0 5 10

lz

0

1
P

s
c
a

(a
rb

.
u
n
it

s)
(d)

−10 −5 0 5 10

lz

0

1

P
s
c
a

(a
rb

.
u
n
it

s)

(e)

FIG. 6. Power of scattered light with defined OAM for a left-
handed spiral consisting of 20 nanospheres with a nearest-neighbor
separation distance of 870 nm. For all figures the incident beam is a
Gaussian, with beam waist w0 = 50 μm; the beam axis is perfectly
aligned with the symmetry axis of the distribution and θD = 50◦.
(a) The azimuthal harmonics of the distribution are symmetric about
u = 0. The different OAM spectra of the scattered fields are shown
for incident beams which are (c) left circularly, (d) linearly, and (e)
right circularly polarized. (b) Cartoon schematic of the described
setup.

harmonics of the distributions. This effect is most easily
observed with wide detection angles. However, the detection
does not distinguish between left-handed and right-handed
structures as the difference is only encoded in the phase of the
azimuthal components of the scattered light. This is shown in
Fig. 6, where the chirality of a spiral distribution, consisting
of 20 nanospheres, is evident from the difference in the OAM
states of the scattered field for incident beams with circular
and linear polarization. With incident field polarization ê±1,
the scattered light power has maxima for lz = ±1 as these
OAM values are originated by azimuthal harmonics of the
multipole-multipole distributions with u = −1, 0, 1, which
are the largest components of the distributions, as can be seen
from the plot of the azimuthal moments. This method enables
the identification of the presence of two-dimensional chiral
structures but not their handedness, as this is encoded in the
relative phases of the structures and this information is lost in

(d)
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(c)

RH

FIG. 7. Power of scattered light with defined OAM for (b) a left-
handed (LH) helix and (c) a right-handed (RH) helix constructed by
30 nanospheres with a pitch of 2.67 μm and radius of 10 μm. For all
figures the incident beam is a linearly polarized Gaussian beam with
beam waist w0 = 50 μm and θD = 50◦. For helices the polarization
of the incident beam is important and similar results can be obtained
with circular polarization (not shown). (a) The azimuthal moments
of the mirror image structures are identical. (d) Cartoon schematic of
the described setup where the dashed line highlights the helical path.

the scattering process. Hence, equivalent results are obtained
for both left- and right-handed spirals.

In three dimensions, a right-handed helix is transformed
into a left-handed helix by a spatial inversion operation. In this
case, the phase difference between incident fields on different
particles of the structure depends on the sign of � and so we
can distinguish between structures with opposite handedness.
This is shown in Fig. 7 where, for a linearly polarized inci-
dent Gaussian beam, the OAM of the scattered field clearly
distinguishes between a left-handed and right-handed helical
structure comprised of 30 nanospheres. Here the polarization
of the incident beam is not as important and similar results
are obtained with circular polarization (not shown). We note
that the azimuthal moments, and also the field scattered in the
forward direction (not shown), do not capture the difference
between a helix and a random structure because the azimuthal
moments are independent of z, where the difference between
a helix and random structure appears. Also for these chiral
structures a displacement of the particles, with respect to the
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beam axis, of 1% of the beam waist is clearly detectable by
observing variations in the power distribution of the scattered
light over the OAM states (not shown).

IV. THEORY

The total angular momentum of light consists of a spin part
and an orbital part that are distinct and physically meaningful
but that are not themselves true angular momenta [23]. Only
the total angular momentum and its component along the z
axis are always well defined and conserved in light-matter
interaction processes that are invariant under rotation with
respect to a specific point and around z. This is the case only if
the position of the scattering particle is centered on the axis of
the incident beam. For both off-axis spheres and nonspherical
particles the scattering process is not rotationally invariant and
therefore the total angular momentum is not conserved.

In the far field, it is straightforward to relate variations of
the z component of the total angular momentum to variations
of the z component of the OAM and the polarization, or
spin angular momentum. Therefore, the lack of rotational
invariance provides the opportunity to understand properties
of the particles’ distributions by measuring, in the far field,
variations of the OAM of the scattered field with respect to
the OAM of the incident field. By expanding incident and
scattered fields in terms of electric and magnetic multipoles
[24], we derive a theory for quasimonochromatic fields that
allows us to determine the OAM of the scattered field in the
far-field zone as a function of the OAM of the incident beam
and the electromagnetic properties, and spatial distributions,
of particles. These are modeled by considering the spatial
distributions of the multipole-multipole transition coefficients
that at each point relate the amplitudes of the multipoles of the
scattering fields to those of the incident fields.

