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Transforming public pensions: A mixed scheme
with a credit granted by the state

M. Carmen Boado-Penas*  Julia Eisenberg!  Ralf Korn?

Abstract

Birth rates have dramatically decreased and, with continuous improve-
ments in life expectancy, pension expenditure is on an irreversibly
increasing path. This will raise serious concerns for the sustainabil-
ity of the public pension systems usually financed on a pay-as-you-go
(PAYG) basis where current contributions cover current pension ex-
penditure. With this in mind, the aim of this paper is to propose
a mixed pension system that consists of a combination of a classical
PAYG scheme and an increase of the contribution rate invested in a
funding scheme. The investment of the funding part is designed so
that the PAYG pension system is financially sustainable at a partic-
ular level of probability and at the same time provide some gains to
individuals. In this sense, we make the individuals be an active part
to face the demographic risks inherent in the PAYG and re-establish
its financial sustainability.
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1 Introduction

The decline in fertility rates, the increase in longevity and the current fore-
casts for the ageing of the baby-boom generation all point to a substantial
increase in the age dependency ratio, and this will raise serious concerns
for the sustainability of PAYG pension systems. In particular, the life ex-
pectancy at birth is expected to increase by 5.3 for males and 5.1 years for
females when comparing 2016 with 2070 (European Commission [11]). This
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is a worldwide problem, and consequently, many European countries (Euro-
pean Commission [9] [6]) have already carried out some parametric reforms,
or even structural reforms, of their pension systems.

In Europe, the common trend of the pension crisis is a wave of parametric
adjustments including countries, among others, France, Greece, Hungary,
Romania and Spain, see Whitehouse [30}, 29] and OECD [19, 20] 21, 22].
Among the major changes in pension reform is the introduction of what is
known as Notional Defined Contribution pension schemes (NDCs), first de-
veloped in the 1990s in countries such as Italy, Latvia, Poland and Sweden.
NDCs aim at reproducing the logic of a funded defined contribution plan -
(accumulated contributions are converted into a life pension annuity taking
into account life expectancy according to standard actuarial practice) albeit,
under a PAYG framework.

In Latin America, since the 1980’s, most of the countries in the region made
structural reforms replacing completely or partially their PAYG system with
programmes containing a fully funded component of individually capitalised
accounts (Rofman et al. [26]). As a result, a transfer of financial market
and volatility risk from the state to the individual happened.

The PAYG rate of return can be lower than the rate of return of funding
schemes, especially in countries where the working population is not grow-
ing. In this case, the individual might consider that there is an implicit
cost equivalent to the difference in return; see Robalino and Bodor [25] and
Valdés-Prieto [28] for taxes implicit to PAYG schemes. However, the high-
variability of the funding rate of return makes the choice between PAYG and
funding less obvious and there might be advantages of mixing PAYG and
funded schemes (De Menil et al. [7], Persson [24]). Also, PAYG is a useful
social security financing technique which ensures income redistribution at
both the inter and intra-generational levels.

On the other hand, Fajnzylber and Robalino [12] state that the transition
from a PAYG to a fully funded scheme has a high transition cost where
current contributors pay twice: first to finance their own retirement cap-
ital and second to finance pension benefits of current retirees. Currently,
countries, such as Australia, Canada, Norway, Sweden, Latvia and Poland,
amongst others, combine funded and PAYG elements within the mandatory
pension system. These mixed systems have been advocated, particularly by
the World Bank, as a practical way to reconcile the higher financial mar-
ket returns compared with GDP growth with the costs of a scheme with a
greater funded element.

The academic literature has already focused on mixing pension systems in
the past years. Merton [I8] studies this problem under a general equilibrium
model and concludes that investors cannot achieve an optimal portfolio al-
location of their savings. Matsen and Thogersen [17], Knell [I6] and Guigou
et al. [I4] calculate the optimal split between funded and unfunded pen-
sion savings. Dutta et al. [I0] show that in a mean-variance framework



the mix of funded and unfunded is desirable because it enables risk diver-
sification. Devolder and Melis [8] analyse the portfolio allocation problem
between various financial assets and PAYG and obtain constant portfolio
allocations. Alonso-Garcia and Devolder [I] study the cohort’s optimal mix
between funded and unfunded schemes and whether there are diversification
benefits for the specific context of a notional defined contribution scheme
with a constant contribution rate.

On the other hand, Robalino and Bodor [25] propose the use of government
indexed bonds - first introduced by Buchanan [4] to support the sustainabil-
ity of PAYG schemes. In particular, Robalino and Bodor [25] analyse the
case of a cash-surplus of the pension fund being invested every six or twelve
months in GDP indexed government bonds. However this approach does
not guarantee the financial sustainability of the system, and the application
is done to notional account systems. Other papers, Auerbach and Kotlikoff
[2], Sinn [27], Palacios and Sinn [23], also provide some discussion about the
use of government bonds.

With this in mind, our research extends the literature on mixed pension
systems and we analyse two types of strategies under which an investment
into a defined contribution (DC) funded scheme can restore the financial
sustainability of the system and at the same time provide, on expectation
some gains to the individual. In this sense, we also make the individuals be
an active part to re-establish the risks (mainly demographic and longevity)
inherent in the PAYG.

Following this introduction, the next section describes the model together
with the assumptions used. In our proposed modelling framework we take on
the view of a prototypical customer (PC) that earns the average salary and
has the average age. This can be regarded as a standardization approach
comparable to the representative agent in finance. Further, our model is
based on a credit granted by the state to the PC in the sense that the state
covers the deficit as soon as it happens and the PC will be paying to the
state in the future. In Section 3, some variants are presented where the PC
invests the corresponding money into a fund and needs to repay the credit
either at the end of the year or after a longer specified period. A comparison
between the annual approach and the long-term approach is given along. In
Section 4, we assume that the individuals need to transfer any excess of
return above some particular level that needs to be optimised. We com-
pare the results with the corresponding discrete time approach of Section 3.
Section 5 concludes and makes suggestions for further research.

2 The Model

This section describes the model and some of the assumptions made in the
paper so that the classical PAYG can be transformed into a mixed pension



system socially accepted by the individuals with contributions paid into a
PAYG and a funding scheme.
We consider a prototypical contributor (PC), i.e. the average contributor,
with an average salary and average salary increases. This PC has to con-
tribute an amount Cjy — expressed in percentage of his salary — at time ¢t = 0
into the PAYG.
With the aim of restoring the financial sustainability of the PAYG scheme an
automatic balancing mechanism will be triggered if the income from contri-
butions is not sufficient to pay for the pension expenditure. This mechanism
is based on increases of the contribution rate paid by the PC.
Let assume that the state anticipates the deficit and it is known that the
contributions that make the PAYG system sustainable over time are given
by

C=(C,..,Cr)

and
C;>Co, j=1,...T.

