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Abstract An evidence-based robust optimization method for pulsed laser orbital
debris removal (LODR) is presented. Epistemic type uncertainties due to limited
knowledge are considered. The Objective of the design optimization is set to mini-
mize the debris lifetime while at the same time maximizing the corresponding belief
value. The Dempster-Shafer theory of evidence (DST), which merges interval-based
and probabilistic uncertainty modeling, is used to model and compute the uncertain-
ty impacts. A Kriging based surrogate is used to reduce the cost due to the expensive
numerical life prediction model. Effectiveness of the proposed method is illustrated
by a set of benchmark problems. Based on the method, a numerical simulation of
the removal of Iridium 33 with pulsed lasers is presented, and the most robust so-
lutions with minimum lifetime under uncertainty are identified using the proposed
method.

1 Introduction

The vast majority of the objects larger than 1 cm diameter in low-Earth orbit consists
of space debris, remnants of larger man-made objects [16, 14]. Some of them will
drop out of orbit and finally re-enter the atmosphere due to atmospheric effects, but
most of them may stay in the orbit for numbers of years if no operation of debris re-
moval is implemented. In the past decades, the amount of space debris orbiting Earth
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has grown exponentially. The growing space debris seriously threaten the safety of
spacecrafts on orbit, especially in the near-Earth space, in which the probability of
collision with debris increases steadily. To tackle the issues, researchers proposed
a series of methods to reduce the threat of debris by collision avoidance maneuver
and active debris removal. Recent proposals to reduce the amount of debris include
electrical currents, slingshots, solar sails, electro dynamic tethers etc. Some of these
proposals are still hypothetical, some of them are operational and will be imple-
mented in the near future. Among them the Pulsed Laser Orbital Debris Removal
(LODR) has attracted the attention of many researchers, whose feasibility has been
demonstrated in some recent missions.

The ground-based Laser Orbital Debris Removal (LODR) system delivers a
pulsed laser on the target object to deorbit the target. The pulsed laser is deliv-
ered at a pre-determined angle such that the plasma jet generated by the laser, slows
down the target’s velocity, and lowers its perigee altitude. A typical project using
LODR includes the Orion Project, conducted by NASA and the USAF in 1995-96
(Campbell 1996). In [13], effects of irregular shapes on the laser debris removal are
investigated. In [14], a method of debris collision avoidance using laser radiation is
proposed. Simulation results show that promising results of range displacement for
the LEO debris objects could be achieved.

In this chapter, a robust optimization method for determining the targets of pulsed
Laser Orbital Debris Removal (LODR) under uncertainty is presented. Due to lim-
ited knowledge, actual values of the debris characteristics parameters, e.g. mass,
dimensions, and ablation rate, may not be available before the design optimization.
In most cases, the information on the uncertainties are given in the form of interval
distributions. To minimize the impact of the uncertainties, an evidence-based robust
design optimization method can be used. The robust design optimization takes into
account the epistemic uncertainties, optimizes the LODR performance and maxi-
mizes its belief value [22]. A numerical lifetime predictor is used to evaluate life-
times of the debris before and after the laser pulses.

Robust design optimization is complex and expensive. In design optimization
of LODR, the uncertainties, such as the dimensions and masses of the debris are
hard to be modelled using the conventional continuous distribution model. With
DST, both the epistemic and aleatory uncertainty can be properly modeled [27, 6].
However, the number of focal elements needed to be explored in the design opti-
mization grows exponentially with the dimension of the uncertain space, and soon
becomes prohibitively expensive if a number of uncertainties are involved [21]. An-
other problem in the design optimization relates to lifetime prediction of the de-
bris in the LODR. The high accuracy numerical debris lifetime prediction model is
computationally expensive, and is repetitively used during the search of the opti-
mal solutions. Therefore, a strategy that reduces the computational cost due to the
numerical lifetime prediction, while maintaining the accuracy, is required.

The evidence-based robust design optimization of LODR is formulated as a
multi-objective optimization problem (MOP). Unlike the conventional design op-
timization, with the evidence based robust optimization, a step-like Pareto front
should be obtained. Therefore, some new algorithms and techniques for the de-
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sign optimization should be developed. Accordingly, the remainder of the chapter is
structured as follows: Section 2 presents the general framework of design optimiza-
tion of pulsed LODR. In section 3, a multi-objective optimization (MOO) algorithm
with Tchebysheff decomposition and Gaussian Predictor is developed. A Kriging
based surrogate is used to reduce the cost due to the numerical debris lifetime pre-
diction. Discussions of the strategy to incorporate the evidence computation into the
design optimization are presented in this section too. Section 4 presents a numerical
simulation of a LODR example problem under epistemic uncertainties, and finally
section 5 concludes the book chapter.