We start with the Maxwell equations for electromagnetic
waves with a harmonic time dependence e−iωt ,

E = i

k

√
μr

εr
(∇ × H), H = − i

k

√
εr

μr
(∇ × E), (1)

where we work in SI units and have rescaled the electric and
magnetic fields E = √

ε0 E′ and H = √
μ0 H′, where ε0 and

μ0 are the dielectric permittivity and magnetic permeability of
vacuum, respectively, with k the wave number in the medium.
We also adopt a compact notation with six-dimensional vec-
tors for the electromagnetic fields F (r) = [E(r)T, H(r)T]T,
where the first three components are electric, the last three
are magnetic, and T stands for the transpose [25–27].

We start by considering an incident plane wave propagating
in the direction specified by the wave vector k0,

F0(r) = [E0T
, H0T

]T exp(ik0 · r), (2)

where we define the Cartesian unit vector r̂ = (sin θ

cos ϕ, sin θ sin ϕ, cos θ ) and the wave vector k0 =
|k0|(sin θ0 cos ϕ0, sin θ0 sin ϕ0, cos θ0) in terms of angular
spherical coordinates and E0 and H0 are the vector amplitudes
of the electric and magnetic fields, respectively. Expanding
the exponential term exp(ik0 · r) using the vector spherical
harmonic basis [24], adopting Einstein’s convention of
summing over repeated indices, the plane wave above can be

written as

F0(r) = [
aH

j′m′J H
j′m′ (r) + aE

j′m′J E
j′m′ (r)

]
, (3)

where j′ is the index of the total angular momentum, m′ is the
index of the total angular momentum projected along z, and
aH

j′m′ and aE
j′m′ are beam expansion coefficients, given by

aH
j′m′ = 4π i j′m∗

j′m′ (θ0, ϕ0) · E0, (4a)

aE
j′m′ =

√
μr

εr
4π i j′+1m∗

j′m′ (θ0, ϕ0) · H0. (4b)

The vector spherical harmonic m j′m′ (θ0, ϕ0) is defined as
in Appendix A. In addition, J E

j′m′ (r) and J H
j′m′ (r) are reg-

ular electric and magnetic spherical multipoles, i.e., vector
spherical standing waves, centered at r = 0, and given in
Eqs. (A18) and (A19) The incident field is the field that would
exist without a scatterer and therefore includes both incoming
and outgoing parts. As it should be finite everywhere, J E ,H

j′m′
are written in terms of regular Bessel functions. Note that
the electric and magnetic multipoles are exact solutions of
Maxwell’s equations and it is straightforward to verify that
they are eigenfunctions of the operators of the total angular
momenta Ĵ2 and Ĵz: Ĵ2J E ,H

j′m′ = j′( j′ + 1)J E ,H
j′m′ and ĴzJ E ,H

j′m′ =
m′J E ,H

j′m′ .
We first consider the field scattered by a nonspherical

particle with center at r = 0. Assuming the scattering problem
is linear [28], we can relate the beam expansion coefficients
for the scattered waves to those of the incident waves via

aH,s
jm = aE

j′m′T EH
j′m′ jm + aH

j′m′T HH
j′m′ jm, (5a)

aE ,s
jm = aE

j′m′T EE
j′m′ jm + aH

j′m′T HE
j′m′ jm, (5b)

where T EH , T HH , T EE , and T HE are partitions of the T matrix
which account for the dependence of the multipoles in the
expansion of the scattered field on the multipoles in the ex-
pansion of the incident field [29,30]. In general, the scattering
process mixes angular momenta [31]; when this happens, the
sum over j′m′ involves terms different from jm. The first
superscript index of the matrix partitions indicates the type
of multipole in the incident field expansion that produces the
type of multipole response in the scattered field expansion
indicated by the second superscript: electric (E ) or magnetic
(H). These partitions depend only on the wavelength, the size,
and shape of the particle and the permeability and permittivity
of the internal and external media [32–34].

Thus we can write the scattered field as

F s(r) = [
aH,s

jm SH
jm(r) + aE ,s

jm SE
jm(r)

]
, (6)

where we expand the scattered field in terms of radiating
electric and magnetic multipoles SE

jm and SH
jm. These have the

same form as (A18) and (A19), but with the Bessel functions
replaced by spherical Hankel functions that are singular at the
origin, and are also eigenfunctions of Ĵ2 and Ĵz, as above.
Once the T matrix is constructed, scattering from nonspher-
ical particles can be calculated efficiently without having to
perform surface or volume integrals.

