
Achieving Power Efficiency in Hardware Circuits
with Symbolic Discrete Control

Thesis submitted in accordance with the requirements of the University of Liverpool for the
degree of Doctor in Philosophy by

Mete Özbaltan

January 2020

Achieving Power Efficiency in Hardware Circuits
with Symbolic Discrete Control Mete Özbaltan

Abstract

The power efficiency of hardware circuits is of paramount importance for constructing
embedded electronic devices, as it is one of the major design constraints in today’s embedded
systems, limiting performance, battery life, etc. This thesis targets the power efficiency
in hardware circuits with symbolic discrete control. In the research proposed in this
thesis, we consider hardware circuits, described using the popular Hardware-Description-
Language (HDL), Verilog, at the Register-transfer Level (RTL) abstraction, as hierarchical
compositions of sub-circuits. We achieve power-efficiency by switching-off the clock of each
sub-circuit according to some clock-gating logic, where the technique applied is known as
RTL clock-gating, which is one of the best low-power technique applied on synchronous
hardware circuits.

We advance the following approaches in order to produce a clock-gating logic: to switch-
off the clock signal of a sub-circuit in the idle status, which is a set of values of the circuit
signals when the values of the memory components do not change; to apply power-aware
scheduling policies for data-flow hardware circuits implemented as Kahn-Process-Networks
(KPNs), using the clock-gating logic as used to selectively filter the clocks of the sub-circuits
involved; and to employ an energy-efficient configuration manager for choosing the optimal
configuration, by means of the clock-gating logic, among the alternatives on data-flow
hardware circuits implemented as KPN, with parallel synchronous processes. We devise
a tool-supported framework for achieving power-efficiency of hardware circuits for each
approach. Our approaches rely on formal control techniques, where the goal is to compute a
strategy that can be used to drive a given model so that it satisfies a set of control objectives.
More specifically, we give an algorithm that derives abstract behavioral models directly in a
symbolic form from original designs, and for formulating suitable constraints and objectives.
We encode the computation of the latter as several small symbolic Discrete-Controller-
Synthesis (DCS) problems, and use the resulting controllers to derive power-efficient versions
from original circuit designs.

Finally, we show how a resulting strategy can be translated into a piece of synchronous
circuit that, when paired with the original design, ensures the aforementioned objectives.
We detail and illustrate our approaches using various hardware designs and objectives,
and validate them experimentally by deriving a low-power version of the original hardware
designs.

i

Mete Özbaltan
Achieving Power Efficiency in Hardware Circuits

with Symbolic Discrete Control

ii

Acknowledgements

First of all, I would like to thank my supervisors, Sven Schewe, Dominik Wojtczak, and
Nicolas Berthier, for their support, advice, and guidance throughout my research and the
writing up of my thesis. Their extensive experience and knowledge provided me with
valuable advice and comments, during my PhD.

I would also like to thank Eric Rutten and Alexei Lisitsa for agreeing to be my examiners
on my thesis committee.

I also extend my gratitude to people in the Department of Computer Science at the
University of Liverpool for their assistance and encouragement.

I wish to express my sincere gratitude to The Republic of Turkey Ministry of National
Education for supporting me as my sponsor.

Last, but not least, I would like to thank my family for their support.

iii

Mete Özbaltan
Achieving Power Efficiency in Hardware Circuits

with Symbolic Discrete Control

iv

Contents

Abstract i

Acknowledgements iii

Contents vii

List of Figures ix

List of Listings xi

List of Tables xii

1 Introduction 1
1.1 Problem Statement . 3
1.2 Contributions . 5
1.3 Thesis Outline . 6

2 State of The Art on Low Power Synchronous Circuits Design 8
2.1 Integrated Circuits (ICs) . 9

2.1.1 Classification of ICs . 9
2.1.2 Architectures of ICs . 11

2.2 Chip Design Process . 13
2.2.1 Evolution of Chip Design . 13
2.2.2 Abstraction Levels . 14
2.2.3 Chip Design Methodologies . 19

2.3 Hardware Description Languages (HDLs) 20
2.3.1 Data Types . 23
2.3.2 Functional Blocks and Ports . 24
2.3.3 Instantiations . 24
2.3.4 Statements . 25
2.3.5 Structural Representation . 25

v

Mete Özbaltan
Achieving Power Efficiency in Hardware Circuits

with Symbolic Discrete Control

2.3.6 Data-Flow Representation . 25
2.3.7 Behavioral Representation . 26

2.4 Low Power Synchronous Circuits Design Techniques 27
2.4.1 Clock Gating Technique . 28
2.4.2 Existing Approaches . 30

2.5 Existing Tools Used on Chip Design . 32
2.6 Summary and Discussion . 34

3 Modeling Formalisms on Hardware Circuits Designs, & Symbolic Tools,
Languages, and Techniques for Discrete Control 35
3.1 Modeling Formalisms Applied on Chip Design 36

3.1.1 Automata-Based Modeling Formalisms 36
3.1.2 Data-Flow Based Modeling Formalisms 37

3.2 Discrete Controller Synthesis (DCS) . 39
3.3 BZR/Heptagon Synchronous Language . 42
3.4 ReaX Synchronous Language . 44
3.5 Existing Approaches . 46
3.6 Summary and Discussion . 48

4 Exercising Symbolic Discrete Control for Designing Low-Power Hardware
Circuits: an Application to Clock-Gating 49
4.1 Introduction . 49

4.1.1 Motivation . 50
4.1.2 Contributions . 51
4.1.3 Overview . 51

4.2 Running Example . 52
4.2.1 The Verilog Hardware Description Language 52
4.2.2 A Fragment of Heptagon . 54
4.2.3 Variables & Further Notations . 55

4.3 Computing CGLs using Symbolic DCS . 56
4.3.1 Overview of the Modeling Technique 56
4.3.2 Building Sub-module Models & Idleness Predicates 59
4.3.3 Building Composed Module Models 61
4.3.4 Computing & Integrating the CGLs 62

4.4 Application on a Case Study . 63
4.5 Summary and Discussion . 65

5 Power-Aware Scheduling of Data-Flow Hardware Circuits with Symbolic
Control 68
5.1 Introduction . 69
5.2 Discrete Control with Symbolic Systems . 70

vi

Achieving Power Efficiency in Hardware Circuits
with Symbolic Discrete Control Mete Özbaltan

5.2.1 Symbolic Notations . 70
5.2.2 Symbolic Systems . 71
5.2.3 Symbolic Control . 72
5.2.4 Tooling and Related Works on Optimal Control 73

5.3 Models and Objectives for Power-aware Scheduling 74
5.3.1 Overview of the Approach and Contributions 74
5.3.2 Abstracting Process Implementation Behaviors 75
5.3.3 Abstract Process Observers & Control Means 78
5.3.4 Achieving Power-efficiency by Control 81
5.3.5 Enabling Dynamic CGL Reconfiguration 81

5.4 Experimental Evaluation . 82
5.5 Summary and Discussion . 85

6 A Case for Symbolic Limited Optimal Control: Energy Minimization in
Data-flow Circuits 87
6.1 Introduction . 88
6.2 An Algorithm for Symbolic Limited Optimal Control 88

6.2.1 Computing Expected Outcomes . 89
6.2.2 Computing the Refined Strategy . 90

6.3 Use-case: Energy-aware Configuration Management 91
6.3.1 Management of Configurable Designs 91
6.3.2 Overview of the Approach for Computing Managers 92
6.3.3 Abstract Channel Model . 92
6.3.4 Abstract Process Model . 94
6.3.5 Control Objectives . 95

6.4 Experimental Evaluations . 96
6.4.1 Constructing Simulators of Managed Designs 96
6.4.2 Simulation Bench . 97
6.4.3 Simulation Results . 101

6.5 Summary and Discussion . 103

7 Conclusions and Future Recommendations 105
7.1 Conclusions . 106
7.2 Open Issues and Future Recommendations 108

References 111

vii

List of Figures

1.1 Observation of the Feedback Control Problem 4
1.2 Design Flow of the Research Methodology Proposed in this Thesis 5

2.1 Structure of a Synchronous Circuit . 10
2.2 Tile Based MPSoC Block Diagram . 12
2.3 Y-Chart Design Model . 15
2.4 Generic Chip Design Flow . 21
2.5 CMOS logic/gate inverters invert the given value Vin, on the output value

Vout, by using PMOS and NMOS transistors. 27

2.6 Basic Principle of The Clock Gating Technique 29

3.1 Representation of The Control Theory of Discrete Event Systems 40
3.2 Principle of The Discrete Controller Synthesis 41
3.3 Task t(r,c,data_in)=a,data_out, faking computation, in the form of a

Mealy machine, where: r (request), c (control), and data_in (input data)
are input variables; a (active—keeps a memorized value, initially false) and
data_out (ouput data) are output variables; e (executed), cnt (counter—
keeps a memorized value, initially 0), comp (computation—keeps a memorized
value, initially 0), and S={Idle,Busy} (state—keeps a memorized value,
initially Idle) are local variables. 42

3.4 Computational Steps on The State Space X 46

4.1 Mealy machine symbolically encoded by register state in Verilog module m of
List. 4.1, decorated with operations on cnt and m. The initial value of cnt is 0. 53

4.2 Example Verilog module instantiation graph, associated models, and resulting
CIPs. Arrows (resp.) represents Verilog sub-module (resp. Heptagon
node) instantiation relations. In turn, (resp.) denotes modeling (resp.
symbolic DCS) steps. 56

4.3 Interface of a Sub-module Model SM M. 59
4.4 Interface of a Composed Model CM M. 61

viii

Achieving Power Efficiency in Hardware Circuits
with Symbolic Discrete Control Mete Özbaltan

5.1 Overview of the possible work-flows for computing the power-aware CGL. . 74
5.2 Extracts of symbolic model built from the example process of List. 5.1. . . . 77

6.1 Overview of our suggested work-flows for computing energy-aware configura-
tion managers. 91

6.2 Automaton representation for 3-state channel model encoded as qi,j 93
6.3 Graphical representation of a 2-process 2-channel configurable design; the

pi,1, . . . , pi,n’s represent the distinct configurations of process i—similarly for
j. Notice that r, cfg i, cfgj , ei, and ej are inputs of the system model, whereas
cons i, prod i and consj denote expressions (predicates). 95

6.4 Synthesis & simulation tool-chain for assessing global design objectives. . . 96
6.5 Example of configurable design with 6 processes. 101
6.6 Gain in simulated energy per completely processed data for the design with

6 processes illustrated in Figure 6.5. For each size of sliding window (x-axis),
we give the minimum, average, and maximum gain in percentage, as well as
the low and high quartiles. A window of size 0 indicates that the manager is
produced without any enforcement of optimal control objective. All gains
(y-axis) are given in percentage of the average energy consumption obtained
for the non-optimized design (represented with the dashed horizontal line). . 102

ix

List of Listings

2.1 Verilog module m, faking computations on data given on input wires “data_in”
upon request “start”. Output wires “data_out” carry its result, available
when “done” becomes “1”. 22

2.2 Verilog module M, instantiating m of List. 2.1 twice, as m1 and m2, in a
pipelining mode where m1 feeds m2. 23

3.1 Heptagon node t, symbolic encoding of the Mealy machine of Figure 3.3. . . 43
3.2 Heptagon node twotasks, parallel composition of two instantiations of the

node (task) t of List. 3.1. 43
3.3 Heptagon node controlledTasks, symbolic encoding of the desired property

of the system, where the system, plant, is the parallel composition of two
instantiations of the node (task) t of List. 3.1. 44

4.1 Verilog module m, faking computations on data given on input wires i upon
request r. Output wires o carry its result, available when e becomes 1. . . . 52

4.2 Verilog module main, instantiating m twice. 54
4.3 Heptagon node encoding the machine of Figure 4.1. 55
4.4 Heptagon node SM m, obtained from the Verilog module m of List. 4.1 using

marked variables Sm = {state, r, e}. 60
4.5 Excerpts of the CGL-enabled Verilog module m’ obtained from the module m

of List. 4.1. 60
4.6 Heptagon node CM main obtained from the Verilog module main of List. 4.2

using marked variables Smain = {cfg,wait_m1,wait_m2} and Sm as used in
List. 4.4. 62

4.7 Excerpts of resulting Verilog module obtained from module main of List. 4.2. 63
5.1 A simple process in Verilog. 77
6.1 Verilog module for simulating a process’s behaviors. 97
6.2 Verilog module for FIFO’s simulated behaviors 97
6.3 Verilog module for a managed design with 5 processes; the manager module

is the result of the control algorithms (cf. Figure 6.4). 99

x

Achieving Power Efficiency in Hardware Circuits
with Symbolic Discrete Control Mete Özbaltan

6.4 Excerpts of stochastic simulation bench in Verilog for a design with 5 processes;
this particular bench simulates the arrival of a new piece of data once every
100 clock cycles (cc), and reports every 1000 clock cycles the total energy
consumed by the simulated design per piece of data completely processed.
The quantitative values (power consumption and execution times of each
process configuration) are drawn within 70% and 100% of their respective
specifications. The code that stops the simulation is not shown. 100

xi

List of Tables

4.1 Estimated mean power dissipation (in mW) of original and resulting RS
decoders. 64

5.1 Evaluation results for the original and power-aware designs; the “Cycles”
column denotes the total number of clock cycles required for processing the
considered test-bench (Device: Cyclone IV, Frequency: 100Mhz). 83

5.2 Performance of the strategy computation tool for N RLE instances. 84

6.1 Specification values for our example design with 6 processes; the Worst-case
Execution Times are given in number of clock cycles. 101

6.2 Synthesis time and memory footprint of ReaX for designs involving either 5 or
6 processes (N), w.r.t. size of sliding window selected for the limited optimal
control algorithm (k); we also report the size of the resulting manager circuit
for the design with 6 processes. 102

xii

Chapter 1

Introduction

The influence of embedded systems on our life has been rapidly increasing for several
decades, and it seems that they are becoming more and more important every day [4, 38, 95].
They are used almost in every area of life and try to satisfy different kinds of demands
ranging from simple to very sophisticated systems. Although each system is constructed
in accordance with different kinds of requirement, some design goals of these systems are
common, such as low power and cost, high performance, and small size. However, the system
construction (i.e., the combination of hardware and software design) with such performance
properties comes with rather contradicting requirements. As an example, on the one hand,
consumers are expecting high performance from them. On the other hand, they should still
be energy efficient. To meet such performance goals and overcome the design constraints
should require efficient analysis and management techniques [105]. The objective of the
research proposed in this thesis is to achieve power efficiency in hardware circuits with
symbolic control.

