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Abstract

In this trans-ethnic multi-omic study we reinterpret the genetic architecture of blood pressure to 

identify genes, tissues, phenome, and medication contexts of blood pressure homeostasis. We 

discovered 208 novel common blood pressure SNPs and 53 rare variants in GWASs of systolic, 

diastolic and pulse pressure in up to 776,078 participants from the Million Veteran Program 

(MVP) and collaborating studies, with analysis of the blood pressure clinical phenome in MVP. 

Our transcriptome-wide association study detected 4,043 blood pressure associations with 

genetically-predicted gene expression of 840 genes in 45 tissues, and murine renal single-cell 

RNA sequencing identified upregulated blood pressure genes in kidney tubule cells.

Editorial summary:

Analysis of blood pressure data from the Million Veteran Program trans-ethnic cohort identifies 

common and rare variants, and genetically predicted gene expression across multiple tissues 

associated with systolic, diastolic and pulse pressure in over 775,000 individuals.
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Decades of scientific evidence implicate elevated blood pressure in the etiology of 

cardiovascular disease, including coronary artery disease, peripheral arterial disease, and 

stroke, as well as renal and ocular damage. Elevated blood pressure accounts for at least 

13% of annual deaths worldwide1,2. The risk of death from ischemic heart disease and 

stroke increases linearly with systolic blood pressure (SBP) and diastolic blood pressure 

(DBP) elevations greater than 115 mmHg and 75 mmHg, respectively3. Recent treatment 

guidelines emphasize the benefit of blood pressure-lowering strategies, including drug 

treatments, at lower thresholds of SBP or DBP4. These guidelines also identify a substantial 

patient population who are untreated or undertreated for elevated blood pressure, or do not 

have sufficient treatment response to anti-hypertensive drugs and highlight the need to 

identify new gene targets for therapies5.

Large-scale genome-wide association studies (GWAS) have reported over 250 loci 

associated with blood pressure traits, establishing that blood pressure traits are complex with 

many genetic determinants of modest effect6–27. Large blood pressure GWAS meta-analyses 

combine evidence from many cohorts and identify genetic determinants of SBP, DBP and 

pulse pressure levels. Regulatory effects may account for substantial heritability in GWAS 

studies, and GWAS sentinel SNPs are enriched for regulatory SNPs compared to the 

proportion of the genome containing regulatory elements28–30. Most blood pressure SNPs 

are noncoding, are not in strong linkage disequilibrium (LD) with trait-associated coding 

variants, and are often found in regulatory elements12. Several methods were recently 

developed to use multiple SNPs to perform gene-based tests of association between imputed 

gene expression levels and phenotypes, which are tissue-specific and provide interpretable 

direction and magnitude of effects31–34

In this trans-ethnic study, we meta-analyzed data for 459,777 participants, 318,891 from the 

Million Veteran Program (MVP) and 140,886 from the UK Biobank (UKB)12. We 

subsequently performed independent replication in 316,301 participants from the 

International Consortium for Blood Pressure (ICBP)25 and Vanderbilt University’s BioVU 

cohort to study common variant associations with minor allele frequency (MAF) greater 

than 1% (Figure 1). With 318,891 participants from the MVP as the discovery sample, we 

conducted two studies of rare variants, one focused on variants across the genome with 

independent replication in 445,360 participants from UKB and the other focused on exonic 

regions with replication in up to 420,704 participants from the Blood Pressure-International 

Consortium of Exome chip studies (BP-ICE) consortium. We report associations between 

blood pressure and common and rare SNPs, and blood pressure and genetically predicted 

gene expression (GPGE). We also evaluated gene-drug relationships and toxicities, 

conducted a phenome-wide association study (PheWAS) of blood pressure genetic risk 

scores, conducted pathway and tissue gene set enrichment analyses, and performed studies 

to identify murine kidney cell types where expression for implicated genes is increased.

RESULTS

MVP participants (N = 318,891), representing the majority of the discovery sample size, 

were predominantly male (91.5%), and were administratively identified as non-Hispanic 

whites (69.1%), with non-Hispanic blacks, Hispanics, non-Hispanic Asians and non-
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Hispanic Native Americans representing 18.8%, 6.7%, 0.77% and 0.85% of the population 

respectively (Supplementary Table 1). Blacks were older on average [mean = 60.6 years, 

(standard deviation = 11.4)], followed by whites [58.9 (12.6)], Native Americans [58.9 

(12.6)], Hispanics [52.7 (14.5)], and Asians [48.6 (16.1)]. Approximately half of the MVP 

participants were on antihypertensive medications and a quarter had diabetes. Participants 

from the UKB interim release, originating from UKB application number 236, (N = 

140,886) were also included in the discovery analysis; their characteristics are reported 

elsewhere12.

Single Variant Analyses

Common Variants—We identified a total of 505 independent loci (201 novel loci, 304 

previously reported) associated with one or more blood pressure traits: SBP, DBP and pulse 

pressure. Among the previously reported loci, 216 were associated with SBP, 76 with DBP 

and 208 with pulse pressure (Table 1; Figure 2a-c; Supplementary Tables 2a-c) and were not 

evaluated for replication. Sentinel variants from loci that were deemed to be novel by 

comparison with the GWAS catalog (accessed March 2017 or literature report; P-value < 1 × 

10−6 in the discovery phase; greater than 500 kb from a known sentinel SNP; r2 ≤ 0.1 with 

known sentinel SNPs) and up to two proxies (N = 1,478) were carried forward for 

replication with the ICBP consortium. Replicated variants had consistent directions of effect 

in the discovery and replication phases, had P-values < 0.05 in the replication stage, and had 

meta-analysis (discovery + replication) P-values < 5 × 10−8 (Online methods for details). 

These replicated SNPs represented 201 novel loci and included 124 loci for SBP, 4 loci for 

DBP and 123 loci for pulse pressure (Supplementary Tables 3a-c). Comparison of mean 

effect estimates of blood pressure-trait increasing alleles showed that, on average, novel loci 

had smaller magnitudes of association (0.24, 0.14, and 0.18 mmHg per allele for SBP, DBP 

and pulse pressure, respectively) than known loci (0.32, 0.27, and 0.27 mmHg per allele, for 

SBP, DBP and pulse pressure, respectively; Table 1). Sentinel SNPs at all independent loci 

from meta-analysis of common variants explained 3.56%, 1.06% and 3.72% of the total 

variance for SBP, DBP and pulse pressure respectively. Novel variants contributed to 0.80%, 

0.24% and 0.72% of the total variance explained by all independent loci for SBP, DBP, and 

pulse pressure, respectively.

Identification of conditionally independent signals using discovery meta-analysis results 

identified an additional 37 SNPs from 29 loci (7 novel, 3 within the boundaries of both 

known and novel loci) as significant in one or more blood pressure traits (Supplementary 

Table 4).

Trans-ancestry Comparisons—To update the observations reported by Franceschini et 
al. in 20139, where 29 SNP effects on blood pressure reported by Ehret et al. in 201135 were 

consistent across European, African, East Asian, and South Asian ancestries, we compared 

known and novel loci across ancestral groups in MVP. We examined the correlation between 

effect sizes in white, black, and Hispanic samples. Observed correlations of effect sizes 

between race/ethnic groups in MVP were weaker than those previously reported, though the 

directions of effects were largely consistent (Supplementary Figure 1; Supplementary Table 

5).

Giri et al. Page 3

Nat Genet. Author manuscript; available in PMC 2019 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Rare Exonic Variants—Rare exonic variants (MAF < 1%) with suggestive evidence of 

association (P-value < 1 × 10−6) from the discovery sample were queried for replication in 

populations from BioVU (N = 17,277) and the BP-ICE (Nmax = 420,704) consortium. 

