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Abstract—Correlation filter has been proven to be an effective tool for a number of approaches in visual tracking, particularly for
seeking a good balance between tracking accuracy and speed. However, correlation filter based models are susceptible to wrong
updates stemming from inaccurate tracking results. To date, little effort has been devoted towards handling the correlation filter update
problem. In this paper, we propose a novel approach to address the correlation filter update problem. In our approach, we update and
maintain multiple correlation filter models in parallel, and we use deep reinforcement learning for the selection of an optimal correlation
filter model among them. To facilitate the decision process in an efficient manner, we propose a decision-net to deal target appearance
modeling, which is trained through hundreds of challenging videos using proximal policy optimization and a lightweight learning
network. An exhaustive evaluation of the proposed approach on the OTB100 and OTB2013 benchmarks show that the approach is
effective enough to achieve the average success rate of 62.3% and the average precision score of 81.2%, both exceeding the
performance of traditional correlation filter based trackers.

Index Terms—correlation filter, visual tracking, reinforcement learning, model selection, deep learning.
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1 INTRODUCTION

Visual object tracking is a process of locating objects of
interest precisely over a sequence of image frames, given a
bounding box in the initial frame. Instance-level discrimina-
tion plays a vital role in visual tracking. Other than object
recognition tasks, an accurate object tracker should be able
to distinguish not only generic objects from the background
but also recognize and differentiate them from similar ob-
jects. To this end, handling objects that are of similar in color
or geometry to the objects of interest — distractor objects, is
a key challenge during the feature extraction stage of the
visual tracking.

Discriminative correlation filter (CF)-based trackers [1]
[2] [3] [4] [5] achieve a good trade-off between accuracy
and speed by efficiently solving a ridge regression prob-
lem in Fourier frequency domain. Regularized correlation
filters [6] [7] are proposed to further enhance the tracking
accuracy. Gladh et al. introduces motion information along
with hand-crafted features for CF tracking [8]. Mueller et
al. propose a context-aware CF tracking [9]. Sophisticated
learning schemes are proposed to achieve powerful feature
representation [10] [11].

Most discriminative model-based trackers exploit the
target from a given bounding box directly, which is used
to build the appearance model of the objects at latter stages.
During the tracking process, new image patches generated
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from new frames are supplemented to further update the CF
model. Generally, a small update-rate is usually preferred
for CF trackers in order to maintain model stability. These
trackers may easily suffer from a drift problem, especially in
challenging environments such as partial occlusions, back-
ground clutter, and low resolution.

DSST CF2 Proposed Ground-truth

Fig. 1. Visualization of 3 tracking results. Green, purple, red box denote
tracking results of DSST, CF2, and the proposed tracker, respectively;
blue box denotes the ground-truth box of tracking sequences. During
the tracking process, targets suffer from partial occlusion, while other
trackers do not realize this and result in model drift. The proposed
tracker with decision unit updates the appearance model guided by the
response map and skips updating if not necessary.

An example of this is illustrated in Fig. 1, the tracking
model is initialized with a target box in the first frame,
which is also used as the ground truth for subsequent
analyses. A discriminative CF can easily be obtained using
a two-dimensional Gaussian label whose center is the same
as that of the target box. However, during the tracking
process, we notice the target becomes partially occluded by
foreground objects in some cases, as shown in the middle
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column of Fig. 1. However, the CF model is oblivious to this
occlusion issue and kept updated without even evaluating
the reliability of new image patches. Tracking results that are
generated with such poorly updated CF models influence
the subsequent updates of the CF model. A number of such
updates accumulate the errors and results in irrecoverable
model drift.

To mitigate such model drifts, Gao et al. propose a deep
network to learn a relative model to deal with target ap-
pearance changes [12]. Yao et al. propose a semantics-aware
method [13] to enhance appearance model in visual object
tracking. However, it is not flexible to transfer a relative
model or add semantics information into a CF-based tracker.
Furthermore, such a transfer process entails substantial in-
vestment in time towards re-modeling the relative model.
Different from ensembling siamese network [14], a decision-
making network is proposed using a Siamese tracking
framework [15], which also aims to solve the model drifting
problem. Also in other tasks like persion search [16] which
aims to find a more discriminative feature to handle huge
variance of visual appearance. Base on that, we naturally
consider that a selection for CF models will contribute to
building a better discriminative appearance model for visual
tracking.

