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We present new lattice investigations of finite-temperature transitions for SU(3) gauge

theory with Nf = 8 light flavors. Using nHYP-smeared staggered fermions we are able
to explore renormalized couplings g2 . 20 on lattice volumes as large as 483×24. Finite-

temperature transitions at non-zero fermion mass do not persist in the chiral limit,

instead running into a strongly coupled lattice phase as the mass decreases. That is,
finite-temperature studies with this lattice action require even larger NT > 24 to di-

rectly confirm spontaneous chiral symmetry breaking.

SU(3) gauge theory with Nf = 8 massless fundamental flavors is currently the sub-

ject of considerable interest, both as a quantum field theory exhibiting strongly

coupled dynamics significantly different from QCD, and also as the basis for models

of new strong dynamics producing a standard-model-like 125-GeV Higgs particle.

We can only include here an incomplete collection of references to recent investiga-

tions employing both continuum and lattice methods.1–11 In this work we attempt

to confirm the conventional wisdom that chiral symmetry breaks spontaneously for

Nf = 8, which would rule out the existence of an 8-flavor conformal IR fixed point

(IRFP). However, this requires extrapolating to the massless chiral limit, and we

are unable to establish that chiral symmetry breaking persists in that limit.

Previous lattice studies have explored the discrete β function of the 8-flavor

system, denoted βs(g
2) for scale change s.1,10,11 An IRFP would correspond to

βs(g
2
?) = 0, and no such zero has been observed. In fact, the β function was

found to be monotonic throughout the ranges of couplings explored: g2SF . 6.6

in the Schrödinger functional scheme,1 g2c . 6.3 in a gradient flow scheme with

c = 0.3,11,12 and g2c . 14 in gradient flow schemes with c = 0.25 and c = 0.3.10 The

last result is the most relevant to this work, since we use the same lattice action with

nHYP-smeared staggered fermions and both fundamental and adjoint plaquette

terms with couplings related by βA/βF = −0.25.13 This enables us to relate our bare

lattice couplings βF to renormalized g2c . This work is part of ongoing investigations

by the Lattice Strong Dynamics (LSD) Collaboration, using this action to extend

the USBSM project.5

The non-observation of an IRFP by lattice studies of the discrete β function

does not guarantee that the 8-flavor theory exhibits spontaneous chiral symmetry
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breaking. On their own such calculations cannot rule out the possibility that the

system flows to an IRFP at a stronger coupling. In fact, the non-perturbative

βs(g
2
c ≈ 14) is comparable to the four-loop MS prediction,10 which does possess

an IRFP at g2
MS
≈ 19.5. To exclude such behavior one must demonstrate that the

massless system spontaneously breaks chiral symmetry at some g2 for which the β

function is still non-zero. Here we attempt to do this by studying chiral symmetry

breaking at finite temperature T = 1/(aNT ) and non-zero fermion mass am, where

“a” is the lattice spacing and the lattice volume is L3×NT with L/NT = 2.2,4 We

work with fixed NT = 20 and 24 for small 0.0025 ≤ am ≤ 0.01, and extrapolate

am→ 0 to investigate the massless chiral limit.

The chiral extrapolation is crucial since am > 0 explicitly breaks chiral symme-

try and can even produce QCD-like scaling that disappears as am decreases. This

behavior was observed in previous studies (using the same lattice action) that con-

sidered am ≥ 0.005 and NT ≤ 20.2,4 As shown in the left plot of Fig. 1, QCD-like

scaling between 12 ≤ NT ≤ 16 for am ≥ 0.01 is lost at am = 0.005 where the

finite-temperature transitions merge with bulk (zero-temperature) transitions into

the “��S4” lattice phase in which the single-site shift symmetry (S4) of the staggered

action is spontaneously broken.13 In IR-conformal systems such behavior persists

in the chiral limit as NT → ∞, whereas for chirally broken systems the massless

transitions must move to β
(c)
F →∞ as NT →∞.

