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Abstract 

A multiple state model describes the transitions of the disability risk among the states of active, 

inactive and dead. Ideally, estimations of transition probabilities and transition intensities rely 

on longitudinal data; however, most of the national surveys of disability are based on cross-

sectional data measuring the disabled status of an individual at one point in time. This paper 

aims to propose a generic method of the estimation of the expected transition probabilities 

when the model allows recovery from disability using the UK cross-sectional data. The 

disability prevalence rates are modelled by taking into consideration the effect of age and time. 

Under some plausible assumptions concerning the death rates among inactive and active 

people, the estimated prevalence rates of disability are used to decompose survival probabilities 

in each state. 
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JEL classifications : C35, H53, H55, J19 

1. Introduction 

Public social spending, which comprises 21% of GDP in 2016 on average across the OECD, is 

mostly spent on cash benefits related to old age and survivor pensions, incapacity benefits, 

unemployment, family cash benefits and other social benefits (OECD, 2017). On average, cash 

income support for the working-age population amounted to 4.4% of GDP in 2013, comprising 

1.8% for disability benefits, 1.3% for family cash benefits, 1% for unemployment benefits and 

0.3% for other social cash support (OECD, 2014). Notably, for the working-age population, 

the fiscal cost of incapacity benefit or disability insurance—defined as a periodic income, 

usually weekly or monthly, paid to an individual who is unable to work due to illness or 
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disablement—has been increasing in several countries, such as Australia, Belgium, France, 

Iceland, Netherlands, and the United States, due to a substantial growth in disability beneficiary 

rates (OECD, 2017).  

Disability and poor health conditions lead to a decline in labour force participation. Many 

workers leave the labour market permanently due to health problems or disability, while there 

are few people with reduced work capacity who remain employed (Jones, 2008; OECD, 2010; 

Webber and Bjelland, 2015). Very few recipients of disability benefits return to the labour 

market, even if they have a significant remaining work capacity (OECD, 2009). In the late 

2000s, only around 40% of disabled people in OECD countries were employed, and 

unemployment rates of disabled individuals doubled those of people with no disability (OECD, 

2010). At the same time, the high level of unemployment among the disabled population as 

well as the increasing/larger number of individuals who are receiving long-term sickness and 

disability benefits raises serious concerns about the sustainability of the public finance of such 

benefits (Bell and Smith, 2004; McVicar, 2008). 

A thorough understanding of the transitions of an individual into and out of a disability state 

and the accurate estimation of the probability of becoming and remaining disabled are essential 

data for the government to design the provision of a disability benefit programme, to determine 

the demand for such programme and to project public expenditure on incapacity benefits.  

The logical concept used to describe the transition of disability risk is commonly provided by 

a multiple state model1 with relevant states of active (or healthy), disabled (or invalid) and dead 

(Haberman and Pitacco, 1999; Pitacco, 2014). Although the model typically relies on 

longitudinal data, most of the national surveys of disability or poor health conditions consist of 

cross-sectional data measuring the disabled/invalid status of a person at one point in time. Also, 

the data required for the estimation of transition rates are often missing.  

To overcome the limited data for the use of multiple state models, several researchers have 

recently shown how to derive transition rates across active and disabled states by using 

disability prevalence rates from cross-sectional data. Rickayzen and Walsh (2002), Leung 

(2004), Leung (2006) and Hariyanto et al. (2014) identify the functional forms for the one-year 

deterioration probabilities, i.e. the probabilities of moving to any worse disability level state. 

 
1 Estimations of transition probabilities and intensities require the total number of transitions from one state to 

another (e.g. active to disabled, disabled to active, active to dead and disabled to dead), time at transition 

occurrences and the exposure to risk in each state. 
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The parameters for each function type are chosen to replicate the observed prevalence rates 

closely while assuming of a stationary population structure.2 Nuttall et al. (1994) suggest a 

multiple state model of health among the elderly considering three states—healthy, disabled 

and dead—with no transition from the disabled to the healthy state. The disability incidence 

rates were calculated from the disability prevalence rates and disabled mortality rates. By using 

the disability prevalence rates, Albarran et al. (2005) compute transition probabilities and 

survival and death probabilities for the ageing population under the active and disabled states. 

Also, they employ the annual population mortality rates to decompose the probabilities of death 

among people with and without disability under some plausible assumptions regarding the 

relative risk of mortality for each group of individuals. 

The abovementioned recent studies have mostly modelled disability rates among the elderly, 

whereas this paper aims to investigate the evolution among working-age people. We develop 

a generic estimation method for calculating the transition probabilities in a one-year multiple 

state model based on disability prevalence rates, hence our method is an extension of Albarran 

et al.’s (2005) modelling. We apply our method to the UK working-age population using the 

cross-sectional Labour Force Survey (LFS) to identify employment circumstances and 

disability prevalence. We then model the disability prevalence and the recovery rates from 

disability taking into consideration the effect of age and time trends. 

Following this introduction, the paper is structured as follows. Section 2 first describes the LFS 

dataset used to estimate gender- and age-specific disability prevalence and recovery rates and 

then reports the annual mortality rates for the general population provided by the Human 

Mortality Database. Section 3 describes our multiple state model and the multiple logistic 

regression models to estimate disability prevalence rates and the one-year recovery rates. 

Section 4 the estimated disability rates, one-year recovery rates and transition probabilities are 

illustrated. Section 5 provides conclusions and additional comments. 