2 Design Optimization of Laser Orbital Debris Removal (LODR)

2.1 Pulsed LODR

Fig. 1 shows schematically the geometry of laser-target interaction of pulsed LODR
and debris. Series of Multi-kJ laser pulses are delivered at the target debris to de-
celerate the debris velocity and finally re-enter it into the atmosphere. The velocity
variation obtained with the pulse laser is [13, 17]

∆v =
η0CmΦ

µ
(1)

where η0 is the efficiency factor for the combined effects of improper thrust direc-
tion, target shape, target tumbling, etc. µ is the target areal mass density, Φ is the
laser fluence, Cm is mechanical coupling coefficient to the laser pulse energy, and
defined as [17, 20]

Cm =
pτ

Φ
=

p
I

(PaW−1m−2 or N/W) (2)

where p is the ablation pressure delivered to the target, I is the laser intensity, τ is
the duration of the pulse, and Φ is the laser fluence.

The laser pulses are delivered at the target when the LODR station finds the
target, and the angle between the debris velocity and the laser beam

ϑ = arccos
(
|(r− rl) ·v|
|r− rl |× |v|

)
(3)

is greater than a specified value, e.g. 100 degrees , where rl is the position of LODR
station, r and v are the debris position and velocity respectively.

The ∆v obtained with Eq.1 is aligned with laser beam, and the velocity variation
in radial-transversal coordinates ∆v = [∆vr,∆vθ ,∆vn] due to the laser pulse can be
computed as  ∆vr

∆vθ

∆vn

= Moi
(r− rl)

|r− rl|
∆v (4)
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where Moi is the transformation matrix from the earth-centred inertial (ECI) refer-
ence frame to the radial-transversal coordinate system, and rl is the position of the
ground station in ECI frame.

Given the velocity variation in radial-transversal coordinates, variations of the
orbital elements due to the velocity increment can be computed ([19], Ch.12). Re-
peating the process until the LODR is stopped, the debris orbital elements after the
LODR can be obtained. The orbit propagator can then be used to predict the debris
lifetimes after the LODR.

2.2 Debris Lifetime Prediction

A numerical orbit propagator model can be used to predict the debris lifetime after
LODR. In the numerical model, influences of the gravitational and non-gravitational
forces, including Non-spherical Earth, Third-bodies, atmospheric drag, solar radia-
tion pressure (SRP), etc. are considered.

The acceleration due to solar radiation pressure is given by

a =−Cr
A
m

Kϕs

c

(
1

RAU

)2

rs (5)

where Cr, φs and c are coefficient of reflectivity, solar flux at 1 AU and the speed
of light respectively. K represents the percentage of the sun, as seen from the object
(usually 1.0), RAU is the distance from the object to the sun in AU, and rs is the unit
position vector of the sun, as seen from the debris.

The acceleration due to atmospheric drag is given by

Fig. 1 Geometry of laser-
target interaction of pulsed
LODR: the laser pulses are
delivered at the target to lower
its perigee altitude. During the
LODR, the angle ϑ is greater
than a specified value.
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D =
1
2

CD
A
m

ρv2 v
|v|

(6)

where CD , A and m are the drag coefficient, cross-sectional area and mass, re-
spectively. v is the velocity of the debris relative to the atmosphere, and ρ is the
atmospheric density at the location of the debris.

The drag coefficient is a dimensionless quantity which describes the interaction
of the atmosphere with the surface material. The coefficient depends on several
factors, including the debris shape, orientation, composition and temperature of the
atmosphere, etc. A crude approximation is CD = 2.2 for compactly shaped debris
[14]. A variable step-size numerical integrator is used to integrate the high fidelity
dynamic equations. Error control techniques are used to manage the integration step
size, increasing the computational efficiency, while preserving accuracy [19].

Although some numerical techniques, such as the variable step-size numerical
integrator can be used for predicting the life-times of debris. The overall computa-
tional cost of the optimization process is expensive because one needs to compute
the debris lifetimes and evaluate uncertainty impacts repetitively during the design
optimization. Therefore, the cost will be huge if the numerical lifetime predictor is
implemented directly in the design optimization.

3 Evidence Based Robust Design Optimization

3.1 Epistemic Uncertainties and Evidence Computation

The uncertainties of debris parameters include the cross sectional area and masses.
Uncertainties of laser characteristic parameters, e.g. efficiency factor and coupling
coefficient, should be taken into account too. Due to a lack of knowledge, accurate
distribution of the uncertainties cannot be given in advance of the design optimiza-
tion. The estimated values may be from different sources, and have different belief
levels too. Therefore, in this work, an evidence-based tool is used to quantify the
uncertainties. Based on the evidence theory, an evidence-based robust design opti-
mization method is proposed.

