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The slowly evolving gauge coupling of gauge-fermion systems near the conformal window makes
numerical investigations of these models challenging. We consider finite size scaling and show
that this often used technique leads to inconsistent results if the leading order scaling corrections
are neglected. When the corrections are included the results become consistent not only between
different operators but even when data obtained at different gauge couplings or with different lattice
actions are combined. Our results indicate that the SU(3) 12-fermion system is conformal with mass
anomalous dimension γm = 0.235(15).

Strongly coupled gauge-fermion systems near the con-
formal window are candidates to describe the dynamics
of electroweak symmetry breaking and beyond-Standard
Model physics. These models are expected to have a
“walking” gauge coupling and large anomalous mass di-
mension that can give rise to an enhanced fermion con-
densate, while the weakly broken conformal symmetry
could lead to a light dilaton that plays the role of the
Higgs boson [1]. While the non-perturbative properties of
these systems are well suited to lattice studies, standard
lattice methods are frequently not efficient to investigate
the infrared properties of near-conformal systems. The
problems are mainly due to the nearly marginal walking
nature of the irrelevant gauge coupling. In this paper
we investigate finite size scaling (FSS), a well established
method to predict critical scaling exponents, and show
that it is essential to take into account the effect of the
nearly marginal coupling in correction to scaling to ob-
tain consistent results.

We concentrate on the SU(3) gauge model with 12
fundamental fermions, a controversial system. Several
groups have studied the infrared properties of this model
using different methods and different lattice actions, ar-
riving at contradictory conclusions regarding its infrared
dynamics. (For a limited set of references see Refs. [2–
16].) In particular FSS was considered in Refs. [4–
6, 11, 12]. Inconsistencies of the scaling exponent as
predicted by different operators lead some authors to
strongly question the conformal behavior of this model.

We investigate this system at many gauge coupling
values, and also analyze the published meson spectrum
data of the Lattice Higgs (LH) and LatKMI collabora-
tions [4, 12]. We develop a simple formalism that takes
into account the effect of the leading irrelevant coupling
and find consistent FSS for several operators. The con-
clusion is further strengthened when we combine several
gauge couplings, even different lattice actions together.
These results suggest conformal infrared dynamics rein-
forcing the interpretation suggested by our earlier studies
of the bare step scaling function [7], phase transitions [17]
and Dirac eigenvalues [9]. Preliminary results of our in-
vestigations have been reported in Ref. [18].

FINITE SIZE SCALING

Finite size scaling is a well understood technique to
investigate the critical properties of systems governed
by one relevant operator. Its derivation is easiest using
renormalization group analysis and has been reviewed
recently in connection with infrared conformal systems
[19, 20]. Corrections to scaling due to the leading ir-
relevant operator have been successfully incorporated in
three dimensional spin model studies, for example in
Refs. [21, 22] that considered FSS of Ising model like
systems on the critical surface. A recent publication [23]
investigated corrections to scaling in mass deformed con-
formal systems in infinite volume. In this work we con-
sider FSS of mass deformed conformal systems including
leading corrections.

For concreteness we consider a system with one rel-
evant operator m with scaling dimension ym > 0. All
other operators, denoted by gi, are irrelevant with scal-
ing exponents yi < 0. Renormalization group arguments
predict that in a finite spatial volume L3, any physi-
cal quantity “MH” with mass (engineering) dimension
[MH ] = 1 depends only on specific combinations of the
couplings, and can be written as

MH = L−1f
(
x, gim

−yi/ym
)
, (1)

where x ≡ Lm1/ym . In the critical m → 0 limit,
gim

−yi/ym → 0 and we find the familiar FSS formula

MH = L−1fH(x), (2)

where fH(x) is an arbitrary but unique scaling function
that depends on the observable MH . The exponent ym
is universal and characteristic of the corresponding fixed
point.

If one of the irrelevant operators, let’s say g0, is
nearly marginal with scaling exponent y0 . 0, the term
g0m

−y0/ym can remain significant and has to be included
in the scaling analysis. This leads to the modified FSS
formula

MH = L−1fH (x, g0m
ω) , (3)
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FIG. 1. The scaling dimension ym predicted by FSS, as a function of the gauge coupling βF for the MPS (blue triangles),
MV (red circles) and fπ (green ×s). Left: fits including only the relevant mass operator (Eq. 2). Right: fits including both the
relevant operator and leading irrelevant corrections (Eq. 5) with y0 = −0.36 fixed at the two-loop value.

where ω ≡ −y0/ym & 0. The scaling function
fH (x, g0m

ω) is analytic even at the fixed point, and can
be expanded as

LMH = FH(x)
{

1 + g0m
ωGH(x) +O

(
g20m

2ω
)}
. (4)

The first term is the usual FSS expression while the sec-
ond accounts for the leading corrections to scaling.