 

 

 
2 The age structure, mortality and birth are constant. The rate of variation between birth and mortality is therefore 

also constant. Thus, the number of population, of births and of deaths of any age is the fraction of the number of 

population at an initial age (United Nations, 1968). 
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2. Data description 

The UK LFS is a quarterly survey of the employment circumstances of the UK working-age 

population, aged 16–59 for women and 16–64 for men.3 This survey4 contains self-reported 

disability data incorporating two definitions of disability: the Disability Discrimination Act5 

(DDA) and the work-limiting disabled. The former applies to any person that currently has a 

long-term health problem or disability and whose impairment has a substantial and long-term 

adverse effect6 on his/her ability to undertake normal day-to-day activities7. The latter applies 

to any work-limiting disabled individual who has a long-term health problem or disability 

relating specifically to working life and whose impairments affect either the kind or amount of 

work he/she might do. In the LFS there is one question about the current respondent’s 

disability. The possible answers by the respondent are 1) both DDA (current disability) and 

work-limiting disabled, 2) DDA disabled (current disability) only, 3) work-limiting disabled 

only and 4) not disabled.8 

The LFS surveys any respondent every three months for five consecutive quarters. This allows 

us to have a one-year observation of transitions among the different states. The LFS provides 

information on the individual’s labour force status, i.e. employed, unemployed or economically 

inactive. The overall sample size of the cross-sectional LFS dataset over the period 1999–2011 

consists of 576,402 people, of which 288,576 are males aged 16–64 and 287,826 are females 

aged 16–59. In each dataset, we use the given person-weight variable to gross up the survey 

estimates to population totals. This sampling weight is based on the number of similar people 

in the whole population in the particular time of the survey and controlling for age and sex. We 

 
3 Until April 2010, the state pension age in the UK was 60 for women and 65 for men. 
4 There are a few national surveys on disability in the UK. For example, in 1986 the Office of Population Censuses 

and Surveys (OPCS) classified disabled children and adults according to ten degrees of disability. However, this 

dataset is out of date and given that it was carried out only in a single year is unable to illustrate trends in disability. 

The Understanding Society panel, wave 1-6, 2009-2015 is one of longitudinal study covering the questions on 

self-reported longstanding illness or disability and activity limiting condition; however, at the time we are 

conducting this research only three consecutive waves have been released. 
5 The Disability Discrimination Act (1995) (DDA), which protects disabled people from discrimination, was 

repealed and replaced by the Equality Act 2010, except in Northern Ireland where this Act is still applied. 
6 See Equality Act 2010: Guidance on matters to be taken into account in determining questions relating to the 

definition of disability, Section B: Substantial, p. 14–26. 
7 See Equality Act 2010: Guidance on matters to be taken into account in determining questions relating to the 

definition of disability, Section D: Normal day-to-day activities, p. 34–47. 
8 Since the answers of the LFS are based on respondents’ self-assessment there is no more information on medical 

tests or the degree of disability. In this paper, as we want to classify the individuals as disabled (inactive) and non-

disabled (active), we include all respondents who selects (1), (2) or (3) as disabled while we classify as non-

disabled those who respond (4). We acknowledge that a limitation in our paper is the fact that we cannot 

distinguish the degree of disability of the individuals and we merge all disabled individuals into the same category, 

i.e. inactive state. 
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estimate the total number of people in the working-age population and the disabled population 

as shown in Table 1.9 

Table 1: Number of inactive working-age population estimates and disability prevalence rates 

by gender and year 1999–2011 

Year 

Male Female Overall 

Inactive 

Population 

Total 

Population10 

Disability 

rate (%) 

Inactive 

Population 

Total 

Population 

Disability 

rate (%) 

Inactive 

Population 

Total 

Population 

Disability 

rate (%) 

1999 1,776,477 18,323,457 9.6951 1,722,695 17,213,707 10.0077 3,499,172 35,537,165 9.8465 

2000 1,772,596 18,422,980 9.6217 1,803,039 17,327,492 10.4057 3,575,634 35,750,472 10.0016 

2001 1,797,411 18,556,952 9.6859 1,786,135 17,462,581 10.2284 3,583,546 36,019,533 9.9489 

2002 1,880,029 18,680,082 10.0643 1,802,317 17,539,222 10.2759 3,682,345 36,219,304 10.1668 

2003 1,778,020 18,818,881 9.4481 1,888,851 17,668,803 10.6903 3,666,871 36,487,684 10.0496 

2004 1,789,503 18,946,537 9.4450 1,831,128 17,798,479 10.2881 3,620,631 36,745,016 9.8534 

2005 1,800,498 19,145,553 9.4043 1,790,341 17,954,150 9.9717 3,590,838 37,099,703 9.6789 

2006 1,812,026 19,339,180 9.3697 1,825,118 18,107,852 10.0792 3,637,145 37,447,032 9.7128 

2007 1,849,885 19,532,406 9.4708 1,836,278 18,189,036 10.0955 3,686,163 37,721,442 9.7721 

2008 1,870,487 19,704,044 9.4929 1,737,931 18,256,260 9.5196 3,608,418 37,960,304 9.5058 

2009 1,842,044 19,814,587 9.2964 1,811,686 18,331,005 9.8832 3,653,730 38,145,592 9.5784 

2010 1,951,609 19,910,234 9.8020 1,851,813 18,408,702 10.0594 3,803,422 38,318,937 9.9257 

