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Abstract
We present three ordinal notation systems representing or-
dinals below ε0 in type theory, using recent type-theoretical
innovations such as mutual inductive-inductive definitions
and higher inductive types. We show how ordinal arithmetic
can be developed for these systems, and how they admit
a transfinite induction principle. We prove that all three
notation systems are equivalent, so that we can transport
results between them using the univalence principle. All our
constructions have been implemented in cubical Agda.

CCS Concepts • Theory of computation→ Proof the-
ory; Type theory.

Keywords Ordinal notation, Cantor normal form, inductive-
inductive definitions, higher inductive types, cubical Agda.
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1 Introduction
Ordinals and ordinal notation systems play an important
role in program verification, since they can be used to prove
termination of programs — using ordinals to verify that pro-
grams terminate was suggested already by Turing [29]. The
idea is to assign an ordinal to each input, and then prove that
the assigned ordinal decreases for each recursive call. Hence
the program must terminate by the well-foundedness of the
order on ordinals. At first, such proofs were carried out using
pen and paper [11, 14], but with advances in proof assistants,
also machine-checked proofs can be produced [21, 24]. As a
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first step, one must then represent ordinals inside a theorem
prover. This is usually done via some kind of ordinal nota-
tion system (however see Blanchette et al. [4] for well-orders
encoded directly in Isabelle/HOL, and Schmitt [24] for an
axiomatic method, which is implemented in the KeY program
verification system). Typically, ordinals are represented by
trees [10, 12]; for instance, binary trees can represent the
ordinals below ε0 as follows: the leaf represents 0, and a tree
with subtrees representing ordinals α and β represents the
sum ωα + β . However, an ordinal may have multiple such
representations. As a result, traditional approaches to ordi-
nal notation systems [5, 25, 27] usually have to single out a
subset of ordinal terms in order to provide unique represen-
tations. In this paper, we show how modern type-theoretic
features can be used to directly give faithful representations
of ordinals below ε0.

The first feature we use is mutual inductive-inductive def-
initions [22], which are well supported in the proof assistant
Agda. This allows us to define an ordinal notation system for
ordinals below ε0, simultaneously with an order relation on
it (Section 3.2). This means that we can recover uniqueness
of representation, by insisting that subtrees representing
ordinals are given in a decreasing order. This is similar to
the traditional approach which first freely generate ordinal
terms, and then later restrict attention to a subset of well-
behaved terms (Section 3.1). The advantage of the mutual
approach is that there are no intermediate “junk” terms, and
that the more precise types often suggests necessary lemmas
to prove. However this is mostly an ergonomic advantage,
since the two approaches are equivalent (Section 3.4).
We also use the feature of higher inductive types [20]

that has recently been added to Agda under the --cubical
flag [30]. We define a different ordinal notation system for
ordinals below ε0 as a quotient inductive type [1], where
we represent ordinals by finite hereditary multisets (Sec-
tion 3.3). Path constructors are used to identify multiple
representations of the same ordinal, so that we again recover
uniqueness. Also this approach is equivalent to the other
two approaches (Section 3.4).

Different representations are convenient for different pur-
poses. For instance, the higher inductive type approach to
define the ordinal notation system is convenient for defining
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e.g. the commutative Hessenberg sum of ordinals (Section 4),
while the mutual representation is convenient for proving
transfinite induction (Section 5). Using the univalence princi-
ple [28], we can transport such constructions and properties
between the different ordinal notation systems as needed.

Contributions We make the following contributions:
• We give two to our knowledge new ordinal notation
systems in type theory, representing ordinals below
ε0. These can be used to verify e.g. termination of pro-
grams inside type-theory-based proof assistants such
as Agda.

• We prove that our ordinal notation systems are equiv-
alent, and also equivalent to a third, well-known or-
dinal notation system based on a predicate of being
in Cantor normal form. This allows us to transport
constructions and properties between them using the
univalence principle.

• We prove that our ordinal notation systems allow the
principle of transfinite induction. This, and the rest
of the development, is completely computational and
axiom-free, in particular we do not need to assume e.g.
excluded middle or countable choice.

• In general, we show how recent features of Agda such
as simultaneous definitions and higher inductive types
can be used to obtain user-friendly constructions, and
how to work around common pitfalls.

Agda Formalization Our full Agda development can be
found at https://doi.org/10.5281/zenodo.3588624.

2 Cubical Agda
We start by giving a brief introduction to cubical Agda, an
implementation of Cubical Type Theory [7] in the Agda
proof assistant [23]. We refer to the Agda Wiki1 and the
Agda User Manual2 for more resources on Agda, and to
Vezzosi, Mörtberg and Abel [30] for the technical details of
the cubical extension of type theory.

Agda has a hierarchy of universes called Sets. The Cubical
Agda library3 renames them to Types to avoid the confusion
with the notion of set in Homotopy Type Theory [28]. The
lowest universe is now called Type0, and it lives in Type1.
More generally, there is a universe Type ℓ : Type (lsuc ℓ) for
each ℓ : Level, where lsuc : Level → Level is the successor
function of universe levels.
We make use of Agda features such as mixfix operators,

implicit arguments and generalizable variables to improve the
readability of our Agda code. In turn, they work as follows:
A mixfix operator may contain one or more name parts and
one or more underscores _. When applied, its arguments
go in place of the underscore. For instance, when using the

1Agda Wiki: https://wiki.portal.chalmers.se/agda/pmwiki.php
2Agda User Manual: https://agda.readthedocs.io/
3Cubical Agda library: https://github.com/agda/cubical

Level maximum function _⊔_ : Level→ Level→ Level, we
can write ℓ ⊔ ℓ′ which is the same as _⊔_ ℓ ℓ′. The _ symbol
also has other usages: when an argument is not (explicitly)
needed in a definition, or a term can be inferred by Agda’s
unifier, we can replace it by _. We can even omit _ using
implicit arguments, which are declared using curly braces {}.
For instance, if we define
id : {ℓ : Level} {A : Type ℓ}→ A → A

id a = a

then id zero type-checks, because the type checker knows
zero : N and N : Type0 and hence can infer that the implicit
argument ℓ is lzero (the lowest Level), and that A is N. To
explicitly give an implicit argument, we just enclose it in
curly braces. For example, we can also write id {_} {N} zero.
We often want our types and functions to be universe poly-
morphic by adding Level arguments in the declaration as in
the above example. We can further omit {ℓ : Level} by using
generalizable variables: throughout our Agda development,
we declare
variable ℓ ℓ’ ℓ” : Level

and then bindings for them are inserted automatically in dec-
larations where they are not bound explicitly. For instance,
now the identity function can be declared as
id : {A : Type ℓ} → A → A

where ℓ is implicitly universally quantified. We also use
generalizable arguments for the different notions of ordinal
terms considered in this paper.

Agda supports simultaneous definition of several mutually
dependent data types such as in the schemes of inductive-
recursive [13] and inductive-inductive [22] definitions. Both
schemes permit the simultaneous definition of an inductive
type A, together with a type family B over A; the difference
between them lies in whether B is defined recursively over
the inductive structure of A, or if B is itself inductively de-
fined. The type A is allowed to refer to B and vice versa, so
that one may for instance define A simultaneously with a
predicate or relation B on A. In this paper, we will use this
to define a type of ordinal notations simultaneously with
their order relation (Section 3.2). The Agda syntax for mutual
definitions is to place the type signature of all the mutually
defined data types and/or functions before their definitions.

