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Abstract

Background: Vaccines have greatly reduced the burden of infectious disease, ranking in their impact on global
health second only after clean water. Most vaccines confer protection by the production of antibodies with binding
affinity for the antigen, which is the main effector function of B cells. This results in short term changes in the B cell
receptor (BCR) repertoire when an immune response is launched, and long term changes when immunity is
conferred. Analysis of antibodies in serum is usually used to evaluate vaccine response, however this is limited and
therefore the investigation of the BCR repertoire provides far more detail for the analysis of vaccine response.

Results: Here, we introduce a novel Bayesian model to describe the observed distribution of BCR sequences and the
pattern of sharing across time and between individuals, with the goal to identify vaccine-specific BCRs. We use data
from two studies to assess the model and estimate that we can identify vaccine-specific BCRs with 69% sensitivity.

Conclusion: Our results demonstrate that statistical modelling can capture patterns associated with vaccine
response and identify vaccine specific B cells in a range of different data sets. Additionally, the B cells we identify as
vaccine specific show greater levels of sequence similarity than expected, suggesting that there are additional signals
of vaccine response, not currently considered, which could improve the identification of vaccine specific B cells.
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Background
The array of potential foreign antigens that the human
immune system must provide protection against is vast,
and an individual’s B cell receptor (BCR) repertoire is
correspondingly huge; it is estimated that a human adult
has over 1013 theoretically possible BCRs [1], of which as
many as 1011 may be realized [2]. This diversity is primar-
ily generated through recombination, junctional diversity,
and somatic mutation of the V, D and J segments of the
immunoglobulin heavy chain genes (IgH) [2], combined
with selection to avoid self-reactivity and to increase anti-
gen specificity. The BCR repertoire of a healthy individual
is constantly evolving, through the generation of novel
naive B cells, and by the maturation and activation of B
cells stimulated by ongoing challenges of pathogens and
other antigens. As a result, an individual’s BCR repertoire
is unique and dynamic, and is influenced by age, health
and infection history as well as genetic background [3].
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Upon stimulation, B cells undergo a process of pro-
liferation and hyper-mutation, resulting in the selection
of clones with improved antigen binding and ability to
mount an effective immune response. The process of
hypermutation targets specific regions, and subsequent
selection provides a further focusing of sequence changes.
The short genomic region in which most of these changes
occur, and which is thought to play a key role in deter-
mining antigen binding specificity, is termed the Com-
plementarity Determining Region 3 (CDR3) [4, 5]. Next
generation sequencing (NGS) makes it possible to capture
the CDR3 across a large sample of cells, providing a sparse
but high-resolution snapshot of the BCR repertoire, and
forming a starting point to study immune response and
B-cell-mediated disease [6].
Vaccination provides a controlled and easily adminis-

tered stimulus that can be used to study this complex sys-
tem [7]. An increase in clonality has been observed in the
post-vaccination BCR repertoire, which has been related
to the proliferation of B cells and the production of active
plasma cells [8–14]. An increase in the sequences shared
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between individuals, referred to as the public repertoire
or stereotyped BCRs, has also been observed, and there
is mounting evidence that this public repertoire is at least
partly due to convergent evolution in different individuals
responding to the same stimulus [10, 14–18].
These observations suggest that by identifying similari-

ties between the BCR repertoires of a group of individuals
that have received a vaccine stimulus, it may be possible
to identify B cells specific to the vaccine. However, while
the most conspicuous of these signals could be shown to
be likely due to a convergent response to the same antigen
in multiple individuals [19], it is much harder to link more
subtle signals to vaccine response using ad-hoc classifica-
tionmethods. To address this, we here develop a statistical
model for the abundance of BCRs over time in multi-
ple individuals, which integrates the signals of increased
expression, clonality, and sharing across individuals. We
use this model to classify BCRs into three classes depend-
ing on the inferred states of their B cell hosts, namely
non-responders (background, bg), those responding to a
stimulus other than the vaccine (non-specific, ns), and
those responding to the vaccine (vaccine-specific, vs).
Here we show that the sequences classified as vaccine-

specific by our model have distinct time profiles and pat-
terns of sharing between individuals, and are enriched for
sequences derived from B cells that were experimentally
enriched for vaccine specificity. Moreover, we show that
sequences identified as vaccine-specific cluster in large
groups of high sequence similarity, a pattern that is not
seen in otherwise similar sets of sequences.

