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Abstract Fasciola hepatica, the common liver fluke, causes infection of livestock
throughout temperate regions of the globe. This helminth parasite has
an indirect lifecycle, relying on the presence of the mud snail to complete
its transition from egg to definitive host (Beesley et al., Transbound
Emerg Dis 65:199–216, 2017). Within the definitive host, the parasite
excysts in the intestine forming a newly excysted juvenile (NEJ) and
migrates via the peritoneal cavity to the liver. Disease resulting from
infection can be acute or chronic depending on the host and the number
of parasites present. Sheep may succumb to a fatal acute infection if the
challenge of metacercariae is great enough. However, in cattle chronic
disease is the most likely outcome with parasites surviving for long
periods of time. Annual losses are estimated to be in the region of US$
2000 million to the agricultural industry (Beesley et al., Transbound
Emerg Dis 65:199–216, 2017). Management of the disease depends
heavily on chemotherapy with triclabendazole being the drug of choice,
consistent use for over 20 years has resulted in drug-resistant strains
emerging worldwide (Beesley et al., Int J Parasitol 47:11–20, 2017). A
more sustainable approach to control would be through vaccination and
indeed a lead candidate has been identified, cathepsin L1. Despite these
promising results the parasite continues to confound our own and host
efforts to generate long-lasting and effective immunity. In this brief
review we focus our attention on those mechanisms that the parasite
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utilises to circumvent the innate based defense mechanisms within
the host.
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1Chapter 8

2Evasion of Host Immunity During Fasciola hepatica
3Infection

4Robin J. Flynn and Mayowa Musah-Eroje

5Abstract

6Fasciola hepatica, the common AU1liver fluke, causes infection of livestock throughout temperate regions of the
7globe. This helminth parasite has an indirect lifecycle, relying on the presence of the mud snail to complete
8its transition from egg to definitive host (Beesley et al., Transbound Emerg Dis 65:199–216, 2017) AU2. Within
9the definitive host, the parasite excysts in the intestine forming a newly excysted juvenile (NEJ) andmigrates
10via the peritoneal cavity to the liver. Disease resulting from infection can be acute or chronic depending on
11the host and the number of parasites present. Sheep may succumb to a fatal acute infection if the challenge
12of metacercariae is great enough. However, in cattle chronic disease is the most likely outcome with
13parasites surviving for long periods of time. Annual losses are estimated to be in the region of US$ 2000
14million to the agricultural industry (Beesley et al., Transbound Emerg Dis 65:199–216, 2017). Manage-
15ment of the disease depends heavily on chemotherapy with triclabendazole being the drug of choice,
16consistent use for over 20 years has resulted in drug-resistant strains emerging worldwide (Beesley et al., Int
17J Parasitol 47:11–20, 2017). A more sustainable approach to control would be through vaccination and
18indeed a lead candidate has been identified, cathepsin L1. Despite these promising results the parasite
19continues to confound our own and host efforts to generate long-lasting and effective immunity. In this
20brief review we focus our attention on those mechanisms that the parasite utilises to circumvent the innate
21based defense mechanisms within the host.

22Key words Fasciola hepatica, Immune evasion, Helminth, Immunomodulatory, Cathepsin, Innate
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241 Immunity to F. hepatica AU3