The hardware circuit design has evolved rapidly over the last four decades [44, 45, 81].
The greatest impact triggering the development of the hardware circuits design is the
decreasing of the transistor size, where transistors are the basic building elements in
hardware circuit design. As the technology advanced and the transistor size has decreased,
designers were able to place a higher amount of transistors on a circuit, and it seems that the
trend of the increase in the transistor amount will continue; however, the design of the huge
number of transistors on a circuit is becoming more sophisticated. The design complexity
of circuits has been dealt with using abstraction methodology, which advocates that design
consists of a hierarchical structure, where larger blocks (higher levels) include abstracted

1

2 Mete Özbaltan

smaller blocks (lower levels). A resulting hardware design consists of the combination of
these abstracted designs, and each design is considered at each abstraction level and/or
in a structure that is a mixture of some abstraction levels (an abstracted hardware design
generally includes this kind of a mixed structure today). Therefore, the optimization of
desired performance properties in a resulting hardware design has become a challenging task
that requires to be solved for each design block. Among these abstraction levels, the Register
Transfer-Level (RTL) is the most effective level for the optimization of hardware designs, in
terms of the trade-off between efficiency and complexity. In the literature, several kinds
of researches have been conducted to meet various performance goals at this abstraction
level. At the register-transfer level, especially the power/energy efficiency is one of the
essential performance goals that allows making significant optimizations on a circuit, where
the power is one of the major design constraints in today’s embedded systems, limiting
performance, battery life, and reliability [9, 58, 94]. Various mechanisms can be used to
reduce power consumption in hardware chips at the register transfer level, which includes
clock-gating, multi-supply voltage, and power-gating. Achieving power/energy efficiency
in hardware circuits by applying RTL clock gating technique is one of the most emerged
topics in the literature, and the research proposed in this thesis addresses this issue as well.
In synchronous circuits in particular, RTL clock-gating, which promises maximum power
saving among the others, is used to selectively cut off the clock of components with the
aim of reducing the power dissipation induced by the switching activity it incurs; however,
the fact remains that efficient analysis and management are required to decide when to
switch-off clock signals.

The increasing complexity of contemporary embedded systems complicates the analysis
and management of hardware designs, where the design consists of some piece of code [4, 105].
To manage the increasing design complexity and power consumption of hardware circuits
as well as to optimize various performance properties, modeling formalisms are becoming
common practice. The models abstract away the irrelevant details, so that they allow
designers to focus only on the essential properties of the system under design. For this
reason, hardware designers often use modeling formalisms, such as automata, synchronous
data flow, Kahn-Process-Networks (KPNs), and data-flow synchronous languages based
models. Among these models, the main advantage of data-flow synchronous languages is
that they do not include the well-known state explosion problem, and allow for building the
model by effectively using conditional expressions. The use of such models (i.e., abstracted
symbolic models, which are built in the form of data-flow synchronous languages aspect

Chapter 1. Introduction 3

from hardware designs) significantly reduces the effort of analysis and management, to
meet performance goals in hardware designs. Thus, this effective structure (i.e., symbolic
modeling) is utilized in order to analyze the given designs in the research proposed in this
thesis.

Various self-management approaches, such as control, model checking, heuristics, and
machine learning techniques, can be used to analyze hardware design models and apply an
optimization technique [4]. Compared to other existing techniques for achieving various
performance goals, the main advantage of the Discrete Controller Synthesis (DCS) technique
is that it provides a synthesisable controller with formal correctness. Thus, the research
proposed in this thesis advocates safe design methodologies based on the DCS technique,
in order to achieve power efficiency in hardware circuits. Towards this goal, the objective
of the research is to develop a systematic framework that includes: deriving an abstract
symbolic model from hardware circuit designs and some kinds of control objectives; and then
synthesizing a controller that ensures the given property (i.e., inhibiting clock signals when
required without restricting the behavior of the design) from the abstract symbolic model
by means of DCS technique (i.e., symbolic control) in order to achieve power efficiency
in hardware circuits; and then integrating the controller into the original designs. The
framework can also be automatically employed to derive power-efficient versions from
original circuit designs. The proposed approach can assist designers in tackling average
and/or instantaneous power consumption after designed their behavioral models.

1.1 Problem Statement

The trends outlined above show that with increasing complexity in hardware circuits,
power is one of the major design constraints in today hardware circuits, and RTL clock
gating, which is one of best low power techniques, has become one of the most effective
solutions to achieve power efficiency and also to optimize various performance properties in
hardware circuits. Furthermore, the trends outlined above also show that modeling and
analysis are often required to reason on hardware circuit designs in order to meet various
performance goals with formal correctness by using a controller (i.e., discrete controller
synthesis technique), and they are becoming the main solution of today for such systems;
where the family of data-flow synchronous languages seems to be one of the best solutions,
as it significantly reduces the effort of analysis and management. Given these realities, we
observe that RTL Clock-Gating-Logic (CGL) computation (the principle is illustrated in

4 Mete Özbaltan

Functional
Unit

CGL
enable

Outputs

Inputs

gclk

clk

(a) Principle of the RTL Clock Gating Technique

System S
&

Objective o

C
Yc

Y X

Yuc

(b) Principle of the Discrete Controller Synthesis Technique

Figure 1.1: Observation of the Feedback Control Problem

Figure 1.1a—for details see Section 2.4.1) is actually a Discrete-Controller-Synthesis (DCS)
problem (the principle is illustrated in Figure 1.1b—for details see Section 3.2), where the
similarity of the schematic diagrams between them is illustrated in Figure 1.1 (i.e., the
observation of the feedback control problem). With respect to this, the main research
question of this thesis is:

How to achieve power efficiency in hardware circuits with symbolic discrete control?

The objective of the research proposed in this thesis is to derive power-efficient versions
of original hardware designs at Register-transfer Level with symbolic discrete control. In
this direction, the research covers the following challenges.

• Modeling Formalism: aims to construct abstract models (i.e., symbolic data-flow
synchronous language models) from original hardware designs at the RTL, in order
to analyze them efficiently by focusing only on the essential properties of the system
under design.

• Design Objective: aims to define a strategy that controls clock signals in hardware
circuits to achieve power efficiency.

• Self Management Strategy: aims to apply a technique that provides a synthesisable
controller with formal correctness (i.e., DCS technique).

Chapter 1. Introduction 5

Original
Design

Modeling
Algorithm

Model
&

Objective

Symbolic
DCS

Modified
Design

Controller
(CGL)

Controller
Integration

New
Design

Figure 1.2: Design Flow of the Research Methodology Proposed in this Thesis

• Code Generation & Integration: aims to generate a new hardware design from
the original design by adding necessary components and integrating the resulting
controllers.

• Validation: aims to guarantee that the behavior of a resulting design is strictly
equivalent to the original, and to ensure that it consumes less power.

To the solution of the research question covering the challenges above, we encode the
RTL clock gating computation as several symbolic discrete synthesis problems by using
the data-flow synchronous language aspect, and use the resulting controllers (i.e., CGL) to
derive power-efficient versions form original circuit designs. The design flow of the research
methodology proposed in this thesis is illustrated in Figure 1.2.

1.2 Contributions

In this research, we identified three hardware design problems, where each consists of some
design objectives, in order to achieve power efficiency of synchronous circuits. We consider
that synchronous circuits are implemented as KPNs, and hierarchical compositions of sub-
circuits, described using the popular Hardware-Description-Language (HDL) Verilog at RTL.
We propose a tool-supported framework, which addresses the aforementioned challenges, for
each hardware design problem. The main contributions of this thesis are introduced below.

In Chapter 4, we describe a systematic approach that computes the CGL of synchronous
circuits in order to switch off the clock of each sub-circuit (to save power) when they are
in an idle status. More specifically, we encode the computation as several small symbolic

6 Mete Özbaltan

discrete controller synthesis problems (i.e., an abstract symbolic synchronous model by
using Heptagon language for each individual Verilog modules) by means of the BZR tool,
and use the resulting controllers (where controllable variables represent output wires of
CGLs) to derive power efficient versions from original circuit designs. We demonstrate the
principles using an example, report on its manual application on a realistic case study, and
validate our approach experimentally.

In Chapter 5, we advance our framework introduced in Chapter 4. Our approach
relies on the automatic construction of abstract symbolic models of the design, as well as
associated control objectives (one of them supports the solution of the hardware design
problem introduced in Chapter 4), and employs discrete control techniques to compute a
piece of hardware circuit that implements some power-aware scheduling policies specified in
a declarative way. This piece of circuit can eventually be used to selectively filter the clocks
of the processes involved. The resulted designs are automatically produced by means of our
tool dcs4cgl, where the DCS technique is performed by the tool ReaX, and the abstract
models are encoded on the ReaX environment as well. We illustrate and validate our
approach and the strategies it provides, experimentally using various RTL designs described
using Verilog.

In Chapter 6, we re-specify the objectives placed in Chapter 5 in order to employ an
energy-efficient configuration manager for choosing the optimal configuration, by means of
the clock-gating logic, among the alternatives on data-flow hardware circuits. Our technique
permits the systematic construction of abstract symbolic models of such designs, as well
as associated control objectives, so it is easily implementable. Then, we employ the DCS
technique along with the associated control objectives on the models by means of the ReaX
tool, in order to produce a piece of hardware circuits that implements a configuration
manager with energy reduction guarantees, where the manager behaves as a clock-gating
constraint. We apply and validate our approach on a series of various design flows built from
RTL implementations (described using the HDL Verilog), where we use artificial processing
modules and memory components.

1.3 Thesis Outline

The main goal of this thesis is to achieve power efficiency in hardware circuits with symbolic
discrete control. This thesis is divided into seven chapters and the organization of the thesis
is as follows.

Chapter 1. Introduction 7

First three chapters include an introduction, some technical background information, and
the literature review. Chapter 1 makes an introduction, identifies the problem statement,
introduces our contributions, and gives the outline of this thesis. Chapter 2 provides the
necessary overview of the current state-of-the-art in the context of integrated circuits,
their design methodologies and existing low-power design techniques, and some CAD tools.
Chapter 3 presents the existing modeling formalisms on hardware circuits designs emerged
in the literature and also provides the necessary overview of the DCS technique and its
implementations.

The next three chapters exhibit our contributions, to achieve power efficiency in hardware
circuits with symbolic discrete control. In Chapter 4, we present a framework for the
construction of energy-efficient synchronous circuits with symbolic discrete control based
on the idleness conditions. In Chapter 5, we advance a framework for the construction
of power-aware hardware circuits with symbolic discrete control based on the scheduling
constraints and power-efficiency objectives. In Chapter 6, we describe a framework for
the construction of an energy-aware configuration manager with symbolic discrete control,
based on the energy optimization objective and configuration constraints by supporting
with parallel synchronous processes.

Finally, Chapter 7 provides concluding remarks on the work presented and summarizes
the main conclusions and future recommendations of this thesis.

Some material used in this thesis has already been published/reviewed/submitted, where
the contribution chapters introduce the identification tags.

Chapter 2

State of The Art on Low Power
Synchronous Circuits Design

Nowadays, the power efficiency of integrated circuits is one of the essential factors in modern
embedded systems, and various techniques are used to reduce the power consumption
in hardware chips. However, the clock gating technique, which is implemented only on
synchronous integrated circuits, is one of the most common techniques used for the energy
reduction because the clock power consumes the majority of the total chip power and
synchronous-circuits/clock-signals are used in almost all embedded systems. Thus, low
power synchronous integrated circuits design is of significant importance for constructing
embedded devices, as the circuits have a wide range of usage area [9, 43, 55, 70, 94, 97, 99].

This chapter gives some background information about chip design and presents existing
low power synchronous integrated circuits design techniques. This chapter is organized
as follows: Section 2.1 gives a brief overview of integrated circuits; Section 2.2 presents
the chip design process, and Section 2.3 introduces how chips are described during this
process; Section 2.4 starts with the background information of the clock gating technique,
and it continues with existing low power synchronous integrated circuits design techniques;
Section 2.5 presents some existing design tools used during the chip design process; finally,
Section 2.6 concludes with the summary and discussion.

8

Chapter 2. State of The Art on Low Power Synchronous Circuits Design 9

2.1 Integrated Circuits (ICs)

This section gives some background information that includes definitions, classifications,
architectures, and application areas about Integrated-Circuits (ICs).

Integrated circuits (monolithic integrated circuits) are a group of electronic circuits,
where the whole circuit (up to several billion transistors and other electronic components)
is designed in a single piece of semiconductor material [37].

They are used in almost all electronic devices (e.g., computers, mobile phones, and
any digital devices used in our daily life). The wide range of usage area requires that
they are designed in different types. Furthermore, various architectures have developed for
meeting desired features (e.g., low power, high performance, and flexibility). These types
and architectures are introduced below.

2.1.1 Classification of ICs

The structure of ICs shows the material and technology used during the construction or
fabrication process. ICs can be constructed based on the structure as monolithic, thin/thick
film, and hybrid ; however, in common usage, Integrated-Circuit (IC)/chip is referred to as a
monolithic integrated circuit [101]. In the thesis, the terms Integrated-Circuit (IC)/chip are
used in this way.

A well-known phrase is that the number of transistors on ICs is almost doubled every
year with increasing technology [78]. Indeed, the number of transistors on a chip is over a
billion now. According to the amount, new technical specifications occur and classifications
are reshaping. As an example, Large-Scale-Integrations (LSIs) have up to twenty thousands
transistors. Then, as the number of transistors increased, the new definitions took place
in terminology as Very-Large-Scale-Integration (VLSI) and Ultra-Large-Scale-Integration
(ULSI).

The classification of ICs can be done in various forms (e.g., scale, package type, and
transistor type); however, they have some main characteristics that are introduced below.

