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Abstract—Statistical information in terms of spectrum occu-
pancy is useful for the efficient and smart dynamic spectrum
sharing, and it can be obtained by long-term, broadband, and
wide-area spectrum measurements. In this paper, we investigate
an energy detection (ED)-based spectrum measurements, in
which the noise floor (NF) estimation is a key functionality for the
appropriate ED threshold setting. Typically, the NF has the slowly
time-varying property and frequency-dependency, and several
NF estimation algorithms including forward consecutive mean
excision (FCME) algorithm-based method have been proposed.
However, these methods did not deeply consider the slowly time-
varying property of the NF and are computationally inefficient.
Accordingly, we propose a computational complexity reduction
algorithm based on NF level change detection. This algorithm is
computationally efficient, since it skips the NF estimation process
when the NF does not change. In numerical evaluations, we show
the efficiency and the validity of the proposed algorithm.

I. INTRODUCTION

Dynamic spectrum access (DSA) aims to solve the spectrum

scarcity problem by increasing spectrum utilization [1]. This

can be achieved by allowing unlicened users (secondary users:

SUs) to access the spectrum of licensed incumbent user

(primary users: PUs) in an opportunistic and non-interfering

manner during PU idle times (spectrum holes). In order

to effciently share spectrum between PUs and SUs, it is

required to sense the spectrum (spectrum sensing) and then

manage wireless resources (e.g., bandwidth, transmit power,

etc.). The requirements of the spectrum sensing, such as

accuracy, latency and implementation cost are substantially

demanding [2], [3]. On the other hand, in the wireless resource

management, it is required to manage wireless resources so

that SUs do not cause any harmul interference to PUs and

increase spectrum utilization efficiency.

In order to resolve the issue of spectrum sensing and provide

the efficient wireless resource management, an advanced DSA

approach (known as smart spectrum access (SSA)) has been

investigated [4], [5]. SSA exploits prior information in terms

of PUs’ spectrum usage, and this information is obtained by

long-term, broadband and wide area spectrum measurements.

In fact, by the use of SSA approach, it has been shown

that channel occupancy rate (COR) information can enhance

spectrum sensing performance [6], [7]. It can also enhance

spectrum management, channel selection and MAC protocol

[8], [9].

In this paper, we focus on the spectrum measurement part

for realizing SSA. In general, the spectrum measurement

consists of acquisition of the data associated with spectrum

usage (e.g., I/Q data, power data) and processing the obtained

data such as spectrum analysis, spectrum usage detection and

estimation of statistical information such as COR. Actually,

there have been many spectrum measurement campaigns (see

[10], [11] and references therein), and almost all the campaigns

utilize energy detector (ED) as a spectrun usage detection

technique.

One key challenge for the ED is the detection threshold

setting since the threshold highly affects the detection perfor-

mance. Therefore, there are sevelal threshold setting criteria

including the m-dB criterion and the constant false alarm rate

(CFAR) criterion [12]. Basically, we need an accurate noise

floor (NF) information no matter what criteria we adopt to set

the threshold satisfying an adopted criterion.

Most of the previous spectrum usage measurements utilizing

ED have exploited a fixed NF information, which is obtained

by switching the receiver input to a matched load or is

measured in an anechoic chamber before starting the mea-

surements [13]. These measurements implicitly assume that

the NF does not change with time. However, the NF should be

estimated regularly due to its time dependency [14]. Moreover,

the NF has equipment-specific frequency dependency [15],

[16]. Therefore, several NF estimation methods have been in-

vestigated. In [17], the NF estimation method applying forward

consecutive mean excision (FCME) algorithm is proposed. The

method can estimate the NF accurately in the presence of PU

signals if the measured data such as I/Q data partially contain

noise samples and the noise samples are white. Thus, this

method does not work if the NF has the frequency dependency

(i.e., non white noise). In [16], an NF estimation considering

the frequency dependency of the NF was proposed. The

method [16] has exploited the FCME algorithm twice in two-

dimensional directions, i.e., time and frequency. These FCME-

based methods can attain accurate NF estimation performance

at the cost of slightly high computational cost, as the FCME

algorithm exploits sorting algorithm and these methods are
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Fig. 2. General signal processing model for spectrum measurement

performed independently regardless of the time variation of

the NF. However the NF may not change for several tens of

minites [14]. This fact motivates us to propose a new method

where the NF is estimated only when it actually changes.