Results
Hepatitis B data set
A total of 1,034,622 clones were identified in this data
set, with a mean total abundance of 6.7 (s.d. 419) with
the largest clone containing 230,493 sequences across all
samples and time points. We fitted the model to the hep-
atitis B data set, with key parameter estimates given in
Table 1. Model fit was assessed using a simulation study,
in which data was randomly generated from the genera-
tive model itself using the inferred parameters (Table 1).
The simulated sequence abundance distributions follow
the observations reasonably well (see Fig. 1; Additional
file 1), despite these distributions being highly complex
and heavy-tailed due to the complexity of the underlying

Table 1 Fitted parameters to the hepatitis B data set

�class pclass ωclass

Class bg ns vs bg; ns vs bg; vst=0 ns; vst>0

.992 .005 .003 .216 .970 .006 .277

�, the probability of a BCR belonging to each class; p, the probability of a BCR from
each class being observed in an individual; ω, the probability of an observed BCR in
each class being seen at high abundance

biology. Thus, although the model simplifies many biolog-
ical processes, the simulation suggests that it does effec-
tively capture the underlying distributions from which the
data arise.
The value of �class show that most BCRs are assigned

to the background population, with only a small frac-
tion responding to any stimuli. (This is also seen from
the numbers shown in Table 2.) BCR clones classified as
vaccine specific are highly likely to be shared between
multiple individuals, reflected in a high estimate of pvs,
and the high estimate of ωvs mean they are also more
likely to be seen at high frequencies than those classified
as background.
For each of the three classes, the relative abundance of

those clones within individuals and the number of individ-
uals sharing them over time are illustrated in Fig. 1. The
vaccine specific clones are seen at lower frequencies at day
0 compared to subsequent time points, but still at higher
frequencies than sequences classified as background. The
number of individuals sharing the vaccine specific clones
increases over time up to a peak at day 14 after which
sharing declines again, whereas in the other classes there
is no significant trend in sharing across time points, as
expected.
The total number of BCR clones allocated to each class

and the mean total abundance of clones from all sam-
ples within each class are shown in Table 2. BCRs are
overwhelmingly classified as background, while of the
remainder, similar numbers are classified as non-specific
responders and vaccine-specific responders. Clones clas-
sified as background all have very low abundance, often
consisting of a single sequence observed in a single indi-
vidual at a single time point. BCRs classified as non-
specific form the largest clones, and are often seen at high
abundance across all time points.
We next compared the hepatitis B data set with the

HBsAG+ data to validate our results and provide an esti-
mate of sensitivity. BCR clones from the hepatitis B data
set were considered present in the HBsAG+ data set if
there is a BCR in the HBsAG+ data which would be
assigned to it. The number of clones from the hepatitis B
data set that are present in the HBsAG+ data set, along
with their abundances, are also given in Table 2. 60,215
(5.9%) of the clones classified as background were also
present in the HBsAg+ data set, however a much larger
fraction (69%) of those classified as vaccine-specific were
also seen in the HBsAG+ dataset.
Although providing the nearest available approximation

to a truth-set, the HBsAG+ data set contains a large num-
ber of erroneously captured cells, with the specificity of
staining estimated to be around 50% [20]. These erro-
neously captured cells are likely to be those present in
high abundance in the whole repertoire (and therefore
in the hepatitis B data set) due to random chance. The



Fowler et al. BMC Genomics          (2020) 21:176 Page 3 of 11

Fig. 1 Temporal features of the hepatitis B data set by classification. Mean clonal relative abundance at each time point in each classification (a), and
the mean number of individuals sharing a BCR clone over time in each classification (b) for the hepatitis B data set

difference in enrichment between the background and
vaccine specific categories will therefore be partly driven
by the different average abundance of background clones
(2.62) compared to vaccine-specific clones (10.8). How-
ever, the fraction of non-specific responders observed
in the HBsAG+ set (29%) is intermediate between that
of background and vaccine-specific clones, despite non-
specific responders having a substantially larger average
abundance than clones from either of these classes (89.3),
indicating that the method is capturing a subset that is
truly enriched with vaccine-specific clones.
The average abundance of all clones classified as vac-

cine specific which are also found in HBsAG+ is similar to
the average abundance of all vaccine specific clones (10.7
in comparison to 10.8). In contrast, in the background

Table 2 Number of sequences allocated to each category across
all samples and the mean total sequence abundance across all
samples, in the whole data set and in the subset also labelled as
HBsAG+

Classification All BCR clones HBsAG+ BCR clones

Number Abundance (sd) Number Abundance (sd)

Background 1,026,523 2.62 (31) 60,215 3.45 (44)

Non-specific 5123 89.3 (748) 1500 147.1 (1,084)

