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Abstract
This study focuses on the fault diagnosis of a hydroelectric generation system with 
hydraulic‐mechanical‐electric structures. To achieve this analysis, a methodology 
combining Bayesian network approach and fault diagnosis expert system is 
presented, which enables the time‐based maintenance to transform to the condition‐
based maintenance. First, fault types and the associated fault characteristics of the 
generation system are extensively analyzed to establish a precise Bayesian network. 
Then, the Noisy‐Or modeling approach is used to implement the fault diagnosis 
expert system, which not only reduces node computations without severe information 
loss but also eliminates the data dependency. Some typical applications are proposed 
to fully show the methodology capability of the fault diagnosis of the hydroelectric 
generation system.
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1 |  INTRODUCTION

2015 United Nations Climate Change Conference promised 
that the raise of global warming is almost 2°C compared to 
pre‐industrial levels, which greatly promotes the electricity 
generation to turn to renewable energy such as hydropower 
generations.1 China is leading to a hydropower boom, fol-
lowed by India, Europe, the United States, and Japan.2 
Hydropower plants have been built in more than 160 coun-
tries, with a total number of 11  000 plants equipped with 
27 000 hydro‐turbine generator units at the end of 2017.3 In 
China, the hydropower capacity is expected to increase to 380 
gigawatts by 2020.4 These hydropower plants are constructed 
at sites along rivers, including thirteen plants on the Salween 
or Nujiang and twenty plants along the Brahmaputra.4 In 
Brazil, 375 small hydropower plants with the total capacity 
of 4799 MW are currently running, and another 1701 MW 
installed capacity will be constructed in the next 10 years.5 
Hydroelectric generation systems are under construction all 
over the world to ensure the enforcement of stricter energy 
and environmental policy. Obviously, the economic benefit 
and carbon dioxide mitigation of such hydroelectric generat-
ing systems are well known to the general public,6-11 but the 
stability and safety impacts of themselves still require enough 
attentions.

Faults in the hydroelectric generation systems (HGS) in-
evitably result in unexpected safety accidents with enormous 
maintenance costs.12-14 National Energy Administration is-
sued that 80% of HGS’ faults are caused by the vibration of 
the hydraulic‐mechanic‐electric components.15,16 In general, 
the vibration in the HGS is defined as a drastic reciprocat-
ing motion caused by unbalanced forces and uncertain dis-
turbances.17,18 For instance, 60% of the vibration faults are 
attributable to the out‐of‐balance rotating bodies and the 
pressure pulsation of flow passage components in Japan.19,20 
The current study of the HGS's faults mainly focuses on the 
constituent components (eg, generators, hydro‐turbines, and 
pipelines).21-23 Additionally, the collection of the on‐line 
monitoring data under the condition of fast information flow 
is another challenge for fault diagnosis of the HGS.24,25 To 

adequately analyze the faults mechanism, to predict behavior 
of systems, to evaluate operating reliability, and to decrease 
maintenance costs, are the challenging tasks. Hence, it is of 
primary importance to provide the powerful methodology for 
the fault diagnosis of HGSs not only of systems but also of 
data available.

Some popular efficient approaches, combining monitor-
ing data and expert experiences, are developed for the fault 
diagnosis such as fault tree analysis (FTA), event tree anal-
ysis (ETA), and Bayesian network (BN).26-28 FTA and ETA 
are applied to evaluate the reliability of systems, whereas 
these approaches lack lateral linkages between nodes and 
also require high‐quality experts to cope with complicated 
computations.29 In light of this, BN is widely used to over-
come the limitations of FTA and ETA since it successfully 
incorporates expert experiences by means of lateral link-
ages.30-32 However, the modeling of BN in practical ap-
plications is still difficult and tedious, especially for the 
complicated systems.33,34 Thus, it is emergent to present 
suitable approaches to reduce node computations without 
severe information loss.