In recent years, progress in deep learning has been influ-
ential in the domain of visual tracking. Convolutional fea-
tures has been considered in several studies [11], [17], [18],
[19], [20], [21]. These studies show that deep convolutional
networks (DCNs) that are pre-trained with certain large-
scale data and adaptive correlation filter are complementary.
The CF-embedded DCNs are shown to be able to achieve
state-of-the-art performance on many object tracking bench-
marks [22].

An approach of CF-based tracking reformulating the CF
into a convolutional layer can offer end-to-end learning.
For example, in [11], instead of solving the CF with a
closed-form solution, it is learned as kernels of a convo-
lutional layer, which can benefit from end-to-end training.
In this framework, the CF is updated by back-propagation.
However, despite using residual learning to enhance the
feature representation, noisy updates are still a problem.
Meanwhile, the application of Siamese frameworks has also
been explored in visual tracking, including SiameseFC [23],
DSaim [24], SINT [25] and CFNet [26]. They all employ
powerful convolutional network to address the similarity
learning problem for visual tracking.

Although the utilization of both convolutional neural
network (CNN) and CF have been instrumental in ad-
dressing a number of problems and in achieving rather
remarkable outcomes, there are still a number of problems
still remain to be addressed.

First, when obtaining discriminative features for track-
ing, owing to the underlying complexity of parameter
models, significant amount of computational resources are
needed. In addition to this, large models tend to introduce
severe over-fitting problems. Models like VGG-19 tend to
be an inferior option for CF-based trackers. Other than
one forward pass in the convolutional network for feature
extraction, CF trackers need additional time to compute the
correction filter in the Fourier frequency domain which can
hardly benefit from GPUs. Nevertheless, operating in the

Fourier frequency domain speeds up CF.
Second, most existing trackers update tracking models

at each frame. Especially for CF trackers, a simple moving
average scheme is exploited in essence. For example, the
state-of-the-art tracker ECO [10] takes the sparser update to
refine their model. This may, however, cause deterministic
failures once the target is inaccurately detected, severely
occluded or totally missing in the current frame. Meanwhile,
it is hard to judge whether an update for the CF is reliable or
not. Therefore, a more sophisticated model update strategy
is necessary to handle this issue.

Motivated by the fact that the CF model might be up-
dated with inaccurately tracking results, some temporally
old CF models might be able to generate better tracking
results than the latest one. In this paper, we propose to
maintain more than one CF model. Instead of always using
the latest CF model, the most suitable CF model will be
selected and used to generate tracking results. To select the
most suitable one among multiple models, reinforcement
learning is deployed.

Convolutional features contribute to robust feature rep-
resentation. Therefore, in our proposed method, we engage
a light-weighted convolutional network as feature extrac-
tor. Meanwhile, the performance of CF-based trackers, in
comparison to other trackers, is a great advantage. While
a standard CF solver is exploited for tracking, the net
structure in [20] satisfies the need for fast convolutional
feature extraction. Based on this work, we investigate the
model update problem by formulating CF model updating
as a Markov decision process.

Reinforcement learning has been studied for visual
tracking recently [27], [28]. Huang et al. [27] succeeds in
utilizing Q-learning [29] for shallow-level or high-level fea-
ture selection. ADnet [28] uses policy gradient learning and
trains action dynamics for tracking with annotated visual
tracking sequences. Recently, Dong et al. [30] propose to use
continuous deep Q-Learning for hyperparameter selection
in tracking. Our work is significantly different from these
existing works, in that we are studying the model update
issue with reinforcement learning.

The main contributions of this paper are as follows:

1) We propose a novel approach for selecting an op-
timal model among multiple CF models which are
updated and maintained in parallel. This approach
addresses a number of concerns that arise from a
single CF model, such as drift;

2) We propose a reinforcement learning-based ap-
proach for optimal model selection. To the best of
our knowledge, this is the first time that reinforce-
ment learning is utilized for model selection among
multiple CF models;

3) We utilize a light-weight feature extractor and pro-
posed a small decision network so that the proposed
approach can be deployed in real-time applications,
where the frame rates are high;

4) We exhaustively evaluate the proposed approach
on OTB100 and OTB2013 benchmarks. Our results
show an average success rate of 62.3% and average
precision 81.2%. These results are better than the ap-



proaches that adopt traditional CF trackers without
multiple model selection.

The rest of this paper is organized as follows. In Sec-
tion 2, we present a detailed literature survey. The proposed
tracking method with implementation details is described in
Section 3. We present and discuss the experimental results
in Section 4. Finally, conclusions are set out in Section 5.