Vaccine-specific 2976 10.8 (174) 2055 10.7 (190)

and non-specific categories, the average abundance is
far higher for those clones which are also present in
the HBsAG+ data set (an increase from 2.62 to 3.45 in
background clones, and 89.3 to 147.1 in vaccine specific
clones). This further suggests that the clones identified as
vaccine specific which are also found in the HBsAG+ data
set are truly binding the antigen rather than being selected
at random with a size bias.
We next looked at sequence similarity between clones

within each class. Using the Levenshtein distance, we
found that clones classified as vaccine specific had CDR3
sequences were significantly more similar to each other
than those of clones classified as background (p < 0.001
based on 1,000 simulations; Fig. 2; Additional file 1). This
is further illustrated in petri-dish plots (Fig. 2); here clonal
centres were connected by edges if their Levenshtein dis-
tance was less than 20% of the sequence length in order
to highlight the greater degree of sequence similarity in
vaccine specific sequences. Vaccine specific clones show
cliques, and filament structures suggestive of directional
selection, while non-responders and particularly back-
ground clones show much less between-clone similarity.
For comparison, we also applied the thresholding

method to this data set and the criteria for clones to be
considered vaccine specific varied. Clones classified as
vaccine specific using this method were then compared
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Fig. 2 Petri-plots of hepatitis B data set by classification. Similarity between BCR sequences classified as background (a), non-specific response (b),
and vaccine-specific (c). Each point corresponds to a clone; clones are connected if the Levenshtein distance between their representative CDR3
sequences is less than n/5 where n is the sequence length. All vaccine-specific BCR sequences are shown and a length-matched, random sample of
the same number of sequences from the background and non-specific sequences are shown

to the HBsAG+ sequences and the percentage agree-
ment reported. A range of different criteria were tried,
and those which demonstrate how the choice of thresh-
old affect results, as well as ones found to be optimal,
are shown in Table 3. The strictest threshold, requiring
clonal abundance to be in the top .01 quantile at any
time point post-vaccination and in the bottom .99 quan-
tile pre-vaccination as well as requiring that sequences
are shared between at least 3 individuals, has the highest
percentage of sequences which are also in the HBsAG+
data set. Increasing the sharing threshold from 1 to 3 indi-
viduals dramatically increases the percentage of clones
which are also in the HBsAG+ data set, indicating that the
requirement of seeing sequences in multiple individuals
is important. The agreement with the HBsAG+ data set
(on which estimates of sensitivity are based) is much lower
using this approach than using the model we’ve devel-
oped; the highest estimate of sensitivity we obtained using
thresholding is 53.7% whereas with out model we estimate
it to be 69%.

Influenza data set
A total of 28,606 clones were identified in this data set,
with an mean abundance of 1.5 (s.d. 1.3) with the largest
clone containing 86 sequences across all samples and time
points. Fitting the model to the Influenza data set, we
again obtain a good QQ plot (see Fig. 3; Additional file 1)
indicating an acceptable model fit, despite considerable
differences in the two data sets. Key parameter estimates

Table 3 Clones classified as vaccine specific using different
threshold abundance and sharing criteria

Abundance
threshold

Shared Number of
clones

Number of
sequences

HBsAG+
agreement

.9 1 54,334 1,743,271 12.1%

.9 3 5609 396,354 47.1%

.99 1 5221 1,475,448 23.3%

.99 3 1097 505,536 53.7%

and an overview of the classification results are given in
Tables 4 and 5, and again show that most clones are classi-
fied as belonging to the background population, with only
a small fraction classified as responding to any stimuli.
However, in this data set, clones classified as vaccine spe-
cific are no more likely to be seen in multiple individuals
than those classified as background. Another difference is
that the model assigns vanishing weight to the possibility
that background clones are observed at high abundance.
The clonal abundance and number of individuals shar-

ing clones over time are illustrated in Fig. 3, for each
classification. The vaccine specific clones show a dis-
tinct sequence abundance profile, with a sharp increase
post-vaccination which reduces over time, whereas the
background clones show little change over time. The aver-
age number of individuals sharing a clone is below one for
all categories at all time points, indicating that most clones
are only seen in single individuals and not at multiple time
points.
The number of clones allocated to each class and the

clonal abundance within each class are shown in Table 5.
The majority of clones are classified as background with a
small number being classified as vaccine specific, and only
23 classified as being part of a non-specific response. The
clones classified as vaccine-specific are also typically more
abundant.
We then compared the sequences in the influenza data

