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Abstract 

Materials that bind strongly to water structure the contact layer, modifying its chemical and 

physical properties in a manner that depends on the symmetry and reactivity of the surface. 

Although detailed models have been developed for several inert surfaces, much less is known 

about reactive surfaces, particularly those with a different symmetry to ice. Here we investigate 

water adsorption on a rectangular surface, Ni(110), an active reforming catalyst that interacts 

strongly with water. Instead of forming a network of H-bonded cyclic rings, water forms flat 1D 

water chains, leaving half the Ni atoms exposed. Second layer water also follows the surface 

symmetry, forming chains of alternating pentamer and heptamer rings in preference to an 

extended 2D structure. This behaviour is different to that found on other surfaces studied 

previously and is driven by the short lattice spacing of the solid and the strength of the Ni-water 

bond. 
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Text 

Water confined in low dimensional structures at a solid interface, for example within a pore or 

nano-tube, can display dynamic properties quite different to bulk water 1-3, with potentially useful 

characteristics 4-5. This change in behaviour is driven by the way in which the solid surface 

modifies and constrains water’s hydrogen bonding structure, making the ability to predict this 

response an important ambition in designing technological interfaces. However, water structure 

prediction remains a challenge 6, limited by the flexibility of water-water hydrogen bonds and the 

sensitivity of its structure to the particular environment 7. Investigating the wetting of well-defined 

model surfaces allows the effect of lattice parameter, symmetry and binding energy to be 

explored separately to discover to what extent these factors affect the water structure 8-15. 

Manipulating the surface offers the ability to deliberately control the structure and properties of 

interface water, for example to encourage 3D ice growth 16, change the friction 3 or transport 

properties 4, 17-18 as desired.  

 

Whereas water is inert on the close packed faces of the noble metals, where wetting has been 

studied in detail 7, the open surfaces are more reactive. Ni(110) is an active catalyst for re-

forming reactions, creating interest in how water adsorbs and dissociates on this surface 19-20. 

Although water was originally thought to form a distorted 2D hexagonal H-bond network 21, 

subsequent work showed this is a partially dissociated OH/H2O phase 22, leaving the nature of 

intact water structures unclear 21-27. The related Cu(110) surface, where dissociation is slow, is 

rather better understood. In place of the more typical hexagonal structures, water forms chains 

of face sharing pentamer rings that match the short atomic spacing of Cu 28, leading to the 

prediction that the reduced metal spacing and strong water-Ni bond of Ni(110) 19 will make 

water pentamer chains yet more stable 28. Here we report STM measurements of intact water 

adsorption on Ni(110), using DFT to explore the structures observed and low current LEED to 

relate these results to earlier studies. We show that, instead of forming a network based on 

cyclic rings, water creates linear two-coordinate chains along the close packed Ni rows, 

saturating the surface with half the Ni atoms still exposed. This unusual structure has a dramatic 

effect on further water adsorption, with second layer growth forming 1D chains containing 

pentamer and heptamer rings, rather than an extended 2D structure. The combination of a 

rectangular surface template and strong water-Ni bond creates an environment that strongly 

favours linear 1D structures over the 2D water structures more commonly observed on other 

metal surfaces 8. 
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Depositing water onto the Ni(110) surface at 80 K results in the growth of extended domains of 

water, shown in Figure 1a,b. Despite the low adsorption temperature, the water structure is 

ordered, forming bright chains along the [110] direction. The water chains sit above the Ni 

closed packed rows, with the majority of the chains having a zigzag repeat with a period of twice 

the Ni spacing. Only a few bright, mobile features appear ca. 0.7 Å above the first layer and are 

attributed to water that is trapped in the second layer, implying that water preferentially wets this 

surface rather than forming multilayer islands. Perpendicular to the close packed Ni rows, the 

bright chains have a regular spacing of 2 times the Ni row spacing, with no structure appearing 

between the chains.  

