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Abstract 

A prestressed cable-strut structure is usually regarded as a mechanism before being prestressed. Under the action of 

initial prestresses, the internal infinitesimal mechanisms can be rigidified, resulting in achieving the desired 

structural stiffness. Therefore, feasible prestress design is a key to develop and analyze novel prestressed cable-strut 

structures. In this study, an effective optimization method is presented to determine the optimal feasible prestress 

modes of a cable-strut structure with predefined geometry and multiple self-stress states. Two optimization models 

based on the self-stress states and the integral self-stress states are presented to compute the optimal feasible 

prestress modes. Thereafter, the multi-objective optimization problem is converted into a single objective 

optimization problem by the weight coefficient method, and the particle swarm optimization algorithm is applied to 

find feasible solutions. Illustrative examples verify the feasibility of the presented optimization algorithms to 

calculate feasible prestress modes. In comparison with the conventional optimization methods, the proposed method 

shows satisfactory accuracy and efficiency. 
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Introduction 

Prestressed cable-strut structures have attracted considerable attention because of their novel configurations, 

excellent performance, lightweight, and high efficiency. These structures have become a hot spot in the field of 

space structures, showing great vitality and broad application prospects (Fest et al. 2004; Rhode-Barbarigos et al. 

2010; Tibert and Pellegrino 2002). Compared with traditional truss and frame structures, prestressed cable-strut 

structures largely rely on initial prestresses to obtain or improve their overall stiffness (Chen and Feng 2012; Guest 

2006; Sultan 2013). However, the strong coupling between their configurations and internal forces makes the design 

analysis more complicated (Chen et al. 2012; Zhang et al. 2009; Zhang et al. 2014). Therefore, morphology analysis 

of this type of structures is essential for the utilization and popularization of novel prestressed cable-strut structures 

in engineering design practice. 

  

Prestressed cable-strut structures are generally composed of axially loaded members such as tension cables and 

compression struts (Chen et al. 2018; Li et al. 2016; Wang 1998). In fact, they are extended from the concept of 

tensegrity (Motro 2003; Wang 1998), and refer to a variety of structural forms, including tensegrity structures, cable 

dome structures, and cable truss structures (Guo and Zhou 2016; Quagliaroli et al. 2015; Zhang and Feng 2017). A 

common characteristic of these structures is that self-balancing prestresses exist in their members. However, 

according to the definition of tensegrity, tensegrity structures should be free-standing and self-balanced by certain 

connections of continuous cables and discontinuous struts (Chen et al. 2015; Wang 1998). Meanwhile, other 

cable-strut structures need to rely on external constraints or actions to be stable (e.g., cable dome structures), 

whereas the struts can be either discontinuous or continuous (Chen et al. 2019; Guo and Zhou 2016; Yuan and Dong 

2003). Admittedly, the determination of relationships amongst initial configurations and feasible prestress 



 

 

distributions is a key problem in the design of prestressed cable-strut structures. In general, after the initial 

configuration is determined, the morphology analysis of a cable-strut structure includes finding a feasible initial 

prestress distribution. This is also known as force-finding or form-finding. Over the past few decades, several 

analytical and computational methods have been developed to design and optimize the initial configurations of 

tensegrities, such as the dynamic relaxation method, the force density method, and finite element method (Estrada et 

al. 2006; Micheletti and Williams 2007; Motro 2003; Pagitz and Mirats Tur 2009; Zhang and Ohsaki 2006). Sultan 

et al. (2001) have pointed out that the general prestressability conditions of tensegrity structures can be analytically 

computed. Koohestani (2017) presented an analytical form-finding method for tensegrity structures, which could be 

useful and efficient for structures with high symmetry or regular configurations. Feng and Guo (2015) proposed a 

numerical method to determine the sole configuration of tensegrities with specified nodes. Li et al. (2010) adopted 

graph theory and presented a method to construct tensegrity structures from elementary cells. Yuan and Dong (2003) 

introduced the concept of integral self-stress states for finding the feasible prestress modes of large-scale prestressed 

cable-strut structures, which is based on double singular value decompositions on certain matrices. Lee et al. (2016) 

utilized the force density method and an automatic group selection for the members, followed by presenting an 

advanced form-finding process for truncated polyhedral tensegrities by using force density method combined with a 

genetic algorithm. 

