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A B S T R A C T   

This paper presents a multiscale model developed to predict scaling effects in plain woven carbon fibre- 
reinforced polymer (CFRP) composites. The model contains a parameter-segmented unit cell (UC) developed 
to account for the contribution of the fabric architecture to the macroscopic response. The behaviour of con
stituent materials was considered by employing the models that have been established for characterising the 
nonlinearity and rate-dependence of the polymer matrix and the damage of the yarn material. A user subroutine 
was developed to numerically implement the parameterised UC and the material models for multiscale analyses. 
Based on the multiscale model, numerical examples were performed to investigate scaling effects in the impact 
response of a plain woven composite by simulating scaled panels subjected to projectile impact. It is shown that 
the proposed model is capable of predicting both scalable and non-scalable effects in this composite with 
reasonable success. The simulation results highlighted an evident variation of the load-displacement curves with 
scale size at the post-elastic stage, insensitivities of the primary failure modes and their appearance to scale size, 
as well as a clear trend of increased capability of energy absorption with scale size, which all agree well with 
those observed in experiments. The significance of this research is the development of a numerical tool capable of 
capturing the influence of microscopic features on macroscopic scaling effects in plain woven composites.   

1. Introduction 

Compared to traditional materials, fibre-reinforced polymer (FRP) 
composites offer many attractive characteristics including high specific 
strength and stiffness, improved impact resistance, increased design 
flexibility, superior stability and durability. These desirable features 
have naturally stimulated intensive applications of fibre reinforced 
composites in engineering products of many industry sectors, such as 
composite wings and airframe structures in the aerospace sector, fully 
integrated composite body-in-white in the automotive industry and 
composite blades in the wind energy industry. However, masked by the 
great success and widespread usage of the composites, there is an easily 
ignored concern originating from a common design practice of devel
oping large composite structures or components based on small-scale 
models to save time and costs. However, composites may exhibit sig
nificant scaling effects, with their mechanical properties and response 
being dependent on geometry or scale size, e.g. increased strength with 

decreasing scale size. As a result, developing a composite structure 
without completely exploring scaling effects may result in a potentially 
invalid design in the first place and possibly catastrophic outcomes to 
the end-user. 

Given the critical importance of understanding scaling effects, a good 
variety of studies have been conducted in the past decades to experi
mentally investigate the effects of geometry or scale size on the me
chanical properties and response of different types of unidirectional 
(UD) composites subjected to different loading conditions. Initial 
research focused on investigating scaling effects in the quasi-static 
properties of unnotched composites [1–4] and composites with 
geometrical discontinuities such as notches and holes [5–7], high
lighting that composites largely exhibit decreased strength values with 
increasing scale size. Research studies were also performed to quantify 
scaling effects in the dynamic response of FRP composites [8–10]. In 
those studies, the dependences of response parameters such as impact 
force, impact damage, area of delamination and energy absorption on 
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scale size were identified. Apart from typical FRP composites, experi
mental investigations were also conducted to study scaling effects in 
fibre-metal composites and honeycomb sandwich structures with com
posite skins [11–13]. The results of these studies indicate that the 
addition of non-FRP ingredients in composites generally reduces the 
dependency of the impact response of these composites on scale size. An 
examination of the publications outlined above reveals that most of the 
existing studies on scaling effects in composites focused on unidirec
tional composites, with little attention paid to textile composites, 
although they offer superior impact performance compared to their UD 
counterparts. Also, these studies were undertaken primarily based on 
experimental testing, limiting the possibility of implementing the gained 
knowledge of scaling effects into the design of composite structures at an 
early stage, by means of performing numerical analyses and simulations. 

Numerous theories fulfilling various aspects of multiscale modelling 
have been reported in the literature. To account for the influence of the 
internal fabric architecture on the macroscopic behaviour, sophisticated 
micromechanical models have been developed by researchers including 
Ishikawa and Chou [14], Wentorf et al. [15], Lomov et al. [16], Whit
comb and Tang [17], Sun et al. [18], Li et al. [19], Lin et al. [20] and 
Green et al. [21], among many others. In terms of damage modelling of 
FRP composites, different kinds of criteria associated with failure modes 
have been proposed, featuring those formulated by Hashin [22], Puck 
and Schurmann [23], Pinho et al. [24] and others, as reviewed by 
Kaddoura et al. [25] on the World-Wide Failure Exercise (WWFE). 
Research studies have been performed to describe the nonlinearity and 
rate-dependence of FRP composites by means of adapting viscoplasticity 
theories. Notable models on this topic include those developed by Fish 
and Shek [26], Goldberg et al. [27] and Weeks and Sun [28]. 