Eighteen variants were on the exome chip and available for final meta-analysis. Ten 

missense variants from seven genes were associated with blood pressure traits (P < 5 × 10−8; 

Table 2). Five variants were associated with SBP and/or DBP (rs141328069 [PDE3A; 

Arg→Gln], rs139491786, [SLC9A3R2; Arg→Trp], rs61760904 [RRAS; Asp→Asn], 

rs73181210 [PHC3; Lys→Glu], rs3085380 [DBH; Gly → Ala]) with consistent directions 

of effect for SBP and DBP. Three rare variants from COL21A1 (rs118079907 [Cys→Arg], 

rs200999181 [Gly→Val], and rs2764043 [Leu→Pro]) and one variant from NOX4 
(rs139341533; Leu→Phe) were significantly associated with pulse pressure but not with 

SBP or DBP and in fact had opposite directions effect for SBP and DBP. SNPs in RRAS, 
DBH, and one of the three SNPs in COL21A1 (rs200999181) have been previously 

reported22–24. Average absolute values of effect estimates for SBP, DBP and pulse pressure 

in these variants were 1.52, 0.63, and 1.50 mmHg per allele, respectively.

We conditioned these SNPs on the sentinel common variant in each respective locus, where 

available, in the MVP whites discovery sample and compared effect estimates before and 

after conditioning. SNP rs139491786 in SLC9A3R2 showed a >50% reduction in effect size 

after conditioning on common variant rs140869992 (r2 = 0.35). Effect sizes for all other rare 

exonic variants were considered independent as no substantial differences in effect estimates 

were observed after conditioning (Supplementary Table 6).

All Rare Variants—Discovery analysis in the MVP samples only (excluding UKB) 

identified 1,684 rare variants with suggestive evidence for association across the three blood 

pressure traits; 1,066 of these variants were available for meta-analysis in UKB. We 

observed statistically significant associations (P-value < 5 × 10−8) between 48 rare variants 

and one or more blood pressure traits. We identified 40 SNPs for pulse pressure, eight SNPs 

for SBP, and two SNPs for DBP (Supplementary Table 7). Average absolute values of effect 

estimates for SBP, DBP and pulse pressure were 9.67, 2.33 and 13.89 mmHg per allele, 

respectively. The missense variants from NOX4 (rs139341533), SLC9A3R2 (rs139491786), 

and COL21A1 (rs200999181, rs2764043) were evaluated in the both the exonic and rare-

variant analyses separately (Table 2; Supplementary Table 7).

Transcriptome-Wide Association Analyses

Common variants from the final meta-analysis were used to evaluate the associations 

between blood pressure traits and genetically predicted gene expression (GPGE) levels 

across 44 Genotype-Tissue Expression Project (GTEx)36 tissues and the human kidney 

reference described by Ko et al.37, using S-PrediXcan31. We identified statistically 

significant GPGE associations for 1,552 gene-tissue pairs with SBP, 521 with DBP, and 

1,970 for pulse pressure (Supplementary Tables 8a-c; Supplementary Figures 2–4). We 

identified 409 genes with this analysis that would not be identified if SNPs were annotated 

using the nearest gene. MTHFR was the top result from SBP and showed decreasing SBP 

with increasing GPGE in skeletal muscle, aorta, and several other tissues.
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Murine Kidney Single Cell Sequencing Analysis

Homologs of human genes identified as significant in the S-PrediXcan analysis of kidney 

tissue were investigated for kidney cell type-specific RNA expression using single cell 

sequencing in murine kidney cells. Cells were clustered into 11 groups representing 

structural features and other cell types found in the kidney. Sixteen of the 28 genes were 

most expressed in any of the five tubule-related cell types: proximal tubules, loop of Henle, 

distal convoluted tubules, collecting duct principal cells and collecting duct intercalated cells 

(Figure 3; Supplementary Table 9a–c). Cross-referencing protein expression levels in the 

Human Protein Atlas38 confirmed findings from murine kidney, including higher expression 

of CDC16, SRR, SFXN2 and CLCN6 proteins in tubules compared to glomeruli 

(Supplementary Table 10).

Assessment of Gene-Drug Relationships

To better understand how genes identified in the study relate to medications, associations 

identified from the GPGE analyses were investigated for overlap with gene targets of known 

antihypertensive medications, non-antihypertensive medications, and medications with 

adverse drug events (ADEs) for hypertension and hypotension (Supplementary Tables 11–

14). A total of 2,177 tissue- and blood pressure trait-specific drug-gene interactions were 

identified in this analysis. Of these, there were 617 unique drug-gene interactions, with 175 

(28.36%) with antagonistic effects.

The genes PDE3A, PSMB9, and SH2B3 targeted by the non-antihypertensive drugs 

theophylline, carfilzomib, and pazopanib, respectively, have adverse drug events of either 

hypo- or hypertension and increase blood pressure with increasing GPGE. The most 

significant gene in S-PrediXcan targeted by an antihypertensive medication was CLCN6 
(SBP β = −2.76, P-value = 8.14 × 10−45) in tibial artery tissue (Supplementary Table 11). 

The gene most significant in S-PrediXcan with a positive effect size and targeted by a non-

antihypertensive medication was PRKAR2B (β = 1.38, P-value = 1.39 × 10−81) in aortic 

artery tissue identified from the pulse pressure analysis (Supplementary Table 12). The gene 

most significant in S-PrediXcan with a positive effect size and targeted by a drug with an 

ADE for hypertension was PSMB9 (pulse pressure β = 0.42, P-value = 7.57 × 10−9) in tibial 

artery tissue (Supplementary Table 13).

PheWAS with blood pressure Genetic Risk Scores

To systematically evaluate pleiotropy between genetic predictors of blood pressure-traits and 

diseases throughout the phenome, we performed PheWAS using blood pressure-trait 

weighted genetic risk scores (w-GRS) separately in self-reported/administratively identified 

non-Hispanic white, non-Hispanic black, and Hispanic individuals in the MVP. We used all 

known and novel common sentinel SNPs from the final meta-analysis and trait-specific 

weights from the UKB discovery sample to generate w-GRSs for each blood pressure trait 

and regressed PheWAS outcomes from MVP onto those scores, adjusted for the top 10 

genetic principal components. Eighty-eight of 1,813 phenotypes were significantly 

associated with any w-GRSs at a Bonferroni-corrected P-value threshold < 2.76 × 10−5 

(Supplementary Table 15). Hypertension (smallest P-value < 1 × 10−305), essential 

hypertension (smallest P-value < 1 × 10−305) and hypertensive heart and/or renal disease 
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(smallest P-value = 3.3 × 10−173) were the top associations for each of the nine w-GRSs. 

PheWAS associations were consistent across race/ethnic groups (Supplementary Figure 5). 

Associations with phenotypes in the circulatory system (N = 52) accounted for more than 

50% of the significant results in whites. The phenotype groups with the next most 

associations were endocrine/metabolic (N = 28), genitourinary (N = 10) and hematopoietic 

(N = 6).

Among significant associations, 45 were significant for all three w-GRSs, 10 were 

significant for both SBP and DBP, and 15 were significant for both SBP and pulse pressure, 

demonstrating substantial overlap between signals captured by genetically predicted blood 

pressure traits (Supplementary Figure 6; Supplementary Table 15). Thirteen associations 

were significant only for the pulse pressure w-GRS, of which five were the diabetes sequelae 

ophthalmic manifestations, neurological manifestations, diabetic retinopathy, other abnormal 

glucose, and polyneuropathy. Aortic and other aneurysms were only associated with the 

DBP w-GRS, but not with other w-GRSs.

Enrichment and pathway analyses

We evaluated whether statistically significant genes from S-PrediXcan analyses were 

enriched in one or more tissues. Compared to other tissues, aorta showed the greatest 

evidence for enrichment of significant genes across all three traits (SBP P-value = 3.7 × 

10−3; DBP P-value = 5.7 × 10−3; and pulse pressure P-value = 1.2 × 10−9; Supplementary 

Table 16). We provided sentinel SNPs from known and novel loci for each blood pressure 

trait (Supplementary Tables 17a–c and 18a-c) to DEPICT39 and detected enrichment of 36 

tissues across seven systems for pulse pressure (FDR < 5%). The greatest enrichment was 

seen in arteries (P-value = 3.43 × 10−10) and 11 out of the 36 tissues are grouped in the 

cardiovascular system (Supplementary Table 17c). Gene-set enrichment of the pulse 

pressure GWAS results identified 574 enriched gene-sets (FDR < 5%); abnormal vascular 

smooth muscle morphology (MP:0005592; P-value = 1.47 × 10−8) was the top gene set 

(Supplementary Table 18c).