This paper investigates efficient ED-based spectrum mea-

surements. The proposed method performs the NF estimation

only when there is a change in the NF. The main contributions

of this paper are as follows:

• We propose an NF level change detection method to

decide whether the NF estimation can be skiped or not.

The method is based on the ED result with detection

threshold based on previous NF estimate. Thus, the NF

estimation process is skipped when the previous detection

threshold is decided to be adequate, achieving efficient

ED-based spectrum measurements.

• The proposed method has lower computational complex-

ity of the NF estimation while it offers the comparable

NF estimation performance with respect to the existing

high-performance NF estimation methods such as FCME

algorithm-based method. We numerically verify it.

The rest of the paper is organized as follows: Section II

is devoted to the description of spectrum usage measurement

methodology, the time variation model of NF level and the

significance of our work. In Section III, we introduce the

efficient ED-based measurements withe the NF level change

detection. The numerical evaluation and its corresponding

discussion are provided in Section IV. Finally, Section V

concludes our paper.

II. SYSTEM MODEL

We assume that a spectrum sensor such as real-time spec-

trum analyser or software-defined radio which can acquire I/Q

samples, and we focus on the processing of the acquired I/Q

samples.

Configuration of time frames for the spectrum measurement

is shown in Fig. 1. The spectrum measurement is long-term

(e.g., from several days to several months) specified by the

measurement period. The measurement period consits of T

times continuous data acquisition period. One continuous data

acquisition period consists of N I/Q baseband samples, and

we index a data acquisition period by t, t ∈ {0, 1, · · · , T −1}.

The general signal processing used for spectrum measure-

ment is shown in Fig. 2. The first step is the power spectrum

estimation with Welch FFT [18] using I/Q baseband samples

yt. Then, the NF estimation is performed and we denote the

estimated NF as Ût. Conventionally, the NF estimation based

on the estimated power spectrum is performed once per a

continous data acquisition period. But our proposed algorithm

can skip the NF estimation procedure and use the estimated

NF at the previous data acquisition time t − 1, if the change

in the NF is not detected. In Sect. III, we will explain the

proposed algorithm in detail. After the NF estimation, the

threshold setting for ED is performed using Ût. Finally, the

ED with the set threshold τPFA
(t) is performed to obtain

the spectrum usage decisions Dt. Below is the more detailed

explanation for the process.

Let us focus on the tth data acquisition time (t ∈
{0, 1, · · · , T − 1}). At first, the acquired I/Q baseband signal

yt = [yt[0], yt[2], · · · , yt[N − 1]]T is divided into K Welch

FFT blocks with Ns samples. Thus, the I/Q baseband signal

y
(t)
k , k ∈ {0, 1, · · · ,K − 1} in the kth Welch FFT block is

given by y
(t)
k = [yt[kNs + 1], · · · , yt[kNs +Ns]]

T .

The power spectrum estimation with Welch FFT consists of

three steps: segmentation of y
(t)
k with a specific FFT size and

an overlap ratio, calculation of multiple power spectra, and

averaging of the power spectra [18]. The I/Q baseband signal

y
(t)
k,l, l ∈ {0, 1, · · · , L − 1} at lth segment and kth Welch

FFT block is given by

y
(t)
k,l=yt[kl(1−ρ)NFFT+1],··· ,yt[kl(1−ρ)NFFT+NFFT ]]T . (1)

where NFFT and ρ ∈ [0, 1) indicate the FFT size and the

overlap ratio between the adjacent segments, respectively. In

the rest of the paper, we assume that ρ = 0.5 because it

has been confirmed to be appropriate choice for good signal

detection performance [19]. Moreover, Ns and NFFT are

assumed to be powers of two. In this case, the number of

segments L is given by L = 2Ns/NFFT − 1.

After the segmentation, normal FFT is performed with

respect to each segment. The result of FFT operation of y
(t)
k,l

is given by

Y
(t)
k,l =

1√
NFFT

FWy
(t)
k,l (2)

where F = (exp(−j2πmf/NFFT ))m,f=0,1,··· , NFFT−1 is the

discrete Fourier transform matrix. The diagonal matrix W =
diag(w0, w1, · · · , wNFFT−1) is a matrix where its diagonal

elements are coefficients wm of the utilized FFT window with
∑NFFT−1

m=0 w2
m = 1. Here, we use Hamming window as it has

been shown that it can achieve slightly better performance

compared to other window functions in [17].

