
QUASICONFORMAL AND GEODESIC TREES

MARIO BONK AND DANIEL MEYER

Abstract. A quasiconformal tree is a metric tree that is doubling
and of bounded turning. We prove that every quasiconformal tree
is quasisymmetrically equivalent to a geodesic tree with Hausdorff
dimension arbitrarily close to 1.
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1. Introduction

An important question in geometric analysis is whether a given met-
ric space (belonging to some class of spaces) is geometrically equivalent
to a model space in a natural way. Many results in mathematics can
be seen from this perspective (such as the existence of isothermal or
conformal coordinates on surfaces or the Riemann mapping theorem).
For general metric spaces there are various ways to interpret geomet-
ric equivalence: up to isometric or up to bi-Lipschitz equivalence, for
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example. In the present paper the relevant notion of geometric equiva-
lence is based on a class of homeomorphisms that are close to conformal
or quasiconformal maps in a classical complex-analytic context, namely
quasisymmetries.

By definition, a homeomorphism f : X → Y between metric spaces
(X, dX) and (Y, dY ) is said to be quasisymmetric or a quasisymmetry,
if there exists a homeomorphism η : [0,∞) → [0,∞) (playing the role
of a control function for distortion) such that

dY (f(x), f(y))

dY (f(x), f(z))
≤ η

(
dX(x, y)

dX(x, z)

)
for all distinct points x, y, z ∈ X. The composition of two quasisymme-
tries (when defined) and the inverse of a quasisymmetry are quasisym-
metric. So if we call two metric spaces X and Y quasisymmetrically
equivalent if there exists a quasisymmetry f : X → Y , then we have
a notion of geometric equivalence for metric spaces. Since every bi-
Lipschitz homeomorphism is a quasisymmetry, this is a weaker, and
hence more flexible, notion than bi-Lipschitz (or even isometric) equiv-
alence (for more background and related discussions see [BM17, Section
4.1] and [He01, Chapters 10–12]).

The quasisymmetric uniformization problem (see [Bo06]) asks for
natural conditions when a given metric space X from a class of spaces
is quasisymmetrically equivalent to some model space Y . This problem
is relevant in various contexts. For example, the Kapovich-Kleiner con-
jecture in geometric group theory (see [KK00, Conjecture 6]) amounts
to the problem of showing that every Sierpiński carpet arising as the
boundary of a Gromov hyperbolic group is quasisymmetrically equiva-
lent to a “round” Sierpiński carpet (see [Bo11] for a related discussion).

The prototypical instance of a quasisymmetric uniformization result
is the characterization by Tukia and Väisälä of metric spaces quasisym-
metrically equivalent to the unit interval [0, 1]. In order to formulate
their theorem we need two definitions.

We say that a metric space (X, d) is of bounded turning if there exists
a constant K ≥ 1 such that for all x, y ∈ X there exists a compact
connected set E ⊂ X with x, y ∈ E and

diam(E) ≤ Kd(x, y).

In this case, we say that (X, d) is of K-bounded turning.
A metric space (X, d) is doubling if there exists a constant N ∈ N

(the doubling constant of X) such that each ball in X of radius R > 0
can be covered by N (or fewer) balls of radius R/2.



QUASICONFORMAL AND GEODESIC TREES 3

Tukia and Väisälä showed that a metric space J homeomorphic to
[0, 1] is quasisymmetrically equivalent to [0, 1] if and only if it is dou-
bling and of bounded turning (see [TV80]). In other words, one can
“straighten out” the arc J (which may well have Hausdorff dimension
> 1) to the interval [0, 1] by a quasisymmetry.

In the present paper, we study the quasisymmetric uniformization
problem for metric trees. By definition, a (metric) tree is a compact,
connected, and locally connected metric space (T, d) that contains at
least two distinct points and has the following property: if x, y ∈ T,
then there exists a unique arc in T with endpoints x and y. This arc
is denoted by [x, y]. We allow x = y here, in which case we consider
[x, y] = {x} as a degenerate arc.

The underlying topological space of a tree is often called a dendrite in
the literature. Since we are mostly interested in metric properties and
want to emphasize this metric aspect, we prefer the name tree for these
objects. Motivated by the Tukia-Väisälä result and the connection with
quasiconformal geometry, we introduce the following terminology.

Definition 1.1. A metric tree is quasiconformal if it is doubling and
of bounded turning.

In the following, we usually call a quasiconformal tree a qc-tree for
brevity.

Trees appear in many contexts in mathematics, for example as Julia
sets of polynomials. The Julia set J (P ) of the polynomial P (z) = z2+i
is a tree (see [CG93, Example after Theorem V.4.2]). Actually, J (P ) ⊂
C is a qc-tree if it is equipped with the ambient Euclidean metric on C.
Indeed, J (P ) is of bounded turning as easily follows from the fact that
C\J (P ) is a John domain (see [CG93, Theorem VII.3.1]). Since every
subset of a Euclidean space (such as the complex plane C) is doubling,
J (P ) is doubling.

In analogy to the Tukia-Väisälä theorem one can raise the question
whether all arcs in a qc-tree can be straightened out simultaneously
by a quasisymmetry. For a precise formulation of this question the
following concept is relevant.

A metric space (X, d) is called geodesic if any two points x, y ∈ X
can be joined by a geodesic segment, i.e., by an arc [x, y] with endpoints
x and y whose length is equal to d(x, y).

The following statement is the main result of this paper.

Theorem 1.2. Every quasiconformal tree is quasisymmetrically equiv-
alent to a geodesic tree.
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Every arc that is doubling and of bounded turning is a qc-tree. This
implies that Theorem 1.2 includes the Tukia-Väisälä theorem as a spe-
cial case, and so can it be viewed as a generalization.

Various improvements and variants of Theorem 1.2 are conceivable.
For example, one can ask whether additional assumptions yield qua-
sisymmetric equivalence to a single specified space. We consider a
question of this type in the follow-up paper [BM20], where it is shown
that a qc-tree is quasisymmetrically equivalent to the continuum self-
similar tree (as defined in [BT20]) if and only if it is trivalent and
uniformly branching (see [BM20] for the relevant definitions).

Another natural question is “how small” we can make the geodesic
tree T that is the quasisymmetric image of the given qc-tree T. If
dimH T denotes the Hausdorff dimension of T , then clearly dimH T ≥ 1,
because T always contains a non-degenerate arc. We will show that
dimH T can actually be arbitrarily close to 1 and will establish the
following improved version of Theorem 1.2.

Theorem 1.3. If T is a quasiconconformal tree and α > 1, then T is
quasisymmetrically equivalent to a geodesic tree T with dimH T ≤ α.

In general, one cannot achieve dimH T = 1 here. An example when
this is not possible can be found in [BiT01] (see also [Az15, Theorem
1.6] for a general related statement). If T is the continuum self-similar
tree and T is any tree that is quasisymmetrically equivalent to T, then
actually dimH T > 1.

The conformal dimension confdim(X) of a metric space X is de-
fined as the infimum of all Hausdorff dimensions of metric spaces Y
that are quasisymmetrically equivalent to X. We refer to [MT10] for
more background on this concept. Theorem 1.3 implies the following
immediate consequence.

Corollary 1.4. If T is a quasiconformal tree, then confdim(T) = 1.

This last statement is not new, but was originally proved by Kin-
neberg [Kin17, Proposition 2.4].

We will now summarize the main ingredients for the proofs of Theo-
rems 1.2 and 1.3. The basic idea is to define a new geodesic metric % on
the given qc-tree (T, d) so that the identity map idT : (T, d) → (T, %)
is a quasisymmetry. In order to define %, we will carefully choose a se-
quence of decompositions Xn of T into subtrees. We call the elements
Xn in Xn tiles of level n or n-tiles. To each n-tile Xn we will assign
a weight w(Xn) by an inductive process on the level n ∈ N. These
weights can then be used to define a distance function %n on T: one
infimizes the total length with respect to this weight over chains of
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n-tiles from one point in T to another (see (6.1) and (7.1)). We will
show that with our choices, the limit

(1.1) %(x, y) = lim
n→∞

%n(x, y)

exists for all x, y ∈ T (Lemma 7.3) and defines a geodesic metric on
T (Lemma 7.6). We have diam%(X) � w(X) for the %-diameter of
each tile X (see Proposition 7.7 (i)). So in a sense the metric % is a
“conformal” deformation of the original metric d on T controlled by the
weight w(X) near each tile X. The fact that idT : (T, d) → (T, %) is
a quasisymmetry can then easily be derived from geometric properties
of tiles (see Lemma 8.2). Theorem 1.2 follows.

The choice of the weights and hence the construction of % involves
a parameter ε0 > 0. We will see that if we choose ε0 close to 0, then
the Hausdorff dimension of (T, %) is close to 1. This immediately gives
Theorem 1.3.

The main difficulty in this general approach is how to define the
decompositions Xn. It is a natural idea to “cut” the tree T into subtrees
by using auxiliary points. We will indeed follow this procedure by
defining an ascending sequence of finite sets V1 ⊂ V2 ⊂ . . . that we
use to cut T. More precisely, the tiles of level n are precisely the
closures of the complementary components of Vn, i.e., the closures of
the components of T \ Vn. The construction of the sets Vn involves
a (small) parameter δ ∈ (0, 1). For each n-tile Xn we will then have
diamd(X

n) � δn. All of this looks natural and even straightforward,
but there is a surprising subtlety here. Namely, one might expect that
the n-vertices, i.e., the elements in Vn used for cutting the tree, should
be branch points of T (points b ∈ T such that T \ {b} has at least
three components); indeed, at least on an intuitive level, cutting T in
a branch point should result in branches with reduced topological or
metric complexity. This was exactly the procedure in the recent paper
[BT20], where topological characterizations of metric trees were given.
We also use this idea in our forthcoming paper [BM20]. However, in the
present context, cutting our given qc-tree T at a branch point b leads
to the problem that we cannot expect good uniform control for the size
of the components of T\{b}, because some of these components might
be very small.

For this reason, we cut our given qc-tree T at double points v ∈ T,
i.e., points v such that T \ {v} has precisely two components. These
double points v are chosen so that the two components of T \ {v} are
not too small and so that v stays away from the branch points of T in
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a precise quantitative way (see (4.1) and (4.2); the relevant definitions
can be found in (2.1) and (2.2)).

The paper is organized as follows. In Section 2 we review some
basic topological facts about trees. We also show that in a tree T of
bounded turning one can replace the original metric up to bi-Lipschitz
equivalence by a diameter metric d. It is characterized by the property
that diam [x, y] = d(x, y) for all x, y ∈ T. The change to a diameter
metric will allow us to make some simplifications of our arguments. In
Section 3 we will prove a general fact of independent interest: if on an
arc some points cast a “shadow” satisfying suitable conditions, then
one can always find a “place in the sun”. We use this to find double
points in a qc-tree T with quantitative separation from branch points
(see Proposition 3.1).

In Section 4 we introduce the somewhat technical concept of a (β, γ)-
good double point at scale ∆ > 0. We show that with suitable choices
of the parameters cutting the qc-tree T in a maximal ∆-separated
set of (β, γ)-good double points at scale ∆ > 0 results in pieces that
have diameter comparable to ∆ (Proposition 4.2). This fact is used in
Section 5 to define the subdivisions of T into tiles as discussed above.
We record various statements about the geometric properties of these
tile decompositions. Weights of tiles are then defined in Section 6.
There we establish the facts about weights that are needed later on.
In Section 7 we define the metric % and show that it is geodesic. The
proof of Theorem 1.2 is then completed in Section 8 and the proof of
Theorem 1.3 is given in Section 9. We conclude with remarks and open
problems in Section 10.

1.1. Notation. We summarize some notation used throughout this
paper.

When an object A is defined to be another object B, we write A := B
for emphasis. Two non-negative quantities a and b are said to be
comparable if there is a constant C ≥ 1 (usually depending on some
ambient parameters) such that

1

C
a ≤ b ≤ Ca.

We then write a � b. The constant C is referred to as C(�). Similarly,
we write a . b or b & a, if there is a constant C > 0 such that
a ≤ Cb, and refer to the constant C as C(.) or C(&). If we want to
emphasize the parameters α, β, . . . on which C depends, then we write
C = C(α, β, . . . ).

We use the standard notation N = {1, 2, . . . } and N0 = {0, 1, 2, . . . }.
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The cardinality of a set X is denoted by #X and the identity map
on X by idX . Let (X, d) be a metric space, a ∈ X, and r > 0. We
denote by Bd(a, r) = {x ∈ X : d(a, x) < r} the open ball and by
Bd(a, r) = {x ∈ X : d(a, x) ≤ r} the closed ball of radius r centered at
a. If A,B ⊂ X, we let diamd(A) be the diameter, A be the closure of
A in X, int(A) be the interior of A in X, and

distd(A,B) := inf{d(x, y) : x ∈ A, y ∈ B}
be the distance ofA andB. If x ∈ X, we set distd(x,A) := distd({x}, A).
We drop the subscript d from our notation for Bd(a, r), etc., if the met-
ric d is clear from the context.

2. Auxiliary facts

In this section we collect some auxiliary statements that will be used
later.

Let (X, d) be a metric space. A set S ⊂ X is called s-separated for
some s > 0 if all distinct points x, y ∈ S satisfy d(x, y) ≥ s. Such a set
S is a maximal s-separated set if S is not contained in a strictly larger
subset of X that is also s-separated. Every s-separated set S ⊂ X is
contained in a maximal s-separated set S ′ ⊂ X. If X is compact, then
every s-separated set S ⊂ X must be finite.

If the space (X, d) is doubling (as defined in the introduction), then
for each 0 < λ < 1 there is a number N ′ = N ′(λ,N) ∈ N only depend-
ing on λ and the doubling constant N of X such that the following
condition is true: if s > 0 and S ⊂ X is a λs-separated set contained
in a ball B(x, s) with x ∈ X, then S contains at most N ′ points. Con-
versely, if this condition is true for some 0 < λ < 1 and N ′ ∈ N, then
X is doubling with a doubling constant N = N(λ,N ′) only depending
on λ and N ′ (see [He01, Exercise 10.17]).

The doubling property is preserved under quasisymmetries, and in
particular under bi-Lipschitz maps; in general though, the doubling
constant will change (see [He01, Theorem 10.18]).

An arc J ⊂ X is a set homeomorphic to the unit interval [0, 1] ⊂ R.
A (metric) arc (J, d) is a metric space homeomorphic to [0, 1]. The
points a, b ∈ J corresponding to 0, 1 ∈ [0, 1] are called the endpoints
of J . We denote by ∂J := {a, b} the set of endpoints of J , and by
int(J) := J \ ∂J the set of interior points of J .

We require an elementary lemma.

Lemma 2.1. Let (J, d) be an arc and n ≥ 2 be an integer. Then
we can decompose J into n non-overlapping subarcs of equal diameter
∆ ≥ 1

n
diam(J).
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More explicitly, decomposing J into n non-overlapping subarcs means
that we can find arcs I1, . . . , In ⊂ J with pairwise disjoint interiors such
J = I1 ∪ · · · ∪ In.