This study aims to provide an efficient computational 
methodology for the fault diagnosis of the HGS. To estab-
lish a precise Bayesian network of the HGS, we fully analyze 
the complex fault types and their associated fault character-
istics. The Noisy‐Or modeling approach is used to eliminate 
the data dependency and to reduce node computations. The 
fault diagnosis expert system is proposed that is beneficial to 
the condition‐based maintenance at the lowest cost. Finally, 
some typical applications are done to fully show the meth-
odology capability of the fault diagnosis of the hydroelectric 
generation system.

This study is structured as follows. Section 2 describes the 
global methodology of the BN fault diagnosis of the HGS. 
Section 3 presents the BN fault diagnosis model consider-
ing the hydraulic, mechanical, and electric factors. Section 4 
performs the applications of the fault diagnosis model of the 
HGS. Conclusions and discussion in Section 5 summarize 
this study.

2 |  METHODOLOGY

This section is dedicated to the overall theoretical background 
of the methodology adopted in the present study. A brief 
description of BN, Noisy‐Or model, and expert system is 
presented.

2.1 | Bayesian network
BN is a statistical graphical model that combines the 
probability theory with the graphic theory.35 A complete BN 
is comprised of nodes, connecting arrows and the conditional F I G U R E  1  An example of BN
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probability tables (CPTs), which is represented by a directed 
acyclic graph (DAG). The BN displays the cause and effect 
relationships between the network variables, as shown in 
Figure 1.

The implementation of BN relying on the Bayes’ theo-
rem is defined as the exhaustive event set 

{
B1,B2,...,Bn

}
 and 

the event A exist in a sample space Ω, and they, respectively, 
meet the conditions of P(Bi)>0 (i=1,2,3,...,n) and P(A)>0. 
Hence, we get36,37:

To enable the inference analysis of the BN, Equation 
(1) is subject to the following conditional independence 
hypothesis:

The variable nodes (X1, X2,…Xn) in the BN are condition-
ally independent for their father nodes. This means that the 
variable nodes satisfy the joint probability in Equation (2).

where pai denotes the father node set of Xi.

2.2 | Noisy‐Or model
The major work of BN is to determine the CPT, whereas the 
deduction of the joint probability is growing exponentially 
with the increase of variable nodes. For the BN with nth 
binary discrete nodes, it generally requires 2nth conditional 
probabilities to describe the network model. To reduce node 

computations, Noisy‐Or modeling approach is applied in the 
BN calculation. A typical Noisy‐Or model38,39 is expressed 
as

where y is a safety accident, XP is the set of fault nodes ex-
pressed by X1,X2,...Xn; XT is the truth set of fault nodes; Pi is the 
probability of y if or only if Xi = True.

2.3 | Fault diagnosis expert system
Fault diagnosis expert system is an intelligent tool that 
integrates expert experiences and Bayesian inferences, and 
it has significant advantages of the comprehensive collection 
of expert knowledge, the accurate simulation of expert 
thinking and the precision of fault diagnosis. The schematic 
diagram of the fault diagnosis expert system is performed in 
Figure 2. The development of the efficient fault diagnosis 
expert system will be beneficial to the condition‐based 
maintenance at the lowest cost.

2.4 | Global methodology
Based on the above descriptions, Figure 3 is plotted to show 
the global methodology of Bayesian fault diagnosis of the 
HGS. The calculation process plan is concluded in the 
following steps:

(1)
P(Bi�A)=

P(A�Bi)P(Bi)

n∑
j=1

P(A�Bi)P(Bi)

, i=1,2,3,...,n.

(2)P(X1,X2,...Xn)=

N∏
i=1

P(Xi|pai),

(3)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

Pi =
P(y�Xi)−P(y�Xi)

1−P(y�Xi)

P(y�XP)=1−
�

Xi∈XT

(1−Pi)

P(Xi =Tonly�Y)=
Pi ⋅P(Xi =T)

P(Y)

,

F I G U R E  2  Schematic diagram of a 
fault diagnosis expert system
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1. Using expert experiences and monitoring data to collect 
the hydraulic, mechanical, and electric fault types in 
the HGS and also to investigate their associated fault 
characteristics. Based on this, a fault diagnosis model 
of Bayesian network for the HGS is presented.