We note that in Eq. (6) it is essential that the beam expan-
sion coefficients are calculated with respect to the center of the
scattering particle. If we now allow the particle to be centered
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at some arbitrary position rt we can write the scattered field
as

F s
t (r) = [

aH,s
jm SH

jm(r − rt ) + aE ,s
jm SE

jm(r − rt )
]
, (7)

where j and m are associated with the angular mo-
menta in the center of the particle rt . This means that
Ĵ2

t SE
jm(r − rt ) = j( j + 1)SE

jm(r − rt ) and ĴtzSE
jm(r − rt ) =

mSE
jm(r − rt ), where Ĵt is the total angular momentum oper-

ator with respect to rt and Ĵtz its component along z. How-
ever, Ĵ2SE

jm(r − rt ) �= j( j + 1)SE
jm(r − rt ) and ĴzSE

jm(r −
rt ) �= mSE

jm(r − rt ).
For a dilute solution of particles, with interparticle dis-

tances such that multiple scattering can be neglected [18],
the total scattered field can then be found by summing the
individual fields due to each particle, i.e., by summing the
fields given by Eq. (7) with beam expansion coefficients
calculated with respect to the center of each particle [21],

F s(r) =
∑

t

F s
t (r)

= [
aH,s

jm (rt )SH
jm(r − rt ) + aE ,s

jm (rt )SE
jm(r − rt )

]
, (8)

where aH,s
jm (rt ) and aE ,s

jm (rt ) are the coefficients for the particle
at rt .

When the incident beam consists of an arbitrary superposi-
tion of plane waves, at the position of each particle we write
it as

E(rt ) =
∫

Ẽ(θk, ϕk ) exp[ik(θk, ϕk ) · rt ]dθkdϕk, (9)

H(rt ) =
∫

H̃(θk, ϕk ) exp[ik(θk, ϕk ) · rt ]dθkdϕk . (10)

The corresponding beam expansion coefficients are scalar
functions of the positions of the particles’ centers

AH
j′m′ (rt ) = 4π i j′

∫
m∗

j′m′ (θk, ϕk ) · Ẽ(θk, ϕk )

× exp[ik(θk, ϕk ) · rt ]dθkdϕk, (11a)

AE
j′m′ (rt ) =

√
μr

εr
4π i j′+1

∫
m∗

j′m′ (θk, ϕk ) · H̃(θk, ϕk )

× exp[ik(θk, ϕk ) · rt ]dθkdϕk . (11b)

The field scattered by the distribution of particles is then

F s(r) =
∑

t

F s
t (r)

= [
AH,s

jm (rt )SH
jm(r − rt ) + AE ,s

jm (rt )SE
jm(r − rt )

]
, (12)

where the beam expansion coefficients of the scattered waves
due to a particle centered on rt , AH,s

jm (rt ) and AE ,s
jm (rt ), are

related to the beam expansion coefficients of the incident
waves via the T matrix as before

AH,s
jm (rt ) = AE

j′m′ (rt )T
EH,t
j′m′ jm + AH

j′m′ (rt )T
HH,t
j′m′ jm, (13a)

AE ,s
jm (rt ) = AE

j′m′ (rt )T
EE ,t
j′m′ jm + AH

j′m′ (rt )T
HE ,t
j′m′ jm, (13b)

where the indices j′, m′, j, and m are associated with the
angular momenta in the center of the particle.

In order to evaluate the angular momentum with respect to
the reference frame of the beam, centered at r = 0, we express
Eq. (12) in terms of products of functions that depend only on
r or on rt . This is done by applying the asymptotic form of
the translation formulas and the Jacobi-Anger identity, which
are valid in the far-field region [see Eq. (C3)]. In the far-field
region, the field scattered by all the particles is

F s∞(θ, ϕ) = exp(−ikr̂ · rt )
[
AH,t

jm (rt )SH∞
jm (θ, ϕ) + AE ,t

jm (rt )SE∞
jm (θ, ϕ)

]
= exp(−ik|rt | cos θ cos θt )

∞∑
n=−∞

(−i)n exp(−inϕt )Jn(k|rt | sin θ sin θt )

× [
AH,t

jm (rt )SH∞
jm (θ, ϕ) + AE ,t

jm (rt )SE∞
jm (θ, ϕ)

]
exp(inϕ), (14)

where we use the Einstein convention and sum over all par-
ticles labeled by the repeated index t , while the sum symbol
for the index n is used explicitly to indicate the extrema of
the sum. The functions SE∞

jm and SH∞
jm describe the scattering

waves in the asymptotic limit as |r| → ∞ [see Eqs. (C4)
and (C5)] and Jn(·) is a Bessel function of the first kind
of order n. The indices j and m are now referring to the
center of the incident beam, while the index n gives an extra
contribution to Ĵz arising from the fact that fields scattered
by particles displaced from the z axis have an additional
azimuthal dependence. This result comes from the translation
formulas; note that ĴzSE∞

jm exp(inϕ) = (m + n)SE∞
jm exp(inϕ).