Proof. The existence of a decomposition of J into n non-overlapping
subarcs of equal diameter is proved in [Me11, Lemma 2.2] (see also
[Kul94, Lemma 2] for a related statement in greater generality). If we
denote this diameter by ∆ > 0, then we must have diam(J) ≤ n∆ as
follows from the triangle inequality. �

We now summarize some simple facts about trees. There is a rich lit-
erature on the underlying topological spaces, usually called dendrites.
We refer to [Wh63, Chapter V], [Kur68, Section §51 VI], [Na92, Chap-
ter X], and the references in these sources for more on the subject.

By definition, a metrizable topological space X is called a dendrite
if X is a Peano continuum (i.e., it is compact, connected, and locally
connected), and X does not contain any Jordan curve (i.e., a homeo-
morphic image of the unit circle). A dendrite is called non-degenerate
if it contains more than one point. The following statement reconciles
our notion of a metric tree with the notion of a dendrite.

Proposition 2.2. Let T be a metric space. Then T is a tree if and
only if T is a non-degenerate dendrite.

Proof. “⇒” If T is a tree, then it is a Peano continuum and contains
more than one point. Moreover, T cannot contain a Jordan curve J .
Indeed, if T contains the Jordan curve J , then any two distinct points
x, y ∈ J can be connected by at least two distinct arcs in T, namely the
two subarcs of J with endpoints x and y. This is impossible, because
T is a tree. It follows that T is a non-degenerate dendrite.

“⇐” Conversely, suppose T is a non-degenerate dendrite. Since T
is a Peano continuum, it is arc-connected, i.e., for any two distinct
points x, y ∈ T there exists an arc α ⊂ T with endpoints x and y (see
[Na92, Theorem 8.23]). This arc is unique, because if there exists an
arc β ⊂ T with β 6= α and endpoints x and y, then it is easy to see
that α ∪ β ⊂ T contains a Jordan curve. This is impossible, because
T is a dendrite. It follows that T is indeed a tree. �

Let T be a tree. Then for all points x, y ∈ T with x 6= y, there exists
a unique arc in T joining x and y, i.e., it has the endpoints x and y.
We use the notation [x, y] for this unique arc. It is convenient to allow
x = y here. Then [x, y] denotes a degenerate arc consisting only of the
point x = y. Sometimes we want to remove one or both endpoints from
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the arc [x, y]. Accordingly, we define

(x, y] := [x, y] \ {x}, [x, y) := [x, y] \ {y}, (x, y) := [x, y] \ {x, y}.

If γ is the image of any path in T joining x and y, then necessarily
[x, y] ⊂ γ.

A subset X of a tree (T, d) is called a subtree of T if X equipped
with the restriction of the metric d is also a tree. One can show that
X ⊂ T is a subtree of T if and only if X contains at least two points
and is closed and connected. See [BT20, Lemma 3.3] for a simple direct
argument; to justify this, one can also invoke Proposition 2.2 and the
fact that a closed and connected subset of a dendrite is a dendrite (see
[Na92, Corollary 10.6]). If X is a subtree of T, then [x, y] ⊂ X for all
x, y ∈ X.

Lemma 2.3. Let (T, d) be a tree and V ⊂ T be a finite set. Then the
following statements are true:

(i) Two points x, y ∈ T \ V lie in the same component of T \ V if
and only if [x, y] ∩ V = ∅.

(ii) If U is a component of T \ V , then U is an open set and U is
a subtree of T with ∂U ⊂ ∂U ⊂ V .

(iii) If U and W and are distinct components of T \ V , then U and
W have at most one point in common. Such a common point
belongs to V , and is a boundary point of both U and W .

Proof. (i) Since V ⊂ T is a finite set, it is closed in T. So T \ V is
an open subset of T. Since T is locally connected, each component
U of T \ V is open. Moreover, as an open and connected subset of
the Peano continuum T, such a component U is arc-connected (see
[Na92, Theorem 8.26]). So if two points x, y ∈ T \ V lie in the same
component U of T \ V , then there exists an arc γ in U joining x and
y. Then γ = [x, y] ⊂ U , and so [x, y] ∩ V = ∅.

Conversely, if x, y ∈ T\V and [x, y]∩V = ∅, then [x, y] is a connected
subset of T \ V . Hence there exists a component U of T \ V with
[x, y] ⊂ U ; so x and y lie in the same component U of T \ V .

(ii) If U is a component of T \ V , then U is an open set (as we have
seen in the proof of (i)) and U is a subtree of T (as follows from the
characterization of subtrees discussed before the lemma).

The inclusion ∂U ⊂ ∂U is true for all sets U ⊂ T. It remains to
show ∂U ⊂ V . Indeed, if x ∈ ∂U , then x cannot belong to U (since
U is open) or any other component W of T \ V (because otherwise
U ∩W 6= ∅); so x lies in the complement of T \ V in T, i.e., x ∈ V .
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(iii) Suppose U and W are distinct components of T \ V . Since U
and W are disjoint open subsets of T by (ii), no interior point of U can
belong to W , and no interior point of W can belong to U . Hence

U ∩W = ∂U ∩W = ∂U ∩ ∂W ⊂ ∂U ∩ ∂W ⊂ V

by (ii). In particular, U ∩W is a subset of the finite set V , and any
point in U ∩W must be a boundary point of both U and W .

Actually, U ∩ W consists of at most one point; otherwise, U ∩ W
contains two distinct points x and y, and hence the infinite set [x, y],
because U and W are subtrees of T. This is impossible, because the
set U ∩W ⊂ V is finite. �

Let T be a tree, p ∈ T, and U be a component of T \ {p}. Then
U 6= T is open, and so ∂U 6= ∅, because T is connected. So by
Lemma 2.3 (ii) we have ∅ 6= ∂U ⊂ {p}. Hence ∂U = {p} and so
U = U ∪ {p}. Then B := U = U ∪ {p} is a subtree of T, called a
branch of p (in T).

The components U of any open subset W of a tree T form a null
sequence in the following sense: for each ε > 0 there are only finitely
many such components U with diam(U) ≥ ε. In particular, the number
of components of W is finite or countably infinite. This follows from a
more general fact about open subsets of hereditarily locally connected
metric continua; see [Wh63, p. 90, Corollary (2.2)] or [Kur68, p. 269,
Theorem 3]. Note that we can apply this result by Proposition 2.2
and because every dendrite is hereditarily locally connected (this is
explicitly stated in [Na92, Corollary 10.5] and follows from the fact,
mentioned above, that every subcontinuum of a dendrite is a dendrite).

In particular, each point p in a tree T can have at most countably
many distinct complementary components U and hence there are only
countably many distinct branches B of p. Only finitely many of these
branches can have a diameter exceeding a given positive number (for
a direct proof of these facts see also [BT20, Section 3]). This implies
that we can label the branches Bn of p by numbers n = 1, 2, 3, . . . so
that

diam(B1) ≥ diam(B2) ≥ diam(B3) ≥ . . . .

If there are precisely two such branches, then we call p a double point
of T and define

(2.1) DT(p) = diam(B2).

So DT(p) is the diameter of the smallest branch of a double point p.
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If there are at least three branches of p, then p is called a branch
point of T. In this case, we set

(2.2) HT(p) = diam(B3).

So HT(p) is the diameter of the third largest branch of p.
The following statement gives a criterion how to detect branch points.

Lemma 2.4. Let (T, d) be a tree, b, x1, x2, x3 ∈ T with b 6= x1, x2, x3
and suppose that the sets [x1, b), [x2, b), [x3, b) are pairwise disjoint.
Then the points x1, x2, x3 lie in different components of T \ {b} and b
is a branch point of T.

Proof. This is [BT20, Lemma 3.6]. For the reader’s convenience we
reproduce the argument. The arcs [x1, b] and [x2, b] = [b, x2] have only
the point b in common. So their union [x1, b]∪ [b, x2] is an arc and this
arc must be equal to [x1, x2]. Hence b ∈ [x1, x2] which by Lemma 2.3 (i)
implies that x1 and x2 lie in different components of T\{b}. A similar
argument shows that x3 must be contained in a component of T\{b}
different from the components containing x1 and x2. In particular,
T\{b} has at least three components and so b is a branch point of T.
The statement follows. �

The tree (T, d) is of K-bounded turning with K ≥ 1 (as defined in
the introduction) if and only if

diam [x, y] ≤ Kd(x, y)

for all x, y ∈ T. Here and in the following, diam [x, y] instead of
diam([x, y]) denotes the diameter of the arc [x, y]; we omit the paren-
theses for better readability.

We define the diameter distance on T by

(2.3) dd(x, y) := diam [x, y]

for x, y ∈ T. We record some properties of this distance function.

Lemma 2.5. Let (T, d) be a metric tree. Then the following statements
are true:

(i) dd is a metric on T.

(ii) For each arc J ⊂ T we have

diamdd(J) = diam(J),

where diamdd denotes the diameter with respect to dd.

(iii) (T, dd) is of 1-bounded turning.

(iv) (T, d) is of K-bounded turning for K ≥ 1 if and only if the
identity map idT : (T, d)→ (T, dd) is K-bi-Lipschitz.
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Proof. This is [Me11, Lemma 2.1], but we will include the simple proof
for the convenience of the reader.

(i) All properties of a metric for dd are immediate except the triangle
inequality which follows from the fact that if x, y, z ∈ T, then [x, z] ⊂
[x, y] ∪ [y, z].

(ii) For all x, y ∈ J , we have d(x, y) ≤ dd(x, y), and so diam(J) ≤
diamdd(J). Moreover, for all x, y ∈ J we have [x, y] ⊂ J . Hence
dd(x, y) ≤ diam(J); so diamdd(J) ≤ diam(J) and the statement fol-
lows.

(iii) This follows directly from (ii), since

dd(x, y) = diam [x, y] = diamdd[x, y]

for all x, y ∈ T.

(iv) If (T, d) is of K-bounded turning, then for all x, y ∈ T we have

dd(x, y) = diam [x, y] ≤ Kd(x, y) ≤ K dd(x, y).

Thus the identity map idT : (T, d) → (T, dd) is K-bi-Lipschitz. Con-
versely, if this map is K-bi-Lipschitz, then for all x, y ∈ T,

diam [x, y] = diamdd[x, y] = dd(x, y) ≤ Kd(x, y).

Therefore, (T, d) is of K-bounded turning. �

We say a metric d on a metric tree T is a diameter metric if d(x, y) =
diam [x, y] for all x, y ∈ T. In this case, d = dd, where dd is defined as
in (2.3).

Suppose (T, d) is a qc-tree, i.e., a tree that is doubling and of bounded
turning. Then the previous lemma implies that (T, dd) is bi-Lipschitz
equivalent, and in particular quasisymmetrically equivalent, to (T, d).
Moreover, (T, dd) is of 1-bounded turning and also doubling, since the
latter condition is invariant under bi-Lipschitz equivalence; so (T, dd)
is also a qc-tree. This implies that in order to prove Theorems 1.2
and 1.3, we are reduced to the case that the qc-tree in question carries
a diameter metric. This reduction makes the proofs somewhat easier,
but we still face major problems, because there is no obvious way to
turn a diameter metric into a geodesic metric by a quasisymmetry.

For the rest of the paper we will assume that (T, d) is a qc-tree that
is equipped with a diameter metric d. Nothing essential changes if we
rescale the metric. So we may also assume that diam(T) = 1. We will
denote the doubling constant of T by N throughout the paper.
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3. Sun and shadow

In this section we will prove a statement, Proposition 3.1, that will
allow us to find double points in our given qc-tree T that stay away
from the branch points of T in a geometrically controlled manner. In
the formulation of the proposition, we use the function defined in (2.2).

Proposition 3.1. There exists a constant γ = γ(N) > 0 only depend-
ing on the doubling constant N of T with the following property: if
∆ > 0 and J ⊂ T is an arc with diam(J) ≥ ∆, then there exists a
double point x ∈ J of T such that

d(x, b) ≥ γmin{HT(b),∆}
for all branch points b ∈ T.

To prove this statement, we require two auxiliary facts.

Lemma 3.2. Let (J, d) be a metric arc equipped with a diameter metric
d, J ′ ⊂ J be an arc, and A ⊂ J be a set with #(A ∩ J ′) ≤ M , where
M ∈ N. Then there exists an arc I ⊂ J ′ such that

diam(I) = 1
6M

diam(J ′) and dist(I, A ∪ ∂J ′) ≥ 1
6M

diam(J ′).

The statement is somewhat technical, because three arcs I ⊂ J ′ ⊂ J
are involved, but in this form the lemma will be useful for us later on.

Proof of Lemma 3.2. The construction that follows is illustrated in Fig-
ure 1. By Lemma 2.1 we can decompose J ′ into M+1 non-overlapping
arcs J ′1, . . . , J

′
M+1 of equal diameter ∆.

J ′1 J ′′ = J ′k J ′M+1

J ′ JI⊂I2I1 I3

Figure 1. The arcs in the proof of Lemma 3.2.

We have
∆ ≥ 1

M+1
diam(J ′) ≥ 1

2M
diam(J ′).

Since #(A∩J ′) ≤M and J ′1, . . . , J
′
M+1 have pairwise disjoint interiors,

by the pigeon-hole principle there exists k ∈ {1, . . . ,M + 1} such that
for J ′′ := J ′k we have int(J ′′) ∩ A = ∅. We subdivide J ′′ into three
non-overlapping arcs I1, I2, I3 of equal diameter. Then

(3.1) diam(Ii) ≥ 1
3

diam(J ′′) ≥ 1
6M

diam(J ′)

for i = 1, 2, 3. We may assume that I1 contains one endpoint of J ′′, I3
contains the other endpoint, and I2 is the “middle” arc in the decom-
position of J ′′. It easily follows from (3.1) and the intermediate value
theorem that there exists an arc I ⊂ I2 with diam(I) = 1

6M
diam(J ′).
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If a ∈ A ∪ ∂J ′, then a 6∈ int(J ′′). So if we travel from a point x ∈ I
to the point a along [x, a] ⊂ J , we must traverse I1 or I3. Since d is a
diameter metric, (3.1) implies that

d(x, a) = diam [x, a] ≥ min{diam(I1), diam(I3)} ≥ 1
6M

diam(J ′).

Hence dist(I, A ∪ ∂J ′) ≥ 1
6M

diam(J ′). The statement follows. �

Lemma 3.3 (Ein Platz an der Sonne1). Let (J, d) be a metric arc
equipped with a diameter metric d, and S : J → [0, diam(J)] be a func-
tion. Suppose that there is a constant M ∈ N such that for all subarcs
I ⊂ J we have

(3.2) #{p ∈ I : S(p) ≥ diam(I)} ≤M.

Then there exists a constant σ = σ(M) > 0 and a point x ∈ J such
that d(x, p) ≥ σS(p) for all p ∈ J .

In other words, the set J \
⋃
p∈J B(p, σS(p)) is non-empty (here we

use the convention that B(p, 0) = ∅). If we think of each point p ∈ J
with S(p) > 0 as “casting a shadow” of radius σS(p) around p, then
the lemma says that the union of all shadows does not cover J , and so
there is a “place in the sun”.