set to those obtained from plasmablasts collected post
vaccination, an approximate truth-set of sequnces which
are likely to be vaccine-specific. Again, a sequence from
the influenza data set was considered to be present in the
plasmablast data set if there exists a clone in the plas-
mablast data set to which it would be assigned (Table 2).
Of the 436 sequences in the plasmablast data set, 14 are
found to be present in the influenza data set, of which
3 would be classified as vaccine specific. These results
are considerably less striking as for the hepatitis B data
set, although vaccine-specific clones are still borderline
significantly enriched within the monoclonal antibody
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Fig. 3 Temporal features of the influenza data set by classification. Mean clonal relative abundance at each time point in each classification (a), and
the mean number of individuals sharing a clone over time in each classification (b) for the influenza data set

sequences compared to background clones (p = 0.03,
two-tailed Chi-squared test).
The clones classified as vaccine specific in the influenza

data set were also found to be more similar than expected
by random chance (p < 0.001 based on 1,000 simulations;
see Fig. 4; Additional file 1). This is illustrated in Fig. 4 in
which clones (represented by points) are joined if the Lev-
enshtein distance between their CDR3 sequences is less
than n/3, where n is the sequence length. Note that this
threshold was chosen to highlight the greater sequence
similarity present in vaccine specific sequences and is
more stringent than that used for the hepatitis B data set
because the viral data consist of amino acid sequences.
For comparison, we also applied the thresholding

method to this data set and the criteria for clones to
be considered vaccine specific varied. Clones classified
as vaccine specific using this method were then com-
pared to the plasmablast sequences and the percentage
agreement reported, although it is worth noting that there
is only a small number of plasmablast sequences so this

Table 4 Fitted parameters to the influenza data set

�class pclass ωclass

class bg ns vs bg; ns vs bg; vst=0 ns; vst>0

.947 .001 .051 .144 .144 0 .486

doesn’t represent an estimate of accuracy but does pro-
vide a means of comparison between different threshold
values and with the modelling approach. A range of crite-
ria were tried, and results which demonstrate the effect of
changing the criteria, along with the optimal criteria tried,
are shown in Table 6. The lowest threshold, requiring
clonal abundance to be in the top .1 quantile at any time
point post-vaccination and in the bottom .9 quantile pre-
vaccination as well as only requiring that clones are seen
in one individual, has the highest percentage of sequences
which are also in the plasmablast data set. However,
even the threshold parameters with the highest percent-
age agreement with the plasmablast data set only share a
single sequence, whereas our modelling approach shares
three sequences. The thresholding parameters which are

Table 5 Number of clones allocated to each category across all
samples, the mean total clonal abundance across all samples,
and number of sequences also found in the plasmablast data set
from each classification

Classification All clones Plasmablast

Number Abundance (sd) Number

Background 27,120 1.45 (1.06) 11

Non-specific 23 5.52 (0.85) 0

Vaccine-specific 1463 2.51 (1.54) 3
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Fig. 4 Petri-plots of hepatitis B data set by classification. Similarity between BCR sequences classified as background (a), non-specific response (b),
and vaccine-specific (c). Each point corresponds to a clone; clones are connected if the Levenshtein distance between their representative CDR3
sequences is less than n/3 where n is the sequence length. All vaccine-specific and non-specific BCR sequences are shown and a random sample
from the background sequence, which is length and size matched with the vaccine-specific sequences, is shown

optimal according to the agreement with the plasmablast
data set are very different to the optimal thresholding
parameters for the HepB data set and mirror the parame-
ter estimates learnt using our model.

Discussion
Vaccine specific BCRs are identified with an estimated
69% sensitivity, based on clones classified as vaccine spe-
cific in the hepatitis B data set and their concordance
with sequences experimentally identified as vaccine spe-
cific in the HBsAG+ data set. The HBsAG+ data set is
more likely to contain those clones present in high abun-
dance in the whole repertoire, due to random chance and
a relatively low specificity. This is reflected in the clones
classified as background and as non-specific, in which the
average abundance seen in these categories and in the
HBsAG+ data set is higher than the average abundance
of all clones in these categories. However, this over repre-
sentation of highly abundant sequences is not seen in the
clones classified as vaccine specific, suggesting they are
indeed binding the vaccine and supporting our estimate of
sensitivity.
The influenza data set was compared to the set of

sequences from plasmablasts collected post vaccination.
However, only 14 of these plasmablast sequences were
identified in the influenza set making any estimate of sen-
sitivity from this data set unreliable. Of these plasmablast
sequences, 21% were classified as vaccine specific; this is

Table 6 Clones classified as vaccine specific using different
threshold abundance and sharing criteria