2. The expert system gives the prior probabilities of nodes, 
and the Noisy‐Or modeling approach is employed to 
reduce the node computations.

3. Based on the Bayes’ theorem, we conduct the Bayesian 
fault diagnosis inference of the HGS. The obtained 
posterior probabilities are used to perform the diagnostic 
fault locations and the relevant fault characteristics. If 
the actual fault component is included in the diagnostic 
fault locations, the maintenance worker is able to solve 
the problem in time. Conversely, if the diagnostic result 
is “No,” the Bayesian network will reassessment the 
posterior probabilities of fault locations in light of the 
updated CPT.

4. Summarizing the frequent fault locations and their 
corresponding fault characteristics to diminish the operation 
loss and maintenance loss in hydropower stations.

3 |  MODEL

To model a BN of fault diagnosis, the critical task is to 
analyze the complex fault types and their associated fault 
characteristics in the HGS. We extensively collect the 
faults data of the HGS from literatures, on‐site visit, and 
expert advice. In general, the HGS's fault refers to that 
the system works abnormally with enormous vibrations 
and can even lead to accidental shutdown or component 
damage since about 80% of HGS's faults are caused by 
component vibrations. Statistically, the disturbing forces 
(ie, the rotational unbalanced force of rotors, the hydraulic 
unbalanced force, and the unbalanced magnetic pull) with 
different magnitudes, directions, and frequencies will 
influence the performance of vibrations. Based on the 
operating characteristic of the HGS, the disturbing forces 
are attributed to the hydraulic, mechanical, and electric 
factors. Hence, the fault types and the associated fault 
characteristics can be performed in the fault diagnosis BN 
of the HGS, as shown in Figure 4.

F I G U R E  3  The global methodology 
of fault diagnosis of the hydroelectric 
generation system. conditional probability 
table refers to the conditional probability 
table. HGS refers to the hydroelectric 
generation system
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4 |  CASE STUDY

The mechanical fault, as the most important influence fac-
tor on the safety of the HGS, is selected as a case study for 
the application of the BN proposed in this work. The typical 
mechanical fault (ie, the rubbing fault MF2, the misalign-
ment fault of rotor MF3, and the mechanical axial crack 
MF4) and their associated fault characteristics (ie, the vi-
bration with doubled frequency F2F0 and the vibration with 
third frequency F3F0) are finally modeled a studied BN, as 
shown in Figure 5. In the actual operation of hydropower 

stations, the rubbing fault (MF2) is triggered by improper 
assembly, shafting bend, rotor imbalance, and mechanical 
looseness, resulting in enormous vibrations and noises. The 
misalignment fault of rotor (MF3) generally leads to the 
deformation of shaft and rotor swing, which significantly 
reduces the operating efficiency of the HGS. The mechani-
cal axial crack (MF4) has obvious adverse effects on the 
stiffness of shaft, which can cause unexpected shaft broken 
accidents with the increase of load and turbine speed.

For the HGS's BN with critical mechanical faults per-
formed in Figure 5, the possible working states of the fault 
nodes are “normal” and “trouble,” as well as the fault fre-
quencies for their associated fault characteristics nodes in-
clude “high” and “low.”

Example 4.1 Noisy‐Or Model Applications.

