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We present a novel technique for the determination of the topological susceptibility (related to
the variance of the distribution of global topological charge) from lattice gauge theory simulations,
based on maximume-likelihood analysis of the Markov-chain Monte Carlo time series. This technique
is expected to be particularly useful in situations where relatively few tunneling events are observed.
Restriction to a lattice subvolume on which topological charge is not quantized is explored, and may
lead to further improvement when the global topology is poorly sampled. We test our proposed
method on a set of lattice data, and compare it to traditional methods.

PACS numbers: 11.15.-q, 11.15.Ha, 12.40.Ee

I. INTRODUCTION

Lattice field theory is a powerful technique for the nu-
merical study of Yang-Mills gauge theories. Recovery of
continuum field-theory results requires extrapolations in
the lattice spacing and volume, which are generally con-
trolled and well-understood. One effect of working in a
finite volume V' is that the theory becomes dependent
on the global topological charge @ [Il 2]. Locality and
cluster decomposition properties suggest that such effects
vanish as V — oo, but they must be accounted for in the
extrapolation.

In Euclidean Yang-Mills quantum field theory on a
torus, the topological charge @ is quantized, dividing
the configuration space into distinct topological sectors.
These sectors are separated by an action barrier, so that
the use of sampling algorithms which favor small changes
in the action (such as the commonly used hybrid Monte
Carlo algorithm) can lead to poor sampling of this distri-
bution. Since the action barrier can grow with decreasing
lattice spacing [3H5] or increasing number of flavors Ny
[6, 7], the cost of tunneling to different topological sectors
can vary greatly depending on the details of the calcula-
tion.

The “freezing” of topological charge resulting from
these algorithmic problems leads to extremely long auto-
correlation times, so that the distribution of @ is poorly
sampled. Correction of the resulting systematic effects
on observables can be done [1I 2], but these corrections
require as inputs the cumulants of the topological charge
distribution, particularly the variance (Q?) = Vx;, where
X+ is the topological susceptibility. Using the standard
estimator for variance requires many independent sam-

ples; autocorrelations can lead to relatively few indepen-
dent measurements and a biased estimate with a large
sampling error.

In this work, we suggest two ways to proceed when
confronted with this problem. First, it is generally be-
lieved that the maximum likelihood (ML) method (see
Sec. 36.1.2 of [§]) can produce reliable estimates of model
parameters when there are relatively few independent
samples of a distribution, provided the functional form
of the underlying distribution is known analytically. In-
spired by the work of Phil Nelson and collaborators [9],
we present such a maximum likelihood approach (follow-
ing an example by Franco [10] in the context of financial
time-series) to analyze the complete time-series informa-
tion {Q,}. The analysis is done without blocking, since
the effect of autocorrelations is built into the model. This
method in principle allows the estimation of y; from even
a handful of tunneling events.

Eventually, if one performs a calculation at sufficiently
small (but finite) lattice spacing [I1], global topological
charge will never change in any finite number of Markov
steps. If we choose a lattice volume V such that Vx; > 1,
we can consider the distribution of topological charge Q4
computed only in subvolumes Vy > x; ! which by local-
ity and cluster decomposition should also be distributed
asymptotically as the stationary distribution P(Q). In
this scenario, we can employ either our ML method or a
more standard blocked sample variance estimate to com-
pute the susceptibility, depending on the number of inde-
pendent samples [26]. Empirically, we find that the calcu-
lation of x; based on a subvolume gives the most robust
estimates of x; in the case that relatively few uncorre-
lated measurements of @ are available, although further



study of this approach is needed.

The contents of this manuscript are as follows: in sec-
tion [l we discuss what is known about the distribution
of topological charge in lattice simulations of Yang-Mills
gauge theories. Section [[T]] gives the definition of an
Ornstein-Uhlenbeck (OU) process, which uniquely de-
scribes continuous Markov processes that remain Gaus-
sian distributed. Section [V] describes the maximum-
likelihood estimation of x; based on the OU model. In
section [V] the implications of studying calculations with
nearly-fixed global topological charge are discussed, and
a modification of the maximum-likelihood estimate us-
ing lattice subvolumes is introduced. Section [VI demon-
strates the use of the proposed methods to extract y; on
an example set of lattice configurations, and compares
to other standard approaches. Finally, section [VII] sum-
marizes our results and discusses future applications and
possible improvements.