  

However, the involved form-finding process might be computationally expensive for complex structural geometry, 

particularly in the design of large-scale or long-span cable-strut structures with many nodes and members. Normally, 

these prestressed cable-strut structures have multiple self-stress states (Tran and Lee 2011), i.e., they have a number 

of independent self-stress states. Then, the initial prestresses of the members can be evaluated from the linear 



 

 

combination of these self-stress states. However, it is generally difficult to compute a feasible prestress mode from 

many independent self-stress states, whereas some intractable questions need to be further concerned according to 

specified functions or performance of an actual project (Ali et al. 2010; Feng 2018). A simple example is that the 

obtained initial prestresses in the members should not only guarantee structural stability, but also satisfy specific 

conditions during design (e.g., symmetry, uniformity, and unilateral property). Consequently, the determination of 

feasible prestress distribution becomes a key point in developing prestressed cable-strut structures. 

 

In fact, only a few studies have been performed on evaluating the optimal initial prestress distribution to stabilize a 

structure with a specified configuration, considering the unilateral property of members; that is, each cable should be 

in tension and each strut should be in compression (Quirant et al. 2003; Yuan and Dong 2003). After converting the 

original force-finding problems into optimization problems, some researchers have successfully introduced 

optimization algorithms to seek optimal prestress modes. Chen et al. (Chen et al. 2012a; Chen et al. 2012b) 

developed discrete optimization models for the form-finding and prestress stability analysis of predefined cable-strut 

structures, and adopted the ant colony system to search for feasible solutions. Xu and Luo (2010) performed the 

force-finding process of a tensegrity with cubic symmetry using the simulated annealing algorithm. Based on the 

simulated annealing combined with a stingy method, Zhang and Ohsaki (2011) evaluated the force distribution for 

prestressed pin-jointed structures and obtained the optimal locations for force measurements to achieve the highest 

accuracy of force identification. By using the force density method combined with a genetic algorithm, Lee et al. 

(Lee and Lee 2014; Tran et al. 2012; Tran and Lee 2011) introduced an advanced form-finding procedure for 

tensegrity structures and cable domes. Through an optimization process using the genetic algorithm, Koohestani and 

Guest (Koohestani 2015; Koohestani and Guest 2013) presented a novel approach for the determination of feasible 



 

 

prestress modes and grouping of elements for tensegrities with specific geometries and multiple self-stress states. It 

is important to point out that, the involved force-finding process can be simplified by appropriate optimization 

models, whereas multiple sets of optimal solutions can be found (Xu et al. 2018). Nevertheless, in general, when the 

solution space is large, the corresponding optimization analysis becomes complicated and ineffective (Chen et al. 

2012a). Recent studies have shown that the analytic relationships of force densities and integral self-stress states of 

symmetric prestressed cable-strut structures can be qualitatively obtained using symmetry (Chen et al. 2015; Chen et 

al. 2018; Zhang et al. 2009).  

 

Here, the particle swarm optimization (PSO) algorithm is introduced to establish the optimal feasible prestress 

modes of prestressed cable-strut structures. A significance of this work is that qualitative analysis and optimization 

analysis are neatly combined, to effectively reduce the solution space and improve the force-finding of cable-strut 

structures. The fitness function is established by using the weight coefficient method, and the multi-objective 

optimization problem associated with the force-finding process is neatly converted into a single-objective 

optimization problem. Feasible prestress modes are optimized from the independent self-stress states and the integral 

self-stress states of the structure. The results of the PSO algorithm are compared with the respective results obtained 

from the conventional genetic algorithm and the simulated annealing algorithm. It is demonstrated that the proposed 

optimization model is a suitable and efficient procedure for the determination of feasible prestress modes of 

cable-strut structures with multiple self-stress states. 

 

 

 



 

 

Initial Prestress Distribution of a Cable-Strut Structure Considering Integrity and 

Unilateral Conditions 

First, the concepts and relations of independent self-stress states, integral self-stress states, and feasible prestress 

modes should be described, as these three prestress modes are pivotal to the force-finding analysis of cable-strut 

structures. 

Independent self-stress states 

Every self-stress state of a structure is a nominal vector of the internal forces of the members, which satisfies the 

self-equilibrium condition of the structure. In fact, there is one state or multiple independent states of self-stress for a 

prestressed cable-strut structure (Chen et al. 2015; Estrada et al. 2006; Tran and Lee 2010). These self-stress states 

only satisfy the nodal equilibrium (Yuan et al. 2007), without guaranteeing structural stability. In addition, either the 

unilateral conditions of the forces in the cables and struts, or the symmetry properties of the structure have not been 

considered.  