For the numerical calculations in Sec. III we have used
Eq. (14), which can be easily coded but does not provide
great insight into the main features of the scattering process.
In order to understand how the scattered field is affected by
both the incident field and the distribution of particles, and

hence make analytical predictions, we introduce the density
of multipole-multipole transitions. This density is made up of
a sum of δ functions that depend on the continuous variable
r′ and on the position of the particles’ centers rt ; the vol-
ume integral of this density over r′ gives the distribution of
multipoles centered at rt associated with the corresponding
distribution of particles. The density is

DAB
j′m′ jm(r′) = ρ ′−1

δ(ρ ′ − ρt )δ(ϕ′ − ϕt )δ(z′ − zt )T
AB,t
j′m′ jm

(15)

= DAB
j′m′ jmu(ρ ′, z′) exp(iuϕ′), (16)

where zt = |rt | cos θt ; ρt = |rt | sin θt ; δ(ρ ′ − ρt ), δ(z′ − zt ),
and δ(ϕ′ − ϕt ) = (2π )−1 exp(−iuϕt ) exp(iuϕ′) (with the sum
over the repeated index u ∈ Z) are Dirac delta functions; and
the multi-index superscripts A = E , H and B = E , H . The uth
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azimuthal Fourier component of DAB
j′m′ jm(r′) is

DAB
j′m′ jmu(ρ ′, z′) = (2πρ ′)−1δ(ρ ′ − ρt )δ(z′ − zt )

×T AB,t
j′m′ jm exp(−iuϕt ). (17)

For distributions of identical particles, the volume integral
of DAB

j′m′ jm(r′) over the space occupied by the distribution is
proportional to the uth azimuthal moment of the distribution.

These densities are characteristic of the whole set of parti-
cles and allow us to replace sums over the number of particles
with integrals over the volume occupied by the particles in the
calculation of the scattered field. Note that the smallest scales
λ and Rt affect only the terms T AB,t , while the remaining
factors in the densities take into account spatial variations at
scales ranging from the shorter interparticle distance to the
macroscopic scales L⊥ and L‖.

Using these distributions and considering the beam coeffi-
cients’ dependence upon the azimuthal angle ϕ′, AE ,H

j′m′ (r′) =
AE/H

j′m′q(ρ ′, z′) exp(iqϕ′), the spatial integration gives the selec-
tion rule n = u + q that reveals the connection between the
scattered field and the spatial properties of the distributions
and incident field. Note that for an arbitrary incident field,
the relation between the optical angular momentum of the
incident beam � and q can be calculated using translation-
addition formulas. The scattered field becomes

F s∞(θ, ϕ) = {[
�EH

jmqu(θ ) + �HH
jmqu(θ )

]
SH∞

jm (θ, ϕ)

+ [
�EE

jmqu(θ ) + �HE
jmqu(θ )

]
SE∞

jm (θ, ϕ)
}

× exp[i(u + q)ϕ], (18)

where we define the complex effective scattering amplitudes

�AB
jmqu(θ ) = (−i)u+q

∫
AA

j′m′q(ρ ′, z′)DAB
j′m′ jmu(ρ ′, z′)

× exp(−ikz′ cos θ )Ju+q(kρ ′ sin θ )dV

= (−i)u+qAA
j′m′q(ρt , zt )T

AB,t
j′m′ jm exp(−iuϕt )

× exp(−ikzt cos θ )Ju+q(kρt sin θ ). (19)

Equation (18) relates the total angular momenta of the
scattered light, with respect to the beam center, and its com-
ponent along the beam’s axis to the macroscopic proper-
ties of the distribution of particles and the incident beam.
This can be seen in terms of the operator Ĵz from the
identity ĴzSE∞

jm exp[i(u + q)ϕ] = (m + u + q)SE∞
jm exp[i(u +

q)ϕ]. This equation is general and can be applied to any set
of dilute (noninteracting) particles and any type of incident
field. Furthermore, it shows that the far-field scattering has
the same form as the single-particle scattering (6) but with
amplitude terms dependent on the angle θ that are moments
of the distributions of the multipole-multipole transitions.
These terms also contain an extra contribution to L̂z, i.e., the
dependence on ϕ, that depends on the spatial distribution of
the multipole-multipole transitions and the beam expansion
coefficients.

From Eq. (18) we can derive the following properties that
apply to distributions of particles with any shape and for any
incident field, as long as multiple scattering can be neglected.

(i) For each spatial harmonic u of the multipole-
multipole distributions and harmonic q of the beam expansion
coefficient, the multipolar waves SH∞

jm and SE∞
jm , scattered by

every particle, add coherently to form a scattered wave with
jz = u + q + m.