The cubical mode extends Agdawith various features from
Cubical Type Theory [7]. To use Agda’s cubical mode, we
have to place
{-# OPTIONS --cubical #-}

at the top of the file. First of all, cubical Agda has a primitive
interval type I with two distinguished endpoints i0 and i1.
Paths in a type A, representing equality between elements of
A, are functions I→ A; hence they can be introduced using λ-
abstraction and eliminated using function application. There
is a special primitive

https://doi.org/10.5281/zenodo.3588624
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://agda.readthedocs.io/
https://github.com/agda/cubical
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PathP : (A : I→ Set ℓ)→ A i0 → A i1→ Set ℓ

which can be considered as the type of dependent pathswhose
endpoints are in different types. The type of non-dependent
paths is defined by
_≡_ : {A : Set ℓ} → A → A → Set ℓ
_≡_ {A = A} = PathP (λ _→ A)

where {A = A} tells Agda to bind the implicit argument A
declared in the type of _≡ _ to a variable also named A,
which is used in the definition of _≡ _. In this paper, we
will need the following path-related proofs from the cubical
Agda library:
refl : x ≡ x

_-1 : x ≡ y → y ≡ x

_•_ : x ≡ y → y ≡ z→ x ≡ z

cong : (f : (a : A)→ B a) (p : x ≡ y)
→ PathP (λ i→ B (p i)) (f x) (f y)

cong2 : (f : (a : A)→ (b : B a)→ C a b)
→ (p : x ≡ y)
→ {u : B x} {v : B y} (q : PathP (λ i → B (p i)) u v)
→ PathP (λ i→ C (p i) (q i)) (f x u) (f y v)

transport : A ≡ X→ A → X

subst : x ≡ y → B x → B y

A type is called a proposition if all its elements are identical,
and is called a set if all its path spaces are propositions. In
Agda, this is formulated as follows:
isProp isSet : Type ℓ→ Type ℓ
isProp A = (x y : A)→ x ≡ y

isSet A = {x y : A} → isProp (x ≡ y)

These univalent concepts play an important role in the devel-
opment of mathematics in Homotopy Type Theory. Cubical
Agda also supports a general schema of higher inductive
types [9], a generalization of inductive types allowing con-
structors to produce paths. In this paper, we will construct
an ordinal notation system as a higher inductive type (Sec-
tion 3.3).

Another important concept from Homotopy Type Theory
is the notion of type equivalence. We say that two types A
and B are equivalent, and write A ≃ B, if there is a function
f : A → B with an two-sided inverse д : B → A, and if the
proofs that f and д are inverses are coherent in a suitable
sense. Importantly, every isomorphism (i.e. a function with a
two-sided inverse, but without coherence conditions on the
inverse proofs) gives rise to an equivalence, i.e. we have
isoToEquiv : Iso A B→ A ≃ B

where we have written Iso A B for the type of isomorphisms
between A and B. The univalence principle (A ≡ B) ≃ (A ≃ B)
is provable in cubical Agda. In particular, there is a function
ua : A ≃ B → A ≡ B generating a path between two types
from a proof that they are equivalent. We will use univalence
to construct paths between equivalent systems of ordinal

notations (Section 3.4) and then transport various construc-
tions and proofs between them along these paths (Sections 4
and 5).

We will also use the following standard Agda data types:
• The empty type (with no constructors)
data ⊥ : Type0 where

• Coproduct types (disjoint unions)
data _⊎_ (A : Type ℓ) (B : Type ℓ’) : Type (ℓ ⊔ ℓ’)
where
inj1 : A → A ⊎ B

inj2 : B → A ⊎ B

• Σ-types (dependent pairs)
record Σ {A : Type ℓ} (B : A → Type ℓ’) : Set (ℓ ⊔ ℓ’)
where
constructor _,_
field
pr1 : A
pr2 : B pr1

• Cartesian products (non-dependent pairs)
_×_ : Type ℓ→ Type ℓ’→ Type (ℓ ⊔ ℓ’)
A × B = Σ \(_ : A) → B

• The natural numbers, and the standard order relation
on them
data N : Type0 where
zero : N
suc : N→ N

data _≤N_ : N→ N→ Type0 where
z≤n : {n : N}→ zero ≤N n

s≤s : {n m : N} → n ≤N m→ suc n ≤N suc m

When the type of a variable x can be inferred, we will adopt
the notational convention ∀ x → P for (x : _) → P, and simi-
larly ∀ {x} → P for {x : _} → P.

When reasoning using chains of equations, we may write
begin
x ≡⟨ p ⟩

y ≡⟨ q ⟩

z □

for readability, where p : x ≡ y and q : y ≡ z. This desugars to
uses of transitivity p • q, but has the advantage of keeping x,
y and z explicit.

3 Notation Systems for Ordinals Below ε0
The classical set-theoretic theory of ordinals defines an or-
dinal to be a set α which is transitive (i.e. x ∈ α → x ⊆ α )
and connected (i.e. x , y → x ∈ y ∨ y ∈ x for any x ,y ∈ α ).
For program verification, the perhaps most important con-
sequence of this definition is that ∈ is a well ordering on
ordinals — we hence often write α < β for α ∈ β — since
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this implies that properties of ordinals can be proven by
transfinite induction, which in turn implies that there can
be no infinitely descending chains of ordinals

α0 > α1 > α2 > . . .

— in other words, any process that can be assigned a decreas-
ing sequence of ordinals must terminate.
Obviously the empty set ∅ is an ordinal (commonly de-

noted 0), and if α is an ordinal, it is not hard to see that its
successor α + 1 = α ∪ {α } is also an ordinal. This way, we
can construct all finite ordinals 1 = 0 + 1, 2 = 1 + 1, 3 = 2 + 1,
. . . , and then take their limit ω = {0, 1, 2, 3, . . .}. We can then
continue constructing ω + 1, ω + 2, . . . , eventually reaching
ω + ω = ω · 2, then ω · 3, . . . and thus eventually ω · ω = ω2.
Iterating this process, we can construct ωω , and then take
the limit of the sequence

ωω ,ωωω
,ωωωω

, . . .

The resulting ordinal is denoted ε0, and is theminimal ordinal
α such that ωα = α . It is well known that every ordinal α
can be written uniquely in so-called Cantor normal form
α = ωβ1 + ωβ2 + · · · + ωβn with β1 ≥ β2 ≥ · · · ≥ βn

for some natural number n and ordinals βi (the special case
α = 0 is written as the empty sum with n = 0). Our primary
interest in ε0 is that if α < ε0, then every exponent βi in the
Cantor normal form of α satisfies βi < α . Hence if we in
turn write βi = ωγ1 + · · · + ωγm in Cantor normal form, we
discover a decreasing sequence

α > βi > γj > . . .

of ordinals, which hence must terminate in finitely many
steps. As a result, we have a finitary notation system which
we can hope to implement inside a theorem prover in order
to represent the ideal concept of ordinals below ε0 in it. In
the rest of this section, we explore three different approaches
for achieving this in Agda.

3.1 The Subset Approach SigmaOrd
Traditional approaches to ordinal notation systems such as
Buchholz [5], Schütte [25] and Takeuti [27] usually start
by generating ordinal terms inductively, and then single
out a subset in order to provide a unique representation
for ordinals. Along this direction, we construct a notation
system of ordinals below ε0 as a sigma type in an Agda
module SigmaOrd.
The first step is to define ordinal terms, which are sim-

ply binary trees, albeit with highly suggestive constructor
names:
data Tree : Type0 where
0 : Tree
ω^_+_ : Tree → Tree→ Tree

The idea is that 0 represents the ordinal 0, and ω^ a + b

represents ωα + β if a and b represent α and β respectively.