In spite of numerous theories previously proposed for modelling 
textile composites, there is still a lack of predictive models that have 
been validated for numerical investigation of scaling effects in textile 
composites. The current work aims to fill such a gap by means of 
developing a predictive model for textile composites using a multiscale 
modelling approach, rather than taking a micromechanical approach. 
This is because scaling effects in textile composites are closely associated 
with the hierarchical nature of textile composites and differences in the 
microscopic features at different scale sizes. For example, in a set of 
scaled composite laminates with the actual numbers of plies in these 
laminates being 4, 8, 12 and 16, the normalised numbers of ply in
terfaces of these laminates are different and equal to 3/4, 7/8, 11/12 
and 15/16, which may result in scaling effects in the resistance to 
interlaminar delamination. Another example is that some microscopic 
features of textile composite laminates (e.g. the width of fabric yarns) do 
not scale with macroscopic features such as the length and thickness of 
the laminates. Thus, it is of critical importance to employ a multiscale 
modelling strategy so that the contribution of microscopic features to 
macroscopic behaviour can be reasonably considered. However, instead 

of developing novel theories for all aspects of the multiscale model, the 
present research specifically focuses on bridging and improving existing 
theories to form a multiscale approach that is capable of predicting 
scaling effects in the impact response of plain woven composites, with 
emphasis on modelling a parameterised unit cell (UC) and numerically 
investigating scaling effects in the load-displacement response, failure 
mechanisms and energy absorption. 

2. Multiscale modelling 

In the proposed multiscale modelling strategy, a plain woven com
posite laminate is modelled at three length scales, as shown in Fig. 1. At 
the macroscale, the laminate is treated as a multi-layer solid, with each 
layer representing a composite lamina or ply. In addition, each layer is 
discretised with elements, whose response is represented by homoge
nising a representative volume cell (RVC), where modelling at meso
scale I is conducted to analytically consider the internal architecture (i.e. 
cross-section and waviness of the yarns) and the behaviour of the indi
vidual constituents (e.g. the nonlinear, rate-dependent deformation of 
the polymer matrix and the development of anisotropic damage in the 
yarn material). In this way, the effects of both the microscopic features 
and the response of the individual constituents on the overall response 
(including scaling effects) can be captured. Further, the division of the 
laminate into a multi-layer solid allows for modelling interlaminar 
delamination at mesoscale II. 

2.1. Modelling at mesoscale I 

2.1.1. Parametrised unit cell modelling 
To correlate the macroscopic behaviour of plain woven composites 

with the microscopic geometry and material behaviour of the individual 
constituents, a UC considering the internal architecture was defined, as 
shown in Fig. 2. Here, it should be noted that the proposed UC is only 1/ 
16 of the full-size UC and was obtained by exploiting the translational, 
rotational and reflectional symmetries in the geometrical architecture of 
the composite [29]. The UC is comprised of a matrix phase and two 
yarns, with overall dimensions of L� L�H. Considering the microscopic 
features of the plain woven composite under investigation, as shown in 
Fig. 3, it was assumed that both the cross-sectional curves and waviness 
of the fibre yarns can be reasonably described using cosine or sine 
functions. In addition, a constant cross-section was assumed so that each 
yarn can be fully depicted using the cross-sectional and central path 
curves. Based on these assumptions and the geometrical relationships 
shown in Fig. 2, the internal architecture can be described as follows: 

Fig. 1. Schematic of the proposed multiscale modelling strategy.  

Fig. 2. Proposed unit cell of plain woven composites.  
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Fig. 3. Cross-section of the plain woven composite under investigation.  

Fig. 4. Parameterised segmentation of the warp/fill yarns and relationships between the LCS and GCS.  
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(1)  

where λ is a dimensionless parameter introduced to control the width of 
the yarns; zwuc, zwlc, zwcp and θwarp represent the upper and lower cross- 
sectional curves, the central path curve and the waviness angle of the 
warp yarn; and zfuc, zflc, zfcp and ϕfill represent the corresponding values 
for the fill yarn. 

Although the use of cosine functions enables smooth descriptions of 
the warp and fill yarns, it creates extra complexity in a multiscale 
analysis in terms of computing the microscopic stresses of the UC. To 
address this problem, a parameter n was introduced to discretise the 
warp and fill yarns into n evenly distributed segments, as illustrated in 
Fig. 4(a) and (c). Based on such a parameterised discretisation, each 
segment of the yarns can be locally treated as a UD composite portion, 
with the volume fraction and orientation of the ith segment defined by: 
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(2)  

where θi (ϕi) denotes the ith segment of the warp (fill) yarn; and vi
warp 

(vi
fill) is the respective volume fraction of the segment. By segmenting the 

fibre yarns into smaller regions, a local coordinate system (LCS) is 
defined for each segment so that the constitutive modelling of the yarn 
material can be firstly addressed in the LCS (as shown in Fig. 4(b) and 
(d)) and transformed into the global coordinate system (GCS) of the UC, 
if needed, as follows: 

8
<

:

σui

εui

Cui

9
=

;
¼

8
<

:

�
Tujli�Tσli

�
Tujli�Tεli

�
Tujli�TCyTujli

9
=

;
(3)  

where σui, εui and Cui refer to the stress vector, the tensorial strain vector 
and the elasticity matrix of the ith segment in the GCS; σli, εli and Cli are 

the respective quantities in the LCS; and Tujli represents the trans
formation matrix from the LCS to GCS and is defined in Eq. (4) for the 
warp yarn and Eq. (5) for the fill yarn, respectively: 
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2.1.2. Constitutive behaviour of polymer matrix 