Finally, the calculated power spectra are averaged. Thus,

the averaged power spectrum estimate P
(t)
k at kth Welch FFT
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Fig. 3. NF measurement ((a) NF level evolution, (b) Power spectrum of NF)

block is given by

P
(t)
k =

1

L

L−1
∑

l=0

|Y (t)
k [l, f ]|2

= [P
(t)
k [0], · · · , P

(t)
k [f ], · · · , P

(t)
k [NFFT − 1]]T , (3)

where f = 0, 1, · · · , NFFT −1 indicates the index number of

frequency bin. We define a matrix Pt = [P
(t)
1 P

(t)
2 · · ·P(t)

K ].

The ED result at the kth Welch FFT block and the f th

frequency bin is obtained as

Dt[k, f ] =

{

1 (P
(t)
k [f ] > τPFA

[f ](t))
0 (otherwise),

(4)

where 1 and 0 correspond to the decisions of occupied

spectrum (H1) and vacant spectrum (H0), respectively. The

occupied spectrum (H1) indicates that PU signal exists in

the frequency bin partially or completely and vacant spec-

trum (H0) indicates otherwise (no signal present). The detec-

tion threshold τPFA
(t) is set based on NF estimate Ût =

[Û [t, 0], Û [t, 1], · · · , Û [t, f ], · · · , Û [t,NFFT − 1]]T so that

τPFA
(t) satisfies CFAR criterion.

A. Time Variation Model of Noise Floor Level

Figure 3 shows (a) the NF level evolution for one week

(01/12/2018–07/12/2018) and (b) the power spectrum of the

NF. This result was measured at our laboratory in Koganei

campus, Tokyo University of Agriculture and Technology,

Tokyo, Japan. The spectrum sensor used was a real-time spec-

trum analyzer (Tektronix RSA306B). The result was obtained

every one minute by switching the sensor input to a matched

load. Figure 3 (a) verifies that the NF level slowly changes

with time between around −94.05dBm and −93.72dBm. On

the other hand, Fig. 3 (b) shows that the NF has the frequency-

dependency. These facts indicate that we should estimate the

NF considering the time-varying property and the frequency-

dependency of the NF.

In this work, we model the NF level variation in time
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Fig. 4. Obtained false alram rate as a function of NF level variation factor

according to the following relationship [16]

U [j, f ] = γjµref [f ], (5)

where γj and µref [f ] indicate the NF level variation factor

and the NF at a reference time instant j = tref denoted by

the reference NF, respectively. This relationship means that

the NFs between the reference time instant, and any data

acquisition times j = t does not depend on frequency and

its variation is multiplicative. To obtain the reference NF,

we assume the spectrum sensor has a radio frequency (RF)

terminator. The reference NF µref [f ] is calculated by time

averaging of noise power spectra, and it is given by

µref [f ] =
1

M

M−1
∑

m=0

Pm,ref [f ], (6)

where M and Pm,ref [f ] indicate the number of time averaging

and noise power spectrum, respectively. Furthermore, we as-

sume the NF at least do not change during one data acquisition

time.

B. Significance of our work

In this section, we show the significance of our work even

slight changes of the NF (e.g., the order of 0.4dBm in Fig. 3

(a)). Thus, we evaluate the the acutually obtained false alarm

rate when the threshold τPFA
is set without considering the

change of NF level, i.e., assuming the NF U [t, f ] = µref [f ]
regardless of the time t. The obtained false alarm rate can be

calculated as follows [16]

PFA=Prob(P
(t)
k [f ]>τPFA

|H0)=Γ̃
(

L,
τPFA

γtµref [f]/L

)

, (7)

where Γ̃(α, θ) indicates a normalized incomplete Gamma

function The threshold τPFA
is set based on CFAR criterion

and is given by [16]

τPFA
[f ] =

µref [f ]

L
Γ̃−1

(

L, ṖFA

)

, (8)

where ṖFA is a given target false alarm rate and Γ̃−1 indicates

the inverse of a normalized incomplete Gamma function. In
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Fig. 4, the target false alarm rate ṖFA = 0.01. The figure

shows, for example, the obtained false alarm rate is about

0.45 in the case of L = 1000 and γ = 0.3dB. That means we

should estimate the NF while following slight changes in the

NF (say, γ = 0.3dB).

III. PROPOSED ED-BASED MEASUREMENT SIGNAL

PROCESSING

Block diagram of proposed algorithm for spectrum mea-

surement is shown in Fig. 5. There are two blocks: Block 1

(B1) and Block 2 (B2). The process in B1 is executed every

spectrum measurement except for the first measurement t = 0.