In the limit x → 0, both FH(x) and GH(x) approach
finite constants. In the infinite-volume limit, with small
but fixed m, FH(x) ∝ x while GH(x) remains finite. Our
simulations cover a limited range 0.5 . x . 3, over which
we approximate GH(x) by a constant, GH(x) = cG, so

LMH

1 + cGg0mω
= FH(x). (5)

One can test the validity of this approximation by using
only subsets of the data restricted to smaller ranges in x.
Equation 5 is very similar to the original Eq. 2, however,
the analysis now involves three parameters: c0 ≡ cGg0,
y0 and ym.

FINITE SIZE SCALING FITS

In our numerical studies we use nHYP smeared stag-
gered fermions and a gauge action that combines funda-
mental and adjoint plaquette terms with βA/βF = −0.25.
In Ref. [8] we reported on the phase structure and other
properties of this action with Nf = 12 fundamental
fermions.

In the present work we consider gauge couplings βF =
2.8, 4.0, 4.5 and 5.0 and volumes 123×24, 163×32, 203×40,
243×48 and 323×64. The bare mass varies in the range
0.005 ≤ m ≤ 0.12, such that the vector meson mass
aMV < 0.7.

In the FSS analysis we approximate FH(x) with two
independent quadratic polynomials, one at x < x0 and

the other at x > x0. We minimize the χ2 of this fit
in terms of the polynomial coefficients, x0, ym, y0 and
c0 using a Bayesian fitter based on [24, 25][26]. Priors
on the values are 0.1 ± 20 for polynomial coefficients,
0.5 ± 20 for −y0, 1.4 ± 1 for ym, and -0.1 ± 5 for c0.
Table I collects the results of several different fits, listing
the relevant fit parameters as well as χ2 per degrees of
freedom (dof). This χ2 represents not only the goodness
of the FSS “curve collapse” but the correctness of our
rather simple fitting form for FH(x). While the latter
could be improved by using a more elaborate fit function,
we found the two independent quadratic polynomials to
be sufficient.

Two loop perturbation theory predicts that the 12 fla-
vor system is conformal with scaling exponent ym ≈ 1.45
and leading irrelevant exponent y0 ≈ −0.36. First we
analyze the data using the usual form of Eq. 2, ignoring
corrections to scaling. We consider each operator and βF
data set independently. The first row of Table I shows
the result of the fit for the pseudoscalar mass MPS at
βF = 4.0. This gauge coupling matches rather closely
the published β = 2.2 data of the LH collaboration and
our prediction for ym is consistent with Ref. [4].

The left panel of Fig. 1 shows the results of similar
analysis for the scaling exponent ym at other βF values
for the pseudoscalar MPS and vector meson MV masses
and fπ. The scaling exponent shows significant variations
between the three observables and as the function of βF ,
suggesting that there is no consistent FSS when using the
form of Eq. 2.

When we take into account the leading scaling correc-
tions according to Eq. 5 the situation changes. We are
not able to constrain the exponent y0 using individual
data sets so at this stage we fix y0 = −0.36, the pertur-
bative 2-loop value. The correction term decreases χ2 by
more than a factor of two as the second row of Table I
shows. We obtain consistent results when fitting only the
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Op. β ym y0 c0 (PS) sm χ2[dof]

PS 4.0 1.421(3) - 0 - 3.3[35]
PS 4.0 1.223(17) -0.36(fixed) -0.66(5) - 1.3[36]
PS 4.0 1.228(16) -0.499(58) -0.70(6) 1 1.1[58]

4.5 -0.50(6) 0.73
PS 2.8 1.248(13) -0.466(16) -1.27(2) 3.03 2.9[99]

4.0 -0.60(4) 1
4.5 -0.40(5) 0.73
5.0 -0.33(5) 0.58

PS 4.0 1.238(13) -0.508(55) -0.67(5) 1 1.4[95]
4.5 -0.46(5) 0.73
LH -0.82(6) 1.11

KMI 3.7 -0.76(6) 0.64
KMI 4.0 -0.70(5) 0.55

PS, 2.8 1.228(11) -0.446(14) -1.28(2) 3.03 2.4[191]
V 4.0 -0.66(3) 1

4.5 -0.48(4) 0.73
5.0 -0.41(4) 0.58

PS, 2.8 1.241(11) -0.465(14) -1.28(2) 3.03 3.0[283]
V, 4.0 -0.62(3) 1
fπ 4.5 -0.43(4) 0.73

5.0 -0.36(4) 0.58

TABLE I. Results of the FSS analysis in the 12 flavor system.
MPS , MV and fπ are analyzed at various βF couplings with
the nHYP action, combined with the published data of the LH
and LatKMI collaborations [4, 12]. c0 denotes the amplitude
of the leading correction (given only for the pseudoscalar) and
sm is the matching scale factor of the bare mass relative to
the βF = 4.0 nHYP data. The last column lists the χ2 per
degrees of freedom and dof of the fit.

small (x < 1.4) or large (x > 1.1) regions, justifying our
approximation of constant G(x) = cG.