2 RELATED WORK

2.1 Correction Filter Based Tracker

CF-based trackers achieve a good trade-off between ac-
curacy and speed by solving a ridge regression problem
efficiently in the Fourier frequency domain. After Bolme et
al. introduced the CF for fast visual tracking, several bodies
of work have been proposed to improve the tracking per-
formance of CF-based approaches. Henriques et al. propose
a circulant structure kernel tracker (CSK) [3]. A high-speed
tracker with kernelized correlation filters (KCF) is proposed
in [5]. In KCF [5], a multi-channel Histogram Of Gradient
(HOG) feature is introduced to calculate the CF. Danelljan et
al. introduce a scale pyramid representation [2] to handle the
scaling issue and proposed the 3-dimensional CF. In [31],
separate discriminative correlation filters were learned for
translation and scale estimation, respectively. To mitigate
unwanted boundary effects, Danelljan et al. introduced a
spatially regularized term [6] to penalize CF coefficients
based on their spatial locations. Unfortunately, the improve-
ment in accuracy goes along with significant reductions in
tracking speed.

Some other CF methods focus on improving the feature
representation by directly taking several layers of a pre-
trained deep network like VGG [17], [18]. On top of pre-
trained convolutional layers, convolution operator tracker
(COT) [19] was proposed to integrate multi-resolution con-
volutional features in different layers. The CREST [11]
framework reformulated the CF into a convolutional layer.
In addition, Qiang et al. present an end-to-end light-weight
network architecture [20] to learn better features that fit
the CF model using off-line training. In their work, a CF
is treated as a special layer added to a Siamese network.
Feature extractor consisting of two convolutional layers is
trained for the online tracking task. We exploit the feature
extractor from [20] and further investigate the CF model
update problem using the latest reinforcement learning al-
gorithms [32], [33].

2.2 Deep Reinforcement Learning

Deep reinforcement learning (RL) algorithms have already
been applied to various problems arising from different
domains. Control policies for robots can be learned by RL
directly from real camera outputs [34], [35]. Deep learn-
ing enables RL to scale to decision-making problems. The
standout success of AlphaGo, which defeated a human
world champion in Go, has shown deep RL can handle
complex states and action spaces very well. Also deep RL is
applied for many computer vision tasks like objection local-
ization [36], [37], object detection [38], action recognition [39]
and person re-identification [40].

High variance in gradients makes it difficult to train
a deep RL network. Actor-critic methods [41], [42] uti-
lize learned value function as feedback term to guide
the training. Trust region policy optimization (TRPO) [32]
has been shown to be relatively robust and applicable to
domains with high-dimensional inputs. To achieve this,
TRPO optimizes a surrogate objective function, specifically,
it optimizes an (importance sampled) advantage estimate,
constrained with a quadratic approximation of KL diver-
gence. The latest proximal policy optimization (PPO) [33]
algorithm performs unconstrained optimization, requiring
only first-order gradient information. Due to its good per-
formance, PPO is gaining popularity for a range of deep
RL tasks. Our work also uses the PPO algorithm to learn
a policy for selecting an appropriate CF model for visual
tracking.

Employing the deep RL algorithms into computer vision
problems could benefit from the experience. In fact, RL has
been studied for visual tracking in several recent works [27],
[28], [43], [44]. Huang et al. succeed in utilizing Q-learning
[29] for shallow-level or high-level feature selection [27].
Yun et al. propose an action-decision network [28] used
policy gradient learning and trained action dynamics for
tracking with annotated visual tracking sequences. Luo et al.
propose an active tracking scheme trained in simulators by
reinforcement learning [45]. Our work distinct from these
existing works, in that we are studying the model update
issue with reinforcement learning.

Initial Dynamic Over-updated

Max value

Real position

Fig. 2. A visualization of 3 response maps from CF models of different
stages. Bright yellow color denotes regions where high probability the
target will be, while the dark blue color represents a relatively low
probability. After a period of update, CF model drifts and the over-
updated model produces a good-looking response map while failing to
track the true target. (Better viewed in color)

3 OUR APPROACH

In visual tracking, the traditional CF model might be up-
dated with inaccurately tracking results, and suffers from
drift problem, as shown in Fig. 1. To mitigate the issue
of possible inaccurate model update during the tracking
process, we propose to maintain more than one CF model
for visual tracking. Instead of always using the latest CF
model, the most suitable CF model will be selected using
reinforcement learning. More specifically, the current search
frame is input into the convolutional feature extractor, and
several response maps are generated utilizing all the main-
tained CF models. Each response map corresponds to one
CF model. Different response maps at one-time step are
visualized in Fig. 2. The RL algorithm PPO [33] is utilized
to select the most suitable CF model based on the convolu-
tional feature of the corresponding response map. Then, the
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Fig. 3. Given a sequence containing L frames, we take the target location in the first frame and use its feature to initialize the CF model. Different
states at each time-step would produce CF models sharing different memories of target appearance. From each CF model, we obtain one
corresponding response map. The trained decision network will select the response map based on learned experience and finally point out the
target locations.

tracking bounding box is generated using the corresponding
CF response map. Finally, the CF models are updated with
the new tracking bounding box, which will be used for the
next frame. The overall proposed framework is presented
in Fig. 3. The pseudo-code of the algorithm is described in
Algorithm 1.