Classification of ICs by Function

The function indicates the continuity of amplitude values (analogue, digital, and mixed) by
referring to signals of a chip [101]. Signals have a continuous range of amplitude values in
analogue ICs (e.g., sensors, power management circuits, and operational amplifiers). On the

10 Mete Özbaltan

Combinational
Circuit

Memory

inputs outputs

clock
present state

next state

Figure 2.1: Structure of a Synchronous Circuit

contrary, digital ICs (e.g., microprocessors, digital signal processors, and micro-controllers)
process by using a finite set of discrete values of the signals.

Classification of Digital ICs

Digital ICs can be classified as combinational and sequential [52]. Combinational ICs (e.g.,
adder, code converter, decoder, and multiplexer) consist of logic gates, where the outputs at
any instant depend on the current inputs at that instant only. Sequential ICs (e.g., state
machine, counter, and shift register) also consist of logic gates; however, the outputs at
any instant depend not only on the current inputs but also on previous inputs. Therefore,
combinational ICs do not have any memory, whereas sequential ICs have memory (e.g.,
register, flip-flop, latch), where previous values are stored in.

Classification of Sequential ICs

Sequential ICs can also be divided into synchronous and asynchronous within itself based
on trigger signals of the circuit [41]. Synchronous ICs are triggered with a global clock
signal to control the operation of the circuits, and the generic structure of a synchronous
IC is illustrated in Figure 2.1. On the other hand, asynchronous ICs do not have a clock
signal; instead, they use signals that show the completion of tasks to control the operation
of the circuits.

Chapter 2. State of The Art on Low Power Synchronous Circuits Design 11

2.1.2 Architectures of ICs

Chips are used almost in every area of life and they try to satisfy different kinds of demands.
However, modern embedded systems have some design constraints [38]. On the one hand,
designers are expecting high performance from them. On the other hand, they should still
be energy efficient and flexible to be used for some kinds of tasks. Thus, new architectures
are developed in order to overcome these constraints. Architectural development is not
restricted just for a single component (e.g., processor). It also includes more complex
design, such as that some components piece together in a single chip in order to get high
performance.

The main architectural concepts are flowing as processor, memory, interconnect, and
system-on-chip.

Processor

Processors are a group of electronic circuits, where the whole circuit performs operational
tasks by using data from the environment. A processor can be an IC itself or a part of it.

Processors are designed for intended usage (i.e., to always perform the same task or
for alterable tasks). There are several architectures available for different usage areas.
According to [95], these architectures can be classified into two main domains: general-
purpose computing and application-specific computing.

The general-purpose computing domain supports different kinds of tasks. These the
processors are programmable and they are called General-Purpose-Processors (GPPs). On
the other hand, processors that focus only on a specific task in the application-specific
computing domain are called Application-Specific-Integrated-Circuits (ASICs). ASICs have
better performance than GPPs, whereas GPPs offer higher flexibility.

Apart from these domains, there is also a domain that provides both high performance
and flexibility, and it is called reconfigurable computing [95]. These processors, e.g., Field-
Programmable-Gate-Arrays (FPGAs), can be described many times in order to process any
desired task (i.e., as if it is redesigned in a factory each time).

Memory

A memory is a component on a chip for data storage, and memory architectures have an
enormous impact in order to overcome design constraints, so they should allow quick access
to data. Basically, memory architectures can be divided into distributed and shared memory

12 Mete Özbaltan

Tile-1
PE

Memory NI

Tile-2
PE

Memory NI

Tile-3
PE

Memory NI

interconnect (NoC)

Figure 2.2: Tile Based MPSoC Block Diagram

systems based on data accessibility [27, 104]. In a shared memory system, all processors
communicate with a single (global) storage. On the other hand, each processor has a local
storage in a distributed memory system; however, they can still communicate with each
other via interconnect.

Interconnect

Interconnect provides connections between components on a chip for carrying data. Intercon-
nect can be provided using traditional bus techniques, which have a restricted bandwidth, or
interconnect can be provided with a Network-on-Chip (NoC), which is a system, composed of
some components e.g., Network-Interface (NI), that only deals with communication [4, 104].

System on Chip (SoC)

A System-on-Chip (SoC) is a complex IC that involves all necessary components (e.g.,
processor, memory, and interconnect) on a single chip [57]. A circuit that includes more than
one processor can also be called Multi-Processor-System-on-Chip (MPSoC). The types of
processors can be the same or different, and the respective MPSoCs are called homogeneous
and heterogeneous, respectively.

Figure 2.2 shows a tile based MPSoC block diagram, where each tile is a largely
independent sub-system in a MPSoC and is generally composed of Processing-Element
(PE), memory, and interconnect. In the diagram, the NIs, the sub-components of the NoC,
provide communication both locally (between a processor and memory, in each tile) and
globally (between the tiles).

Chapter 2. State of The Art on Low Power Synchronous Circuits Design 13

2.2 Chip Design Process

The previous section gives some information about the main types and architectural concepts
of ICs, and this section presents their design process that consists of some stages/levels/layers.
Furthermore, this section introduces chip design methodologies and the evolution of chip
design.

2.2.1 Evolution of Chip Design

Chip design has evolved rapidly over the last four decades [44, 45, 81]. The first ICs
called Small-Scale-Integrations (SSIs) involved a very small number of transistors, and their
construction was easy because their design models consisted of a very small number of
connections between these very small number of transistors. These the construction, made
with transistors, is called transistor-level (the lowest level) design; the main concern of
low-level design was the physical layout plan (e.g., placement and routing).

As the technology advanced and the transistor size decreased, designers were able to
place a higher amount of transistors on a circuit called Medium-Scale-Integration (MSI) or
Large-Scale-Integration (LSI); however, design became more complex, and the layout plan
became non-manageable. In order to overcome design complexity, designers began to use the
abstraction methodology, which advocates that design consists of a hierarchical structure
that larger blocks (higher levels) include abstracted smaller blocks (lower levels). The aim
of the abstraction methodology is always the next higher level of abstraction. In this case,
the respective levels were transistor and gate/logic, from low-level to high-level respectively.
Thus, designers started to make a design at the new level called Register-Transfer-Level
(RTL).

In order to support the abstraction methodology: first, designers created libraries of
lower level components in order to use them on the next high-level; then, some design tools
called Computer-Aided-Design (CAD) tools were developed to make a design with higher
level components, and to decompose these components towards lower level components,
and to simulate the design by using lower level components. This decomposition, called
hardware synthesis, supports to generate lower level descriptions of a design automatically
from the higher level descriptions, so the design can be constructed with fewer components
and less error-prone. Thus, CAD tools (e.g., hardware synthesis) have managed low-level
problems, such as the layout plan, because the models of low-level design are generated
automatically (i.e., CAD tools replaced human designers). As a result, the advent of logic

14 Mete Özbaltan

synthesis, where logic synthesis is a special name of hardware synthesis at the relevant level,
has reduced design time dramatically and has made a design to be more reliable.

When chips, e.g., Very-Large-Scale-Integration (VLSI) and Ultra-Large-Scale-Integration
(ULSI), have continued to contain a higher amount of transistors, researchers and industry
began to focus higher levels of abstraction, and they abstracted the Register-Transfer-Level
(RTL) and algorithmic-level, respectively. The aim of all levels of abstraction is to use
fewer components in order to make a manageable, rapid, and reliable design; details of
abstraction levels are introduced in the next section. Now, the system-level is the highest
level of abstraction and promises to reduce problems between hardware and software by
supporting to develop hardware design simultaneously with software design.

As a result that higher levels of abstraction let design to be automatic, to complete
quickly, to be more reliable and less error-prone, by getting help from CAD tools. Although
CAD tools are available to automate the design process, designers are still responsible to
control how the tools are working at each level. Today, design can be done at any level
that is mentioned above; however, the design process generally continues fully automated
after the RTL. In addition, although the target of the abstraction methodology is a higher
level of abstraction, the most popular implementation area is the RTL, and research is still
continued for all levels of abstraction.

2.2.2 Abstraction Levels

As the number of transistors on a chip increased, chip design became more complex [44, 45,
81]. Thus, designers began to use the abstraction methodology in order to overcome design
complexity. The abstraction methodology advocates that design consists of a hierarchical
structure that larger blocks include smaller blocks, and both the bottom-up (i.e., larger
blocks that are constructed by using smaller blocks) and top-down (i.e., smaller blocks that
are decomposed from larger blocks) approaches can be used in order to make a chip design by
using these blocks. The aim of the methodology is an abstraction between larger and smaller
blocks/components, so designers focus just their own design level without considering design
details of other abstraction levels. Thus, a chip design can be constructed more efficiently.

Various abstraction levels are shown in Figure 2.3, which is called Y-chart, and they are
identified by concentric circles. The Y-chart was developed in order to explain differences
between different abstraction levels and claims that any design can be modeled in three
ways without considering whether it is complex [44, 45, 46]. These three models, behavioral,

Chapter 2. State of The Art on Low Power Synchronous Circuits Design 15

Structural DomainBehavioural Domain

Physical Domain

TransistorLevel

TransistorTransistor Function

Transistor Layout

LogicLevel

Gate, FlipFlopLogic Function

Cell Layout

RegisterTransferLevel

Register, ALU, MUXRegister Transfer Function

Module Layout

AlgorithmicLevel

Sub-system, ProcessorAlgorithm

Floorplan

SystemLevel

CPU, MemorySystem Specification

Physical Partition

Figure 2.3: Y-Chart Design Model

structural, and physical, are represented in the Y-chart by three axis.

• Behavioral Model: Design specifications and functionalities are described. Models
at different levels include transistor function, logic function, register transfer function,
algorithm, and system specification.

• Structural Model: Block diagrams and netlists are designed generally by using a
behavioral model. Models at different levels include Central-Processing-Unit (CPU),
memory, processor, Arithmetic-Logic-Unit (ALU), register, Multiplexer (MUX), gate,
and transistor.

• Physical Model: Layout and board design are arranged generally by using a struc-
tural model. Models at different levels include transistor layout, cell layout, module
layout, floor plan, and physical partition.

The Y-chart allows that design can be easily manageable at all levels because these three
models show different characteristics of the same design. These three representations can be
modeled separately from each other with their concepts along abstraction levels. However,

16 Mete Özbaltan

almost all designers use the top-down methodology in the literature, so the generic design
flow follows that: first, designers implement the behavioral model of design at the desired
level; latter, the structural model (which represents block diagrams of the components,
where the components consist of next low-level components) and physical model (which
adds geometric dimension to the structural model) are automatically generated from the
behavioral model by the help of CAD tools (i.e., hardware synthesis); then, the design
continues with the next low-level behavioral model (which is automatically obtained from
the structural model); and then, the design follows the design flow until reaching to the
lowest level physical model [4, 44, 45]. The abstraction levels available in the Y-chart are
introduced below.

Transistor Level

The transistor-level, where a design is constructed by using transistors, resistors, capacitors,
and etc. or contains them, is the lowest level of abstraction [25, 44, 45, 102].

The structural models, which represent connections between transistor-level components,
are generally synthesized automatically from the behavioral models, which describe func-
tionalities between transistors by using Hardware-Description-Languages (HDLs) 2.3. Then,
the physical models, which show the placement of transistors on board, are created from
the structural models by using CAD tools (e.g., placement and routing).

However, the manual implementations are very difficult while considering huge design and
complexity. The behavioral descriptions are generally obtained automatically from the logic-
level (next higher level). Therefore, logic-level components (e.g., gate and flipflop), which
are stored in transistor-level libraries, are constructed by using transistor-level components,
at this level in order to use them in the logic-level.

Once a physical model is produced, the fabrication process starts with the transistor
layout description. In addition, there are also some stages (e.g., device-level and technology-
level) which consider the transistor parameters such as size and temperature, at the
fabrication process.

Logic Level

The logic-level is an abstraction level where the building blocks are standard cells (e.g., gate
and flipflop) in a design [25, 44, 45, 102].

The implementations can be modeled in a similar way as in the transistor-level by using

Chapter 2. State of The Art on Low Power Synchronous Circuits Design 17

standard cells instead of transistors. However, the manual implementations take a very
long time like as in the transistor-level, because there are too much design details. The
behavioral descriptions are generally synthesized automatically from RTL (next higher
level) components (e.g., register, alu, and mux), which are constructed by using logic-level
components and are stored in logic-level libraries. Thus, designers generally prefer to do
optimization at the RTL by using simulation/feedback results of gate-level netlists (where
the netlists are automatically generated from a behavioral RTL code), instead of doing
logic-level implementations. Once the optimization of a design is completed, the design
continues at the transistor-level (next lower level) by using the logic-level structural model,
which can be transformed into a transistor-level behavioral model.

Register Transfer Level (RTL)

The Register-Transfer-Level (RTL) is a micro-architectural level, where a design is con-
structed as a hierarchical structure by using functional blocks called modules, which are
built by using the components (register, alu, and mux) available in logic-level (next lower
level) libraries [25, 44, 45, 81, 102].

The most popular implementation area on chip design is the RTL, so the studies are
intensified in this level. Thus, various techniques are developed for design optimization
(e.g., high performance, low power, and less area usage), where the optimization is on the
behavioral models, which are some piece of code written by using HDLs 2.3.

The structural models show block diagrams of interconnected RTL components, and they
are generally synthesized from the behavioral models, which supply the functionality of the
interconnected components. Thus, the physical models show the module layout composed
of the RTL components.

As mentioned above, designers generally implement the behavioral models and synthesize
them in order to generate the structural models and low-level models. Then, they apply
optimization on the behavioral codes by using simulation results of gate-level netlists, where
the results include some design information (e.g., functional correctness). Once a design
completed at this level, then the design process continues as a fully automated until produced
a hard device.

18 Mete Özbaltan

Algorithmic Level

The algorithmic-level is a layer of abstraction where a design consists of functional blocks
and/or subsystems (e.g., hardware module, processor, custom hardware component, and
intellectual property), which are the components constructed at the RTL (next lower
level) [25, 44, 45, 102].

The aim of this level is: to describe the behavior of a design by using algorithms and
mathematical expressions, as a set of concurrent programs; and/or to create the libraries
that include system-level (next higher level) components (e.g., cpu and memory), by using
functional blocks, in order to use them in the system-level.