II. DISTRIBUTION OF TOPOLOGICAL
CHARGE

Numerical lattice computations make use of a Markov
process to sample the configuration space, generating a
sequence of configurations Uy — Uy — --- — U, with
corresponding topological charges {Q,}. As the sample
size n increases, the distribution P(Q,) converges to a
stationary distribution P(Q).

What is known about the distribution P(Q)? With
zero f-parameter, all odd cumulants of the distribution
must vanish by parity invariance. Furthermore, analysis
of SU(N,.) gauge theories at large- N, shows that the even
cumulants scale as ko, ~ N272" [12HI4], suggesting that
the distribution will be approximately Gaussian. Given
the suppression of higher cumulants, it seems reasonable
to express the distribution P(Q) in terms of its Edge-
worth series [15], truncated to the first non-Gaussian
term:
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where Pg(x) is the Gaussian distribution with zero mean
and unit variance and Hey(r) = 2% — 622 + 3 is a Hermite

polynomial. The variance ko and 4th-order cumulant ~4
for this distribution are
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We identify the variance (Q?) = ko = V'x;, which defines
the topological susceptibility x;. As € — 0, this distri-
bution becomes purely Gaussian; several lattice studies
have empirically found non-zero e in SU(N,) gauge the-
ories [I6H20]. We note that the dependence of this non-
Gaussianity on the presence of light fermions is unclear,
and large-IN, arguments may be inapplicable for theories
with many fermions Ny, unless Ny/N, is held fixed as
N, — oo.

IIT. ORNSTEIN-UHLENBECK PROCESS

We wish to consider Markov processes that can repro-
duce the approximately-Gaussian topological charge dis-
tribution eq. . In fact, up to linear transformations
in the variables, there is a unique non-trivial example
of a continuous Markov process in which the expected
distribution at any point in the stochastic evolution is
Gaussian: the Ornstein-Uhlenbeck (OU) process [211, 22],
which describes the Brownian motion of a massive par-
ticle in the presence of arbitrary linear friction. This
process is described by the stochastic differential equa-
tion

= T d W 3
20 =—n((t) —7) + o W(1) (3)
where n > 0, 0 > 0 and W (¢) is the stochastic Wiener
process of Brownian motion. The standard solution leads
to the following statistics:

Elz(t)] = 7+ (z(0) —z)e ™
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which converge to a Gaussian with mean Z and variance
0%/2n as t — oo, independent of the starting position
2(0). We will discuss the accuracy of this model in the
presence of small non-Gaussianities in section [[V] below.

The detailed evolution of topological charge in a lattice
gauge theory calculation is quite complex and dependent
on unphysical details such as the choice of the update
algorithm. Since it is a Markov process and since @ is
distributed as a Gaussian asymptotically (up to correc-
tions which we will discuss), we will model the evolution
of topological charge as an OU process.

The friction parameter 7 is sensitive to algorithmic de-
tails and therefore not physically relevant, so it will be
treated as a nuisance parameter. Although we will not
investigate it in detail here, we note that the parameter
7 may be of interest in the comparison of different lattice
update algorithms (with the underlying physical param-
eters held fixed). In particular, the autocorrelation R(7)
for the process z(t) from the standard solution is given
by

Var[z(t)] =

1 e=2n(t+7)

\/(1 — e 2mt)(1 — e2n(t+r))> (5)

which for ¢ > 1/n converges to e~7". We can therefore
identify 1/n as the standard autocorrelation time for z.
Our approach to be described below therefore gives an
alternate way to estimate the autocorrelation time for an
observable which is expected to always be approximately
Gaussian distributed.

R(r)=¢e"" (

IV. MAXIMUM LIKELIHOOD ESTIMATE

We assume that we have N 4+ 1 computations of the
topological charge @; at steps n; in the Markov chain,



where the n; need not be equally spaced. Due to par-
ity invariance of Yang-Mills theory, all odd moments are
identically zero, including the mean (Q) = 0. The second
moment, or equivalently the variance, gives the topolog-
ical susceptibility

<Q2> =Vxi. (6)

In the OU model, we identify the susceptibility in terms
of the model parameters, Vx; = 02/2n. The conditional
probability of finding @; at step n; given @;_; was found
at step m;_1 is Gaussian with mean and variance given
by Eq. with appropriate asymptotic values:
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The log-likelihood function (dropping additive constants)
given the time series is

N
L(n,Vx:) = —> logVxi — S(n)
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where for later convenience we have defined the sum
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The maximum likelihood (ML) estimates 7 and X; mini-
mize the log-likelihood function L(n, V). At the mini-
mum,

aVXt Ve
which leads to
~ 1. .
VX = NS(W) . (11)

If we substitute S(n)/N for Vx; in the log-likelihood
function we now need to solve the one-dimensional prob-
lem to find 7 that minimizes

N 1
= — — R _ —2n(ni—ni,1)
L(n) 5 log S(n) 5 ;:1 log {1 e

(12)
where we have dropped further additive constants. Once
7 is known then Vx; is known as well.