Proof. Without loss of generality we may assume that diam(J) = 1.
Consider the set A := {p ∈ J : S(p) > 0}. Let λ := 1/(6M) and define
An := {p ∈ A : S(p) ≥ λn} for n ∈ N0. Obviously, An ⊂ An+1 for
n ∈ N0 and A =

⋃
n∈N0

An. We will inductively define arcs Jn ⊂ J for
n ∈ N0 such that J0 ⊃ J1 ⊃ J2 . . . , diam(Jn) = λn for all n ∈ N0, and
dist(Jn, An−1) ≥ λn for all n ∈ N.

We set J0 := J . Suppose arcs J0, . . . , Jn with the desired properties
have already been defined for some n ∈ N0. Then by our hypotheses
#(An ∩ Jn) ≤ M. It follows from Lemma 3.2 that we can find an arc
Jn+1 ⊂ Jn with

diam(Jn+1) = 1
6M

diam(Jn) = λ diam(Jn) = λn+1

and dist(Jn+1, An) ≥ λn+1. Hence Jn+1 has the desired properties, and
we can continue the process indefinitely.

We have
⋂
n∈N0

Jn 6= ∅, and so we can pick a point x ∈ J that lies in
all arcs Jn. If p ∈ A is arbitrary, then there exists a smallest n ∈ N0

such that p ∈ An. Then S(p) ∈ [λn, λn−1), and so

d(x, p) ≥ dist(x,An) ≥ λn+1 ≥ λ2S(p).

So if we choose σ = λ2 = 1/(36M2), then x is a point as desired. �

1Mit fünf Mark sind Sie dabei!
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Proof of Proposition 3.1. Let ∆ > 0 and suppose J ⊂ T is an arc with
diam(J) ≥ ∆. Then J = [u, v], where u, v ∈ T are the endpoints of J .
We set S(p) = ∆ for p ∈ {u, v}, S(p) = min{HT(p),∆} for a branch
point p ∈ (u, v), and S(p) = 0 for all other points p ∈ (u, v). Since
diam(J) ≥ ∆ and 0 ≤ S(p) ≤ ∆ for p ∈ J , we can consider S as a
function S : J → [0, diam(J)].

Claim. There exists a constant M = M(N) ∈ N such that for all
arcs I ⊂ J we have

(3.3) #{p ∈ I : S(p) ≥ diam(I)} ≤M.

In other words, S satisfies the hypotheses of Lemma 3.3 with a con-
stant M = M(N) only depending on the doubling constant N of T.

To see this, fix an arc I ⊂ J and let R := {p ∈ int(I) : S(p) ≥ ρ},
where ρ := diam(I) > 0. Each point r ∈ R is a branch point of T and
there exists a large component Ur of T\{r} that is disjoint from I, but
attached to I through the point r. There are #R such components.
The doubling property then gives a bound on #R only depending on
N . In the following we present the details of this argument, illustrated
in Figure 2.

JI

a′a

r r′

qr

q̃r

Ur

q′r

Figure 2. Bounding the number of elements in R.

We have I = [a, a′], where a, a′ ∈ I are the endpoints of I. Consider
an arbitrary point r ∈ R ⊂ int(I) = (a, a′). Then r is a branch point
of T with HT(r) ≥ S(r) ≥ ρ > 0. Each of the connected sets [a, r)
and (r, a′] is contained in a component of T\{r}. Hence there must be
another component Ur of T \ {r} with diam(Ur) ≥ HT(r) ≥ ρ that is
disjoint from I = [a, r)∪{r}∪ (r, a′]. There exists a point q̃r ∈ Ur with
d(q̃r, r) ≥ diam(Ur)/2 ≥ ρ/2; otherwise, Ur = Ur ∪ {r} ⊂ B(r, ρ/2)
and so diam(Ur) ≤ diam(Ur) < ρ, which is a contradiction.

Then (r, q̃r] ⊂ Ur, and it easily follows from the intermediate value
theorem that we can find a point qr ∈ (r, q̃r] ⊂ Ur with d(qr, r) = ρ/2.
We have

d(a, qr) ≤ d(a, r) + d(r, qr) ≤ diam(I) + ρ/2 = 3ρ/2,
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and so qr ∈ B(a, 3ρ/2).
If r, r′ ∈ R with r 6= r′, then the corresponding points qr and qr′ lie

in different components of T\{r′}. To see this, note that Ur = Ur∪{r}
is a connected set with

Ur = Ur ∪ {r} ⊂ (T \ I) ∪ (T \ {r′}) ⊂ T \ {r′},

and so Ur is contained in a component of T\{r′}. In particular, qr ∈ Ur
and r ∈ I \ {r′} lie in the same component of T \ {r′}. On the other
hand, qr′ was chosen from a component Ur′ of T \ {r′} that does not
contain any point of I.

Since qr and qr′ lie in different components of T\{r′}, Lemma 2.3 (i)
implies that r′ ∈ [qr, qr′ ]. In particular,

d(qr, qr′) = diam [qr, qr′ ] ≥ d(r′, qr′) = ρ/2.

So the points qr, r ∈ R, have pairwise mutual distance ≥ ρ/2 and
are all contained in the ball B(a, 3ρ/2). It follows that #R is bounded
by a constant only depending on N (see the discussion in the beginning
of Section 2). Since the endpoints of I are not contained in R, we have
to possibly increase this bound by 2 to obtain a bound as in (3.3) with
a constant M = M(N). The Claim follows.

Lemma 3.3 now guarantees the existence of a point x ∈ J such that

d(x, p) ≥ σS(p)

for all p ∈ J , where σ = σ(M) = σ(N) > 0 can be chosen to depend
only on M and hence on N . We may assume that 0 < σ ≤ 1, and so
σ2 ≤ σ.

We claim that the statement of the proposition is true with γ := σ2/2
which only depends on N . To see this, let b ∈ T be an arbitrary branch
point of T. As we travel from b to x along the arc [b, x], there is a first
point r ∈ J . We now consider two cases depending on the location of
r.

Case 1. r ∈ B(u, σ∆/2) ∪B(v, σ∆/2). In this case, we may assume
r ∈ B(u, σ∆/2). Since S(u) = ∆, by choice of x we then have

d(x, b) = diam [x, b] ≥ d(x, r) ≥ d(x, u)− d(r, u)

≥ σS(u)− σ∆/2 = σ∆/2 ≥ σmin{HT(b),∆}/2
≥ γmin{HT(b),∆}.

This is the desired inequality in this case.

Case 2. r 6∈ B(u, σ∆/2)∪B(v, σ∆/2). Then in particular r ∈ int(J).
There exists a component U of T \ {b} that is disjoint from J and
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r x

B(u, σ∆/2) B(v, σ∆/2)

u v

b

U

V1

V2 V3

Figure 3. The estimate of Case 2.

satisfies diam(U) ≥ HT(b). This connected set does not contain r ∈ J
and so it is contained in a component V1 of T \ {r}. Hence

diam(V1) ≥ diam(U) ≥ HT(b).

Two other components V2 and V3 of T \ {r} contain the half-open
(and non-empty) arcs [u, r) and [v, r), respectively. The situation is
illustrated in Figure 3. It follows that

diam(V2) ≥ diam[u, r) ≥ d(u, r) ≥ σ∆/2.

Here we have used that r 6∈ B(u, σ∆/2). Similarly, diam(V3) ≥ σ∆/2,
and so

HT(r) ≥ min{diam(Vi) : i ∈ {1, 2, 3}}

≥ min{HT(b), σ∆/2} ≥ σ

2
min{HT(b),∆}.

It follows that

d(x, b) = diam [x, b] ≥ d(x, r) ≥ σS(r) = σmin{HT(r),∆}
≥ σ2 min{HT(b),∆}/2 = γmin{HT(b),∆},

as desired.
Note that x ∈ J is a double point of T. Indeed, x is not a branch

point of T, because x has a positive distance to each of them. On the
other hand, d(x, u) ≥ σS(u) = σ∆ > 0, and so x 6= u. Similarly, x 6= v.
Since x ∈ [u, v] = J , the points u and v lie in different components of
T\{x} by Lemma 2.3 (i). In particular, there are at least two, but not
more than two such components. Hence x is a double point of T. �

With some small changes in the previous proof one can show that the
set of double points x ∈ J that satisfy the estimate in Proposition 3.1
is not only non-empty, but in a suitable sense actually fairly large
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(namely, uniformly perfect). Such a statement was proved in recent
work by Lin and Rohde (see [LR18, Lemma 4.5]).

4. Good double points

In this section we introduce the concept of a “good” double point
of our given qc-tree T. Attached to this concept are certain numerical
parameters. The goal of this section is to show that with appropriate
choices of these parameters, one can use a maximal set V of good double
points to obtain a decomposition of T with some desired geometric
properties (see Proposition 4.2).

We fix a scale 0 < ∆ ≤ diam(T) = 1. We consider double points
x ∈ T with the property that both components of T \ {x} are large,
meaning that

(4.1) DT(x) ≥ β∆

for some constant β ≥ 1 (DT was defined in (2.1)). We will choose β
according to the following statement.

Proposition 4.1. There is a constant β = β(N) ≥ 1 only depending
on the doubling constant N of T such that the following statement is
true: if V ⊂ T is a set of double points of T that are ∆-separated and
satisfy (4.1), then either

(i) for each component X of T \ V we have

diam(X) ≤ 3β∆

or

(ii) there is an arc I ⊂ T with

diam(I) ≥ ∆ and dist(I, V ) ≥ ∆,

and such that (4.1) holds for each double point x ∈ I of T.

Proposition 3.1 implies that each arc I ⊂ T contains double points
of T. So in case (ii) of Proposition 4.1, we can add a double point x ∈ I
of T to V . Then this new set V ′ = V ∪ {x} is again a set of double
points of T that are ∆-separated and satisfy (4.1). This implies that
for a maximal set V as in the proposition, statement (i) will always be
true.

Proof of Proposition 4.1. By the doubling property, there exists a con-
stant N ′ = N ′(N) ∈ N only depending on the doubling constant N
of T with the following property: if ρ > 0 and B ⊂ T is a ball in T
of radius 6ρ, then every ρ-separated subset of B contains at most N ′

points. We will show that the proposition is true with the constant
β = 6N ′, which only depends on N .
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a
J ′

rv

v

U

qr

r′

qr′

Figure 4. Roots in J ′.

Let V ⊂ T be a set as in the statement. Note that V is a finite set,
because V is ∆-separated and T is compact. If all components X of
T \ V satisfy (i), we are done. Otherwise, there exists a component X
of T\V with diam(X) > 3β∆. Then we can find points z, w ∈ X with
d(z, w) ≥ 3β∆. By Lemma 2.3 (i) we then have [z, w] ∩ V = ∅ which
implies that J := [z, w] ⊂ X.

Note that diam(J) ≥ d(z, w) ≥ 3β∆. By decomposing J into three
non-overlapping subarcs of equal diameter ≥ β∆ and trimming the
“middle” arc to appropriate size, we can find an arc J ′ ⊂ J ⊂ X with
diam(J ′) = β∆ that has distance ≥ β∆ from each of the two endpoints
of J (see the proof of Lemma 3.2 for a very similar argument). This
implies that for every double point x ∈ J ′ of T the estimate (4.1) holds.

We want to find a subarc I ⊂ J ′ ⊂ T \ V with diam(I) ≥ ∆ and
dist(I, V ) ≥ ∆. To this end, we fix a point a ∈ J ′ as “base point”.
Now suppose v ∈ V is a point with dist(v, J ′) < ∆. If we travel from
v towards a along [v, a], there is a first point r = rv that belongs to J ′

(see Figure 4 for an illustration). Let

R = {rv : v ∈ V, dist(v, J ′) < ∆}
be the set of these “root” points.

Claim. #R ≤ N ′.

To see this, first note that for each point r ∈ R we can choose a point
v ∈ V with d(v, r) < ∆ and r = rv. The connected set J ′ ⊂ T \ V ⊂
T\{v} lies in one component of T\{v}. Then for the other component
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U of T\{v} we have U ∩J ′ = ∅ and diam(U) ≥ DT(v) ≥ β∆, because
v ∈ V . Therefore, we can find a point q ∈ U with d(q, v) = β∆/2 (see
the proof of Proposition 3.1 for more details in a similar claim). Define
vr := v and qr := q. We then have

d(qr, a) ≤ d(qr, vr) + dist(vr, J
′) + diam(J ′)

< β∆/2 + ∆ + β∆ ≤ 3β∆.

Thus qr ∈ B(a, 3β∆).
Moreover, if r, r′ ∈ R are distinct, then the corresponding points qr

and qr′ lie in different components of T \ {r}. This can be justified by
an argument similar to the one in the proof of Proposition 3.1. Hence
r ∈ [qr, qr′ ] and so [qr, r] ⊂ [qr, qr′ ]. On the other hand, qr and r lie
in different components of T \ {vr}, and so vr ∈ [qr, r] ⊂ [qr, qr′ ]. It
follows that

d(qr, qr′) = diam [qr, qr′ ] ≥ d(qr, vr) ≥ β∆/2.

This shows that the set Q := {qr : r ∈ R} consists of (β∆/2)-separated
points and is contained in the ball B(a, 3β∆). The Claim now follows
from the definition of the constant N ′.

By the Claim and Lemma 3.2 we can find an arc I ⊂ J ′ with

diam(I) =
1

6N ′
diam(J ′) =

β

6N ′
∆ = ∆

(by choice of β = 6N ′) and dist(I, R ∪ ∂J ′) ≥ ∆.
Then dist(I, V ) ≥ ∆. Indeed, let v ∈ V be arbitrary. If dist(v, J ′) ≥

∆, then clearly dist(v, I) ≥ dist(v, J ′) ≥ ∆. If dist(v, J ′) < ∆, then as
we travel from v to a point in I along an arc, we pass through ∂J ′ or
the root point rv ∈ J ′ ∩R. So dist(v, I) ≥ dist(I, R ∪ ∂J ′) ≥ ∆ in this
case as well.

Recall that J ′ ⊂ J was chosen such that every double point of T
contained in J ′, and hence every such point contained in I ⊂ J ′, sat-
isfies (4.1). Therefore, the arc I has the desired properties and the
statement follows. �

In addition to (4.1), we want to choose double points x of T that
are separated from the branch points of T in a controlled way. More
precisely, we require that

(4.2) d(x, b) ≥ γmin{HT(b),∆}
for all branch points b ∈ T. Here γ = γ(N) is the constant from
Proposition 3.1 that can be chosen to depend only on the doubling
constant N of T. A double point x ∈ T is called (β, γ)-good at scale
∆, if it satisfies (4.1) and (4.2).
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Proposition 4.2. Let β = β(N) ≥ 1 be the constant from Proposi-
tion 4.1, γ = γ(N) > 0 be the constant from Proposition 3.1, and
0 < ∆ ≤ 1.

If V ⊂ T is a maximal ∆-separated set of (β, γ)-good double points
at scale ∆, then

diam(X) ≤ 3β∆

for each component X of T \ V .