The structural models, which represent interconnected functional blocks, can be manually
implemented by using algorithmic-level components or can be automatically synthesized
from the behavioral descriptions, which can be specified by using HDLs 2.3. Although the
physical models can be obtained from the structural models by using CAD tools (if the
RTL library used stores the layout of components), it is not generally preferred at this level.
Thus, design continues at the RTL by converting the structural models to RTL behavioral
descriptions.

System Level

The system-level, where a design is simultaneously constructed with hardware and soft-
ware, is the highest level of abstraction and describes connections between main/system
components/blocks (e.g., cpu, memory, and processor) [44, 45].

The manual implementations can be modeled easily because there are few components
used in a design. The behavioral models represent functionalities of components’ communi-
cation, such as that a model can include pipelining or parallel process between processors.
Functionalities can be described by using HDLs 2.3 as a behavioral code that consists of
a Finite-State-Machine (FSM). The structural models, which represent block diagrams of
system components, can be obtained manually by using system components or automatically
from the behavioral descriptions. Then, if the algorithmic-level (next lower level) libraries
used in design support to access layout models of components, the physical models can be
generated from the structural models. However, the generation of the physical models is not
generally preferred at this level by designers, so design continues at the algorithmic-level by
using the structural models, which involve algorithmic-level components.

Chapter 2. State of The Art on Low Power Synchronous Circuits Design 19

2.2.3 Chip Design Methodologies

As the complexity of chip design increased, designers started to make a design at higher
levels of abstraction. In order to make that, they created higher level components by using
lower level components, in order to use them at higher levels. Thus, the components used
at higher levels are available in libraries by storing design information (e.g., behavioral,
structural, and physical models) of lower level components. However, it is not required that
all design information are always available in libraries for a chip construction. As an example,
a higher level component can be constructed as a whole component that holds all design
parameters/information, or it can be constructed with some missing parameters/information
(e.g., physical model), which will be included to design at further design steps. Thus,
final design can be obtained by using various methodologies. Which methodology is used
is generally depending on manufacturers and products. However, design methodologies
can be broadly divided into three approaches as bottom-up, top-down, and meet-in-the-
middle [25, 44, 45, 102].

The bottom-up approach is the methodology that higher level components are constructed
by using lower level components with their all design parameters/information. Design
constructions start at the lowest level (transistor-level), and once design gets the desired
level, constructions are completed, because all design information (i.e., physical model) are
available for the fabrication process.

In the top-down approach, a design is constructed in the opposite direction of the bottom-
up approach. The construction starts at the desired level, and the components used in the
design are decomposed towards to lowest level components. Higher level components include
only behavioral and structural models of lower-level components, so there are some missing
parameters/information (e.g., the physical model of lower level components) in higher level
design. Once the structural model of the transistor-level (lowest level) is obtained, the
physical model is generated from the structural model, and the design is completed.

A design has a long process at the bottom-up approach because all design parameters/in-
formation of all abstraction levels must be available in libraries. Thus, any changes in lower
levels may affect the whole design. However, designers have full knowledge of all design at
any time. Although the top-down approach offers a very quick design, designers can not
have full knowledge of a design before the design is completed. Thus, the approach does not
allow optimization about design metrics unless a design is completed.

The meet-in-the-middle approach is located between the bottom-up and top-down

20 Mete Özbaltan

approaches, in terms of advantages and disadvantages. A design construction starts together
at the desired level and the lowest level. A design coming from the lowest level with all
design details, and a design coming from the highest level with missing design information,
come together in the middle. Thus, designers have full knowledge about the design at a
level which is located in the middle.

In the literature, almost all designers use the top-down approach, because it offers
a shorter time-to-market. However, one trend in embedded systems is that the size of
products is decreasing, so it pushes manufacturers to use the meet-in-the-middle approach
in order to have knowledge about the physical model of design at higher levels. As a result,
manufacturers determine the methodologies used in a design by depending on products.

2.3 Hardware Description Languages (HDLs)

In the previous section: the chip design process and abstraction levels are introduced by
using the Y-chart, which claims that a design can be modeled in three ways; and it is also
mentioned that designers generally use the generic design flow, where the generation of a
behavioral model is enough for the chip construction, in design. In this section, Hardware-
Description-Languages (HDLs), which are used for the implementation of a behavioral
model, are introduced and are detailed through an example language, Verilog.

Figure 2.4 shows the generic chip design flow. As it has shown in the flow, hardware
synthesis is one of the design tasks during the chip design process in order to automatically
generate the low-level description of a design from the high-level behavioral model; and
HDLs are a language that is used to describe these behavioral models as a set of concurrent
programs by using the components available in libraries. However, designers have different
requirements to implement a behavioral model for each level of abstraction because the
components used in each level of design are also different, as well as the functionality required
between components. Thus, there are several HDLs, where each supports to make a design
at different level/s, and they are sometimes categorized based on the level of abstraction [93].
Some common languages, SystemC, VHDL, and Verilog, are briefly introduced below, and
then, Verilog, the most popular HDL, is detailed.

SystemC is a C++ class library that creates a model of hardware architecture at high-
levels (e.g., system-level) [21, 48]. It was developed in order to make all system design
tasks together, such as software and hardware synthesis, because before the invention
of SystemC, designers were creating the high-level model of a design by using high-level

Chapter 2. State of The Art on Low Power Synchronous Circuits Design 21

Specification

High Level

High Level Synthesis

Register Transfer Level

Logic Synthesis

Logic Level

Placement & Routing

Fabrication

Gate Level Simulation

Functional Verification

Figure 2.4: Generic Chip Design Flow

languages (e.g., C/C++); and lower level (e.g., generally RTL) designers were continuing
the design with the lower level model that is transformed from the high-level model, which
could cause incompatibility between high-level and low-level designs; and then, the software
was being built on top of the hardware design, which could also cause incompatibility
between the hardware and software design. Thus, SystemC has managed these problems by
simulating and synthesizing all design tasks together. Furthermore, SystemC has provided
compatibility between high-level and low-level designs because it supports not only features
of the object-oriented approach but also features of the hardware-oriented approach, such
as low-level timed, cycle-accurate, and component models. By the way, the behavioral
models and/or hardware components are constructed by using modules, which are the
basic building blocks in a design, as a set of concurrent programs as in hardware-oriented
languages; however, modules, which contain input/output ports, are a functional block
constructed by using standard C language concepts.

VHDL, which is influenced from Pascal and Ada languages, is a HDL that can be used
from the logic-level to the algorithmic-level; however, it is generally preferred at the RTL and
also supports to use different levels of abstraction to be mixed in the same model [86, 93].
The models are implemented in a design without depending on technology, so a hard chip
can be constructed in a factory by using only the model, without requiring any extra

22 Mete Özbaltan

1 module m (input clk, input start, input [7:0] data_in, output [7:0] data_out, output reg done);
// Constants Declarations
parameter initialization=0; parameter calculation=1;
// Data-Tpes Declarations

5 reg state; reg [7:0] memory;
// Data-Flow Assignments
assign data_out=memory;
// Initial Statement
initial begin state=initialization; memory=0; end

10 // Always Statement
always @(posedge clk) begin
case (state)
initialization: begin done<=0; if (start) begin state<=calculation; end end
calculation: begin memory<=data_in; done<=1; state<=initialization; end

15 endcase
end

endmodule

List. 2.1: Verilog module m, faking computations on data given on input wires “data_in”
upon request “start”. Output wires “data_out” carry its result, available when “done”
becomes “1”.

manual implementation. The design concept is to create functional blocks called entitys or
components as a set of concurrent programs in a hierarchical structure, where a block has
input/output ports, hardware data-types, and memory; and functionalities can be easily
supplied by composing Finite-State-Machines (FSMs) and/or using statements of C-like
language concepts such as “if”, “case”, and “for”.

Before the invention of HDLs, hardware descriptions were being made by using pro-
gramming languages, such as Fortran, Pascal, and C; however, designers were needing a
standard language to describe digital circuits because programming languages were not being
satisfied designers’ requirements, such as the concurrency [81]. Thus, HDLs were developed,
and Verilog, one of the first HDLs, is the most commonly used HDL now. Furthermore,
Verilog offered tremendous improvements, such as to support logic synthesis and schematic
diagrams, for designers; because until the invention of Verilog, HDLs had been used only for
a logic verification/simulation and had not been supported to show the schematic diagram
of a behavioral model. Thus, Verilog is both a behavioral and structural language. Also,
Verilog supports to make a design at from the transistor-level to the algorithmic-level as a
hierarchy of functional blocks/modules, by supporting to use different levels of abstraction
to be mixed in the same model; however, in the digital design community, the term RTL is
generally used for a Verilog description that uses a combination of the algorithmic, RTL,
and logic levels. Some main concepts of Verilog are given below.

The behavioral model of a design/chip is constructed by using a HDL with its concepts,

Chapter 2. State of The Art on Low Power Synchronous Circuits Design 23

1 module M (input clk, input start, input [7:0] data_in, output [7:0] data_out, output done);
// Data-Tpes Declarations
wire start_m1, done_m1, start_m2, done_m2;
wire [7:0] data_in_m1, data_out_m1, data_in_m2, data_out_m2;

5 // Data-Flow Assignments
assign start_m1=start; assign start_m2=done_m1; assign done=done_m1 & done_m2;
assign data_in_m1=data_in; assign data_in_m2=data_out_m1; assign data_out=data_out_m2;
// Module Instantiations
m m1 (.clk(clk), .start(start_m1), .data_in(data_in_m1), .data_out(data_out_m1), .done(done_m1));

10 m m2 (.clk(clk), .start(start_m2), .data_in(data_in_m2), .data_out(data_out_m2), .done(done_m2));
endmodule

List. 2.2: Verilog module M, instantiating m of List. 2.1 twice, as m1 and m2, in a pipelining
mode where m1 feeds m2.

where concepts of different HDLs show similarities. As an example, behavioral models
are a hierarchy of functional blocks as a set of concurrent programs, where a block has
input/output ports, data-types, and memory. Thus, some main concepts of HDLs are
introduced with an example of a Verilog behavioral model, where the behavioral model
consists of two source files illustrated in List. 2.1 and List. 2.2. The main concepts introduced
below are data-types, functional blocks and ports, instantiations, and representations of
different levels of abstraction [81].

2.3.1 Data Types

Basically, there are two data-types available as net and register in order to declare a variable
in Verilog; and variables can take some types of values, such as boolean, binary, and decimal.
A variable of net type takes values continuously and only shows the current value of the
assignment, so the variables do not have memory, and they are generally declared by the
keyword wire as at line 3 in List. 2.2. On the other hand, a variable of register type takes
values on discrete time and shows not only the current value but also the previous value,
which is stored in itself, so the variables have memory, and they are generally declared by
the keyword reg as at line 5 in List. 2.1.

The variables declared by only keywords (e.g., “reg state;” at line 5 in List. 2.1 and
“wire start_m1;” at line 3 in List. 2.2) are in the boolean domain (called bit in the chip
design community) and only take values of a set of {0,1}, so the variables have one bit length.
On the other hand, variables can also be declared as a vector that has multiple bit widths
(e.g., “memory” and “data_in_m1” have 8 bit lengths by declaring as “reg [7:0] memory;”
at line 5 in List. 2.1 and “wire [7:0] data_in_m1;” at line 4 in List. 2.2).

24 Mete Özbaltan

Verilog also supports some facilities, such as array and constant declarations. As an
example, constants can be declared by some keywords, generally parameter, in order to use
names of parameter-type instead of constants (e.g., “parameter calculation=1;” at line 3
in List. 2.1).

2.3.2 Functional Blocks and Ports

Functional blocks are a circuit where the outputs are expressed as a function of the inputs,
and are the basic building block in design, and are called modules in Verilog. List. 2.1 and
List. 2.2 represent the modules, m and M, respectively. Modules are declared by the keyword
module, a specific name, and a list of input/output ports, as at first lines in List. 2.1 and
List. 2.2; and the keyword endmodule indicates the end of a module as at the last lines.
The body of a module describes how inputs are transformed into outputs, in the form of a
set of equations. Furthermore, Verilog supports to use some operators (e.g., mathematical,
logical, and bit-wise) and statements (e.g., “if”, “case”, and “for”), in order to supply the
functionality of a module.

Ports provide communication with the environment by carrying data values. Input
and output ports are declared by the keywords input and output, as at the first lines, and
their data-types are net unless specified as register (e.g., “output reg done” at first line in
List. 2.1).

2.3.3 Instantiations

Verilog supports a hierarchical design by using modules, where a design has only one
root/main/top module. A module is a template that provides the functionality specified;
and instances are an object created from a template/module, where each object has its own
name, inputs, outputs, variables, and etc. A module can use features of another module by
creating an object/instance from it, and the process is called instantiation, and a module,
except a top module, can be available in a design only by instantiating it.

The instance declaration is similar to the module declaration. Instances are declared
in a module by a source module name, a specific name, and a list of input/output ports
of the source module, where each port also includes a specific name in parentheses. As an
example, module M of List. 2.2 instantiates module m of List. 2.1 two times as m1 at line 9
and m2 at line 10.

Chapter 2. State of The Art on Low Power Synchronous Circuits Design 25

2.3.4 Statements

In Verilog, the functionality of models is provided with a set of concurrent statements, where
the statements can be divided into two categories: assignment and conditional. Assignment
statements provide to update a value on a variable by the signs “=” and “<=”. On the other
hand, conditional statements are used to decide whether or not an assignment statement
should be executed (e.g., by using C-like language concepts, such as “if”, “case”, and “for”).
In addition, conditional statements can include a group of statements, where each member
of statements places between the keyword pairs such as begin and end.

2.3.5 Structural Representation

Verilog supports to make a design at the logic-level by using standard cells, such as “and”, “or”,
and “xor”. The models made with standard cells are called structural model/representation;
however, structural representations are in the behavioral domain of the Y-chart, so the
term structural representation is a somewhat confusing term. To clarify, Verilog supports
to make a design in the structural domain of the Y-chart, by using schematic diagrams,
and schematic diagrams can also be exactly specified by using notations, in the behavioral
domain of the Y-chart; so the representations are called structural. As an example, the
relation between three variables of net-type, “x”, “y”, and “z”, are constructed by using logic
gate “and ” below.