In evidence theory, beliefs of uncertain parameters u are supposed to be within
various intervals given by the experts. The level of confidence an expert has on an
elementary proposition E on the set U is quantified using the Basic Probability
Assignment (BPA). The BPA m(E) satisfies the three following axioms [6, 1]:

m(E)≥ 0, ∀E ∈U
m( /0) = 0, and

∑
E∈U

m(E) = 1
(7)

Table 1 shows an example of BPA structure of uncertainties of LODR. The physical
properties of debris, average mass and ablation rate can differ considerably from
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one debris to the other. In this table, estimates of uncertain intervals of the debris
mass and ablation rate are given in evidence form by three experts. The confidence
levels represent the perception that experts have on the specified physical properties
of debris:

• Expert A is quite optimistic on his/her estimate interval of the mass. Therefore
he/she assigns a high confidence of 70% to the proposition that the mass will be
between 1.3kg and 1.5kg; on the other hand, the expert is less confident about
the estimate of the ablation rate and assigns a confidence level of 30% that the
interval of the ablation rate is between 76 ·10−9 and 80 ·10−9.

• While expert B, due to the data available and accuracy levels of the instruments,
assigns a comparatively low confidence of 20% to the proposition that the mass
will be between 1.2kg and 1.7kg. In contrast, he/she is quite confident on his/her
estimate of the laser ablation rate, and the probability assignment of the proposi-
tion that the ablation rate is between 60 ·10−9 and 78 ·10−9 is set to 50%.

• As for Expert C, his/her estimates of the interval of the mass and ablation rate
are [1.4, 1.8] and [65 · 10−9 , 85 · 10−9] respectively, with the confidence levels
of the mass 10% and ablation rate 20%.

Written in mathematical terms, the statements of the estimated intervals given by
the three experts can be expressed as Table 1 shows.

Table 1 Example of BPA structure of the interval based evidence sets. Estimates of the intervals
of the debris mass and ablation rate are given by three experts. Corresponding confidence levels,
or BPAs of the intervals are listed in the table. The BPA values show the experts’ confidence in the
proposition of the uncertain intervals.

Parameter Expert Estimated uncertain intervals
([Ul ,Uu])

BPA(U)

mass(Kg)
A [1.3 , 1.5] 0.7
B [1.2 , 1.7] 0.2
C [1.4 , 1.8] 0.1

Ablation rate(Kg/J)
A [76 ·10−9 , 80 ·10−9] 0.3
B [60 ·10−9 , 78 ·10−9] 0.5
C [65 ·10−9 , 85 ·10−9] 0.2

An element of U ∈ Rn that has a non-zero BPA is named a focal element (FE).
When more than one parameter is considered uncertain (e.g. u1 and u2 ), the BPA
of the uncertain space defined by the Cartesian product of single uncertain intervals
is the product of the BPA of each interval

m(u1,u2) ∈ [a1,b1]× [a2,b2] = m(u1 ∈ [a1,b1])m(u2 ∈ [a2,b2]) (8)

Two measures quantifying the epistemic uncertain impacts, the belief and plau-
sibility of proposition A, over the frame of discernment U can then be defined as
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bel(A) = ∑
FE⊂A,FE∈U

m(FE) (9)

pl(A) = ∑
FE

⋂
A 6= /0,FE∈U

m(FE) (10)

where m(FE) is the BPA value of the focal element FE, and

pl(A) = 1−bel(Ā) (11)

Plausibility and Belief can be viewed as the upper and lower probabilities of possible
values.

Figure 2 shows a BPA structure of the interval type data given by two experts.
Focal elements of the BPA structure, generated by the Cartesian product of single
uncertain intervals, are computed and listed in the lower part of the table. The inter-
section of two intervals is defined by the maximum of the two lower bounds and the
minimum of the two upper bounds. With calculation of Dempsters rule, using eq.8 -
eq.11, cumulative belief and plausibility value of the proposition that the data is less
than a specified value can be obtained. Figure 3 shows the belief and plausibility
values. As the figure shows, the belief represents confidence that the proposition is
true, while the plausibility represents the confidence that the proposition is possible.

Fig. 2 BPAs of the interval
type data given by two ex-
perts. Corresponding focal
elements are generated us-
ing eq.8. Intersection of two
intervals is defined by the
maximum of the two lower
bounds and the minimum of
the two upper bounds corre-
sponding to the intersection.

Table 2 shows an example of the BPA structure associated to the uncertain pa-
rameters for a Gaussian distribution. The evidence data set consists of statistics data
values of the debris and ablation rate, and three experts express their own opinion
of the estimated intervals of the mean value and standard deviation. BPA values are
assigned to each data set to show the expert’s confidence level of the estimated da-
ta set. In the table, if µ i

1 = ... = µ i
m, the parameter µ i can be removed because the

parameter is a deterministic parameter. The table now consists of intervals of σ and
associated BPA values. Therefore, the table can be seen as a variation of Table 1.
Belief and plausibility of the uncertain intervals can be computed in a way similar
to Table 1.
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Fig. 3 Calculation of Demp-
sters rule using expression
eq.8 - eq.11. Cumulative plau-
sibility and belief values of
the proposition that the data is
less than a specified value are
computed by adding up the
masses associated to the focal
elements that partially or to-
tally support the proposition.
BPA structure of the data is
from Figure 2.