Note that such a maximal set V always exists, but we could very well
have V = ∅. In this case, the statement says that 1 = diam(T) ≤ 3β∆.
In other words, V is necessarily non-empty if 0 < ∆ < 1/(3β).

Proof. Let V be a set as in the statement. We argue by contradiction
and assume that there is a component X of T\V with diam(X) > 3β∆.
Then we can find an arc I ⊂ T as in Proposition 4.1 (ii).

By Proposition 3.1 we can find a double point x ∈ I of T such that

d(x, b) ≥ γmin{HT(b),∆}
for all branch points b ∈ T. Then x satisfies (4.1) and (4.2). Therefore,
x is a (β, γ)-good double point of T at scale ∆. We also have

dist(x, V ) ≥ dist(I, V ) ≥ ∆.

Hence V ′ = V ∪ {x} is a ∆-separated set consisting of (β, γ)-good
double points at scale ∆. Since x 6∈ V , this contradicts the maximality
of V , and the statement follows. �

At this point the importance of (4.2) is not at all obvious. The
relevance of this condition will become apparent only later (see the
remarks before Lemma 5.5).

5. Subdividing the tree

We want to subdivide our given qc-tree T. As before, we may assume
that T is equipped with a diameter metric d and that diam(T) = 1. We
fix constants β ≥ 1 and γ > 0 depending only on the doubling constant
N of T as in Proposition 4.2, and a (small) constant 0 < δ < 1/(3β).

Vertices and tiles. We will now inductively construct sets Vn ⊂ T
for n ∈ N such that

(5.1) V1 ⊂ V2 ⊂ V3 ⊂ . . . ,

where each Vn is a maximal δn-separated set consisting of (β, γ)-good
double points at scale δn. Since T is compact, each set Vn will neces-
sarily be finite.
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For V1 we choose a maximal δ-separated subset of T consisting of
(β, γ)-good double points at scale δ. Suppose for some n ∈ N, the
sets V1 ⊂ V2 ⊂ . . . ⊂ Vn ⊂ T with the desired properties have been
chosen. Then for ∆ = δn+1 ≤ δn the set Vn is a ∆-separated subset
of T consisting of (β, γ)-good double points at scale ∆. Hence it is
contained in a maximal such set. We pick such a maximal set and
denote it by Vn+1. Clearly, Vn ⊂ Vn+1. It follows that we obtain sets
Vn for all n ∈ N as desired. Since δn ≤ δ < 1/(3β), we have Vn 6= ∅
for each n ∈ N, as follows from the remark after Proposition 4.2.

Each point v ∈ Vn is called an n-vertex. The closure of a component
of T \ Vn is called an n-tile, and the set of all n-tiles is denoted by
Xn. We also speak of vertices and tiles if their level n is clear from the
context or irrelevant.

We now summarize some topological properties of vertices and tiles.
Most of them are intuitively clear, often relying on the fact that each
vertex is a double point, but we will include full proofs for the sake of
completeness.

Lemma 5.1. For each n ∈ N the following statements are true:

(i) Each n-tile X is a subtree of T with ∂X ⊂ Vn.

(ii) If X is an n-tile and v ∈ Vn, then X is contained in the closure
of one of the two components of T \ {v} and disjoint from the
other component.

(iii) If X is an n-tile, then ∂X 6= ∅.
(iv) Two distinct n-tiles X and Y have at most one point in com-

mon. Such a common point is an n-vertex and a boundary point
of both X and Y .

(v) Each n-vertex v is contained in precisely two distinct n-tiles X
and Y .

(vi) There are only finitely many n-tiles.

(vii) Each (n+ 1)-tile X ′ is contained in a unique n-tile X.

(viii) Each n-tile X is equal to the union of all (n + 1)-tiles X ′ with
X ′ ⊂ X.

(ix) If v is n-vertex and X an n-tile with v ∈ X, then v ∈ ∂X.
Moreover, there exists precisely one (n + 1)-tile X ′ ⊂ X with
v ∈ X ′.

(x) If X is an n-tile and ∂X = {v} ⊂ Vn is a singleton set, then
X = W , where W is a component of T \ {v}.
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Proof. (i) If X is an n-tile, then X = U , where U is a component of
T \Vn. It then follows from Lemma 2.3 (ii) that X = U is a subtree
of T with ∂X = ∂U ⊂ ∂U ⊂ Vn.

(ii) Again we have X = U , where U is a component of T \ Vn.
Moreover, v ∈ Vn is a double point of T, and so there exist precisely
two components W1 and W2 of T \ {v}. Since U is a connected subset
of T \Vn ⊂ T \ {v}, it is contained in one of these components, say
U ⊂ W1. Then X = U ⊂ W1 = W1 ∪ {v}, and X is disjoint from
W2 = T \W1.

(iii) We have Vn 6= ∅ and so it follows from (ii) that X 6= T. Since
T is connected, this implies that ∂X 6= ∅; otherwise, the non-empty
set X 6= T would be an open and closed subset of the connected space
T. This is impossible.

(iv) This immediately follows from Lemma 2.3 (iii).

(v) The point v ∈ Vn is a double point of T. Hence there exist
precisely two components W1 and W2 of T \ {v}. We have W1 =
W1 ∪ {v} and W2 = W2 ∪ {v}. Hence v ∈ W1 ∩W2.

Lemma 2.3 (i) implies that for all points x ∈ W1 and y ∈ W2, we
have v ∈ [x, y]. Since v ∈ W1 ∩W2, we can choose x and y so close to
v that [x, y] contains no other point in Vn. Then [x, v) is a connected
subset of T \ Vn, and so it must be contained in a component U1 of
T \Vn. Hence X := U1 is an n-tile that contains the arc [x, v], and so
v ∈ X. Similarly, (v, y] is contained in a component U2 of T \Vn, and
v is contained in the n-tile Y := U2.

Since v ∈ [x, y], by Lemma 2.3 (i) the components U1 and U2 of
T \Vn containing x and y, respectively, must be distinct. So U1 6= U2,
and these sets are disjoint. Since U1 and U2 are open by Lemma 2.3 (ii),
the sets X = U1 and U2 are also disjoint. Since ∅ 6= U2 ⊂ U2 = Y , we
conclude that X = U1 6= U2 = Y . So v is contained in at least two
distinct n-tiles X and Y .

Suppose Z = U is another n-tile with v ∈ Z, where U is a com-
ponent of T \ Vn. A point z ∈ U must be contained in one of the
components W1 or W2 of T \ {v}, say z ∈ W1. Then [x, z] ⊂ T \ {v}
by Lemma 2.3 (i). We may assume that x and z are so close to v that
[x, z] contains no point in Vn \ {v}. Then [x, z] ∩ Vn = ∅, and so x
and z are contained in the same component of T \Vn. It follows that
U = U1, and so X = U1 = U = Z. This shows that X 6= Y are the
only n-tiles that contain v. So v is contained in precisely two distinct
n-tiles.
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(vi) Each n-tile contains an n-vertex as follows from (i) and (iii), and
each vertex is contained in precisely two n-tiles by (v). This implies
that there are at most twice as many n-tiles as n-vertices. In particular,
the number of n-tiles is finite, because the set Vn of n-vertices is finite.
Actually, a more careful argument shows that the number of n-tiles
exceeds the number of n-vertices by exactly one, but we will not need
this stronger result.

(vii) If X ′ is an (n + 1)-tile, then there exists a component W of
T \Vn+1 with W = X ′. Since Vn ⊂ Vn+1, the set W is a connected
subset of T\Vn and so contained in a unique component U of T\Vn.
Then X ′ is contained in the n-tile X := U , because X ′ = W ⊂ U = X.
There can be no other n-tile containing X ′, because by (i) the set X ′

is a subtree of T and hence an infinite set, but distinct n-tiles can have
at most one point in common by (iv).

(viii) If X is an n-tile, then X = U , where U is a component of
T \Vn. Since U is connected, this set cannot contain isolated points.
This implies that the set U \Vn+1 ⊂ X is dense in U and hence also
dense in X = U .

If x ∈ U \ Vn+1 is arbitrary, then there exists a component W of
T \Vn+1 with x ∈ W . Since W is a connected subset of T \Vn+1 ⊂
T \Vn, this set must be contained in a component of T \Vn. Since
x ∈ U ∩W , it follows that W ⊂ U . Then X ′ := W is an (n + 1)-tile
with x ∈ X ′ and X ′ = W ⊂ U = X.

This shows that if we denote by Y the union of all (n + 1)-tiles
X ′ ⊂ X, then Y ⊂ X contains the set U \Vn+1. By (vi) there are only
finitely many (n+ 1)-tiles, and so Y is closed. Since U \Vn+1 is dense
in X and U \Vn+1 ⊂ Y , it follows that X = Y as desired.

(ix) By (v) there exists precisely one n-tile Y distinct from X with
v ∈ Y . We then have {v} = X ∩Y and v ∈ ∂X by (iv). By (viii) there
exist (n+ 1)-tiles X ′ ⊂ X and Y ′ ⊂ Y with v ∈ X ′ ∩ Y ′. Since X and
Y have only the point v in common, it follows that X ′ 6= Y ′ and that
Y ′ is not a subset of X. Since v ∈ Vn ⊂ Vn+1 is also an (n+1)-vertex,
(v) implies that X ′ and Y ′ are the only (n+ 1)-tiles that contain v. In
particular, X ′ is the unique (n+ 1)-tile with v ∈ X ′ ⊂ X.

(x) Suppose that ∂X = {v} ⊂ Vn. We have X = U , where U is a
component of T \Vn. As we have seen in the proof of (ii), there is a
component W of T \ {v} with U ⊂ W . We claim that U = W .

To see this, we argue by contradiction and assume that U 6= W .
Then there exists a point x ∈ U ⊂ W , as well as a point y ∈ W \ U .
Hence [x, y] ∩Vn 6= ∅, because otherwise y ∈ U . So as we travel from
x to y along [x, y], there must be a first point u ∈ [x, y] that belongs
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to Vn. Then [x, u) ⊂ U , and so [x, u] ⊂ U = X. By (ix) the n-vertex
u ∈ X is a boundary point of X. Hence u ∈ ∂X = {v} and so u = v.
Since v = u ∈ [x, y], Lemma 2.3 (i) implies that x and y lie in different
components of T \ {v}. Since x and y lie in the same component W of
T\{v}, this is a contradiction. We see that U = W and so X = U = W
as desired. �

We now discuss some metric properties of vertices and tiles. Since
Vn consists of δn-separated points, for distinct u, v ∈ Vn we have

(5.2) d(u, v) ≥ δn.

For each n-tile Xn we have

diam(Xn) � δn, or more precisely(5.3)

δn ≤ diam(Xn) ≤ 3βδn.

Indeed, the upper bound follows from Proposition 4.2.
To see that the lower bound is also true, first note that ∅ 6= ∂Xn ⊂

Vn by Lemma 5.1 (i) and (iii). If ∂Xn is a singleton set {v} ⊂ Vn,
then Xn is equal to the closure of one of the two components of T\{v}
by Lemma 5.1 (x). Since v satisfies (4.1), we have

diam(Xn) ≥ DT(v) ≥ βδn ≥ δn,

as desired (recall that β ≥ 1).
If ∂Xn contains two distinct points in Vn, we obtain the lower bound

in (5.3) from (5.2).
We have good separation of n-tiles in the following sense. If Xn, Y n ∈

Xn are disjoint n-tiles, then

(5.4) dist(Xn, Y n) ≥ δn.

To see this, pick points x ∈ X := Xn and y ∈ Y := Y n such that
d(x, y) = dist(X, Y ). As we travel from x to y along the arc [x, y], we
must meet the sets ∂X and ∂Y because X and Y are disjoint. Suppose
u ∈ [x, y]∩∂X and v ∈ [x, y]∩∂Y . Then u and v are distinct n-vertices
and it follows that

dist(X, Y ) = d(x, y) = diam [x, y] ≥ d(u, v) ≥ δn,

as desired.
Since each point v ∈ Vn is a (β, γ)-good double point at scale δn, by

(4.1) we have

(5.5) DT(v) ≥ βδn,

and so the components of T \ {v} are large.
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Each n-vertex v stays away from the branch points of T in a con-
trolled way. More precisely, by (4.2) for each branch point b of T we
have

(5.6) d(v, b) ≥ γmin{HT(b), δn}.

Finally, for our later discussion it is convenient to set V0 = ∅ and
regard X0 := T as the only 0-tile. Then X0 = {T}. Clearly (5.3) is
still true.

Chains. An n-chain for n ∈ N0 is a finite non-empty sequence P of
n-tiles X1, . . . , Xr with Xi∩Xi+1 6= ∅ for i = 1, . . . , r−1. Again we call
P simply a chain if its level n is clear from the context. We call r ∈ N
the length of P . The chain P joins the points x, y ∈ T if x ∈ X1 and
y ∈ Xr. It is simple if Xi 6= Xi+1 for i = 1, . . . , r − 1 and Xi ∩Xj = ∅
for |i− j| ≥ 2. The tiles in a simple chain P are all distinct.

Given two distinct points x, y ∈ T, we say that P is a simple n-chain
joining x and y if P is simple, X1 is the only n-tile in P containing x,
andXr is the only n-tile in P containing y (note that these requirements
are stronger than saying that P is simple and that P joins x and y,
because the latter two conditions allow x ∈ X1 ∩X2).

We use the notation |P | :=
⋃r
i=1Xi. We say that P contains a point

x, if x ∈ |P |. Another n-chain Q is called a subchain of P if the
sequence of n-tiles in Q is obtained by deleting some of the tiles in P
while keeping the order of the remaining tiles.

Lemma 5.2. Let n ∈ N0 and x, y ∈ T be distinct points. Then the
following statements are true:

(i) There exists a unique simple n-chain P joining x and y.

(ii) If P is the simple n-chain and P̃ is another n-chain joining x

and y, then |P | ⊂ |P̃ |. More precisely, every n-tile in P also

belongs to P̃ .

We will often use the notation P n
xy for the unique simple n-chain

joining the points x, y ∈ T, x 6= y.

Proof of Lemma 5.2. Let x, y ∈ T with x 6= y be arbitrary. We will
exhibit an algorithm that produces a simple n-chain P joining x and
y, and we will see that P is the unique such n-chain.

Let x < v1 < · · · < vr−1 < y with r ∈ N be the distinct n-vertices in
(x, y) arranged in the natural order < on [x, y] (obtained by identifying
[x, y] with the unit interval [0, 1]). This list can be empty (then r = 1).
We set v0 := x and vr := y. Then for i = 1, . . . , r the open arc
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(vi−1, vi) ⊂ [x, y] is a connected set in the complement of the set of n-
vertices in T. Therefore, there exists a unique n-tile Xi with (vi−1, vi) ⊂
Xi. Then [vi−1, vi] ⊂ Xi, because Xi is a closed set. For i = 1, . . . , r−1
the n-vertex vi separates the sets (vi−1, vi) and (vi, vi+1), and so these
sets must lie in different components of T \ {vi} by Lemma 2.3 (i).
Closures of such components can have at most the point vi in common
as follows from Lemma 2.3 (iii). This implies that Xi ∩ Xi+1 = {vi}.
If 1 ≤ i < j ≤ r and j − i ≥ 2, then a similar argument using a point
p ∈ [x, y] with vi < p < vi+1 shows that Xi ∩ Xj = ∅. Based on this
discussion one can now easily check that the n-tiles X1, . . . , Xr form a
simple n-chain P joining x and y.