Since the OU model assumes the underlying distribu-
tion is Gaussian, it is interesting to understand how well
the OU-model ML estimates can reproduce the variance
of the nearly Gaussian distribution in Eq. for e =~ 0.2
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FIG. 1: Monte Carlo test of variance extracted from an Edge-
worth distribution eq. , as a function of non-Gaussianity
parameter €. The dashed line (black) shows the analytic vari-
ance vs. €. The points with error bars (blue) and the shaded
band (red) show estimated variance using the sample variance
and OU maximum-likelihood estimate, respectively. Both
methods show good agreement with the expected variance.

[19]. As a simple test, we generated 100,000 samples of
the distribution for 62 = 2 and € = 0-0.24 and used both
the OU ML method and the standard sample variance to
estimate (Q?). Both estimates agree well with the ana-
lytic value, as shown in fig. [[] In addition, near-perfect
agreement is seen between the OU model and the stan-
dard sample variance, for this test in which the underly-
ing true distribution is near-Gaussian and well-sampled.

V. NEARLY FIXED TOPOLOGY

For lattice calculations in which the topological charge
tunnels frequently, the distribution of @ will be well-
sampled, and x; can be estimated simply from the empir-
ical sample variance, or from a least-squares (LS) fit of a
Gaussian to the @ distribution. The advantage of the ML
method is that it should still yield robust estimates of x;
even when the distribution is relatively poorly sampled.
However, in extreme cases where the number of observed
tunneling events is O(10) or less, the uncertainty in x;
can become very large, as a lack of tunneling events can
be explained by either large x; and small 7, or vice-versa.
Marginalizing over n leads to essentially a lower bound
on xt.

Recently, it has been suggested that the use of Neu-
mann boundary conditions along one of the directions of
the lattice would eliminate the barrier to changing topol-
ogy [23]. One can think rather informally of this scenario
as topological charge being allowed to flow freely through
the boundaries between the lattice and an infinite reser-
voir. This physical picture suggests an alternative ap-
proach to estimation of x;.

Consider a periodic lattice with volume V = L3 x T
and T" > L, and then select some contiguous interval
of length Ty, < T, such that V> V, = L3 x T, >



Xi 1. The total topological charge @, contained within

this subvolume V; will be a continuous variable, since
charge is no longer conserved; it can move freely into the
complement of Vy, which we can think of as a reservoir.

The existence of a non-zero global topological charge
@ on the full volume may bias the distribution of charge
within the subvolume; in particular, if @ is fixed, then
the mean charge contained within V; will be equal to
QV;/V. We therefore define a “subtracted” subvolume
charge,

Qe = / ' [q(m) - 8] (13)

s

where ¢(z) is the topological charge density at lattice site
x. We then carry out the analysis exactly as before, but
with the substitutions V' — V; and Q — Qs sub-

It seems reasonable, although not proven, that y; com-
puted this way is an acceptable estimator of topological
susceptibility when using the methods suggested in [I],
given that V was periodic and translationally invariant
and Vs was chosen at random. Thus, we can apply our
same ML method to a time series in Q)5 to get an estimate
of Vsx:. Even with nearly-fixed @, it may be possible for
Qs to fluctuate frequently enough to allow a reliable LS
fit. In this case, we can check that ML and sample vari-
ance methods produce compatible results for Vyx;.

VI. EXAMPLES

As a trial of this method, we take a few time series of
topological charge on a set of three 16% x 32 lattice en-
sembles with Ny = 241 domain wall fermions, generated
by the RBC and UKQCD collaborations [24]. The rele-
vant data and empirical distributions of @) are plotted in
fig.[2l For the analysis to follow we take a thermalization
cut of 200 MD time units on all three ensembles. The
topological charge is measured every 5 MD time units.