25F. hepatica immunity in ruminant hosts mirrors to large extent the
26response seen to Schistosome species. During experimental infec-
27tion there is a brief phase of lymphocyte proliferation accompanied
28by IFN-γ production; thereafter a prolonged phase of IL-4 and
29initial antibody production follows. Coinciding with onset of
30patency there is a switch toward an anergic phenotype [3–5].
31After emerging with the intestine invading NEJs must be
32sensed by the innate pattern recognition receptor (PRR) network.
33Evidence from murine models would suggest that the production
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34of canonical type-2 cytokines IL-25, IL-33, and TSLP are essential
35at this juncture in initiating the first wave of innate immune
36responses. Eosinophilia is a core characteristic of the antihelminth
37response with multiple studies suggesting a sliding scale of impor-
38tance in helminth clearance. In nematode infection eosinophilia is
39known to be nonessential in nematode infections for the expulsion
40of parasites [6]. Swartz et al. have shown that eosinophils play no
41role in S. mansoni infection parameters such as egg deposition,
42worm burdens, liver enzymes, and granuloma size or number
43[7]. In F. hepatica infection Bossaert et al. showed that eosinophil
44counts were significantly elevated in infected cattle within 4 weeks
45of infection and remained so during the course of a 16 week infec-
46tion period [8]. Zhang et al. demonstrated the presence of biphasic
47eosinophilia in F. hepatica infected sheep, with the peaks occurring
48at weeks 4 and 9–10 postinfection [9]. The importance of eosino-
49philia was again demonstrated by Chauvin et al., who demonstrated
50a positive relationship between the total eosinophil count and the
51infective dose administered to sheep, signifying a correlation
52between immune response and intensity of infection [10]. Impor-
53tantly their role in protective immunity is well supported; Doy et al.
54suggested a role for eosinophils in resistance developed in immune
55rats [11]. Immune rats facing a challenge infection showed an
56increase in eosinophils within the lamina propria of the small
57intestine. Van Milligen et al. described an ex vivo model of the rat
58gut during infection, in immune rats [12]. Again, eosinophil counts
59were elevated in the lamina propria of immune rats. When NEJs
60migrated into the mucosa of immune rats they were found to be
61coated with both IgG1 and IgG2a antibodies and eosinophils.
62Later work [13] showed that eosinophils were essential for protec-
63tion in the same model. The presence of parasite-specific antibody
64would make ADCC the most likely method of killing NEJs. This
65work is supported by studies of various species placing ADCC at the
66center of protective immunity against F. hepatica NEJs in cattle
67[14, 15].
68Macrophages elicited by helminth infection have been shown
69to diverge from the normal paradigm of classically activated—nitric
70oxide producing—antibacterial cells. Gordon summarized and out-
71lined the mechanisms by which parasitic helminths can interact with
72MΦ, causing their alternative activation [16]. Alternatively acti-
73vated MΦ (AAMΦ) are denoted by their production of polyamines,
74proline, and IL-10. The differential regulation of L-arginine byMΦ
75has allowed workers to distinguish between these two populations
76of cells. AAMΦ metabolize L-arginine (Arg-1) using the enzyme
77arginase. AAMΦ induced by parasite infections have been shown to
78express a unique panel of markers: the mannose receptor along with
79a number of unique molecules such as intelectins, resistin-like
80molecules (RELM), chitinases, or chitinase-like proteins [17]. To
81date AAMΦ have been found in infections with a wide variety of
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82parasites including S. mansoni [18], Taenia crassiceps [19],
83F. hepatica [20], Litomosoides sigmodontis and Nippostrongylus bra-
84siliensis [21], Brugia malayi [22], and H. polygyrus [23]. Numer-
85ous studies have shown that AAMΦ regulate the type-2 immune
86response in various helminth infections and help to limit immuno-
87pathology. However, the protective role of AAMΦ was shown by
88Anthony et al. (2005 AU4) using H. polygyrus [23]. Infection of mice
89revealed an accumulation of AAMΦ into the intestine and sur-
90rounding these worms. Moreover, drug abbreviation of infection
91giving rise to immunity magnified this sterilizing immune response
92and macrophage depletion demonstrated that AAMΦ were central
93to curative response. Importantly, administration of an arginase-1
94inhibitor demonstrated a direct effect of AAMΦ on worm viability
95measured via cytochrome oxidase. A direct effect of AAMΦ on
96F. hepatica viability has yet to be shown but roles in directing or
97contributing to the Th2 response during infection is well estab-
98lished in multiple species [24–26].