Considering that the state targets to transform the classical PAYG scheme
and is taking over the payment of the differences C; — Cy for j = 1,...,T.
However, these payments represent some kind of a credit because, as soon as
the deficit occurs the PC has to invest some pre-specified amount of money
in a fund, in addition to the regular contribution of Cy to PAYG. A certain
part of the return on investment will be used to cover the debt amount of
Cj — Cp in the (near) future. The remaining capital belongs to the PC and
could be used for instance for the retirement phase. The government will
bear the risk of not full debt repayment if the return on investment is not
sufficient to cover the deficit for one particular year.

The following sections specify two types of investment strategies depending
on the amount invested and the time horizon for the debt repayment. We
calculate the probability of full payback of the debt, the expected loss of the
state and the expected gains of the PC.

In the following we act on some filtered space (£, 2, (F;)i>0, P) where F is
assumed to be the right-continuous filtration generated by a given geometric
Brownian motion F.

3 Lump Sum Repayment

In this section, we consider an annual fund investment approach where the
increase of the contribution paid by the PC is invested for a year. Depending
on the the actual way how the risk of a shortfall is shared between PC and
the state, we suggest two different models.



3.1 Payback first

We assume that at time t = 0 it is agreed that the contribution to PAYG
of the PC is fixed to be Cy for the next T+ 1 years. In return, the PC
invests an amount of o(C; — Cp) into a fund with value dynamics given by

F, = FpetttoWe

at the beginning of year j+ 1 (i.e. at time j) for some « > 0. Then, at time
j + 1, the PC pays C; — Cj to the state if

Oé(Cj — 00)6M+J(Wj+1_wj) Z Cj — Co .

If this is the case, then the remaining value of the fund position stays with
the PC. In the other case, the state receives the full fund position and takes
over the loss of

Lj = (C] — C()) . (1 — OéelH_U(WjJrl_Wj)) .

This procedure is repeated every yearE

Certainly, the state wants to keep the probability of losses small, while the
whole procedure is only attractive for the PC if there is a possible gain at
least on the level of expectations. It is thus clear that the fund characteristics
play an important role. We, therefore, summarize some properties in the
following proposition.

Proposition 3.1
For a value of a > 0 and C; > Cy > 0, we obtain:

a) The probability that the full payment is made to the state at time j is
given by

P; = ]P’[Fu]l payment at time j + 1] = ]P’[ae’”"(wjﬂfwf) > 1]

_ % <u+ln(a)> .

b) The expected loss E[L;] of the state at time j is given by
Jr
E[L;] =E [(Cj — () (1 — ae”*"(WHl‘WJ’)) }
a2 2
= (Cj - CO){@ (_,u—{—ln(a)) —aelt T (—M+ 7 —|—ln(a)> } :

g g

'If the PC invests at time j - in line with the necessary increase of the PAYG contribution
- and pays back at time j + 1, then the procedure also includes a credit for a duration of
one year.



c) The expected gain E[G;] of the PC at time j is given by
+
E[G;] =E [(Cj ~ Cp) (aertoWim=Ws) 1) ]
o2 2
(€ Copfaw i (BB (b))

g o

Proof: Assertion a) is implied by the fact that W;i; — W; is standard
normally distributed.

The proof of Assertions b) and c) consists of explicit calculations which are
totally similar to those in the proof of the Black-Scholes formula. Thus, we
only give the proof of Assertion b):

Noting again the normal distribution property of W;, 1 — W;, we obtain

p+ln(a) p+ln(a)
y2

Bl = G- [ et [T ety
= (- fo (HERED) oty (er o ERN ]

o (o

O

The probability of being able to fully pay C; — Cp back to the state at time
j + 1 is of course increasing in «. The same is true for the expected final
fund position of the PC given that C; — Cy (or the whole position in case
it is not sufficient for the full payment) has been already paid to the state.
However, a time horizon of just one year is very short. Consider for instance
the case of

a=1,

i.e. one invests exactly the debt amount C;—Cj at the beginning of year j+1
into the fund. Then, part a) of Proposition implies that the probability
for obtaining C; — Cy at time j is given by

P [(CJ — Co)e,u,+cr(Wj+1—W]-) > Cj — Co} =& (g) .
Note that for a fund with optimistic parameters p = 0.04, 0 = 0.2 this prob-
ability is approximately 58% which might be considered as not satisfactory
enough.
In order to reduce the probability of a shortfall (i.e. not full debt repayment
by the PC) significantly, the state should require

a>1,

i.e. the PC should contribute Cy plus a fund investment such that the
resulting sum is well-above the actually needed contribution of C; at time



j. At the same time, only a strong requirement for a small probability of
shortfall will lead to building up a significant amount of money in a fund
for the PC, as shown in the following example.

Example 3.2
We illustrate the issues raised above by looking at two settings of values for
the fund parameters:

a) A standard fund: ;1 = 0.04, 0 = 0.2

In this setting, the probabilities for a full payment of C; — Cy at time 1 as
a function of «, denoted by Pi, are computed. Further, we also calculate
the expected loss for the state, E[L;]|, and the expected gain of the PC
after paying to the state, E[G1]. In addition we look at the following two
quantities:

E[Bi] :=E [(C] — Co) (ae ™ —1)] |
E[G{] := E[G1] — (a — 1)(C} — Cp) .

It means E[B4] is the expected fund position after one year if always the full
value Cy — Cy has to be paid back by the PC, and E[G4!] describes expected
gain for the PC minus the additional investment of (o — 1)(Cy — Cy). All
above quantities for Co =1, Cy = 1.1 can be found in Table[1] below.

oY 1 1.05 1.1 115 1.25 2 3

Py 058 0.67 075 082 091 >099 1.00
E[Li] | 0.005 0.004 0.003 0.002 0.001 <107* <107*
E[G4] | 0.0117 0.015 0.020 0.024 0.034 0.112  0.219
E[B4] | 0.006 0.011 0.017 0.022 0.033 0.112  0.219
E[G{] | 0.0117 0.0104 0.0095 0.009 0.0085 0.0124 0.0186

Table 1: The key quantities of the scheme as functions of o for Cy = 1,
C; =1.1.

While the first four rows in Table (1| show an obvious behaviour (i.e. the
full payback probability and the gains increase and the expected loss of the
state decreases with increasing «), it is actually the last row that should
be noticeable. The expected difference between the net gains and the addi-
tionally invested amount first decrease with increasing o and then increase
for large values of «.. In particular, for values of 1 < o < 1.25 there is no
real incentive for PC to exceed o« = 1. The reason for that is that, initially,
E[G1] does not grow fast enough with increases in . There is an initially
large benefit for PC as the state takes over some significant investment risk
via accepting an expected loss of 5% per unit of money given as a credit.
If the state accepts an expected loss of 10% per unit of money (this is the
case for a« = 0.9) then PC has already realised a sure gain of 1% plus a



small expected net wealth after paying back C; — Cy. In total, this leads
to E[G1] = 0.0157. However, such a (partially) safe gain can only be inter-
preted as a subsidy granted by the state to motivate fund investment.