Now suppose P̃ is another n-chain joining x and y. Then |P̃ | is a

path-connected set containing x and y, and thus [x, y] ⊂ |P̃ |. In partic-

ular, (vi−1, vi) ⊂ |P̃ | for i = 1, . . . , r. Since Xi contains (vi−1, vi) and all
other n-tiles are disjoint from (vi−1, vi) as follows from Lemma 5.1 (iv),

Xi must be one of the n-tiles in P̃ . Statement (ii) follows.

Finally, to show uniqueness of P , assume that P̃ is a simple n-chain

joining x and y. Since x = v0 ∈ X1 and X1 belongs to P̃ , the n-tile X1

must be the first tile in P̃ . Since X2 6= X1 (in case r ≥ 2) belongs to

P̃ and X1 ∩ X2 = {v1} 6= ∅, the n-tile X2 must be the second tile in

P̃ . Continuing in this manner, we see that the tiles in P̃ are given by

X1, . . . , Xr. So P̃ = P and the uniqueness of P follows. �

We can construct simple (n+ 1)-chains from simple n-chains.

Lemma 5.3. Let n ∈ N0 and x, y ∈ T be distinct points. Suppose the
simple n-chain P joining x and y consists of the n-tiles X1, . . . , Xr,
where r ∈ N. For i = 1, . . . , r − 1 let vi be the unique n-vertex in
Xi ∩ Xi+1, and let v0 = x and vr = y. If for i = 1, . . . , r we denote
by P ′i the simple (n + 1)-chain joining vi−1 and vi, then the following
statements are true:

(i) The simple (n + 1)-chain P ′ joining x and y is obtained by
concatenating P ′1, . . . , P

′
r.

(ii) The chain P ′i consists precisely of all (n+ 1)-tiles X ′ ⊂ Xi such
that X ′ ∩ (vi−1, vi) 6= ∅.

Proof. As in the proof of Lemma 5.2, let v1 < · · · < vr−1 be the distinct
n-vertices in (x, y) arranged in the natural order < on [x, y]. Then Xi

is the unique n-tile that contains [vi−1, vi] for i = 1, . . . , r, and we have
{vi} = Xi ∩Xi+1 for i = 1, . . . , r − 1.

We can find the simple (n + 1)-chain P ′ joining x and y by arrang-
ing the (n + 1)-vertices in (x, y) in the order <. Since the n-vertices
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v1, . . . , vr−1 are also (n+ 1)-vertices, they will be among these (n+ 1)-
vertices in (x, y). This means that we may assume that all the (n+ 1)-
vertices in (x, y) are labeled vji so that

x < v11 < · · · < vs1−11 < vs11 = v1 = v02 < · · · < vs22 = v2

= v03 < · · · < v
sr−1

r−1 = vr−1 = v0r < · · · < vsr−1r < y.

Here s1, . . . , sr ∈ N. We set v01 = x and vsrr = y. Then the argument
in the proof of Lemma 5.2 shows that for i = 1, . . . , r and j = 1, . . . , si
there exists a unique (n + 1)-tile Xj

i such that [vj−1i , vji ] ⊂ Xj
i . More-

over, the simple (n+ 1)-chain P ′ joining x and y is given by

X1
1 , . . . , X

s1
1 , X

1
2 , . . . , X

s2
2 , . . . , X

1
r , . . . , X

sr
r .

It is also clear that for i = 1, . . . , r the simple (n+ 1)-chain P ′i joining
vi−1 = v0i and vi = vsii is given by X1

i , . . . , X
si
i , because v1i < · · · < vsi−1i

are all the (n+1)-vertices in (vi−1, vi) = (v0i , v
si
i ) ⊂ (x, y). This implies

that P ′ is the concatenation of the chains P ′1, . . . , P
′
r. Statement (i)

follows.
To see (ii), we fix i ∈ {1, . . . , r}. Let Xj

i with j ∈ {1, . . . , si} be
an (n + 1)-tile from the simple (n + 1)-chain P ′i joining vi−1 and vi.
Then Xj

i is contained in a unique n-tile by Lemma 5.1 (vii). Note

that (vj−1i , vji ) ⊂ Xj
i and (vj−1i , vji ) ⊂ (vi−1, vi); so Xj

i contains points
in (vi−1, vi). Since (vi−1, vi) ⊂ Xi and (vi−1, vi) contains no n-vertices,
Lemma 5.1 (iv) implies all n-tiles except Xi are disjoint from (vi−1, vi).
We conclude that Xj

i ⊂ Xi. This shows that P ′i consists of (n+ 1)-tiles
that are contained in Xi and meet (vi−1, vi).

Conversely, suppose Z ⊂ Xi is an (n+ 1)-tile with Z ∩ (vi−1, vi) 6= ∅.
Since

(vi−1, vi) = (v0i , v
1
i ) ∪ {v1i } ∪ (v1i , v

2
i ) ∪ · · · ∪ {v

si−1
i } ∪ (vsi−1i , vsii ),

we then have Z ∩ (vj−1i , vji ) 6= ∅ for some j ∈ {1, . . . , si} or vji ∈ Z for
some j ∈ {1, . . . , si − 1}.

In the first case, Z = Xj
i , because no (n + 1)-tile except Xj

i ⊃
(vj−1i , vji ) contains points in (vj−1i , vji ). This follows from Lemma 5.1 (iv),

because no point in (vj−1i , vji ) is an (n+ 1)-vertex.

In the second case, when vji ∈ Z for some j ∈ {1, . . . , si−1}, we have

Z = Xj
i or Z = Xj+1

i , because Xj
i and Xj+1

i are the only (n + 1)-tiles

that contain the (n+ 1)-vertex vji (this follows from Lemma 5.1 (v)).
In any case, Z is one of the tiles in the chain P ′i , and statement (ii)

follows. �
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Choosing δ. We now are going to choose the parameter δ > 0 used
in the definition of vertices and tiles small enough so that (n+ 1)-tiles
are contained in n-tiles in a “controlled way”. The choice of δ will
depend on the constants β and γ fixed at the beginning of this section.
Recall that we imposed the preliminary condition 0 < δ < 1/(3β) for
the definition of tiles and vertices. The ultimate choice of δ will be
discussed after the proof of Lemma 5.5.

Lemma 5.4. If 0 < δ < 1/(3β) is sufficiently small only depending on
the doubling constant N of T, then the following statements are true
for all n ∈ N0:

(i) Each n-tile X contains at least three (n+ 1)-tiles.

(ii) If u and v are distinct n-vertices, then the simple (n+ 1)-chain
joining u and v has length ≥ 3.

It follows from the first statement that then there are least three
1-tiles. The second statement implies that each (n+1)-tile X ′ contains
at most one n-vertex.

Proof. Fix n ∈ N0. Then we know by (5.3) that diam(X) ≥ δn for each
n-tile X, and diam(X ′) ≤ 3βδn+1 for each (n + 1)-tile X ′. It follows
that (i) is true for 0 < δ < 1/(6β).

If u and v are distinct n-vertices, then d(u, v) ≥ δn by (5.2). Again
we have diam(X ′) ≤ 3βδn+1 for each (n + 1)-tile X ′. Thus (ii) is also
true if 0 < δ < 1/(6β). �

In the next lemma we consider the location of (n+ 1)-vertices in an
n-tile. In the proof we will invoke (5.6) derived from (4.2). This is
the ultimate reason why we want the elements in Vn to satisfy (4.2) in
addition to (4.1) (with ∆ = δn). A consequence will be the subsequent
Lemma 5.6. It guarantees that if we decompose an n-tile X into (n+1)-
tiles, then a simple chain of (n+ 1)-tiles joining two distinct points in
∂X does not encounter other points in ∂X. This in turn is behind
the important estimate in Lemma 6.1 (ii). It prevents blow up of the
auxiliary distance functions %n as n→∞ that we will use to define our
desired geodesic metric % on T and ultimately leads to the existence of
the limit in (1.1).

Lemma 5.5. If 0 < δ < 1/(3β) is sufficiently small only depending
on the doubling constant N of T, then the following statement is true.
Let n ∈ N, X be an n-tile, u ∈ ∂X ⊂ Vn, and X ′ ⊂ X be the
unique (n + 1)-tile with u ∈ X ′. Then there exists an (n + 1)-vertex
u′ ∈ ∂X ′ \ {u} such that [u, u′] ⊂ [u, v] for all v ∈ ∂X \ {u}.
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u u′
b

v

w

X ′

X

Figure 5. Branching in an n-tile.

Note that the existence of a unique (n+ 1)-tile X ′ ⊂ X with u ∈ X ′
is guaranteed by Lemma 5.1 (ix). If we are in the setting of Lemma 5.5
and δ is so small that Lemma 5.4 (ii) applies, then, as we travel from
u to v along [u, v] ⊂ X, we must exit X ′, because X ′ contains u, but
not v. So there is a last point on [u, v] that belongs to X ′. This must
be the point u′ ∈ ∂X ′ \ {u} in the statement, because [u, u′] ⊂ X ′

and u, v lie in different components of T \ {u′}; so X ′ ∩ (u′, v] = ∅ by
Lemma 5.1 (ii). According to Lemma 5.5, this last point u′ in [u, v]∩X ′
is independent of v, and so we always exit X ′ at the same (n+1)-vertex
u′ when traveling from u to any other point in ∂X. We will later call
u and u′ the “main vertices” of X ′.

Proof of Lemma 5.5. We may assume that δ is so small that the state-
ments in Lemma 5.4 are true. It follows from the preceding discussion,
that if v ∈ ∂X \ {u}, then there is a last point u′ ∈ [u, v] ∩ X ′ as we
travel from u to v along [u, v]. Clearly, u′ ∈ ∂X ′ ⊂ Vn+1. We also
have u 6= u′, because if u = u′, then (u, v] ⊂ X is disjoint from X ′

and so the set (u, v] would be covered by the finitely many (n+ 1)-tiles
Y ⊂ X distinct from X ′. These tiles Y then also cover [u, v], and so
u is contained in a tile Y ⊂ X distinct from X ′. We know that this is
impossible, and so indeed u′ 6= u.

It remains to show that this last point u′ on [u, v]∩X ′ is independent
of v. So suppose w 6= v is another vertex in ∂X \ {u}. Then the points
u, v, w ∈ ∂X are distinct. For an illustration of the ensuing argument
see Figure 5.
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Since T is a tree, the arcs [u, v] and [u,w] share an initial segment
[u, b] = [u, v] ∩ [u,w], where b ∈ T, but no other points. It suffices to
show that [u, u′] ⊂ [u, b]. Since both points u′ and b lie on [u, v], we
have [u, u′] ⊂ [u, b] or [u, b] ⊂ [u, u′]. The first alternative is necessarily
true if we can show that diam [u, u′] < diam [u, b].

First note that b 6= u. Indeed, if b = u then u ∈ [v, w] = [v, u] ∪
[u,w], and so v and w would lie in distinct components of T \ {u}. By
Lemma 5.1 (ii) this is impossible, because v and w lie in the same tile
X. Similarly, b 6= v and b 6= w.

It follows from Lemma 2.4 that b is a branch point of T and u, v, w
lie in distinct components Uu, Uv, Uw of T\{b}, respectively. Note that
Uu contains one component Vu of T \ {u}. Thus by (5.5),

diam(Uu) ≥ diam(Vu) ≥ DT(u) ≥ βδn.

Similarly, diam(Uv) ≥ βδn and diam(Uw) ≥ βδn. It follows that

HT(b) ≥ min{diam(Uu), diam(Uv), diam(Uw)} ≥ βδn ≥ δn,

since β ≥ 1. Thus by (5.6) we have

d(u, b) ≥ γmin{HT(b), δn} ≥ γδn.

By (5.3) we know that diam(X ′) ≤ 3βδn+1, and so

d(u, u′) ≤ diam(X ′) ≤ 3βδn+1.

So if we assume that 0 < δ < γ/(3β), then it follows that

diam [u, u′] = d(u, u′) ≤ 3βδn+1 < γδn ≤ d(u, b) = diam [u, b].

As we have seen, this implies [u, u′] ⊂ [u, b] as desired. �

For the rest of the paper we fix 0 < δ < 1/(3β) such that the
statements of Lemma 5.4 and Lemma 5.5 are true. As we see from
the proofs, it is enough to choose δ = 1

2
min{1/(6β), γ/(3β)}. Then

δ only depends on the doubling constant N of T, because this is true
for β and γ. The sets Vn of vertices and Xn of tiles for n ∈ N0 as
constructed in the beginning of this section correspond to this choice
of δ and will be fixed from now on.

Let us record some consequences.

Lemma 5.6. Let n ∈ N0, X be an n-tile, and u, v ∈ ∂X ⊂ Vn with
u 6= v. Then the simple (n + 1)-chain P n+1

uv joining u to v consists
precisely of all (n + 1)-tiles X ′ ⊂ X with X ′ ∩ [u, v] 6= ∅. Moreover,
P n+1
uv does not contain any point w ∈ ∂X distinct from u and v.

It follows from the definition of P n+1
uv that only the first tile of P n+1

uv

contains u, and only the last tile contains v. So P n+1
uv has “contact”



32 MARIO BONK AND DANIEL MEYER

with ∂X only twice: in its first tile, where it meets u, and in its last
tile, where it meets v.

Proof of Lemma 5.6. Let P := P n+1
uv , and assume P is given by the

(n+ 1)-tiles X1, . . . , Xr, where r ∈ N.
The first statement follows from considerations similar to the ones

in the proof of Lemma 5.3 (ii)). Note that Lemma 5.1 (ix) implies that
X ′ = X1 is the only (n + 1)-tile X ′ ⊂ X with u ∈ X ′, and X ′ = Xr is
the only (n+ 1)-tile X ′ ⊂ X with v ∈ X ′.

To prove the second statement, we argue by contradiction and as-
sume that it is false. Then there exists a point w ∈ |P | ∩ ∂X that
is distinct from u and v. Then w ∈ Xi for some i ∈ {1, . . . , r}. In
fact, since an (n + 1)-tile cannot contain two distinct n-vertices (see
Lemma 5.4 (ii)), we have 2 ≤ i ≤ r−1. Let vi−1 and vi be the (unique)
points in Xi−1 ∩Xi and Xi ∩Xi+1, respectively.

We now choose the (n + 1)-vertex w′ ∈ ∂Xi for the n-vertex w ∈
Xi ⊂ X as in Lemma 5.5. In particular, w′ is the last point on both
[w, u] and [w, v] as we travel from w to u or from w to v.