2011 2,088,107 19,955,266 10.4639 1,816,924 18,241,314 9.9605 3,905,032 38,196,581 10.2235 

Source: The authors’ calculation based on the LFS dataset 

In this paper, we link self-assessed disabled people with the labour force status—unemployed 

or economically inactive—as a proxy for the number of disabled individuals who are entitled 

to receive incapacity benefits (state ‘Inactive’ in Figure 1). The remaining individuals, i.e. non-

disabled people and employed disabled people, act as a proxy for the number of non-recipients 

of disability/incapacity benefits (state ‘Active’ in Figure 1). We use the cross-sectional dataset 

of each first quarter (January–March) over the period 1999–2011 to model trends in disability 

 
9 The estimator for the number of individuals in the population is the sum of person-weight provided in the LFS 

dataset. It can be expressed as 
1

ˆ
n

j

j

Y w
=

= ; where jw is a sampling weight for the j-th sampled individual from 

the population, 1, 2,...,j n= and n  is the number of observations in the sample. 
10 The total number of working-age population estimates in each year are approximately equal to the number of 

population estimates provided by the HMD. 
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prevalence rates, while we estimate one-year recovery rates for disabled people using the status 

information drawn from interviews in quarter 1 and 5.11  

Figure 1: Three-state model of working-age people 

 

 

 

 

In the following subsection, we clarify the characteristics of the datasets, including the 

disability prevalence rates, recovery rates and mortality rates of the working-age population 

that are used in this study. 

2.1. Disability prevalence rates of the working-age population  

The prevalence rate of disability at age x  is computed as the total number of disabled 

individuals aged x  divided by the total population of age x . On average, disability prevalence 

rates have remained quite constant (between 9–10%) over the whole period of analysis and the 

rates of women are higher than men (see Table 1).  

As shown in Figure 2, there is a noticeable age pattern in the disability rates, with lower rates 

among the young individuals and an increase in older ages. In early adulthood, aged 16–25, the 

disability prevalence rates for males are slightly larger than for females, whereas the prevalence 

rates tend to be larger among women during the middle age, i.e. around age 40. As a result, the 

disability prevalence rates are associated with age and gender. The time effect might also have 

an influence on changes in rates, although the trends in disability rates are quite unclear over 

time. 

 

 

 
11 We merge all five-quarter longitudinal datasets over the period 1999–2011 since the number of respondents 

who are being disabled in each year is relatively small. As a result, the modelling of gender- and age-specific 

recovery rates ignores time effects and the rates remain constant over time. 

Active  
1. Non-disabled people with all labour 

force status, and 

2. Disabled people with employment  

Dead  

Inactive  
Disabled people with unemployment 

or economically inactive 

(non-working disabled people)  
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2.2. One-year recovery rates of the working-age population 

The one-year recovery rate from the disable state at age x  is represented by the ratio between 

the total number of disabled population aged x  transferring to the active state over one year 

and the total number of the disabled population of age x . The recovery rates, as shown in Figure 

3, decline with age, from around 4% to 0.5% for males and females; however, it is unclear 

whether there are gender differences in the recovery rates. 

Figure 2: Observed disability prevalence rates by age and gender in 1999 and 2011 

 
Source: The authors’ calculation based on the LFS datasets 

Figure 3: Observed one-year recovery rates among men and women, 1999–2011, by age 

 

Source: The authors’ calculation based on the LFS datasets 
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2.3. Annual mortality rates 

As we only have information of the mortality rates for the general population, this subsection 

describes the methodology used to decompose the probabilities of death among the active and 

inactive people under the multiple state model shown in Figure 1. The mortality rates for males, 

as shown in Figure 4, are consistently above those of females, while the mortality rates have 

dropped gradually at all ages and for both sexes over the period 1999–2011.12 

Figure 4: Age-specific mortality rates (
xq ) by gender in 1999 and 2011 

 

Source: Human Mortality Database 

3. Model specification 

This section describes the discrete-time multiple state model to compute for each of the three 

states, particularly the following two types of probabilities: those associated with remaining in 

the same state and those related to transitions between states. Our model allows for recovery 

from the inactive to the active state by extending Albarran et al.’s (2005) approach, which 

introduced some assumptions about the relative mortality ratio among disabled and non-

disabled people to decompose the probability of death in any state. 

 
12 The mortality improvement arises from economic development, progress in health technology, better access to 

health care services, rising living standards, improved lifestyles and a shift in the leading causes of death and 

illness from the infectious and parasitic diseases to non-communicable diseases and chronic conditions, especially 

cancers and diseases of the circulatory system (Howse, 2006; Soubbotina and Sheram, 2000; WHO, 2011). 
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3.1. The multiple state model for working-age people 

In the three-state model of working-age people, as shown in Figure 1, the possible transitions 

are as follows: (i) disablement, i.e. transition from the ‘active’ to the ‘inactive’ state; (ii) 

recovery, i.e. transition from the ‘inactive’ to the ‘active’ state; (iii) death of an active 

individual, i.e. transition from the ‘active’ to the ‘dead’ state and (iv) death of an inactive 

person, i.e. transition from the ‘inactive’ to the ‘dead’ state. The actuarial notations of one-year 

transition probabilities and the equations used to estimate the transition probabilities and 

probabilities in any state are included in the next subsection. 