Algorithm 1: Visual tracking with multiple CF models
and reinforcement learning.

Input:
Tracking sequence of length L
Initial object location x0
Output: Target object location in frame t xt

Initialize CF model M0 with the ground-truth
Set history CF model M1, .. , MK−1 = M0

for t = 1 to L do
for i = 1 to K do

Calculate response maps Pi with each Mi

Produce confidence score via decision net
π(at|st; θ) for each Pi

end
Choose the response map with maximum
confidence Pm ;

Localize the target according to chosen Pm;
Update corresponding CF models and save to
history;

end

In this section, we first present the standard problem
formulation for CF-based tracking. Then, we introduce the
decision-making process using reinforcement learning. Fi-
nally, we explain how to train the RL model and design the
new CF update mechanism.

3.1 Correlations Filter Model

The CF-based trackers have demonstrated strong capabil-
ity on building accurate models with slight online model
updating. Recently, many proposed new tracking algo-
rithms [11], [46] benefit from the advantage of CF. A stan-
dard CF can be solved following the objective function (1),

arg min
f

= ||ψ(x) ∗ f − g||2 + λ||f ||2, (1)

where f is the CF, ∗ is the circular correlation or convolution
operation, and ψ is a feature extractor, x is a cropped image
centered on the target, and g ∈ RH×W is the desired
Gaussian shaped response map label. f can be efficiently
solved by transforming (1) into the Fourier domain. The
Fourier domain representation of f can be calculated as (2).

F =
Ḡ� X̄

X̄ �X + λ
, (2)

where G is the Fourier transformation from Gaussian
shaped label g, X is the Fourier transformation of x, and the
bar means complex conjugation. Operator � is the element-
wise product.

New search image z around the target in the next frame
is cropped with 2 to 4 times of the target size. A response
map P in the Fourier domain is obtained by (3).

P = F � Z̄, (3)

where Z is the Fourier transformation of z. At a new track-
ing frame, once the CF F is ready, the tracking bounding
box center locates at the coordinate that has the maximum
response value.



Typically, the numerator A and denominator B of the
CF in (2) are updated separately using a moving average
mechanism.

At = (1− η)At−1 + ηG ∗ X̄t, (4)
Bt = (1− η)Bt−1 + ηXt ∗ X̄t + λ, (5)

Traditional CF trackers update tracking models frame
by frame without considering their tracking results. This
may cause an inaccurate model update when occlusion or
object missing occurs. Designing a criterion to produce high-
confidence update has been exploded by [47]. Average peak-
to-correlation energy (APCE) is proposed to select high-
confidence response maps which effectively prevent CF
model from corruption. In this paper, instead of calculating
an APCE score to decide whether to update the model or
not, we introduce a learning algorithm to perform multiple
model selection.

3.2 Model Selection Using Reinforcement Learning

We formulate object tracking as a discrete control problem,
which requires the tracker to rapidly respond to object’s
movement and appearance change based on CF response
maps.

In the RL set-up, the agent interacts with the environ-
ment by taking an action corresponding to the current state.
After the agent receives a state, the agent uses its policy
to take an action. Both the environment and the agent will
transit to a new state based on the current state and the
chosen action. A reward evaluating the made action will be
used as feedback and sent to the decision unit to learn and
improve the policy.

At frame t, we denote the observed state by st, which
is a set of response maps generated by the CF models.
Denote the action by A of size k, which represents selecting
k different CF models. At each frame, we draw an action
at (at ∈ A), from a policy distribution. Then, a reward,
rt, according to the tracking results, can be calculated and
obtained after the agent’s action. The reward is computed
through reward function rt = g(st, at), and we will detail
the function later. The old state is updated by the agent and
a new state st+1 will be generated which is an unknown
state depending on the taken action. Repeating this process,
we can observe a sequence of {state, action, reward}, de-
noted as τ = {(s0, a0, r0), · · · , (st, at, rt), · · · , (sT , aT , rT )}.
Here, at time-step T , the tracker reaches the end of the
sequence or it fails to locate position inside the image. The
collected samples are used to update the decision network.
The block diagram of reinforcement learning for visual
tracking is illustrated in Fig. 4.