992 Mechanisms of Immune Evasion

100Given the depth of information that is known about innate effector
101mechanisms, there is a corresponding trend for our knowledge
102regarding specifics of immune evasion to arise from study of the
103interactions between F. hepatica and the innate leukocytes. From
104herein we will discuss and explore the nature of these interactions
105and where known their function effects. One of the first in vitro
106studies of Immunomodulation resulting from F. hepatica infection
107was recorded in 1985 [27]. They reported that the ability of
108lymphocytes, from infected sheep, to proliferate was reduced even
109when stimulated with the mitogen, ConA. Similar interactions
110between leukocytes and excretory–secretory (ES) products were
111observed by Jefferies et al. [28–30]. They studied the effect of ES
112products on both human and ovine neutrophils and found that ES
113products caused neutrophils to polarize, migrate and induced mor-
114phological changes going from spherical to elongated type cells.
115They also demonstrated an ability of ES to reduce the oxidative
116burst of sheep and human neutrophils in response to PMA in a dose
117dependent manner. This work was one of the first to suggest that
118the parasite is capable of modulating aspects of the immune system
119to evade damage or destruction. ES products are a complex of
120multiple secreted proteins, both actively and passively. Refining
121the molecules within ES and defining their mode of action has
122become paramount to understanding parasite evasion and includ-
123ing key molecules in future vaccination plans. Below we discuss two
124major classes of parasite modulators, enzymatic and nonenzymatic
125modulators, giving an overview of the major details we have
126gleaned from studies to date.
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1273 Enzymatic Modulators

3.1 Cathepsins 128The cathepsin cysteine protease family, containing cathepsin L1
129(CL1) are the most clearly defined molecules from F. hepatica
130with immunomodulation capabilities. Early after the initial identi-
131fication of CL1, Carmona et al. [31] demonstrated that F. hepatica
132CL1 could prevent eosinophil mediated ADCC killing of NEJs.
133CL1 was capable of cleaving antibody at the Fc-Fab junction, thus
134preventing cell attachment. Prowse et al. [32] demonstrated again
135CL1 directly modulates the expression of CD4 on lymphocytes by
136cleaving the receptor enzymatically. This effect could be reversed in
137the presence of a specific cathepsin inhibitor. Thus, at a direct level
138CL1 modulates immune function through its enzyme activities.
139Brady et al. [33] had earlier described a model of coinfection
140where F. hepatica would suppress mechanisms of defense that
141were specifically directed at Bordetella pertussis. This resulted in a
142loss of bacterial specific IFN-γ production and a delay in clearance
143of bacteria from the lungs. In follow up work, O’Neill et al. [34]
144demonstrated that injection of CL1 would have the same negative
145effect on B. pertussis immune responses as a F. hepatica infection. By
146use of knockout mice, they were able to show that this suppression
147was partially mediated by IL-4. In IL-4�/� mice IFN-γ levels were
148elevated in comparison to wild-type mice following injection of
149CL1, but still were significantly lower than in controls. Administra-
150tion of a cathepsin enzyme inhibitor revealed that enzyme activity
151was required for the full suppressive effect. The enzymatic nature of
152F. hepatica CL1 was shown to suppress septic shock in vivo by
153Donnelly et al. [35]. Moreover, CL1 acted on TRIF and not
154surface bound TLR4 and use of both chemical inhibition and an
155active-site mutant CL1 confirmed reliance on protease activity. The
156requirement for active CL1 was against demonstrated in DCs [36],
157where CL1 caused partial maturation of DCs in vitro. A down-
158stream functional effect was detectable in terms of attenuated Th17
159responses when CL1-exposed DCs were used. Indicating there
160might be multiple routes to deviation from a Th1 or Th17 response
161that the parasite can use.
162