(ii) For a scattered wave with jz = u + q + m, the com-
ponent of orbital angular momentum along the beam axis, lz,
takes three values: lz = jz − sz, with sz = 0 for polarization ẑ
and sz = ±1 for polarization ê∓.

(iii) For θ = 0, π , i.e., in the forward and backward direc-
tions, only the terms with u = −q and either ê+ and m = 1,
or ê− and m = −1, do not vanish, as can be seen by the
dependence on the angular variables of �AB

jmqu, SE∞
jm , and

SH∞
jm . For these terms lz = 0, however, the two conditions

above are more restrictive than lz = 0.
These properties are most useful when the q index of

the incident field has a single value; this is the case for
the Laguerre-Gaussian paraxial fields in the local plane-
wave approximation, discussed in the following section,
where q = �.

V. LOCAL PLANE-WAVE APPROXIMATION

It is interesting to consider the case of spheres because the
theory becomes fully analytical and a very large number of
experiments are performed with spheres. As a consequence
of the spherical symmetry, both Ĵ and Ĵz are conserved
and therefore T EH = T HE = 0, T EE , T HH are diagonal in
j, j′ and m, m′, and their elements are the Mie coefficients,
which are independent from Ĵz, which can be calculated
analytically [35].

If the incident field is now an arbitrary Laguerre-Gaussian
paraxial beam propagating along the z axis, the rescaled fields
are, in the units used in this paper,

E0(r) =
[

ê0u�p(r) + ẑ
i

k
∂xu�p(r)

]
exp(ikz), (20)

H0(r) =
√

εr/μr[(ẑ × ê0)u�p(r)

+ ẑ
i

k
∂yu�p(r)] exp(ikz), (21)

where ê0 is a polarization vector which satisfies ẑ · ê0 = 0 and
u�p(r) = LG�p(ρ, z) exp(i�ϕ) is a Laguerre-Gaussian ampli-
tude distribution [36], with radial index p and azimuthal index
�. Note that we have included a factor iω

√
ε0 in LG�p with

respect to typical expressions from literature [37,38], where
ω is the angular frequency of the field. Assuming that the
largest dimension of the particles Rt � w0, zR, with w0 the
beam waist of the Laguerre-Gaussian beam and zR the corre-
sponding Rayleigh parameter zR = kw2

0/2, then each sphere
sees three waves propagating along z, one transverse and two
(spurious) longitudinal, which do not produce scattering as
shown in Appendix B. For this reason, only corrections to the
paraxial fields of order k−2 would affect the scattered fields;
for the cases considered here, corrections of this order can be
safely neglected.

From the plane-wave expansion coefficients (4a) and (4b)
we find that the scattered field of a distribution of spherical
particles in the far-field limit is

F s∞(θ, ϕ)= [
�HH

j,−1,�u(θ )SH∞
j,−1(θ, ϕ) + �HH

j,1,�u(θ )SH∞
j,1 (θ, ϕ)

+�EE
j,−1,�u(θ )SE∞

j,−1(θ, ϕ)+�EE
j,1,�u(θ )SE∞

j,1 (θ, ϕ)
]

× exp[i(u + �)ϕ], (22)

013100-10



SCATTERING OF LIGHT WITH ANGULAR MOMENTUM … PHYSICAL REVIEW RESEARCH 2, 013100 (2020)

with complex scattering amplitudes

�EE
j,±1,�u(θ ) = i j+1−u−�

√
2π (2 j + 1)ê∓ · (ẑ × ê0)

×
∫

ρ ′dρ ′dz′LG�p(ρ ′, z′)DEE
j,±1,u(ρ ′, z′)

× exp[ikz′(1 − cos θ )]Ju+�(kρ ′ sin θ ), (23a)

�HH
j,±1,�u(θ ) = i j−u−�

√
2π (2 j + 1)ê∓ · ê0

×
∫

ρ ′dρ ′dz′LG�p(ρ ′, z′)DHH
j,±1,u(ρ ′, z′)

× exp[ikz′(1 − cos θ )]Ju+�(kρ ′ sin θ ). (23b)

In Eqs. (23a) and (23b) we have dropped for DAA the indices
corresponding to the incident fields because they are the same
as those for the scattered field for the properties of the Mie
coefficients mentioned before.