Since the set X1∪· · ·∪Xi is connected, we have [w, u] ⊂ X1∪· · ·∪Xi.
So the last point w′ in [w, u] ∩Xi must be a point in X1 ∪ · · · ∪Xi−1.
Since P is the simple (n+1)-chain joining u and v, this is only possible if
w′ = vi−1, because there is no other common point of Xi with any of the
tiles X1, . . . , Xi−1. Similarly, by considering [w, v] ⊂ Xi ∪ · · · ∪Xr, we
see that w′ = vi. This is impossible, because then w′ ∈ Xi−1∩Xi+1 6= ∅,
contradicting the fact that P is a simple (n+ 1)-chain. �

The following statement gives uniform control for the local combi-
natorics of tiles.

Lemma 5.7. There is a constant K ∈ N such that the following state-
ments are true for each n ∈ N0 and each n-tile X:

(i) There are at most K n-tiles that intersect X.

(ii) There are at most K (n+ 1)-tiles contained in X.

Proof. (i) Let X1, . . . , Xk denote all the n-tiles distinct from X that
intersect X, where k ∈ N0 (if n = 0, we have k = 0, and this list is
empty). Since diameters of n-tiles are comparable to δn as in (5.3),
there is a constant C = C(N) > 0 only depending on the doubling
constant N of T (and hence independent of n and X) such that

X ∪X1 ∪ · · · ∪Xk ⊂ B(x,Cδn),

where x is some point in X.
For i = 1, . . . , k the n-tiles X and Xi intersect in an n-vertex vi

(see Lemma 5.1 (iv)). By Lemma 5.1 (v) each of these n-vertices vi is
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contained in precisely two n-tiles, namely X and Xi. It follows that
vi 6= vj for i 6= j. Thus B(x,Cδn) ⊃ X ∪ X1 ∪ · · · ∪ Xk contains at
least k distinct n-vertices v1, . . . , vk. Since C only depends on N and
the n-vertices v1, . . . , vk are δn-separated by (5.2), it follows that there
is a constant K1 = K1(N) ∈ N such that k ≤ K1.

(ii) As before, there is a constant C = C(N) > 0 independent of
n and X such that X ⊂ B(x,Cδn), where x is some point in X (see
(5.3)). If k ∈ N is the number of (n + 1)-tiles contained in X, then
X also contains at least k/2 distinct (n + 1)-vertices, because each
(n+ 1)-tile contains at least one (n+ 1)-vertex and each (n+ 1)-vertex
is contained in at most two (n + 1)-tiles. These (n + 1)-vertices are
δn+1-separated by (5.2). So it follows that there is a constant K2 ∈ N
only depending on C and δ (and hence independent of n and X) such
that k ≤ K2.

If we now choose K := max{K1, K2}, then statements (i) and (ii)
are both true for all n ∈ N0 and all n-tiles X. �

6. Weights and main vertices of tiles

We will now define weights of tiles. Later they will be used to con-
struct our desired geodesic metric %. The weight of each n-tile X,
n ∈ N0, is a number w(X) ∈ (0,∞). We will define it by an inductive
process over the level n ∈ N0.

Once we have determined weights of tiles, we can define the w-length
of an n-chain P given by the n-tiles X1, . . . , Xr as

(6.1) lengthw(P ) :=
r∑
i=1

w(Xi).

For the construction of the geodesic metric it is desirable to have a
relation between the weight w(X) of an n-tile X and the w-length of
some simple (n+1)-chains P joining points on the boundary of X. For
this reason, we will single out two distinct points p, q ∈ ∂X (i.e., two
n-vertices in X) as the main vertices of X. Of course, this requires
that #∂X ≥ 2. In this case, we call X an arc-tile, because we think
of X as carrying the distinguished arc [p, q]. Otherwise, #∂X ≤ 1.
If #∂X = 1, then we call X a leaf-tile. Finally, if ∂X = ∅, then
necessarily n = 0 and X = T (this follows from Lemma 5.1 (iii)).

If X is an arc-tile, p, q ∈ ∂X are the main vertices of X, and P =
P n+1
pq is the unique simple (n + 1)-chain joining p and q, then we will

choose weights in such a way that lengthw(P ) = w(X) (see (6.6)).
This will ensure that the distance functions %n that we use to define
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the desired geodesic metric do not degenerate as n→∞ (see (7.1) and
Lemma 7.4).

The (n + 1)-tiles X ′ ⊂ X that do not intersect [p, q] will be given a
uniformly small relative weight ε0 = w(X ′)/w(X) (see (6.7)). As a con-
sequence, the distance functions %n are “almost” decreasing (Lemma 7.2)
and have a limit as n → ∞ (Lemma 7.3). Letting ε0 → 0 will later
also allow us to derive Theorem 1.3.

After this outline of some of the ideas, we will now give the details
for the definition of weights and main vertices of tiles. Let K ∈ N be
the constant from Lemma 5.7. We fix a parameter

(6.2) 0 < ε0 ≤ 1/(3K).

There is a single 0-tile X0 = T. We set w(X0) := 1. Since ∂X0 = ∅,
we do not define main vertices of X0.

We now assume that for some n ∈ N0 we have defined the weight
of each n-tile X and its main vertices if #∂X ≥ 2. We fix X and
want to define weights of (n + 1)-tiles X ′ ⊂ X and main vertices for
arc-tiles X ′. Since every (n + 1)-tile is contained in a unique n-tile
(see Lemma 5.1 (vii)), this will provide the necessary inductive step.
Figure 6 illustrates how we will choose weights and main vertices of
(n + 1)-tiles X ′ ⊂ X in the ensuing discussion. In this figure, we
indicated relative weights w(X ′)/w(X).

Assume first that ∂X = ∅. This happens precisely when n = 0 and
X = X0 = T. We set w(X ′) := ε0w(X) = ε0 for each 1-tile X ′. If X ′

is an arc-tile and so #∂X ′ ≥ 2, we pick two (arbitrary) distinct points
in ∂X ′ and declare them to be the main vertices of X ′.

Suppose now that X is a leaf-tile, i.e., #∂X = 1. We then set
w(X ′) = ε0w(X) for each (n+ 1)-tile X ′ ⊂ X.

To define main vertices of (n + 1)-tiles that are arc-tiles contained
in X, recall first that there is a unique (n + 1)-tile X ′ ⊂ X that
contains the (only) n-vertex u ∈ ∂X. It follows from our choice of δ
and Lemma 5.4 (i) that X ′ must be an arc-tile. We declare u and some
other (arbitrary) (n + 1)-vertex u′ ∈ ∂X ′ with u′ 6= u to be the main
vertices of X ′.

If an (n + 1)-tile X ′ ⊂ X is an arc-tile and does not intersect ∂X,
we again declare two arbitrary distinct (n + 1)-vertices in ∂X ′ to be
the main vertices of X ′. This completes the inductive step in the case
that X is a leaf-tile.

Finally, suppose that X is an arc-tile, i.e., #∂X ≥ 2, and let p, q ∈
∂X be the main vertices of X. By Lemma 5.1 (ix) there are unique
(n+ 1)-tiles X ′p ⊂ X and X ′q ⊂ X containing p and q, respectively. By
our choice of δ and Lemma 5.4 (ii), the tiles X ′p and X ′q are distinct
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X

p v1 v2 v3 q1
3

1
3

1
3(r−2)

ε0

ε0

u

u′

Y

ε0

ε0

Figure 6. Relative weights and main vertices of tiles

and disjoint. We set

(6.3) w(X ′p) = w(X ′q) := 1
3
w(X).

Suppose the simple (n+ 1)-chain P := P n+1
pq joining p and q is given

by the (n+ 1)-tiles

(6.4) X ′1 = X ′p, X
′
2, . . . , X

′
r = X ′q.

Then P consists of tiles X ′i contained in X. Since p 6= q we have r ≥ 3.
Moreover, r ≤ K by Lemma 5.7 (ii). Note that P = P n+1

pq consists
precisely of all tiles X ′ ⊂ X with X ′ ∩ [p, q] 6= ∅ (see Lemma 5.6).

We have X ′1 = X ′p and X ′r = X ′q and so the weights w(X ′1) and w(X ′r)
are already defined. We set

(6.5) w(X ′i) :=
1

3(r − 2)
w(X).

for i = 2, . . . , r − 1. Then

(6.6)
r∑
i=1

w(X ′i) = w(X).

So the weights are defined in such a way that the w-length (as in (6.1))
of the simple (n+ 1)-chain P joining the two main vertices p and q of
the n-tile X is exactly equal to w(X).

To define the main vertices of the tiles X ′i, let vi be the (unique) point
in X ′i ∩X ′i+1 for i = 1, . . . , r − 1. Furthermore, let v0 := p and vr := q.
Then vi−1 and vi are distinct (n + 1)-vertices in ∂X ′i for i = 1, . . . , r.
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We declare them to be the main vertices of X ′i. In other words, two
successive (n+ 1)-vertices on [p, q] are the main vertices of the unique
(n+ 1)-tile X ′ ⊂ X that contains them.

We now consider an (n+1)-tile X ′ ⊂ X that does not intersect [p, q].
We set

(6.7) w(X ′) := ε0w(X).

It remains to define the main vertices of X ′ if X ′ is an arc-tile. If X ′

contains a point u ∈ ∂X, we let u′ ∈ ∂X ′ \ {u} be the (n + 1)-vertex
given by Lemma 5.5. We declare u and u′ to be the man vertices of
X ′. If X ′ ∩ ∂X = ∅, we declare two arbitrary points in ∂X ′ to be the
main vertices of X ′. This concludes the definition of weights and main
vertices of tiles X ′ ⊂ X in case X is an arc-tile.

The inductive step is now complete, because we covered all possibili-
ties for X. Therefore, weights are defined for all tiles and main vertices
for all arc-tiles. To avoid possible confusion, we point out that if an
n-vertex u is contained in two distinct n-tiles X and Y , and u is a main
vertex of X, then it is not necessarily a main vertex of Y .

The choice of relative weights and main vertices is illustrated in
Figure 6. Main vertices of (n+ 1)-tiles that intersect neither [p, q] nor
∂X were chosen arbitrarily, and are not shown in the picture.

Note that for r in (6.5) we have 3 ≤ r ≤ K. Hence

ε0 ≤
1

3K
≤ 1

3(r − 2)
≤ 1

3
.

This and the definition of the weights imply that for each (n + 1)-tile
X ′ contained in an n-tile X we have

(6.8) ε0w(X) ≤ w(X ′) ≤ 1
3
w(X).

Having defined the weights of tiles, we can now estimate the w-length
of chains (see (6.1) for the definition).

Lemma 6.1. Let n ∈ N0 and X be an n-tile. Then the following
statements are true:

(i) For each simple (n+ 1)-chain P consisting of tiles contained in
X we have

ε0w(X) ≤ lengthw(P ) ≤ 4
3
w(X).

(ii) If X is an arc-tile, u, v ∈ ∂X with u 6= v, and P = P n+1
uv is the

simple (n+ 1)-chain joining u and v, then

lengthw(P ) ≤ w(X).

Here we have equality if u and v are the main vertices of X.
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Proof. (i) If P is a simple (n+ 1)-chain as in the statement, then each
(n+1)-tile X ′ ⊂ X can appear only once in P . Recall that the number
of (n + 1)-tiles X ′ ⊂ X is at most K; so there are at most K such
tiles X ′ with w(X ′) = ε0w(X). If X is an arc-tile, then among the
(n + 1)-tiles with X ′ ⊂ X there are two with w(X ′) = 1

3
w(X) and an

additional r− 2 with w(X ′) = 1
3(r−2)w(X). Here r is as in (6.5). Since

ε0K ≤ 1
3

by our choice of ε0, we conclude that

ε0w(X) ≤ lengthw(P ) ≤
(
Kε0 +

2

3
+

r − 2

3(r − 2)

)
w(X) ≤ 4

3
w(X),

and (i) follows.

(ii) If P is the simple (n+1)-chain in X joining the two main vertices
p and q of X, then we know that lengthw(P ) = w(X) (see (6.6)).

Suppose the simple (n+1)-chain P joins two distinct n-vertices u, v ∈
∂X, but not both u and v are main vertices of X. Lemma 5.6 then
implies that at least one of the two (n+ 1)-tiles X ′ ⊂ X with w(X ′) =
1
3
w(X) that contain main vertices of X does not belong to P . We

conclude that

lengthw(P ) ≤
(

1

3
+

r − 2

3(r − 2)
+Kε0

)
w(X) ≤ w(X).

Statement (ii) follows. �

It is in fact possible that for a simple (n+1)-chain P as in Lemma 6.1 (i)
we have lengthw(P ) > w(X). An example can be obtained from Fig-
ure 6, where one can find a simple (n + 1)-chain P that consists of
(n+ 1)-tiles X ′ ⊂ X and contains P n+1

pq (i.e., the simple (n+ 1)-chain
joining the main vertices p and q of X) as a proper subchain.

Let X be an n-tile, and v ∈ ∂X. Then v is an n-vertex, and so an
(n+ 1)-vertex as well. If X ′ ⊂ X is the unique (n+ 1)-tile containing
v, then X ′ is an arc-tile by our construction, and v is one of the main
vertices of X ′. Repeating this argument, we see that for each k ≥ n+1,
v is a main vertex of the k-tile Xk ⊂ X ′ containing v, and so (6.3)
implies that w(Xk) = 3−k+n+1w(X ′).

Lemma 6.2. Let n,m ∈ N0 with |n−m| ≤ 1. Suppose X is an n-tile,
Y is an m-tile, and X ∩ Y 6= ∅. Then

w(X) � w(Y ),

where C(�) is independent of n, m, X, and Y .
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Proof. We first consider the case n = m. If X = Y there is nothing to
prove, and so we assume that X 6= Y . There are unique tiles

X0 ⊃ X1 ⊃ · · · ⊃ Xn = X

Y 0 ⊃ Y 1 ⊃ · · · ⊃ Y n = Y,

where X i and Y i are i-tiles for i = 0, . . . , n. Let k ≤ n − 1 be the
largest number such that Xk = Y k. Such a number k exists, since
there is only a single 0-tile X0 = Y 0 = T. Then w(Xk) = w(Y k).
Since Xk+1, Y k+1 ⊂ Xk = Y k, we have w(Xk+1) � w(Y k+1) with
C(�) = 1/(3ε0), as follows from (6.8).

If k + 1 = n, we are done. Otherwise, if k + 1 < n, we can again
apply (6.8) and obtain

w(Xk+2) � w(Y k+2),

where C(�) = 1/(3ε0)
2. Since Xk+1 ∩ Y k+1 ⊃ X ∩ Y 6= ∅ and Xk+1 6=

Y k+1, there exists a unique (k + 1)-vertex v such that Xk+1 ∩ Y k+1 =
{v}. Then Xk+2+i ∩ Y k+2+i = {v}, the point v is a main vertex of
Xk+2+i and of Y k+2+i, and so

w(Xk+2+i) = 3−iw(Xk+2) and w(Y k+2+i) = 3−iw(Y k+2)

for i = 0, . . . , n− k− 2. Thus, w(Xn) � w(Y n) with C(�) = 1/(3ε0)
2.

If |n −m| ≤ 1, but n 6= m, we may assume that m = n + 1. If Y ′

is the unique n-tile that contains Y , then by the first part of the proof
we have w(X) � w(Y ′) � w(Y ) with implicit constants independent
of the tiles and their levels. The statement follows. �

7. Construction of the geodesic metric

Based on the concept of weights introduced in the previous section,
we can now define a new metric % on our given tree (T, d). For this
purpose we first define a sequence of distance functions %n on T.