However ωα + β might not be in Cantor normal form, and
might have multiple such representations, because no order
constraint has been imposed in the exponents occurring in
ω^ a + b. To remedy this flaw, we define an ordering on trees
as follows (where a b c d : Tree):
data _<_ : Tree → Tree → Type0 where
<1 : 0 < ω^ a + b

<2 : a < c→ ω^ a + b < ω^ c + d

<3 : a ≡ c→ b < d→ ω^ a + b < ω^ c + d

The first constructor <1 states that 0 is smaller than any
other tree, and the constructors <2 and <3 say that non-0
trees are compared lexicographically. However, this is not a
well-founded order on Tree! To recover well-foundedness,
we must restrict to trees that are in Cantor normal form.
Towards this, we define the non-strict order ≥ in terms of
the strict order <:
_>_ _≥_ : Tree → Tree→ Type0
a > b = b < a
a ≥ b = a > b ⊎ a ≡ b

Then we can define the predicate of being in Cantor nor-

mal form: 0 is in normal form, and ω^ a + b is in normal
form if also a and b are, and in addition a is greater than or
equal to the first exponent in b, formally expressed using the
following function:
fst : Tree → Tree
fst 0 = 0
fst (ω^ a + _) = a

We construct the predicate isCNF formally using the follow-
ing indexed inductive definition:
data isCNF : Tree → Type0 where
0IsCNF : isCNF 0
ω^+IsCNF : isCNF a → isCNF b → a ≥ fst b

→ isCNF (ω^ a + b)

For instance, if a b c d : Tree are in Cantor normal form and
a ≥ b ≥ c ≥ d, then isCNF (ω^ a + ω^ b + ω^ c + ω^ d + 0) is
inhabited.

Finally, we can form the subset of trees in Cantor normal
form by the following dependent pair type:
SigmaOrd : Type0
SigmaOrd = Σ \(a : Tree) → isCNF a

We are justified in using the “subset” terminology, because
we can prove that isCNF is proof-irrelevant, i.e.
isCNFIsPropValued : isProp (isCNF a)

the proof of which in turn relies on the following facts:
TreeIsSet : isSet Tree
<IsPropValued : isProp (a < b)

Therefore, equality on SigmaOrd is determined only by the
Tree component, i.e. we can prove
SigmaOrd= : {x y : SigmaOrd}→ pr1 x ≡ pr1 y → x ≡ y
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For the formal proofs, we refer to our Agda development.
This approach gives a faithful representation of ordinals
below ε0, but it is sometimes inconvenient to work with, e.g.
one has to explicitly prove that all operations preserve being
in Cantor normal form. Agda’s termination checker is often
happier with curried functions, which further discourages
use of SigmaOrd as a programming abstraction.

3.2 The Mutual Approach MutualOrd
Instead of considering an imprecise type of trees, including
trees not in Cantor normal form that do not represent ordi-
nals, we can use Agda’s support for mutual definitions to
directly generate trees in Cantor normal form only, by simul-
taneously defining ordinal terms and an ordering on them.
The idea is to additionally require the term representing an
ordinal a to be greater than or equal to the first exponent of
the term representing an ordinal b when forming the term
representing ωa + b. Hence we also need to define the oper-
ation which computes the first exponent of an ordinal term
simultaneously. All in all, in a moduleMutualOrd we define
data MutualOrd : Type0
data _<_ : MutualOrd →MutualOrd → Type0
fst : MutualOrd →MutualOrd

simultaneously by
data MutualOrd where
0 : MutualOrd
ω^_+_[_] : (a b : MutualOrd) → a ≥ fst b →MutualOrd

data _<_ where
<1 : 0 < ω^ a + b [ r ]
<2 : a < c→ ω^ a + b [ r ] < ω^ c + d [ s ]
<3 : a ≡ c→ b < d → ω^ a + b [ r ] < ω^ c + d [ s ]

fst 0 = 0
fst (ω^ a + _ [ _ ]) = a

where we write a ≥ b = a > b ⊎ a ≡ b. Obviously this is
very similar to the definitions in Section 3.1, but this time,
every term of type MutualOrd satisfies the order constraint
because of the third argument of the constructor ω^_+_[_].
This means that every term that we can form is already in
Cantor normal form, and there is no need for a separate
predicate.

Remark 3.1. Because of the coproduct hidden in the con-
structor argument a ≥ fst b, and the function fst occur-
ring in it, MutualOrd is a nested [2] inductive-inductive-
recursive [22] definition. However, by replacing the con-
structor with a coproduct argument by two constructors
(one for each summand), and by defining the graph of fst
inductively instead of the function itself recursively, it is
possible to define an equivalent non-nested, non-inductive-
recursive type. This justifies the soundness of our current
definition.

Just like in the subset approach, we can prove that the
order relation _<_ is proof-irrelevant, i.e. there is a proof of
isProp (a < b) for every a and b. However, because of the
mutual nature of the definitions, the following facts has to
be proved simultaneously:
MutualOrdIsSet : isSet MutualOrd
<IsPropValued : isProp (a < b)
MutualOrd= : {r : a ≥ fst b} {s : c ≥ fst d}→ a ≡ c→ b ≡ d

→ ω^ a + b [ r ] ≡ ω^ c + d [ s ]

One advantage when working with a tighter type such as
MutualOrd compared to the looser Tree is that the right
lemma is often naturally suggested in the course of a con-
struction: for example, when provingMutualOrdIsSet, the
lemma MutualOrd= falls more or less immediately out as
required by one of the subgoals.
For later use in Section 4, we note that we can prove

(constructively) that the ordering _<_ is trichotomous, i.e.
<-tri : (a b : MutualOrd) → a < b ⊎ a ≥ b

The proof is the same as a simpler proof for Tree from
Section 3.1, except that we have to make essential use of
MutualOrd=.

3.3 The Higher Inductive Approach HITOrd
In our third approach, an ordinal may have multiple repre-
sentations, but we ensure that all of them are identical in
the sense of Cubical Type Theory. We do this by defining
a higher inductive type, which is given by freely generated
terms and paths between them. Instead of representing an
ordinal by a list of ordinal representations (the exponents in
its Cantor normal form), where the order matters, we instead
consider finite multisets of ordinal representations, where
the order of elements does not matter. Such finite multisets
can be defined in a first-order way as a higher inductive
type, as in Licata [19]. Because the elements of the multiset
again are ordinal representations, what we need is a higher
inductive type of so-called finite hereditary multisets. We
make the following definition in the module HITOrd:
data HITOrd : Type0 where
0 : HITOrd
ω^_⊕_ : HITOrd → HITOrd → HITOrd
swap : ∀ a b c→ ω^ a ⊕ ω^ b ⊕ c ≡ ω^ b ⊕ ω^ a ⊕ c

trunc : isSet HITOrd

This is a higher inductive type, since it is given by listing
its generating term constructors 0 and ω^_⊕_, as well as its
generating path constructors swap and trunc. Cubical Agda
supports higher inductive types natively, and their sound-
ness is guaranteed by the cubical sets model [9]. As hinted
at by the name of the constructor ω^_⊕_, our intention for a
termω^ a ⊕ b is no longer to represent the non-commutative
sum of ordinals ωα + β where α and β are represented by a

and b respectively, but rather the commutative Hessenberg
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sum ωα ⊕ β (see Section 4.2). This is justified by the inclu-
sion of the path constructor swap, which states that terms
with permuted exponents are identical, as illustrated by the
following example (using equational reasoning combinators
from the end of Section 2):
example : (a b c : HITOrd)
→ ω^ a ⊕ ω^ b ⊕ ω^ c ⊕ 0 ≡ ω^ c ⊕ ω^ b ⊕ ω^ a ⊕ 0

example a b c = begin
ω^ a ⊕ ω^ b ⊕ ω^ c ⊕ 0 ≡⟨ swap a b _ ⟩
ω^ b ⊕ ω^ a ⊕ ω^ c ⊕ 0 ≡⟨ cong (ω^ b ⊕_) (swap a c _) ⟩
ω^ b ⊕ ω^ c ⊕ ω^ a ⊕ 0 ≡⟨ swap b c _ ⟩
ω^ c ⊕ ω^ b ⊕ ω^ a ⊕ 0 □

Adding just the swap constructor would result in a lack of
higher-dimensional coherence (e.g. we would expect swap a

b c • swap b a c to be the reflexivity path), and so we also
include the trunc constructor which forces HITOrd to be a
set. This means that we can prove the following recursion
principle for HITOrd:
rec : {A : Type ℓ}