We prioritized statistically significant results from the S-PrediXcan aorta tissue analyses for 

all three traits and investigated pathways using the Ingenuity Pathway Analysis (IPA) 

software (Supplementary Figures 7–9). Cardiovascular Disease (SBP P-value = 7.2 × 10−6; 

pulse pressure P-value = 9.53 × 10−4), and Cardiovascular System Development and 

Function (SBP P-value = 7.7 × 10−5; pulse pressure P-value = 9.53 × 10−4) networks were 

among the top enriched networks. Notable features in the SBP IPA results included the TGF-

β and NOTCH signaling pathways (Supplementary Figure 7), while pulse pressure IPA 

results featured atherosclerosis genes including CDH13, TCF7L2, PHACTR1 and MTHFR 
(Supplementary Figure 9).

Convergence of evidence

We collated evidence for genes that were associated in two or more types of investigations 

that inform relevant gene targets (rare coding variants, predicted gene expression, single-cell 

sequencing expression enrichment, and drug query) and highlight noteworthy genes (Table 

3). We identified 46 known and 7 novel genes satisfying this criterion, including three 
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Mendelian hypo- or hypertension genes and 15 genes targeted by antihypertensive 

medications. Nine genes were expressed in murine kidney tubule cell types and 19 genes 

were identified in at least one aorta IPA network.

DISCUSSION

We present results from multi-omic analyses of a trans-ethnic GWAS consortium for blood 

pressure traits. By incorporating large sample sizes, bioinformatics, and measures of gene 

expression, we re-interpret the genetic architecture of blood pressure and identify tissues and 

anatomical features where blood pressure genes exert effects. Interrogation of gene-drug 

relationships and toxicities for GPGE associations provides additional evidence for known 

and novel blood pressure genes, and suggests genes as potential leads for drug development 

and repurposing potential for existing drugs. We emphasize the utility of large-scale blood 

pressure GWAS as a requisite starting point for analyses providing insight into clinical 

factors, genetic etiology, pathophysiology, and pharmacology of blood pressure homeostasis.

The MVP comprises US military veterans, and has an overrepresentation of male and black 

participants compared to the US population. We had a larger collection of Hispanic 

participants than the largest previous study of blood pressure traits in that population13, and 

almost twice the number of black participants as the largest previous study of African 

ancestry populations10. Although consistent, our comparison of SNP effects on blood 

pressure traits demonstrated a lower correlation between race/ethnic groups than 

Franceschini et al.9; however, the effects we compared were much more subtle than the first 

29 blood pressure SNPs detected by Ehret et al.6. We compared the effects on clinical 

outcomes of genetically-imputed blood pressure traits in a PheWAS, and observed consistent 

effects between racial/ethnic groups in MVP. These results support the previous observation9 

that genetic effects on blood pressure of common SNPs are consistent between populations, 

and suggest that an increasing burden of blood pressure-increasing alleles has a similar 

effect on health across white, black, and Hispanic populations.

Evidence from S-PrediXcan and DEPICT identified arteries as the tissue type with greatest 

evidence for gene enrichment. These findings agree with results from Warren et al. 201712, 

which reported arteries as the top tissue from a DEPICT analysis of blood pressure traits, 

and also with results from Gamazon et al. 201840, which reported aorta as the top PrediXcan 

tissue with highly enriched gene signals for SBP. The lack of enrichment of genes in other 

relevant tissues such as the kidney maybe due to the smaller sample of kidney tissues 

available in prediction training sets or that tissue-specific gene expression is differentially 

enriched.

The SBP IPA analysis highlights genes linked to TGF-β and notch signaling pathways 

including FURIN, GUCY1A3 (Syn: GUCY1A1), and GUCY1B3. (Table 3; Supplementary 

Figure 7). GPGE of FURIN in the aorta was positively associated with SBP. This effect is 

likely mediated by furin-induced activation of pro-TGF-β1 to TGF-β1, which works along 

with the RAS pathway to increase blood pressure41–44. Predicted expression of FES, a gene 

<1 kb upstream of FURIN, is inversely associated with SBP in aorta, coronary artery, tibial 

artery, and kidney (Supplementary Table 8a), suggesting the presence of two proximal blood 
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pressure loci with different regulatory mechanisms. Naproxen, a non-steroidal anti-

inflammatory drug, has an inhibitory effect on FES (Supplementary Tables 12 and 13) and 

hypertension is one of its known side-effects45. Findings highlight the importance of the role 

of soluble guanylyl cyclase (sGC) expression via the Notch signaling pathway in the mouse 

aorta on hypertension46. GUCY1A3 and GUCY1A1 encode subunits of sGC which is a 

major nitric oxide (NO) receptor in the vascular wall46–48. As mediators of the vasodilatory 

effects of NO, increased expression of these genes predicted a decrease in SBP in aorta 

(Table 3 and Supplementary Table 8a).

To understand how genetically-predicted blood pressure is associated with the clinical 

phenome, we calculated w-GRSs for each blood pressure trait and evaluated them with a 

PheWAS (Supplementary Table 15). The pulse pressure w-GRS was associated with diabetic 

complications, while w-GRS for SBP or DBP had fewer diabetes-related associations. Pulse 

pressure is an independent predictor of cardiovascular disease and incident diabetes49,50. 

Elevated pulse pressure is a marker for arterial stiffness51, which is positively associated 

with diabetic retinopathy and neuropathy52. These findings are supported by the pulse 

pressure IPA results where the top cardiovascular gene network includes at least four genes 

which may directly or indirectly mediate arterial stiffness or atherosclerosis, including 

TCF7L2, CDH13, PHACTR1, and MTHFR (Supplementary Figure 9)53–59. Our finding of a 

positive association between the DBP w-GRS and aortic and other aneurysms supports 

evidence from a previous study of 1.25 million individuals where an association between 

DBP and aortic aneurysm was reported60. Our study is the first to provide evidence for a 

genetic etiology for this observation.

Convergent evidence from multiple analyses identified several blood pressure genes with 

strong biologic importance, including PDE3A and novel genes RXFP2 and ADK. RXFP2 is 

a receptor for the hormone relaxin61, which causes vasodilation, increases cardiac output 

and renal perfusion, and has been evaluated in clinical trials as a treatment for acute heart 

failure62–64. RXFP2 is expressed in multiple tissues, which likely underlies the multiple 

physiological effects of the relaxin hormone throughout the circulatory system65.

The product of ADK, adenosine kinase, catalyzes the transfer of gamma-phosphate from 

adenosine triphosphate to adenosine to form adenosine monophosphate and has widespread 

effects on multiple systems including cardiovascular, nervous and respiratory systems66. 

Adenosine terminates supraventricular tachycardia (SVT) involving the atrioventricular (AV) 

node and has been attributed to cardiac brady-arrhythmias67,68. Intravenous adenosine 

injection in humans induces vasodilation and systemic hypotension69, and is the primary 

drug used in the treatment of stable narrow-complex SVT70. It is known to reduce blood 

pressure and blood pressure variability in rats, and its actions are mediated through 

adenosine receptors71. We show a positive association between GPGE of ADK and SBP and 

pulse pressure in aortic tissue (Supplementary Tables 8a and 8c), consistent with the known 

directional effects of adenosine on blood pressure.

PDE3A is targeted by a wide variety of inhibitors for indications including congestive heart 

failure, hypertension, and heart disease. The PDE3A inhibitor theophylline used to treat 

chronic obstructive pulmonary disease has a hypotension ADE, which is consistent with the 
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effects of increased gene expression in our analysis (Supplementary Tables 12 and 13). The 

autosomal dominant Mendelian condition Hypertension and Brachydactyly Syndrome 

(HTNB; OMIM: 112410) is caused by at least six distinct rare PDE3A mutations72,73. 