The right plot of Fig. 1 shows our new results, which include smaller am = 0.0025

on 403×20 and 483×24 lattices. These NT = 20 and 24 are extraordinarily large

compared to typical lattice QCD calculations. Unfortunately they do not suffice

to establish spontaneous chiral symmetry breaking. At am = 0.0025 the NT = 20

finite-temperature transition also merges with the bulk transition into the��S4 lattice

phase. Even the NT = 24 finite-temperature transitions will clearly run into the ��S4

phase at non-zero mass, rather than reaching the chiral limit.

In Fig. 2 we present some results for observables that have proven useful to

Fig. 1. Left: Previous Nf = 8 studies found that the finite-temperature transitions merge with

zero-temperature bulk transitions into the ��S4 lattice phase as the fermion mass am decreases.2,4

Right: Our new results produce the same behavior at smaller masses on larger lattice volumes,

implying that NT > 24 is required to establish spontaneous chiral symmetry breaking for Nf = 8.

This plot zooms in on the weak-coupling regime to the right of the��S4 phase.
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identify both bulk and finite-temperature transitions: the Wilson-flowed Polyakov

loop PLW and the massless Dirac eigenvalue spectrum ρ(λ). PLW is a modern

adaptation of the RG-blocked Polyakov loop investigated in previous studies, which

significantly improves signals of the finite-temperature transition without altering

its location.2,4 It is trivial to measure the Polyakov loop as a function of Wilson flow

time t, and sufficiently large t produces a clear contrast between confined systems

with small PLW and deconfined systems with large PLW . This is shown in the left

plot of Fig. 2 for NT = 20 and t = (0.3NT )2/8 corresponding to c =
√

8t/NT = 0.3.

As the fermion mass decreases from am = 0.01 the finite-temperature transition

in PLW steadily sharpens and moves to stronger coupling, merging with the bulk

transition into the ��S4 phase at am = 0.0025 as in Fig. 1.

The right plot of Fig. 2 shows the eigenvalue spectrum ρ(λ) for a subset of the

NT = 20 ensembles with am = 0.005, clearly contrasting the three different phases

we can observe for this mass. At the weakest coupling shown, βF = 4.8, the system

is deconfined and chirally symmetric, with ρ(0) = 0 and a gap below the smallest

eigenvalue λ0 > 0. The gap grows at even weaker couplings that are not included

in this plot. Moving to stronger couplings, at βF = 4.7 we observe the expected

chiral symmetry breaking, with ρ(0) 6= 0 and a small slope dρ
dλ . That is, we find

4.7 < β
(c)
F < 4.8 for the NT = 20 transition with am = 0.005, slightly sharper

than the signal in PLW . However, at the strongest coupling shown, βF = 4.5,

chiral symmetry breaking is lost (λ0 > 0) and the system exhibits the “soft edge”

ρ(λ) ∝
√
λ− λ0 characteristic of the ��S4 phase.13 Finally, βF = 4.6 appears to

exhibit partial features of both the chirally broken and ��S4 phases, with ρ(0) 6= 0

but a much larger slope approaching the square-root behavior of the soft edge.

While this finite-temperature study with NT = 20 and 24 is not able to establish

spontaneous chiral symmetry breaking for Nf = 8, it is only part of ongoing inves-

Fig. 2. Left: The c = 0.3 Wilson-flowed Polyakov loop PLW for 403×20 lattices with am = 0.01,

0.005 and 0.0025 vs. the bare lattice coupling βF . As the fermion mass decreases the transitions

sharpen and move to stronger coupling, eventually merging with the zero-temperature bulk tran-
sition into the ��S4 phase at βF ≈ 4.625. Right: The massless Dirac eigenvalue spectrum ρ(λ)

contrasts the three phases encountered for 403×20 lattices with am = 0.005: the chirally symmetric

phase at weak coupling (βF = 4.8), the chirally broken phase at intermediate coupling (βF = 4.7)
and the ��S4 lattice phase at strong coupling (βF = 4.5). We directly measure 200 eigenmodes to

produce each histogram.
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tigations by the LSD Collaboration that primarily focus on the zero-temperature

hadron spectrum, and in particular the scalar Higgs particle. When that work is

finalized, combining these complementary studies of the discrete β function, finite-

temperature transitions, and hadron spectrum, all using the same lattice action,

will shed further light on Nf = 8 and its phenomenological viability as the basis for

new strong dynamics beyond the standard model.
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