The effect of the state taking over the shortfall risk becomes insignificant
with increasing values of a. Even more, for very large values of a the prob-
ability that we end up with a zero fund position after paying back vanishes,
and the fund investment can unfold its full potential.

If the state required a probability for a full credit payback of 0.9, 0.95 or 0.99
then corresponding values of « are given by 1.24, 1.34 and 1.53. Thus, to
avoid a loss with a probability of 99%, the PC needs to invest 53% more in
the fund than when paying the increase in the contribution directly into the
PAYG. On the positive side, the PC obtains an expected net fund wealth of
6.25% for additionally paying in 5.3% in our example

b) A very diversified fund: ;= 0.04, 0 = 0.1

In this setting, the probability of a full credit payback, P, as a function of «
are given in Table[2, Note that the probability of the full payment and the
expected loss are better than in the case of the fund with a higher volatility.
However, as shown in the table, the expected net gains for PC are slightly
smaller. |

a | 1 1.05 1.1 1.15 1.2 1.25
P | 066 081 091 096 099  0.996
E[L;] | 0.002 0.001 4-107* 107* <107* <107*
E[G4] | 0.007 0.011  0.015 0.020 0.026  0.031

Table 2: The probability for the full debt repayment P;, the expected loss
of the state E[L;] and the expected gain of the PC E[G}] as functions of a.

3.2 A payback variant above a certain return

We will here assume a different variant of paying (back) the difference C;—Cjy
after the investment of a(C; — Cp) has been done and the investment result
has realised. This variant will be considered in detail in Section 4 in a
continuous-time framework that allows a more flexible version.

Let us therefore assume that the state agrees that the PC can keep at least
a certain return of b > —1 (i.e. an amount of (1 + b)a(C; — Cp)) at the
end of the investment period. Whatever exceeds this - but does not exceed
C; — Co, goes to the state. If, however, the investment result is less than
C; — Cp then the possibly remaining part of C; — Cy will be taken over by
the state. We denote by R; the amount of money that the PC can keep and
by D; the amount of money to be used for the debt repayment at time j.



This yields
R — a(Cj—Co)(1+0b) :ifertoWi > 1 4p
! a(Cj — Co)er W1+ else,
Dj = a(Cj — Co) (™1 — (14 b)) .
The explicit form of D; directly implies that we either need a value of b close
to —1 and a value of « close to 1 or a very large value of « in the case of

b ~ 0 to obtain a significantly high probability for a full payback of C; — Cy
to the state at time j 4+ 1. Indeed, we have

In(l1+b+1/a)—
]P’[D1201—Co]:IP’[W12n( + t—/a) u]

:q)(,u—ln(l—i-b—i-l/a)) |

g

However, in the case of b = 0 we will never obtain a probability for a full debt

repayment higher than approximately @(g), which will even decrease for

bigger values of b. Further, a non-positive value of b can only be preferable
for the PC in the case of a < 1, but then the probability for a full debt
repayment to the state decreases.

The probability of the full repayment for 1-year investment and the standard
fund with p = 0.04, 0 = 0.2 are summarised in Table[3] The values obtained

o' 0.8 0.9 1 1.25 2 10

b

0.02 | <0.001 <0.001 <0.001 0.003 0.0291 0.357

0| <0.001 <0.001 <0.001 0.003 0.0338 0.391

-0.5 | 0.005 0.014 0.034 0.108 0.5793 0.997
-0.75 | 0.034 0.090 0.018 0.421 0.9493 1
-0.9 | 0.097 0.224 0.391  0.707 0.9971 1
-0.95 | 0.133 0.292 0.482  0.794 0.9993 1
-1 | 0.180 0.372 0.579  0.867 0.9999 1

Table 3: Probability for the full debt repayment as a function of « and b.

in Table [l show some clear indications:

e Even in the case of b = —1, a high probability (i.e. one above 80%)
such that this investment result exceeds C7 — Cy is only obtained for
the cases of & > 1.25. In the latter case, the PC is better off by paying
the difference C — Cy directly to PAYG.

e For values of a < 1 the payback probabilities are far from being satis-
factory for the state.



To get a motivation for the state to allow a positive value of b which also
makes this kind of investment attractive for the PC, we calculate

p+o? —1In(1+b)
o

E[Dy] = o(Cy — CO){W";@ <

_q><“_lna(1+b>>(1+b)},
u+021n(1+b)>

+q><‘“hla(1+b)>(1+b)}. i

With high values of o, we can see that at least in expectation both the state
and the PC are winning. To understand this, note that the final wealth of
the PC only has to exceed (o —1)(Cy — Cp) as without fund investment the
PC has to pay C1 —Cy in addition to Cy anyway. Table [4] shows that there is
a potential for both the PC and the state to gain in expectation. However,
both have to take their shortfall risks into account, and it is by far not clear
if the PC can afford such a high investment.

(72
E[Ri] = a(C1 — Co)i e T2 | —

b | 0.030 0.005 -0.070 | 0.153 0.100 0.009
E[D;] | 0.1 0.114 0.162 | 0.1 0.137 0.224

al 10 10 10 20 20 20

E[R;] | 0.962 0948 09 |2204 1987 1.9

Table 4: The expected payment to the state and the expected net fund value
of the PC after (partial) payback as functions of « and b.

3.3 Variant B: A granted credit

As a second approach, the state again pays the difference of C; — Cy at
times j = 1,...,T', where for the moment we assume that the values C; are
deterministic. However, the state considers these payments as a credit with
zero interest ratd? to the PC. This construction allows the PC to invest
money in a fund for a longer time and delays the full payback to time 7.
The potential gains from the fund investment are then used

e to pay back the credit and
e to build up money as reserves for the own future.

Thus, it remains to find the optimal additional amount of money, that the
PC invests into the fund, and the strategy to pay back the credits granted

2This is a reasonable assumption given the current ultra low interest rate environment in
Europe.