HTNB features include brachydactyly type E, severe salt-independent but age-dependent 

hypertension, increased fibroblast growth rate, neurovascular contact at the rostral-

ventrolateral medulla, altered baroreflex blood pressure regulation, and death from stroke 

before age 50 years when untreated74,75. Associations between common variants in the 

PDE3A locus and blood pressure have been reported previously25,26.

A novel aspect of this study is the incorporation of single-cell gene expression data from 

cells derived from murine kidneys. We show that a majority of blood pressure genes 

identified by S-PrediXcan analyses in human kidneys are enriched in tubule cell types 

derived from murine kidneys. This observation suggests that genes detected through GPGE 

associations and expressed in tubules, including SRR, ACHE, SFXN2 and CLCN6, may 

play a role in blood pressure regulation. Several lines of evidence implicate the SRR gene, 

while the nearest gene annotation strategy identifies SMG6 as associated with blood 

pressure at this locus. A SNP in SMG6, rs216172, has been associated with coronary artery 

disease76; however, this SNP is an eQTL for SRR and not for SMG6 (GTEx portal). SNPs 

near SRR have been associated with type 2 diabetes (T2D) and T2D mediated arterial 

stiffness53. ACHE terminates signal transduction at the neuromuscular junction by rapid 

hydrolysis of acetylcholine released into the synaptic cleft77. Inhibition of 

acetylcholinesterase is an effective treatment for orthostatic hypotension, especially in 

patients with supine hypertension78. Dimetacrine, a tricyclic antidepressant, and 

decamethonium, a muscle relaxant, have inhibitory effects on ACHE and are not currently 

prescribed as anti-hypertension medications.

This work helps to clarify the complex MTHFR locus by providing unique tissue-specific 

evidence for several genes in the region in relation to blood pressure79,80. In addition to 

MTHFR, our study provides evidence for the role of NPPA (novel missense variant; Table 

2), NPPB (GPGE association with SBP and pulse pressure in the left ventricle; 

Supplementary Tables 8a and 8c), and CLCN6 (inverse association in kidney S-PrediXcan, 

and enrichment in murine kidney; Supplementary Tables 8a-c and 9a-c) in blood pressure. 

NPPA and NPPB are exclusively expressed in the heart and have biological functions that 

include natriuresis, diuresis, vasorelaxation, inhibition of renin and aldosterone secretion, 

and play a key role in cardiovascular homeostasis81. GPGE of CLCN6, a putative chloride 

antiporter82, was consistently associated across blood pressure traits. CLCN6 is targeted by 

the antihypertensive medication chlorthalidone, and NPPB is targeted by the 

antihypertensive medication carvedilol (Supplementary Table 11). Findings for this locus 

highlight that effects of multiple associated genes from the same locus may vary by tissue 

type, and several nearby genes with very different biological functions may jointly 

contribute to the trait of interest.

In conclusion, we applied multiple post-GWAS analyses to identify genes with effects on 

blood pressure regulation. We report hundreds of novel SNPs and genes, several with strong 

biological plausibility, and tissue-specific gene associations with directions of effect. We 

provide insight into the natural experiments of gene regulation and direct perturbation of 
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proteins by mutation with regard to effects on blood pressure, which enhances the biological 

understanding of blood pressure traits. Our study identifies a refined set of genes that often 

have coordinated expression across multiple tissues that may have relevance to blood 

pressure traits and these gene-tissue pairs are prime candidates for causal investigation.

ONLINE METHODS

We conducted a multi-stage GWAS of common and rare variants in over 750,000 

participants. We then performed additional bioinformatics analyses of GPGE for blood 

pressure traits, evaluated cell types where associated genes are expressed, performed a 

phenome-wide association study of genetic risk scores for blood pressure traits from the 

electronic health records of MVP participants, and screened known drugs to evaluate 

potential for repurposing and validate observed associations. A flow chart for analyses is 

presented in Figure 1.

Discovery Cohorts

The Million Veteran Program—The Million Veteran’s Program (MVP) is a large cohort 

of fully consented participants who were recruited from the patient populations of 63 

Department of Veterans Affairs (VA) medical facilities. The MVP is recruited at VA 

hospitals from men and women who are veterans of the US armed forces. It is enriched with 

African American and Hispanic participants compared with the general US population, and 

males are overrepresented. Across race groups, the average age ranged between 49 for Asian 

and 61 for black participants (Supplementary Table 1). Average BMI ranged between 27.8 

for Asian and 30.9 for Native Americans. The proportion of males ranged between 87% for 

Native Americans and 93% for whites. Average SBP ranged between 132 mmHg for Asians 

and 140 mmHg for blacks, average DBP ranged between 81 mmHg for Asians and 85 

mmHg for Blacks, and average pulse pressure ranged between 51 mmHg for Asians and 57 

mmHg for whites. The proportion of participants on an anti-hypertensive drug at the time of 

blood pressure measure ranged between 31% for Asians and 53% for blacks.

Recruitment began in 2011 and is conducted in-person, initiated by an invitation letter and 

completed by answering baseline and lifestyle questionnaires, providing a blood sample, 

providing access to medical records, and giving permission for re-contact. Consent to 

participate is provided after counseling by research staff and mailing of informational 

materials. All documents and protocols are approved by the VA Central Institutional Review 

Board. Blood samples are collected by phlebotomists and banked at the VA Central 

Biorepository in Boston, MA. Genotyping was conducted using a customized Affymetrix 

Axiom Biobank Array chip with content added to provide coverage of African and Hispanic 

haplotypes, as well as markers for common diseases in the VA population. Researchers are 

provided with de-identified data, and do not have the ability or authorization to link these 

details with a participants’ identity.

MVP Genotype Quality Control: Blood samples drawn from consenting MVP participants 

were shipped to the Central Biorepository in Boston, MA, where DNA was extracted and 

shipped to two external centers for genotyping on an Affymetrix Axiom Biobank array 

designed specifically for the MVP. The MVP genomics working group applied standard 
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quality control and genotype calling algorithms to the data in batches using the Affymetrix 

Power Tools Suite (v1.18). Standard quality control pipelines were used to exclude duplicate 

samples, samples with more heterozygosity than expected, samples with an excess (>2.5%) 

of missing genotype calls, and samples with discordance of genetically inferred sex versus 

self-report. We excluded related individuals (halfway between 2nd and 3rd degree relatives or 

closer) as measured by the KING software83. Prior to imputation, variants that were poorly 

called or that deviated from their expected allele frequency based on reference data from the 

1000 Genomes Project84 were excluded. After pre-phasing using EAGLE v285, genotypes 

from the 1000 Genomes Project84 phase 3, version 5 reference panel were imputed into 

Million Veteran Program (MVP) participants via Minimac3 software86. Principal component 

analysis was performed using the FlashPCA87, to generate the top 10 genetic principal 

components explaining the greatest variability.

Race/ethnicity: Information on race (whites, blacks, Asians, and Native Americans) and 

ethnicity (Hispanic: Yes or No) were obtained based on self-report through centralized VA 

data collection methods using standardized survey forms, or through the use of information 

from corporate data warehouse (CDW), or Observational Medical Outcomes Partnership 

(OMOP) data, when information from self-report survey was missing. Race and ethnicity 

categories were then merged to form the following race/ethnicity variables: non-Hispanic 

whites (whites), non-Hispanic blacks (blacks), non-Hispanic Asians (Asians), non-Hispanic 

Native Americans (Native Americans) and Hispanics. Individuals for whom race and 

ethnicity could not be assigned due to conflicting records and missing data, were categorized 

as unknown. Prior to analysis QC, there were 15,710 Veterans with unknown status for race/

ethnicity. For these individuals, we used a K-means clustering approach in R (McQueen 

algorithm) with the top 10 genetic principal components as input. To obtain the most reliable 

cluster designations for the missing data, the K-means approach was applied to the 

maximum available samples: the 1000 Genomes reference populations and all individuals 

for whom PCs were available regardless of whether race/ethnicity designations were 

unknown. K-clusters were optimized by testing values K=2 through K=10. K = 4 was 

ultimately chosen as the most optimal value, as visual examination of these most closely 

corresponded to whites (N=5,265), blacks (N=4,671), Asians (N= 3,936) and Hispanics (N= 

1,838).