2.1.2.1. Nonlinearity and rate-dependence. Polymers are isotropic ma
terials, with features such as nonlinearity and rate-dependence. Typi
cally, they show viscoelastic behaviour at small strains and become 
nonlinear at large strains. Although the nonlinear, rate-dependent 
deformation of a polymer is primarily driven by the respective molec
ular mechanisms (e.g. the unwinding of molecular kinks) and may be 
modelled using a molecular approach, adopting a viscoplasticity-based 
model to describe the behaviour of a polymer is preferable from the 
point of view of simplicity. In this work, the nonlinearity and rate- 
dependence of polymer matrix are addressed using the viscoplasticity- 
based model developed by Goldberg et al. [27]. This model assumes 
that the total strain-rate, _εij, is the sum of an elastic portion, _εE

ij , and an 
inelastic portion, _εI

ij, i.e. _εij ¼ _εE
ij þ _εI

ij. In addition, the inelastic 
strain-rate is phenomenologically modelled as a function of several 
material parameters and state variables. The state variables in return 
evolve with respect to the inelastic strain-rate, resulting in a set of 
constitutive relations in a rate-dependent form or an increment form, as 
shown in the left or right side of Eq. (6): 

_εI
ij¼D0exp

�

�
1
2

�
Z

σeff

�2nr� Sij
ffiffiffiffiffi
J2
p

σeff ​ ¼
ffiffiffiffiffiffiffi
3J2

p
þασkk

_Z ​ ¼qðZ1 � ZÞ _eI
eff

_α¼qðα1 � αÞ _eI
eff

_eI
eff¼

ffiffiffiffiffiffiffiffiffiffiffi
2
3

_eI
ij _eI

ij

r

or

dεI
ij¼

�

D0exp
�

�
1
2

�
Z

σeff

�2nr� Sij
ffiffiffiffiffi
J2
p

�

dt

σeff ​ ¼
ffiffiffiffiffiffiffi
3J2

p
þασkk

dZ ​ ¼qðZ1 � ZÞdeI
eff

dα¼qðα1 � αÞdeI
eff

deI
eff¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

deI
ijdeI

ij

r

(6)  

where D0 is a constant denoting the maximum inelastic strain-rate; nr 
refers to a material parameter used to describe the dependence of in
elastic deformation on the strain-rate; σeff denotes the effective stress, 
which is employed to account for the effect of hydrostatic stresses on the 
rate-dependence; Z is the internal stress variable used to model the 
resistance to molecular flow; and J2 represents the second invariant of 
the deviatoric stress, Sij. In the above equation set, the effective stress 
evolves as a function of the mean stress, σkk, and a scaling factor, α. Also, 
both the internal stress and the mean stress scaling factor, whose initial 
(maximum) values are denoted by Z0 ðZ1 Þ and α0 ðα1 Þ, are defined in 
the same form, evolving with the initial hardening rate, q, and the 
effective deviatoric inelastic strain-rate, _eI

eff . 
The constitutive model described above generates a differential 
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equation for each component of the state variables without a closed 
solution. To numerically solve the equations within the framework of a 
transient finite element solver, e.g. ABAQUS/Explicit, the standard 
fourth-order Runge-Kutta (RK) algorithm was applied to the incremental 
form of the constitutive equations to calculate the state variables at the 
current increment, nþ 1, based on their values at the previous incre
ment, n, as follows: 
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(7)  

where dεI〈i〉
ij , dZ〈i〉 and dZ〈i〉 are the increments of the corresponding 

variables and computed at the ith step of the RK algorithm; and cijkl 

represents the elasticity tensor, with each component being a function of 
the elastic modulus, Em, and Poisson’s ratio, vm. 

2.1.2.2. Damage initiation and evolution. Although the Goldberg model 
describes the nonlinear and rate-dependent deformation response of a 
polymer, it does not identify the point at which damage initiates and 
how damage propagates after damage initiation. Assuming that the 
stress-strain curve of a polymer matrix beyond the yield point is typi
cally insensitive to stress, the following strain-based criterion is 
employed to determine the onset of damage: 

fm ¼

�
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where fm represents the failure function; εmf is a material parameter 
denoting the ultimate failure strain; and εeff the effective total strain. 
Here, the ultimate failure strain is assumed to vary with strain-rate as a 
result of the rate-dependence of the polymer matrix. To model such an 
effect, the logarithmic approach originally proposed by Weeks and Sun 
[28] is adapted to scale the ultimate failure strain, as follows: 
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where _ε denotes the effective strain-rate; _ε0 is reference strain-rate; εm0 
represents the ultimate failure strain measured at the reference strain- 
rate; and Cmε is a material constant reflecting the dependence of the 
ultimate failure strain on strain-rate. Here, it is worth noting that the 
positive sign should be used if the ultimate failure strain increases with 
strain-rate. If not, a negative sign is employed. 