Abundance
threshold

Shared Number of
clones

Number of
sequences

Plasmablast
agreement

.9 1 1,294 5,666 0.1%

.9 3 15 184 0%

.99 1 134 1,171 0%

.99 3 5 95 0%

a similar amount to those identified by [10] as in clonally
expanded lineages and therefore likely to be responding to
the vaccine.
This model incorporates both the signal of clonal abun-

dance as well as sharing between individuals. The thresh-
olding approach indicates the importance of each of these
signals by allowing us to vary them independently. It
demonstrates that for the HepB data set, sensitivity (esti-
mated through agreement with the HBsAG+ data set) is
increased by at least 30% by including a sharing criteria
of clones being seen in at least 3 individuals. Conversely,
the thresholding method also shows that for the influenza
data set, including a shared criteria reduces the agree-
ment with the plasmablast data set of clones which are
likely to be responding to the vaccine. The parameters
inferred using the modelling approach also reflect the
importance of sharing in the different data sets, and allow
us to automatically learn this from the data.
Although the clones we identify as vaccine specific are

often highly abundant, their average abundance is modest,
with the non-specific response category containing the
most abundant clones. Similarly whilst some clones iden-
tified as vaccine specific were shared between multiple
individuals, many were only seen in a single participant. It
is only by combining these two signals through the use of a
flexible model that we are able to identify the more subtle
signatures of vaccine response.
We see evidence for convergent evolution in the hep-

atitis B data set, with clones identified as vaccine specific
being much more likely to be seen in multiple individu-
als. Despite a convergent response to the influenza vaccine
being observed by others [10, 17], this pattern is not seen
in the influenza data set, in which the probability of a
vaccine specific sequence being observed in an individ-
ual is similar to that for the background sequences. There
are several potential explanations for this. Firstly, in the
influenza data set, the signal of sharing among individu-
als may have been overwhelmed by the abundance signal;
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many more potentially vaccine specific cells are identified
here than in previous studies. Secondly, the influenza data
set captures a smaller number of sequences from DNA,
whereas the hepatitis B data set captures a larger num-
ber of sequences from RNA, so there may be less sharing
present in the influenza data set in part due to random
chance and in part due to the lack of over-representation
of highly activated (often plasma cells) B cells. Thirdly, the
hepatitis B vaccine was administered as a booster whereas
the influenza was a primary inoculation, therefore some
optimisation of the vaccine antigen binding is likely to
have already occurred after the initial hepatitis B vaccine,
increasing the chance that independent individuals con-
verge upon the same optimal antigen binding. Lastly, the
complexity of binding epitopes of either of the vaccines
is unknown, and the lack of convergent evolution could
be explained by a much higher epitope complexity of the
influenza vaccine compared to that of the hepatitis B vac-
cine. This would result in amore diffuse immune response
on the BCR repertoire level, making it harder to identify.
In both the hepatitis B and the influenza data sets, it

is likely that the sequences show more underlying struc-
ture than is accounted for using our clonal identification
approach which only considers highly similar sequences
of the same length. The CDR3 sequences from clones
identified as vaccine specific show greater similarity than
expected by random chance when utilising the Leven-
shtein distance, which allows for sequences of different
lengths. A possible explanation for this is that there could
be a motif shared between sequences of different lengths
which could be driving binding specificity. It is possible
that by allowing for more complex similarity relation-
ships, larger groups which are more obviously responding
to the vaccine may emerge, however current methods
are too computationally intensive to allow for complex
comparisons of all sequences from all samples.
Here we focus on the signals of clonal abundance

and sharing between individuals to identify sequences
from vaccine specific clones. The flexibility of the model
allows for data sets to be analysed which differed in
vaccination strategy, sampling time points, sequencing
platforms and nucleic acids targeted. However there are
many clones which are likely incorrectly classified, for
instance since random PCR bias can result in large num-
bers of sequences, if these occur in samples taken at
the peak of the vaccine response, they would likely be
incorrectly labelled as vaccine specific. Alternatively, vac-
cination may trigger a non-specific B cell response, B cells
involved in this response would have an abundance pro-
file which follows that expected of sequences responding
to the vaccine and would therefore likely be misclassi-
fied. The inclusion of additional signals, such as hyper-
mutation, would improve our model and our estimates of
sensitivity.