Meanwhile, we can learn policy function π(st; θ) and
value function V (st; θ) over the trace τ with stochastic
policy gradient and value function regression using PPO
[33]. The loss function Lt(θ) is defined as follows, which
combines the policy surrogate and value function term.

Lt(θ) = min( Ratio∗At, clip(Ratio, 1− ε, 1 + ε) At), (6)

where

Ratio =
π(at|st; θ)
π(at|st; θold)

, (7)

Here, θold is the vector of policy parameters before the
update. θ is the new policy parameters. π(at|st; θ) is the
policy function, which defines the probability to take action
at, under the state st and policy parameters θ. Similarly,
π(at|st; θold) is the the probability to take action at, under
the state st and the old policy parameters θold.

The clipped surrogate objective limits the variation of
the surrogate, which adds constraint between the old and
new policy before and after the update. Parameters will be
updated based on the collected τ in time when T time-step
is over. Adam optimizer is used for updating the policy and
value network. ε is the clipping parameter which is set to
0.2 in this paper.

At is the advantage estimation given state st, which
includes both the current and future rewards.

At = rt+γrt+1 +..+γT−t+1rT−1+γT−trT −V (st; θ), (8)

Here At is the difference between the accumulated reward
and the estimated state value V (st; θ). In actor-critic algo-
rithms, the advantage function is the difference between
the accumulated reward and the estimated average reward,
defined as value function V (st; θ).

State and Action Generally, the state comprises sufficient
information from the environment for the agent to take
actions. Other than directly taking the input image patches
as the state like ADnet [28], in our proposed method, all
the response maps produced by corresponding CF models
are used as the state. In the proposed visual tracking frame-
work, an action is defined to select one response map among
all candidates by the agent. Actions are sampled from a
policy distribution π, and the action with the highest score is
more likely been chosen by the agent. The selected response
map is used to generate tracking results in the current frame,
which will be used to update CF models. These updated
CF models will generate response maps in the following
frames, which serve as the state of the next time slot. This
above state transition process will repeat until the last frame.
Reward The reward function is defined as rt = g(st, at).
A total accumulated reward can be produced until the
termination time-step T . At termination time-step T , the
tracker reaches the end of the sequence or it fails to locate
position inside the image.

g(st, at) =


IOU + 1 IOU > 0.7

−1 IOU < 0.2

−0.1 otherwise

, (9)

where IOU denotes the overlap ratio between tracking result
and the ground-truth.
Correlation Filter Update In order to build better dis-
criminative appearance model, we keep k CF model in
our framework, including 1 initial model, 1 accumulated
model, and k − 2 dynamic models. Siamese trackers only
compare the difference between candidates in search image
and the ground-truth in the first frame. So we continue to
have the initial CF in our model pool without any updates.
Model drift would easily happen when the tracker lost
the memory of the original targets. Also, we always keep
another accumulated CF model in our model pool in order
to better adapt to the viewpoint change, deformation and
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Fig. 4. Training process of reinforcement learning algorithm for tracking. Decision network which consists of a policy network and a value network,
takes the observation from the environment and produce instructions for the agent to act. at here is to select appropriate CF models which generate
response map to speculate target location. A collection {(s0, a0, r0), · · · , (st, at, rt), · · · , (sT , aT , rT )} is sampled after a series of actions, which
is used to update the decision network.

other variations. Between these two typical situations, k− 2
dynamic CFs play the role of ’peacemaker’ and the update
for dynamic CFs only activated when chosen by the decision
net. All the k models are initialized by the given tracking
target, and the dynamic models are adaptively updated,
during the tracking process. The decision-making process
of our approach is shown in Fig. 5.

Tracking Process

Decision
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T
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U
P
D
A
T
E

Response map
at t

Response map
at t + 1

Response map
at t + n

Initial CF

Dynamic CF

Accumulated CF

Decision

Fig. 5. Decision making in the tracking process. CF models numbers
shown in the example is k = 3. As shown in this figure, an initial model
is chosen at time t which result in the dynamic model unchanged until
the time t + 1 while only the accumulated model is updated. After that,
both the dynamic model and the accumulated model are updated at time
t+ 1 because of the activation of the dynamic model.

3.3 Decision Network
The response maps are input to the decision network for
selection. The network includes 2 branches, the policy net
branch, and the value net branch using the actor-critic
framework. As described in Table 1, the 2 branches have
separate convolutional layers, one shared fully connected
layer and another separate fully connected layers.