3.1.1. The one-year transition probabilities 

We apply a discrete time of three states of working-age people model in a one-year period 

according to Haberman and Pitacco (1999) and Pitacco (2014). We also assume that, except 

the possible death of an individual, no more than one transition occurs during one particular 

year. The fundamental relations of one-year transition probabilities related to an active 

individual and an inactive individual age are explained in the following notations (see more 

details in Appendix A): 

jj jk j

x x xp p p+ =       (1) 

jj jk j

x x xq q q+ =       (2) 

1j j

x xp q+ =       (3) 
jk jk jk

x x xp q w+ =      (4) 

1jj jj jk

x x xp q w+ = −      (5) 

where jk

xp denotes the probability that a person aged x  in a state j  is alive in a state k  at age 

1x + ; 

 jk

xq denotes the probability that a person aged x  in a state j  dies within one year in a 

state k ; 

 j

xp  denotes the probability that a person aged x  in a state j  is alive at age 1x + ; 

 j

xq  denotes the probability that a person aged x  in a state j  dies within one year; 

 jk

xw  denotes the probability that a person aged x  in a state j  moves to a state k ; 

,j k  represent any state of a  ‘active’ and i  ‘active’, j k . 

As we assume that there is no more than one transition occurring during one year, apart from 

the possible death, consequently the aa
xp and ii

xp  represent the probabilities of remaining in the 
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active and inactive state, respectively, from age x  to 1x + . Furthermore, the probability of 

becoming inactive is equivalent to ai

xw  and the probability of recovery from an inactive to an 

active state within one year, ia

xw , is represented by the estimated one-year recovery rate from 

the logistic regression model in Section 3.2. 

3.1.2. Estimating the survival and transition probabilities 

In this subsection we explain how to estimate the transition probabilities and the probabilities 

of remaining in the same state throughout one year, thereby extending Albarran et al.’s (2005) 

approach. Because of the lack of information of mortality rates across subpopulation, Albarran 

et al. (2005) disaggregate the mortality rates for the general population at age x , xq  into the 

mortality rates of disabled and non-disabled people. The assumptions of the hazard ratio13 of 

disability on mortality are also supposed to approximate the probabilities and the transition 

probabilities among the active and the inactive population. 

Initially, we decompose the mortality rate for the general population at age x , xq  into the 

weighted average of the mortality rate for the active people, 
a
xq , and the inactive people, 

i
xq , 

with the proportion of active and inactive people, respectively (Majer et al., 2013), as defined 

in the following expression: 

   (1 ) (1 )( ) ( )a i aa ai ii ia
x x x x x x x x x x xq v q v q v q q v q q= − + = − + + +   (6) 

We use the annual mortality rates of the UK working-age population by age and gender, which 

were obtained from the Human Mortality Database.14 The proportion of inactive people is 

measured by the probability of being inactive, xv , and this is clearly equivalent to the prevalence 

rate of disability at a particular age x  that is estimated by the multiple logit regression model, 

which is explained in Section 3.2. 

 
13 The hazard ratio of disability on mortality is equivalent to the relative mortality risk of inactive people versus 

active people regarding the standard Cox proportional hazard assumption: 
i a

x x
q HR q=  , where 

i
xq  and 

a
xq is 

the mortality rate of inactive people and active people at age x , respectively, while HR is the hazard ratio of 

disability on mortality. 
14 www.mortality.org 
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The probability that an individual aged x  survives up to age 1x + , xp  can also be identified as 

follows: 

    (1 )( ) ( )aa ai ii ia
x x x x x x xp v p p v p p= − + + +    (7) 

We then make three assumptions regarding the hazard ratio of inactive people on mortality, 

which is the ratio between the mortality rate of inactive and active people. These three common 

assumptions are defined as follows: 

 Assumption 1:  1 1 ;  0 1ai ai ii
x x xq k w q k=    

 Assumption 2:  2 2 ; 0 1ia ia aa
x x xq k w q k=    

 Assumption 3:  3 3 ; 0 1aa ii
x xq k q k=    

According to Albarran et al. (2005), we follow their Assumption 1 in term of the age 

distribution of becoming inactive. For Assumption 2, we establish the ratio between the two 

death probabilities, ia
xq and aa

xq , as a function of the age distribution of recovery. Because of 

the work of Albarran et al. (2005) focusing on the elderly, they assume the ratio among two 

mortality rates ii

xq  and aa

xq is a function of age and the gap in both mortality rates tends to 

increase with age in the old-age group. However, they point out that this may not be true for 

the whole population. Majer et al. (2013) additionally found that there is no significant age 

interaction or time trend in the Cox proportional hazard ratios between the mortality rates of 

the Dutch non-disabled and disabled populations, with the constant ratio of 0.54 and 0.58 for 

men and women, respectively. As a result, in Assumption 3, we require that the hazard ratios 

for the mortality risk among active and inactive populations are constant over age. 

The mortality rates for the inactive population are generally higher those of active15 population, 

which means the ratio among the mortality rates of active and inactive population are lower 

than 1. Also, the probability that an active (or inactive) individual dies in the different state is 

 
15 See Majer et al (2011), Forman-Hoffman et al (2015), Bahk et al (2019), amongst others. 
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likely to be lower than the probability of active (or inactive) dying in the same state16, i.e. 

ii ai
x xq q and 

aa ia
x xq q  . Therefore, the range of 1k , 2k , and 3k  is set between 0 and 1. 