10



by the state. As in Variant A, we consider the following strategy:

At time j — 1 the PC contributes Cy + a(C; — Cp) with a >0, j =1,...,T.
Cy directly goes to PAYG while a(C; — Cy) is invested into the fund. Thus,
at time j the PC has a fund position F}; (before payment of the new contri-
bution), where

<

J
By = 03 ((Cyoaan — CoeitsotWins W)
k=1

i r
E[Fj]=a (Cj k1 — Colett ¥
k=1

for j = 1,...,T. In the special case of Cj = C for all j = 1,...,T, we have

J o (w 102)]-
- ~ 1
[ j] “2 :(Cj—k—&-l 00)6’(‘ 562)]“ = a(C — Co)eu—&—%cﬂ— e 2

1 2
_ o ptio
k=1 1 —efm2

We assume that the full credit sum, defined as

T
Ciotal := Z (C] - CO)

j=1
will be paid to the state at time T
We thus arrive at

Lemma 3.3
For an a > 0 and the above investment strategy into the fund, we have:

a) In the case of payments of o(C; — Cp) at time j, j = 1,...,T into the
fund, the credit can be fully paid back in expectation at time T if we choose

L S (G - Cy)
YT () = CelntarT L)

In the particular case of Cj = C for all j = 1,...,T, this simplifies to

2
1 1—elttT
eht39% 1 _ plutgzo)T

b) The expected gain for the PC in nominal values by comparing the credit
sum ) (C; — Cp) with the invested amount o* ) (C; — Cp) is strictly posi-

tive as we have p + %2 > 0.

11



Proof: a) follows from the required equality between the sum of (expected)
payments by the state and E(Fr) which then has to be solved for a*Cj.
b) is obvious. O

In contrast to the one period setting of Variant A, we cannot easily calculate
the probability of a loss by the state or the expected net fund value for the
PC at time T'. The reason is a well-known fact that the distribution of the
sum of log-normally distributed random variables is not explicitly known.
We therefore illustrate the performance of this strategy and its differences
to Variant A in the next section.

3.4 Comparison of Variant A and Variant B

As we do not have explicit distributional results for Variant B, we present
a numerical example where we choose 7' = 10 and also C; = C =1.1-0C,.
We then simulate 10,000 realisations of the fund performance and estimate
the probability of a shortfall/loss (i.e. the event of Fr < T - (C' — Cp)),
the expected loss for the state and the expected net wealth for the PC that
remains in the fund at time 7. We again consider the two different fund
parameter sets already used for illustrating Variant A. We especially want
to compute (or more precisely, estimate via Monte Carlo simulation)

Paporttan := P [FT <T-
Eghortfan := E [(1 - FT)
Efnainettund 1= E [(FT - 1)+

(C—Co| =P[Fr <1],
+] ,
For this, note first that in our setting, we can explicitly calculate

1.2 610(M+%02)

= - P e L
E[Fr] =a-0.1-e'"2 e

By the well known relation
E[X]=E[XT] - E[X]

we can thus estimate/compute Efpalnetfund from E[Fr] and the estimate for
Etotalloss-

3.4.1 A standard fund: p = 0.04,0 =0.2.

Under our above assumptions on the fund parameters and C—Cjy = 0.1-Cy =
0.1, T = 10 we obtain first:

12



o 1 105 11 115 1.2 125
Paorttall | 0272 0232 0.197 0.171 0.145 0.123
Egorttan | 0.054  0.045 0.036 0.030 0.024 0.020
Efinanettund | 0.470  0.530  0.593 0.657 0.722 0.789

Table 5: Probability for a shortfall, expected shortfall, expected net wealth
as functions of a.

To see the time effect of investment one can e.g. compare the additional
total nominal payment of 0.25 with the net gain of 0.789 in the case of the
choice of o = 1.25. Of course, one should take interest rates into account.
However, in the current ultra low interest rate environment in Europe, using
nominal values is a good approximation. This is especially true in a country
such as Germany with negative interest rates for short term investments.

To compare the performance of Variant B with that of Variant A, we now
consider the corresponding values when we use

o= A 90 =~ 1.242 s

the o that leads to a 90% security level for a full payment to the state at
each single payment time. It comes along with the probability of at least
one loss of 0.35 and a total expected loss of 0.0087. It is clear that this loss
probability is not comparable to those of Variant B. The break even value
ap such that the expected total loss of the state equals that of Variant A
is given by g = 1.44. While it is comparably high, it leads to an expected
net fund wealth of 1.047 compared to the additional nominal payments of
0.44.

3.4.2 A very well diversified fund: = 0.04,0 =0.1.

For this set of fund parameters we obtain: As in the case of Variant A the

o 1 1.05 1.1 1.15 1.2 1.25
Pahortfall 0.131 0.087 0.053 0.035 0.020 0.015
Eghortfal 0.012 0.007 0.004 0.002 0.001 0.001

Enalnetfund | 0.304  0.364 0.425 0.488 0.552 0.616

Table 6: Probability for a shortfall, expected shortfall, expected net wealth
as functions of .

loss figures now clearly improve while the net fund wealth performs slightly
weaker due to the small variance.

Again, we can compare

Q= (A 90 ~ 1.0925 y

13



the alpha that leads to a 90% security level for a full payment to the state
at each single payment time with its counter part in Variant B that leads to
the same expected total loss of 0.004515. This time, the break even value
ap = 1.0927 is very close to a4,99. It leads to an expected net fund wealth
of 0.416 compared to the additional nominal payments of 0.0927.

4 Optimisation Approach

In this part of the paper, we assume the same credit scheme described in
the previous section. However, we consider a different set of strategies that
can be applied in order to repay the debt to the state. We assume that the
state requires the PC to share the profits from an investment continuously
in time, i.e. the PC has to transfer any excess above some level b (to be
optimised) into a special bank account during a 1-year period. It means that
once an increase in contribution becomes necessary, the state contractually
agrees to pay the difference between the old and the new contributions in
the following, say, 10 years. In return, the PC has to invest a certain amount
of money at the beginning of every year so that at the end of the year the
debt to the state can be repaid and the PC can get some positive return on
investment.
Our objective is to maximise the amount of money remaining after the debt
repayment to the PC. The emphasis lies on the investment of the minimal
possible amount such that the probability that the debt can be fully repaid
to the state stays above some pre-specified level. Note that the PC carries
the investment risk where the state has the risk that the PC will not be able
to repay the debt. It means in particular that we allow for negative values
of the level b.
As before we model the price of the fund under consideration by a geometric
Brownian motion

F, = FyettoWe |

We denote by D;(b) the part of the gains, depending on the chosen barrier
b, that is transferred to the debt account and by R;(b) the part remaining
to the PC for the time horizon t.

Let now b € [—1, 1] be arbitrary but fixed. If the return at time ¢ compared
to the initial value Fj

Ft_FO :e,ut+0Wt_1
Fy

exceeds the level b, the excess (e“tJ“’Wt — 1—b) is transferred to the debt bank
account. Mathematically it means that the process {e#+7"} is downward-
reflected at 1+b. Since under the logarithm the reflection property remains
preserved, we can consider the downward-reflection of {ut+oW;} at In(1+4b).
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For a Brownian motion with drift we know that the reflected process, below
the level In(1 + b), at time ¢ is given by

put + oWy — (Orggict{us +oWs} —In(1 + b))Jr .