To reduce the complicated computations of CPT, the 
Noisy‐Or model can significantly eliminate disturbing influ-
ences between the fault node and the associated fault charac-
teristics nodes. Based on the Noisy‐Or model (3), the CPT of 
node F2F0 and node F3F0 in Figure 5 is calculated as:

1. CPT of node F2F0

F I G U R E  4  The Bayesian network of the fault diagnosis of the HGS coupling with hydraulic, mechanical, and electric factors

F I G U R E  5  A simple BN of the hydraulic generating system 
with critical mechanical faults
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According to expert experiences, the following probabilities are 
obtained as:

P(MF2= trouble)=0.2, P(MF3= trouble)=0.2, 
P(MF4= trouble)=0.4;

P(y1|X1)=P(F2F0=high|MF2= trouble)=0.56, 
P(y1|X1)=P(F2F0= low|MF2=normal)=0.82;

P(y1|X2)=P(F2F0=high|MF3= trouble)=0.44, 
P(y1|X2)=P(F2F0= low|MF3=normal)=0.9;

P(y1|X3)=P(F2F0=high|MF4= trouble)=0.8, 
P(y1|X3)=P(F2F0= low|MF4=normal)=0.92.

For the Noisy‐Or model (3), the matrix of 
XP =

{
X1 = normal,X2 = trouble,X3 = trouble

}
.

Substituting the above probabilities into the Noisy‐Or 
model (3‐1), we obtain

Based on the Noisy‐Or model (3‐2) and Equation (4), it 
can be obtained as.

where the fault node set XP = { X1 = normal, X2 = trouble,  
X3 = trouble} in Equation (5‐1), XP ={X1 = trouble,  
X2 = normal, X3 = trouble} in Equation (5‐2), 
XP ={X1 = trouble, X2 = trouble, X3 = normal} in Equation 

(5‐3), and XP ={X1 = trouble, X2 = trouble, X3 = trouble} in 
Equation (5‐4).

Therefore, the CPT of node F2F0 is listed in Table 1.

2. CPT of node F3F0

Based on expert experiences, the probabilities are ob-
tained as follows:

P(y2|X1)=P(F3F0=high|MF2= trouble)=0.74, 
P(y2|X1)=P(F3F0= low|MF2=normal)=0.95;

P(y2|X2)=P(F3F0=high|MF3= trouble)=0.45, 
P(y2|X2)=P(F3F0= low|MF3=normal)=0.92;

P(y2|X3)=P(F3F0=high|MF4= trouble)=0.35, 
P(y2|X3)=P(F3F0= low|MF4=normal)=0.88.

Then, based on the Noisy‐Or model (3), we can get:

where the fault nodes set XP = { X1 = normal, X2 = trouble,  
X3 = trouble} in Equation (7‐1), XP ={X1 = trouble, X2 = normal,  
X3 = trouble} in Equation (7‐2), XP ={X1 = trouble, X2 = trouble,  
X3 = normal} in Equation (7‐3), and XP ={X1 = trouble, 
X2 = trouble, X3 = trouble} in Equation (7‐4).

(4)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

P1 =
P(y1�X1)−P(y1�X1)

1−P(y1�X1)
=

0.56− (1−0.82)

1− (1−0.82)
=0.4634

P2 =
P(y1�X2)−P(y1�X2)

1−P(y1�X2)
=

0.44− (1−0.9)

1− (1−0.9)
=0.3778

P3 =
P(y1�X3)−P(y1�X3)

1−P(y1�X3)
=

0.8− (1−0.92)

1− (1−0.92)
=0.7826

(5)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

P(y�XP)=1−
�

Xi∈XT

(1−Pi)=1− (1−P2)(1−P3)=0.8647

P(y�XP)=1−
�

Xi∈XT

(1−Pi)=1− (1−P1)(1−P3)=0.8833

P(y�XP)=1−
�

Xi∈XT

(1−Pi)=1− (1−P1)(1−P2)=0.6661

P(y�XP)=1−
�

Xi∈XT

(1−Pi)=1− (1−P1)(1−P2)(1−P3)=0.9274

,

(6)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

P1 =
P(y2�X1)−P(y2�X1)

1−P(y2�X1)
=

0.74− (1−0.95)

1− (1−0.95)
=0.7263

P2 =
P(y2�X2)−P(y2�X2)

1−P(y2�X2)
=

0.45− (1−0.92)