Response maps of a new input frame are resized to
64 × 64 × 3 image and fed to the network as input, and
here we call it the state or observation. Then the policy
net branch will produce a distribution over all actions.
It is worth noticing that action probability distribution is
generated through beta distribution [48]. Finally, an action
with the highest probabilities is selected.

Unlike the policy gradient algorithm for online adap-
tation in ADnet [28], we adopt the actor-critic framework.

An expected accumulated reward is generated by the value
function for one specific policy, which guides the ”actor”
(policy) to learn by taking feedback from the ”critic” (value
function) and reduces the variance of policy gradient during
the training.

TABLE 1
The structure of our decision network.

Layers #1 #2 #3 #4 #5

Policy net C5 × 5 C3 × 3 C3 × 3

FC512
FC512−32S2 −32S2 −32S2

Value net C5 × 5 C3 × 3 C3 × 3 FC512−32S2 −32S2 −32S2

1 C5× 5− 32S2 means 32 filters of size 5× 5 and stride 2. FC512
indicates dimension 512.

3.4 Reinforcement Training with PPO

Environment Setup To avoid over-fitting, we used a
large-scale video detection dataset VID [49] for training
our tracker. VID consists of 30 object categories, which is
a subset of 200 categories in the object detection dataset. We
sub-sampled the dataset and choose videos whose target
size is less than 60% of their frame size.

To improve the training efficiency, we first test all se-
lected videos via CF tracker. Based on the tracking accuracy,
all the sequences are classified into 3 categories, including
easy sequence, extremely hard sequences, and moderate
sequences [50]. We exclude easy and extremely hard se-
quences from the training set, since (1) easy sequences will
produce k similar good responses maps that vague the
decision criterion, and (2) those extremely hard sequences
can provide less valid samples and ambiguous labels for RL
training.

Training Process A training batch consists of randomly
sampled sub-sequences and its ground-truth from the pre-
pared database. It is noteworthy that the unexpected track-
ing failure would produce a series of useless negative
samples, which means the length of training sequences
should be limited. A simulation is used to generate a series
of actions by the decision net, i.e., choosing one among
different response maps from stored CF models. Rewards
will be obtained when the simulation is over, right actions
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Fig. 6. Precision and success plots of overall performance comparison for the videos in the benchmark [22]. Average distance precision and overlap
success rate are reported. Listed CF based trackers are DSST [2], KCF [5], SRDCF [6], dcfnet [20], and HP [30].
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Fig. 7. Tracking performance comparison with various reinforcement training iterations. Five different snapshots are shown, and the OPE
performance increases with training iteration number.
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Fig. 8. Tracking performance comparison of three different model update strategies: always updating CF model, random updating and the proposed
updating by decision(PPO-3-model, PPO-4-model, A2C-3-model).

with high expected returns will be encouraged with high
rewards. Finally, our decision net is trained to recognize
appropriate CF models by optimizing the clipped surrogate
objective function (6).

Generally, in each iteration, our on-policy RL algorithm
updates θ several times by gradient ascent, i.e., θ ← θ +
∆ θ. If the new policy π or the new state value V changes
exceed a certain threshold, the clipped function will limit the
network parameter update, which effectively constrains the
variation caused by a challenging tracking sequence. This
mechanism improves the training stability.

4 EVALUATION

In this section, we detail our experimental setup and the
parameters we used during the training and testing. Quan-
titative and qualitative experiments have been conducted
on popular visual tracking benchmark datasets, namely the
OTB2013 and OTB100. We compared our proposed algo-
rithm with the other five CF-based tracking frameworks.
Meanwhile, we validated the effectiveness of our proposed
method by conducting various ablation studies. For fair
comparisons, no additional modification is allowed dur-
ing the evaluation. The experiments were conducted on
a system with an E5-2620v3 2.4GHz CPU having 32 GB
memory and a GTX TITAN X GPU using MATLAB2017b



Algorithm 2: RL training via PPO
Input:
Random sampled tracking sequence of length L,
along with it ground-truth G
Decision network D(θ)
Output: Updated Decision network D

Initialize CF model M0 with the ground-truth
Set history CF model M1, .. , MK−1 = M0

for t = 1 to L do
for i = 1 to K do

Calculate response maps Pi with each Mi

Produce confidence score via decision net
π(at|st; θ) for each Pi

end
Choose the prediction map with the maximum
confidence;

Localize the target according to chosen Pm;
Obtain reward rm
Update corresponding CF models and save to
history;

end
Sum discounted reward as return
Update Decision network D(θ) by Adam with
equation (6) for d = 10 times

and PyTorch.