In Fig. for the lightest mass m; = 0.01 ensemble
we show the 2AL = 1,4,9 contours appropriate for es-
timating the 1, 2, 3 o confidence intervals on Vx; while
marginalizing over the friction parameter 7. The result-
ing 1-0 confidence interval on Vy; is found to be in good
agreement with the standard sample-variance estimate.

The negative correlation between Vy; and 7 is ex-
pected, since they are inversely related through the
asymptotic variance of the model distribution, Vyx; =
o2 /2n. For data sets with relatively few tunneling events,
we expect the ellipsoid will become elongated and follow
a hyperbolic curve due to this relation.

We would now like to test the proposed subvolume
analysis of section [V] in conjunction with both the sam-
ple variance and ML methods. The use of only a fixed
subvolume from all configurations would reduce the avail-
able statistics, so we make use of a bootstrap procedure
in order to improve our statistical precision. We draw
Np = 1000 bootstrap replications from the distribution
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FIG. 2: From [24], Markov-chain Monte Carlo time-series
(left) and cumulative distributions (right) of global topologi-
cal charge @, as measured by the RBC and UKQCD collab-
orations. Three ensembles are shown, differing by the light-
quark mass: m; = 0.01 (top), 0.02 (middle), and 0.03 (bot-
tom).
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FIG. 3: Confidence contours for maximum likelihood analysis
of the RBC/UKQCD m; = 0.01 ensemble, shown at 1o, 20,
and 3o levels.

of pairs {Q;, @Q;+1} in the topological charge time series,
allowing us to resample while preserving the informa-
tion on transitions required by the ML method. We
fix the subvolume size Ty < T, and then within each
bootstrap replication choose a random starting position
t € [0, Ny — 1] for the subvolume on each configuration
in the timeseries; the choice is randomized for each boot-
strap replication. This procedure imposes the expected
translation invariance in the t-direction.

For the sample variance procedure, the data are
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FIG. 4: Comparison of various methods for determination of
Vxt on the three RBC/UKQCD example ensembles studied.
“SV” denotes use of the sample variance of @), while “ML”
indicates the maximum-likelihood method described in the
text. “Subvol” indicates analysis restricted to a subvolume
with full spatial extent and T = 8.

Ve = 0.01 0.02 0.03
sV 568(t§1) 9.19(*138) 16.86(%358)
ML | 5.64(+52) 9.40(*L ﬂ) 17.18(%5:75)

SV subvol 744(t3§) 10.26(*71) 13.32(139)

ML subvol |7.38( £5:49) 10.24(+172) 13.38(123%)

TABLE I: Comparison of various methods for determination
of Vx¢ on the three RBC/UKQCD example ensembles stud-
ied. “SV” denotes use of the sample variance of ), while
“ML” indicates the maximum-likelihood method described in
the text. Rows labeled “subvol” apply the same techniques
on a subvolume with full spatial extent and Ts = 8.

blocked before drawing bootstrap samples, in order to
deal with autocorrelation effects. Empirical tests on the
data show stability of error estimates on x; for a block
length of roughly ~ 100 trajectories or 20 configurations.
No blocking is used for the ML analysis, which includes
autocorrelation effects in the model. For both the sam-
ple variance and ML subvolume analyses, the central
value and error estimates correspond to the median and
one-sigma quantiles of the bootstrap distribution, respec-
tively.

In Fig. @ and table[[, we summarize our determination
of V'x; for the three ensembles shown in Fig. [2| using the
various methods described. The subvolume results here
are for fixed Ts = 8. As expected from a time series with
many independent samples of P(Q), the maximum likeli-
hood (ML) result agrees closely with the sample variance
(SV) estimate of Vx;.

We further investigate the subvolume estimates, and in
particular their dependence on the choice of subvolume
size, by varying the temporal extent T and repeating the
analysis. The results are shown for all three ensembles
in fig. A strong variation is seen at small T, setting
in approximately where Vix; =~ 1, which is where our as-