Evaluating Eqs. (23a) and (23b) at θ = 0, the only terms
that contribute to the scattered field can be written as

�EE
j,±1,�,−�(0) = i j+2−u−�

√
2π (2 j + 1)

× ê∓ · (ẑ × ê0)
(
LG∗

�p, DEE
j,±1,−�

)
, (24a)

�HH
j,±1,�,−�(0) = i j+1−u−�

√
2π (2 j + 1)

× ê∓ · ê0(LG∗
�p, DHH

j,±1,−�

)
, (24b)

where we have introduced the notation ( f , g) =∫
f ∗(ρ, z)g(ρ, z)ρ dρ dz to define an overlap integral over the

cylindrical distribution volume, projected along the azimuthal
angle. An important feature of Eqs. (24a) and (24b) is that
the radial and axial coordinates of the particles ρt and zt

affect the scattering amplitudes only through the slowly
varying amplitude LG�p of the Laguerre-Gauss beam. As
this amplitude does not vary significantly for z > zR, most
of the particles scatter in phase in the forward direction.
For θ = π , i.e., the backward scattered field, Eqs. (24a) and
(24b) are modified by adding a factor of exp(i2kz′) inside the
integrals. When the longitudinal dimension of the distribution
is significantly larger than the wavelength L‖ � λ, the
stationary phase approximation shows that the dominant term
in �

EE/HH
j,±,�,−�(0) is the coefficient of the Fourier component of

DEE/HH that varies along z as exp(−i2kz′). In practice, this
means that in the backward direction the scattering intensity
is dominated by distributions periodic along z, of spatial
period λ/2, or by particles with the same z coordinate, whose
scattered fields add in phase.

VI. CONCLUSION

In this paper we have presented a fundamentally differ-
ent method of extracting information about scattering media
based on the detection of a fundamental property of light, its
orbital angular momentum. Using a generalized Mie theory,
we have developed a theory for the scattering of light carrying
OAM from dilute distributions of micro- and nanoparticles.

We showed that by controlling the axial OAM of the
incident beams and measuring the OAM of the scattered fields
in the far field, the scattering can be used to identify the pres-
ence of subsets of particles with symmetric or chiral distribu-
tion within a disordered medium. This may be of particular

benefit for nanophotonics, environmental sensing and metrol-
ogy, ocean transmissometry, and even applications in bio-
logical imaging. Moreover, understanding the effect of the
medium is of critical importance for secure high-bandwidth
communications because optical signals are degraded by
propagation through scattering media.

Our method makes use of the fact that structured beams
have several characteristic length scales and that the compo-
nent of the total angular momentum of light with respect to
the direction of propagation of the incident beams is in general
not conserved in order to derive the spatial distribution of the
scattering particles. This information is obtained maintaining
detectors and light sources in the same positions, a unique
feature that can be extremely useful in many applications.

We also found that the signal-to-noise ratio does not de-
grade as the OAM increases, when the scattering particles
are much smaller than the beam waist and Rayleigh range
of the beams, thus confirming that they are an ideal basis for
transmitting multiplexed signals in such systems.

The fundamental nature and the generality of this theory
will open the way to alternative experimental approaches in
fields as diverse as nanophotonic and marine or atmospheric
optics. In particular, this theory could be extended to denser
distributions by including multiple scattering effects through
multiparticle Green’s functions [26,27] for applications in
nonlinear and quantum nanophotonics.

On the other hand, measuring the OAM of the scattered
light in the far field provides constraints on effective-medium
models in which the field scattered by these distributions of
particles is reproduced by equivalent continuous dielectric
functions, replacing the evaluation of the scattering from
many particles with a calculation of propagation through an
effective medium.

In agreement with EPSRC policy, all data sets have been
made available on Pure, the University of Strathclyde data
repository [39].
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APPENDIX A: MULTIPOLE EXPANSIONS

In this Appendix we briefly summarize the relation be-
tween spherical harmonics, vector spherical waves, multi-
poles, and eigenfunctions Ym

jl of the orbital angular momen-
tum and spin and total angular momentum operators

L̂ = −ir × ∇, (A1)

Ŝ = iI×, (A2)

Ĵ = L̂ + Ŝ, (A3)

where we have used the representation of the spin operator,
valid for photons, given in Ref. [17] (Chapter 3, Appendix D),
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with I the identity matrix in the three-dimensional space, and
the operators are divided by h̄. The eigenfunctions Ym

jl of L̂2,

Ĵ2, and Ĵz satisfy
L̂2Ym

jl = l (l + 1)Ym
jl , (A4)

Ĵ2Ym
jl = j( j + 1)Ym

jl , (A5)

ĴzYm
jl = mYm

jl (A6)

and can be found in Ref. [17].2 As the spin of light is s = 1, we
need to consider the above relations only for the three cases
j = l and j = l ± 1. For j = l, l ± 1, the eigenfunctions are

Ym
j j (�) = L̂√

j( j + 1)
Yj,m(�)

= ê−α−
j jYj,m+1 + ê+α+

j jYj,m−1 + ẑαz
j jYj,m, (A7)