The notation of “and (z,x,y)” represents the schematic of
x
y z

.

2.3.6 Data-Flow Representation

Verilog supports to make a design at the RTL in terms of the data flow between variables
(e.g., registers and nets), and this kind of a model is called data-flow model/representation.
Data-flow representations provide the means of describing combinational circuits by their
function. The functionality of the models is provided with a set of concurrent continues
assignments, so only net-type variables have an assignment in data-flow representations;
however, their assignments can include any type of variables (e.g., register and net) by means
of logical expressions. Thus, continuous assignments describe the logical values taken by
the corresponding variables at any instant by means of logical expressions. The assignments

26 Mete Özbaltan

are declared by the keyword assign and corresponding expressions, as at line 6 in List. 2.2.
Also, a continuous assignment can be declared implicitly, such as “wire w=exp;”.

2.3.7 Behavioral Representation

The highest level supported by Verilog is the algorithmic-level, and a model constructed at
this level of abstraction is called behavioral model/representation, and the representations
are mostly used to describe sequential circuits. The functionality of the models is provided
with a set of concurrent procedural assignments, where each assignment only appears inside
the structured procedure statements, initial and always.

Procedural assignments only update values of register-type variables, where each update
depends on a conditional statement; and a register can have multiple assignments. There
are two types of procedural assignments, blocking and nonblocking. Blocking statements
provide a priority that the first written register is updated first, between assignments where
the conditions are provided (e.g., the sign “=” provides that “state” is updated earlier than
“memory”, at line 9 in List. 2.1). On the other hand, nonblocking statements provide the
concurrency between assignments where the conditions are provided (e.g., the sign “<=”
provides that all the registers at line 14 in List. 2.1 are updated concurrently).

Initial statements are a conditional statement, where the condition is whether the time is
at the beginning. Initial statements include only procedural assignments and load the initial
value of a register, and they are declared by the keyword initial as at line 9 in List. 2.1.
Always statements are also a conditional statement; however, the conditional statement
has a sensitivity list that is used to decide whether or not a statement should be executed.
The system is called triggering mechanism, and always statements include only procedural
assignments. A sensitivity list consists of variable/s available in a model, and the triggering
mechanism is always listening to the sensitivity list in order to trigger the execution of the
procedural assignments in the always statement. There are two types of sensitivity list:
event-based triggering for asynchronous circuits, by using any variables; and clock-based
triggering for synchronous circuits, by using only clock signals (e.g., “posedge clock”,
positive edge of “clock” signal). Always statements are declared by the keyword always
and a sensitivity list, as at line 11 in List. 2.1.

Chapter 2. State of The Art on Low Power Synchronous Circuits Design 27

VDD

Vin

CL

Vout

(a) Static Inverter

VDD

Vin

clock

CL

Vout

(b) Dynamic Inverter

Figure 2.5: CMOS logic/gate inverters invert the given value Vin, on the output value Vout,

by using PMOS and NMOS transistors.

2.4 Low Power Synchronous Circuits Design Techniques

The sections above in this chapter give general information on how to design any circuit.
This section presents existing low power approaches on synchronous circuits design and
introduces the clock gating technique, one of the most commonly used low power technique
on synchronous circuits.

Power consumption PTotal is one of the important design constraints in chip design
and generally consists of static and dynamic [59, 65]. Static power PStatic is consumed
by a circuit during its sleep mode (i.e., when the signals do not alter), whereas dynamic
power PDynamic is consumed by the circuit during its active mode (i.e., while the signals
are altering). PStatic is expressed as:

PStatic = IStatic ∗ VDD,

where IStatic is the static current (i.e., when the signals do not alter), and VDD is the
supply voltage. The PDynamic equation is given below, through an example in Figure 2.5.
Figure 2.5a shows a Complementary-Metal–Oxide–Semiconductor (CMOS) static logic gate

28 Mete Özbaltan

inverter, where a CMOS circuit consists of two transistors, PMOS (P-type MOS) and NMOS
(N-type MOS), which are the most commonly used transistor types on chip design.

When the input Vin is low, the PMOS is on and the NMOS is off; and if the capacitor
CL is empty, CL, which represents the load capacitance of this circuit, becomes charged.
The energy provided from the power supply VDD is then expressed as:

EVDD
=

∫ ∞
0

IDD(t) ∗ VDD ∗ dt

= CL ∗ V 2
DD,

and the energy stored in CL is expressed as:

ECL
=

∫ ∞
0

ICL
(t) ∗ Vout(t) ∗ dt

= 0.5 ∗ CL ∗ V 2
DD.

As shown in the equations, half of the energy is stored in CL while the other half is consumed
by the PMOS. Then, when Vin switches are high, the PMOS switches off and the NMOS
switches on; and the stored energy on CL is consumed by the NMOS. Thus, if the switching
activity on Vin continues periodically, switching power, consumed by either the PMOS or
NMOS, PSwitching is expressed as:

PSwitching = 0.5 ∗ CL ∗ V 2
DD ∗ fsw,

where fsw is the switching frequency of Vout; and PDyanmic generally refers to PSwitching.

2.4.1 Clock Gating Technique

Clock signals are the circuit signals that ensure that the other signals switch periodically
(with clock frequency fclk). As an example, Figure 2.5b shows a dynamic inverter (i.e., has
clock signal). If it is assumed that Vin switches every clock cycle, PDyanmic is expressed as:

PDynamic = 0.5 ∗ CL ∗ V 2
DD ∗ fclk.

However, signals generally do not switch every clock cycle, so the equation can be rewritten
as:

PDynamic = α ∗ 0.5 ∗ CL ∗ V 2
DD ∗ fclk,

Chapter 2. State of The Art on Low Power Synchronous Circuits Design 29

CGC

en

clk

Control
Generation

data

gclk
clock

GC

VoutVin
in out

Figure 2.6: Basic Principle of The Clock Gating Technique

where α is the switching activity factor (i.e., it is a value between 0 to 1 giving the probability
of the switching of Vout per clock cycle). Thus, a circuit can consume power even when
the input signals do not change. As a result, the total power of a synchronous circuit is
expressed as:

PTotal = IStatic ∗ VDD︸ ︷︷ ︸
PStatic

+α ∗ 0.5 ∗ CL ∗ V 2
DD ∗ fclk︸ ︷︷ ︸

PDynamic

.

The clock gating technique is a low power technique on synchronous circuits, applied by
decreasing α, where all the parameters in the equation except α depend on the technology
and/or performance; it is used to selectively cut off the clock of components with the aim of
reducing the power dissipation induced by the switching activity it incurs; however, it is
generally applied when outputs do not change [65, 92, 94, 96, 97, 98, 100]. Figure 2.6 shows
a basic principle of the clock gating technique. GC (Gated-Component) represents the
desired component clock-gated in a circuit, where in and out are a set of input and output
signals of GC, respectively. GC can be put in sleep mode by switching-off the clock signal
(clk) by means of a Clock-Gating-Cell (represented with CGC), which consists of some logic
element/s (in this case an “and” gate) that produce gated-clock (represented with gclk)
by using the original clock source of a circuit and an enable-signal (represented with en)
produced, for reducing the power consumption. The mechanism applied is the clock gating.
It saves power by switching-off the clock of a component whenever desired by means of an
enable signal. Various approaches (some of them are introduced in the next section) have
then developed in order to generate enable signals. However, the basis of the generation of

30 Mete Özbaltan

an enable signal is a logic computation (represented with Control Generation) that uses a
subset of variables in a circuit (represented with data).

2.4.2 Existing Approaches

Power efficiency is nowadays of paramount importance for constructing synchronous circuits,
and various techniques can be used to reduce power consumption by decreasing each
parameter on the PTotal equation above. Implementations start at the technological level
by using various device-level techniques, such as the transistor sizing technique [47], which
is the operation of sizing the width of the channel of a transistor. They continue up to the
system-level by using system-level techniques, such as scheduling [32], which schedules the
execution time of hardware blocks by the help of software blocks. Some techniques, such
as clock-gating [87] and power-gating [22], can also be used at multiple levels, where the
power-gating technique uses a gating mechanism for switching-off the supply voltage when
outputs do not change. Furthermore, voltage scaling techniques are highly preferred on chip
design, as they reduce the power exponentially. The multi-supply-voltage technique [61]
and dynamic-voltage-scaling technique [56] separate the supply voltage to some voltage
domains, where more time-critical blocks run at higher power supply voltage domains;
and in the multi-threshold-voltage technique [83], lower threshold-voltage (the minimum
gate-to-source voltage) transistors are used in more critical blocks in order to reduce the
sub-threshold leakage, which is the leakage current between the source and drain pins of
a MOS transistor when the gate voltage is less than the threshold voltage. In addition,
it is possible to use some techniques together. As an example, [66] uses the clock-gating
and power-gating techniques together. An optimized bus-specific-clock-gating scheme is
proposed to improve the traditional XOR-based clock-gating, and the scheme chooses only a
subset of FlipFlops to be gated selectively, which converts the gated FlipFlops selection from
exponential to linear; then, the combinational logic elements, which completely depend on
outputs of clock-gated FlipFlops, are power-gated in order to switch-off the supply voltage
if the FlipFlops are performing redundant operations. As a result, various techniques can
be used in order to reduce power consumption on synchronous circuits design. However,
maximum power saving potential is on the clock gating, so it is the most common technique
used by designers.

The clock gating technique is generally grouped into three broad categories [51]:
(i) system/block-level [19], the method of switching-off the clock signal of a circuit block

Chapter 2. State of The Art on Low Power Synchronous Circuits Design 31

as a whole by identifying idle periods (i.e., enable signal) of the block for the duration of
the idle periods; (ii) combinational [100], the method of switching-off the clock signal of
a flip-flop/register when the output does not change; (iii) sequential [67], the method of
switching-off the clock signal of a flip-flop when the output data is not used by a subsequent
stage of the pipeline. Furthermore, the clock gating technique can be applied at different
hierarchical levels from the system-level to gate-level [98], such as architectural-level [68],
RTL [33], and circuit-level [8]. However, the RTL clock gating technique is the most com-
monly used technique for reducing dynamic power on synchronous circuits because most of
the designers make a design at the RTL, which is the best level during the design process to
reduce dynamic power [58, 94].

The target of the clock gating is the gated-clock signal generation by using a CGC
(Clock-Gating-Cell) and an enable signal, where the enable signal can be implicitly part
of the CGC. Various CGC topologies are reviewed, proposed, and compared in [35, 58, 92,
94, 96, 97, 98, 100]. The CGC types have advantages and disadvantages compared to each
other in terms of power, area, time, glitch, and hazard, so the type selected depends on a
designer/design; however, a CGC comes with extra logic units (i.e., power and area), so
some CGSs support the clock-gating for a group of flip-flops instead of a single flip-flop.
Furthermore, various approaches are developed for the enable signal generation, grouping
flip-flops, and automation. Most of the commercial tools apply the fine/coarse grain clock
gating technique by replacing the muxes with CGCs, by changing the RTL code or during the
synthesis, so it also leads to less die area [87, 94, 97, 100]. However, [1, 2] offer a high-level
modeling environment where the gated components can be identified with enable signals
during the modeling by designers; then a RTL description with CGCs is automatically
generated from the high-level model. On the other hand, some approaches use idleness
conditions in order to derive an enable signal. [89] exploited conditional statements and
case structures, within blocks of clock-triggered assignments in HDLs to determine such
conditions. Furthermore, several strategies are also available in the literature for automatic
clock-gating/idle-condition extraction. [12] proposed a scheme for the automatic synthesis
of gated clocks to detect idleness conditions by using explicit Finite-State-Machines (FSMs).
Later, [11] used the symbolic approach in order to simplify the representation of clock-gating
conditions by using Binary-Decision-Diagrams (BDD), to overcome scalability issues in
the FSM approach for large FSMs. [7] also suggests an algorithm that automatically tries
to approximate idleness conditions by using the ODC (Observability-Don’t-Care) based
approach, to overcome these issues. In addition, the clock gating technique is also used for

32 Mete Özbaltan

scheduling policies by using enable signals to reduce both step and peak power, where an
enable signal can be generated by means of hardware circuits or software tools in terms of the
scheduling [68, 79]. By the way, [24], who introduced a control-based adaptive clock-gating
algorithm to shut down IP (Intellectual-Property) cores based on given explicit finite-state
models, reviewed the hardware and software approaches in the clock-gating in terms of the
enable signal generation.

2.5 Existing Tools Used on Chip Design

The production of a hardware chip consists of some steps as mentioned. The process
generally starts with the description of a behavioral model and continues then by synthesis
tools until the generation of a physical model at the transistor-level and is completed in a
factory by using the physical model. However, the final design must meet the requirements
of designers, such as functionality, performance, and power consumption, so there are several
kinds of tools applied during the design process, in order to meet the requirements [81, 85].
Some tools according to the tool-type are the synthesis, functional verification, simulation,
and power estimation tools. Further tools that apply a technique, such as clock gating [87],
on design are also used during the process. This section introduces some design tools used
in chip design.

Chip manufacturing is a highly capital intensive business, so hard chips are constructed
only by chip manufacturing companies. However, the companies offer reconfigurable devices
in order to let designers implement chip design by using the same models, on the devices,
where a chip on a reconfigurable device is called soft chip [76, 85, 103]. Thus, some tools on
chip design are offered by chip manufacturing companies as part of a vendor’s design suite,
and some others are provided by specialized Electronic-Design-Automation (EDA)/CAD
companies; these tools are generally an Integrated-Development-Environment (IDE), which
supports several kinds of features, such as synthesis and implementation environment.
Some IDEs by some semiconductor market leaders and EDA companies are Quartus by
Altera/Intel, Xilinx ISE by Xilinx, Design Compiler by Synopsys, and RTL Compiler by
Cadence, and these IDEs can include and/or import several kinds of design tools. As an
example, the simulation tool, ModelSim, and power estimation tool, PowerPlay Analyzer,
by Altera have compatibility with Quartus.