Table 2 Another example of BPA structure. This time, the BPA structure consists of estimated val-
ues, deviations and corresponding BPAs. Three experts express their opinion of estimated interval
of the mean value and standard deviation of the uncertain mass and ablation rate.
Parameter Description µ σl σu BPA

u(kg/J) Ablation rate
80 ·10−9 10 ·10−10 20 ·10−10 0.40
78 ·10−9 15 ·10−10 22 ·10−10 0.30
72 ·10−9 12 ·10−10 17 ·10−10 0.30

m0(kg) Average mass [12]
1.30 0.05 0.10 0.30
1.50 0.05 0.12 0.20
1.42 0.05 0.08 0.50

3.2 Formulation of Evidence Based Robust Design Optimization

Consider an optimization problem under uncertainty

min
d∈D,u∈U

f (d,u) (12)

where f (d,u) is the objective function, d ∈ D ⊂ Rn are the design variables and
u ∈ U are the interval-based set uncertainties with BPA values. Distribution of the
uncertainties is given in the form of BPA structure as Table 1 shows.

To obtain the optimal robust design solutions, one needs to optimize the cost
function and maximize its belief under uncertainties at the same time. Therefore,
the problem can be formulated as a multi-objective optimization problem (MOP)
[6, 27]  max

v∈R,d∈D,u∈U
Bel( f (d,u)< v)

min
v∈R

v
(13)

where v is the threshold to be minimized, and Bel is the belief value.
Note that the evidence metric for the uncertainty impacts are related to the uncer-

tain space only. Therefore, one can decompose the uncertain box first, recombine the
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focal elements and compute BPA values of the new focal elements in advance of the
optimization. A sampling based approach can be used for this purpose. First, a set
of intervals are generated using the sampling approach, new focal elements are then
generated and combined using the evidence rules. The number of focal elements is
set to be equal to the population size of the design variables, and each focal element
is associated to one individual. Following eq.9 and eq.11, belief and plausibility of
f (d,u)< v can be computed as [11, 10]

Bel( f (d,u)< v) = ∑
FE∈U|∀u∈FE, f (d,u)<v

m(FE) (14)

and
Pl( f (d,u)< v) = ∑

FE∈U|∃u∈FE, f (d,u)<v
m(FE) (15)

where FE is the new focal element in the uncertain space. An evidence-based anal-
ysis tool is used to sample and recombine the focal elements [3, 18].

3.3 MOO with Tchebysheff Decomposition and Proportional
Orthogonal Decomposition

Consider a MOP as follows

min
x∈D

F(x) = [ f1(x), ... fm(x)]T x ∈ D⊂ Rn (16)

where x is the design variable and fi(x) ∈R with i =∈ {1,2, ...,m} are the objective
functions.

For search the optimal Pareto solutions of eq.16, the genetic MOO algorithms,
e.g. NSGA-II [8], MOPSO, and MOEA/D [26] etc., can be used. However, the com-
putational cost can be expensive as it may take hundreds of iterations of the MOOs
to search for the optimal solutions. To resolve this issue, in this work, a new high
efficiency MOO with decomposition is developed. The new MOO works as follows.

With the Tchebysheff decomposition, the MOP of eq.16 can be formulated into
a set of scalar single-objective optimization problems [7, 2]

min
x∈D

g( f (x),w,z) = min
x∈D

max
i=1,...,m

wi( fi(x)− zi) (17)

where g ∈ R is the Tchebysheff metric, w ∈ Rm is the weight vector , and z ∈ Rm

denotes the reference point

zi = min
x∈D

fi(x) (i = 1, ...,m) (18)

Initialize the population x j ∈Rn, j = 1, ...,npop randomly, where npop is the pop-
ulation size. For each x(i)j ∈X(i) , where X(i) is the population at i-th iteration, com-
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pute the Tchebysheff metrics g(i)j , j = 1, ...,npop using Eq.18. Select the individuals
using the Tchebysheff metric, a set of non-dominated individuals can be obtained.
Note that during the selection, some individuals may have the optimal Tchebysheff
metrics w.r.t more than one weight vectors.