Therefore, transforming the downward-reflection back, gives the part re-
maining to the PC

+
ut+o W, —( max {;Ls—i-an}—ln(l—&—b))
Ri(b):=¢ = \ose=t :
confer for details for instance [3, p. 77]. It remains to find the expression for
the debt part, denoted by D;(b), to be accumulated on the special account.

Lemma 4.1
Let b be arbitrary but fixed. For any time t > 0 it holds

+
Dy(b) = (1+ b)(orggéct{,us +oWs} —1In(1 + b)) .
Proof: Recall first that D;(b) describes the excess of the return from the
fund above the pre-specified boundary of 1 + b.

In order to prove our claim consider an € > 0, define for n > 1

T :=inf{s > 0: e*TWs =1 f b4 ¢}
=inf{s>0: us+oWs=In(1+b+¢)},

Tyi1 :=1inf{s > T, : eln(Hb)*“(S*TnH"(WS*WTn) =14+b+e}
= inf {s > Ty In(14+0) + p(s —T,) + o (Ws — Wr,) =In(1+ b+ 8)}

and let
Ni(e) :=sup{n>1: T, <t}.

It means we approximate the procedure of skimming off the return of the
considered geometric Brownian motion by a process, depending on e, where
we first wait until e#sT°Ws hits the level 1 + b + ¢ and pay ¢ immediately
into the debt account. Subsequently, we wait until the considered geometric
Brownian motion (now with the start value 1+b) again hits the level 1+b+¢
and transfer € into the debt account. The amount transferred into the debt
account up to time ¢ is given by eN;(e). Looking at the stopping times T,
one sees that the process after withdrawals, denote it by Fy, is given by

e _ ( 1+0b )Nt(a)eutJrUWt — (1 . Nt(€)5 )Nt(g)eutJraWt )
t 1+b+e Ni(e)(1+b+e)
Ni(e)
Consider the part (1 — %) " Since
. AN
i (10) =
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we just need to consider liI% eN¢(e). The structure of T}, as hitting times of
E—

an arithmetic Brownian motion yields, confer for instant [15, p. 95]:

1+b+e
= : — >n- _— .
Ni(e) = sup {n eN Onglg%(t{us +oWst—In(l1+b) >n-In ( 5 )}

Therefore, we can conclude

1+
lim e Ny(e) = lim < n ( ot E)Nt(s)
e—0 Eﬁoln(l+wf> 1+b
1+b

=(1+ b)(omaxt{us +oWs} —1In(1 + b))+ a.s.

<s<

This means in particular that the process Fy converges to R:(b) as ¢ — 0
a.s., implying that e Ny(¢) converges to D;(b) a.s. for € — 0. Therefore:

. +
Di(b) = lim eNi(e) = (1 -+ ) max (s + oW.} ~In(1 +1)) .

O

Like in the previous section, we assume that the initial investment is given
by Fy = a(Cy — Cp) with some positive «, and require for every period

P|FyDy(b) > Cy — Co} >p & P[Dt(b) > ﬂ > p, (1)

for some given p € [0,1]. This credibility condition ensures that the level b
is not chosen too high and the debt to the state will be paid with at least
probability p - 100%.

Assume the percentage p is fixed contractually, then we can find the optimal
pair (b, ) such that the expected loss of the PC is minimised. Let

+
V(b) =E [Rl(b)] -F eHJrUWl* (Orélggl{us+aws}71n(1+b)>

)

_l’_
U®b) : =E[Di(b)] = (1 + b)E[(Orgaécl{us +oW,} —In(1 + b)) } ,
<s<
ie. V(b) is the expected return on investment of the PC and U(b) is the
expected value of the accumulated debt account.
In order to proceed with our derivations and also for numerical calculations
we will need to consider the density function of Orgai(t{us + oW,}. This
<s<

density, g(y;t), is given by

2py
2 _(y—ut)? e y + pt

it ) = e 20%t — Erfc( ), 2
9(y;t, 1) o p oT (2)
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with Erfe(x) = % f;o e dz, confer for instance Borodin & Salminen, p.

250 formula 1.1.4 for the distribution function of Orilaéil{us + oW}
_s_
For simplicity we write g(y; p) if t = 1.

The normalised loss (the spent amount exceeding the required payments of
Cy — Cy, i.e. the real loss divided by C7 — Cp) is given by

L(b,a) == a—aV(b) — 1 — min! (3)

It is clear that V(b) is strictly increasing in b, meaning that the maximum of
V(b), and the minimum of the loss, is attained at the maximal b, allowed by
the credibility condition . However, this maximal b will again depend on
a. Thus, we have to specify the set of admissible pairs (b, «) before we can
solve the optimisation problem . Note first that the PC does not have an
infinite amount of money on her/his disposal. Therefore, we have to restrict
the set of admissible « to some reasonable values and introduce a liquidity
restriction boundary o* > 0 with 0 < a < ™.

Lemma 4.2
Assume p in is fixed, p is given by

[ee]
/ g(y;t,u)dy =p
p

and o < oo is the liquidity restriction boundary.

If a* < e'™P then the PC should prefer to pay the required increase in
contribution directly into the PAYG account.

If o* > e'~P| the pair minimising the loss (3)) is (b*, a*), where b* is implicitly

given by
1

(1+b*)(p—In(1 +b%))
Proof: Consider the credibility condition . Using the density , we get

:Oé*

P[Dt(b) > é] - ]P’[(l + b)(omaxt{,us + oW} —In(1 + b))+ > ﬂ

<s<

= >
]P[Orgggt{us%-aWs} > 5 +ln(1+b)}

1
(1+0)
=/1 g(y;t,pu)dy

1
n(1+b)+7a(1+b)

Since g(y;t, u) > 0 for all y € Ry, for every p € [0, 1] there is a unique lower
integral boundary p € R, such that

[ g(y;t,u)dy =p.
p
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Assume p in is fixed and p is the corresponding lower integral boundary.
Then the set of admissible pairs (b, «) is described by the inequality

1

5>In(ltb) b
pzIn(l+b)+ a5

which is equivalent to o > =: A(b). Further, it holds

1
(140) (p—1In(1+d))

N@)go:ﬁﬂ—lza
>0:eP1—1<b,

i.e. A(b) attains its global minimum at b = e?~1 —1 > —1 with A(ef~1—-1) =
e PtL

Since our target is to minimise the loss defined in , and it is done by
the biggest allowed value of b, we can restrict our considerations to the set
b > eP~! — 1, the area where A(b) is strictly increasing.

Noting that e — 1 > e/~! — 1 and A(e? — 1) = oo, we define the set of
allowed pairs (b, &) to be

1
(1+b)(p—In(1+b))

Note that if a* < A(eP~! — 1) = e P*L| then the set of admissible pairs is
empty.