Let n ∈ N and x, y ∈ T. Then we define

%n(x, y) := inf{lengthw(P ) :P is an(7.1)

n-chain joining x and y}.
If x 6= y, let P n

xy be the simple, and P be an arbitrary n-chain joining
x and y. Then we deduce from Lemma 5.2 (ii) that lengthw(P n

xy) ≤
lengthw(P ). It follows that

(7.2) %n(x, y) = lengthw(P n
xy)

for distinct points x, y ∈ T.
In this section we will show that the distance functions %n have a

limit %n → % as n→∞, and that % is a geodesic metric on T. We will
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see in the next section that (T, d) and (T, %) are quasisymmetrically
equivalent. Finally, in Section 9 we will show that by choosing the
parameter ε0 used in the definition of weights suitably small, we can
arrange the Hausdorff dimension of (T, %) to be arbitrarily close to 1.

We start with some simple observations.

Lemma 7.1. For each n ∈ N the following statements are true:

(i) %n(x, y) = %n(y, x) for x, y ∈ T.

(ii) %n(x, y) ≤ %n(x, z) + %n(z, y) for x, y, z ∈ T.

This shows that %n is symmetric and satisfies the triangle inequality.
However, it is not a metric. Indeed, it is immediate from the definition
that

(7.3) %n(x, x) = inf{w(X) : X is an n-tile with x ∈ X} > 0

for x ∈ T.

Proof of Lemma 7.1. (i) Let x, y ∈ T be arbitrary. The n-tilesX1, . . . , Xr

then form an n-chain P joining x and y if and only if the n-tiles

Xr, . . . , X1 form an n-chain P̃ joining y and x. Moreover, we have

lengthw(P ) = lengthw(P̃ ). If we take the infimum over all such P here,
then (i) follows.

(ii) Let x, y, z ∈ T be arbitrary. Suppose that the n-tiles X1, . . . , Xr

form an n-chain P joining x and z, and the n-tiles Y1, . . . , Ys form an

n-chain P̃ joining z and y. Then the n-tiles

X1, . . . , Xr, Y1, . . . , Ys

form an n-chain Q joining x and y. Note that Xr ∩ Y1 6= ∅, because

z ∈ Xr ∩ Y1. We have lengthw(Q) = lengthw(P ) + lengthw(P̃ ). If we

take the infimum over all P and P̃ here, then (ii) follows. �

We now prepare the proof of the convergence of the sequence {%n}.

Lemma 7.2. Let n, k ∈ N with k > n, and x, y ∈ T with x 6= y be
arbitrary. Then we have

lengthw(P k
xy) ≤ lengthw(P n

xy) + 1
2
w(X) + 1

2
w(Y ),

where X is the first tile in P n
xy and Y the last tile in P n

xy.

Proof. Let n ∈ N and x, y ∈ T with x 6= y be arbitrary. Suppose
the simple n-chain P = P n

xy joining x and y is given by the n-tiles
X1, . . . , Xr, where r ∈ N. Let X = X1 be the first tile and Y = Xr be
the last tile in P . Then x ∈ X and y ∈ Y . For i = 1, . . . , r − 1 let vi
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be the n-vertex where Xi and Xi+1 intersect. We also set v0 := x and
vr := y.

For i = 1, . . . , r let Pi be the unique simple (n + 1)-chain joining
vi−1 and vi. Since [vi−1, vi] ⊂ Xi, the chain Pi consists of (n + 1)-
tiles contained in Xi. If we concatenate P1, . . . , Pr, then we obtain the
simple (n+ 1)-chain P n+1

xy joining x and y (see Lemma 5.3 (i)).
By Lemma 6.1 (ii) we have lengthw(Pi) ≤ w(Xi) for i = 2, . . . , r− 1,

because in this case the simple chain Pi joins two distinct points in
∂Xi. We also have lengthw(P1) ≤ 4

3
w(X1), and lengthw(Pr) ≤ 4

3
w(Xr)

by Lemma 6.1 (i). It follows that

length(P n+1
xy ) =

r∑
i=1

lengthw(Pi)

≤
r∑
i=1

w(Xi) + 1
3
w(X1) + 1

3
w(Xr)

= lengthw(P n
xy) + 1

3
w(X) + 1

3
w(Y ).

We now iterate this procedure by increasing the level by 1 in each step
until we reach level k. In this way, we see that

(7.4) lengthw(P k
xy) ≤ lengthw(P n

xy) + 1
3

k−1∑
i=n

(w(X i) + w(Y i)),

where X i and Y i are i-tiles for i = n, . . . , k − 1 with

x ∈ Xk−1 ⊂ . . . ⊂ Xn+1 ⊂ Xn = X

and
y ∈ Y k−1 ⊂ . . . ⊂ Y n+1 ⊂ Y n = Y.

It follows from (6.8) and these inclusions that

w(X i) ≤ 3n−iw(X) and w(Y i) ≤ 3n−iw(Y )

for i = n, . . . , k − 1, and so

k−1∑
i=n

(w(X i) + w(Y i)) ≤ (w(X) + w(Y ))
∞∑
i=n

3n−i

≤ 3
2
(w(X) + w(Y )).

The statement now follows from (7.4). �

Lemma 7.3. For all x, y ∈ T the limit

lim
n→∞

%n(x, y) ∈ [0,∞)

exists.
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Proof. If n ∈ N and Xn is an n-tile, then w(Xn) ≤ 3−n, as follows
from our definition of weights. This implies that if x = y, then 0 ≤
%n(x, y) ≤ 3−n and so limn→∞ %n(x, y) = 0.

Suppose that x 6= y. Then it follows from (7.2) and Lemma 7.2 that

%k(x, y) ≤ %n(x, y) + 3−n

for k, n ∈ N with k ≥ n. Letting k →∞, we see that

lim sup
k→∞

%k(x, y) ≤ %n(x, y) + 3−n <∞.

Now letting n→∞, we conclude that

lim sup
n→∞

%n(x, y) ≤ lim inf
n→∞

%n(x, y).

So

lim sup
n→∞

%n(x, y) = lim inf
n→∞

%n(x, y) <∞.

Hence lim
n→∞

%n(x, y) exists and is a non-negative (finite) number. �

We now define

(7.5) %(x, y) := lim
n→∞

%n(x, y)

for x, y ∈ T. We know from Lemma 7.1 that % is a non-negative
symmetric function that satisfies the triangle inequality. In the proof
of Lemma 7.3 we have seen that %(x, x) = 0 for x ∈ T.

In order to show that % is a metric on T, it remains to verify that
%(x, y) > 0 whenever x, y ∈ T, x 6= y. To this end, the following
estimates will be useful.

Lemma 7.4. Let n ∈ N, and X be an n-tile. Suppose that X is an
arc-tile.

(i) If p and q are the main vertices of X, then

%k(p, q) = w(X)

for all k ≥ n.

(ii) If u, v ∈ ∂X are two distinct n-vertices, then

ε0w(X) ≤ %k(u, v) ≤ w(X)

for all k ≥ n.

Proof. (i) Suppose that p and q are the main vertices of X. Then the
simple n-chain P n joining p and q is given by the single tile X. Thus
%n(p, q) = lengthw(P n) = w(X), and the statement is true for k = n.
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Suppose the simple (n + 1)-chain P n+1 joining p and q is given by
the (n+ 1)-tiles X ′1, . . . , X

′
r, where r ∈ N. Then

%n+1(p, q) = lengthw(P n+1) =
r∑
i=1

w(X ′i) = w(X)

by (6.6) and (7.2).
For i = 1, . . . , r − 1 let vi be the (n + 1)-vertex where X ′i and X ′i+1

intersect, and set v0 := p, vr := q. Then vi−1 and vi are the main
vertices of X ′i for i = 1, . . . , r (see the discussion after (6.6)).

Lemma 5.3 (i) implies that the simple (n + 2)-chain P n+2 joining p
and q is obtained by replacing in P n+1 the set X ′i by the simple (n+2)-
chain P n+2

i joining vi−1 and vi for i = 1, . . . , r. Since the main vertices
of X ′i are vi−1 and vi, it follows from (6.6) that length(P n+2

i ) = w(X ′i).
This implies that

%n+2(p, q) = lengthw(P n+2) =
r∑
i=1

lengthw(P n+2
i ) =

r∑
i=1

w(X ′i)

= lengthw(P n+1) = %n+1(p, q) = w(X).

It is clear that we can repeat this argument for higher and higher levels,
and (i) follows.

(ii) Suppose u, v ∈ ∂X are distinct n-vertices. Then the desired
upper bound follows from a reasoning similar to that in (i) if we use
the first part of Lemma 6.1 (ii) instead of (6.6) on each level.

In order to verify the lower bound, we may assume k ≥ n+1, because
%n(u, v) = w(X). Let P n+1 be the simple (n+ 1)-chain joining u and v
given by the (n+ 1)-tiles Y ′1 , . . . , Y

′
s , where s ∈ N. We know that s ≥ 3

by Lemma 5.4 (ii) and our choice of δ. Let u′ be the (n + 1)-vertex
where Y ′1 and Y ′2 intersect. Then u′ is the point given by Lemma 5.5.
This means u and u′ are the main vertices of Y ′1 (see the discussion
after (6.7)). For each k ≥ n + 1 the simple k-chain P k

uv joining u and
v contains the simple chain P k

uu′ joining u and u′ as a subchain, which
follows from Lemma 5.3 (i). Applying (i) to the tile Y ′1 , we see that

%k(u, v) = lengthw(P k
uv) ≥ lengthw(P k

uu′)

= %(u, u′) = w(Y ′1) ≥ ε0w(X).

This completes the proof of (ii). �
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We now introduce a quantity that will allow us to give good estimates
for distances of points in T. For distinct x, y ∈ T we define

m(x, y) := max{n ∈ N0 : there exist n-tiles X and Y(7.6)

with x ∈ X, y ∈ Y, and X ∩ Y 6= ∅}.

This maximum exists, because by (5.3) for n-tiles Xn we have

diam(Xn) � δn → 0 as n→∞,

where d is the underlying metric for the diameter of Xn.

Lemma 7.5. Let x, y ∈ T be distinct points, and m := m(x, y) ∈ N0.
Then

d(x, y) � δm and %(x, y) � w(Xm),

where Xm is any m-tile containing x. Here the implicit constants C(�)
are independent of x and y.

Proof. By definition of m there exist m-tiles X and Y with x ∈ X,
y ∈ Y , and X ∩ Y 6= ∅. Then by (5.3),

d(x, y) ≤ diamd(X) + diamd(Y ) � δm.

Here the implicit constant is independent of x and y.
For the opposite inequality, consider (m+1)-tiles X ′ and Y ′ contain-

ing x and y, respectively. Then X ′ and Y ′ are disjoint by the definition
of m, and from (5.4) we obtain

d(x, y) ≥ distd(X
′, Y ′) ≥ δm+1 � δm.

Again the implicit constant is independent of x and y. The first state-
ment d(x, y) � δm follows.

To see the statement for %, note that one of the three chains X or Y
or X, Y is the simple m-chain joining x and y. In any case, we have

%(x, y) = lim
k→∞

%k(x, y) ≤ %m(x, y) + 1
2
w(X) + 1

2
w(Y )

≤ 3
2
(w(X) + w(Y )) � w(X),

as follows from Lemma 7.2 and Lemma 6.2. The latter lemma also
implies that the upper bound %(x, y) . w(X) remains true if we replace
X with anotherm-tile containing x (there are at most two suchm-tiles).

To prove the other inequality, let X1, . . . , Xr with r ∈ N be the
simple (m + 1)-chain joining x and y. Then x ∈ X1 and y ∈ Xr, and
so we have X1 ∩Xr = ∅ by definition of m. Hence r ≥ 3. Let u be the
(m+ 1)-vertex in X1 ∩X2 and v be the (m+ 1)-vertex in X2 ∩X3.
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Suppose that k ≥ m+1, and consider the simple k-chain P k
xy joining

x and y. Then P k
xy contains the simple k-chain P k

uv joining u and v as
a subchain, and we see that

%k(x, y) = lengthw(P k
xy) ≥ lengthw(P k

uv) = %k(u, v)

� w(X2) � w(X1) � w(X).

Here Lemma 7.4 (ii) and Lemma 6.2 were used. We conclude that

%(x, y) = lim
k→∞

%k(x, y) & w(X).

In the previous inequalities, all implicit constants are independent of x
and y. The estimate for % follows. �

We are now ready for the main result of this section.

Lemma 7.6. The distance function % is a geodesic metric on T.

Proof. Lemma 7.5 immediately implies %(x, y) > 0 for distinct x, y ∈ T.
This was the last remaining property of a metric we needed to verify
for %; see the discussion after (7.5). Thus % is a metric on T.

In order to show that % is a geodesic metric, we will establish the
following fact.

Claim. %(x, y) = %(x, z) + %(z, y), whenever x, y ∈ T, x 6= y, and
z ∈ (x, y).

To see this, fix n ∈ N and let P = P n
xy be the simple n-chain joining

x and y given by the n-tiles X1, . . . , Xr, where r ∈ N. We know that
these tiles cover [x, y] (see the proof of Lemma 5.2 (i)), and so there
exists a smallest number 1 ≤ s ≤ r such that z ∈ Xs. Then X1, . . . , Xs

is the simple n-chain Q := P n
xz joining x and z.

If z ∈ Xs+1 (which necessitates r ≥ s+ 1), then Xs+1, . . . , Xr is the
simple n-chain Q′ := P n

zy joining z and y. Otherwise, if z 6∈ Xs+1, this
n-chain Q′ is given by Xs, . . . , Xr. It now follows from (7.2) that

%n(x, z) + %n(z, y) = lengthw(Q) + lengthw(Q′)

≤
s∑
i=1

w(Xi) +
r∑
i=s

w(Xi) = lengthw(P ) + w(Xs)

≤ %n(x, y) + 3−n.

Letting n→∞, we conclude that %(x, z) + %(z, y) ≤ %(x, y). Since the
opposite inequality is true by the triangle inequality, the Claim follows.

Repeated application of the Claim implies that for all u, v ∈ T the
length of the arc [u, v] is equal to %(u, v); in other words, [u, v] is a
geodesic segment (with respect to the metric %) joining u and v. Hence
% is a geodesic metric. �
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We summarize the properties of tiles with respect to the metric %.
Recall that Xn denotes the set of all n-tiles.

Proposition 7.7. For all n, k ∈ N0 the following statements are true:

(i) diam%(X) � w(X) for all X ∈ Xn.

(ii) diam%(X) � diam%(Y ) if |n − k| ≤ 1, X ∈ Xn, Y ∈ Xk, and
X ∩ Y 6= ∅.

(iii) diam%(Y ) . 3−k diam%(X) if X ∈ Xn, Y ∈ Xn+k, and X ∩Y 6=
∅.

(iv) %(x, y) � diam%(X
m) for all distinct x, y ∈ T, where m =

m(x, y) and Xm is any m-tile with x ∈ Xm.