 

For a given cable-strut structure with b members and N free nodes, the equilibrium equation of the structure can be 

written as 

Ht P  (1) 

where H  is the 3N b  equilibrium matrix, t  is the 1b  internal force vector, P  is the 3 1N   external load 

vector of free nodes, and certain degrees of freedom of the constrained nodes are excluded. Supposing that the rank 

of the matrix H is r , the structure has s b r   self-stress states. According to the equilibrium matrix theory 

(Pellegrino and Calladine 1986), the independent self-stress states 1S , 2S ,… , , SS  of the structure can be extracted 

from the null space of the equilibrium matrix H by the singular value decomposition (SVD) method or the Gauss 



 

 

elimination method (Pellegrino 1993). Then, the initial prestress mode 
0t  of the structure can be evaluated from a 

reasonable combination of these independent self-stress states, expressed by 

0 1 1 2 2 ... s st S S S Sα        (2) 

where the matrix T

1 2[ ]sS S S S  represents the independent self-stress states of the structure, which 

contains s nominal basis vectors for the internal forces of the members. The nonzero vector T

1 2[ ]sα     

describes the corresponding combination coefficients of the self-stress states. 

  

Integral self-stress states with full symmetry 

For a cable-strut structure retaining a specific symmetry, the members being located in equivalent positions (i.e., on 

the same symmetry orbit) should be classified into the same group. In that case, the members of the same group 

necessarily have identical initial prestresses, which can be taken as the integrity condition of the members. Notably, 

the integral self-stress states consider the inherent symmetry of the structure and thus preserve the full symmetry. 

Moreover, they satisfy the equilibrium condition and the integrity condition. However, these self-stress states with 

full symmetry ignore the unilateral condition of the members (Chen et al. 2015; Yuan and Dong 2003). 

Double singular value decomposition (DSVD) method is a conventional technique for solving the integral self-stress 

states of a structure (Yuan et al. 2007). The first application of SVD on the equilibrium matrix H  is to obtain the 

self-stress states S . The second application of SVD on the augmented matrix [ ]S e  is to compute the integral 

self-stress states, where the force matrix e  reveals the distribution of normalized forces of the members from 

different groups. 

  

In fact, recent studies have shown that the stiffness matrices and the equilibrium matrix can be transformed into 

block-diagonalized forms using group theory (Chen et al. 2015; Chen and Feng 2012; Koohestani and Kaveh 2010; 



 

 

Raj and Guest 2006). For instance, on the basis of a group-theoretic approach, the equilibrium matrix H  in the 

Cartesian coordinate system can be converted to a symmetry-adapted equilibrium matrix H  

1(1 1) (1- ) ( - ) ( -1) ( - )
T diag , , , , , , , ,

l i h l

P tH V HV H H H H H
   

  
 (3) 

where the matrices 
PV  and 

tV  represent the symmetry subspaces for the external loads P  and the internal forces 

t , respectively. In Eq. (3), diag( )  represents the diagonal form of a matrix, the positive integral [1, ]i  , 

[1, ]ih l , and 
il  and l  are the dimensions of the irreducible representations of i  and  .   is the number 

of irreducible representations of a symmetry group. 
( - )i h

H  represents the h -th block of the symmetry-adapted 

equilibrium matrix associated with the i -th irreducible representation. 

  

It can be noticed from Eq. (3) that the symmetry-adapted equilibrium matrix contains a few small-sized block 

matrices along the diagonal. Meanwhile, the symmetry properties of these block matrices along the diagonal 

decrease in sequence (Zingoni 2009). The first irreducible representation of a symmetry group always holds the full 

symmetry of the structure (Chen et al. 2015). Therefore, the integral self-stress states of the structure must be 

included in the first block matrix of the equilibrium matrix 
(1 1)

H


. Because these block matrices are linearly 

independent, 
(1 1)

H


 can be directly computed from the full symmetry subspaces, expressed as 

   (1 1) 1 1 1 1T( )P tH V HV
  
  (4) 

where 
 1 1

PV


 and 
 1 1

tV


, respectively included in the matrices of  PV  and tV , are the full symmetry subspaces 

associated with the first irreducible representation 
1 1 . Moreover, 

 1 1

PV


 is the orthogonal basis vector of the 

permutation matrix corresponding to the external load of nodes PR , which is given by 

,P P g

g G

R R


  (5) 



 

 

where g  denotes an independent symmetry operation for the symmetric structure and G is the set of all 

independent symmetry operations. Each matrix 
,P gR  represents the permutation matrix of the external load vector 

P  under the symmetry operation g  (Chen and Feng 2012). Similarly,  1 1

tV


 is the orthogonal basis vector of the 

permutation matrix corresponding to the internal force vector of the members 
tR , which can be expressed as 

,t t g

g G

R R


  (6) 

where ,t gR  represents the permutation matrix of the internal force vector t  under the symmetry operation g . 