If a* > e P*L there is a unique b* € [eP~1 —1,¢P — 1) such that A(b*) = a*.
And the set of admissible pairs shrinks to

P 1_1<b<eP—1 and a>

1

p—l _ 1 <bh<b* and
‘ =P M (- (1 1 b))

<a<a*.

O

The above lemma ensures that if we require a* > e!™?, the minimal loss
will be attained at (b*,a*). If L(b*, a*) is bigger than zero, this is a clear
indicator that the funding strategy is not working, and paying the increase
in contribution immediately into the PAYG account is more preferable for
the PC.

Note that if the accumulated amount exceeds the debt then the PC has an
additional gain. Therefore, the entire expected normalised loss function L,
is defined as follows:

Le(bya) =a—aV(b)—1—-aU(b)+1=a—aV(b) —alU(b) .

Lemma 4.3
The function L. is decreasing in b, if a > 0.
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Proof: W.l.o.g we assume o = 1. Using , we get the following represen-
tation

o2 [In(1+bd)
V(b)+U(®b) =eT 7 / 9(y; n+0%)dy
0

0_2
+(1 +b)€’”2/ e Vg(y;p+o0?)dy
In(1+b)

+a+n) | T (y—In(l+ B)g(yp)dy .
In(1+b)

Deriving with respect to b and using e* — 1 > z yields
VI(B) + U'(6) = B[er ™ =M M|
+E [(Ml —In(1+0) - 1) ][[M1>1n(1+b)]}
> E [(M +oWi —In(1 + b)) ]I[M1>1n(1+b)}] :

In order to calculate the expectation in the last line above, we use the
Markovian property of the Brownian motion W. Define additionally 7, :=
inf{t > 0: ut + oW; =1In(1 +b)}, then

E [(M + oW1 —In(1+ b)) ]I[M1>ln(1+b)}]
- E[(m + oW, —In(1+b) + p(1l — 7) + o (W — WT)) ]I[T<1]}
—E|(p( = 1) + oWios ) Ty | = pE[(L = )T cq)) > 0,
where W is an independent copy of W. a

This means in particular that L. attains its minimum at the biggest admis-
sible b. Of course, one might minimise the function L. instead of L and
redefine the set of admissible barriers in accordingly. However, we keep
the credibility condition and consider the additional (positive) expecta-
tion alU(b) — 1 as a buffer similar to the net profit condition in risk theory,
confer for instance [9, p. 130], where the expected premia should be strictly
bigger than the expected loss in order to avoid the almost sure ruin. In
our model, this means that we keep aE[D;(b)] > C1 — Cp in order to make
the repayment of the debt more probable even if the probability p in is
relatively small.

Since it does not make sense for the PC to prefer the funding scheme to
paying the increase in contribution directly if the expected loss is positive,
we formalise the following (normalised by dividing through C; — Cj) prof-
itability condition

+
Wy — Ws}—In(14b
ptoWi ( Oglsagl{uerU }=In(1+ ))

a—aV(b)=a—-aE |e <1l. 4
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The above condition means that the normalised loss of the PC a — aV ()
should be smaller than the amount of 1 that could have been paid directly
into the PAYG. Recall that in order to create a buffer for the state in the
sense that the debt will be fully repaid in expectation, we do not take into
account the possible gain if the debt account exceeds the C; — Cj.

In order to rewrite the above conditions in terms of integrals, we introduce a

new measure @ by the following Radon-Nicodym density i—% =e"Wi-

02
2 and
Ws = Ws — os a standard Brownian motion under @). Setting for simplicity

My = Orgaécl{us + oW}, we can rewrite the expected return on investment
_s_

for the PC as follows using the density introduced in (2])

V(b) = E[ewawlef(Mrln(Hb))*] _ e“*glEQ [ef(leln(1+b))+}

0_2 ln(1+b)
—er [T gtar o ay+ 14 [
0 In(14b)

o0

e Vg(y; i+ o) dy} :

Remark 4.4
Consider the derivatives of V (b):

V(b) =ettz / e Yg(y;u+0°)dy
In(1+4b)
[€M+UW1—OI%13§1{MS+UWS}

[0?3§1{MS+UWS}ZIH(1+I))}] >0,

Lol

elt

V" (b) = — s g(In(1+b);p+0%) <0.

(1+0)

By maximising just the expected value, we do not take into account the
variance and consequently the risk for return on investment to stay consid-
erably below the expected value. One might consider the following target
functional instead of V (b).

V(b) = E{eeran—(Ml—ln(Hb))*} _\E {e2u+2UW1—2(M1—ln(1+b))+} s max!

with some weight A > 0. Using change of measure technique mentioned
above, the derivative fulfils

V() =E He“+"WI—M1 —ON(1 + b)e2nt2oW1-2M) }]I[M1>1n(1+b)]]
=ettT / e Vg(y; u+o?)dy
In(1+b)

— 2A(1 4 b)e2t20? / e Hg(y; u+20%) dy
In(1+b)
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Figure 1: Expected 1-year return on investment V(b) and modified func-
tional V'(b) with A = 0.85.

Since p1+ oW, < M, a.s. we can conclude that et toWi—Mu > 2ut20Wi—2M;

a.s., meaning that for 2\(1 + b) < 1 the first derivative V'(b) stays positive,
meaning that the value V (b) is increasing. However, the global behaviour
of V'(b) is highly sensitive to the choice of \ - a variable which cannot be
clearly justified from the economical point of view and creates in this way
another source of uncertainty and an opportunity for manipulations.

Also, one should not forget that the derivative V'(b) can not be considered
globally, but just on the interval allowed by the credibility condition and
the boundary o* defined in Remark . In Figure we see the functions
V(b) (left) and V' (b) (right) for u = 0.04, 0 = 0.2 and A = 0.85. Depending
on the b* the maximum of V(b) will be attained at different values of b.
Also, the curve V (b) changes its form depending on \. [ |

In the examples below we demonstrate how the credibility and the prof-
itability conditions work for a fund with realistic parameters.

Example 4.5

Assume like above p = 0.04, 0 = 0.2 and o = 10.

In the table below, we compute several values of P[ Dy (b) > 1] for different
pairs (b, «).
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b

1

—0.2
-0.1
—0.05
0

0.05

7.7-1077
1.32-1076
1.48-1076
1.53-1076
1.49-1076

0.06553328
0.03766247
0.02776680
0.02014832
0.01441359

0.40025361
0.23837807
0.17865039
0.13156264
0.09534295

0.71208305
0.45738957
0.35389069
0.26808831
0.19919441

0.91564864
0.62378926
0.49496449
0.38351917
0.29075048

Table 7: P[D;(b) > 1] for different values of o and b for 1 year time horizon.