1− (1−0.92)
=0.4022

P3 =
P(y2�X3)−P(y2�X3)

1−P(y2�X3)
=

0.35− (1−0.88)

1− (1−0.88)
=0.2614

,

(7)

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

P(y�XP)=1−
�

Xi∈XT

(1−Pi)=1− (1−P2)(1−P3)=0.5585

P(y�XP)=1−
�

Xi∈XT

(1−Pi)=1− (1−P1)(1−P3)=0.7978

P(y�XP)=1−
�

Xi∈XT

(1−Pi)=1− (1−P1)(1−P2)=0.8364

P(y�XP)=1−
�

Xi∈XT

(1−Pi)=1− (1−P1)(1−P2)(1−P3)=0.8792

,

T A B L E  1  Conditional probability table of node F2F0

MF2 Normal Trouble

MF3 Normal Trouble Normal Trouble

MF4 Normal Trouble Normal Trouble Normal Trouble Normal Trouble

Low 1.000 0.2174 0.6222 0.1326 0.5366 0.1167 0.3339 0.0726

High 0.0000 0.7826 0.3778 0.8647 0.4634 0.8833 0.6661 0.9274
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Thus, the CPT of node F3F0 is listed in Table 2.

Example 4.2 BN‐Based Fault Diagnosis of the HGS.

Using Bayes’ theory presented in the methodology sec-
tion, we establish the fault diagnosis expert system of the 
HGS that integrates expert experiences and Bayesian infer-
ences. The BN inference is utilized to give some typical ap-
plications of the BN‐based fault diagnosis of the HGS. Six 
cases are performed as follows.

• Case 1: Assuming the fact is the increasing vibration with 
doubled frequency. That is, the probability of the fault 
characteristic node F2F0 in “high” state is 1. Using the 
Bayesian diagnosis inference (the definition is revealed in 
the literature40), its father nodes probabilities including the 
rubbing fault MF2, the misalignment fault of rotor MF3, 
and the mechanical axial crack MF4 in “trouble” states are 
0.3110, 0.2892, and 0.7718, respectively. The calculated 
result indicates that the HGS's fault is most likely due to 
the mechanical axial crack with the occurrence of the in-
creasing vibration with doubled frequency.

• Case 2: When the on‐line monitoring system captures the 
increasing signal of the vibration with third frequency, 
the probability of the fault characteristic node F3F0 in 
“high” state equals to 1. Similarly, the node probabilities 
of the rubbing fault MF2, the misalignment fault of rotor 
MF3, and the mechanical axial crack MF4 in “trouble” 
states are therefore calculated as 0.5230, 0.3663, and 
0.5665, respectively. This means that the mechanical 
rubbing and axial crack are able to result in the fault of 
the HGS.

• Case 3: The HGS shows the vibration with doubled fre-
quency and third frequency. As a result, the probability for 
the fault characteristic nodes F2F0 and F3F0 in the “high” 
state is 1. The nodes probabilities of the rubbing fault MF2, 
the misalignment fault of rotor MF3, and the mechanical 
axial crack MF4 in “trouble” states are obtained as 0.5145, 
0.3568, and 0.7013 by means of Bayesian diagnosis infer-
ences, respectively. Therefore, the mechanical axial crack 
may be considered as the main influence factor on the op-
erating safety of the HGS in this case.

• Case 4: Assuming the fault of the mechanical axial crack is 
found by maintenance workers, and the on‐line monitoring 

system also captures the increasing signal of the vibration 
with doubled frequency. Based on the Bayesian support 
inference in literatures,40,41 its father nodes probabilities 
of the rubbing fault MF2 and the misalignment fault of 
rotor MF3 in “trouble” states are 0.2181 and 0.2150, re-
spectively. Meanwhile, the parallel node probability of the 
vibration with third frequency F3F0 in the “high” state is 
0.4325.