4.1 Experimental Setup

In the tracking process, the searching image within the
current frame is twice the target size on the horizontal and
vertical direction. In order to cover different scale changes,
3 scaled versions of the search image are used to find the
best scale that fits the scale change. The scale parameter
is set to 1.025. If not explicitly specified,three CF models
are maintained in our experiments, i.e., k = 3, including
the initial model for tracking, the dynamic model, and the
accumulated model. The accumulated model is updated at
each frame, while the initial model is kept unchanged. The
dynamic model is updated once it is selected by the decision
network. For the dynamic model and accumulated model,
average moving parameter 0.05 is used, and new CF models
will replace old models.

4.2 Comparison on Benchmarks

We evaluated our method in comparison with existing CF
trackers on the popular visual tracking benchmarks, Object
Tracking Benchmark (OTB) [22]. Tracking algorithms KCF
[5], DSST [2], SRDCF [6], DCFnet [20] and HP [30] are
evaluated for comparison. The dcfnetpy is our implemented
algorithm of DCFnet [20] in python, which achieved similar
performance as reported in [20]. Two standard evaluation
metrics, namely distance precision (DP) and overlap success
(OS) rate, are used to evaluate trackers’ performance. DP
is the frame proportion of the predicted position within a
given threshold. Overlap success rate is defined as the per-
centage of frames that overlap between predicted location
and ground-truth surpassing the threshold.

TABLE 2
A comparison of our approach with other CF-based trackers. The mean
overlap precision (OS) (%) and distance precision (DP) (%) over all the
videos in the OTB2013 dataset are presented. DP at a threshold of 20

pixels, overlap success (OS) rate at an overlap threshold 0.6.

Method Proposed dcfnetpy SRDCF [6] DSST [2] KCF [5]
OS (%) 74.58 72.23 70.98 61.65 52.25
DP (%) 85.12 84.59 83.79 73.70 74.06

TABLE 3
A comparison of our approach with other CF-based trackers. The mean
overlap precision (OS) (%) and distance precision (DP) (%) over all the
100 videos in the OTB100 dataset are presented. DP at a threshold of

20 pixels, overlap success (OS) rate at an overlap threshold 0.6.

Method Proposed dcfnetpy SRDCF [6] DSST [2] KCF [5]
OS (%) 68.89 67.07 65.67 55.39 46.03
DP (%) 81.19 80.13 78.74 69.10 69.31

Quantitative Comparison Overall performance comparison
for the 51 videos in the benchmark [22] is reported in Fig. 6,
which includes both precision and success plots. It can be
observed that in success plots our proposed algorithm is
always above other trackers for overlap threshold above 0.5.
The performance gain is increasing with overlap threshold,
showing our proposed method consistently contributes to
the tracking accuracy with various overlap threshold.

Table 2 is comparisons of our approach with other CF-
based trackers. The mean overlap precision (OS) and dis-
tance precision (DP) over all the OTB dataset are presented.
The results are obtained with DP at a threshold of 20
pixels, overlap success(OS) rate at an overlap threshold of
0.6. Results show that our algorithm performs favorably
against other CF methods for a common setting. Among
the existing CF trackers, our proposed method achieves
the best results with an OS of 68.89%, DP of 81.19% on
OTB100. Our achieved OS and DP are respectively 1.82%
and 1.06% higher than that of CF models without model
selection (dcfnetpy).

In Fig. 11, the performance of 5 CF-based trackers for
11 attributes on OTB100 is reported, including background
clutter, low resolution, scale variation, illumination varia-
tion, deformation, motion blur, in-plane rotation, occlusion,
and out-of-view. Generally, our proposed tracker achieves
superior accuracy compared to other CF trackers for most
of the attributes. Due to the multiple model selection,
our method is able to handle occlusion better during the
tracking, and the results in 48 occlusion sequences improve
by 3.7% in success rate and 3.1% in precision compared
with the always updating strategy (dcfnetpy). Similarly, our
proposed method works well in 14 out of view sequences
and in 9 low-resolution sequences.
Qualitative Comparison Fig. 10 presents the superiority of
our algorithm qualitatively compared to other 4 CF trackers
on 7 challenging sequences. The CF2, DSST methods lose
track of the target gradually due to significant occlusion
and motion blur in Box and Girl sequences. The SRDCF,
KCF, CF2 trackers are not able to keep tracking the target
after occlusion and illumination changes in Box and Girl2
sequences. It can also be observed that when scale variation
and occlusion happen as in Dragonbaby, the DSST and



TABLE 4
Tracking performance comparison with various reinforcement training

iterations. On OTB2013, DP at a threshold of 20 pixels, overlap
success (OS) rate at an overlap threshold 0.6.