We see that if the state requires a relatively high p, the values of a are high
and b becomes negative.

e Choose now p = 0.7, i.e. the credibility condition is P[Dy(b) > 1] > 0.7.
Then: p = 0.093078333, a* should be bigger than 2.4766867, the biggest
possible b leading to o = oo equals 0.0975477 and b* = —0.00768. It holds

L(b*,0*) = o — a*V(b*) — 1 = 0.327634 > 0 .

Thus, if the state requires p = 0.7, the PC should prefer to pay the increase
in contribution C; — Cy into the PAYG her-/himself and not to use the
funding possibility.

e If the state requires P[D1(b) > 1] > 0.5 then § = 0.15750112. The
minimal possible o preventing the set of admissible pairs (b, &) to be non-
empty equals e Pt = 2.3221625. The biggest possible b leading to a = oo
equals 0.1705821 and the maximal admissible b corresponding to o* = 10 is
given by b* = 0.06574. The expected loss is then

L(b*,0*) = —0.2603 < 0 .

What does this result mean for the PC? The function V' (b) (expected return
on investment for the PC) is given in Figure[l} left picture. Ifb < 0.2030 then
the expected return on investment will be smaller than 100%, meaning that
in expectation the PC will not get her/his full investments back. However,
the primary target of adding a funding component is to reduce the increase
in contribution C7 — Cy and not to entirely avoid any payments. Below we
demonstrate how this might work in practice.

In Germany, it is planned to increase the monthly contribution from 18.6%
to 19.5% starting from the year 2024. Assume, for an average contributor
the monthly increase will approximately amount to 20 Euro, i.e. 240 Euro
per year. Thus, investing 240 -o* = 2,400 Euro into a fund with parameters
given like above, the PC will pay the debt of 240 Euro with probability
50% and, compared to the direct payment to the PAYG, have a gain of
240 - 0.2603 =~ 62.5 FEuro. This means, the PC will pay in expectation
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Figure 2: Sets of (b,«) fulfilling the credibility (dark grey areas) and
profitability (light grey areas) conditions for p = 0.7 (left) and p = 0.5
(right).

240 — 62.5 = 177.5 instead of 240 Euro per year. The expected loss of the
state is then given by

(C1 = Cp) — (Cr — Co)a™ - U(b") = —T5.6,

meaning that in expectation the PC gets back an additional amount of 75.6.
Thus, the PC has an expected gain of 62.5 + 75.6 = 138.1 compared to
paying the increase of contribution immediately. And the state gets the
debt in expectation fully back.

In Figure [J we plotted the sets of (b, &) fulfilling the credibility and the
profitability conditions.

On the left picture of Figure[2 we see the area with (b, o) such that V (b, o) >
0.7 (dark grey) and the area where L(b,«) < 0 (light grey). It is obvious
that these two sets are disjoint, meaning that there is no combination of
(b, ) for o = 10 such that the debt is repaid with at least probability T0%
and simultaneously the PC’s loss is less than Cy — Cy. In the right picture in
Figure[2, we see that the set of pairs (b, o) fulfilling the credibility condition
with p = 0.5 (dark grey) and simultaneously the profitability condition (light
grey) is given by the narrow black area lying between the dark and light grey
ones. |

4.1 A 10-years investment period

It is clear that investing for a longer period brings higher returns in ex-
pectation. Therefore, in this section, the state still pays the increase in
contributions, but requires its money back after a period of 10 years. The
PC invests some amount of money for 10 years in a pre-specified fund. At
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Figure 3: Sets of (b, ) fulfilling the credibility (dark grey area) and
profitability (light grey area) conditions for 10 years and p = 0.7.

the end of the investment period, the PC has to repay the debt and will
hopefully get some gain.

The invested amount should be a multiple, «, from the total anticipated
increase of contributions over the next ten years. Considering the numbers
given in Example the forecast of increase in contribution over the next
10 years amounts to 2,400 Euro. Like in the previous section, we require the
credibility condition and the profitability condition while the time
interval changed from 1 to 10.

Example 4.6

Assume again p = 0.04 and ¢ = 0.2. In the Tab]e below we calculate
P[D1o(b) > L] for different pars of (b,e). The difference to a 1 year in-
vestment is considerable. For instance, in order to keep the probability of
repayment above 70% it suffices to set « = 3 and b = 0.05. Therefore, we
set o = 3, i.e. the highest possible « the state is willing to adopt is equal
to 3.

« 1 2 3 4 5

b
—0.2 | 0.2546296 0.7276311 0.8842143 0.9508487 0.9860533
—0.1 | 0.2671423 0.6884180 0.8334411 0.8984640 0.9341821
—0.05 | 0.2698034 0.6680602 0.8076430 0.8715453 0.9071802
0| 0.2706137 0.6474819 0.7817909 0.8444029 0.8797703

0.05 | 0.2699046 0.6268430 0.7560225 0.8172035 0.8521476

Table 8: IP’[Dm(b) > } for different values of o and b for 10 years time

1
(07
horizon.

Figure showcases the pairs (b, ) allowed by the credibility condition
(dark grey area), the pairs (b, «) where the profitability condition is fulfilled
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(light grey area) and the intersection area (black). It is clear that the 10-
year investment should be preferred if the financial situation allows. |

5 Comparison of the Two Investment Types

This section compares the two strategies introduced above in Sections |3| and
continuous withdrawal and a lump sum repayment at the end of the pe-
riod.

For that purpose, we look at the loss functions corresponding to each strat-
egy in dependence on time. Let again o* be the liquidity restriction. Define

Ly(t) := o — a*E[e“H”Wt] +1,

N
t+oWi— x {ps+oWs}—In(1+b
L(t,b) =" —a’E[¢ (gga fusrowy-i+0) ]-1

i.e. Ly is the normalised loss of the PC in the model with the lump sum
debt repayment and L. is the normalised loss in the continuous withdrawal
model. Both functions depend now on the time interval under consideration.
Let further

A(t,b) := Le(t,b) — La(t)

+
_ o R[] a*E[eMH—UWt—(Orél?%(t{us—f—aws}—ln(l-i-b)) |2

It is easy to see that A is strictly increasing in ¢ and strictly decreasing in

b. Because
-2 :b>0
A(0,b) = -
—a*h—2 :b<0,

and tlim A(t,b) = oo we conclude that for every b with b > —% there is an
—00

t such that L(¢,b) = 0. For b < —% the function A stays positive meaning
that the continuous withdrawal strategy is definitely not optimal.

Thus, for b > —% we can conclude that by implicit function theorem there
is a curve 8 : [0,00) = [—2Z VvV —1,1], 8’ > 0 such that A(t,8(t)) = 0,
A(t,b) > 0 for b < 5(t) and A(t,b) < 0 for b > B(t).