Here the implicit constants are independent of the tiles and their levels
in (i)–(iii), and independent of x, y, Xm in (iv).

Proof. (i) We will actually show that

(7.7) ε20w(X) ≤ diam%(X) ≤ 2w(X).

If x, y ∈ X with x 6= y, then the tile X constitutes P n
xy, the simple

n-chain joining x and y. So it follows from Lemma 7.2 that for k ≥ n
we have

%k(x, y) = lengthw(P k
xy) ≤ lengthw(P n

xy) + w(X) = 2w(X).

Letting k → ∞, we see that %(x, y) ≤ 2w(x), and so diam%(X) ≤
2w(X) as desired.

If X is an arc-tile, then it follows from Lemma 7.4 (i) that %(p, q) =
w(X) for the two main vertices p and q of X. Hence diam%(X) ≥ w(X).

Suppose X is a leaf-tile. Then n ≥ 1 and ∂X is a singleton set
consisting of one n-vertex u. The unique (n + 1)-tile X ′ ⊂ X with
u ∈ X ′ is an arc-tile. By what we have seen, it follows that

diam%(X) ≥ diam%(X
′) ≥ w(X ′) = ε0w(X).

Finally, if n = 0 and X = X0 = T, then X contains a 1-tile X ′. Then
X ′ is an arc- or a leaf-tile, and from what we have seen, we conclude
that

diam%(X) ≥ diam%(X
′) ≥ ε0w(X ′) = ε20w(X).

The statement follows.

(ii) This follows from (i) and Lemma 6.2.

(iii) In the given setup, there is an n-tile Y ′ with Y ⊂ Y ′. Then
Y ′ ∩X 6= ∅. So (i) and (ii) imply that

diam%(Y ) � w(Y ) ≤ 3−kw(Y ′) � 3−k diam%(Y
′) � 3−k diam%(X),

as desired.
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(iv) This follows from (i) and Lemma 7.5 �

8. Quasisymmetry

In this section we complete the proof of Theorem 1.2 by showing
that the original metric d on T is quasisymmetrically equivalent to the
geodesic metric % constructed above. For this we require the following
fact.

Lemma 8.1. The metric space (T, %) is doubling.

Proof. Let x ∈ T and s > 0 be arbitrary. It suffices to show that the
closed ball B%(x, s) can be covered with a controlled number of sets of
%-diameter < s/4.

To see this, for k ∈ N0 we define

Uk(x) = {y ∈ T : there exist k-tiles X and Y

with x ∈ X, y ∈ Y , and X ∩ Y 6= ∅}.

In other words, Uk(x) is the union of all k-tiles that meet a k-tile
containing x. Note that

(8.1) Uk(x) \ {x} = {y ∈ T \ {x} : m(x, y) ≥ k},
where m(x, y) is defined as in (7.6). Indeed, if y ∈ T \ {x} and m =
m(x, y) ≥ k, then there are non-disjoint m-tiles Xm and Y m with x ∈
Xm and y ∈ Y m. Then the unique k-tiles Xk and Y k with Xk ⊃ Xm

and Y k ⊃ Y m are non-disjoint and contain x and y respectively. So
y ∈ Uk(x) \ {x}. Conversely, if y ∈ Uk(x) \ {x}, then m(x, y) ≥ k as
follows from the definitions of Uk(x) and m(x, y).

We have U0(x) = T ⊃ B%(x, s). Moreover, Proposition 7.7 (i) im-
plies that diam%(U

k(x)) → 0 as k → ∞. Thus there exists a largest
number n ∈ N0 with B%(x, s) ⊂ Un(x).

By definition of n we know that B%(x, s) 6⊂ Un+1(x). This means
that there is a point y ∈ B%(x, s) \ Un+1(x) ⊂ Un(x) \ Un+1(x). Then
%(x, y) ≤ s, and m(x, y) = n as follows from (8.1).

Let k ∈ N0 and Y n+k be an arbitrary (n + k)-tile contained in an
n-tile Y n ⊂ Un(x). Then there exists an n-tile Xn with x ∈ Xn and
Xn ∩ Y n 6= ∅. Then it follows from Proposition 7.7 (ii)–(iv) that

diam%(Y
n+k) . 3−k diam%(Y

n)

� 3−k diam%(X
n) � 3−k%(x, y) ≤ 3−ks.

This estimate implies that we can find k0 ∈ N0 independent of x and s
such that diam%(Y

n+k0) < s/4 for all (n+ k0)-tiles Y n+k0 contained in
any n-tile Y n ⊂ Un(x).
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The point x is contained in at most two n-tiles, each of which in-
tersects at most K n-tiles, where K is the constant from Lemma 5.7.
Thus Un(x) is a union of at most 2(K+1) n-tiles. Each of these n-tiles
contains at most Kk0 (n+ k0)-tiles, and all of these (n+ k0)-tiles have
%-diameter < s/4.

Hence B%(x, s) ⊂ Un(x) can be covered by at mostN ′ := 2(K+1)Kk0

sets of %-diameter < s/4. Since N ′ is independent of x and s, we
conclude that the space (T, %) is doubling. �

Lemma 8.2. The identity map idT : (T, d)→ (T, %) is a quasisymme-
try.

Proof. Let x ∈ T and suppose that {xn}n∈N is a sequence of points with
x 6= xn for n ∈ N. Then Lemma 7.5 implies that, as n → ∞, we have
d(x, xn) → 0 if and only if m(x, xn) → ∞ if and only if %(x, xn) → 0.
This shows that the metrics d and % are topologically equivalent, and
so the map idT : (T, d)→ (T, %) is a homeomorphism.

The space (T, d) is doubling and connected by assumption, and
(T, %) is doubling by Lemma 8.1. So in order to prove that idT : (T, d)→
(T, %) is a quasisymmetry, it is enough to show that it is a weak qua-
sisymmetry (see [He01, Theorem 10.19]). This means that we have to
find a constant H ≥ 1 such that we have the implication

d(x, y) ≤ d(x, z)⇒ %(x, y) ≤ H%(x, z)

for all x, y, z ∈ T.
Let x, y, z ∈ T with d(x, y) ≤ d(x, z) be arbitrary. We may assume

that the points x, y, z are pairwise distinct. Let m := m(x, y) and
n := m(x, z) be defined as in (7.6).

By the first part of Lemma 7.5 we have δm � d(x, y) ≤ d(x, z) � δn.
Thus there is a constant k0 ∈ N0 independent of x, y, z such that

n ≤ m+ k0.

For i = m, . . . ,m + k0 we choose an i-tile Y i that contains x. By
applying Proposition 7.7 (ii) at most k0 times (and so a number of
times independent of x, y, z), we see that

diam%(Y
m+k0) � diam%(Y

m).

We also choose an n-tile Zn that contains x. Since m + k0 ≥ n, and
x ∈ Y m+k0 ∩ Zn, Proposition 7.7 (iii) implies that

diam%(Y
m+k0) . diam%(Z

n).

So with Proposition 7.7 (iv) we arrive at

%(x, y) � diam%(Y
m) � diam%(Y

m+k0) . diam%(Z
n) � %(x, z).
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Since all implicit constants in the previous estimates are independent
of x, y, z, the statement follows. �

The proof of Theorem 1.2 is now complete.

9. Lowering the Hausdorff dimension

In this section we will prove Theorem 1.3. We assume that T is
the given qc-tree as before. Let α > 1 be arbitrary. We claim that
dimH(T, %) ≤ α for the Hausdorff dimension of (T, %) if we choose the
parameter ε0 > 0 in (6.2) that was used in the construction of % as
described in the previous sections small enough. Then Theorem 1.3
immediately follows, because T := (T, %) is a geodesic tree that is
quasisymmetrically equivalent to T and we have dimH T ≤ α.

As before, let K be the constant from Lemma 5.7. Then we can
choose ε0 > 0 so small (in addition to our previous requirement (6.2))
that

L := (1/3)α−1 +Kεα0 < 1.

We claim that with these choices we have Hα(T, %) = 0 for the α-
Hausdorff measure of (T, %) (we will recall the relevant definitions be-
low). This in turn implies the desired inequality dimH(T, %) ≤ α.

To see thatHα(T, %) = 0, we first consider an n-tileX, where n ∈ N0.
In the following estimates, X ′ denotes an arbitrary (n + 1)-tile with
X ′ ⊂ X and we denote by λ(X ′) := w(X ′)/w(X) the relative weight of
X ′. Note that ε0 ≤ λ(X ′) ≤ 1/3 (see (6.8)).

Suppose first that X is an arc-tile. Let p and q be the main vertices
of X. Then we have ∑

X′∩[p,q] 6=∅

λ(X ′) = 1,

as follows from (6.6). This shows that∑
X′

w(X ′)α = w(X)α
∑
X′

λ(X ′)α

= w(X)α
( ∑
X′∩[p,q]6=∅

λ(X ′)α +
∑

X′∩[p,q]=∅

λ(X ′)α
)

= w(X)α
( ∑
X′∩[p,q]6=∅

λ(X ′)α−1λ(X ′) +
∑

X′∩[p,q]=∅

εα0

)
≤ w(X)α

(
(1/3)α−1 +Kεα0

)
= Lw(X)α.

For a leaf-tile X or for the 0-tile X = X0 = T we have∑
X′

w(X ′)α ≤ Kεα0w(X)α ≤ Lw(X)α,
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and so we have the same upper bound as for an arc-tile X.
Now let t > 0, and consider

(9.1) Hα
t (T, %) := inf

{∑
i∈N

diam%(Ai)
α

}
,

where the infimum is taken over all countable covers {Ai}i∈N of T by
sets Ai ⊂ T with diam%(Ai) ≤ t for i ∈ N.

We can choose n ∈ N large enough so that for each n-tile X we have

diam%(X) ≤ 2w(X) ≤ 2 · 3−n ≤ t.

Here we used (7.7) in the first inequality. Then

Hα
t (T, %) ≤

∑
X∈Xn

diam%(X)α ≤ 2α
∑
X∈Xn

w(X)α ≤ 2αL
∑

X̃∈Xn−1

w(X̃)α

≤ · · · ≤ 2αLnw(X0)α = 2αLn,

where X0 = T is the unique 0-tile and w(X0) = 1. Since L < 1, and
n→∞ as t→ 0+, this implies

Hα(T, %) := lim
t→0+
Hα
t (T, %) = 2α lim

n→∞
Ln = 0,

as desired. The proof of Theorem 1.3 is now complete.

10. Remarks and open problems

The general strategy to prove the quasisymmetric equivalence of
(T, d) and (T, %) follows a pattern that has been employed before (for
example, see the proof of [BM17, Theorem 18.1]). In the follow-up pa-
per [BM20] we will state general conditions that ensure quasisymmetric
equivalence in similar situations. This approach is closely related to re-
cent work by Kigami (see [Kig18]).

It is an interesting problem whether every qc-tree T admits a qua-
sisymmetric embedding ϕ : T→ C into the complex plane and whether
one can obtain an image T := ϕ(T) with good geometric properties.
For example, one can ask whether for a suitable quasisymmetric em-
bedding ϕ the image T is quasi-convex with respect to the Euclidean
metric (then T is geodesic if equipped with its internal path metric)
and C \ T is a nice domain (such as a John domain).

For a given tree T ⊂ C, we may consider the conformal map ϕ : Ĉ \
D→ Ĉ \T. Here Ĉ = C ∪ {∞} is the Riemann sphere and D = {z ∈
C : |z| < 1} the unit disk. Since T is locally connected, ϕ extends to a
map on the boundary f : ∂D→ T by Carathéodory’s theorem and one
obtains an equivalence relation on ∂D given by s ∼ t⇔ f(s) = f(t).
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Lin and Rohde have recently studied which equivalence relations ∼
arise in this way from trees T ⊂ C, where Ĉ \T is a John domain (see
[LR18]). In particular, they were interested in related questions for the
continuum random tree (CRT) (see [BT20] for references and relevant
facts about the CRT in a related setting). The CRT is geodesic, but
not doubling, and so not a qc-tree according to our terminology.

This leads to the question, whether a tree that is of bounded turning,
but not necessarily doubling, admits a uniformization similar to the one
in Theorem 1.2. In [Me11] it is shown that an arc is of bounded turning
if and only if it is the image of [0, 1] under a weak quasisymmetry. In
analogy, one may ask whether a tree that is of bounded turning is the
image of a geodesic tree under a weak quasisymmetry.

Trees and tree-like spaces often appear in data structures. Our subdi-
vision procedure as described in Section 5 essentially gives an algorithm
to decompose trees with good geometric control. It would be interest-
ing to see whether this procedure has applications in a data-related
context.
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dary, Ann. Sci. École Norm. Sup. (4) 33 (2000), 647–669.
[Kig18] J. Kigami, Weighted partition of a compact metrizable space, its hyper-

bolicity and Ahlfors regular conformal dimension, preprint, 2018, https:

//arxiv.org/abs/1806.06558.
[Kin17] K. Kinneberg, Conformal dimension and boundaries of planar domains,

Trans. Amer. Math. Soc. 369 (2017), 6511–6536.
[Kul94] W. Kulpa, Sandwich type theorems, Acta Univ. Carolin. Math. Phys. 35

(1994), 45–50.
[Kur68] K. Kuratowski, Topology. Vol. II. Academic Press, New York-London;

PWN—Polish Scientific Publishers, Warsaw, 1968.
[LR18] P. Lin and S. Rohde, Conformal welding of dendrites, preprint, 2018.
[MT10] J.M. Mackay and J.T. Tyson, Conformal dimension. Theory and applica-

tion. University Lecture Series 54. Amer. Math. Soc., Providence, RI, 2010.
[Me11] D. Meyer, Bounded turning circles are weak-quasicircles, Proc. Amer. Math.

Soc. 139 (2011), 1751–1761.
[Na92] S.B. Nadler, Jr., Continuum theory. An introduction. Monographs and Text-

books in Pure and Appl. Math., 158. Marcel Dekker, New York, 1992.
[TV80] P. Tukia and J. Väisälä, Quasisymmetric embeddings of metric spaces, Ann.

Acad. Sci. Fenn. Ser. A I Math. 5 (1980), 97–114.
[Wh63] G.T. Whyburn, Analytic topology, Colloquium. Publ., Vol. 28, Amer. Math.

Soc., Providence, RI, 1963.

Department of Mathematics, University of California, Los Angeles,
CA 90095, USA

Email address: mbonk@math.ucla.edu

Department of Mathematical Sciences, University of Liverpool,
Liverpool L69 7ZL, United Kingdom

Email address: dmeyermail@gmail.com

https://arxiv.org/abs/1806.06558
https://arxiv.org/abs/1806.06558

	1. Introduction
	1.1. Notation

	2. Auxiliary facts
	3. Sun and shadow
	4. Good double points
	5. Subdividing the tree
	Vertices and tiles
	Chains
	Choosing 

	6. Weights and main vertices of tiles
	7. Construction of the geodesic metric
	8. Quasisymmetry
	9. Lowering the Hausdorff dimension
	10. Remarks and open problems
	References