Synthesis tools are used to generate lower level descriptions of a design automatically
from the higher level behavioral models, and each tool supports different HDL/s and

Chapter 2. State of The Art on Low Power Synchronous Circuits Design 33

abstraction level/s. Thus, IDEs include a synthesis tool, and the IDEs introduced above
are generally used at the RTL, with Verilog and VHDL. Furthermore, IDEs provide an
implementation environment, such as behavioral code writing, syntactic correctness, and
source file creation, and support various kinds of semiconductor devices, where models are
implemented on by means of synthesis tools. As an example, Quartus provides several kinds
of FPGA and ASIC families, such as FPGA: Stratix, Arria, Cyclone, and Max, and ASIC:
HardCopy, for different kinds of requirements (e.g., performance, power, and cost).

Simulation tools provide the reflection of the values taken by signals/variables of a circuit,
over time according to the given input values, immediately after the synthesis. Thus, the
model can be tested, in terms of the functionality, by controlling the value of each variable
in the model, at each instant. The given input values over time are provided by some piece
of code written by using a HDL, where the code is called test-bench; and simulation results,
all values over time, are saved in a file called Variable-Change-Dump (VCD).

Power estimation tools give the estimated power consumption of a chip, such as combi-
national, sequential, dynamic, static, average, instantaneous, and hierarchical, by using the
design information. As an example, PowerPlay Analyzer uses the VCD file of a design and
the target device technology and gives a wide range of power information.

As mentioned, the clock gating technique is one of the most common techniques used
on chip design, and several commercial and academic tools that apply the clock gating
technique are available to reduce dynamic power consumption. Commercial tools that
support the clock gating are generally offered at the RTL and as a plug-in feature called
Integrated/Intelligent-Clock-Gating (ICG) [60, 87]. These tools generally use a vendor’s
library where memory elements have a clock enable pin, to reduce power consumption, and
add clock gating cell/s into a design by means of some logic units, for register/s; and the
cell/s disable clock signal/s of the register/s in the next clock cycle if the enable pin/s are not
active. In addition, clock gating cells are automatically integrated into a design during the
synthesis; or designers have to specify the registers clock-gated, manually during the design,
but clock gating cells are still automatically integrated into the design (i.e., semi-automated).
There are also a few semi-automated approaches are available to generate a RTL code with
clock gating cells automatically. Among them, [1] developed an environment for high-level
design with their own procedural language; [2] also provide a solution to design circuits
directly using the C language. In these approaches, designers are responsible for the selection
of gated components. However, [89] developed an algorithm that automatically insterts
clock gating cell into RTL descriptions of circuits. In the algorithm, conditional behaviors

34 Mete Özbaltan

are first detected by parsing a RTL code; and then, idle conditions are identified by means
of conditional behaviors; and clock gating cells, for individual registers, are produced by
computing of idleness conditions, in order to switch-off clock signals of redundant registers.

2.6 Summary and Discussion

Low power synchronous circuits design is becoming the main solution in modern embedded
systems, as the circuits are used in almost all the systems and the power consumption is one
of the major design constraints in today embedded systems, limiting performance, battery
life, and reliability [9, 43, 55, 70, 94, 97, 99]. In this chapter, the classification of integrated
circuits, the chip design process, and chip description were introduced. It is observed that
a single integrated circuit can include different kinds of sub-circuits and architectures by
using a HDL, which can support that a circuit is modeled by using a mixture of concepts of
different design steps; many such circuits are available in today embedded systems. Thus, it
is important to have a general knowledge about integrated circuits for constructing a low
power synchronous circuit.

Furthermore, the chapter also presented some existing low power synchronous circuits
design techniques. As mentioned, various low power techniques are applied at different
levels of abstraction; however, the RTL clock gating technique is the most commonly used
technique for reducing dynamic power because most of the designers make a design at
the RTL and the clock power consumes the majority of the total chip power; hence, the
basic principle of the clock gating technique is also given. Additionally, the usage of EDA
tools is also mentioned in detail due to their contribution to the design process, and some
commercial and academic tools are introduced in terms of the role they play during the
design process. As a result, low power implementations on a chip design, especially the RTL
clock gating technique, and their automation are of paramount importance for constructing
embedded devices.

Chapter 3

Modeling Formalisms on Hardware
Circuits Designs, & Symbolic Tools,
Languages, and Techniques for
Discrete Control

Modeling and analysis are often required to reason on hardware circuit designs, and apply
scalable techniques (e.g., to compute a controller, to synthesize parts of a circuit, and to
translate original designs into new designs) in order to meet various performance goals (e.g.,
power-efficiency). Among these modeling formalisms, designers generally use the symbolic
approach, which offers more abstraction, to overcome scalability issues, and need to control
the system behaviors for managing performance properties, where the models in the symbolic
approach consist of discrete events [4, 17, 105]. This chapter presents modeling formalisms
on hardware circuits designs, the control theory of discrete event systems (i.e., the discrete
controller synthesis technique), and some symbolic tools, languages, and techniques for
discrete control.

This chapter is organized as follows: Section 3.1 gives some common modeling formalisms
used in hardware circuit design; Section 3.2 presents the principle of the discrete controller
synthesis technique; Section 3.3 and Section 3.4 respectively introduce the symbolic tools/lan-
guages, BZR/Heptagon and ReaX, which apply the Discrete-Controller-Synthesis (DCS)
technique; Section 3.5 presents some existing approaches that apply the DCS technique

35

36 Mete Özbaltan

and/or modeling formalisms; finally, Section 3.6 concludes with the summary and discussion.

3.1 Modeling Formalisms Applied on Chip Design

The chip design process today generally includes modeling formalisms, where the models
abstract away the irrelevant details so that they allow designers to focus only on the essential
properties of the system under design [105]. There are several types of modeling formalisms
available that are used during the chip design process to manage performance properties.
In this section, two common modeling formalisms applied for chip design, automata-based
and data-flow-based, are introduced.

3.1.1 Automata-Based Modeling Formalisms

Automata-based models are a model of computation, where the model consists of automata/s
or Finite-State-Machine/s (FSM). As an example, the formal definition of a deterministic
finite automaton with a Labeled-Transition-System (i.e., input/output automaton, Mealy
machine) is given below [3, 4, 62, 105].

Definition (Automaton). An automaton is a tuple A = (Q, q0, I, O, T), where:

• Q is a finite set of states;

• q0 ∈ Q is the initial state of A;

• I is a finite set of input events;

• O is a finite set of output events;

• T ⊆ (Q × Bool(I) × 2O × Q) is a set of transition functions, where Bool(I) is the
set of Boolean expressions of I and 2O is the power set of O; and each transition
denoted by q

g/a−−→ q′, where the source state q ∈ Q, destination state q′ ∈ Q, guard
g ∈ Bool(I), and action a ∈ 2O, is only taken when g is true.

The generic models consist of a set of states, a set of initial states, a set of transitions,
and a set of guarded actions, where: each transition function determines the next state
from the current state and the inputs; and each action is also a function that determines
the outputs from the current state and the inputs. Thus, FSMs are a natural model of

Chapter 3. Modeling Formalisms on Hardware Circuits Designs, & Symbolic Tools,
Languages, and Techniques for Discrete Control 37

high-level (e.g., algorithmic-level) behavioral models of circuits because they are semantically
very close to each other. As an example, module m of List. 2.1 can be easily modeled as
the form of a Mealy or Moore machine, by hiding the irrelevant details (e.g., it can be
“memory<=data_in;”), where the register state is already in the form of a FSM. Thus, the
models only describe the main behavior of a design by abstracting away the irrelevant
details, so designers can focus only on the essential properties of the design.

Several kinds of tools and languages are available based on the automata-based modeling
formalism and support several kinds of features, such as modular, parallel, and hierarchical
descriptions of system behaviors, as well as the concurrency and/or synchronization; some
languages are StateCharts, Argos, SyncCharts, Mode-Automata, and Heptagon.

3.1.2 Data-Flow Based Modeling Formalisms

Data-Flow-based (process network-)models are a model of computation, where the model
is specified by a directed graph whose: nodes/vertices represent computational functions
(actors) that each actor maps input data into output data during a sequence of firings1; and
edges/arcs represent communication channels (un/bounded buffers) that each carry data
tokens from one node to another when fired [4, 31, 62, 63, 82, 105].

Hardware designers generally prefer to use data-flow models (symbolic approach) in-
stead of automata-based models, in order to overcome scalability issues (e.g., state space
explosion) because the symbolic approach is more abstract than FSMs. In other words,
FSMs/automatons are cycle-accurate models (i.e., they have a possible state space explosion
problem for infinite or too large FSMs/automatas) and are more detailed than data-flow
models; however, data-flow models emphasize the relationship of the inputs and outputs.

Three main distinct variants of the dataflow model of computation have emerged in the
literature: Synchronous-Data-Flow (SDF), Kahn-Process-Network (KPN), and Synchronous-
Languages. These are also the most frequently used classes of the data-flow family applied
for synchronous hardware circuits designs, which are used in almost all embedded systems
today as mentioned in Chapter 2, and they are introduced below.

1Firing rule: is a set of prefixes with certain technical conditions to ensure determinacy; an actor is fired,
if the condition is provided, by consuming data tokens from input streams (links/edges) of the actor and
producing data tokens on the output streams.

38 Mete Özbaltan

Synchronous Data Flow (SDF)

The Synchronous-Data-Flow (SDF) is a special case of the data-flow family, where the
models include a fixed number of data tokens (i.e., specified a priori) produced or consumed
on each link during at each firing by each actor [4, 31, 62, 82]. Actors in a SDF graph can
be fired periodically and at different iterations (i.e., no notion of time), and together. Thus,
the models have the concept of an abstract clock, which makes the models a natural model
for synchronous circuit design. The approach is generally used for infinite streaming and
signal processing (e.g., audio and video) applications.

Kahn Process Network (KPN)

The Kahn-Process-Network (KPN), which is a data-flow-based modeling formalism, is a
concurrent continuous function on infinite streams and generally can be seen as a gener-
alization of the SDF, where the notion of firings has been absent from the models (i.e.,
computation times and communication times may vary) [4, 64, 75]. Actors represent com-
putational functions like as in the SDF; and edges represent unidirectional un/bounded
communication channels based on FIFO (First-In-First-Out) principles, where the writing
policies are non-blocking (i.e., queues are a priori un/bounded as in the SDF) and the
reading policies are blocking (i.e., if a queue is empty, the process blocks until the queue
becomes non-empty). This means that a process is stalled if the process attempts to read
from an empty input stream. Thus, the KPN can be used to describe systems where the
amount of data produced and consumed by a process is not statically determined, and is
generally applied to support scheduling policies on hardware circuits.

Synchronous Languages

SDF models are a natural model of synchronous circuits as mentioned; however, they
have one main limitation that conditional expressions could not be represented on the
graphs [4, 18, 71]. On the other hand, synchronous languages apply the SDF approach
by abstracting the clock and also supporting to use formal mathematical semantics, so
the modeling formalism with synchronous languages is pretty suitable to model hardware
circuits designs.

The main concept of synchronous languages is building a program where the basic
building blocks are called data-flow nodes, which consist of instants and reactions. Instants
can be accepted as a firing (atomic action), or discrete time which behavioral activities

Chapter 3. Modeling Formalisms on Hardware Circuits Designs, & Symbolic Tools,
Languages, and Techniques for Discrete Control 39

executed depend on. At each instant, input data maps to output data by means of some
mathematical computation that includes conditional statements. This execution cycle is
called the reaction.

The behavior of synchronous nodes can be described with Mealy machines; communica-
tion and/or association of nodes/Mealy machines can be supported/notified by composition
operators. Synchronous composition (sometimes called completely synchronous compo-
sition) operator is denoted by “×”, which supports to show both communication and
association of Mealy machines. As an example, synchronous product of two Mealy ma-
chines Ma ×Mb is a tuple (Qa × Qb, (q0a, q0b), Ia ∪ Ib, Oa ∪ Ob, T ′), where: Qa × Qb is

the combination of all states (i.e., qa.qb ∈ Qa × Qb); T ′ is defined by (qa
ga/aa−−−→ q′a ∈

Ta)
∧

(qb
gb/ab−−−→ q′b ∈ Tb) ⇒ qa.qb

ga∩gb/aa∪ab−−−−−−−−→ q′a.q
′
b ∈ T ′. On the other hand, parallel

composition (sometimes called synchronous composition) operator denoted by “||” sup-
ports the association of Mealy Machines (i.e., it is suitable to show independent systems)
and does not make any synchronization between them; however, synchronization can be
supported together with encapsulation operation, which is used to express a limitation
of the range of a given signal for enforcing the synchronization between nodes. As an
example, parallel composition of two Mealy machines (S = Ma||Mb = (Q, q0, I, O, T))
through (encapsulation w.r.t.) a set of inputs and outputs of S, Γ ⊆ I ∪ O, allows the
construction of a new Mealy machine (S\Γ = (Q, q0, I\Γ, O\Γ, T ′)), whose behavior is no
longer influenced by a possible emission of Γ by another part of the system itself, where:
T ′ is defined by (q

g/a−−→ q′ ∈ T)
∧

(g+ ∩ Γ ⊆ O)
∧

(g− ∩ Γ ∩ O = ∅) ⇒ q
∃Γ.g/a\Γ−−−−−−→ q′ ∈ T ′,

where g+ = {x ∈ g|(x
∧
g) = g} and g− = {x ∈ g|¬(x

∧
g) = g}.

Several languages (e.g., Esterel, Lustre, Signal, Argos, Heptagon, and ReaX) that apply
the SDF (symbolic approach) are available, where the concept of synchronous languages is
introduced through example languages, Heptagon and ReaX, below.

3.2 Discrete Controller Synthesis (DCS)

Discrete Controller Synthesis (DCS), the control theory of Discrete-Event-Systems (DES—
[23, 90]), allows the use of constructive methods ensuring, a priori and by means of control,
required properties on a system’s behavior. The control theory of DES (Supervisory Control
Theory) advocates that a system can be built by discrete events (i.e., a system that has not
been controlled yet, called plant-P in terms of DCS community—e.g., invoke or completion

40 Mete Özbaltan

Ca/b a

Ca,b

Ma Mb

A0

A1

a

a

aa

B0

B1

b

b

bb/c

(a) Two isolated Mealy machines (i.e.,
which do not communicate), Ma and
Mb, and the controller Ca,b, which guar-
antees the desired property after encap-
sulation by the controllable signal b.