Suppose population X(i) = {x(i)j ∈n | j = 1, ...,npop} can be described using a set

of distribution parameters σ (i) = {σ (i)
j (x) ∈ | j = 1, ...,d ≤ npop}, new distribution

parameters σ (i) of the potential solutions based on previous σ (i−1) and Tchebysheff
metric values g(i−1) = {g(i−1)

j ∈ R| j = 1, ...,npop} can be predicted as

σ
(i) = σ

(i−1)+K(g,σ)
(

g(i)−g(i−1)
)

(19)

where K(g,σ) is the feedback matrix, and new individuals x(i)j ∈ X(i) are generated
using σ (i).

The key now is to estimate adaptively the distribution parameter σ and feed-
back matrix K(g,σ) with the previous σ (i−1) and metric values g(i−1). To tackle
the problem, a Proportional Orthogonal Decomposition (POD, also called Principle
Component Analysis (PCA) [25, 23]) and Gaussian estimator based technique is
proposed.

Suppose in the i-th generation, the individuals are x(i)j , a confidence ellipsoid
that contains all the possible candidate individuals can be constructed. The distribu-
tion parameters σ can be computed using Proportional Orthogonal Decomposition
(POD, also called Principle Component Analysis). Given data set X = {x j ∈Rn| j =
1, ...,npop} of the individuals, kernel matrix of X can be computed as

C =
npop

∑
j=1

(x j−xc)(x j−xc)
T (20)

where xc is the barycenter of x1,x2, ...xnpop . The j-th principal component in the
direction of the eigenvector associated with the j-th largest eigenvalue is

ξ j =

√√√√√ λ j
M
∑
j=1

λ j

v j (21)

where v j ∈n and λ j ∈ R are eigenvectors and eigenvalues of C respectively. Candi-
date individuals in the ellipsoid can then be generated at random uniformly as the
weighed sum of the principle components

xnew =
d

∑
j=1

[
σ j (rand(1,1)−0.5)ξ j +xre f j

]
(22)

where σ j ∈R is the magnitude of the ellipsoids semi-axis in the direction of ξi ∈Rn,
and xre f j is the vector of the population centroid projected on ξi
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xre f j =
xc ·ξ j

|ξ j|2
ξ j (23)

Changing σ = {σ j| j = 1, ...,d ≤ n} and xre f , the size and location of the ellipsoid
can be varied.

In eq.22, the number of principle components d that generates new design vari-
ables can be less than the dimension of design space, n, as those principle compo-
nents that make little contributions to the function evaluations can be neglected and
removed [23, 24, 25].

Figure 4 schematically shows the proposed techniques using principle analysis.
The population of the design variables in the design space and corresponding front
in the criteria space are shown in the upper panel of the figure. Principle compo-
nents of the population are listed in the figure too. Given the data set of distribution
parameters σ , new individuals can be generated using eq.20 - eq.23. To obtain the
optimal parameters σ , correlation between the data set σ and Tchebysheff metrics
g needs to be modeled. The lower panel of the figure shows the correlation between
the data set of g and σ established a priori, using a Gaussian type model.

Now the problem becomes that of determining the parameters σ (i) of the new
ellipsoid of the solutions given g(i), formerly σ (i−1) and g(i−1). Suppose σ (i−1) and
g(i−1) are jointly Gaussian, i.e.[

σ

g

]
∼N

([
µσ

µg

]
,

[
Σσ Σσg
Σσg Σg

])
(24)

where µσ and µg are the mean value of parameters σ and g , Σg,Σσg are the co-
variance of σ and g respectively, then the conditional distribution of σ given g= [gi]
is normal and has [4]

µσ |g = µσ +ΣσgΣ
−1
g (g−µg) (25)

with the variance

Σσ |g = Σσ −ΣσgΣ
−1
g Σ

T
σg (26)

The estimator makes sense even when g and σ are not jointly Gaussian, and
Σσ −ΣσgΣ−1

g Σ T
σg ≤ Σσ , i.e., the covariance of the estimation error is always less

than the previous covariance of [15].
The new data set of σ =

{
σ j| j = 1, ...,d

}
can then be generated as

σ = N (µσ |g,Σσ |g) (27)

Putting the data set σ into Eq.22, new individuals can be generated. Implement-
ing the steps Eq.20-Eq.27 till the termination conditions (e.g. the number of itera-
tions, MSE of g) are met, the optimal solutions can be obtained.

Fig.5 shows simulation results of the new algorithm, POD-MOO and the con-
ventional evolutionary algorithm, NSGA-II. The test function is bi-objective ZDT1
with 30 design variables. Population sizes of POD-MOO and NSGA-II are both
set to 100, and in the POD-MOO, only 5 principle components are used to gen-
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Fig. 4 Principle analysis and Tchebysheff metrics of the bi-objective optimization problem. In the
upper panel, principle components of the population of design variables and corresponding fronts
in the criteria space are presented. Fronts are pushed forwards by varying the control parameters
σ of principle components (eq.20 - eq.23). The lower part of the figure correlates the control
parameters σ to the data set of the metric values g using a Gaussian type model. Control parameters
σ to generate new individuals can be determined using the previous data set of σ and the metric
values of g.

erate new individuals. Crossover probability and mutation probability of NSGA-II
are set to pc = 0.9 and pm = 1/n respectively, where n is the number of decision
variables. The distribution indices of SBX and polynomial mutation in NSGA-II are
both set equal to 20. It appears that after 20 iterations, the solutions obtained using
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POD-MOO are quite close to the true Pareto set. As for the popular MOO algo-
rithm, NSGA-II, it may take up to hundreds of iterations before the optimal Pareto
solutions are obtained.