The choice of the investment strategy will depend on the parameters of the
underlying fund, the liquidity restriction a*, the investment time horizon ¢
and credibility condition :

o If A(t,b*) > 0, choose the lump sum repayment strategy;
o If A(t,b") <0 choose the continuous withdrawal strategy;

o If L4(t),Lc(t,b*) > 0 - pay directly into the PAYG system.
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Assuming again p = 0.04, 0 = 0.2, o = 10, ¢t = 1 and p = 0.5 we get
b* = 0.06574, confer Example It holds that

02
Lg(1) =10 — 10e#T2 +1 = 0.3816 > 0,
Le(1,b%) = —0.2603 < 0.

Therefore, for one year time horizon and a® = 10 one should prefer the
continuous withdrawal.
For the time horizon of 10 years one gets for the same parameters b* = 0.8707

(72
Lg(10) = 10 — 10" 710 11 = —7.2211 < 0,
Lc(10,b*) = —3.5291 < 0,
A(10,b*) = 3.6921 > 0,

meaning that one should definitely prefer the lump sum repayment strategy.
This can be explained by the fact that by withdrawing money from the
investment we miss possible gains. Even taking into account the amount
on the debt account exceeding the actual debt will not make the continuous
withdrawal more attractive:

Lc(10,b") — o*E[D1o(b*)] + 1 = —7.088 > —7.2211 .

In the table below we sum up the optimal choice of a strategy for different
values of a and time horizons ¢ in years. Let C denote the continuous
withdrawal and LS the lump sum debt repayment strategy. If it is optimal
not to use any of the funding strategies but just to pay the increase in
contribution into the PAYG, we write PAYG.

o 1 2 3 4 5 6 7 8 9 10
t
1| PAYG PAYG PAYG C C C€C C C C C
2 | PAYG PAYG C c ¢ ¢ ¢ C C C
4 | PAYG C C c C C C LS LS LS
6 | PAYG C C C LS LS LS LS LS LS
8 | PAYG C C LS LS LS LS LS LS LS
10 | PAYG C LS LS LS LS LS LS LS LS
20 LS LS LS LS LS LS LS LS LS LS
40 LS LS LS LS LS LS LS LS LS LS

Table 9: The optimal strategy for different values of o and time horizons t.
The probability of default for the state, i.e. the probability that the state

will not get the full debt back, equals 50% by definition of the optimal b*.
For the discrete repayment case we sum up the results in Table below for
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the parameters given above. For each pair (¢, «) we calculate the probability
of default Plaet***Wt < 1 + o], meaning that the state will get less than
C1 — Oy after the PC gets his invested money back.

a| 1 2 3 4 5 6 7 8 9 10

11099 096 0.89 082 0.76 0.72 0.68 0.65 0.63 0.61
21098 087 077 0.69 064 060 0.58 0.55 0.54 0.52
41091 073 063 056 052 049 047 046 0.45 0.44
6|08 063 054 049 045 043 041 0.40 0.39 0.38
8107 056 048 0.43 040 038 037 0.36 0.35 0.34
0]068 050 043 039 037 035 034 033 032 0.31
201045 033 028 026 025 024 023 022 021 0.21
40 1 0.24 0.17 0.15 0.14 0.13 0.13 0.12 0.12 0.12 0.12

Table 10: Plaett+7Wt < 1 + q] for different values of o and time horizons .

Again, in Table [I0] we see that for short-term periods it is more profitable
to use the continuous withdrawal strategy or PAYG.

6 Conclusions

In the last decade, most OECD countries have enacted pension reforms
of their traditional defined-benefit pay-as-you-go (PAYG) schemes. PAYG
requires the balance between income from contributions and pension expen-
diture where the current contributions finance the current pensions. The
most common reforms have been the changes in the level of benefits (some-
times linked to a longevity index, such as the life expectancy) and increases
in the retirement age.

At the same time, there are some countries that combine the PAYG scheme
and a defined contribution funding part within the mandatory pension sys-
tem. These systems have been advocated, particularly by the World Bank,
as a practical way to the higher financial market returns with the cost of
a scheme with a greater funded component. In this line, the present paper
proposes an alternative with the contributors investing an extra amount of
money into a fund, so that part of the investment together with the returns
can restore the financial sustainability of the PAYG scheme. The contributor
faces the investment risk while the state bears the risk that the returns on
investment do not cover the deficit in contributions for the period analysed
However, in the case of extra returns after debt repayment, the contributor
keeps the gains. On the other hand, the loss of the state, in the worst case,
will amount to the increase in contribution needed to restore the financial
sustainability of the system while the contributor would normally invest and
risk a much bigger multiple of this amount.
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Two different debt repayment types depending on the amount invested and
the timing of the repayment to the state are analysed for a prototypical
contributor. The first set of strategies features the repayment of the debt
at the end of a pre-specified period as a lump sum. In several examples,
we calculate the probability of full payback of the debt, expected loss of the
state and the expected value of the gains for the individual. In particular,
we compare, for different invested amounts, the case of the repayment after
a year versus a repayment after 10 years. As expected, the loss probability
decreases when the amount invested and the investment horizon increase.
As an optimisation approach, we study the case when the state requires the
individual to transfer any excess above a particular level (barrier) of return —
to be optimised — continuously in time as a debt repayment (second type of
strategies). Comparing different barriers, we show that the optimal strategy
is the biggest possible barrier such that the debt to the state is repaid with
a certain pre-specified probability. In an example, we compare the continu-
ous withdrawal and the lump sum repayment strategies with the possibility
to pay the increase in contribution directly into the PAYG system. If the
period for the repayment is long enough, the optimal strategy tends to be a
lump sum debt repayment. Directly paying into the PAYG is the optimal
strategy if the investment period is short and the amount invested is rela-
tively small.

The model presented in this paper could be implemented as an alternative
to both the PAYG and mixed pension systems as we are not advocating a
particular strategy but rather offer possibilities allowing to reflect the ac-
tual market and societal situation. Additionally, our model could raise the
public awareness of the financial sustainability of the PAYG as the expected
increases in contributions affect every individuals’ finances. According to
Fornero [13], if the participants of a pension scheme do not understand its
basic principles then the reforms are repealed. Knowledge on pension basic
principles is thus important not only for individual’s well-being (planning)
but also for the society as a whole.

Finally, based on the methodology presented in this paper, at least three
important directions for future research can be identified. First, it would
be interesting to explore the smoothed and affordable contributions to be
invested by the individual to make the model more applicable in the real
world. Another direction would be to study the risk sharing between the
government and the individuals under different scenarios by using for in-
stance Value at Risk and Expected Shortfall risk measures. Finally, one can
analyse a possible structure and asset allocation problems of the fund that
might be used in the real life.
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