→ isSet A
→ A

→ (_⋆_ : A → A → A)
→ (∀ x y z → x ⋆ (y ⋆ z) ≡ y ⋆ (x ⋆ z))
→ HITOrd → A

This recursion principle states that there is a function from
HITOrd to any other type A which is closed under the same
“constructors” asHITOrd. In other words, to define a function
HITOrd → A using the recursion principle, A needs to be
a set, and one needs not only a point of A and an operator
_⋆_ : A → A → A, but also a proof of a “swap” rule for _⋆_.
This stops us from defining e.g. a function fst : HITOrd →

HITOrd with fst (ω^ a ⊕ b) = a by a⋆ b = a, since this would
require

a = a ⋆ (b ⋆ c) ≡ (b ⋆ a)⋆ c = b

for any a, b : HITOrd, which is clearly not true. In general,
the recursion principle can be used to define non-dependent
functions out of HITOrd that respect the additional path
constructors (we will make use of this in Section 3.4). Sim-
ilarly, to prove properties of HITOrd, we will make use of
the following induction principle for propositions:
indProp : (P : HITOrd→ Type ℓ)

→ (∀ {x}→ isProp (P x))
→ P 0
→ (∀ {x y}→ P x → P y→ P (ω^ x ⊕ y))
→ ∀ x → P x

Since the motive P x is a proposition for every x by assump-
tion, we do not need to ask for any methods involving path
constructors — there are no non-trivial paths in P x. Both the
recursion principle and the induction principle for proposi-
tions are instances of the full induction principle, which can
be proven by pattern matching in cubical Agda.

3.4 Equivalences Between the Three Approaches
We now wish to show that all three approaches are in fact
equivalent, in the strong sense of Homotopy Type Theory.
To show A ≃ B, it suffices to construct an isomorphism be-
tween A and B. Hence we construct isomorphisms between
SigmaOrd and MutualOrd, and between MutualOrd and
HITOrd. In a new module Equivalences, we import the pre-
vious modules:
open import SigmaOrd as S
open import MutualOrd as M
open import HITOrd as H

Since many names are shared between the imported modules
(e.g. both SigmaOrd and MutualOrd define _<_ and fst), we
use the short module names S,M andH to qualify ambiguous
names, e.g. we write _S.<_ and S.fst to refer to the concepts
from SigmaOrd, and _M.<_ and M.fst for the ones from
MutualOrd.

3.4.1 SigmaOrd is Equivalent to MutualOrd
We first construct a function T2M from SigmaOrd toMutual-
Ord. To help Agda’s termination checker, we define T2M in
curried form — in fact the first component a : Tree of the
sigma type can even be kept implicit. Because MutualOrd
is defined simultaneously with its ordering, when defining
T2M we have to simultaneously prove that it is monotone:
T2M : {a : Tree}→ isCNF a →MutualOrd
T2M[<] : {a b : Tree} {p : isCNF a} {q : isCNF b}

→ a S.< b → T2M pM.< T2M q

T2M[≥fst] : {a b : Tree} {p : isCNF a} (q : isCNF b)
→ a S.≥ S.fst b→ T2M pM.≥ M.fst (T2M q)

We omit the easy proofs of T2M[<] and T2M[≥fst] here,
but give the definition of T2M since it is computationally
relevant:
T2M 0IsCNF = 0
T2M (ω^+IsCNF p q r) =
ω^ (T2M p) + (T2M q) [ T2M[≥fst] q r ]

Remark 3.2. When implementing T2M[≥fst], we also need
the curried equivalent T2M[≡] of SigmaOrd= specialised to
the image of T2M, which can be defined using the path in-
duction principle. Unfortunately, this detour trips up Agda’s
termination checker. We work around this by converting a
given path to an inductively defined propositional equality
using the following construction:
PropEqfromPath : {A : Set ℓ} {x y : A} → x ≡ y → x P.≡ y

PropEqfromPath {x = x} p = subst (x P.≡_) p P.refl

Here P is the builtin module defining propositional equal-
ity P.≡ as inductively generated by the constructor P.refl.
With this in hand, we can pattern match directly on the pro-
duced propositional equality instead of using path induction
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when implementing T2M[≡], which placates the termination
checker:
T2M[≡] : {a b : Tree} {p : isCNF a} {q : isCNF b}

→ a ≡ b → T2M p ≡ T2M q

T2M[≡] a=b with PropEqfromPath a=b

T2M[≡] a=b | P.refl = cong T2M (isCNFIsPropValued _ _)

Hopefully the termination checker of cubical Agda will be
fixed to accept a direct proof in future versions.

For the reverse direction, we convert MutualOrd to Tree,
and then show that the resulting trees are in Cantor normal
form:
M2T : MutualOrd→ Tree
M2T 0 = 0
M2T (ω^ a + b [ _ ]) = ω^ (M2T a) + (M2T b)

isCNF[M2T] : (a : MutualOrd) → isCNF (M2T a)
isCNF[M2T] 0 = 0IsCNF
isCNF[M2T] (ω^ a + b [ r ]) =
ω^+IsCNF (isCNF[M2T] a) (isCNF[M2T] b)

(M2T[≥fst] b r)

We have omitted the easy proofs that M2T is monotone:
M2T[<] : {a b : MutualOrd}

→ aM.< b →M2T a S.< M2T b

M2T[≥fst] : {a : MutualOrd} (b : MutualOrd)
→ a M.≥ M.fst b →M2T a S.≥ S.fst (M2T b)

Putting all the pieces together, we can now define maps from
MutualOrd to SigmaOrd and vice versa:
S2M : SigmaOrd→ MutualOrd
S2M (a , p) = T2M p

M2S : MutualOrd → SigmaOrd
M2S a = (M2T a , isCNF[M2T] a)

The proofs that the two compositions of S2M and M2S
are identities rely on the fact that the orderings are proof-
irrelevant; more precisely, they use the lemmas SigmaOrd=

andMutualOrd=:
S2M2T=pr1 : (a : SigmaOrd) →M2T (S2M a) ≡ pr1 a
S2M2T=pr1 (0 , 0IsCNF) = refl
S2M2T=pr1 (ω^ a + b , ω^+IsCNF p q r) =
cong2 ω^_+_ (S2M2T=pr1 (a , p)) (S2M2T=pr1 (b , q))

S2M2S=id : (a : SigmaOrd) → M2S (S2M a) ≡ a

S2M2S=id a = SigmaOrd= (S2M2T=pr1 a)

M2S2M=id : (a : MutualOrd) → S2M (M2S a) ≡ a

M2S2M=id 0 = refl
M2S2M=id (ω^ a + b [ _ ]) =
MutualOrd= (M2S2M=id a) (M2S2M=id b)

Since every isomorphism can be extended to an equivalence
(using isoToEquiv), and we have just constructed an isomor-
phism between SigmaOrd and MutualOrd, we have proven:

Theorem 3.3. SigmaOrd andMutualOrd are equivalent, i.e.
there is a proof S≃M : SigmaOrd ≃ MutualOrd.

Using ua : A ≃ B→ A ≡ B, one direction of the univalence
principle, we get a path from SigmaOrd toMutualOrd.

Corollary 3.4. SigmaOrd and MutualOrd are identical, i.e.
there is a proof S≡M : SigmaOrd ≡ MutualOrd.