A0B0C

A1B1C

Ma ×Mb × Ca,b (Ma||Mb\{b})

a

a

aa/c

(b) Representation of The Behavior of
The Controlled System

Figure 3.1: Representation of The Control Theory of Discrete Event Systems

of a task and the failure or frequency switch of a processor) with a controller (supervisor-
S) that guarantees the desired property (specification-Sp) by using the controllable and
uncontrollable signals, without modifying the behavior of the discrete events. The principle
of the theory is illustrated in Figure 3.1 [13]. Figure 3.1a shows system properties, where:
the discrete event systems are represented with Mealy machines, Ma and Mb; the controller
Ca,b guarantees (after the composition) the desired property that if Ma is in the state A0

(respectively A1), then Mb is in the state B0 (respectively B1); and the signal b is assumed
to be a controllable signal. Figure 3.1b describes the desired property of the system (i.e.,
synchronous parallel composition of Ma, Mb, and Ca,b, by encapsulating the signal b), where
the given property is verified.

Usually, the starting point of these theories is: given a model for the system and control
objectives, a controller must be derived by various means such that the resulting behavior of
the closed-loop system meets the control objectives. The principle of the DCS is represented
in Figure 3.2 [4]. In the figure, the given system S (consists of discrete events/states/FSMs
with input/output/local signals) fulfills/satisfies the desired objective o (expressed in terms
of the input/output/local signals and/or states) by means of the controller C, where: X
is a set of output(-event)s of S; Y is a set of input(-event)s of S that consists of a set of
controllable and uncontrollable inputs Yc and Yuc, respectively; and C is automatically

Chapter 3. Modeling Formalisms on Hardware Circuits Designs, & Symbolic Tools,
Languages, and Techniques for Discrete Control 41

System S
&

Objective o

C
Yc

Y X

Yuc

Figure 3.2: Principle of The Discrete Controller Synthesis

obtained from S and o (both given properties) via appropriate synthesis algorithms that
automatically compute (by exploring the system state space and Yuc) a constraint on Yc
(i.e., guarantee the desired property/objective o that has to be enforced by control).

Note that synthesis algorithms work like model checking to guarantee the desired
property/objective; however, there is not always any controller available that guarantees the
control objective, with given properties for a system (i.e., discrete controller synthesis may
fail). In addition, there can be several controllers that provide the same desired objective
(e.g., a controller maybe enforce the system stays stable, i.e., no state transition, in order to
meet the desired property); however, maximally permissive (minimally restrictive) controllers
are considered in the thesis, where the controllers provide the largest possible set of correct
behaviors of the system (i.e., only enforce unreachability of states violating the desired
property) [4, 18, 54].

In the thesis, the specification of systems (i.e., plant) is considered using the synchronous
data-flow languages, such as ReaX and Heptagon; hence, the synthesis algorithms are able to
synthesize controllers satisfying various kinds of control objectives, such as safety, reachability,
attractivity, liveness, and optimal; the typical examples, safety/invariant and optimal control
objectives, are introduced below, and how the controller that satisfies them is (automatically)
generated is explained through example synchronous data-flow languages, Heptagon and
ReaX [4, 18, 72].

Safety/Invariant Control Objective: is a subset of the state space and is described
using state and input variables with associated dynamics. The desired objective is the
enforcement of some invariant a priori not satisfied by the system: a controller is to be
computed that restricts the admissible values for a subset of the input variables (referred to
as controllable variables) so that the resulting controlled system satisfies the invariant (e.g.,
typically, forcing a predicate over a subset of the state space of the system to be always
true).

Optimal Control Objective: is to optimize a cost function (summed), which is typically

42 Mete Özbaltan

SIdle SBusy

r&c/a

e = (cnt == 100)/¬a; cnt = 0; data_out = (comp = data_in)

¬e/cnt+ = 1¬(r&c)

Figure 3.3: Task t(r,c,data_in)=a,data_out, faking computation, in the form of a
Mealy machine, where: r (request), c (control), and data_in (input data) are input
variables; a (active—keeps a memorized value, initially false) and data_out (ouput data)
are output variables; e (executed), cnt (counter—keeps a memorized value, initially 0), comp
(computation—keeps a memorized value, initially 0), and S={Idle,Busy} (state—keeps a
memorized value, initially Idle) are local variables.

a total mapping from state and input valuations into some (partially-)ordered set, such as
the Rationals, over a sliding window of a given number of ticks (i.e., along the specified
paths of state transitions), so an optimal control algorithm works, from current states to
target states, to produce a controller at the best cost of controllable events against the worst
moves of uncontrollable events.

3.3 BZR/Heptagon Synchronous Language

Heptagon is a reactive synchronous data-flow language, where programs are built as parallel
and hierarchical compositions of data-flow nodes, each having input, local, and output flows.
The body of a node describes how input flows are transformed into output flows, in the
form of a set of equations. These equations define the values of outputs (and possible local
flows), using the current values of inputs, and the current state of the node: the latter is
made of memorized values expressed by “last” values of flows. New values for input flows
are given at each execution step, where equations are then evaluated all together, and values
of output flows are updated accordingly [4, 29, 30].

As an example, List. 3.1 (Heptagon node t) symbolically encodes the Mealy machine
(task t) given in Figure 3.3, which represents the behavior of a model (e.g., hardware design).
A Heptagon node is described by the keyword “node” with a name (in this case t), a set
of input variables (in parentheses), and a set of output variables by the keyword “returns”,
as at line 2; the body of the node, between the keyword pair “let” and “tel”, describes the
behavior of the node (in the form of mathematical equations/expressions that can include

Chapter 3. Modeling Formalisms on Hardware Circuits Designs, & Symbolic Tools,
Languages, and Techniques for Discrete Control 43

1 type S_t = Idle | Busy
node t (r,c: bool; data_in: int) returns (last a: bool = false; data_out: int)
var last S: S_t = Idle; last comp: int = 0; last cnt: int = 0; e: bool;
let

5 S = if last S = Idle & r & c then Busy else
if last S = Busy & e then Idle else

last S;
a = if last S = Idle & r & c then true else

if last S = Busy & e then false else
10 last a;

comp = if last S = Busy & e then data_in else
last comp;

cnt = if last S = Busy & not e then last cnt + 1 else
if last S = Busy & e then 0 else

15 last cnt;
e = cnt==100;
data_out = comp;

tel

List. 3.1: Heptagon node t, symbolic encoding of the Mealy machine of Figure 3.3.

1 node twotasks (r1,r2,c1,c2: bool; data_in1,data_in2: int)
returns (last a1,a2: bool = false; data_out1,data_out2: int)

let
(a1,data_out1) = inlined t(r1,c1,data_in1);

5 (a2,data_out2) = inlined t(r2,c2,data_in2);
tel

List. 3.2: Heptagon node twotasks, parallel composition of two instantiations of the node
(task) t of List. 3.1.

conditional statements). Furthermore, Heptagon allows to define local variables by the
keyword “var”, and memory elements also need the keyword “last” and an initial value, as
at line 3. Any variable defined in a Heptagon node should take a value only in a specified
(a priori) domain, such as “int” and “bool”; further, Heptagon allows to specify a custom
enumerated type as at line 1.

Heptagon nodes can be reused by instantiations, and one can compose the nodes using
instantiations in a parallel or hierarchical (modular) way. As an example, the node twotasks
of List. 3.2 shows the parallel and hierarchical/modular composition of two instantiations of
the node (task) t of List. 3.1, by the keyword “inlined” as at lines 4 and 5.

BZR [30] extends Heptagon with a behavioral contract mechanism, and encapsulates a
DCS tool (e.g., Sigali and ReaX) in its compilation process. An invariant and controllable
flows (each taking its value in the Boolean domain bool = {false, true}) can be specified
for Heptagon nodes using contracts. When it encounters a node featuring a contract, the
BZR compiler involves a symbolic DCS algorithm to automatically produce a controller

44 Mete Özbaltan

1 node controlledTasks (r1,r2: bool; data_in1,data_in2: int)
returns (last a1,a2: bool = false; data_out1,data_out2: int)

contract enforce not (a1 & a2) with c1,c2: bool;
let

5 (a1,data_out1) = inlined t(r1,c1,data_in1);
(a2,data_out2) = inlined t(r2,c2,data_in2);

tel

List. 3.3: Heptagon node controlledTasks, symbolic encoding of the desired property of
the system, where the system, plant, is the parallel composition of two instantiations of the
node (task) t of List. 3.1.

constraining the values of the controllable flows so as to guarantee that the resulting
controlled node satisfies the invariant. The controllers produced take the form of as many
predicates as controllable flows, that implement the following behavior: considering every
controllable flow c in turn (according to their order of declaration), the controller tries to
assign c to true unless this could lead to a potential violation of the desired invariant in
subsequent execution steps.

As an example, the Heptagon node controlledTasks of List. 3.3 (which includes the
contract mechanism) produces (by applying the DCS technique) a controller enforcing
that the expression “not (a1 & a2)” (given desired property) holds using the controllable
variables, c1 and c2, (i.e., the controller ensures that the two tasks running in parallel is
not both active, Busy state, at the same time) as at line 3. Note that c1 and c2 are no
longer placed in (uncontrollable-)input flows, as they are controllable signals (e.g., as at
lines 1 and 3).

Programmatically, how the contract mechanism (or a DCS implementation) synthesizes
a controller that guarantees the desired property is explained on the tool ReaX, below.

3.4 ReaX Synchronous Language

ReaX: is a reactive synchronous data-flow language, where reactive systems (i.e., plants)
are modeled by Arithmetic-Symbolic-Transition-Systems (ASTSs), which are a finite set of
transition systems with state and/or input variables in a finite and/or infinite domain; and
is a (DCS-)compiler that synthesizes controllers ensuring given properties (i.e., specifica-
tion), where the systems are modeled by ASTSs [15]. ReaX allows controlling of infinite
reactive synchronous systems modeled by ASTSs for several kinds of control objectives (e.g.,
safety, reachability, and optimal). As an example, the invariance/safety control problem

Chapter 3. Modeling Formalisms on Hardware Circuits Designs, & Symbolic Tools,
Languages, and Techniques for Discrete Control 45

of the model of ASTSs (i.e., the DCS paradigm applied by ReaX) is formally explained below.

Definition (ASTS). An ASTS is a tuple S = (X, I, T,A,Θ0), where:

• X = {x1, . . . , xn} is a finite set of vector state variables ranging over in/finite domains;

• I = {i1, . . . , im} is a finite set of vector input variables ranging over in/finite domains;

• T is a finite set of guarded state transition functions using variables in X ∪ I;

• A ∈ X ∪ I is a predicate for expressing an assertion about the possible values of the
inputs depending on the current state;

• Θ0 is a predicate expressing the initial values of variables in X.

To each transition function in an ASTS model S, one can make correspond an infinite
sequence of x i−→ x′, where x and x′ are a value of the domain of xj ∈ X and i is a value
of the domain of ij ∈ I. This kind of system is called an Infinite-Transition-System (ITS)
(denoted by [S]), and the set of transitions of ITS [S] is denoted by TS , where x

i−→ x′ ∈ TS .
Given an ASTS S, its associated ITS [S], and a predicate (i.e., desired property or

specification) Φ over X on S, S should satisfy/fulfill Φ (noted by S |= Φ) by some restriction
(i.e., control by using controllable variables); S can be rewritten as S = (X, Iuc∪Ic, T, A,Θ0),
where I divided into controllable (Ic) and uncontrollable (Iuc) input variables. Thus, solving
the discrete controller synthesis problem is to compute a controller (predicate AΦ) on
S′ = (X, Iuc∪ Ic, T, AΦ,Θ0) |= Φ and ∀v ∈ X ∪ Iuc∪ Ic, AΦ(v)⇒ A(v), where v is a variable
on S.

The synthesized controllers in ReaX are maximally permissive, and the computational
steps rely on some fix-point computation of the predicate. Given an ASTS S, its associated
ITS [S], and a predicate Φ, the approach is illustrated in Figure 3.4. The computational
steps are: (i) first, bad states Bad, which is the set of states that do not satisfy Φ, are
computed as Bad = ¬Φ; (ii) then, the set of forbidden states IBad, which ensures the
unreachability of Bad with uncontrollably, is computed based on least fix-point calculation
by using TS ; (iii) last, the controller AΦ ⊆ DX × U × C (where DX , U , and C are the
domain of X, Iuc, and Ic, respectively) is computed by using IcBad = ¬IBad, which gives the
set of non-forbidden states represented with the gray color in Figure 3.4.

The resulting controllers are correct and maximally permissive but non-deterministic
(i.e., controllable variables may not be a singleton). To obtain an executable deterministic

46 Mete Özbaltan

X

Bad
IBad

∀u ∈ U
∃c ∈ C

∃u ∈ U
∀c ∈ C

Figure 3.4: Computational Steps on The State Space X

controller, the triangulation function, which requires prioritizing the controllable input
variables, provides a deterministic (i.e., singleton) set of the predicate of controllable
variables.