3.2 Peroxiredoxin 163A second class of enzymes derived from ES products has also been
164well documented for their roles in host immunomodulation. Per-
165oxiredoxin (formerly Thioredoxin Peroxidase) is a 2-cys redox
166enzyme which can traditionally protect DNA from redox damage
167[37]. It is weakly recognised by the host with antibodies against Prx
168declining into chronic infection [37]. This in itself may parallel the
169period of infection when Prx is most potent, at the point during
170which macrophage recruitment during NEJ invasion is highest.
171The effect of Prx on macrophages, resulting in AAMΦ, has been
172demonstrated in multiple species. In mice, Prx causes strong
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173induction of arginase-1, FIZZ1 and Ym1 [20] while in ruminants it
174was shown that arginase-1 and IL-10 were upregulated by Prx
175[38]. In ruminants acidic mammalian chitinase (AMCase) was
176also identified as being upregulated following Prx exposure. While
177chitinases are ancient enzymes known to degrade chitin, commonly
178found in arthropods, there are no chitin-substrates in F. hepatica—
179which raises the question of its function. Importantly, Prx was
180shown to cause AAMΦ independent of IL-4/IL-13 which indi-
181cated a mechanism for the parasite to by-pass canonical type-2-
182signalling. Furthermore, when neutralized by immunization
183prior to infection it was revealed that Ym1, indicating AAMΦ in
184the peritoneal cavity, was reduced as was the subsequent IL-4
185response [39], ultimately indicating a role for Prx-induced
186AAMΦs propagating a type-2 immune environment. While the
187enzymatic function of Prx is essential for its function, the precise
188mechanism by which it establishes the AAMΦ phenotype remains
189unknown and may yet present a viable route to F. hepatica control.
190

1914 Nonenzymatic Modulators

192Recently a number of parasite modulators have emerged that do
193not rely on enzymatic activity to polarize or subvert host immune
194effector mechanisms. However a common feature among these
195immunomodulators is their homology to host proteins with
196immune functions.

4.1 HDM 197F. hepatica helminth defense molecule (FhHDM) was initially
198identified through a proteomic screen and phylogenetic analysis
199confirmed that it shares structural similarities with human LL-37,
200an antimicrobial peptide [40]. Initial characterization suggested
201that FhHDM could bind to LPS and block septic shock in vivo.
202Further details on the mechanism of action of FhHDM revealed
203FhHDM bound to lipids in the membrane was internalized and
204subsequently blocked antigen presentation on the MHC-II com-
205plex [41]. During the internalization phase it was shown that
206lysosomal acidification was blocked and this resulted in decreased
207inflammasome activation and subsequent IL-1β secretion [42]. The
208consequence of blocking antigen presentation within infection
209might allow for evasion of adaptive responses during infection;
210however IL-1β has more recently been shown to suppress the
211protective responses against intestinal Trichuris muris [43]. Thus,
212it is possible that while inhibiting antigen presentation benefits
213F. hepatica survival a benefit of blocking IL-1β remains to be
214uncovered.
215
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4.2 TLM 216TLM, TGF-like molecule, was first described from a screen of the
217F. hepatica genome. It presented with restricted expression, being
218highly expressed within the NEJ stage and low levels of expression
219within the adults. Initial experiments demonstrated that TLM
220retained similar qualities to TGF signalling in other worms and
221promoted viability and motility in vitro. Sulaiman et al. [15] later
222demonstrated that effects of TLM were not parasite restricted.
223Solid-phase binding assays demonstrated that TLM could indeed
224bind host TGF receptor complexes and resulted in activation of
225host STAT signalling. Phenotyping of macrophages exposed to
226TLM demonstrated a deviation from the AAMΦ spectrum with a
227significant increase in markers associated with a regulatory response
228including PD-1 and CTLA4. Ultimately, preexposure to TLM
229resulted in a reduction in macrophage-mediated ADCC killing of
230the NEJ parasite. This presents a clear pathway from stage-specific
231secretion of a modulator through to a host tissue specific.
232

2335 Summary

234We present here a brief overview of some of the best characterized
235modulators, enzymatic and nonenzymatic, their modes of actions
236and phenotypic effects. Recent evidence would suggest that our
237attention should shift to components of the tegumental coat. In
238recent studies the crude tegumental coat has been shown to inhibit
239mast cells [44] and DCs [45] in driving Th1 responses. Interest-
240ingly some of the effects of tegumental antigens have shown to be
241both mannose receptor dependent and independent [46, 47], indi-
242cating that the composition of the tegumental antigen is complex
243and will require much further study. Elucidating the mechanisms of
244action of F. hepatica evasion molecules will benefit vaccine develop-
245ment and future biotherapeutics.
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