Then, the null space 
 1 1

S


 of the first block 
(1 1)

H


 can be obtained using SVD, and satisfies 

 (1 1) 1 1

0H S
 

  (7) 

By combining Eq. (4) with Eq. (7), we have 

       (1 1) 1 1 1 11 1 1 1T( )P t 0H S V HV S
   

   (8) 

Then, the integral self-stress states of the structure can be expressed as 

 1 1
' (1 1)

tS V S


  (9) 

Thus, Eq. (7) can be rewritten as  

   (1 1) 1 1 1 1 T( )P

  
  0

'
H S V HS  (10) 

Eqs. (7, 10) indicate that it must be satisfied for 
 (1 1) 1 1

0H S
 

  on condition that  0
'

HS . As a consequence, Eq. 

(7) is a necessary condition for the nodal equilibrium of the structure. In other words, the existence of the null space 

 1 1

S  of the first block 
(1 1)

H


 of the symmetry-adapted equilibrium matrix (i.e., 
 (1 1) 1 1 

 0H S ) is a necessary 

condition for the self-equilibrium of a symmetric cable-strut structure (i.e.,  0
'

HS ). As expected, the integral 

self-stress states of the cable-strut structure can be directly obtained from the first block matrix of the equilibrium 

matrix (Chen et al. 2015). 



 

 

Feasible prestress modes 

The definition of feasible prestress modes is stricter than those of the self-stress states and the integral self-stress 

states. A feasible prestress mode simultaneously satisfies the equilibrium condition, the integrity condition, and 

unilateral condition of the members (Yuan and Dong 2003). 

  

For a structure with a single integral self-stress state, it is necessary to verify whether the self-stress state meets the 

unilateral condition of the members; that is, each cable should be in tension and each strut should be in compression 

(Chen et al. 2019; Yuan and Dong 2003). If this unilateral condition is satisfied (i.e., the force of a cable i should be 

0i t , and that of a strut j should be 0j t ), the single integral self-stress state is exactly the feasible prestress 

mode of the structure. Otherwise, there is no feasible prestress mode, and thus the structural configuration should be 

redefined. On the other hand, for a structure with multiple independent integral self-stress states, each integral 

self-stress state generally does not satisfy the unilateral condition (Chen et al. 2015). Therefore, the feasible prestress 

mode should be obtained by a linear combination of the integral self-stress states, expressed as 

1 1 2 2

' ' ' ' ' ' ' '

' '... s s0
t S S S S α        (11) 

where 's  is the number of integral self-stress states, and the nonzero vector ' ' ' ' T

1 2 '[ ]sα     denotes 

the corresponding combination coefficients of the integral self-stress states. Figure 1 describes the relations among 

the feasible prestress mode, the independent self-stress states, and the integral self-stress states. We can notice that 

the feasible prestress mode of a cable-structure can be obtained from either the independent self-stress states using 

Eq. (2), or the integral self-stress states using Eq. (11). 

 

 



 

 

Calculation of Integral Feasible Prestress Modes for Cable-Strut Structures 

The particle swarm optimization (PSO) algorithm 

The particle swarm optimization algorithm is one of the most popular evolutionary algorithms proposed by Eberhart 

and Kennedy (Eberhart and Kennedy 2002). It simulates the flight foraging behavior of birds, and achieves optimal 

goals through collective cooperation. Because of its high efficiency and robustness, the particle swarm optimization 

algorithm has been an important tool for solving practical problems, and has been widely utilized in science and 

engineering (Fu et al. 2012; Lee and Kim 2013; Robinson and Rahmatsamii 2004; Wang et al. 2016). 

  

The basic idea of PSO is that a particle flies at a certain velocity in the searching space, and its velocity is 

dynamically adjusted according to its own flight experience and the flight experience of its companion. A fitness 

function is established to evaluate whether the particle is good or bad. The optimization algorithm exploits a random 

solution to initialize a group of random particles, then the optimal solution is found by iteration. In each iteration 

step, the particle is updated by tracking two extremes: the individual extremum (i.e., pbest) and the global extremum 

(gbest). Pbest is the best solution found in the particle itself, and gbest is the optimal solution of all particles in the 

whole particle swarm during the searching process. Each particle constantly changes its velocity in the solution 

space, so that it can fly to the area directed at pbest and gbest as far as possible. 