3.4.2 MutualOrd is Equivalent to HITOrd
A translation fromMutualOrd to HITOrd is easy: we simply
forget about the order witnesses.
M2H : MutualOrd→ HITOrd
M2H 0 = 0
M2H (ω^ a + b [ _ ]) = ω^ (M2H a) ⊕ (M2H b)

The other direction is more interesting. We need a binary
operation _⋆_ : MutualOrd→MutualOrd→MutualOrd sat-
isfying the “swap” rule in order to use the recursion principle
of HITOrd. For this purpose, we notice that bothMutualOrd
and HITOrd admit a list structure: 0 is the empty list; and
in ω^ a + b [ r ] and ω^ a ⊕ b respectively, a is the head and
b is the tail. All lists inMutualOrd are in descending order,
while those in HITOrd are quotiented by permutations so
that it is impossible to access the order of elements in HIT-
Ord lists. Coming back to the binary operation _⋆_ with this
list-structure intuition in mind, we see that _⋆_ needs to add
its first argument (regarding it as an element) into its second
(regarding it as a list) such that different orders of doing
this result in the same list. One operation satisfying these
requirements is list insertion. Again, we simultaneously need
to prove that insert preserves the ordering, sinceMutualOrd
is simultaneously defined with it.
insert : MutualOrd→ MutualOrd →MutualOrd
≥fst-insert : {a b : MutualOrd} (c : MutualOrd)

→ b M.≥ M.fst c→ aM.< b
→ b M.≥ M.fst (insert a c)

The insert function implements the standard algorithm for
list insertion (slightly obfuscated by our choice of constructor
names). Similarly the proof ≥fst-insert follows the same call
structure to show that insert is order-preserving.
insert a 0 = ω^ a + 0 [ M.≥0 ]
insert a (ω^ b + c [ r ]) with <-tri a b
... | inj1 a<b = ω^ b + insert a c [ ≥fst-insert c r a<b ]
... | inj2 a≥b = ω^ a + ω^ b + c [ r ] [ a≥b ]

≥fst-insert {a} 0 _ a<b = inj1 a<b
≥fst-insert {a} (ω^ c + d [ _ ]) b≥c a<b with <-tri a c
... | inj1 a<c = b≥c

... | inj2 a≥c = inj1 a<b

HereM.≥0 is a proof that a ≥ 0 for every a. Using that < is
trichotomous, i.e. using <-tri to compare any two elements,
we can prove that insert satisfies the swap rule:
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insert-swap : (x y z : MutualOrd)
→ insert x (insert y z) ≡ insert y (insert x z)

Hence we can use insert and the recursion principle for HIT-
Ord to define
H2M : HITOrd → MutualOrd
H2M = rec MutualOrdIsSet 0 insert insert-swap
and then show that M2H and H2M form an isomorphism
(the step case is using equational reasoning combinators, as
explained in Section 2):
M2H2M=id : (a : MutualOrd) → H2M (M2H a) ≡ a

M2H2M=id 0 = refl
M2H2M=id (ω^ a + b [ r ]) = begin

H2M (M2H (ω^ a + b [ r ]))
≡⟨ refl ⟩
H2M (ω^ (M2H a) ⊕ (M2H b))

≡⟨ refl ⟩
insert (H2M (M2H a)) (H2M (M2H b))

≡⟨ cong2 insert (M2H2M=id a) (M2H2M=id b) ⟩
insert a b

≡⟨ insert-+ a b r ⟩

ω^ a + b [ r ] □

We omit the easy proof of the lemma
insert-+ : (a b : MutualOrd) (r : aM.≥ M.fst b)

→ insert a b ≡ ω^ a + b [ r ]

used in the final step. For the other direction, we use the
induction principle for propositions:
H2M2H=id : (a : HITOrd) →M2H (H2M a) ≡ a

H2M2H=id = indProp P trunc base step
where
P : HITOrd → Type0
P x = M2H (H2M x) ≡ x

base : P 0
base = refl
step : ∀ {x y} → P x → P y → P (ω^ x ⊕ y)
step {x} {y} p q = begin

M2H (H2M (ω^ x ⊕ y))
≡⟨ insert-⊕ (H2M x) (H2M y) ⟩
ω^ M2H (H2M x) ⊕ M2H (H2M y)

≡⟨ cong2 ω^_⊕_ p q ⟩
ω^ x ⊕ y □

This is using the following lemma:
insert-⊕ : (a b : MutualOrd)

→M2H (insert a b) ≡ ω^ (M2H a) ⊕ (M2H b)

Putting everything together, we have proven:

Theorem 3.5. MutualOrd and HITOrd are equivalent, i.e.
there is a proof M≃H : MutualOrd ≃ HITOrd.

Corollary 3.6. MutualOrd andHITOrd are identical, i.e. there
is a proof M≡H : MutualOrd ≡ HITOrd.

4 Ordinal Arithmetic
In this section, we demonstrate the usability of our defini-
tions by showing howwell-known arithmetic operations can
be defined on them. We have two quite different data struc-
tures representing ordinals below ε0: hereditary descending
listsMutualOrd and finite hereditary multisets HITOrd. It
is more convenient and efficient to construct the ordinary
arithmetic operations on MutualOrd, because comparing
the “heads” suffices for the constructions rather than iter-
ating through the whole ordinal terms. On the other hand,
constructing the commutative arithmetic operations such as
Hessenberg sums and products is easier and more natural on
HITOrd, because orders do not play a role in the construc-
tions. Hence we implement ordinary ordinal addition and
multiplication on MutualOrd, and Hessenberg addition and
multiplication on HITOrd. We prove some properties of the
operations, and then transport the constructions and proofs
between them using the path M≡H : MutualOrd ≡ HITOrd.

4.1 Ordinary Addition and Multiplication
Ordinal arithmetic extends addition and multiplication from
the natural numbers to all ordinals, including transfinite
ones. It is famously non-commutative: 1 + ω = ω, but ω +
1 > ω. On MutualOrd, we have to define addition whilst
simultaneously proving the property that it preserves the
ordering.
_+_ : MutualOrd → MutualOrd→ MutualOrd
≥fst+ : {a : MutualOrd} (b c : MutualOrd)

→ a ≥ fst b → a ≥ fst c→ a ≥ fst (b + c)

The interesting case of this well-known algorithm, when
both summands are non-zero, is guided by the fact that ordi-
nals of the form ωβ are so-called additive principal ordinals,
i.e. if γ < ωβ then γ + ωβ = ωβ (after defining addition, this
is not hard to prove forMutualOrd). In particular if α < β ,
thenωα < ωβ and henceωα +ωβ = ωβ . The proof that addi-
tion preserves the ordering again follows the same structure
as addition itself.
0 + b = b

a + 0 = a

(ω^ a + c [ r ]) + (ω^ b + d [ s ]) with <-tri a b
... | inj1 a<b = ω^ b + d [ s ]
... | inj2 a≥b = ω^ a + (c + ω^ b + d [ s ]) [ ≥fst+ c _ r a≥b ]

≥fst+ 0 _ r s = s

≥fst+ (ω^ _ + _ [ _ ]) 0 r s = r

≥fst+ (ω^ b + _ [ _ ]) (ω^ c + _ [ _ ]) r s with <-tri b c
... | inj1 b<c = s

... | inj2 b≥c = r

The construction of an element of MutualOrd contains also a
proof that it is in Cantor normal form. When implementing
_+_ above, the construction (more precisely, the last case
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when a ≥ b) explicitly tells us what property of _+_ is re-
quired to show that the sum is in Cantor normal form, and
we are led to prove this property simultaneously. In the tra-
ditional subset approach, one usually constructs addition on
all ordinal terms, and then proves that it preserves Cantor
normal form. However one has to figure out what property
of addition is needed for the proof oneself. The above ex-
ample of a “construction-guided” proof demonstrates one
advantage of the mutual approach.
Moving from programs to proofs, consider the following

type stating that a given binary operation is associative:
Assoc : (A : Type0) → (A → A → A) → Type0
Assoc A _⋆_ = ∀ a b c→ a ⋆ (b ⋆ c) ≡ (a ⋆ b) ⋆ c