 

 

 
Fig. 1 STM images showing water adsorbed on Ni(110) at 80 K. a,b) just under 0.5 monolayer 

of water showing small regions of bare Ni (the darker patches) and a few bright, relatively 

mobile features associated with water adsorbed above the first layer. c,d)  a low coverage (0.07 

monolayer) of water adsorption at 80 K. Image (c) is recorded immediately after dosing water 

and shows formation of 2D islands that contain darker voids, while d) shows the same island 70 
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minutes later (these images are uncorrected for thermal drift). e,f) Isolated 1D chains formed in 

the presence of a small amount of O that pins the water chains and reduces island formation. 

Doubling of the Ni period to 7Å along [001] in some regions of (e) is caused by H induced Ni 

row pairing, see the Methods for more details. The apparent height of the water chains above Ni 

is between 50 and 60 pm and the scan conditions were a,b) 215 pA, -0.380 V, c) 123 pA, -0.034 

V, d) 256 pA, -0.030 V, e) 110 pA, -0.22 V, and f) 175 pA, -0.090 V. 

 

Despite the remarkably high degree of order, the water layer contains defects that provide an 

insight into the nature of the structure. In particular, darker voids appear occasionally between 

the chains, as shown in Fig. 1b, often forming a regular pattern. An example of such an ordered 

arrangement can be seen in the small water island shown in Figure 1c, recorded immediately 

after water deposition at 80 K. The structure in the top centre of the island consists of bright 

chains with a repeat of 4 times the Ni lattice parameter along the Ni close packed rows, forming 

a (4x4) structure, while the row of dark voids on the top right of the island has a 3 times repeat. 

Figure 1d shows the same island an hour later; the majority of the dark voids near to an island 

edge have disappeared, with no apparent change in the island area, leaving bright zigzag 

chains along the Ni rows. Depositing water at a higher temperature reduces the number of 

defect features, though they persist inside large islands even at 150 K. The dark voids are 

associated with a different local repeat along [110] and form freely during water adsorption, but 

are metastable, slowly annealing out of the water structure at 80 K. LEED patterns for this 

surface (see SI, Fig. S1) show diffuse (2x2) beams that are streaked along the [001] direction, 

reflecting disorder in the registry between zigzag chains on different Ni rows. When the Ni(110) 

surface has a small amount of O present, as shown in Fig. 1e,f, water forms isolated chains or 

small 2D structures, pinned by bright features (presumably OH), rather than extended 2D 

domains of pure water. Irrespective of the details of adsorption, the STM images all show water 

forming chains along the Ni close packed direction, separated from the next chain by 7Å (2 

lattice repeats along [001]) - too great a distance to be explained by hydrogen bond formation. 
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Fig. 2. The panels (top to bottom) show an STM image, the most stable calculated structure for 

water and its filled state STM simulation for 0.5 monolayer water in a) a (2x4) and b) a (4x4) unit 

cell, with binding energies of 0.871 and 0.864 eV/water respectively. STM images were 

recorded after adsorption at 80 K with a) 175 pA, -0.09 V and b) 240 pA, -0.38 V. 

 

In order to understand this behaviour we investigated the stability of possible water structures 

using DFT. Fully hydrogen bonded networks containing 1 monolayer of water, as well as lower 

coverage structures were considered, and these are summarised in the SI, see Figs. S3 to S6. 