  

Mathematical model based on integral self-stress states 

For a given configuration with certain symmetry, the initial prestress mode of the structure can be derived from 

integral self-stress states using Eq. (11). The solution of the combination coefficient α  can be converted to a 

multivariable optimization problem. To make full use of the structural materials, the internal forces 0t  of the 

members should be uniformly distributed. Therefore, to evaluate the prestress uniformity, a function ( )u α  with 



 

 

respect to α  is defined as the variance of the initial prestress mode 

0

0

var(abs( ))
( )

var(abs( )) 1
u 



t
α

t
 (12) 

where the function is denoted as a normalized value with a specific range, 0 ( ) 1u α , 
0abs( )t  represents the 

absolute value of each entry in the column vector 
0t , and  var  denotes variance. In fact, as a cable-strut 

structure is symmetric and consists of a total number of n types of members, a generalized form of the variance of 

initial prestresses can be expressed as 

2

0 0, 0,

1 1

1 1
var(abs( )) ( ) ( )

n n

i j

i jn n 

 
  

 
 t t α t α  (13) 

where 0, ( )it α  and 0, ( )jt α  respectively denote the prestress modes of the i-th and j-th types of members 

determined by the coefficient vector α . On the basis of the integral self-stress states, the unilateral condition of the 

members should be met; it requires that all the cables are in tension and all the struts are in compression. Then, the 

optimization problem corresponding to finding the integral feasible prestress mode is 

min ( )

s.t.   0 cable

0 bar

[ 1,1]

i

j

i

u

t i

t j

α



 

 

 

 (14) 

However, when a cable-strut structure has a relatively large number of members, the above optimization problem 

tends to be either unsolvable or difficult to converge. This is because the objective function and the constraint 

conditions in Eq. (14) cannot be satisfied simultaneously. Thereafter, Eq. (14) is modified to consider the constraint 

conditions into the objective function. Here, we denote a parameter M  as the number of members that do not 

satisfy the unilateral condition, and 

( ) /g M bα  (15) 



 

 

where the function 0 ( ) 1g α  is utilized to compute the proportion of those M specific members among all the b 

members. Therefore, the unilateral condition is converted into the minimum optimization problem of ( )g  . By 

obtaining the combination coefficient α  that minimizes both ( )u α  and ( )g α , the integral feasible prestress 

mode can be solved. It turns out that the evaluation of the integral feasible prestress mode is transformed into a 

multi-objective optimization problem. 

  

In addition, to perform a much fairer comparison and ensure the convergence of the above-mentioned optimization 

problem, the combination coefficients of the integral prestress modes should be normalized 

2
1α  (16) 

where 
2

 represents the 2-norm of a vector. 

 

In the standard PSO algorithm, all particles have a fitness function to evaluate the current position. For the 

constrained optimization problem, the penalty function method is used to construct the fitness function. Based on 

this idea, the weight coefficient method is utilized to construct the fitness function, and the modified fitness function 

is written as 

1 2( ) ( ) ( )F u g  α α α  (17) 

where 1  and 2 (0,1)   are the corresponding weight coefficients. It should be noted that these two objective 

functions are not completely equivalent. The integral feasible prestress modes must strictly satisfy the unilateral 

condition, while the condition of internal force uniformity needs not to be strictly satisfied. Thus, 2  should be 

larger than 1 . 

 



 

 

Consequently, the optimization model based on the integral self-stress states can be expressed as 

1 2

2

min ( ) ( )

s.t. [ 1,1], and 1i

u g 





  

α α

α
 (18) 

Mathematical model based on independent self-stress states 

Admittedly, when a structure is asymmetric (without integral self-stress states) or it has a very small number of 

independent self-stress states, the integral feasible prestress mode can be directly obtained from independent 

self-stress states using Eq. (2). In order to guarantee the same prestress for the members of the same type, all the 

members need to be manually classified. Note that the members have been divided into n groups ( n b ), and the 

b n  matrix u  can be written as 

1[ ]i nu u u u  (19) 

where the 1b  basis vector iu  ( [1, ]i n ) represents the distribution of the i-th group of members, defined as 

T[0 1 1 0 1 0 0]iu   (20) 

In the vector iu , each entry corresponding to the i-th group of members is taken as 1, and those of the other groups 

of members are 0. Therefore, the initial prestress of each group of members can be separated by 

0 0( )i

it t e  (21) 

where 0

i
t  is the initial prestress force of the i-th group of members and the symbol  represents the multiplication 

of entries in the corresponding positions of the two vectors. According to the symmetry properties of the structure, 

members in the same group have identical prestresses. In this model, the variance is used as an evaluation index of 

the uniformity of the initial prestresses, expressed as 

0

1

( ) var( )
n

i

i

f α t


  (22) 

where  var  represents variance, ( )f α  is the sum of variances of the prestress force for all groups of members. 