Conclusion
The B cell response to vaccination is complex and is typ-
ically captured in individuals who are also exposed to
multiple other stimuli. Therefore distinguishing B cells
responding to the vaccine from the many other B cells
responding to other stimuli or not responding at all is
challenging. We introduce a model that aims to describe
patterns of clonal abundance over time, convergent evolu-
tion in different individuals, and the sampling process of
B cells, most of which occur at low abundance, from BCR
sequences generated pre- and post-vaccination. These
patterns are different between B cells that respond to
the vaccine stimulus, B cells that respond to a stimulus
other than the vaccine, and the bulk of non-responding B
cells. By using a mixture model to describe the pattern of
clonal abundance for each of these cases separately, we are
able to classify BCRs as either background, non-specific
or vaccine specific. In comparison to existing, threshold-
ing methods, our method provides far higher sensitivity
in comparison to a ‘truth set’ of sequences enriched for
those which are vaccine specific. Additionally, ourmethod
is able to automatically determine the optimal parame-
ters, rather than having to specify criteria for thresholding
which is difficult when little is known about how much
these criteria differ across data sets.

Methods
BCR repertoire vaccine study data sets
We use two publicly available data sets, one from a study
involving a hepatitis-B vaccine [20] and one from a study
on an influenza vaccine [10]. We describe these two data
sets below. Both data sets capture the somatically rear-
ranged VDJ region in B cells, in particular the highly
variable CDR3 region on which we will focus.

Hepatitis B
In the study by Galson and colleagues [20], 5 subjects
were given a booster vaccine against hepatitis B (HepB)
following an earlier primary course of HepB vaccination.
Samples were taken on days 0, 7, 14, 21 and 28 relative
to the day of vaccination. Total B cells were sorted and
sequenced in all samples. We refer to this data set as the
hepatitis B data set.
In addition, cells were sorted for HepB surface antigen

specificity at the same time points post-vaccination. The
mRNA that was reverse transcribed to cDNA in these cells
was then amplified using Vh and isotype specific primers
and these IgH transcripts were then sequenced. These
cells are enriched with those we are seeking to identify
using our modelling approach, and provides the nearest
available approximation to a truth-set of sequences which
are vaccine-specific.We refer to these data as theHBsAG+
data set. Both data sets are publicly available on the Short
Read Archive (accession PRJNA308641).
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Sequences were generated on the Illumina platform
using an RNA sequencing protocol, and the nucleotide
sequences analysed. Targeting RNA means that highly
abundant sequences may derive either from multiple B
cells from a clonal subpopulation, or from one or a small
number of B cells with high IgH gene expression, such
as plasma cells that are actively secreting antibodies.
Although we cannot distinguish between these two possi-
bilities, both classes of cells are likely signifiers of immune
response, and are therefore of interest.

Influenza
We also analyze data from subjects that were vaccinated
against influenza in a study by Jackson and colleagues [10].
Samples were taken on days 0, 7 and 21 relative to vac-
cination. We analyzed a subset of 7 subjects that were
deemed to be “seroconverters” who have an increased
level of antibodies in response to the vaccine, based on
vaccine-specific ELISA assays. This will be referred to as
the influenza data set.
In addition, the authors also collected plasmablasts on

day 7 in 5 of the subjects. These are also likely to be
enriched for B cells responding to the vaccine and there-
fore act as an approximate truth-set providing an addi-
tional source of evaluation for our method. The sequences
derived from these cells are referred to as the plasmablast
data set. All data is publicly available on dbGaP (accession
phs000760.v1.p1).
The Roche 454 platform was used to perform DNA

sequencing of the somatically recombined IgH locus,
using primers for the relatively conserved FR2 IgH V gene
segment, and a conserved IgH J gene segment [10], and we
analyse the amino acid sequences. Targeting DNA ensures
that sequences with high abundance are representative of
clonally expanded B cells, rather than of cells exhibiting
high mRNA expression. However, active plasma cells with
high secretion rate would still be counted individually.

Clonal identification
We combined sequences into clones primarily to group
together sequences arising from the same clonal expan-
sion, and this also serves to correct for read errors and
group together some highly similar sequences that likely
target the same epitope. This removes some noise asso-
ciated with read error and strengthens signals by treating
multiple sequences all of which target the same epitope
as a single clone, whilst also reducing the computational
burden. Each clone consists of a single identifying CDR3
sequence, the clonal centre, and its set of neighbouring
CDR3 sequences; for two sequences to be considered
neighbours, they must be of the same length and be highly
similar, which we define as greater than 85% similarity for
nucleotide sequences as in the hepatitis B data set, or 90%
similarity for amino acid sequences as in the influenza