MVP Blood Pressure Phenotypes: We selected adults (age ≥ 18) and used the median 

eligible non-Emergency Department outpatient measured SBP in the entire available EHR, 

and used the corresponding DBP from this measure. In individuals where the median value 

was observed at multiple clinical encounters on distinct dates, we used the earliest of those 

measures to identify the DBP, age, BMI, and anti-hypertensive treatment status of the 

individual at that time. Measures were ineligible if they occurred at or after an ICD-9 code 

from the groups 585 (chronic kidney disease), 405 (secondary hypertension), or 428 (heart 

failure). If pain scores were available, blood pressure measures taken during encounters 

when a pain score ≥ 5 was recorded were also ineligible, because severe pain can elevate 

blood pressure88,89. For measures taken while a patient was on an antihypertensive 

medication we added 15 mmHg to SBP and 10 mmHg to DBP8,90.
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MVP Analysis: For the MVP GWAS we performed linear regression association tests with 

additive models for untransformed blood pressure traits, after adjusting for medication use. 

We adjusted linear regression models analyzing SNP associations for age at blood pressure 

measure, age2, sex, BMI measured within 1 year of blood pressure measure, and the top 10 

genetic principal components in analyses. All primary analyses for the MVP were conducted 

by either strata of administratively assigned race/ethnicity or by their empirically designated 

clusters. All regression based analyses were conducted in SNPTEST-v2.5.4-beta91. 

Inference was limited to genotyped and imputed variants with SNPTEST Info scores of 0.4 

or higher, with Hardy Weinberg equilibrium P-value > 5 × 10−8 for common variant analysis 

(minor allele frequency > 0.1). Inference on rare variants, SNPs with MAF ≤ 1%, was 

restricted to variants with an effective minor allele count (SNPTEST Info score multiplied 

by minor allele count) of ≥10 in each analysis sub-cohort.

The UK Biobank—Summary statistics from the analysis of the interim data from the UK 

Biobank (UKB) were utilized in our meta-analysis. These results have been previously 

reported by Warren et al.12. Briefly, following central and study-specific quality control 

protocols, 140,886 empirically classified white individuals were analyzed for SBP, DBP, and 

pulse pressure traits. Blood pressure measures were averaged over two measures, and 

adjusted for medication use by adding 15 and 10 mmHg to SBP and DBP, respectively. 

Linear models were adjusted for the top 10 principal components of ancestry, age, age2, sex, 

an indicator for genotyping platform, and BMI.

Meta-Analysis of Discovery Datasets

Inverse-variance weighted fixed-effects meta-analysis of common variants across MVP 

subsets and summary statistics from UKB was performed using the METAL software. 

Genomic inflation factor was calculated, and λGC for the discovery from MVP were 1.195, 

1.149, and 1.171 for SBP, DBP and pulse pressure, respectively, 1.303, 1.315, and 1.270 

respectively, from UKB, and 1.275, 1.140, and 1.244, respectively, in the overall discovery 

analysis (Supplementary Figure 10). Subsequently, we utilized the LD Score Regression 

approach92 to ascertain whether inflation was due to residual population stratification or 

polygenicity. Calculation of the intercept in the MVP Whites discovery analysis dataset were 

1.05 (standard error = 0.01), 1.03 (standard error = 0.01), and 1.04 (standard error = 0.01), 

for SBP, DBP, and pulse pressure respectively, suggesting that little of the observed inflation 

in the lambda is due to population stratification.

Selection of SNPs for Replication

Common Variants—For common variants, we considered for follow-up SNPs in loci non-

overlapping with previously reported loci according to both an LD threshold of r2 ≤ 0.1 and 

a 1Mb interval. We obtained a list of these SNPs with P-value < 1 × 10−6 for any of the three 

blood pressure traits, a minor allele frequency (MAF) ≥ 1%, and concordant directions of 

effect between UKB and MVP.

In silico replication summary statistics were provided for 942 SNPs by the International 

Consortium for Blood Pressure Genetics (ICBP)25 after meta-analysis of 77 individual 

participating cohorts for a total maximum of 299K individuals, who were genotyped and 
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analyzed according to study-specific protocols. Additional replication results were provided 

from Vanderbilt University’s BioVU EMR-linked biorepository, among which genotypes 

from the MEGA array and phenotype data were available from 17,277 participants. 

Discovery and replication data were combined using fixed-effects inverse-variance weighted 

meta-analysis implemented in METAL93.

Rare Variants—We conducted an in silico replication analysis of 18 rare exonic SNPs 

from our discovery analysis in 417,143 participants from the BP-ICE consortium. SNPs 

were chosen for replication if they had a discovery P-value < 1 × 10−6, and a MAF < 1%.

BP-ICE used the exome array and did not have genome wide coverage of rare variants. 

Therefore, we also pursued replication utilizing the full release of the UKB data to capture 

non-exonic rare variation. Due to the inclusion of UKB data in the discovery set, for the 

second analysis we sought replication from variants suggestive only in MVP cohorts 

following meta-analysis as described above. 1,066 rare variants with P-value < 1 × 10−6 for 

any of the three phenotypes were selected for replication in 458,577 participants from UKB. 

Additional replication was provided from BioVU MEGA, and all data were meta-analyzed 

using fixed-effects meta-analysis in METAL93.

Classifying Results by Evidence for Association

For results that reached statistical significance of P-value ≤ 5 × 10−8 after final meta-

analysis, and that had consistent direction of effect between discovery and replication stages, 

we established three tiers of evidence that are annotated in results tables (Supplementary 

Tables 3a-c):

1) Genome-wide significance in the discovery stage, and Bonferroni-corrected 

significance in replication and consistent trait-specific direction of effect across 

stages.

2) Genome-wide significance in the discovery stage, and P-value ≤ 0.05 in the 

replication stage and consistent trait-specific direction of effect across stages

3) Variants had P-value less than 1 × 10−6 and > 5 × 10−8 in the discovery stage, 

and had P-value < 0.05 in the replication stage and had consistent trait-specific 

direction of effect across stages and was genome-wide significant after final 

analysis.

Conditional Analysis—For conditional analysis of common variants we used two parallel 

approaches implemented in the Genome-wide Complex Traits Analysis (GCTA) software94. 

Details are described in the Supplementary Note.

Proportion of Variance Explained

We approximated the proportion of blood pressure-trait specific variance explained in the 

trans-ethnic meta-analysis by all independent sentinel SNPs (novel and known) and novel 

SNPs, separately. Variance explained by each SNP was first estimated by the following 

equation:
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r2 = χ2
n

The sum of the variances of the independent sentinel SNPs for common variants provided 

estimates for the proportion of variance explained for all SNPs, and novel SNPs for each of 

the blood pressure traits. The transformation of the relationship between t-statistic and r2 to 

χ2 statistic to r2 is described in Supplementary Note.

Genetic Risk Score Construction

We constructed a genetic risk score (GRS) for each blood pressure trait by calculating a 

linear combination of weights derived from the 140,886 participants from the UKB common 

variant analysis and sentinel SNPs at each statistically significant locus observed in the 

MVP. Weighted GRS (w-GRS) were constructed for self-reported/administratively assigned 

non-Hispanic whites, blacks and Hispanics in the MVP.

Phenome Wide Association Study Analysis

We performed a phenome-wide association study (PheWAS)95 of GRS for each blood 

pressure trait in MVP whites (Nmax = 188,088), blacks (Nmax = 52,530), and Hispanics 

(Nmax = 16,735), leveraging the diverse nature of MVP as well as the full catalog of ICD-9 

diagnosis codes. We used logistic regression to separately model up to 1,813 PheWAS traits 

as a function of the three GRSs, adjusted for age, age2, sex, BMI, and 10 PCs. We report the 

results from these analyses as odds ratios where the estimate is the average change in odds 

of the PheWAS trait per weighted blood pressure-increasing allele. Interpretation of results 

were limited to phenotypes with 25 or more cases. Multiple testing thresholds for statistical 

significance were set to P-value ≤ 2.75 × 10−5 (0.05/1,813). All PheWAS analyses were 

conducted using the R PheWAS package96. Effect-estimates from significant PheWAS 

results from any one or more of the analysis were then compared between whites, blacks and 

Hispanics to report Pearson’s correlations (R2) for each pair per trait (Supplementary Figure 

5).