Next, a stationary population assumption requires that the number of inactive people at age 

1x +  is the sum of the number of active people aged x  surviving in the same active state at age 

1x +  and the number of active people aged x  surviving in the inactive state at age 1x + . It is 

expressed as follows: 

1 (1 )ii ai
x x x x x xv p v p v p+ = + −     (8) 

By means of substituting the expression (5) and Assumption 1 in the expression (8), we obtain 

the relationship: 

  

1 1(1 ) (1 ) (1 )( )ia ii ai ai ii
x x x x x x x x xv q v w q v w k w q+ − = − − + − −   (9) 

which yields the probability of becoming inactive between age x  and 1x + : 

   
( ) ( )
( )( )

1

1

1 1

1 1

ia ii
x x x x xai

x ii
x x

v q v w q
w

v k q

+ − − − −
=

− −
    (10) 

Combining Assumption 1, 2 and 3 and expression (6), we then obtain the probability that an 

inactive person at age x  dies within one year while he/she is still inactive:  

  
( ) ( )3 1 2 31 1

ii x
x ai ia

x x x x x x

q
q

v k v k w v v k k w
=

− + − + +
   (11) 

Finally, substituting expression (10) in (11), we obtain a quadratic equation of ii
xq as follows:  

( )
2

0ii ii
x x xA q Bq q+ − =     (12) 

where ( )1 3 1 21 ia
x x xA k k v v k k w = − − +

 
  

and  ( ) ( ) ( )3 2 1 1 11 1ia ia
x x x x x x x x x xB k v v k w k v q k q v v w v+= − + + − + − + +  

 
16 This is due to the fact that the first probability also requires a transition into a different state. 
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The equation admits two real positive solutions. However, we choose the unique solution that 

lies in the (0, 1) interval, as shown in Appendix B. 

Replacing the known values of 
xq , 

xv and ia

xw  with different values of 
1k , 

2k  and 
3k  in the 

solution of equation (12), we obtain the probability that an inactive person dies while he/she is 

in an inactive state, ii

xq . We then compute the probability of becoming inactive, ai

xw , from the 

equation (10) and the probability of death in any state ai

xq , ia

xq  and aa

xq  from the Assumption 1, 

2 and 3. 

3.2. Multiple logistic regression model 

The LFS datasets contain a binary outcome indicator of the disability event occurrence (i.e. 

non-disabled or disabled status) and of the case of recovery from disabled to non-disabled (i.e. 

non-recovery or recovery status). The logistic regression is a popular model for binary 

dependent variables that allows us to estimate the probability of the event of interest (De Jong 

and Heller, 2008; Frees, 2009; Hosmer et al., 2013; Guillen, 2014). 

We employ the logistic regression models to capture the occurrence of disability and recovery 

events separately for males and females by taking into account the effect of age as a polynomial 

function (Renshaw and Haberman, 1995; Fong et al., 2015) and of time trends (Renshaw and 

Haberman, 2000). The estimations of disability prevalence rates and one-year recovery rates 

are explained in the following subsection. 

3.2.1. Estimating the disability prevalence rates, xv  

In order to estimate gender- and age-specific disability prevalence rates of the working-age 

population in each calendar year over the period 1999–2011, we apply the logistic regression 

with age and time trend as the predictor variables. The binary outcome of the event that the n-

th person is being inactive, ny , is defined as follows: 

1    if the n-th person is inactive with probability 

0   if the n-th person is active with probability 1-

n
n

n

v
y

v


= 

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The logistic regression model of disability prevalence rates is based on a polynomial of age 

with degree 4 and a time trend, as shown in the next equation below17. The model is analysed 

for males and females separately. 

The logistic regression of estimation disability prevalence rates is defined as follows: 

, 2 3 4
, 1 2 3 4 5

,

logit ( ) ln
1

n t
n t

n t

v
v age age age age t

v
     

 
= = + + + + + 

 − 

 (13) 

where ,n tv  represents the disability prevalence rate of the n-th person in calendar year t , age

is the age of the individual and t  is the calendar year, i.e. 0,1, …,12 corresponding to the year 

between 1999–2011. 

The fitted gender- and age-specific disability prevalence rate at age x  in each calendar year 

over the period 1999–2011 is expressed as follows: 

  
2 3 4

1 2 3 4 5
2 3 4

1 2 3 4 5

ˆ ˆ ˆ ˆ ˆˆexp( )
ˆ  

ˆ ˆ ˆ ˆ ˆˆ1 exp( )
x

age age age age t
v

age age age age t

     

     

+ + + + +
=

+ + + + + +
   (14) 

3.2.2. Estimating the one-year recovery rates, ia

xw  

The binary outcome of the event that the n-th disabled person recovers to an active state over 

a one-year period, nz , is defined as follows: 

1    if the n-th inactive person recovers to an active state with probability w

0   if the n-th inactive person is still inactive with probability 1-w

ia
n

n ia
n

z


= 


 

The logistic regression model is explained by gender and a quadratic function of age using the 

following equation18: 

2
1 2logit ( ) ln

1

ia
ia n
n ia

n

w
w gender age

w
  

 
= = + + 

 − 

   (15) 

 
17 Different polynomial forms have been carried out but we only show results for the best fit to the data. 
18 Different polynomial forms have been carried out but the model with gender and degree 2 of age as predictors 

is the best fit to the data. 
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where gender is a dummy variable with 1 for males and 2 for females and age  is the age of 

the n-th disabled individual. 