data set. The clonal identification was performed in a
greedy manner, by iteratively identifying a clonal centre
as the sequence with the greatest number of neighbours
from among all unassigned sequences, and assigning it
and its unassigned neighbours to a new clone. This is a
computationally efficient approach to clonal identification
which allows us to process very large data sets. However,
the model presented here is not dependent on the clonal
identification method used, and any alternative method
could also be used as input.
Within each data set, we identified clones using all sam-

ples and time points together, but kept track of sample-
and time-specific counts to enable the analysis of time
dynamics and between-individual sharing. This results in
some clones which are present in multiple individuals
and therefore considered ‘public’ clones.We now consider
each clone to be representative of the BCR sequence i at
its centre, and make no distinction between clones and
the individual sequences which form the clonal centres. In
addition we shall use i to refer to the B cell(s) that the clone
represents. We define the clonal abundance, denoted by
xist , as the number of sequences assigned to clone i for
a participant s at time point t, and the total clonal abun-
dance as the total number of sequences assigned to the
clone across all samples,

∑
st xist .

Model
We introduce a hierarchical Bayesian model to describe
the clonal abundance (or alternatively, CDR3 sequences)
across individuals inoculated with the same vaccine, and
across multiple time points. The data are abundances,
xist , as introduced above. The goal of modeling these
data is to identify CDR3 sequences of vaccine-specific
BCR clones from among a large number of non-vaccine-
specific BCRs, while accounting for sparse sampling and
for the highly stochastic nature of the biological process
that generates them.
One identifying feature of vaccine-specific BCR clones

that we want to model is their abundance profile.
We expect to observe no vaccine-specific BCRs pre-
vaccination (or very few, in the case of a primer-boost
design such as for the HepB data set), while post-
vaccination we expect to observe high abundances due
to clonal expansion of stimulated B cells, the presence of
plasma cells with high transcription activity, or both. A
second feature that helps to characterise vaccine-specific
BCRs is their tendency to be shared across individuals,
due to convergent evolution.
To describe the model we introduce some notation. As

above let i denote a BCR clone, and denote by � the space
of all clones. We partition this set as � = �bg∪�vs∪�ns,
where the disjunct subsets represent background BCR
clones not responding to any stimulus; vaccine-specific
BCR clones responding to the vaccine stimulus; and BCR
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clones responding to a non-specific stimulus other than
the vaccine respectively. These subsets (and their sizes)
are unknown, and the classification of a particular clone i
is given by a discrete random variable γi ∈ {bg, vs,ns}, so
that i ∈ �γi .
Next, the presence of a particular B cell clone i in a par-

ticipant s is encoded by a second discrete random variable
zis, which takes on the value 0 when i is absent from the
BCR repertoire of individual s at any time point, and 1
when i is present in the individual (though not necessar-
ily present in any sample taken from this individual). The
variable z aims to account for the sparsity resulting from
the diversity of BCR repertoires from different individuals.
The distribution of zis is dependent on γi, to allow mod-
eling the increased probability that vaccine-specific BCRs
are shared between individuals.
The actual abundances xist of clone i in individual s

at a time point t are assumed to be independent con-
ditional on γi and zis, and are modeled by a mixture of
three distributions representing three outcomes, modeled
by a third discrete random variable eist whose distribu-
tion depends on γi, zis and t. First, the relevant B cell or
cells may be absent from individual s (if zis = 0) or may
have escaped sampling. In this case xist is distributed as
a point mass at 0. Second, if B cells have been sampled,
they may be neither clonal nor plasma B cells, and would
therefore contribute a small number of sequences to the
data set. In this case xist is modeled as a negative Bino-
mial distribution. The remaining case is that the sampled
B cell or cells are either plasma cells, or cells sampled from
a large clonal population (or both), in which case they
are expected to contribute a large number of sequences.
In this case xist is modeled as a discretised generalized
Pareto distribution [21]. This distribution of abundances
is illustrated in Fig. 5a. The mixture distribution of clonal
abundance xist is given by p(xist|eist , θ), where θ is the vec-
tor of parameters of the negative Binomial and generalized
Pareto distributions.
The resulting joint probability for a data set x, latent

variables e, z and parameters γ , θ under this model is
given by

p(θ , γ , z, e, x) = p(θ)

∏

i

p(γi)
∏

s

p(zis|γi)
∏

t
p(eist |γi, zis, t)p(xist |eist , θ)

(1)

The relationship between the variables in the model is
shown in Fig. 5b. Non-informative priors p(θ) and p(γ )

are placed on the parameters; this allows these parameters
to be learnt from the data, and therefore allows the model
to be applied to a range of data sets, for instance RNA
sequencing andDNA sequencing. Full details of themodel
and priors are provided in the “Background” section;
Additional file 1.