On the other hand, B2 is only applied when the NF level

change is detected or t = 0 since the spectrum sensor does

not know the NF in the sensor at first. Therefore, the proposed

method can reduce the computational cost of NF estimation

processes as the NF level changes slowly.

In B2, we exploit the two-dimensional FCME algorithm-

based NF estimation as the NF estimation as it can achieve the

high-accurate NF estimation performance while considering

the frequency-dependency of the NF [16]. However, the pro-

posed method also could be utilized with other NF estimation

methods such as [17], [20], [21]. Briefly, the two-dimensional

FCME-based NF estimation estimates the NF level variation

factor γt at time instant t exploiting the reference NF µref [f ]
and the estimated power spectrum in the time-frequency plane

Pt, where the description of the reference NF is provided in

Subsect. II-A [16]. More specifically, it locates the noise-only

power samples in power spectrum samples Pt based on the

FCME algorithm, flattens the located noise-only power spectra

in frequency exploiting µref [f ], and estimates γt by applying

the FCME algorithm again. Then, the resultant NF estimate is

Û [t, f ] = γ̂t · µref [f ] where γ̂t indicates the estimate of γt.
After estimating the NF in B2, the ED is performed based on

the set threshold with the estimated NF.

On ther other hand, for other spectrum measurements, i.e.,

t ∈ {1, 2, · · · , T − 1}, the processes in B1 are performed at

first. It includes the tentative ED with the detection threshold

equal to the one in the previous spectrum measurement, i.e.,

τPFA
(t− 1), and the NF level change detection. If the change

of the NF is detected, the processes in B2 are enforced and the

ED result is the final ED result, i.e., Dt = Dt,final. Otherwise,

the ED result equals to the tentative ED result (Dt = Dt,ten.),

and Û [t, f ] = Û [t− 1, f ] and τPFA
(t) = τPFA

(t− 1).
The NF level change detection in B1 exploits the result of

the tentative ED, Dt,ten. and the power spectrum Pt. Let a set

Θ[f ] to be a set consiting of the indices of zeros in Dt,ten.[f ],
i.e., Θ[f ] = {k|Dt,ten.[f ] = 0}, where Dt,ten.[f ] indicates

the tentative ED result at frequency bin f . Then, we define

a value pt,ave.[f ] as the average value of a vector pt,Θ[f ] in

time. Specifically, pt,ave.[f ] is given by

pt,ave.[f ] =
1

|Θ[f ]|
∑

k∈Θ[f ]

P
(t)
k [f ], (9)

where |Θ[f ]| indicates the cardinality of Θ[f ] and pt,Θ[f ] =

[P
(t)
k∈Θ[f ][f ]]. After that, we perform the NF flattening process

using the reference NF µref [f ] as in the two-dimentional

FCME algorithm-based NF estimation. This process is done

as

δt[f ] =
pt,ave.[f ]

µref [f ]
. (10)

We can detect the NF level change by the thresholding

process against δt[f ] since δt[f ] is an estimate of γt. Specif-

ically, we decide that the NF level change if min(δt) > ηH
or min(δt) < ηL. Otherwise, i.e., min(δt) lies in between ηL
and ηH , we decide that the NF level does not change. We

apply two thresholds, ηL and ηH since the NF level possibly

increases and/or decreases. Both thresholds are set based on

γ̂t−1 and two hyperparameters (∆L, ∆H ) and these are given

by

ηL = ∆L · γ̂t−1, ηH = ∆H · γ̂t−1 (11)

where the hyperparameters are set so that the target false alarm

rate can be guaranteed. We will investigate several methods for

hyperparameters setting as our future work.

IV. NUMERICAL EVALUATIONS

In this section, we evaluate the NF estimation performance

of the proposed method based on computer simulations.
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Fig. 6. NF setting in the simulations ((a) Assumed NF evolution, (b) Assumed
reference NF)

As comparative methods, we consider the original FCME

algorithm-based NF estimation [17] and the two-dimensional

FCME algorithm-based NF estimation [16]. We assume the

spectrum measurements of one wireless local area network

(WLAN) channel over 2.4GHz industrial, scientific and medi-

cal (ISM) band. Common parameters are summarized in Table

I. Figure 6 shows (a) the assumed NF variation in time

and (b) the assumed reference NF. These correspond to the

approximation to the NF by noise measurements as mentioned

in Subsec. II-A (Fig. 3). Specifically, we calculated the NF

level and the power spectrum of the NF (the reference NF)

according to the experimental result of Fig. 3 by means of

polynomial approximation.