 

 

In addition, this function is slightly modified to lie in a specific range [0, 1), given by 

( )
'( )

( ) 1

f
f

f




α
α

α
 (23) 

Therefore, considering the unilateral condition of the members, the corresponding optimization problem of finding 

the integral feasible prestress process can be stated as follows 

2

min '( )

s.t.   0 cable

0 bar

[ 1,1], and 1

i

j

i

f

t i

t j



 

 

  

α

α

 (24) 

Similarly, the penalty function method is transformed and considered in the optimization model, where the modified 

fitness function is expressed as 

' '

1 2( ) '( ) ( )H f g  α α α  (25) 

where '

1  and '

2 (0,1)   are the corresponding weight coefficients. The self-stress states are the standard 

orthogonal basis of the null space of the equilibrium matrix, so the value of ( )f α  is generally small. Therefore, to 

ensure the minimum value of the evaluation function, the weight coefficients should satisfy ' '

1 21 0    . 

Notably, each weight coefficient can be basically determined through the value of the involved function at the first 

steps, to guarantee that the function value at the first iteration steps is neither large nor very close to 0. 

Therefore, the integral feasible prestress mode optimization model based on the self-stress states can be expressed as 

' '

1 2

2

min '( ) ( )

s.t. [ 1,1], and 1i

f g 





  

α α

α
 (26) 

To further describe the above-mentioned optimization model using either the integral self-stress states (Eq. (18)) or 

the self-stress states (Eq. (26)), a flowchart for the proposed PSO approach is given in Fig. 2. Importantly, as shown 

in Fig. 2(a), the stability of cable-strut structures with specific geometry should be evaluated after feasible prestress 

modes are obtained through the optimization process. In fact, it can be effectively evaluated by the positive 



 

 

definiteness of the tangent stiffness matrix 
T

K  of the structure with optimized prestresses (Chen and Feng 2012; 

Guest 2006), which is given by 

T E G K K K  (27) 

where 
EK  is the linear stiffness matrix, and 

GK  is the geometric stiffness matrix contributed by the optimized 

feasible prestresses t. 

Illustrative Examples 

In this section, illustrative examples are presented to identify the feasible prestress modes using the above 

optimization models. In the proposed PSO-based approach, different parameters can be utilized to improve the 

computational efficiency of the algorithm. In order to facilitate comparison, the number of particles is uniformly 400 

and the maximum number of iterations is chosen to be 800. In the model based on the integral self-stress states, the 

weight coefficients are taken as 
1 0.1  , and 

2 0.5  . In the model based on the self-stress states, the weight 

coefficients are taken as '

1 0.5  , and '

2 0.2  . 

To verify the feasibility and accuracy of the proposed method, numerical analysis using conventional optimization 

methods is also carried out and the obtained results are compared with the corresponding PSO-based results. All 

these numerical examples are implemented in MATLAB on a laptop with 1.8 GHz i7-8550U CPU and 16 GB RAM. 

 

Two-dimensional cable-strut structures 

A simple 2D hexagonal cable-strut structure is first studied, where the structural configuration is shown in Fig. 3(a). 

The structure consists of six nodes and fifteen members. It holds 3D  symmetry and remains invariant under three 

3-fold rotations and three 2-fold rotations. According to the symmetry property, the structure has 3n  groups of 

members, whereas the symbol C1 represents the outer circumferential cables, C2 represents the additional internal 



 

 

cables, and B1 represents the struts. 

 

Numerical analysis shows that this structure has 6s   self-stress states and ' 2s 
 

integral self-stress states. 

Using the mathematical model based on the integral self-stress states 'S , the feasible prestress mode 
0t  is 

obtained from the particle swarm optimization process, listed in Table 1. 

Table 1 shows that the initial prestresses of the C1 cables are positive, while those of the B1 struts are negative. 

However, the internal cables of group C2 have no prestress. The optimization result shows that, with the feasible 

prestress mode listed in Table 1, the structure shown in Fig. 3(a) is equivalent to the conventional hexagonal 

cable-strut structure shown in Fig. 3(b). It demonstrates that the proposed optimization method for calculating the 

feasible prestress mode is effective. 

Levy cable dome with 
8vC  symmetry 

Figure 4 shows a typical Levy cable dome structure with 
8vC  symmetry and a total of 7n  groups of members. 