The polymer matrix under investigation is a highly toughened epoxy 
[30]. However, the polymer matrix is assumed to have a similar damage 
behaviour to the yarn material in the transverse direction. Thus, the 
Weibull distribution based formulation developed by Chen and Aliabadi 
[31] was simplified into a uniaxial form to describe the evolution of 
damage in the polymer matrix as follows: 
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where ωm represents the damage in the polymer matrix; letter “e” is the 
base of the natural logarithm; and βm is a material parameter describing 
the rate of damage evolution, a value that can be tuned after performing 
a regression analysis on a set of uniaxial tensile tests. Based on Eq. (10), 
the degradation of stiffness is represented by multiplying the elasticity 
matrix by a factor of ð1 � ωmÞ. Thus, the stress after damage initiation is 
updated as follows, where εId

kl denotes the maximum inelastic strain prior 
to damage: 

σðnþ1Þ
ij ¼ð1 � ωmÞcijkl

�
εðnþ1Þ

kl � εId
kl

�
(11)  

2.1.3. Constitutive behaviour of yarn material 

2.1.3.1. Anisotropic damage initiation. Since the fibre yarns in the plain 
woven composites have been analytically modelled with their orienta
tions defined in Eq. (2), they are essentially UD composites in the LCS. 
Thus, the yarn material was similarly treated as a transversely-isotropic 
material exhibiting linear elastic behaviour up to damage initiation, 
followed by anisotropic damage evolution. In this work, the onset of 
damage of the yarn material was addressed by generalising the Hashin 
failure criteria [22] by means of introducing two additional failure 
modes associated with the thickness direction [31]. Given the isotropic 
nature of the yarn material in the transverse directions, the two addi
tional failure modes were defined similarly to those associated with the 
in-plane transverse direction. Therefore, six damage modes are defined 
to identify the initiation of damage of the yarn material: 
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(12)  

where f1fT and f1fC represent tension and compression fibre failure in the 
fibre direction; f2mT and f2mC denote in-plane transverse matrix cracking 
and matrix shear failure; f3mT and f3mC refer to out-of-plane transverse 
matrix cracking and matrix shear failure; XT and XC are the tensile and 
compressive strengths in the fibre direction; YT and YC are the in-plane 
transverse tensile and compressive strengths; ZT and ZC: the out-of-plane 
transverse tensile and compressive strengths; S12, S23 and S31 are the 
shear strengths in the corresponding planes; and 〈〉 stands for the Mac
aulay brackets. 

2.1.3.2. Anisotropic damage evolution. Damage evolution of the yarn 
material was described based on the formulations proposed by Chen and 
Aliabadi [31]. Specifically, the damage variable corresponding to a 
damage mode was assumed to comply with a modified Weibull distri
bution and evolve with a criterion defined in Eq. (12) and can be written 
in the following compact form: 
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ωabC ¼
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where fabC ðabC¼ 1fT;1fC; 2mC;2mS;3mC;3mSÞ is a damage criterion 
function; ωabC stands for the corresponding damage evolution function; 
and βabC is a material parameter reflecting the rate of damage evolution. 
It should be noted that more than one damage mode may occur if the 
yarn material is under multiaxial loading conditions, resulting in com
bined damage in the normal and shear directions. For this reason, the 
damage in the yarn material in different directions is defined as follows, 
where subscripts 1, 2 and 3 refer to the normal directions; and subscripts 
4, 5 and 6 denote the shear directions: 
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As a result of material damage, the linear constitutive relationship 
between the stress and strain does not hold and thus must be modified by 
including the damage variables defined in Eq. (14). In this work, the 
contributions of the damage variables to degradation in the yarn ma
terial ðCyÞwere addressed by modifying the elasticity matrix, as follows: 

Cy ¼ ðSyðωÞÞ� 1
¼

�
ðSðωÞdÞ 0

0 ðSðωÞsÞ

�� 1

(15)     

SðωÞs ¼
1

GLTð1 � ω4Þ

1
GTTð1 � ω5Þ

1
GTLð1 � ω6Þ

(17)  

where SyðωÞ is the inverse of the damage elasticity matrix; SðωÞd and 

SðωÞs are the direct and shear components of the inverse matrix; EL, ET, 
GLT, GTT and GTL are the elastic and shear moduli; and vLT, vTT and vTL 
are Poisson’s ratios in the corresponding directions. 

2.2. Modelling at mesoscale II 

The modelling approach at mesoscale II addresses interlaminar 
delamination, which is one of the predominant failure modes in plain 
woven composites, due to the lack of binding yarns in the through- 
thickness direction. This research took the advantage of ABAQUS [32] 
by defining surface-based cohesive interaction to model interlaminar 
delamination. For completeness, a brief introduction to the theories 
employed in this work to describe interlaminar delamination is given in 
Appendix A. 