The constant estimated gender-specific one-year recovery rate at age x  over the period 1999–

2011 is expressed as follows: 

2
1 2

2
1 2

ˆ ˆˆexp( )
ˆ  

ˆ ˆˆ1 exp( )

ia
x

gender age
w

gender age

  

  

+ +
=

+ + +
    (16) 

The logistic regression of both equations (13) and (15) are fitted to the data by using maximum 

likelihood methods to obtain the estimates of parameters, i.e. the intercept ( ) and coefficients 

( )β . Then, we compute the fitted disability rates from (14) and the fitted one-year recovery 

rates from (16) by substituting the estimated parameters   and β , which are illustrated in the 

following section. 

4. Results 

In this section we discuss the results for the estimated gender- and age-specific disability 

prevalence rates and the one-year recovery rates over the period of 1999–2011. All estimated 

rates are included in the one-year multiple state model to generate the transition probabilities 

in each state (i.e. active, inactive and dead). The probabilities of death among each state are 

also computed, based on the assumptions regarding the relative mortality risk between inactive 

and active people described in Section 3.1. 

4.1. The estimated disability prevalence rates, xv  

The results of the estimates for the unknown parameters for men and women are shown in 

Table 2. In the logistic regression model, parameters are interpreted in terms of logit rather than 

directly in the response variable. Then, these estimated parameters are calculated following the 

equation (14) to produce the fitted disability prevalence rates by age and gender in each 

calendar year. 

As shown in Table 2, all parameters are statistically significant at the 90% confidence level. 

This means that age and time trends have an influence on the probabilities of the UK working-

age population being disabled. The prevalence rate of disability rises with age and is higher for 

women than men. Conversely, the young men aged 18–27 have higher disability prevalence 
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rates than the young women. The trends in disability rates among men and women have 

dropped slightly over time due to the negative value of the coefficient of t . 

In Figure 5, the fitted disability rates of young men aged 16–28 in 1999 decreased from 0.0795 

to 0.0483, whereas the rates of men aged 29–64 increased from 0.0486 to 0.3723. For females, 

the fitted rates were lower, i.e. ranging between 0.0565–0.2808 for the age interval 16–59. The 

disability rates in 2011 slightly decreased from 1999 for both sexes. The fitted rates have the 

same trend as the disability living allowance claimant rates, which is the social welfare for 

disabled people. However, for all age groups the fitted rates from our model produce higher 

values than the rates of claimants since beneficiaries who are entitled to receive benefits have 

to meet strict conditions19. As a result, the number of recipients is likely to be lower than the 

number of people with self-reported disability. 

Table 2: The logistic regression model of disability prevalence rates 

Parameter Estimate Std.Error z value Pr > |z| 
     

Males     
α (intercept) 1.9380 0.5292 3.6600 0.0000*** 

β1 (age) -0.4964 0.0615 -8.0700 0.0000*** 

β2 (age2) 0.0179 0.0025 7.2000 0.0000*** 

β3 (age3/1000) -0.2790 0.0421 -6.6300 0.0000*** 

β4 (age4/10000) 0.0174 0.0025 6.8200 0.0000*** 

β5 (t) -0.0038 0.0019 -2.0400 0.0420** 

Chi-square = 13735.58 

Pr > Chi-square = 0.0000 

     

Females     
α (intercept) -1.1506 0.6586 -1.7500 0.0810* 

β1 (age) -0.2339 0.0792 -2.9500 0.0030*** 

β2 (age2) 0.0111 0.0034 3.3000 0.0010*** 

β3 (age3) -0.0002 0.0001 -3.4800 0.0000*** 

β4 (age4/10000) 0.0154 0.0004 3.9400 0.0000*** 

β5 (t) -0.0057 0.0018 -3.1200 0.0020** 

Chi-square = 7553.25  

Pr > Chi-square = 0.0000 

     

Source: The authors’ own source using the LFS dataset and the logistic regression eq. (13) 

 
19 See the rates of claimants receiving Disability Living Allowance (DLA) from the Department for Work & 

Pensions (DWP) statistics tabulation tool over the period 2002-2011. The values of the disability rates differ due 

to the different nature of both datasets, i.e. while LFS is a self-assessed dataset, the claimants of DWP are 

examined by an independent healthcare professional. Also, under the DWP, the claimants must have a long-term 

health condition or disability and face difficulties with ‘daily living’ or getting around. These difficulties must be 

longer than 3 months and are expected to last at least 9 months. 
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Note: * 0.10;   ** 0.05;   *** 0.01p value p value p value−  −  −   

 

Figure 5: Estimated disability prevalence rates by age and gender in 1999 and 2011 

 

Source: The authors’ own source from the logistic regression model in the eq. (14) 

4.2. The estimated one-year recovery rates, ia

xw  

As shown in Table 3, the variables age and gender are statistically significant to model the one-

year recovery rates for inactive people. We can see that the one-year recovery rates gradually 

decrease with the quadratic form of ages. The coefficient of gender variable is negative, which 

means that more men recover their health and get a job during the course of one year than 

women. This is not surprising since most women with disabilities encounter barriers in entering 

the labour market and often experience employment disadvantages, such as inequality in hiring, 

promotion standards and payment (O'Reilly, 2007). As a result, many women do not desire to 

return to work. 