Fig. 5 POD-MOO Vs.
NSGA-II and MOEA/D.
Test function: ZDT1. Iter-
ations: 20. Population size:
200. Number of design vari-
ables:30. Function Evalu-
ations of both algorithms:
around 4000.

Figure 6 shows experimental results of the standard bi-objective ZDT series
benchmarks: ZDT2, ZDT3, ZDT6, and ZDT4 1. Population size of the MOO is set
to 200. Reference vectors of the decomposed bi-objective optimization (w in eq.17)
are listed in the test of ZDT4. Although the benchmarks have different Pareto fronts,
in each test, the MOO takes dozens of iterations to converge to the true Pareto front.
In contrast, if the conventional genetic algorithms, e.g. NSGA-II are used, it may
takes hundreds of iterations for the algorithms to search the true Pareto fronts.

3.4 Surrogate Assisted Optimization

To reduce the computational cost of the numerical model, the Kriging based sur-
rogate can be used. The Kriging surrogate acts like an interpolator. First, a set of
sample data and corresponding responses of the numerical model are put into the
surrogate to train the surrogate. New data at the untested point can then be predicted
using the Kriging surrogate.

The surrogate is constructed as follows. Consider a set of sample individuals X
with the responses of the numerical model, y, the Kriging prediction at point x can
be constructed as a mean function plus a variance [9, 5]

1 Program code of POD-MOO and experimental simulations of the bi-objective and three objective
benchmarks can be available at https://sites.google.com/site/adloptimization/moo-with-principle-
component-analysis
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Fig. 6 Tests of POD-MOO on standard benchmarks of ZDT2(top-left), ZDT3 (top-right), ZDT6
(bottom-left) and ZDT4 (bottom-right). Population size: 200. Reference vectors of the decomposed
bi-objective optimization (w in eq.17) are listed in the test of ZDT4. Although the benchmarks
have different Pareto fronts, in each test, the MOO takes dozens of iterations to converge to the
true Pareto front.

ŷ(x) = µ̂ +ψ(x,X)Ψ−1(X,X)(y−1µ̂) (28)

with the predictive mean and variance

µ̂ =
1TΨ−1(X,X)y
1TΨ−1(X,X)1

(29)

σ̂
2 =

(y−1µ)TΨ−1(y−1µ)

n
(30)

where 1 is the n×1 column vector of ones. ψ(x,X) and Ψ(X,X′) are the correlation
vector and correlation matrix with

ψ(x,x′) = exp

(
−

pi

∑
i=1

θi|xi−x
′
i|pi

)
(31)
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where θ , p are the hyper parameters that can be determined using the maximum
likelihood method [9, 5].

The mean squared error of the prediction at x is

ŝ2(x) = σ
2
[

1−ψ
T
Ψ
−1

ψ +
1−1TΨ−1ψ

1TΨ−11

]
(32)

To update the surrogate during the optimization, some more sample data can be
used to train the surrogate further. In this work, an Expected Improvement (EI )
based infill strategy is used to update the surrogate.

Suppose N
(
ŷ(x), ŝ2(x)

)
is the Kriging prediction for the objective function

y(x), and the minimum of y(x) over all evaluated points in population X is ymin ,
then the expected improvement of an untested point x is [5]

EI(x) = E [max{ymin− y(x),0}] (33)

and can be computed as

E [I(x)] =
[
ymin−

_y(x)
]

Φ

(
ymin− ŷ(x)

ŝ(x)

)
+ ŝ(x)φ

(
ymin− ŷ(x)

ŝ(x)

)
(34)

New infill points can then be determined by exploring the design space using the
infill criterion, and those points that have maximum EI values can be sampled as the
infill points to improve the surrogate.

3.5 Surrogate Assisted Evidence-Based Robust Design
Optimization

The design optimization consists of two loops. In the inner loop, the Kriging based
surrogate of the expensive numerical lifetime predictor is constructed, while in the
outer loop the new MOO algorithm is implemented. The surrogate reads the debris
area-to-mass ratio (AMR), semi-axis, eccentricity, argument of perigee and mean
anomaly and computes the debris lifetime till the decay altitude reaches 65 km.
Data of the numerical lifetime predictor are Latin Hypercube sampled and put into
the surrogate to train the surrogate.