Figure 7 shows the relative error in terms of NF estimate

Û [f ] given by (12) as a function of SNR

RE[U] =
1

NFFT ·Ntrial

|Û [f ]− U [f ]|
U [f ]

, (12)

where Ntrial and NFFT respectively present the numbers the

Monte Carlo trials and the frequency bins.

From Fig. 7, we observe that the error performance of the

proposed method approximately coincides with the one of

the two-dimensional FCME algorithm-based NF estimation.

Fig. 7. Relative error as a function of SNR

Fig. 8. Probability of detection as a function of SNR

Moreover, the original FCME algorithm-based NF estimation

cannot achieve the good NF estimation performance since it

does not consider the frequency dependency of the NF.

Figure 8 shows the probabilities of false alarm and detection

as a function of SNR, where we set the target probability of

false alarm is 0.01. From this figure, the probability of detec-

tion of the proposed method almost coincides with the ones

of the two-dimensional FCME algorithm-based NF estimation

since the proposed method achieves the same NF estimation

performance approximately as of the two-dimensional FCME

algorithm-based NF estimation as shown in Fig. 7. Again, the

detection performance of the FCME algorithm-based NF esti-

mation is not good due to the poor NF estimation performance.

Finally, we evaluate the computational complexity of ED-

based measurement with the proposed method or the con-

vetional two-dimensional FCME algorithm-based NF estima-

tion. The complexity of the proposed method is determined

by the number of the NF estimations executed NNF,pro.,

the complexity of the NF level change detection Ccd, and

the complexity of the NF estimation CNF,two, the number

of the spectrum measurements T . On the other hand, the

complexity of the measurement with the conventional NF
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estimation is determined by the complexity of the NF estima-

tion CNF,two, and the number of the spectrum measurements

T . Therefore, we evaluate the ratio of the computational

complexity, R(Cpro., Ctwo.) between the proposed method-

based processing (Cpro.) and the conventional NF estimation-

based processing (Ctwo.) given by

R(Cpro., Ctwo.) =
Cpro.

Ctwo.

=
Ccd

CNF,two

+
NNF,pro.

T
,

where the reduction of the complexity of the proposed method

can be achieved if and only if R(Cpro., Ctwo.) < 1.

Figure 9 shows R(Cpro., Ctwo.) and the proposed method

can reduce the complexity by around 1/4. This reduction is

because the number of NF estimation executed is reduced,

i.e.,
NNF,pro.

T
< 1, and the proposed method has the lower

complexity than the conventional method, i.e., Ccd

CNF,two
< 1.

Specifically, as shown in Fig. 9,
NNF,pro.

T
is around 0.25,

but Ccd

CNF,two
is around 0.03. The number of NF estimation

executed depends on the changing rate of the NF, so we will

evaluate the accuracy and the complexity of the proposed

method as our future work.

V. CONCLUSION

In this work, we have proposed an efficient ED-based signal

processing for spectrum measurements. We have considered

the slowly time-varying property and the frequency depen-

dency of the NF. Specifically, the proposed method can reduce

the number of required NF estimations by means of a NF

level change detection. Numerical evaluations show that the

proposed method enables an accurate spectrum occupancy

detection considering the frequency-dependency and slowly

time-varying characteristics of the NF, while it reduces the

computational complexity.
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CWmin in cognitive radio networks for protecting IEEE 802.11 primary
users,” in Proc. IEEE CROWNCOM, June 2011, pp. 266–270.

[9] Y. Xu, A. Anpalagan, Q. Wu, L. Shen, Z. Gao, and J. Wang, “Decision-
theoretic distributed channel selection for opportunistic spectrum access:
Strategies, challenges and solutions,” IEEE Commun. Surveys Tuts.,
vol. 15, no. 4, pp. 1689–1713, Fourth quarter 2013.

[10] D. Das and S. Das, “A survey on spectrum occupancy measurement for
cognitive radio,” Springer Wireless Pers. Commun., vol. 85, no. 4, pp.
2581–2598, 2015.
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[21] M. López-Benı́tez, J. Lehtomäki, K. Umebayashi, and D. Patel, “Accu-

rate noise floor calibration based on modified expectation maximisation
of gaussian mixture,” in Proc. IEEE WCNC, May 2019.