Ym
j, j−1(�) = jr̂ − i(r̂ × L̂)√

j(2 j + 1)
Yjm(�)

= ê−α−
j, j−1Yj−1,m+1 + ê+α+

j, j−1Yj−1,m−1

+ ẑαz
j, j−1Yj−1,m, (A8)

Ym
j, j+1(�) = − ( j + 1)r̂ + i(r̂ × L̂)√

( j + 1)(2 j + 1)
Yjm(�)

= ê−α−
j, j+1Yj+1,m+1 + ê+α+

j, j+1Yj+1,m−1

+ ẑαz
j, j+1Yj+1,m, (A9)

where

α+
j j =

√
( j + m)( j − m + 1)

2 j( j + 1)
, (A10a)

α−
j j =

√
( j − m)( j + m + 1)

2 j( j + 1)
, (A10b)

αz
j j = m√

j( j + 1)
; (A10c)

α+
j, j−1 = −

√
( j + m)( j + m − 1)

2 j(2 j − 1)
, (A11a)

α−
j, j−1 =

√
( j − m)( j − m − 1)

2 j(2 j − 1)
, (A11b)

αz
j, j−1 =

√
( j − m)( j + m)

j(2 j − 1)
; (A11c)

α+
j, j+1 = −

√
( j − m + 2)( j − m + 1)

2( j + 1)(2 j + 3)
, (A12a)

α−
j, j+1 =

√
( j + m + 2)( j + m + 1)

2( j + 1)(2 j + 3)
, (A12b)

αz
j, j+1 = −

√
( j − m + 1)( j + m + 1)

( j + 1)(2 j + 3)
; (A12c)

2We note that in Eq. (6.58) of Ref. [17], the authors use ψ̂+ = −ê+
and that there is a factor of i between their definition of N jm and ours.

and

Yjm(�) =
√

2 j + 1

4π

( j − m)!

( j + m)!
Pm

j (cos θ ) exp(imϕ) (A13)

are the scalar spherical harmonics with Pm
j (cos θ ) the associ-

ated Legendre function [24]. The vector spherical harmonics
can be expressed in terms of these eigenfunctions as

m jm(�) = Ym
j j (�), (A14)

n jm(�) = r̂ × m jm(�)

= i

[√
j + 1

2 j + 1
Ym

j, j−1(�) +
√

j

2 j + 1
Ym

j, j+1(�)

]
.

(A15)

The orthonormality relations over the 4π solid angle

∫
Y ∗

jmYj′m′d� = δ j j′δmm′ ,∫
Ym

j,l
∗ · Ym′

j′,l ′d� = δ j j′δll ′δmm′ ,∫
m∗

jm · m j′m′d� =
∫

n∗
jm · n j′m′d� = δ j j′δmm′ ,∫

m∗
jm · n j′m′d� = 0

are very useful.
The spherical vector waves corresponding to these angular

functions are

M jm(r) = z j (k|r|)m jm(�), (A16)

N jm(r) = k−1∇ × M jm(r)

= i

[√
j + 1

2 j + 1
z j−1(k|r|)Ym

j, j−1(�)

−
√

j

2 j + 1
z j+1(k|r|)Ym

j, j+1(�)

]

= i
z j (k|r|)

k|r|
√

j( j + 1)Yj,m(�)r̂

+ ∂k|r|[k|r|z j (k|r|)]
k|r| n jm(�), (A17)

where zl are either spherical Bessel or Hankel functions of
the first kind. The recurrence relations z j−1(r) = z′

j (r) + ( j +
1)z j (r)/r and z j+1(r) = −z′

j (r) + jz j (r)/r can be used to
verify the last equality. From the expression above, we can
see that m jm and M jm are eigenfunctions of L̂2, Ĵ2, and Ĵz, but
n jm and N jm are eigenfunctions only of Ĵ2 and Ĵz, as shown by
the presence of Ym

j, j−1 and Ym
j, j+1. This happens because the

vector product and the rotor mix states with different orbital
angular momenta l .

013100-12



SCATTERING OF LIGHT WITH ANGULAR MOMENTUM … PHYSICAL REVIEW RESEARCH 2, 013100 (2020)

Finally, the electric and magnetic multipoles are exact
solutions of Maxwell’s equations used in the expansion of
plane waves. They are defined as

J H
jm(r) =

[
M jm(r)

−i
√

εr
μr

N jm(r)

]
, (A18)

J E
jm(r) =

[
N jm(r)

−i
√

εr
μr

M jm(r)

]
, (A19)

with the Bessel functions used for M jm and N jm. The electric
and magnetic multipoles SH

jm and SE
jm used in the expansion of

scattering fields are defined analogously, but using the Hankel
functions instead of the Bessel functions.