2.3. Modelling at the macroscale 

The modelling of plain woven composites at the macroscale was 
performed based on the commercial finite element (FE) code ABAQUS. It 
involves: 1) building the geometry of the composite structure under 
investigation; 2) developing a user-defined material subroutine to 
correlate the macroscopic behaviour of the composite with the micro
mechanical models described in Section 2.2; 3) assigning the user- 
defined material to the composite; 4) defining the required loading 
and boundary conditions; and 5) defining the contact conditions and 
cohesive interactions between adjacent plies. Further details regarding 
modelling at this scale will be presented in Section 3. 

Here, it should be noted that the mesoscale models (i.e. the UC model 
and the constitutive models of the polymer matrix and yarn material) 
were implemented by developing a user-defined subroutine VUMAT 

within the framework of ABAQUS/Explicit. Fig. 5 shows the flowchart of 
this subroutine, which is called for all elements at every increment of the 
simulation. The subroutine starts by reading the inputs, e.g. the material 
parameters, the stress, strain and other variables at the previous step, 
and the strain increment at the current step. Based on the inputs, a 
uniform strain boundary condition is applied to the UC to calculate the 

Fig. 5. Flowchart of the user-defined VUMAT subroutine.  
Fig. 6. Comparison of the predicted and measured stress-strain curves.  

SðωÞd ¼

2

6
6
6
6
6
6
6
6
6
6
4

1
ELð1 � ω1Þ

�
vLT

EL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � ω1Þð1 � ω2Þ

p �
vTL

ET
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � ω1Þð1 � ω3Þ

p

�
vLT

EL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � ω1Þð1 � ω2Þ

p
1

ETð1 � ω2Þ
�

vTT

ET
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � ω2Þð1 � ω3Þ

p

�
vTL

ET
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � ω1Þð1 � ω3Þ

p �
vTT

ET
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � ω2Þð1 � ω3Þ

p
1

ETð1 � ω3Þ

3

7
7
7
7
7
7
7
7
7
7
5

(16)   
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microscopic stresses in both the polymer matrix and the yarn material 
based on the constitutive models described in Sections 2.1.2 and 2.1.3. 
Finally, the macroscopic stress of an element or integration point is 
computed using the volume fractions and transformed microscopic 
stresses of different phases of material, as follows: 

〈σ〉¼ σmvm þ
Xn

1
σui

warpvi
warp þ

Xn

1
σui

fillv
i
fill (18)  

where 〈σ〉 represents the homogenised or macroscopic stress; σm, σui
warp 

and σui
fill are the stresses in the matrix phase, the ith segment of the warp 

yarn and the ith segment of the fill yarn in the GCS of the UC; vm, vi
warp 

and vi
fill refer to the corresponding volume fractions. 

2.4. Validation of the multiscale model in simple loading conditions 

To validate the multiscale model, two numerical examples were 
conducted to analyse a plain woven carbon fibre-reinforced polymer 
composite (which will be described in Section 3.1) under two simple 
loading cases. The first example was to simulate a uniaxial tension test 
on a rectangular specimen loaded in the fibre direction at an overall 
strain-rate of 1 � 10� 3 s� 1. Fig. 6 shows a comparison of the predicted 
and experimental stress-strain curves. Here, it is evident that the linear 
elastic behaviour of this plain woven composite subjected to tension in 

the fibre direction has been well predicted. Also, the predicted ultimate 
failure stress and strain (approximately 900 MPa @ 1.8%) agree well 
with those measured by the experimental test. The second example was 
to simulate a three-point bending impact on a rectangular beam with 
dimensions of 65 mm � 10 mm � 1.12 mm by a cylindrical impactor 
with an initial impact velocity of 3.13 m/s. Fig. 7 compares the simu
lated and measured load-deflection curves. The results suggest that the 
response of the composite under flexural impact loading has been 
reasonably predicted. 

Fig. 7. Comparison of the predicted and measured load-deflection curves.  

Table 1 
Summary of the input & response parameters and their dependencies on the 
scaling factor.  

Parameter Name Dimension Scale factor 

Input parameter l  Specimen length L  n  
w  Specimen width L  n  
h  Specimen thickness L  n  
di  Impactor diameter L  n  
ds  Support diameter L  n  
E  Specimen modulus MT� 2L� 1  1 

ρ  Specimen density ML� 3  1 

v  Specimen Poisson’s 
ratio 

� 1 

Ei  Impactor modulus MT� 2L� 1  1 

ρi  Impactor density ML� 3  1 

vi  Impact Poisson’s ratio � 1 
mi  Impact mass M  n3  

Vi  Impact velocity LT� 1  1 

Response 
parameter 

Fi  Contact force MT� 2L  n2  

t  Impact duration T  n  
δ  Deflection L  n  
EI  Impact energy MT� 2L2  n3   

Fig. 8. Schematic of the scaling tests on the plain woven CFRP compos
ite panels. 
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3. Results and discussion 