sumptions about the simplicity of the distribution P(Q)
are anticipated to break down. For large T, the depen-
dence on subvolume size is nearly flat, but with a small
systematic trend evident, particularly on the m; = 0.03
ensemble. We have no immediate physical explanation
for the origin of this subleading effect, but plan to inves-
tigate further in a future work.
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FIG. 5: Dependence of ML subvolume estimates of Vx: on
the temporal extent of the L® x T, subvolume used, for the
three RBC/UKQCD example ensembles, from bottom to top
m; = 0.01 (green), 0.02 (red) and 0.03 (blue). The vertical
lines show the point at which Vs;x: =~ 1 on each ensemble
(based on the ML estimate at 75 = 8), beyond which our
method is expected to break down.
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FIG. 6: Comparison of estimates of topological susceptibil-
ity times the volume Vx: taken on a subset of the RBC
my = 0.01 gauge configurations, with MD trajectory numbers
up t0 Tmax. Points shown correspond to different methods:
sample variance (blue), maximum likelihood (red), subvolume
SV (purple), and subvolume ML (orange). All SV-method re-
sults are shown with an offset for clarity. Subvolume ML esti-
mates (again with T = 8) show the best consistency with the
“asymptotic” result (black band) obtained by the ML method
applied to the full time series.

It is apparent that the ML method does not offer any
significant advantage in the determination of Vy; over a
simple calculation of the sample variance when the un-
derlying distribution P(Q) is well-sampled, as is the case



for the full time series on each of the RBC ensembles.
However, we expect the ML technique to be a robust ap-
proach even when a small number of independent samples
are available. Furthermore, even when the distribution
is well-sampled, the ML method has the advantage of
including autocorrelation effects automatically, into the
friction parameter 7, whereas the SV analysis requires an
autocorrelation analysis and blocking to be carried out
first.

We can test what might happen in a case with poor
sampling by analyzing a restricted subset of the RBC
time series. Fig. [6] shows the results of this test on the
my = 0.01 ensemble, with the analysis considered on the
restricted time series with MD time 7 < T.x; as a re-
minder, @) is measured every 5 MD time units. For the
SV analysis, we adjust the blocking when only a small
number of configurations are available; specifically, we
use a block length of 7 = 50 when less than 200 time
units are available, and 7 = 25 for less than 100 time
units available. With only a subset of the configurations,
the full-volume methods show a clear bias with respect to
the best estimate of Vx; from the full ensemble. On the
other hand, both the ML and SV subvolume approaches
converge rapidly to cover the asymptotic estimate, with
the ML being particularly effective at small 7,,x where
a simple blocking analysis cannot adequately account for
the known autocorrelation effects.

VII. DISCUSSION

We have introduced a new maximum-likelihood ap-
proach to estimation of the topological susceptibility
X+ in lattice calculations, based on maximum-likelihood
analysis of the full time-series information. This ap-
proach can give an advantage over more traditional meth-
ods such as calculation of the sample variance of @, par-
ticularly in the case that autocorrelation times are long
and relatively few independent samples are available, due
to the inclusion of autocorrelation effects within the ML
model. The autocorrelation time of () can also be esti-
mated as a byproduct of the analysis.

In addition, we have explored the analysis of topologi-
cal charge fluctuations on lattice subvolumes. This tech-
nique may be necessary in cases where the global topolog-
ical charge goes through few or even no tunneling events
within a lattice calculation. Even when @ fluctuates ade-
quately, the subvolume method (in conjunction with the
ML analysis) was found to give the most robust esti-
mates of y;, with confidence intervals rapidly converging
to cover the asymptotic estimates of this quantity even
on small amounts of data. Stability of the estimate with
respect to the subvolume size was observed empirically
down to Vsx: = 1, at which point our physical assump-
tions about the fluctuations should break down.

A modification of the ML approach to a more com-
plex model than the OU process, which might be able
to deal with non-Gaussian distributions and therefore
extract higher moments by the maximum-likelihood ap-
proach, would be interesting to study in a future work.
The modeling of higher-order systematic dependence on
the subvolume size, as hinted at by our current analysis,
also merits further study.

We thank the RBC-UKQCD collaboration for the use
of their lattice configurations, first published in Ref. [24],
and we also thank Tom Blum and Philippe de For-
crand for useful discussions. This work was supported
in part by the National Science Foundation under Grant
No. PHYS-1066293 and the hospitality of the Aspen
Center for Physics. M.L. was partially supported by
SciDAC-3 and Argonne Leadership Computing Facility
at Argonne National Laboratory under contract DE-
AC02-06CH11357, and the Brookhaven National Labora-
tory Program Development under grant PD13-003. D.S.
was supported by DOE Grant Nos. DE-SC0010005, DE-
SC0008669 and DE-SC0009998. R. C. B., C. R., and
E. W. were supported by DOE grant DE-SC0010025. In
addition, R. C. B., C. R., M. C. and O. W. acknowledge
the support of NSF grant OCI-0749300, and G. F. and
G. V. were supported by NSF grant PHY11-00905. We
thank LLNL for funding from LDRD13-ERD-023, and
E. R., C. S., and P. V. acknowledge the support of the
U. S. Department of Energy under Contract DE-AC52-
07NA27344 (LLNL).