Comparing with case 3, the probability for the occurrence 
of the rubbing fault and the misalignment fault of rotor sig-
nificantly decreases if the fault of mechanical axial crack 
already exists in the HGS. Additionally, the hydropower 
station is suggested to develop the protection strategies to 
cope with the increase of the vibration with third frequency 
in advance.

• Case 5: If the fault of the mechanical axial crack and the 
fault characteristic of the increasing vibration with third 
frequency occur during the maintenance task, the CPTs of 
neighbor nodes using the Bayesian support inference are 
obtained. Specifically, its father nodes probabilities of the 
rubbing fault MF2 and the misalignment fault of rotor MF3 
in “trouble” states are 0.3881 and 0.2969; meanwhile, the 
parallel node probability of the vibration with doubled fre-
quency F2F0 in the “high” state is 0.8434.

Comparing with the separate occurrence of the increasing vi-
bration with third frequency in case 2, the occurrence proba-
bility of the rubbing fault and the misalignment fault of rotor 
decreases when the fault of the mechanical axial crack and the 
fault characteristic of the increasing vibration with third fre-
quency occur at the same time. In this situation, case 5 is easy 
to lead to the increase of the vibration with doubled frequency, 
which should be paid more attentions in the actual operation of 
hydropower stations.

• Case 6: For the HGS existing in the fault of the mechanical 
axial crack and the fault characteristic of the increasing vi-
brations with both third frequency and doubled frequency, 
the CPTs of neighbor nodes are calculated using the 
Bayesian support inference. That is, the probabilities of the 
rubbing fault MF2 and the misalignment fault of rotor MF3 
in “trouble” states are 0.4109 and 0.3113, respectively.

T A B L E  2  Conditional probability table of node F3F0

MF2 Normal Trouble

MF3 Normal Trouble Normal Trouble

MF4 Normal Trouble Normal Trouble Normal Trouble Normal Trouble

Low 1.000 0.7386 0.5978 0.4415 0.2737 0.2022 0.1636 0.1208

High 0.0000 0.2614 0.4022 0.5585 0.7263 0.7978 0.8364 0.8792



1676 |   XU et al.

From the analysis of cases 3 and 6, when the HGS shows the 
same fault characteristic except for the mechanical axial crack, 
the occurrence probability of the rubbing fault, and the mis-
alignment fault of rotor will decrease.

In conclusion, the calculated results in cases 1 to 3 are 
validated in refs.,42-46 and the diagnostic results obtained in 
cases 4 to 6 are consistent with ref.47

5 |  CONCLUSIONS AND 
DISCUSSION

In this work, the fault diagnosis method for the hydroelectric 
generation system coupling with hydraulic, mechanical, 
and electric factors is presented. The methodology 
adopted in this work is based on the Bayesian networks 
approach and the expert system. Herein, a complete 
Bayesian network fault diagnosis model of the generating 
system is implemented that takes into consideration the 
comprehensive knowledge of the vibration fault types 
and the associated fault characteristics. The Noisy‐Or 
modeling approach is used to calculate the CPT of the 
presented Bayesian network to overcome the limitation of 
the complicated node computations and data dependency 
in current approaches. The final implementation of the 
fault diagnosis expert system realizes the combination of 
expert experiences and Bayesian inferences. The obtained 
results allow to develop the time‐based maintenance to 
the condition‐based maintenance, which achieves the goal 
of the reduction of the maintenance costs in hydropower 
stations. In addition, historical data collected from a 
hydropower station are a good method to improve the 
accuracy of the diagnosis, while it is extremely difficult 
to obtain diagnosis from manufacturers since such data 
are confidential. To propel the future study of historical 
data parameter learning or other data‐based methods, we 
are attempting to cooperate with potential hydropower 
stations to carry out some experiments of the generating 
system. The above illustrations have been added to the 
manuscript to guide our future work. Moreover, the future 
work is designed to the extraction of the common fault 
characteristics to improve the coupling relationship of the 
electric faults with the mechanical hydraulic fault network.
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