3.1. Similitude approach 

A prerequisite for a set of scaled test models to be valid for revealing 
any scaling effects is that these scaled models must be equivalent or 
similar [33], which can be ensured by applying the Buckingham π-the
orem [34]. In this work, scaling effects in the low-velocity impact 
response of plain woven composites were investigated based on four 
similarly scaled models, and the approach adopted to ensure model 
similarity involves defining a number of independent π-terms based on a 
set of input and response parameters, whose dimensions are given in 
terms of the M-L-T fundamental types of dimensions, i.e. Mass (M), 
Length (L) and Time (T). As shown in Table 1, the input parameters 
include both geometrical and material parameters, while the response 
(or output) parameters are comprised of contact force, impact duration, 

deflection and impact energy. By enforcing similarity requirements be
tween the scaled models, explicit representation of the input and 
response parameters can be formulated in terms of an expression of the 
scaling factor (n), which is defined as the ratio of the characteristic 
length of the small-scale model to that of the full-scale model. It should 
be noted that the scaling laws given in the last column of Table 1 can be 
used to determine whether two scaled models are similar or equivalent. 
Specifically, if scaled models are built with their input parameters 
following the simple scaling laws defined in Table 1, these scaled models 
are called “similar” or “scalable” if the following conditions are met:  

1) Contact force scales as the square of the scaling factor, i.e. n2;  
2) Impact time and deflection scale as the scaling factor, i.e. n;  
3) Impact energy scales as the cube of the scaling factor, i.e. n3. 

3.2. Details of the scaling study 

To utilise the multiscale model described in Section 2 to numerically 
investigate scaling effects in plain woven composites, four scaled FE 
models were created to simulate plain woven carbon fibre-reinforced 
polymer (CFRP) composite panels subjected to low-velocity impact on 
an instrumented drop-weight setup, as illustrated in Fig. 8. In each 
scaled test, a scaled square panel was freely placed onto a support ring 
and impacted at the centre by a hemispherical steel projectile released 
from a fixed height of 500 mm, yielding a constant initial impact ve
locity of 3.13 m/s. The projectile shed blocks were added to producing 
an impact energy of 170.7n3 J - The detailed dimensions and impact 
conditions of the scaled tests were determined according to the scaling 

Table 2 
Details of the four scaled impact tests.  

Scale Projectile 
diameter (mm) 

Support inner 
diameter (mm) 

Release height 
(mm) 

Impact mass 
(kg) 

n  di  ds  H  mi  

1/4 5 50 500 0.54 
1/2 10 100 500 4.36 
3/4 15 150 500 14.70 
1 20 200 500 34.84  

Fig. 9. A typical scaled FE model of the low-velocity impact tests.  

Table 3 
Material properties of the composite under investigation.  

Matrix Em 

(GPa) 
vm εm0 Cmε βm   

3.11 0.36 7.13% 0.014 3.8   

D0 

(s� 1) 
nr Z1 

(MPa) 
Z0 

(MPa) 
q α1 α0 

1 �
104  

3.01 211.57 62.27 Eq.  
(19) 

1.23 0.28 

Yarn EL 

(GPa) 
ET 

(GPa) 
vLT vTT GLT 

(GPa)   
161 64 10.57 0.27 0.33 5.52   

XT/XC 

(MPa) 
YT/YC 

(MPa) 
ZT/ZC 

(MPa) 
S12 

(MPa) 
S23 

(MPa) 
S31 

(MPa)  
2687/ 
1622 

58/ 
263 

58/263 95 78 80  

β1 β2 β3 β4 β5 β6  

9.0 7.6 4.7 2.8 4.7 2.8  

Interface N 
(MPa) 

S MPa) T (MPa) (J/ 
m2) 

GIIC 

(J/m2) 
GIIIC 

(J/m2)  
72.23 69.33 69.33 1300 4561 4561   

Fig. 10. Predicted and measured load-displacement curves of the n ¼ 1/4 case.  
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laws listed in Table 1, and the corresponding values are summarised in 
Table 2. 

Fig. 9 shows a scaled FE model for simulating the corresponding 
experimental test. Here, both the projectile and support ring were 
modelled using rigid shell elements, while the composite panel was 
treated as a deformable plate with a graded mesh design. To save 
computational costs, only a quarter of the actual geometry was created, 
and the falling motion of the projectile was replaced by assigning an 
initial velocity of 3.13 m/s, along with an appropriate inertia value. 

The composite panels were manufactured from EP121-C15-53 pre
preg provided by Gurit [30]. It consists of a 3k HTA carbon fibre plain 
woven fabric pre-impregnated with EP121 epoxy. The fabric has an 
areal density of 193 g/m2. The resin is a highly-toughened system and 
has a weight fraction of 53%. In the as-supplied form, the prepreg has a 
nominal thickness of 0.28 mm and a fibre volume fraction of 39%. The 
material properties of the matrix and the yarn material and the interface 
parameters for interlaminar delamination are summarised in Table 3. 
Here, the first row of the matrix’s properties was taken from Ref. [31], 
where the uniaxial tensile tests were performed on EP 121 to determine 
the elastic and ultimate failure strain properties. In terms of the pa
rameters of the viscoplasticity model, they were determined after ana
lysing the uniaxial tension test results obtained by Chen and Aliabadi 
[31], together with the properties of the yarn and the damage param
eters, and shear tests on six samples were conducted at strain-rates of 1 
� 10� 5, 1 � 10� 4, 1 � 10� 3, 1 � 10� 2, 1 � 10� 1 and 1 s� 1, following the 
least-squares regression procedure. It should be noted that the value of 
parameter q is not fixed, but related to the effective strain-rate, as shown 
in Eq. (19). In terms of the parameters for interlaminar delamination, 