[1] R. Brower, S. Chandrasekharan, J. W. Negele, and
U. Wiese, Phys.Lett. B560, 64 (2003), hep-lat/0302005.

[2] S. Aoki, H. Fukaya, S. Hashimoto, and T. Onogi,
Phys.Rev. D76, 054508 (2007), 0707.0396.

[3] B. Alles, G. Boyd, M. D’Elia, A. Di Giacomo, and E. Vi-
cari, Phys.Lett. B389, 107 (1996), hep-lat/9607049.

[4] L. Del Debbio, G. M. Manca, and E. Vicari, Phys.Lett.
B594, 315 (2004), hep-lat/0403001.

[5] M. Liischer, JHEP 1008, 071 (2010), 1006.4518.

[6] T. Appelquist et al. (LSD Collaboration), Phys.Rev.Lett.
104, 071601 (2010), 0910.2224.

[7] T. Appelquist, R. C. Brower, M. I. Buchoff, M. Cheng,
S. D. Cohen, et al. (2012), 1204.6000.

[8] J. Beringer et al. (Particle Data Group), Phys.Rev. D86,
010001 (2012).

[9] J. F. Beausang, Y. E. Goldman, and P. C. Nelson,
Meth.Enzymol. 487, 431 (2011).

[10] Franco, José Carlos Garcia, Real Options Practice
(2003), URL http://www.investmentscience.com/
Content/howtoArticles/MLE_for_OR_mean_reverting.
pdf.

[11] M. Liischer, Commun.Math.Phys. 85, 39 (1982).

[12] G. 't Hooft, Nucl.Phys. B72, 461 (1974).

[13] E. Witten, NuCl Phys. B149, 285 (1979).

[14] E. Witten, Annals Phys. 128 363 (1980).

1 R

5] S. Blinnikov and Moessner, As-


http://www.investmentscience.com/Content/howtoArticles/MLE_for_OR_mean_reverting.pdf
http://www.investmentscience.com/Content/howtoArticles/MLE_for_OR_mean_reverting.pdf
http://www.investmentscience.com/Content/howtoArticles/MLE_for_OR_mean_reverting.pdf

tron.Astrophys.Suppl.Ser. 130, 193 (1998), astro-
ph/9711239.

[16] M. D’Elia, Nucl.Phys. B661, 139 (2003), hep-
lat/0302007.

[17] L. Del Debbio, G. M. Manca, H. Panagopoulos, A. Sk-
ouroupathis, and E. Vicari, JHEP 0606, 005 (2006), hep-
th/0603041.

[18] S. Durr, Z. Fodor, C. Hoelbling, and T. Kurth, JHEP
0704, 055 (2007), hep-lat/0612021.

[19] L. Giusti, S. Petrarca, and B. Taglienti, Phys.Rev. D76,
094510 (2007), 0705.2352.

[20] C. Bonati, M. DElia, H. Panagopoulos, and E. Vicari,
Phys.Rev.Lett. 110, 252003 (2013), 1301.7640.

[21] G. Uhlenbeck and L. Ornstein, Phys.Rev. 36, 823 (1930).

[22] J. L. Doob, Ann. Math. 43, 351 (1942).

[23] M. Liischer and S. Schaefer, JHEP 1107, 036 (2011),
1105.4749.

[24] C. Allton et al. (RBC Collaboration, UKQCD Collabora-
tion), Phys.Rev. D76, 014504 (2007), hep-lat/0701013.

[25] P. de Forcrand, M. Garcia Perez, J. Hetrick, E. Laer-
mann, J. Lagae, et al., Nucl.Phys.Proc.Suppl. 73, 578
(1999), hep-lat/9810033.

[26] When this work was essentially complete, we were in-
formed that this approach had been explored briefly in
the past [25].



	I Introduction 
	II Distribution of topological charge 
	III Ornstein-Uhlenbeck process 
	IV Maximum Likelihood Estimate 
	V NEARLY FIXED TOPOLOGY 
	VI EXAMPLES 
	VII Discussion 
	 References