APPENDIX B: PLANE-WAVE EXPANSION COEFFICIENTS

The beam expansion coefficients of the plane wave in
Eqs. (4a) and (4b) are

aH
jm = 4π i jm∗

jm(�0) · E0, (B1)

aE
jm =

√
μr

εr
4π i j+1m∗

jm(�0) · H0, (B2)

with �0 = (θ0, ϕ0) the angular spherical coordinates of wave
vector k0 and m jm(�0) is the vector spherical harmonic
defined as in Ref. [24]. For the special case in which k0

is parallel to the z axis, we have �0 = (0, ·) and the only
nonvanishing spherical harmonics are

Yj,0(0, ·) =
√

2 j + 1

4π
, (B3)

which, together with Eqs. (A7)–(A14), means that the longi-
tudinal waves with electric or magnetic fields parallel to the
propagation axis z do not induce scattering. For transverse
waves propagating along z, m has values ±1, depending on
the polarization, and

aH
j,∓1 = i j

√
4π (2 j + 1)

E0
x ± iE0

y

2

= i j
√

4π (2 j + 1)
ê± · E0

√
2

, (B4)

aE
j,∓1 =

√
μr

εr
i j+1

√
4π (2 j + 1)

H0
x ± iH0

y

2

=
√

μr

εr
i j+1

√
4π (2 j + 1)

ê± · H0

√
2

, (B5)

with ê± = (x̂ ± iŷ)/
√

2. For an incident field with the angular
spectrum representation

E(r) =
∫

Ẽ(�k ) exp[ik(�k ) · r]d�k, (B6)

H(r) =
∫

H̃(�k ) exp[ik(�k ) · r]d�k, (B7)

with H̃ = √
εr/μr (k̂ × Ẽ), the beam expansion coefficients

for a particle centered at r are obtained by considering
the angular spectrum representation in the reference frame

centered at rt and using the beam expansion coefficients of
the plane waves,

AH
ν (rt ) = 4π i j

∫
m∗

ν (�k ) · Ẽ(�k ) exp[−ik(�k ) · rt ]d�k,

(B8)

AE
ν (rt ) =

√
μr

εr
4π i j+1

∫
m∗

ν (�k ) · H̃(�k )

× exp[−ik(�k ) · rt ]d�k. (B9)

APPENDIX C: ASYMPTOTIC EXPRESSIONS

We use the far-field asymptotic expansions

M jm(r′) ∼ exp(ik|r′|)
|r′| (−i) j+1m jm(θ ′, ϕ′) + O

(
1

r2

)

∼ exp(ik|r|)
|r| exp(−ikr̂ · rt )(−i) j+1m jm(θ, ϕ)

+ O

(
1

r2

)
, (C1)

N jm(r′) ∼ exp(ik|r′|)
|r′| (−i) jn jm(θ ′, ϕ′) + O

(
1

r2

)

∼ exp(ik|r|)
|r| exp(−ikr̂ · rt )(−i) jn jm(θ, ϕ)

+ O

(
1

r2

)
, (C2)

where r′ = r − rt , r̂ = r/|r|, and |r| → ∞. Employing the
Jacobi-Anger identity gives the expansion

exp(−ikr̂ · rt ) = exp{−ik|rt |[cos θt cos θ

+ sin θt sin θ cos (ϕ − ϕt )]}
= exp(−ik|rt | cos θt cos θ )

×
∞∑

n=−∞
(−i)nJn(k|rt | sin θt sin θ )

× exp[in(ϕ − ϕt )]. (C3)

The asymptotic form of the spherical multipoles is

SH∞
jm (r) = exp(ik|r|)

|r|

[
(−i) j+1m jm(θ, ϕ)

−i
√

εr
μr

(−i) jn jm(θ, ϕ)

]

= exp(ik|r|)
|r| PH

jm(θ, ϕ), (C4)

SE∞
jm (r) = exp(ik|r|)

|r|

[
(−i) jn jm(θ, ϕ)

−i
√

εr
μr

(−i) j+1m jm(θ, ϕ)

]

= exp(ik|r|)
|r| PE

jm(θ, ϕ), (C5)

where P contain the angular dependence of the m and n
harmonics. The dependence upon ϕ in Cartesian coordinates
can be found using Eqs. (A7)–(A9). For m = ±1 and θ � 1,
to the first order in θ , we have

m j,±1(θ, ϕ) ∼ ê±1
Yj,0√

2
± ẑ

Yj,±1√
j( j + 1)

, (C6)

n j,±1(θ, ϕ) ∼ ∓ iYj,0

2
[ê±1

√
2 cos θ − ẑ sin θ exp(±iϕ)].

(C7)
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