The evidence computation samples the uncertain space and decomposes the un-
certain space into a series of subspaces. Uncertain parameters and the design vari-
ables are put into the surrogate to compute the lifetime. With the predicted lifetimes,
evidence of the lifetimes can be computed using the sampling approach as eq.14
and eq.15 show. The MOO of eq.17 - eq.27 is then used to optimize the objective
functions of the belief and lifetimes. Fig. 7 shows the flowchart of the proposed
evidence-based robust design optimization.
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Fig. 7 Flowchart of the evidence-based robust design optimization. The design optimization con-
sists of two loops. In the inner loop, the surrogate is constructed and updated with the new infill
points , while in the outer loop, the bi-objective optimization is implemented to optimize debris
lifetimes and their belief values.

4 Numerical simulation

Consider the robust design optimization problem of the pulsed LODR 2. The target
debris is set to Iridium-33, and the optimization objective is set to maximize under
uncertainty the difference in the sum of the lifetimes of 10 debris objects. The orbital
elements of the debris are from the CelesTrak database (TLEs of the debris are
available at http://celestrak.com/NORAD/elements/iridium-33-debris.txt). Table 3
shows the parameters of the pulsed laser.

In the numerical propagator of the debris lifetime prediction, solar radiation pres-
sure, atmospheric drag, non-spherical Earth and gravity from the third body are

2 Part of program code of the robust POD-MOO and numerical simulation of LODR can be avail-
able at https://sites.google.com/site/adloptimization
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Table 3 Prameters of the pulsed LODR

Parameter Value Unit

Number of impulse 4750 -
Laser pulse frequency 100 Hz
Laser pulse interval 100 ns between pulses
Laser power 1000 J/pulse

taken into account. The Jacchia 1970 atmospheric density model is used, and the
decay altitude is set to 65km. In the numerical lifetime predictor, a Runge-Kutta-
Fehlberg 7th order integrator with 8th order error control is used. The drag coef-
ficient is set to 2.2, and the coefficient of reflectivity is set to 0.28 [14]. Note that
both values are closely related to the shape of the debris, and can vary with different
debris. Regarding the LODR characteristic parameters, the coupling coefficient is
Cm = 2.0 ·10−5 Ns/J for the ideal case of aluminium, and the ablation rate is equal
to µ = 80 ·10−9kg/J [20]. Both the values could vary with the laser parameters such
as intensity, wavelength, pulse length irradiated to the debris material, and surface
conditions [20]. The average mass of a single Iridium-33 debris object is set equal
to m0 = 1.327kg [12]. A BPA structure for the parameters is presented (Table 3)
to show the uncertainty effects. Three groups of estimated values and standard de-
viations are listed in the table, assuming that the uncertainties follow a Gaussian
distribution.

Table 4 BPA structure of uncertainties. The uncertainties are of the LODR and debris parameters,
and supposed to be estimated by three experts.

Parameter Description µ σl σu BPA

Cm(NS/J) Coupling coefficient
2.0 ·10−5 0.8 ·10−7 1.5 ·10−7 0.60
2.8 ·10−5 0.5 ·10−7 1.0 ·10−7 0.30
2.0 ·10−5 0.2 ·10−7 1.2 ·10−7 0.10

u(kg/J) Ablation rate
80 ·10−9 10 ·10−10 20 ·10−10 0.40
78 ·10−9 15 ·10−10 22 ·10−10 0.30
72 ·10−9 12 ·10−10 17 ·10−10 0.30

m0(kg) Average mass [12]
1.30 0.05 0.10 0.30
1.50 0.05 0.12 0.20
1.42 0.05 0.08 0.50

r0(cm) Debris average radius
12.33 1.05 1.50 0.50
11.40 0.85 1.02 0.20
13.52 0.75 0.98 0.30

Cr coefficient of reflectivity
0.20 0.05 0.10 0.20
0.23 0.07 0.12 0.30
0.32 0.05 0.08 0.50

Cd Drag coefficient
2.20 0.05 0.10 0.30
2.23 0.05 0.12 0.20
2.32 0.05 0.08 0.50
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Fig. 8 Solution A and B:
Target debris, lifetimes, and
belief values

Most of the orbital eccentricities of the debris are less than 0.01, and the laser
impulses are delivered within a short period of time (47 seconds in the simulation),
therefore the accumulated velocity increment with a constant delivered angle can
be used to compute the orbital elements after LODR. The station is set to Svalbard
with latitude equal to 78.21670 degrees. To simplify the computation, the velocity
is computed in advance using the parameters provided in Table 3, and an equivalent
constant ϑ , 120 degrees is used (Figure 1) .