Repeating this analysis at other gauge couplings leads
to the results plotted on the right panel of Fig. 1, showing
consistency between all three operators in the whole βF
range investigated. Not surprisingly the errors are sig-
nificantly larger than before, especially for fπ where the
data constrain the correction coefficient c0 only weakly.

If the gauge coupling is an irrelevant operator, the scal-
ing function FH(x) is independent of βF and we can sig-
nificantly strengthen the FSS fit by combining data from
different gauge couplings. This requires the introduction
of a set of new parameters sm that rescale the bare mass
at each gauge coupling m → smm to a common refer-
ence value. We choose sm = 1 at βF = 4.0. While the
scale factors sm depend on the gauge coupling, they are
independent of the operator. Such global fits allow us
to determine both scaling dimensions ym and y0. How-
ever higher order corrections to scaling not accounted
for in Eq. 5 can be different for different data sets and
significantly increase χ2, especially when very different
couplings are combined.

The third entry in Table I shows the results of a fit to
the pseudoscalar mass that combines couplings βF = 4.0
and 4.5. The universal fit parameters ym and y0 are con-
sistent with previous values with similar χ2/dof. Includ-

ing the data sets at βF = 2.8 and 5.0 does not change the
predicted values, though we observe a significant increase
in χ2 as the fourth entry of Table I shows. This is not
surprising considering that the scale factors sm change
by a factor of five in this case. While the scale factors
increase with decreasing βF , the c0 coefficients decrease,
suggesting that the conformal infrared fixed point (or its
projection to the βF axis) where c0 = 0 occurs at weaker
gauge coupling.

We can combine different lattice actions, not only
gauge couplings, in the FSS fit. Both the LH and LatKMI
collaborations [4, 12] published some of their spectrum
results which we can fit together with our nHYP action
data. As the next entry of Table I shows, such a combined
fit for MPS has a small χ2/dof with scaling dimensions
consistent with previous fits. The left panel of Fig. 2
illustrates the “curve collapse” of this fit.

The vector meson mass can be analyzed similarly, and
one can even combine it with the pseudoscalar. The fit
now depends on two independent scaling functions FH(x)
for the two operators. As the fifth entry in Table I shows
the scaling dimensions from such a combined fit are con-
sistent with the pseudoscalar fit with similar χ2/dof. The
errors listed are statistical only and do not take into ac-
count possible correlations between the two operators.

The pion decay constant is expected to scale with the
same universal exponents as the hadron masses but it ex-
hibits very different finite volume effects [4, 12] and cor-
rections to scaling could be more significant to fπ than
to the masses, especially in small volumes. As the vol-
ume decreases the mesonic bound states are squeezed.
At some point the volume might become too small to
support bound states and the physical meaning of fπ
changes. The first order phase transition observed with
Wilson fermions in Ref. [27] could be of similar origin.
Nevertheless a combined fit for MPS , MV , and fπ is
reasonable even when we combine the gauge couplings
βF = 2.8, 4.0, 4.5 and 5.0 as shown in the last entry of
Table I. In this case we fit nearly 300 data points with
three independent scaling functions and 12 c0 coefficients
describing the leading corrections to scaling, yet the pre-
dicted scaling exponents are consistent with all previous
fit results.

CONCLUSION

We have demonstrated that apparent inconsistencies
in finite size scaling analysis of the Nf = 12 system can
be resolved by considering the effect of the leading irrel-
evant coupling, at least for the pseudoscalar and vector
meson masses and fπ. For these quantities combined fits
of several independent data sets at different gauge cou-
plings and even different lattice actions are consistent
with conformal infrared dynamics. Based on various fits
presented in Table I we predict the anomalous mass di-
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FIG. 2. Left panel: The best curve collapse fit for the MPS combining data at βF = 4.0, 4.5 and the published data of the LH
and LatKMI collaborations [4, 12] . The fit parameters are listed in Table I. Right panel: Similar fit combining MPS (filled
symbols), MV (open symbols), and fπ (shaded symbols) using data at βF = 2.8, 4.0, 4.5 and 5.0. The values for fπ are rescaled
by a factor of 9 for better clarity.

mension γm = ym − 1 = 0.235(15) at the corresponding
infrared fixed point.

We have investigated only three physical quantities
and cannot prove that all other observables will scale
consistently once corrections to scaling are taken into
account – especially because these corrections might be
more important to some observables than to others. It
will be important to consider other quantities, especially
those related to the static potential as published large
volume data appear to be inconsistent with conformal
dynamics [10].

We expect that systems near the conformal boundary
will generically possess a nearly-marginal operator due
to the walking gauge coupling, or possibly even some
other operator that becomes relevant at the conformal
boundary. The results presented in this paper suggest
that such an operator has important effects that have to
be considered when studying any strongly-coupled many-
flavor system.
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