We can construct an easy but lengthy proof
+assoc : Assoc MutualOrd _+_

that _+_ onMutualOrd is associative — the lengthiness is due
to the use of a case distinction on <-tri a b in the definition of
_+_. Now, using the pathM≡H : MutualOrd ≡ HITOrd, we
can transport both the operation of addition and the proof
that it is associative to an associative operation on HITOrd:
_+H_ : HITOrd → HITOrd → HITOrd
_+H_ = transport (λ i→M≡H i→ M≡H i →M≡H i) _+_

+Hassoc : Assoc HITOrd _+H_
+Hassoc = transport (λ i → Assoc (M≡H i) (+Path i)) +assoc

where
+Path : PathP (λ i →M≡H i→ M≡H i →M≡H i) _+_ _+H_

is a dependent path from _+_ to _+H_.
Similarly, we can implement the standard multiplication

algorithm for ordinals in Cantor normal form
_·_ : MutualOrd→ MutualOrd→ MutualOrd
0 · b = 0
a · 0 = 0
a · (ω^ 0 + d [ r ]) = a + a · d
(ω^ a + c [ r ]) · (ω^ b + d [ s ]) =
M.ω^⟨ a + b ⟩ + (ω^ a + c [ r ] · d)

whereM.ω^⟨ a ⟩ = ω^ a + 0 [ ≥0 ]. Since every case is imple-
mented in terms of previously defined functions, there is no
need to prove any simultaneous lemma about preservation
of the order this time. Again, we can transport this definition
to get multiplication on HITOrd for free:
_·H_ : HITOrd→ HITOrd→ HITOrd
_·H_ = transport (λ i→ M≡H i →M≡H i→M≡H i) _·_

Let us look at some examples. We define theMutualOrd
representation of the ordinal 1 byM.1 =M.ω^⟨ 0 ⟩ and the
one of ω by M.ω = M.ω^⟨ M.1 ⟩. The following examples
illustrate that ordinal addition and multiplication are not
commutative: for addition, we have 1 + ω = ω , ω + 1,
where the equality is definitional, i.e., it computes:

Ex[+NonComm] : M.1 + M.ω ≡ M.ω
× M.ω + M.1 > M.ω

Ex[+NonComm] = (refl , <3 refl <1)

Similarly, formultiplication, we have 2·ω = ω , ω+ω = ω ·2:
Ex[·NonComm] : (M.1 + M.1) · M.ω ≡ M.ω

× M.ω < M.ω + M.ω
× M.ω + M.ω ≡ M.ω · (M.1 + M.1)

Ex[·NonComm] = (refl , <3 refl <1 , refl)

For the examples of HITOrd, we define H.ω^⟨ a ⟩ = ω^ a ⊕ 0,
H.1 = H.ω^⟨ 0 ⟩ and H.ω = H.ω^⟨ H.1 ⟩. The operations
of addition and multiplication on HITOrd are obtained by
transporting those onMutualOrd alongM≡H. We get this
path using (one direction of) the univalence axiom which is
constructively provable in cubical Agda. Therefore, closed
terms of HITOrd constructed using these operations can be
evaluated into normal form, for instance
Ex[+HComp] : H.1 +H H.ω ≡ ω^ (ω^ 0 ⊕ 0) ⊕ 0
Ex[+HComp] = refl

Ex[·HComp] : H.ω ·H (H.1 +H H.1)
≡ ω^ (ω^ 0 ⊕ 0) ⊕ ω^ (ω^ 0 ⊕ 0) ⊕ 0

Ex[·HComp] = refl

Again, note that both equalities are definitional.

4.2 Hessenberg Addition and Multiplication
Hessenberg arithmetic [17] is a variant of ordinal arith-
metic which is commutative and associative, but not con-
tinuous in its second argument. On HITOrd, Hessenberg
addition is simply implemented as the concatenation op-
eration on finite multisets. Here we define it by pattern
matching on the first argument, which is equivalent to using
the recursion principle. Note that we also have to produce
clauses for swap and trunc, corresponding to proving that
the defined function preserves the generating paths. For
instance, for swap, we have to prove that our definition
gives identical results for swapped exponents, i.e., a path
ω^ a ⊕ ω^ b ⊕ (c ⊕ y) ≡ ω^ b ⊕ ω^ a ⊕ (c ⊕ y), which is
again an instance of swap:
_⊕_ : HITOrd → HITOrd → HITOrd
0 ⊕ y = y

(ω^ a ⊕ b) ⊕ y = ω^ a ⊕ (b ⊕ y)
(swap a b c i) ⊕ y = swap a b (c ⊕ y) i
(trunc p q i j) ⊕ y = trunc (cong (_⊕ y) p) (cong (_⊕ y) q) i j

Our goal is now to justify the notation ⊕ in the constructor
name for HITOrd by showing that _⊕_ is commutative. First
we define the property of being commutative:
Comm : (A : Type0)→ (A→ A→ A)→ Type0
Comm A _⋆_ = ∀ a b → a ⋆ b ≡ b ⋆ a

Next we can use the induction principle for propositions
to prove that indeed _⊕_ is commutative. The base case is
given by a simple lemma
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⊕unitr : (a : HITOrd) → a ⊕ 0 ≡ a

and the heavy work of the step case is done by the lemmas
⊕assoc : Assoc HITOrd _⊕_
ω^⊕=⊕ω^ : (a b : HITOrd) → (ω^ a ⊕ b) ≡ b ⊕ H.ω^⟨ a ⟩

which are also proved using the induction principle indProp.
Using these lemmas, the proof is as follows:
⊕comm : Comm HITOrd _⊕_
⊕comm a = indProp P trunc base step
where
P : HITOrd → Type0
P b = a ⊕ b ≡ b ⊕ a

base : P 0
base = ⊕unitr a
step : ∀ {x y} → P x → P y → P (ω^ x ⊕ y)
step {x} {y} _ p = begin

a ⊕ (ω^ x ⊕ y)
≡⟨ cong (a ⊕_) (ω^⊕=⊕ω^ x y) ⟩
a ⊕ (y ⊕ H.ω^⟨ x ⟩)

≡⟨ ⊕assoc a y H.ω^⟨ x ⟩ ⟩
(a ⊕ y) ⊕ H.ω^⟨ x ⟩

≡⟨ cong (_⊕ H.ω^⟨ x ⟩) p ⟩
(y ⊕ a) ⊕ H.ω^⟨ x ⟩

≡⟨ (ω^⊕=⊕ω^ x (y ⊕ a)) -1 ⟩
(ω^ x ⊕ y) ⊕ a □

By transporting along the reversed path
H≡M : HITOrd ≡ MutualOrd
H≡M i = M≡H (~ i)

we get a commutative operation on MutualOrd:
_⊕M_ : MutualOrd→ MutualOrd →MutualOrd
_⊕M_ = transport (λ i→ H≡M i → H≡M i→ H≡M i) _⊕_

⊕Mcomm : Comm MutualOrd _⊕M_
⊕Mcomm = transport (λ i → Comm (H≡M i) (⊕Path i))

⊕comm

where
⊕Path : PathP (λ i → H≡M i→ H≡M i → H≡M i) _⊕_ _⊕M_

is a dependent path from _⊕_ to _⊕M_.
We also implement Hessenberg multiplication on HITOrd,

which is essentially pairwise concatenation of elements in
finite multisets. We first define a ∔ b which concatenates
every element of a with b. Again, we are asked to prove that
this respects swapping exponents and set-truncation.
_∔_ : HITOrd→ HITOrd→ HITOrd
0 ∔ b = 0
(ω^ a ⊕ c) ∔ b = ω^ (a ⊕ b) ⊕ (c ∔ b)
(swap x y z i) ∔ b = swap (x ⊕ b) (y ⊕ b) (z ∔ b) i
(trunc p q i j) ∔ b = trunc (cong (_∔ b) p) (cong (_∔ b) q) i j