the interfacial strength properties ðN; S; TÞ were determined from uni
axial tension tests on the EP 121 resin, while the fracture toughness 
properties ðGIC; GIIC; GIIICÞ were approximated based on the EP121 
based woven composite investigated by Yahya et al. [35]. 

q¼
�

0:53 ln
� �
� _εeff

�
�
�
þ 69:65

�
� _εeff

�
� > _ε0

0:53 lnðj _ε0jÞ þ 69:65
�
� _εeff

�
� � _ε0

(19)  

Fig. 11. Correlation between the load-displacement response and the impact damage.  

Fig. 12. Normalised load-displacement results following experimental scaling 
tests and FE simulations. 
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3.3. Scaling effects in the impact response 

The load-displacement curve predicted following a simulation of the 
smallest (1/4) scale sample is shown in Fig. 10, where the experimental 
trace is also included. It is evident that the load-displacement curve 
predicted using the proposed multiscale model agrees well with that 
obtained by the test, with all major features of the load-displacement 
curve (such as the quasi-linear increase of the load with the displace
ment at the initial stage, the subsequent force plateau, and finally the 
rapid reduction in force) being successfully captured. In addition to 
obtaining the load-displacement result, damage in the composite panel 
at several time intervals was captured and is shown in Fig. 11, where the 
correlation between the load-displacement curve and the damage 
mechanism is highlighted. It can be seen by comparing Fig. 11(a) with 
Fig. 11(b) that failure on the upper surface, mainly due to indentation 
effects, resulted in some oscillations in the load during the initial quasi- 
linear stage, occurred earlier than the fibre failure on the lower surface. 
It can also be observed in Fig. 11(b) that the presence of the peak load 
coincides with the initiation of fibre fracture on the lower surface. 
Further, Fig. 11(c) suggests that the dominant damage mechanism was 
fibre fracture, extending away from the centre of the panel in both the 
warp and fill directions, producing an almost constant force in the load- 
displacement curve. Finally, the load rapidly dropped to zero due to 
target perforation, as shown in Fig. 11(d). 

The predicted load-displacement curves for the other three scales 
also agree reasonably well with the experimental curves. However, due 
to space restrictions, only the normalised results (the load data and the 
displacement data were divided by n2 and n, according to the scaling 
laws given in Table 1) are shown in Fig. 12 for analysing scaling effects 
in the load-displacement response. As displayed in this figure, all of the 
predicted curves exhibit similar trends to their corresponding experi
mental traces, indicating that scaling effects in the load-displacement at 
different impact stages have been well captured using the multiscale 
model. For instance, during the initial quasi-linear stage, the predicted 
curves collapse in the same way as do the experimental counterparts 
onto a single curve, suggesting that the load-displacement response 
during this stage obeys a simple scaling law. Similarly, the trend in the 
force plateaus where the experimental curves become increasingly 
lengthened with scale size was predicted by the FE simulations. Here, it 
should be noted that the increase in the length of the force plateau in
dicates a prolonged period of damage propagation in the larger scales. 
Given that the load and displacement data were normalised according to 
the scaling laws listed in Table 1, the variation of the force plateau 
(which is associated with crack propagation in the panel) indicates that 
impact damage in this composite does not obey a simple scaling law, but 
becomes more severe as the scale size increases. 

The accuracy of the proposed multiscale model was further evalu
ated by comparing the predicted damage features against those observed 
in the scaling tests. As clearly shown in Fig. 13, both the primary failure 
modes (i.e. fibre fracture along the centre lines of the panel and some 
degree of interlaminar delamination) and the appearance of the 

Fig. 13. The actual and predicted damage features on the middle cross-sections 
of the four scale sizes. 

Fig. 14. Rear view of a perforated panel showing a wide crack opening.  
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damaged area in each scale size have been reasonably simulated. It 
should be noted that all the simulated panels appear to exhibit a wider 
crack opening than their experimental counterparts, which is attributed 
to the reasons below. Firstly, the formation of cracks in these FE models 

was simulated by deleting failed elements, whereas no material was 
removed in the sample tested. Also, the cross-sectional views of the four 
scaled panels were taken after the projectiles being manually removed. 
As the removal of the projectiles caused spring-back of the material near 
the cracks, it resulted in almost closed crack openings, in comparison to 
the state where the projectiles remained in place, as exemplified in 
Fig. 14. Further, the FE simulations were terminated shortly after the 
projectiles fully perforated the panels to save computational time. As a 
result, spring-back of the undamaged material near the cracks was not 
simulated, leading to wider openings in the simulated cracks. However, 
an additional FE simulation was performed for the case of the smallest 
scale size. By comparing the deformation of the panel at the perforation 
stage with that at a post-perforation stage, as shown in Fig. 15, the 
capability of the proposed model in simulating spring-back can be 
qualitatively confirmed. 