The most stable structures we found with a 2 or 4 times repeat along the Ni rows are shown in 

Fig. 2 and consist of 0.5 monolayer water adsorbed flat near the Ni top site, forming hydrogen 

bonded chains along the Ni rows. Each water chain is separated from its neighbour by a row of 

bare Ni. The two different structures differ only in the lateral arrangement of the uncoordinated 

H atoms. Whereas the ‘zigzag’ chain (Fig. 2a) has the O atom and free H alternating to each 

side of the chain with a 2 unit repeat, the ‘wiggly’ chain (Fig. 2b) as a 4 unit repeat, with pairs of 

water molecules alternating along each side of the Ni row. Despite having just two H-bonds per 

water molecule, these flat water chains are 0.034 eV/water more stable than the best fully 

hydrogen bonded 2D network with 3 hydrogen bonds per water (see SI Fig S4). Moreover, 

formation of flat 1D water chains along the Ni rows immediately explains all the different ordered 

structures observed experimentally. Since the binding energy is similar for both chain repeats 
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(Fig. S3), combining the two units with different phase on neighbouring chains can create all the 

different structures observed, something that is not possible with a 2D network. Although the 

water coverage is low, with half of the top layer Ni still exposed, it is not possible to adsorb 

additional water to create a complete 2D network without reducing the overall binding energy of 

the chain structure (see SI, Fig. S4 for more details). While the DFT calculations reproduce 

closely the structure of the water chains, they are not able to describe accurately the weak 

interactions assembling the chains into 2D islands. In fact the calculations predict the binding 

energy increases very slightly, by 0.004 meV/water as the chains are separated one unit along 

[001] (see SI, Fig. S3), but this energy change is less than the accuracy of the calculations.  

 

The assignment of this first layer water structure to flat, low coordinate water chains also allows 

us to understand the unusual structures formed during second layer growth. Figure 3a shows 

an image of the surface for a coverage just above 0.5 monolayer water. Bright features appear 

ca. 0.7 Å above the first layer water structure, forming linear chains that can extend up to 100 

nm along the Ni close packed direction (see SI, Fig. S2). Figure 3b shows detail of one of these 

chains. The second layer water lies along the gap between two first layer water chains, 

appearing only in (2x4) regions of the first layer where water has a simple zigzag chain 

arrangement and avoiding the (4x4) void structure (e.g. see central region, Fig 3a). The second 

layer chains never come closer than 4 Ni rows apart, and have a very characteristic 

appearance, with large rings appearing on alternating sides of the chain and a 4 unit repeat 

along the chain. LEED patterns for the second layer (Fig. S1b) show the same streaked (2x2) 

beams as for the first layer but with additional weak spots at the (0.75, 0) positions, consistent 

with a 4 unit repeat along [110]. STM images taken as the coverage is increased towards 1 

monolayer water show the chains coexisting alongside disordered 2D domains that have a 

similar contrast. Partial ordering occurs as the surface is annealed to 140 – 150 K, (Fig. 4), but 

dissociation starts to occur at higher temperature 22 and neither the 2D structure nor the LEED 

pattern fully order.  
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Fig. 3. a,b) STM images showing second layer water growth at 80 K forming 1D chains that 

image ca. 0.7 Å above the first layer water. (c) the structure calculated by DFT with a binding 

energy of 0.874 eV/water and (d) the corresponding STM simulation for the second layer water 

chains. The STM images were recorded at V=-0.2 V and I=240 pA.  

 

Figure 3c shows the most stable 1D chain structure found for second layer water in DFT 

calculations. The structure consists of a H-down water chain, with a 4 unit repeat, inserted into 

the gap between two flat, zigzag first layer water chains to form a row of alternating pentamer-

heptamer rings. This structure has a binding energy (0.874 eV/water) that is indistinguishable 

from that of the original flat chain structure and more stable than other possible 1D chains or 

extended 2D water networks considered (see SI, Figs. S4 and S5). The H-down water sits 0.68 

Å above the original flat water chains, similar to the contrast seen in STM (Fig. 3) and a 

simulation of the second layer chain reproduces the characteristic shape seen in experimental 

images (compare Fig. 3 b and d). The structure of the added row water also helps explain why 

second layer chains do not form alongside each other. In order to allow water along the outside 

of the structure to maintain a strong bond to Ni and yet still donate H to water in the H-down 

chain, the first layer water tilts, with the uncoordinated H atoms on the outside of the chain 

pointing down towards the bare Ni row while the inside H tilts up to form a H-bond (Fig. 3c). 