Then we define Hessenberg multiplication a ⊗ b by using
this operation to concatenate a to every exponent of b:
_⊗_ : HITOrd → HITOrd → HITOrd
a ⊗ 0 = 0
a ⊗ (ω^ b ⊕ c) = (a ∔ b) ⊕ (a ⊗ c)
a ⊗ (swap x y z i) = ⊕swap (a ∔ x) (a ∔ y) (a ⊗ z) i
a ⊗ (trunc p q i j) = trunc (cong (a ⊗_) p) (cong (a ⊗_) q) i j

where
⊕swap : ∀ a b c→ a ⊕ b ⊕ c ≡ b ⊕ a ⊕ c

is easily proved using ⊕assoc and ⊕comm. Finally we can
again transport to get Hessenberg multiplication onMutual-
Ord:
_⊗M_ : MutualOrd →MutualOrd →MutualOrd
_⊗M_ = transport (λ i→ H≡M i → H≡M i→ H≡M i) _⊗_

Let us look at some examples. Hessenberg addition on
HITOrd can be viewed as a concatenation operation, as il-
lustrated below:
Ex[⊕concat] :

H.1 ⊕ H.ω^⟨ H.ω ⟩ ⊕ H.ω
≡ ω^ 0 ⊕ ω^ (ω^ (ω^ 0 ⊕ 0) ⊕ 0) ⊕ ω^ (ω^ 0 ⊕ 0) ⊕ 0

Ex[⊕concat] = refl

Again, because univalence is computational in cubical Agda,
the transported Hessenberg operations on MutualOrd com-
pute. For instance, we have the following definitional equal-
ities — note that these equations are not true for ordinary
addition and multiplication.
Ex[⊕MComp] : M.1 ⊕M M.ω ≡ M.ω + M.1
Ex[⊕MComp] = refl

Ex[⊗MComp] : (M.1 + M.1) ⊗M M.ω ≡ M.ω + M.ω
Ex[⊗MComp] = refl

5 Transfinite Induction
In this section, we prove transfinite induction forMutualOrd,
and then transport it to transfinite induction for HITOrd.
Already defining an ordering on HITOrd by hand is non-
trivial, and usually requires several auxiliary concepts such
as a subset relation for multisets and multiset operations
such as union and subtraction [3, 11]. Now we can simply
transport the ordering on MutualOrd to HITOrd. Similarly,
it seems easier to prove transfinite induction for MutualOrd
and then transport the proof to HITOrd if needed, rather
than proving it directly.

5.1 The Transported Ordering on HITOrd
We firstly transport the ordering on MutualOrd to HITOrd
as follows:
_<H_ : HITOrd → HITOrd → Type0
_<H_ = transport (λ i →M≡H i→M≡H i→ Type0) _<_
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We can further transport the properties of _<_ to _<H_. For
instance, let us define the property of decidability
Dec : (A : Type ℓ) → (A → A → Type ℓ’)→ Type (ℓ ⊔ ℓ’)
Dec A _<_ = (x y : A)→ x < y ⊎ ¬ x < y

We can easily prove
<-dec : Dec MutualOrd _<_

and then transport it to get
<H-dec : Dec HITOrd _<H_
<H-dec = transport (λ i→ Dec (M≡H i) (<Path i)) <-dec

where
<Path : PathP (λ i→ M≡H i →M≡H i→ Type0) _<_ _<H_

is a dependent path from _<_ to _<H_.
Now we demonstrate that the transported property _<H_

computes, like the transported constructions in Section 4. To
simplify the examples, we turn <H-dec into a boolean-valued
function by
lt : HITOrd → HITOrd → Bool
lt a b = isLeft (<H-dec a b)

where isLeft assigns true : Bool to the left summand and
false : Bool to the right. Here are some examples:
Ex[<H-decComp] :

lt 0 0 ≡ false
× lt H.ω ((H.1 ⊕ H.1) ⊗ H.ω) ≡ true
× lt (H.ω^⟨ H.ω ⟩) (H.ω^⟨ H.1 +H H.ω ⟩) ≡ false
× lt (H.ω^⟨ H.ω ⟩) (H.ω^⟨ H.1 ⊕ H.ω ⟩) ≡ true

Ex[<H-decComp] = (refl , refl , refl , refl)

Again, note that all equalities displayed are definitional.

5.2 Transfinite Induction
Transfinite induction for a type A with respect to a relation
_<_ on A says that if for every x in A a property P(x) is
provable assuming that P(y) holds for all y < x , then P(x)
holds for every x .
TI : (A : Type ℓ)→ (A → A→ Type ℓ’)→

∀ ℓ” → Type (ℓ ⊔ ℓ’ ⊔ lsuc ℓ”)
TI A _<_ ℓ” = (P : A→ Type ℓ”)

→ (∀ x → (∀ y → y < x → P y) → P x)
→ ∀ x → P x

It is well-known that transfinite induction is logically equiv-
alent to every element ofA being accessible, in the following
sense:
module Acc (A : Type ℓ) (_<_ : A→ A→ Type ℓ’) where

data isAccessible (x : A) : Type (ℓ ⊔ ℓ’) where
next : (∀ y → y < x→ isAccessible y) → isAccessible x

accInd : (P : A→ Type ℓ”)
→ (∀ x → (∀ y → y < x→ P y)→ P x)
→ ∀ x → isAccessible x → P x

accInd P step x (next δ) =
step x (λ y r→ accInd P step y (δ y r))

open Acc MutualOrd _<_

The proof of transfinite induction uses accInd. We now show
that every element of MutualOrd is accessible:
WF : (x : MutualOrd) → isAccessible x
WF 0 = 0Acc
WF (ω^ a + b [ r ]) = ω+Acc a b r (WF a) (WF b)

The base case 0Acc : isAccessible 0 is trivial. We show the
non-zero case
ω+Acc : (a b : MutualOrd) (r : a ≥ fst b)
→ isAccessible a → isAccessible b
→ isAccessible (ω^ a + b [ r ])

using the following two lemmas
fstAcc : ∀ {a b x}→ isAccessible a → isAccessible b
→ x < a → (r : x ≥ fst b)
→ isAccessible (ω^ x + b [ r ])

sndAcc : ∀ {a b y} → isAccessible a→ isAccessible b
→ y < b → (r : a ≥ fst y)
→ isAccessible (ω^ a + y [ r ])

which are simultaneously proved. The idea is that, to prove
the accessibility of ω^ a + b [ r ], we have to show that z is
accessible for any z < ω^ a + b [ r ]. There are three cases:
(1) If z is 0, then we are done. (2) If z is ω^ c + d [ s ] with
c < a, then we use fstAcc. (3) If z is ω^ c + d [ s ] with c ≡ a

and b < d, then we use sndAcc.
Combining accInd andWF, we can now prove:

Theorem 5.1. Transfinite induction holds forMutualOrd, i.e.
there is a proof MTI : TI MutualOrd _<_ ℓ.

Transporting along our path M≡H, we also have:
Corollary 5.2. Transfinite induction holds for HITOrd, i.e.
there is a proof HTI : TI HITOrd _<H_ ℓ.