Table 3: The logistic regression model of one-year recovery rates 

Parameter Estimate Std.Error z value Pr > |z| 

     
α (intercept) -1.1705 0.1071 -10.9300 0.0000*** 

β1 (gender) -0.2379 0.0959 -2.4800 0.0130** 

β2 (age2) -0.0007 0.0000 -15.7100 0.0000*** 

Chi-square = 247.91  

Pr > Chi-square = 0.0000 
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Source: The authors’ own source using the LFS dataset and the logistic regression eq. (15) 

Note: * 0.10;   ** 0.05;   *** 0.01p value p value p value−  −  −   

Figure 6: Estimated one-year recovery rates by age and gender over 1999–2011 

 

Source: The authors’ own source from the logistic regression model in the equation (16) 

The fitted recovery rates over one year, as shown in Figure 6, decrease from 0.2071 to 0.0194 

for men and from 0.1707 to 0.0230 for women. Our fitted rates are consistent with the one-year 

claim duration recovery rates provided by the Society of Actuaries: 2008 Long Term Disability 

Experience Study Report. The report gathers and analyses historical industry data on long-term 

disability claims of the US insurance companies between 1997 and 2006. The analysis shows 

that, on average, the rates decreased with increasing age, 0.1973 for under the age of 25, and 

dropped to 0.0306 for the 60–64 age band. The fitted rates from our model for males and 

females are approximate to these experience rates. 

4.3. Estimated annual survival and transition probabilities 

Taking into account the one-year multiple state model to estimate the transition probabilities 

and the probabilities of remaining in the same state, we use the annual gender- and age-specific 

mortality rates ( )xq  for the general population, the estimated disability prevalence rates ( xv ) 

and the estimated one-year recovery rates ( ia
xw ) from the logistic regression model. We 

calculate the probabilities of becoming inactive ( ai
xw ), the probabilities of death in any state (
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, ,  ai ia ii
x x xq q q and aa

xq ) and the probabilities of remaining in the same state ( ii
xp and aa

xp ). In 

this paper, we illustrate only one typical year, 2011, to perform the results in accordance with 

the various values of 1 2,k k and 3k  from Assumption 1, 2 and 3. 

We show the probabilities of death in any state with different values of 1 2 3k k k= =  and 

1 2 3k k k  in Figure 7. The graphic of the probabilities of inactive people aged x  dying in an 

inactive state ( ii
xq ) shows that the value of 3k , which is equivalent to the relative mortality risk 

ratio among active and inactive people, is negatively correlated with the value of ii
xq . The lower 

value of 3k  produces the higher value of ii
xq ; for example, the value of ii

xq  under the scenario 

of the lowest 3 0.2k =  together with 1 0.5k =  and 2 0.5k = is higher than the other scenarios. 

Conversely, there is a positive relationship between the value of 3k  and the probability of death 

of an active person. The higher value of 3k  gives the lower value of aa
xq .  

In the case of changes in the values of 1k  and 2k while keeping the same value of 3k  at 0.5, 

the values of ii
xq  and aa

xq  are almost unchanged; for example, the results given  

1 2 30.5, 0.5, 0.5k k k= = =  against 1 2 30.2, 0.8, 0.5k k k= = =  are very similar. Thus, the 1k  and 

2k  have very minor effect on the probabilities of death in the same state ii
xq and aa

xq . 

Additionally, the values of i
xq  in all scenarios are almost exactly equal to the values of ii

xq , 

whereas the values of ia
xq  are extremely small, i.e. nearly zero. It means the probability that an 

inactive person dies in the same state ( )ii
xq is likely to be the main component of the probability 

of dying of inactive people ( )i
xq . As expected, in the case of an active individual, the 

probability of dying for active people aged x ( )a
xq is also mostly determined by the probability 

of dying when individuals are still in an active state ( )aa
xq . 
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Figure 7: Estimates of annual probabilities of death with any various scenarios of 1 2,k k  and 

3k  for male in 2011 

 
Source: The authors’ own calculation based on the one-year multiple state model 
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Figure 8: Decomposition of the estimated probability of death, the probability of becoming 

inactive and the probability of surviving in the same state with various scenarios of 1 2,k k  and

3k  for male in 2011 

Source: The authors’ own calculation based on the one-year multiple state model 

Figure 8 plots the decomposition of the estimated probability of death between the contribution 

of i

x xv q  and (1 ) a

x xv q− , the probabilities of becoming inactive ( )ai

xw  and the probabilities of 

surviving in the same state over one year aa

xp and ii

xp  with the different scenarios of 1 2,k k and 

3k . The graphic of the decomposition of the estimated probability of death shows that the 

annual mortality rate ( )xq  is largely affected by the mortality of the active people (1 ) a

x xv q−  

with the higher value of 3k . For example, the value of 3 0.8k =  produces the highest value of 

(1 ) a

x xv q−  and the lowest value of i

x xv q . 
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The probability of becoming inactive within one year ( )ai

xw increases with age and steeply rises 

over the age of 50, in contrast to the probability of aa

xp . Furthermore, the probability of ii

xp  

rises continuously with age and is associated adversely with the probability of recovering from 

an inactive to an active state within one year ( )ia

xw . 

Similarly to the gender differences in general mortality rates xq , the probabilities of death in 

any state of a person aged x , i.e. , ,ii aa ia

x x xq q q  and ai

xq  for men are greater than women, as shown 

in Figure 9. The probabilities of death in the same state ii

xq  and aa

xq  for both genders have the 

same pattern as the mortality rate xq  increasing with age, but the inactive people have a higher 

probability of death than for both general population and active people. Moreover, it is still rare 

for anyone to die in a different state within one year of a transition; as a result, the probabilities 

of inactive (or active) people dying in the different state ia

xq  (or ai

xq ) are almost zero. 