S-PrediXcan Analysis

Genetically predicted gene expression was evaluated for the common variant subset with S-

PrediXcan31, a gene-level approach which estimates the genetically determined component 

of gene expression in a given tissue and tests it for association with SNP-level summary 

statistics. We utilized all three blood pressure meta-analysis results for common variants and 

44 tissues from GTEx36 for this analysis, as well as the collection of kidney reference data 

that was recently described by Ko et al.37, incorporating covariance matrices developed for 

European populations (1000 Genomes) as the majority of samples were European in origin.

Evaluation of Kidney Loci in Murine Kidneys

For the genes implicated by the S-PrediXcan analysis as having associated expression in 

kidney, we evaluated homologous genes in the single cell atlas of the mouse kidney, where 

expression levels are measured by single-cell RNAseq across 57,979 total mouse kidney 
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cells from 7 healthy mice97. This enables us to observe what cell types in the mammalian 

kidney express the genes where there is evidence for association between expression and 

blood pressure traits. After quality filtering steps, a single cell-gene matrix containing the 

UMI (unique molecular identifier) counts for 43,745 cells and 16,273 transcripts were 

generated from 7 normal mouse kidneys using 10x Chromium™ Single cell solution97. 

Mouse homologs of the target human genes identified by the S-PrediXcan analysis were 

found using Ensembl BioMart. Genes that expressed less than 5% of the cell clusters were 

excluded from analysis. To calculate the average expression level for each cluster, a z-score 

of UMI count was first obtained for every single cell. Then, we calculated the mean z-scores 

for individual cells in the same cluster, resulting in z-score for each gene and each cell 

cluster.

Evaluation of Drug Classes for Genes with Associations with Gene Expression

To better understand the performance of the S-PrediXcan method, identify genes with 

potential to be leads for drug development, and identify drug-gene pairs that may be leads 

for repurposing, three comparisons were made among significant associations from S-

PrediXcan analyses. 1) We identified all S-PrediXcan genes that are targeted by an 

antihypertensive drug to validate associations and identify the most credible genes in regions 

with many associations. 2) We provide a list of candidate genes that are potential leads for 

novel inhibitory antihypertensive therapies by considering genes with positive effects for 

GPGE on blood pressure that are also targeted by a non-antihypertensive drug. 3) To identify 

genes that may be leads for developing novel treatments and drugs with repurposing 

potential, we report gene-drug pairs for significant S-PrediXcan genes that are not targeted 

by an antihypertensive drug, but are targeted by a drug with a toxicity that involves hyper- or 

hypotension.

A list of medications with a primary indication for hypertension and a list of medications 

with adverse drug events (ADEs) of hypertension or hypotension were created using 

SIDER98 and the DEB2 database99. Gene targets for antihypertension medications, 

medications targeting genes significant in S-PrediXcan analyses with positive effect sizes, 

and medications targeting genes mapped from significant GWAS signals were queried using 

DGIdb100. Primary indications for medications targeting genes significant in S-PrediXcan 

analyses with positive effect sizes were compiled using the BIDD TTD database101.

To identify genes that are attractive leads for novel inhibitory drugs, we report significant S-

PrediXcan genes with a positive effect size (i.e. increasing gene expression is associated 

with increasing one or more blood pressure traits) that are targeted by a non-antihypertensive 

medication without an indication of ADEs for hypertension or hypotension. This list thereby 

represents a set of genes that are both likely to be involved in blood pressure regulation in 

one or more tissues, and can be targeted by drugs. Known targets for anti-hypertensive drugs 

significant by S-PrediXcan and a summary of the most significant S-PrediXcan result across 

tissues and blood pressure traits is presented in Supplementary Table 11. Significant S-

PrediXcan genes that have positive effect sizes in any tissue and are targeted by a non-

hypertension drug with no ADE for hypertension or hypotension are presented in 

Supplementary Table 12.
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We report another group of genes that may be attractive for treatment development, on the 

basis of being both associated with blood pressure traits and targeted by non-

antihypertensive drugs that feature an ADE of either hypo- or hypertension. These gene-drug 

pairs may be leads for either modification of drug molecules, modification of dosing or 

delivery strategies, or potential gene targeting by novel treatments. Genes that are significant 

by S-PrediXcan, are targeted by a drug, and that have an ADE involving hypertension or 

hypotension are presented in Supplementary Table 13. Gene-drug relationships for all genes 

mapped from significant association signals are presented in Supplementary Table 14.

Enrichment and Pathway Analyses

We investigated whether one or more of the 45 tissues evaluated with S-PrediXcan were 

enriched. We also performed enrichment analyses in DEPICT39 by using trait-specific 

GWAS significant sentinel SNPs as input. We evaluated significant genes from the top 

enriched S-PrediXcan tissue (aorta) for each trait with the Ingenuity Pathway Analysis (IPA) 

software (IPA®,QIAGEN Redwood City) (Supplementary Figures 7–9 and Supplementary 

Note).

Ethics statement

The central Veterans Affairs Institutional Review Board (IRB) and site-specific IRBs 

approved the Million Veteran Program study. The Vanderbilt University Medical Center IRB 

approved the use of BioVU data for this study. Each cohort within the ICBP and BP-ICE 

consortiums have ethical approval from their local institution. All relevant ethical regulations 

were followed.

Reporting Summary

Further information on research design is available in the Life Sciences Reporting Summary 

linked to this article.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Authors 

Ayush Giri#1,2, Jacklyn N. Hellwege#2,3, Jacob M. Keaton#2,3, Jihwan Park#4, 
Chengxiang Qiu4, Helen R. Warren5,6, Eric S. Torstenson2,3, Csaba P. Kovesdy7, 
Yan V. Sun8,9, Otis D. Wilson2,10, Cassianne Robinson-Cohen10, Christianne L. 
Roumie11,12, Cecilia P. Chung13, Kelly A. Birdwell10,14, Scott M. Damrauer15,16, 
Scott L. DuVall17,18, Derek Klarin19,20,21,22, Kelly Cho23,24,25, Yu Wang26, 
Evangelos Evangelou27,28, Claudia P. Cabrera5,6, Louise V. Wain29,30, Rojesh 
Shrestha4, Brian S. Mautz3, Elvis A. Akwo10, Muralidharan Sargurupremraj31, 
Stéphanie Debette31,32, Michael Boehnke33, Laura J. Scott33, Jian’an Luan34, Zhao 
Jing-Hua34, Sara M. Willems34, Sébastien Thériault35,36, Nabi Shah37,38, 
Christopher Oldmeadow39, Peter Almgren40, Ruifang Li-Gao41, Niek Verweij42, 
Thibaud S. Boutin43, Massimo Mangino44,45, Ioanna Ntalla5, Elena Feofanova46, 