5.3 All Strictly Descending Sequences are Finite
Now we consider a simple application of transfinite induc-
tion: to prove that all strictly descending sequences of ordi-
nals below ε0 are finite. Formulating this faithfully in Agda
is not easy when representing sequences as functions from
the natural numbers, and one often ends up with the nega-
tive formulation “there is no strictly descending sequence”
instead. One may replace finiteness by eventual zeroness,
but this would contradict the strictly descending condition.
As a stronger and computational formulation, we introduce
the following notion:
pseudo-descending : (N→MutualOrd) → Type0
pseudo-descending f =
∀ i → f i > f (suc i) ⊎ (f i ≡ 0 × f (suc i) ≡ 0)

Note that it is not enough to require only f i ≡ 0 in the second
summand, as that would allow f to “restart” at stage suc i.
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This notion is obviously weaker than the notion of being
strictly descending:
strictly-descending : (N→MutualOrd) → Type0
strictly-descending f = ∀ i → f i > f (suc i)

The following facts of pseudo-descendingness are trivial but
play an important role in the proof.
zeroPoint : ∀ {f} → pseudo-descending f
→ ∀ {i}→ f i ≡ 0→ ∀ j → j ≥N i→ f j ≡ 0

nonzeroPoint : ∀ {f} → pseudo-descending f
→ ∀ {i}→ f i > 0 → f i > f (suc i)

where inequality _≤N_ of natural numbers is inductively de-
fined in the standard way. Moreover, we say that a sequence
f is eventually zero if we can find an n such that f (i) takes
the value zero for every i after n:
eventually-zero : (N→MutualOrd) → Type0
eventually-zero f = Σ \(n : N)→ ∀ i→ i ≥N n→ f i ≡ 0
One can easily prove the following fact of eventual-zeroness:
eventually-zero-cons :
∀ f → eventually-zero (f ◦ suc) → eventually-zero f

Now we can formulate our result positively as follows:
Theorem 5.3. Every pseudo-descending sequence is eventu-

ally zero, i.e. there is a proof
PD2EZ : ∀ f → pseudo-descending f → eventually-zero f.

Proof. We prove the statement using transfinite induction
on f 0, i.e. we use the following motive:
P : MutualOrd → Type0
P a = ∀ f → pseudo-descending f → f 0 ≡ a

→ eventually-zero f

We have to prove the following induction step:
step : ∀ x → (∀ y → y < x → P y)→ P x

step x h f df f0=x with ≥0 {f 0}
step x h f df f0=x | inj1 f0>0 = goal
where
f1<x : f 1 < x
f1<x = subst (f 1 <_) f0=x (nonzeroPoint df f0>0)
ezfs : eventually-zero (f ◦ suc)
ezfs = h (f 1) f1<x (f ◦ suc) (df ◦ suc) refl
goal : eventually-zero f

goal = eventually-zero-cons f ezfs
step x h f df f0=x | inj2 f0=0 = goal
where
fi=0 : ∀ i→ f i ≡ 0
fi=0 i = zeroPoint df f0=0 i z≤n
goal : eventually-zero f

goal = 0 , λ i _ → fi=0 i

It consists of two cases: (1) If f 0 > 0, then f 1 < x by the
fact nonzeroPoint. Hence f ◦ suc is eventually zero by the
hypothesis h, and so is f by the fact eventually-zero-cons.

(2) If f 0 ≡ 0, then f is constantly zero by the fact zeroPoint.
Hence we can take PD2EZ f df =MTI P step (f 0) f df refl. □

The algorithm encoded in the above proof checks the
values of f 0, f 1, . . . in turn, until it finds a zero point. By
construction, it will thus find the least n such that f i ≡ 0
for all i ≥N n. The transfinite induction principle proves
that this procedure is terminating, using the assumption of
pseudo-descendingness.

Because strict descendingness implies the pseudo notion,
the negative formulation is a simple corollary.

Corollary 5.4. There is no strictly descending sequence, i.e.
there is a proof NSDS : ∀ f → strictly-descending f →⊥.

6 Comparison with Related Work
In this section, we compare existing work with our develop-
ment.

Trees as Ordinals The relationship between ordinals —
especially ordinals below ε0 — and various tree structures
is of course well known, and more or less folklore. Der-
showitz [10] gives an overview of different ordinal represen-
tations using finite trees, and Dershowitz and Reingold [12]
construct binary trees using Lisp-like list structures. This is
similar to our definitionMutualOrd, but our systems provide
unique representations of ordinals. Jervell [18] gives a clever
total ordering on finite trees with ε0 the supremum of all
binary trees. It is not straightforward to encode and work
with this ordering in a proof assistant.

Ordinals in Type Theory Surprisingly large ordinals can
be constructed in basic Martin-Löf Type Theory with primi-
tive type of (countable) ordinals, but no recursion principle
for it. Coquand, Hancock and Setzer [8] show that already
in this setting, one can reach ϕε0 (0), where ϕα is the Veblen
hierarchy. Hancock [16] uses a class of predicate transform-
ers called lenses to give a clean proof of (half of) Hancock’s
conjecture: Martin-Löf Type Theory with n universes can
reach ϕϕϕ. . . (0)(0)(0) with n nestings of ϕε0 (0). In contrast, in
our work we are not restricting ourselves to a spartan type
theory, but try to take full advantage of all of Agda, with the
goal of producing an easy-to-use representation. It is clear
that we can draw much inspiration from this line of work
when going beyond ε0. See also Setzer [26] for a general
overview of the ordinals that can be constructed in different
variations of type theory.

Formalisations Several formalisations of ordinals and or-
dinal notation systems exist in the literature. Manolios and
Vroon[21] represents ordinals below ε0 in the ACL2 theorem
prover, based on a variation of Cantor normal form with

ωβ1c1 + . . . + ω
βncn with β1 > . . . > βn and all ci finite
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This is similar to our SigmaOrd representation, except that
there are no mechanical guarantees that given inputs actu-
ally are in Cantor normal form. They also provide algorithms
for ordinal arithmetic and comparisons of ordinals, but their
correctness proofs have to assume that the given inputs
are in Cantor normal form. In contrast, it is not possible to
construct ordinal terms not in Cantor normal form in our sys-
tems. Similarly, Castéran and Contejean [6] and Grimm [15]
develop significant theories of ordinals below ε0 in Coq, in-
cluding arithmetic operations and transfinite induction. This
is again similar to our SigmaOrd approach (a choice perhaps
made because Coq to date does not support simultaneous
definitions or higher inductive types, which are needed for
theMutualOrd and HITOrd approaches respectively).

Finite Multisets In Isabelle/HOL, Blanchette, Fleury and
Traytel [3] define an inductive datatype of hereditary mul-
tisets to represent ordinals below ε0, similar to our HITOrd
approach. The representation relies on the notion of multi-
sets in Isabelle’s standard library, which are defined as natu-
ral number-valued functions with a finite support. This can
be constructively problematic, for instance when defining or-
dinal exponentiation. In contrast, our use of higher inductive
types to define multisets means that our datatypes are reas-
suringly first-order. Because hereditary multisets are viewed
as a subtype of nested multisets, the nested multiset ordering
and its well-foundedness proof are “lifted” to the hereditary
multisets using the sophisticated machinery in Isabelle. How-
ever, defining the nested multiset ordering [11] is non-trivial
and proving its well-foundedness is challenging as admitted
in [3]. In comparison, our ordinal notation systemMutual-
Ord is convenient to work with for instance to prove its
well-foundedness. By showing that it is equivalent to hered-
itary multisets HITOrd, we obtain also a well-foundedness
proof for the latter.

7 Concluding Remarks
We have used modern features of cubical Agda such as simul-
taneous definitions and higher inductive types to faithfully
represent ordinals below ε0, and shown that our definitions
are easy to work with by defining common operations on,
and proofs about, our ordinal notation systems. Our devel-
opment is fully constructive.
Of course, in the world of ordinals, ε0 is tiny; already

Martin-Löf Type Theory with W-types and only one uni-
verse has proof-theoretic strength well beyond ε0 [26], and
simultaneous inductive-recursive definitions are known to
increase the proof-theoretic strength even further (a conse-
quence of Hancock’s Conjecture [16]). Similarly Lumsdaine
and Shulman [20] show that adding recursive higher induc-
tive types increases the power of type theory by considering
in particular a higher inductive type encoding of a variation
of Brouwer tree ordinals. To verify e.g. termination of pro-
grams exhausting the strength of such systems, one would

have to define even stronger ordinal notation systems. We
conjecture that powerful definitional principles such as si-
multaneous inductive-recursive definitions and higher induc-
tive types — perhaps combined — can be used to faithfully
represent also larger ordinals, and hence be useful for such
program verification problems.
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