The probabilities of becoming inactive ( )ai

xw  are increasing with age and are higher among 

females than males. On the other hand, the probabilities of recovering from an inactive to an 

active state ( )ia

xw  have been decreasing with age and are lower for females than males. We also 

compare the probability of surviving in the same state ii

xp  and aa

xp  for both genders. The 

probabilities that the inactive people are still inactive ( )ii

xp  rise with age and there is a higher 

rate of inactive females who are still inactive than males. In contrast, the probabilities of active 

people being in the active state ( )aa

xp  decrease with age and the active males have more chance 

to stay in the same state than females.  
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Figure 9: Estimates of annual probabilities in any state with 1 2 30.5, 0.5, 0.5k k k= = =  by age 

and gender in 2011 

 

 

   

 

 

 

 

 

 

 

  

 

 

Source: The authors’ own calculation based on the one-year multiple state model 

5. Conclusion 

This paper proposes the one-year discrete time multiple state model of working-age disabled 

people using the self-reported cross-sectional disability data. We also allow for the recovery 

from an inactive to an active state in the model, whereas previous research focuses on the 

elderly and does not consider their recovery. The disability prevalence rates, the mortality rates 

for the general population and the assumptions regarding the relative mortality ratio between 

non-disabled and disabled individuals are used to estimate the state probabilities and transition 

probabilities between states. 

The estimated gender- and age-specific disability prevalence rates that represent the probability 

of being inactive increase with age and are greater among women than men, whereas the one-
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year recovery rates as a proxy of the probability of recovery from an inactive to an active state 

decrease with age and men recover their health and get back to work at a greater rate than 

women. The probabilities of becoming inactive are nearly equal for younger ages and then rise 

rapidly at older ages. Moreover, the size of the relative mortality ratio among active and 

inactive people remaining in the same state is the main determinant of the probabilities of dying 

in the same state in one year, ii

xq  and aa

xq . On the other hand, the probabilities of death in the 

different state, ai

xq  and ia

xq , hardly occur, i.e. are almost zero. Consequently, the probabilities 

of death among each group, i

xq  and a

xq  would be approximated by the probability of dying in 

the same state. 

The model framework presented in this paper is applicable when the disability prevalence rates 

are available. However, the disability rates might be replaced with the other prevalence 

measures as indicators of long-term health problems e.g. activities living daily (ADL) or 

instrumental activities of daily living (IADL). Our proposed method could be applied to project 

the size of the different groups, i.e. active, inactive and dead, and to evaluate the demand for 

the incapacity benefits. In a future study, we will focus on using these estimated transition 

probabilities to measure the future cost of government spending on disability benefits. 

Appendix A 

One-year transition probabilities 

• An active individual 

The fundamental relations of one-year probabilities and transition probabilities of an active 

individual age x  are defined as follows: 

aa ai a

x x xp p p+ =      (A.1) 

aa ai a

x x xq q q+ =      (A.2) 

1a a

x xp q+ =      (A.3) 

    ai ai ai

x x xp q w+ =      (A.4) 

    1aa aa ai

x x xp q w+ = −     (A.5) 

where  

aa

xp  is the probability that an active person aged x  is alive in an active state at age 1x +  
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aa

xq  is the probability that an active person aged x  dies in an active state at age 1x + . 

ai

xp is the probability that an active person aged x  is alive in an inactive state at age 1x +  

ai

xq  is the probability that an active person aged x  dies in an inactive state at age 1x + . 

a

xp  is the probability that an active person aged x  is alive at age 1x + . 

a

xq  is the probability that an active person aged x  dies within one year. 

ai

xw is the probability that an active person aged x  becomes inactive within one year. 

 

• An inactive individual 

The one-year conditional probabilities related to an inactive individual age x  are hold in the 

following relations: 

ii ia i

x x xp p p+ =       (A.6) 

ii ia i

x x xq q q+ =      (A.7) 

1i i

x xp q+ =      (A.8) 

ia ia ia

x x xp q w+ =      (A.9) 

1ii ii ia

x x xp q w+ = −     (A.10) 

where  

ii

xp  is the probability that an inactive person aged x  is alive in an inactive state at age 1x +  

ii

xq  is the probability that an inactive person aged x  dies in an inactive state at age 1x +  

ia

xp  is the probability that an inactive person aged x  is alive in an active state at age 1x +  

ia

xq  is the probability that an inactive person aged x  dies in an active state at age 1x +  

i

xp  is the probability that an inactive person aged  x  is alive at age 1x +  

i

xq  is the probability that an inactive person aged x  dies within one year 

ia

xw  is the probability that an inactive person aged x  recover to an active state within one year. 

Appendix B 

The parabolic function of ii

xq  is expressed as: 

( )
2

0ii ii
x x xA q Bq q+ − =    (A.11) 
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where ( )1 3 1 21 ia
x x xA k k v v k k w = − − +

 
  

and   ( ) ( ) ( )3 2 1 1 11 1ia ia
x x x x x x x x x xB k v v k w k v q k q v v w v+= − + + − + − + +  

Following the quadratic formula to solve the equation (A.11), there are two real solutions with 

the positive values. However, we obtain the unique solution that exists the (0,1) interval as 

follows: 

     

2 4

2

xii
x

B B Aq
q

A

− + +
=    (A.12) 
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