Giri et al. Page 16

Nat Genet. Author manuscript; available in PMC 2019 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Praveen Surendran47, James P. Cook48, Savita Karthikeyan47, Najim 
Lahrouchi21,49,50, Chunyu Liu51, Nuno Sepúlveda52, Tom G. Richardson53, Aldi 
Kraja54,55,56, Philippe Amouyel57, Martin Farrall58, Neil R. Poulter59, Understanding 
Society Scientific Group60, International Consortium for Blood Pressure60, Blood 
Pressure-International Consortium of Exome chip studies60, Markku Laakso61, 
Eleftheria Zeggini62, Peter Sever63, Robert A. Scott34, Claudia Langenberg34, 
Nicholas J. Wareham34, David Conen64, Colin Neil Alexander Palmer37, John 
Attia39,65, Daniel I. Chasman66, Paul M. Ridker66, Olle Melander40, Dennis Owen 
Mook-Kanamori41, Pim van der Harst42, Francesco Cucca67,68, David 
Schlessinger69, Caroline Hayward43, Tim D. Spector44, Jarvelin Marjo-
Riitta70,71,72,73,74, Branwen J. Hennig75,76,77, Nicholas J. Timpson53, Wei Wei-Qi78, 
Joshua C. Smith78, Yaomin Xu26,78, Michael E. Matheny11,12,26,78, Edward E. 
Siew10,12, Cecilia Lindgren21,79,80, Herzig Karl-Heinz81,82, George Dedoussis83, 
Joshua C. Denny78, Bruce M. Psaty84,85,86,87, Joanna M. M. Howson47, Patricia B. 
Munroe5,6, Christopher Newton-Cheh49, Mark J. Caulfield5,6, Paul Elliott70,88,89, J. 
Michael Gaziano23,66, John Concato90,91, Peter W.F. Wilson92,93, Philip S. 
Tsao94,95, Digna R. Velez Edwards1,2,78, Katalin Susztak#4,96, Million Veteran 
Program60, Christopher J. O’Donnell#66,97, Adriana M. Hung#2,10,Δ, and Todd L. 
Edwards#2,3,Δ

Affiliations
1Division of Quantitative Sciences, Department of Obstetrics & Gynecology, 
Vanderbilt Genetics Institute, Vanderbilt Epidemiology Center, Institute for Medicine 
and Public Health, Vanderbilt University Medical Center, Nashville, Tennessee, 
USA. 2Biomedical Laboratory Research and Development, Tennessee Valley 
Healthcare System (626)/Vanderbilt University, Nashville, Tennessee, USA. 
3Division of Epidemiology, Department of Medicine, Institute for Medicine and Public 
Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, 
Vanderbilt University, Nashville, Tennessee, USA. 4Department of Medicine, Renal 
Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, 
Pennsylvania, USA. 5William Harvey Research Institute, Barts and The London 
School of Medicine and Dentistry, Queen Mary University of London, London, UK. 
6National Institute for Health Research Barts Cardiovascular Biomedical Research 
Centre, Queen Mary University of London, London, UK. 7Nephrology Section, 
Memphis VA Medical Center, Memphis, Tennessee, USA. 8Department of 
Epidemiology, Emory University Rollins School of Public Health, Atlanta, Georgia, 
USA. 9Department of Biomedical Informatics, Emory University School of Medicine, 
Atlanta, Georgia, USA. 10Division of Nephrology and Hypertension, Department of 
Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA. 
11Department of Medicine, Vanderbilt University Medical Center, Nashville, 
Tennessee, USA. 12Geriatrics Research Education and Clinical Center, Tennessee 
Valley Health System, Veteran’s Health Administration, Nashville, Tennessee, USA. 
13Division of Rheumatology and Clinical Pharmacology, Department of Medicine, 
Vanderbilt University Medical Center, Nashville, Tennessee, USA. 14Division of 
Nephrology, Department of Medicine, Nashville Veteran Affairs Hospital, Nashville, 

Giri et al. Page 17

Nat Genet. Author manuscript; available in PMC 2019 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Tennessee, USA. 15Department of Surgery, Corporal Michael Crescenz VA Medical 
Center, Philadelphia, Pennsylvania, USA. 16Department of Surgery, Perelman 
School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA. 
17VA Salt Lake City Health Care System, Salt Lake City, Utah, USA. 18University of 
Utah School of Medicine, Salt Lake City, Utah, USA. 19VA Boston Health Care 
System, Boston, Massachusetts, USA. 20Center for Genomic Medicine, 
Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 
USA. 21Program in Medical and Population Genetics, Broad Institute of Harvard and 
MIT, Cambridge, Massachusetts, USA. 22Department of Surgery, Massachusetts 
General Hospital, Harvard Medical School, Boston, Massachusetts, USA. 
23Massachusetts Veterans Epidemiology Research and Information Center 
(MAVERIC), VA Boston Healthcare System, Boston, Massachusetts, USA. 
24Division of Aging, Department of Medicine, Brigham and Women’s Hospital, 
Boston, Massachusetts, USA. 25Department of Medicine, Harvard Medical School, 
Boston, Massachusetts, USA. 26Department of Biostatistics, Vanderbilt University 
Medical Center, Nashville, Tennessee, USA. 27Department of Epidemiology and 
Biostatistics, Imperial College London, London, UK. 28Department of Hygiene and 
Epidemiology, University of Ioannina Medical School, Ioannina, Greece. 
29Department of Health Sciences, University of Leicester, Leicester, UK. 30National 
Institute for Health Research, Leicester Biomedical Research Centre, Glenfield 
Hospital, Leicester, UK. 31University of Bordeaux, Bordeaux Population Health 
Research Center, INSERM UMR 1219, Bordeaux, France. 32Department of 
Neurology, Bordeaux University Hospital, Bordeaux, France. 33Department of 
Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, 
Michigan, USA. 34MRC Epidemiology Unit, University of Cambridge School of 
Clinical Medicine, Cambridge, UK. 35Department of Pathology and Molecular 
Medicine, McMaster University, Hamilton, Ontario, Canada. 36Department of 
Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec 
City, Quebec, Canada. 37Division of Molecular and Clinical Medicine, Pat 
Macpherson Centre for Pharmacogenetics and Pharmacogenomics, Ninewells 
Hospital and Medical School, University of Dundee, Dundee, UK. 38Department of 
Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan. 39Hunter 
Medical Research Institute, Newcastle, New South Wales, Australia. 40Department 
of Clinical Sciences, Lund University, Malmö, Sweden. 41Leiden University Medical 
Center, Leiden, The Netherlands. 42Department of Cardiology, University Medical 
Center Groningen, University of Groningen, Groningen, The Netherlands. 43Medical 
Research Council Human Genetics Unit, Institute of Genetics and Molecular 
Medicine, University of Edinburgh, Edinburgh, UK. 44Department of Twin Research 
and Genetic Epidemiology, Kings College London, London, UK. 45NIHR Biomedical 
Research Centre at Guy’s and St Thomas’ Foundation Trust, London, UK. 46Human 
Genetics Center, The University of Texas Health Science Center at Houston, 
Houston, Texas, USA. 47BHF Cardiovascular Epidemiology Unit, Department of 
Public Health and Primary Care, University of Cambridge, Cambridge, UK. 
48Department of Biostatistics, University of Liverpool, Liverpool, UK. 

Giri et al. Page 18

Nat Genet. Author manuscript; available in PMC 2019 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