Iteration 4k 8k 12k 16k 20k
OS (%) 67.2 68.3 69.6 70.6 70.9
DP (%) 76.2 78.9 79.0 79.8 80.3

KCF trackers do not perform well. Other trackers fail in
the presence of out-of-plane rotation, scale variation, and
fast motion. It is noticed that our proposed multiple model
selection could discover the missing target after a long-term
tracking failure, while other trackers can hardly recover
from the drifting. Overall, our proposed tracker is able to
alleviate the drifting issue in many challenging sequences.

4.3 Ablation Study

We conducted some ablation studies to demonstrate the ef-
fectiveness of our method. In Fig. 7, performance is reported
with different training iterations on OTB2013. The precision
and success rates increase with the iteration, proving that
the reinforcement learning process effectively guides the
optimization.
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Fig. 9. Normalized Rewards vs Iteration Number through train process,
A2C [42], PPO [33], and DQN [29]

We also conducted additional experiments with differ-
ent CF model selection/updating schemes. The ”always-
update” scheme always uses the latest CF model to find the
tracking object and updates the model at each frame. The
”random-update” scheme randomly select a model among
the initial model, dynamic model and accumulated model,
and updates the randomly selected model at each frame. We
set dynamic model with number 1 and 2 respectively in our
experiments, which are denoted by PPO-3-model and PPO-
4-model. The performance comparison results are plotted in
Fig. 8 and numeric results are reported in Table 5. Overall,
our model selection scheme outperforms both the ”always-
update” and ”random-update” schemes, showing that by
using the proposed CF selection strategy, our decision net-
work is able to choose the most suitable CF for visual
tracking, and to a certain extent, the model drift has been
reduced. PPO-model-3 and PPO-model-4 lead to similar

performance for both metric OS and DP. Therefore, we use
PPO-model-3 model throughout the paper for performance
evaluation due to its lower complexity.

We also employ different reinforcement learning algo-
rithms to replace the proximal policy optimization. First, we
disable the Clipped Surrogate term and degrade it into a
basic synchronous advantage actor-critic model (A2C [42]).
The policy/value network structures and parameters are
kept the same. The update is performed after the 4 actor-
learners finishing collecting data, in order to improve the
training stability. Moreover, we further degrade the RL
algorithm into a DQN [29]. The agent’s experiences state
at each timestep is stored to perform experience replay, Q-
learning updates are applied by random sampling from the
experience pool. The train reward with update iterations
is shown in Fig. 9. It shows that an improvement of the
reward due to the advantage actor-critic algorithm A2C
and PPO, while the traditional DQN does not work for
the model selection under a similar training setting. It is
also important to note that the A2C algorithm takes 50%
more time to reach the same update iteration number of
PPO in our experiments. Also the PPO algorithm ends up
with higher rewards than the A2C algorithm and a better
tracking performance is achieved,as reported in Table 5.

5 CONCLUSIONS

In this paper, we have proposed a novel approach for CF-
based visual tracking. In our approach, multiple CF models
are updated and maintained in parallel and an optimal
model is selected on demand using the deep reinforcement
learning. The proposed algorithm learns the model selection
policy with the proximal policy optimization algorithm,
while utilizing the selected CF model to conduct object
tracking.

We show that the model selection via response map can
effectively overcome the model drifting issues, and enhance
the robustness of the trackers. Our exhaustive experimental
evaluation using two key benchmarks, covering both the
quantitative and qualitative aspects, show that our approach
can handle a number of tracking challenges and can offer
substantially better tracking performance when compared
to traditional CF-based trackers.
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DSST CF2 Proposed KCF Pydcfnet Ground-truth

Fig. 10. Visualizations of our tracking results(Box, DragonBaby, Matrix, Girl2, Human, Tiger, Ironman). Green, Purple, Red, Light Blue, and Black
box denote tracking results of DSST, CF2, Proposed, KCF, pydcfnet, respectively. Blue box is the ground-truth box, Yellow numbers on the top-left
corners indicate frame numbers.
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Fig. 11. The performance of 5 CF-based trackers for 11 attributes on OTB100, which contains 100 video sequences. dcfnetpy is our python
implementation of DCFNET. Our proposed model achieves higher success rate and precision compared with others.
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