The structure is composed of 26 pin-joints and 65 members, and eight outmost nodes are constrained in all three 

directions. It can be observed that, because of the inherent 8vC  symmetry, this cable dome structure would remain 

invariant under eight 8-fold rotations and eight mirror operations. As shown in Fig. 4(b), the members JS1 and JS2 

denote the ridge cables, XS1 and XS2 denote the diagonal cables, HS denotes the hoop cables, and VP1 and VP2 

denote the vertical struts. 

  

This cable dome has a diameter of 48m (Xi et al. 2011), whereas the hoop cables (denoted by HS) with a diameter of 

32m are arranged inside. The lengths of the vertical struts are VP1 9.238ml   and VP2 8.574ml  , respectively. 

First-order analysis shows that the rank of the 54 65  equilibrium matrix H  is calculated to be 54, and thus the 



 

 

structure has 11s   independent self-stress states and ' 1s   integral self-stress states. 

 

Because this structure has no internal mechanisms and possesses only a single integral self-stress state, the PSO 

model based on the integral self-stress states can directly find the feasible prestress to make the dome structure 

stable. No additional iterative computation is needed. However, to further describe the advantages of considering 

symmetry and integral self-stress states, here we deliberately perform a force-finding analysis using 11s   

independent self-stress states (rather than the integral self-stress state). After 114 iterations of the PSO algorithm, the 

value of the fitness function ( ) 0.0011H α  (see Eq. (25)), and the combination coefficient of the self-stress states 

derived from the optimal solution gbest is 

T

[ 0.036601 0.083320 0.082354 0.045776 0.060229 0.052405

0.014467 0.093164 0.059894 0.043112 0.034399 ]

gbestα     


 (28) 

According to the optimal combination coefficient worked out by the PSO algorithm, a feasible prestress mode of the 

Levy cable dome can be obtained, which satisfies the symmetry condition and unilateral condition of the members. 

Note that the optimal result is in complete agreement with the integral self-stress state and the numerical results 

obtained by Xi et al (2011), as shown in Fig. 5. 

 

On the other hand, to evaluate the robustness of the presented PSO-based force-finding method, Fig. 6(a-b) shows 

the variations of the fitness function value using the PSO algorithm with different number of particles and different 

weigh coefficient. Moreover, Fig. 6(c-d) respectively show the results obtained by the well-known genetic algorithm 

(El-Lishani et al. 2005; Zhang and Feng 2017), and the simulated annealing algorithm (Xu and Luo 2010), where the 

optimization model given by Eq. (26) keeps identical. 

 



 

 

It can be noticed from Fig. 6(a) that the convergence process of the PSO algorithm is relatively stable, as the fitness 

function value is very close to the optimal solution after 62 iterations. The number of the particles has a slight effect 

on the results. For this optimization mode with 11 independent variables, 200 particles are sufficient to accurately 

obtain the optimal solution. Note that a very small number of particles lead to getting a local optimal solution or 

premature convergence, as illustrated by the dash lines in Fig. 6(a). Besides, Fig. 6(b) shows that the optimal 

solution and the convergence performance of the PSO algorithm are not sensitive to the value of 
2 , which mainly 

affects the obtained results at the first iteration steps. This is because the optimal value of ( )g α  keeps zero (see Eq. 

(15)). 

 

Fig. 6(c-d) shows that the same optimal solution can be achieved by the genetic algorithm and the simulated 

annealing algorithm. Notably, the simulated annealing algorithm takes much more iteration steps, although it is easy 

to implement. The convergence of the genetic algorithm is similar to the PSO method, where the optimal solution 

can be obtained in less than 150 steps. However, each iteration step of the generic algorithm costs a long time 

because of the reproduction procedure and the crossover and mutation procedure (Zhang and Feng 2017). Actually, 

complete force-finding process based on the PSO method, the genetic algorithm, and the simulated annealing 

algorithm takes 17.618s, 48.965s, and 318.087s, respectively. Further, a series of main parameters of the genetic 

algorithm need to be gradually specified through a trial-and-error process to guarantee stable convergence and 

acceptable computational consumption (Zhang and Feng 2017). As a result, compared with the conventional genetic 

algorithm and the simulated annealing algorithm, the PSO approach is not only feasible but also effective for the 

force-finding of cable-strut structures. 