49Cardiovascular Research Center, Center for Genomic Medicine, Massachusetts 
General Hospital, Boston, Massachusetts, USA. 50Amsterdam UMC, University of 
Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, 
Amsterdam Cardiovascular Sciences Amsterdam, The Netherlands. 51Department 
of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, 
USA. 52Immunology and Infection Department, London School of Hygiene & 
Tropical Medicine, London, UK. 53MRC Integrative Epidemiology Unit (IEU), Bristol 
Medical School (Population Health Sciences), University of Bristol, Oakfield House, 
Oakfield Grove, Bristol, UK. 54Department of Genetics, Washington University 
School of Medicine, St. Louis, Missouri, USA. 55Center for Genome Sciences and 
Systems Biology, Washington University School of Medicine, St. Louis, Missouri, 
USA. 56Division of Statistical Genomics, Washington University School of Medicine, 
St. Louis, Missouri, USA. 57University of Lille, Inserm, CHU Lille, Institut Pasteur de 
Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related 
diseases, Lille, France. 58Department of Cardiovascular Medicine, The Wellcome 
Trust Centre for Human Genetics, Oxford, UK. 59International Centre for Circulatory 
Health, Imperial College London, London, UK. 60A list of consortium members and 
affiliations is presented in the Supplementary Note. 61University of Eastern Finland, 
School of Medicine, Kuopio, Finland. 62Wellcome Trust Sanger Institute, Hinxton, 
UK. 63National Heart and Lung Institute, Imperial College London, Hammersmith 
Campus, London, UK. 64Population Health Research Institute, McMaster University, 
Hamilton, Ontario, Canada. 65Faculty of Health, University of Newcastle, Newcastle, 
New South Wales, Australia. 66Department of Medicine, Brigham and Women’s 
Hospital, Harvard Medical School, Boston, MA, USA. 67Istituto di Ricerca Genetica 
e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato, Cagliari, Italy. 
68Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, 
Italy. 69Laboratory of Genetics and Genomics, National Institute on Aging, NIH, 
Baltimore, Maryland, USA. 70MRC-PHE Centre for Environment & Health, 
Department of Epidemiology and Biostatistics, School of Public Health, Imperial 
College London, London, UK. 71Center for Life Course Health Research, Faculty of 
Medicine, University of Oulu, Oulu, Finland. 72Biocenter Oulu, University of Oulu, 
Oulu, Finland. 73Unit of Primary Health Care, Oulu University Hospital, OYS, Oulu, 
Finland. 74Department of Life Sciences, College of Health and Life Sciences, Brunel 
University London, Uxbridge, Middlesex, UK. 75Wellcome Trust, London, UK. 76MRC 
Unit The Gambia, Atlantic Boulevard, Fajara, Banjul, The Gambia. 77London School 
of Hygiene & Tropical Medicine, London, UK. 78Department of Biomedical 
Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA. 
79Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. 
80Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, 
University of Oxford, Oxford, UK. 81Institute of Biomedicine, Biocenter of Oulu, 
Medical Research Center, Oulu University and Oulu University Hospital, Oulu, 
Finland. 82Department of Gastroenterology and Metabolism, Poznan University of 
Medical Sciences, Poznan, Poland. 83Department of Nutrition and Dietetics, School 
of Health Science and Education, Harokopio University, Athens, Greece. 

Giri et al. Page 19

Nat Genet. Author manuscript; available in PMC 2019 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



84Departments of Medicine, University of Washington, Seattle, Washington, USA. 
85Departments of Epidemiology, University of Washington, Seattle, Washington, 
USA. 86Departments of Health Services, University of Washington, Seattle, 
Washington, USA. 87Kaiser Permanente Washington Health Research Institute, 
Seattle, Washington, USA. 88National Institute for Health Research Imperial 
Biomedical Research Centre, Imperial College Healthcare NHS Trust, Imperial 
College London, London, UK. 89UK Dementia Research Institute at Imperial College 
London, London, UK. 90Clinical Epidemiology Research Center (CERC), VA 
Cooperative Studies Program, VA Connecticut Healthcare System, West Haven, 
Connecticut, USA. 91Department of Internal Medicine, Yale University School of 
Medicine, New Haven, Connecticut, USA. 92Atlanta VA Medical Center, Atlanta, 
Georgia, USA. 93Emory Clinical Cardiovascular Research Institute, Atlanta, 
Georgia, USA. 94VA Palo Alto Health Care System, Palo Alto, California, USA. 
95Division of Cardiovascular Medicine, Stanford University School of Medicine, 
Stanford, California, USA. 96Department of Genetics, University of Pennsylvania, 
Perelman School of Medicine, Philadelphia, Pennsylvania, USA. 97VA Boston 
Healthcare, Section of Cardiology and Department of Medicine, Boston, 
Massachusetts, USA.

ACKNOWLEDGEMENTS

This work is a product of the effort, initiative and funds made available to several individuals by multiple funding 
organizations. Detailed acknowledgements and funding details are provided in the Supplementary Note. The views 
expressed in this manuscript are those of the authors and do not necessarily represent the views of the National 
Heart, Lung, and Blood Institute; the National Institutes of Health; the U. S. Department of Health and Human 
Services; the National Health Service (UK); the EC (UK); the National Institute for Health Research (UK); or the 
Department of Health and Social Care (UK). This publication does not represent the views of the Department of 
Veterans Affairs or the United States Government.

Peter Sever received support from Pfizer Inc.

Neil Poulter has received financial support from several pharmaceutical companies which manufacture blood 
pressure-lowering agents, for consultancy fees (Servier), research projects and staff (Servier, Pfizer) and for 
arranging and speaking at educational meetings (AstraZeneca, Lri Therapharma, Napi, Servier and Pfizer). He 
holds no stocks and shares in any such companies.

Mark J. Caulfield is Chief Scientist for Genomics England, a UK Government company.

Bruce M. Psaty serves on the DSMB of a clinical trial funded by Zoll LifeCor and on the Steering Committee of the 
Yale Open Data Access Project funded by Johnson & Johnson.

Dennis Mook-Kanamori works as a part-time clinical research consultant for Metabolon, Inc.

Robert A. Scott is an employee and shareholder in GlaxoSmithKline plc.

The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the 
National Heart, Lung, and Blood Institute (USA); the National Institutes of Health (USA); National Health Service 
(U.K.); National Institute for Health Research (U.K.); The Department of Health and Social Care (U.K.); the EC; or 
the U. S. Department of Health and Human Services. This publication does not represent the views of the 
Department of Veterans Affairs or the United States Government.

Giri et al. Page 20

Nat Genet. Author manuscript; available in PMC 2019 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



URLs

Affymetrix Power Tools 2.10.0: https://www.thermofisher.com/us/en/home/life-science/

microarray-analysis/affymetrix.html

BIDD TTD database: https://db.idrblab.org/ttd/

Corporate Data Warehouse: https://www.hsrd.research.va.gov/for_researchers/vinci/cdw.cfm
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SNPDOC: https://wakegen.phs.wakehealth.edu/public/snpdoc3/index.cfm
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Figure 1. Study design schematic.
Flowchart depicting strategy for the three association analysis strategies (common, rare, and 

exonic variants), as well as replication selection criteria and numbers of samples and SNPs 

by stage. Subsequent TWAS and PheWAS analyses using common variant summary 

statistics are also presented. SBP, systolic blood pressure; DBP, diastolic blood pressure; PP, 

pulse pressure; SNP, single nucleotide polymorphism; ICBP, International Consortium for 

Blood Pressure; BP-ICE, Blood Pressure-International Consortium for Exomechip; BioVU, 

Vanderbilt University biorepository; ADE, adverse drug events
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Figure 2. Manhattan plots summarizing discovery and replication meta-analysis for (a) SBP, (b) 
DBP, and (c) pulse pressure.
Manhattan plot of the discovery + replication meta-analysis. The y axis shows the –log10 P-

values and the x axis shows the chromosomal positions. The horizontal red line represents 

the thresholds of P-value = 5 × 10−8 for genome-wide significance. SNPs in red are in 

previously identified loci (includes discovery only; Neff-max = 459,670 for SBP, 459,093 for 

DBP, and 459,305 for pulse pressure) whereas SNPs in orange are in novel loci (includes 

discovery + replication; Neff-max = 760,226 for SBP, 767,920 for DBP, and 759,768 for 

pulse pressure). All P-values are computed for associations between genotyped/imputed 
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SNPs and blood pressure traits as dependent variables in multivariable adjusted logistic 

regression models. SBP, systolic blood pressure; DBP, diastolic blood pressure
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Figure 3. Mapping blood pressure-associated genes to murine kidney cell type clusters for (a) 
SBP, (b) DBP, and (c) pulse pressure.
Average expression level of GWAS/eQTL defined genes in murine kidney cell types. 

Expression levels were determined in 43,745 kidney cells derived from seven mice. Mean 

expression values of the genes were calculated in each cluster. Color scheme is based on Z-

score distribution obtained from two-sided Wald test. Z-scores are not corrected for multiple 

comparisons. Each row represents one gene and each column is single cell type cluster (as 

defined by Park et al.) on the heat map. Endo: endothelial, vascular, descending loop of 

Henle, Podo: podocyte, PT: proximal tubule, LOH: ascending loop of Henle, DCT: distal 

convoluted tubule, CD-PC: collecting duct principal cell, CD-IC: CD intercalated cell, Fib: 

fibroblast, Macro: macrophage, Neutro: neutrophil, NK: natural killer cell.
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