Adding a further water chain along the vacant Ni channel would prevent this relaxation, 

hindering H-bond formation, and the resulting 2D structure (Fig. S4d) is 0.048 eV/water less 



 
 
 
 
 

8 

stable than the pentamer-heptamer chains. Of the other possible structures calculated for 1 

monolayer of water, the most stable networks have water arranged either as pairs or chains of 

flat and H-down water, creating distorted hexagonal networks with different corrugations (see 

Fig. S4 a-d). 2D structures of this type have similar binding energies (between 0.837 and 0.831 

eV/water), suggesting that these structures may contribute to the disordered 2D islands 

observed at higher coverage (Fig. 4). In contrast, forming an ordered c(2x2) bilayer of the type 

originally proposed on Ni(110) 21 (Fig. S4 e,f) forces water in the first layer to tilt out of plane to 

complete the hydrogen bond network and these structures are unfavourable by a further 0.040 

eV/water.  

 

 
Fig. 4. STM image of ca. 0.75 monolayer water after annealing to 140 K. The second layer 

chains and domains are shown in red-yellow, while the flat first layer chains appear in light/dark 

blue. STM image recorded at 80 K with I=60 pA and V=0.48 V. 

 

Although simple two-coordinate water chains have been seen as metastable structures on other 

metal surfaces below 20 K 29-30, this is the first direct observation of water forming stable 1D 

chains in preference to cyclic structures on a metal surface. Moreover, the structures formed on 

Ni(110) are quite different to the 1D pentamer chains found on Cu(110) 28, 31, despite these 

surfaces having a similar lattice spacing and reactivity. Forming a pentamer chain along [001] 

increases the average H-bond coordination from 2 to 2.67, but only two thirds of the water now 

bonds directly to the metal, with the other third rotated out of plane to complete the H-bond 

network (see SI, Fig. S6). Whereas this is favourable on Cu(110), the stronger water-metal 

interaction (0.63 eV/water19 on Ni compared to 0.49 eV/water on Cu) shifts the balance in favour 



 
 
 
 
 

9 

of forming flat, 2-coordinate water chains along the close packed Ni rows. DFT calculations of 

the two structures on Ni(110) slightly favour pentamer chain formation (by 0.010 eV/water, see 

SI Fig. S6). This preference to form pentamer chains persists when using different functionals 

(see SI Table 1), emphasising once again that while such calculations provide valuable insight 

into the bonding behaviour, they are not sufficiently accurate to predict water structures a priori 

without suitable experimental constraint.  

 

The observation of flat water chains on Ni(110) also helps clarify earlier experimental 

observations, providing an insight into the behaviour of water on this surface. Callen et al. found 

the water structure is IR inactive below 0.5 monolayer, but became active as the coverage 

increased to 1 monolayer 25. This behaviour is consistent with the water chains being flat on the 

surface and therefore IR inactive, while the next 0.5 monolayer adsorbs in an IR active, H-down 

configuration in the second layer. In addition, nuclear reaction analysis measurements found 

that the first layer saturated at 0.5 monolayer coverage 24, the same as the chain structures 

reported here. This agreement is surprising, since some dissociation would be expected under 

the conditions used previously 22, 32, and suggests further investigation of the mixed OH/H2O 

phases is necessary. Flat water chains analogous to those seen on Ni(110) also appear as the 

backbone of the OH/H2O chains formed on Cu(110) 33, reflecting the stability of this water 

arrangement. Linear chains have previously been proposed at low coordinate metal step sites 
34, but cyclic structures are also stabilised 35-36 and complex 2D networks have been found 

extending across multiple step sites 37. The stability of the two layer water chains shown in Fig. 

3, also suggests a new way in which water might wet corrugated surfaces. By forming a 

structure that bridges between two Ni rows, this network increases its average H-bond 

coordination while still having 2/3 of the water bound at the optimum surface site. We expect 

that linear structures of this type will also be favoured on suitable stepped surfaces, for example 

where the step spacing allows water to form a 2D H-bond network pinned between two steps.  