All debris is associated to an ID number (No.1-466). The design vectors are then
the ID numbers of the debris and the objective is set to maximize under uncertainty
the difference in the sum of the lifetimes of 10 debris objects. Writing in mathemat-
ical form, the problem can be formulated as

min
x∈D,u∈U

f (x,u) =
10

∑
i=1

L(xi,u) (35)

where x ∈ N are the indices of debris from 1 to 466, u ∈ U is the uncertain parame-
ters, and L(xi,u) is the predicted lifetime of xi debris.

The population size of robust POD-MOO is set to 200. Focal elements and corre-
sponding masses are combined and approximated in advance to reduce the computa-
tional cost. The number of focal elements is set to be equal to the population size. A
data set of numerical lifetime prediction with perigee altitude hP ∈ [250km,600km]
and eccentricity e ∈ [0,0.3] is Latin-Hypercube sampled and put into Kriging to
initialize the surrogate. The sample size is set to 240. In each iteration, 5 solutions
with maximum EI values are selected as the infill points, and put into the Kriging to
update the surrogate.

Figure 8 shows the objective values of the optimal solutions after 50 iterations.
Among the solutions, two solutions A and B with the belief of 0.865 and 0.625
respectively are selected. Table 5 shows the debris IDs of solution A and B, and
their evidence levels. The belief of solution A is 0. 865 for a sum of the post-LODR
lifetimes of 32.41 years, while the belief of solution B is 0. 625 /24.07 years.
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Table 5 Robust optimal solution A and B: Target debris, lifetimes before/after LODR, and evi-
dence level of the optimal solutions.

Solution Debris Sum (before/after, years) Belief/Plausibility

A 283, 115, 9, 31, 3, 75, 425, 192, 112, 52 796.95/32.41 0.865/0.995
B 45,133,109,308,15,275,297,144,82,40 631.18/24.07 0.625/0.975

To verify the robust solutions, a genetic based deterministic optimizer is used to
optimize directly the objective function with Cm = 2.0 · 10−5, µ = 80 · 10−9 kg/J,
m0 = 1.327kg respectively. As for coefficient of reflectivity, drag coefficient, and
average radius of the debris, the value of Cr = 0.28, Cd = 2.2, r0 = 12.33cm are
used [14, 12].

Table 6 shows the deterministic optimal solution (Solution C) using the time
consuming numerical predictor. The data is in good agreement with the proposed
method and is highly consistent with the robust calculations when the uncertainty
impacts are unconsidered. In Fig. 8, the minimum lifetimes of the curves are about
1.5 years with nearly zero belief (the belief is 0.04) in which the non-deterministic
effects can be ignored, while the result of the deterministic approach is 1.558 years.
The two sets of calculations are quite close. As can be seen, in addition to providing
a deterministic calculation result, the proposed method can provide the confidence
levels of the calculation results under non-deterministic conditions. All of these pro-
vide convenience for decision makers to optimize their designs.

Table 6 Solution C: Target debris and lifetimes before and after LODR (assuming all uncertainties
are set to zero and using a deterministic optimizer)

Debris Before (years) After (years) Sum (before/after, years)

142 8.32 0.07

117.50/1.558

194 10.97 0.16
168 29.01 0.44
207 7.60 0.11
133 9.82 0.18
335 8.17 0.11
142 8.32 0.07
281 8.96 0.03
196 22.63 0.32
159 3.67 0.04
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5 Conclusion

In this work, an early stage robust analysis tool for the LODR design is presented. In
the design optimization, both the epistemic uncertainty and aleatory uncertainty are
considered. The evidence-based analysis tool is used to quantify the evidence level
of the optimal solutions. Compared to the optimization method using conventional
optimization algorithms, the method proposed in this work provides, not only the
solutions that could be implemented in the LODR, but also the maximum belief
values that the solutions can be achieved.

To resolve the problems due to the evidence computation and the expensive nu-
merical model, a high efficiency MOO, using the Tchebysheff decomposition strat-
egy and Gaussian predictor, is proposed. The MOO outperforms the conventional
algorithms in a series of standard test functions. A surrogate is used to reduce the
cost due to the expensive model. Evidence computations of the uncertainty impacts
are integrated into the optimization via the sampling approach. At each iteration, the
number of objective function evaluations is twice the population size. Data from the
surrogate are used instead of the numerical expensive data, and an EI based infill
strategy is used to update the surrogate.

In the simulation, the debris fragments are supposed to be spherical and face-on
planes. As the lifetimes of the debris can vary greatly with the relevant parameters,
a more detailed analysis of the objects properties, such as the realistic shapes and
tumbling effects should be taken into account if an actual LODR is implemented.
The robust optimization method presented in this chapter provides an early stage
robust analysis tool for the LODR in order to determine the potential candidates.
Impacts due to the attitude and shape of the debris will be taken into account in
future works.
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