We restrict i to range over only those BCRs which are
observed at least once in the data set, rather than the
1013 that are theoretically possible. Therefore, for K BCR
clones, we have that 1 ≤ i ≤ K . This simplifies model
fitting, but will result in parameter estimates which are
specific to each individual data set, and therefore affected
by features such as the number of individuals. This should
be kept in mind when interpreting the results.

Inference
The model is fitted to each data set using an Expectation-
Maximisation (E-M) algorithm which iteratively max-
imises the model allocation parameters conditional on the
parameters which determine the distribution of each clas-
sification, and vice versa; see Additional file 1 for details.
Initial parameters were chosen to reflect our prior beliefs
that clones responding to the vaccine would be more
likely to be present in low abundance pre-vaccination but
high abundance post vaccination, and that they are more
likely to be seen in multiple individuals, and results were
robust to initial values which preserve these beliefs. This
approach ensures that the parameters associated with
each class are consistent with its biological interpretation
and avoids the problem of label switching. Since these
data sets are particularly large, and the number of model
parameters relatively small, there is little uncertainty in
our parameter estimates. Therefore, this approach is a
computationally efficient alternative to Markov Chain
Monte Carlo (MCMC) approaches, which is able to opti-
mise the posterior.
Restrictions on parameter values allow us to encode

additional structure and to link parameters hierarchically.
Firstly we assume that there is no time-dependence for
the abundances of B cells classified as background or as
non-specific responders. We further assume that for the
vaccine-specific cells, the pre-vaccination abundances (at
t = 0) follow the same distribution as B cells classified as
background, while post-vaccination these cells follow the
same abundance distribution as B cells classified as non-
specific responders. Third, we assume that the probability
of a clone being observed in a subject is the same for B cells
classified as background and those classified as a non-
specific response. In effect this assumes that non-specific
responders are or have been responding to private stimuli,
rather than for instance earlier common infections.
The uncertainty in the inferred model parameters is

negligible in comparison to the biological noise because of
the large amount of data. Rather than reporting this spuri-
ous precision, we report the parameter estimates without
error bars, but we note that errors due to model mis-
specification are likely to be substantial. We report the
inferred probability of a BCR clone belonging to each cat-
egory, �class for class ∈ {bg, vs, ns}. We also report, for
each class, the probability that a clone is observed given
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Fig. 5Model diagrams. a Tree diagram in which each leaf represents a generative distribution for clonal abundances. The probability of following
each path is dependent on the classification of the BCR clone and the presence of the sequence in the individual. B Partial graphical representation
of the model using plate notation. For clarity, hyperparameters are not show; Fig. 5; Additional file 1 contains a complete diagram

that a corresponding B cell of that class is present in
an individual, pclass. Finally, we report for each class the
inferred probability that a clone is being observed with
high abundance, ωclass.

Sequence similarity
To compare the within-set similarity of sequences
between subsets of sequences of any length, we use the
Levenshtein (or “edit”) distance as implemented in [22].
Specifically, given a subset of sequences, we compute a
measure of within-set similarity the mean of the Lev-
enshtein distances between all pairs of sequences in the
subset. To assess significance we use bootstrapping: we
calculate the mean Levenshtein distance between a ran-
domly selected subset of the same size, and compare
the resulting null distribution of means to calculate the
empirical p-value.

Thresholding method
Existing methods for identifying vaccine specific BCR
clones rely on identifying sequences which are either
highly abundant, shared between multiple individuals, or
both. Empirical methods are typically used to determine
thresholding criteria for abundance and sharing [8, 18, 20],
sequences which are above these thresholds are then con-
sidred to be likely vaccine specific. Alternatively, statistical
significance of sequences in cases relative to controls can
be used to determine threshold levels [16], or training and
test sets used for validation [19].
We define an abundance threshold above which clones

are considered to be highly abundant as a quantile of all
abundances in an individual sample [20]. This allows the

actual abundance value to change according to sample
variability such as sequencing depth. Clones may then be
considered vaccine-specific if they are below this thresh-
old pre-vaccination and above this threshold for at least
one time point post-vaccination. We also define a sharing
threshold as the minimum number of individuals in which
a clone must be present in order to be considered vaccine
specific [19]. Sequences from individual clones are consid-
ered vaccine-specific if both the abundance and sharing
criteria are met, and we evaluate a range of different
thresholds by comparing them to our truth sets.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12864-020-6571-7.

Additional file 1: Supplementary materials. Contains additional details of
the model and plots of results.
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