The capability of the proposed multiscale model to predict scaling 
effects in the impact response was further scrutinised by analysing the 
normalised crack length on the back face of the panel and the normalised 
absorbed energy, as shown in Figs. 16 and 17, respectively. From Fig. 16, 
it is evident that the data points associated with the variation of the 
predicted crack length with scale size coincide with the experimental 
data, with both curves suggesting a roughly linear increase in the nor
malised crack length with scale size. Again, the experimental evidence 
indicates that damage in the test panels does not obey a scaling law, and 
the numerical data support this conclusion. In terms of the normalised 
energy absorption, the predicted results generally agree well with the 
experimental data, except for the case of the second scale size where 
there is some discrepancy between the experimental and the predicted 
values, i.e. 147.9 vs 137.0 J (Fig. 17). However, it is believed that there 
should be a linear trend in the normalised energy, despite the scattered 
experimental data of the second scale size, as both the experimental data 
for the other three cases and the numerical results confirm this. In 
general, the results shown in Figs. 16 and 17 once again confirm the 
capability of the multiscale model in predicting scaling effects in the 
impact response of these plain woven composite panels. 

4. Conclusions 

A multiscale model has been developed to numerically investigate 
scaling effects in the impact response of plain woven composites. The 
model features developing a parameterised UC to account for the in
ternal architecture and employing existing material models to describe 
the microscopic behaviour of the constituents, including the rate- 
dependent nonlinearity of the matrix and the anisotropic damage of 
the yarn material. The proposed model was implemented by developing 
a user subroutine and validated by two simple loading cases and four 
numerical examples performed to simulate a set of scaled plain woven 
composite panels subjected to scaled projectile impact. Scaling effects 
predicted were compared with those observed in the experiments, 
highlighting reasonable predictions of both scalable and non-scalable 
scaling effects. Specifically, it was shown that the load-displacement 
response of the composite is scalable at the initial elastic stage and be
comes non-scalable since the normalised curves become increasingly 
extended due to the presence of lengthened force plateaus. In addition, 
although there was no transition in the primary failure mode, significant 
non-scalable scaling effects in impact damage were predicted, with the 
normalised size of damage increasing with scale size. Further, non- 
scalable scaling effects in the absorbed energy were predicted, which 
again suggests that damage in this composite does not obey a simple 
scaling law, with impact damage becoming more severe with increasing 
scale size. 
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Appendix A. Cohesive interface modelling 

In this work, the interfaces between the composite plies were described using the bilinear traction-separation model in ABAQUS. It assumes that 
the response of a cohesive interface is linear elastic prior to the onset of delamination, followed by a linear damage degradation on the propagation of 
delamination. In the initial elastic region, the constitutive behaviour is defined in terms of an elasticity matrix relating the traction to the separation, as 
follows: 

t ¼

8
<

:

tn
ts
tt

9
=

;
¼

2

4
Knn Kns Knt
Kns Kss Kst
Knt Kst Ktt

3

5

8
<

:

δn
δs
δt

9
=

;
¼ Kδ (A.1)  

where tn, ts and tt are the normal and two shear stress components of the traction vector t; δn, δs and δt represent the relative displacements between the 
connected surfaces in the normal and shear directions; and K stands for the elasticity matrix. In terms of the onset of delamination, it was determined 
using a quadratic criterion proposed by Ye [36]: 

fd¼
�〈tn〉

N

�2
þ
�ts

S

�2
þ
�tt

T

�2
¼ 1 (A.2)  

where N, S and T represent the normal and two shear strengths of the interface; the Macaulay brackets 〈〉 ensure that only the tensile normal traction is 
used in identifying the onset of delamination. 

In terms of the propagation of delamination, a scalar damage variable, D, was defined to account for the linear degradation of the elasticity matrix 
due to mixed-mode delamination: 

Kd ¼ DK D ¼
δf

m

�
δmax

m � δo
m

�

δmax
m

�
δf

m � δo
m

� (A.3)  

where Kd refers to the damaged elasticity matrix; D is the damage variable; δmax
m stands for the maximum value of the effective separations attained in 

the whole loading history; and δo
m and δf

m are the separations corresponding to the onset of delamination and failure. Here, it must be noted that the 
values of δo

m and δf
m vary with the mixed-mode ratio. The former was determined as a function of the strength values and the mixed-mode ratio [37], 

while the latter was treated using the BK criterion [38] and associated with the fracture toughness properties, i.e. Mode I (opening) fracture toughness, 
GIC, Mode II (sliding) fracture toughness, GIIC, and Mode III (tearing) fracture toughness, GIIIC. 

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.compositesb.2020.107885. 
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