 

In conclusion, this study shows that water adsorbs on a Ni(110) surface to produce a tightly 

bound, low coordinate 1D H-bond structure that optimises the water-surface interaction but 

leaves half the Ni sites exposed. The tightly bound first layer constrains second layer growth, 

creating narrow 2D chains that retain the same first layer structure. These results offer an 

insight into the way in which water adapts its structure to bind on reactive surfaces, about which 

little is known. We believe that the structures formed here will have direct analogues on other 

tightly binding surfaces, including low symmetry surfaces where the binding energy varies 
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periodically across the surface, such as stepped surfaces and biological ice forming or inhibiting 

proteins.  

 
Methods 

The Ni(110) surface (Surface Preparation Laboratory) was cleaned by Ar+ ion sputtering and 

annealing to 950 K. STM measurements were carried out in a Createc STM with the sample 

held at 80 K during adsorption and imaging, prior to annealing to different temperatures 37. STM 

images were recorded in constant current mode at 80 K with an electrochemically etched 

tungsten tip. At 80 K background hydrogen in the STM cryostat slowly deposits on the surface 

over several days, changing exposed Ni from its original (1x1) termination to the (1x2) row 

paired arrangement. All the structures reported here were formed on the (1x1) surface and did 

not change in appearance as H adsorbed on the remaining exposed Ni surface. STM images of 

water were insensitive to the scan conditions between ±0.5 V and I<250 pA, where the 

structures were not perturbed by the tip. LEED and thermal desorption measurements were 

carried out in a second chamber, equipped with a calibrated molecular beam to dose known 

amounts of water onto the surface. The water beam was calibrated against the 1 monolayer 

water structure formed on Cu(511) 37, and allowed the coverage to be chosen to ±2% 

monolayer. LEED patterns were measured at currents of less than 1 nA, to avoid electron 

induced dissociation, using a low current, dual micro-channel plate LEED system (OCI). 

 

Calculations were performed using VASP 38-39 with the PAW method 40-41 using the optB86b-

vdW exchange-correlation functional 42-43, with an 11x15 Monkhorst-Pack k-point set for a (2x2) 

unit cell (5x15 k-points for (4x2) and 5x7 k-points for (4x4) unit cells) and a 400 eV cutoff. The 

slabs were 6 Ni layers thick (3 layers fixed, 3 relaxed) with a vacuum gap >20 Å above the 

upper water layer. Dipole corrections were applied perpendicular to the slab. The optB86b-vdW 

functional includes van der Waals interactions, which are known to be important in stabilizing 

surface adsorption relative to 3D ice formation 43-44, and has a similar performance to other vdW 

functionals for systems where physisorption is important 45. Trial structures were converged so 

that the forces on the atoms were < 0.01 eV/Å. The water binding energy (𝐸!), quoted in the text 

is defined by  

	  −𝐸! = (𝐸!"#$!"! − 𝐸!" − 𝑛!!!𝐸!!!)/𝑛!!!	 	 	 (1)	

where 𝐸!"#$!"!  is the energy of the final slab, 𝐸!" is the energy of the metal slab alone and 𝐸!!! the 

energy of an isolated water in vacuum. To allow for a rapid scan through possible configurations 

of the water overlayer, the calculations were not spin polarized. We tested the effects of spin 

polarization by computing binding energies for the structures in Figs. 2, 3, S3b, S4b and S6 
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using the PBE functional including Grimme D3 dispersion corrections 46 (details are given in the 

SI). Although the absolute binding energies change slightly, as expected, the relative stability of 

the different structures remain the same. STM simulations were performed using the Tersoff 

Hamann approximation 47-48, which approximates the tunnel current as the integral of the local 

density of states from the bias voltage to the Fermi energy. 
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