 



 

 

Kiewitt cable dome with 
8vC  symmetry 

Figure 7 displays a 3D Kiewitt cable dome with 81 members and 36 pin-joints, where a total of 18 boundary nodes 

are constrained along X, Y, and Z directions. This structure also retains 
8vC  symmetry, and it remains invariant 

under eight 8-fold rotations and eight mirror operations. All the members can be classified into n=9 groups using 

symmetry properties. The span of the structure is 48m, and the diameter of the hoop cables HS is 32m. The height of 

the lower vertical struts VP1 and the upper vertical struts VP2 are 9.238m and 8.574m, respectively. As shown in 

Fig. 7(b), the members JS1, JS2, and JS3 denote the ridge cables, and XS1, XS2, and XS3 denote the corresponding 

diagonal cables. The rank of the 54 81  equilibrium matrix is 54r  . Therefore, through first-order analysis and 

symmetry analysis, the structure has 27s   self-stress states, and ' 3s   integral self-stress states. 

  

It is worth mentioning that, when using the optimization model based on the self-stress states, the optimization 

process cannot find a feasible solution. This is because such a cable dome has a large number of independent 

self-stress states. As the number of self-stress states increases, the solution space for the optimization process 

increases significantly, which makes the algorithm difficult to converge. Hence, for this type of cable-strut structures 

with numerous self-stress states, the optimization model based on the integral prestress mode should be adopted.  

Based on the integral self-stress states, the calculated results of the Kiewitt cable dome are shown in Table 2. It can 

be observed that the feasible prestress mode of the structure can be effectively obtained from ' 3s   integral 

self-stress states. The obtained prestress mode satisfies both the symmetry condition and the unilateral condition of 

the members. 

 

 



 

 

Conclusions 

Based on the particle swarm optimization algorithm, two optimization models for solving feasible prestress modes 

of prestressed cable-strut structures with multiple self-stress states are proposed. Both optimization models utilize 

the weight coefficient method to convert multi-objective optimization into a single-objective optimization problem. 

For a cable-strut structure with either asymmetry or a small number of self-stress states, the optimization model 

based on self-stress states can be directly utilized for calculation. Importantly, for a symmetric cable-strut structure 

with multiple self-stress states, using the optimization model based on the integral self-stress states can significantly 

reduce the computational complexity and ensure the convergence of the iteration process. 
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Tables  

Table 1 Feasible prestress mode of the 2D cable-strut structure 

Member group Prestress mode of 
0t  

using PSO 
Integral self-stress states 'S  

'

1S  
'

2S  

C1 0.01751 0.06712 0.33691 

C2 < -610  0.20052 0.16767 

B1 0.01751 0.41443 0.04649 

Relationship between 
0t  and 'S  

' '

0 1 20.0372 0.0445t S S   

 

Table 2 Computational results of the cable dome with Kiewitt type 

Type JS1 JS2 JS3 XS1 XS2 XS3 HS VP1 VP2 

'

1S  0.19780 0.02231 0.07685 0.01653 0.11690 0.07685 0.13856 0.08180 0.15912 

'

2S  0.07920 0.13126 0.03445 0.18774 0.04200 0.03445 0.15593 0.06159 0.07133 

'

3S  0.14347 0.11820 0.00132 0.16494 0.13214 0.00132 0.00887 0.01933 0.00273 

0t  0.12373 0.05163 0.08298 0.03541 0.10895 0.08298 0.18663 0.10164 0.17181 

Relationship between 
0t  and 'S  

' ' '

0 1 2 30.15653 0.40544 0.90072t S S S    

 

 

Figures  

 

 

Fig. 1. Feasible prestress mode obtained from the independent self-stress states and the integral self-stress states 

 



 

 

 

 

Fig. 2. Finding feasible prestress modes using PSO: (a) flowchart of force-finding process for the two optimization 

models; (b) flowchart of the PSO algorithm 

 

 

 

 

 

Fig. 3. Two-dimensional hexagonal cable-strut structures: (a) with additional internal cables; (b) without internal 

cables 

 

 



 

 

 

 

Fig. 4. Levy cable dome with 
8vC  symmetry: (a) 3D view; (b) different groups of members in section view 

 

 

 

 

 

 

Fig. 5. Integral feasible prestress distribution of 8vC  symmetric Levy cable dome 

 



 

 

 

Fig. 6. Variations of the fitness function value along the iteration process: (a) PSO algorithm with different number 

of particles; (b) PSO algorithm with different weigh coefficient '

2 ; (c) genetic algorithm; (d) simulated annealing 

algorithm 

 

 

 

Fig. 7. A 8vC  symmetric cable dome with Kiewitt type: (a) 3D view; (b) n = 9 groups of members illustrated in the 

section view 

 