3.5 Existing Approaches

As mentioned in Chapter 2, power efficiency is nowadays of paramount importance for
constructing circuits and various techniques can be used to reduce power consumption. One
of the significant technique, which can be used with the techniques mentioned in Chapter 2,
is modeling formalisms. Designers generally apply several types of modeling and analysis, to
reduce the power as well as to optimize various performance properties [105]. [1, 2] provide
a high-level automata-based modeling environment, which generates a low-level description
that includes some clock gating logic from the given model, for power efficiency. [6] proposes
a systematic modeling framework by applying automata-based modeling formalism in
order to manage system behaviors of dynamically reconfigurable hardware architectures.
Automata-based models are a natural model of hardware circuits, as they are semantically
very close to each other; however, designers generally use the family of data-flow models,
because of the well-known state explosion problem [105]. [42] proposes the reconfigurable
data-flow graph (RDF), which is a variant of the SDF, and extends the SDF with some
rules in order to overcome the lack of the capability to express the dynamism on a SDF
graph. [95] employs a run-time scheduling algorithm by capturing system behaviors of
dynamically reconfigurable architectures based on the KPN. [40] introduces the light-weight
data-flow (LWDF) methodology, adapts it to the hardware description languages (e.g.,
Verilog and VHDL), and applies some low-power techniques. [14] considers the management

Chapter 3. Modeling Formalisms on Hardware Circuits Designs, & Symbolic Tools,
Languages, and Techniques for Discrete Control 47

of dynamically partially reconfigurable hardware architectures based on the synchronous
languages aspect. On the other hand, [105] develops a formal conformance relation between
the heterogeneous formalisms (i.e., the automata/FSM and SDF based approaches) for
hardware circuits; and [29] develops a tool that lets the mixed usage of the synchronous
language data-flow and automata based approaches.

The techniques applied on hardware models for meeting various performance properties
can be provided by means of several kinds of self-management approaches, such as model
checking, heuristics, and machine learning techniques. [39, 95] apply some self-management
strategies, and [69] discusses some existing standard control techniques applied to some
hardware systems; the main feature of discrete control techniques provides a synthesisable
controller with formal correctness [4]. DCS, the control theory of discrete event systems,
allows the use of constructive methods ensuring, a priori and by means of control, required
properties on a system’s behavior [23, 90]. Finding DCS algorithms computing such con-
trollers in the case of finite-state symbolic systems (i.e., where the state and input variables
are Booleans only) has been the objective of several studies, and led to several implementa-
tions, e.g., by [72, 74]. [15] later extended these studies for infinite-state systems, featuring
numerical state and input variables. Meanwhile, other studies considered optimization
objectives, given partial order relations [73, 74], or cost functions [34], that essentially consist
in symbolic adaptations of Bellman’s algorithm for the computation of optimal strategies
using dynamic programming [10]. Several hardware design techniques rely on DCS to
provide several kinds of performance properties. [88] presents a high-level design flow for
reconfigurable FPGA-based System-on-Chip (SoC); they model potential reconfiguration
behaviors and manually derive a controller that automatically takes reconfiguration decisions.
Later, [50] and [5, 6] were among the firsts to apply DCS algorithms for reconfiguration
management in SoC design. Doing so, they could automate the generation of controllers,
thereby exploiting the formal correctness and guarantees that DCS techniques provide.
In particular, [5, 6] model the applications’ behaviors and the needed resources (area in
hardware—i.e., regions of the FPGA) using explicit automata; they then use a symbolic
DCS algorithm to automatically compute a reconfiguration manager for the system. [14, 15]
introduce the recent advances in control algorithms for symbolic infinite-state systems with
applications to quantitative models. Few works have addressed the problems of enforcing
the optimization and various kinds of control objectives on this kind of symbolic models and
tools; they mostly derive from the seminal work of [90]. [36, 72, 29, 77, 15] implemented
tools that are suitable for enforcing several objectives, such as optimization, safety, and

48 Mete Özbaltan

reachability properties.

3.6 Summary and Discussion

This chapter presented the existing modeling formalisms on hardware circuits designs, &
symbolic tools, languages, and techniques for discrete control. The automata based and data-
flow based models are first introduced; then, three distinct variants of the data-flow family
of computation that emerged in the literature, SDF, KPN, and synchronous languages, are
detailed. KPN seems as a generic model of the data-flow family and can be used to describe
systems where the amount of data produced and consumed by a process is not statically
determined. However, synchronous data-flow languages (e.g., Heptagon and ReaX), where
the models have the concept of an abstract clock and formal mathematic semantics, are a
very suitable model for hardware circuits (especially synchronous circuits). Synchronous
data-flow languages distinguish among the modeling formalisms, as they do not have a state
explosion problem as in FSM (automata) models and they support conditional expressions
unlike SDF [4, 105].

As mentioned, modeling and analysis are often required to reason on hardware circuit
designs in order to meet various performance goals; such goals are generally achieved by
computing a controller [4, 105]. Compared to other existing techniques for achieving various
performance goals, the main advantage of DCS (the control theory of discrete event systems)
provides a synthesisable controller with formal correctness. This chapter also presents the
supervisory control theory (i.e., DCS). Furthermore, ReaX and BZR (synchronous data-flow
languages), which are encapsulated with the DCS operation, are introduced and how they
provide formal correctness are explained. Additionally, several existing approaches in the
literature that apply the DCS technique and/or modeling formalisms are presented. As a
result, it is observed that hardware circuits can be modeled to meet scalability issues by
synchronous languages, and various performance goals can be achieved by such languages
(e.g., ReaX and BZR) encapsulated with the DCS technique.

Chapter 4

Exercising Symbolic Discrete Control
for Designing Low-Power Hardware
Circuits: an Application to
Clock-Gating

In this chapter, we devise a tool-supported framework for achieving power-efficiency of
hardware chips from high-level designs described using the popular hardware description
language Verilog. We consider digital circuits as hierarchical compositions of sub-circuits,
and achieve power-efficiency by switching-off the clock of each sub-circuit according to
some clock-gating logic. We encode the computation of the latter as several small symbolic
discrete controller synthesis problems, and use the resulting controllers to derive power-
efficient versions from original circuit designs. We detail and illustrate our approach using
a running example, and validate it experimentally by deriving a low-power version of an
actual Reed-Solomon decoder. The contents and results of this chapter have been presented
in [80].

4.1 Introduction

This section presents our motivation, and our contribution to the design of low-power
synchronous circuits, where our approach applies the clock gating technique at the register

49

50 Mete Özbaltan

transfer level by exploiting the symbolic discrete controller synthesis technique by means of
the tool, BZR; and the section also gives an overview of the chapter.

4.1.1 Motivation

Power efficiency of digital circuits is nowadays of paramount importance for constructing
embedded electronic devices, and various mechanisms can be used to reduce power consump-
tion in hardware chips. At the technological level, these include clock-gating, multi-supply
voltage, and power-gating for instance [51]. In synchronous circuits in particular, clock-
gating is used to selectively cut off the clock of components with the aim of reducing the
power dissipation induced by the switching activity it incurs. This technique mostly consists
in computing the Clock-Gating Logic (CGL) for sub-circuits, and then translating each
CGL itself into a piece of circuit whose output wires can be used to switch-off (to gate) the
clocks that drive the sub-circuits.

In this work, we observe that CGL computation is actually a feedback control problem,
where the sub-circuit constitutes the system to control, and the objective is to switch-off its
clock whenever possible. This new perspective constitutes a first step towards employing
other control techniques for producing self-adaptive power efficient digital circuits, e.g.,
that would automatically adapt to the remaining capacity of some battery according to an
objective power/performance trade-off.

Discrete Controller Synthesis (DCS), the control theory of Discrete Event Systems
(DES — [23, 90]), allows the use of constructive methods ensuring, a priori and by means
of control, required properties on a system’s behavior. Usually, the starting point of these
theories is: given a model for the system and control objectives, a controller must be derived
by various means such that the resulting behavior of the closed-loop system meets the
control objectives. A typical example is the safety control problem for symbolic systems
(i.e., described using state and input variables with associated dynamics), where the desired
objective is the enforcement of some invariant a priori not satisfied by the system: a
controller is to be computed that restricts the admissible values for a subset of the input
variables (referred to as controllable variables) so that the resulting controlled system satisfies
the invariant. Finding DCS algorithms computing such controllers in the case of finite-state
symbolic systems (i.e., where the state and input variables are Booleans only) has been
the objective of several studies, and led to several implementations, e.g., by [72, 74]. [15]
later extended these studies for infinite-state systems, featuring numerical state and input

Chapter 4. Exercising Symbolic Discrete Control for Designing Low-Power Hardware
Circuits: an Application to Clock-Gating 51

variables. Meanwhile, other studies considered optimization objectives, given partial order
relations [73, 74], or cost functions [34]. Most of these solutions adapt Bellman’s algorithm
for the computation of optimal strategies using dynamic programming [10].

In this work, we exploit DCS principles through the use of the BZR environment [30],
that integrates symbolic DCS within the reactive data-flow language Heptagon.

4.1.2 Contributions

We present a framework involving symbolic DCS to achieve energy efficiency of hardware
chips. We consider circuits described using the Hardware-Description-Languages (HDL—e.g.,
Verilog) at the Register-Transfer Level (RTL) abstraction. RTL descriptions are high-level
hierarchical compositions of components, registers, and logical operators, linked using wires.
They can be converted into equivalent digital chip designs for Application-Specific-Integrated-
Circuits (ASICs) or Field-Programmable-Gate-Arrays (FPGAs).

The framework broadly comprises the following steps: First, the RTL description of the
original circuit is translated into a set of synchronous models where controllable variables
represent output wires of CGLs. These models are associated with control objectives whose
enforcement guarantee the correct behavior of the CGLs. Second, the latter are obtained
using a symbolic DCS algorithm. Last, the CGLs are translated into pieces of circuits
that are then integrated into a new, clock-gated circuit design. Our translation algorithm
is parametrized with a set of variables to be picked from the HDL description, and that
is used to abstract away most of the circuit in order to: (i) focus on the portion of its
sequential logic that is relevant for expressing the CGLs; and thus (ii) restrict the size of the
DCS problems. Our algorithm automatically generates interpreted non-controllable inputs
called oracles to model the non-determinism introduced by the abstractions and allow the
computation of deterministic, hence implementable, CGLs.

4.1.3 Overview

We give a running example along with a description of the Verilog HDL and BZR in
Section 4.2, and use it to describe and illustrate the framework in Section 4.3. We exercise
our technique on a realistic case study in Section 4.4, and conclude with the summary and
discussion in Section 4.5.

52 Mete Özbaltan

1 module m (input clk, input r, input [7:0] i,
output [7:0] o, output e);

parameter idle = 0, busy = 1;
reg state = idle;

5 reg [6:0] cnt = 0; // to fake lengthy computations
reg [7:0] m; // internal memory
assign o = m; // always output memorized value
assign e = (cnt == 100); // raise e when counter reaches 100
always @(posedge clk)

10 case (state)
idle: if (r) begin m <= i; state <= busy; end
busy: if (e) begin

cnt <= 0; // reset counter
if (r) m <= i; // restart immediately

15 else state <= idle;
end else cnt <= cnt + 1;

endcase
endmodule

List. 4.1: Verilog module m, faking computations on data given on input wires i upon request
r. Output wires o carry its result, available when e becomes 1.

4.2 Running Example

We now introduce the Verilog HDL using a running example, and then describe the fragment
of the Heptagon language that we use for the modeling and computation of CGL for RTL
circuits.

4.2.1 The Verilog Hardware Description Language

Verilog is an HDL dedicated to the design of electronic systems. In particular, it can be
used to specify synchronous circuits. The description of such a circuit in Verilog consists
of a main module made of an assemblage of registers, wires, gates and/or sub-modules.
Each of the latter components features an interface that comprises input or output wires
or registers. Verilog provides several constructs to program modules, such as conditional
and case statements, wire/register declarations and assignments, and event detection (e.g.,
positive edge detection, triggered when the value carried by a wire transitions from 0 to 1).
One input wire, usually called clk, carries a clock that is used to trigger changes in the
values of registers.

We give in List. 4.1 an example specification of a module “m”. It starts with the declaration
of its interface, here comprising basic wires (e.g., clk, r, and e) or wire arrays (e.g., i and
o, here used to carry data). A declaration of constants used internally (idle and busy)
follows, along with internal registers. Assignments at lines 7 and 8 describe the logical values

Chapter 4. Exercising Symbolic Discrete Control for Designing Low-Power Hardware
Circuits: an Application to Clock-Gating 53

idle busy

r/m <= i

~r

cnt==100 && r / e; cnt <= 0; m <= i

cnt==100 && ~r / e; cnt <= 0

cnt<>100 /
cnt <= cnt + 1

Figure 4.1: Mealy machine symbolically encoded by register state in Verilog module m of
List. 4.1, decorated with operations on cnt and m. The initial value of cnt is 0.

taken by the corresponding wires at any instant by means of logical expressions. The code
following “always @(posedge clk)” consists in conditional “clock-triggered” assignments to
internal or output registers, denoted by “<=”. For instance, the statement “state <= busy”
at line 11 states that, at every instant t where a positive edge of clk occurs, the value
memorized by the register state takes the value busy if the condition r holds (i.e., r carries
the value 1 at the very instant where clk becomes 1); notice the value of state would
actually become busy at a subsequent instant t+ ε. The internal registers in m symbolically
encode a finite-state automaton, that we represent in the form of a Mealy machine with
variables in Figure 4.1.

We show in List. 4.2 an example module main making use of m. Sub-module instantiations
m1 and m2 are at lines 8 and 10. main features an internal working mode memorized using
the register cfg taking its values in {LQ, HQ}: as can be seen on line 18, upon a positive
edge of clk, if the request signal r holds and neither m1 nor m2 is currently computing
(r1 & ~error), cfg takes the current value of the input wire mode. The selection of values
for output data o and end signal e, along with the triggering of computations by sub-module
instance m2, depend on cfg: in mode LQ an input data i is only processed by m1, whereas
in mode HQ this data is serially processed by m1 and then m2.

In the remainder of the chapter, we consider Verilog circuits given as directed acyclic
graphs whose nodes are modules, where arcs describe the “instantiates” relation, and with a
single source node representing the module that describes the whole circuit. In turn, every
Verilog module M is considered as a tuple M = (IM, OM, RM,SubM) where: IM denotes input wires;
OM denotes output wires; RM are internal or output registers; SubM is a set of sub-module
instantiations. A Verilog module with a non-empty set of sub-module instantiations is called
a super-module.

Clock-gating in Verilog Circuit Specifications: Consider a module instance mi. We say
that ηmi is a Clock-inhibition Predicate (CIP) for mi if, upon an edge of the clock of mi

54 Mete Özbaltan

1 module main (input clk, input r, input mode, input [7:0] i,
output [7:0] o, output e, output error);

parameter LQ = 1, HQ = 0; // Low/High Quality modes
reg cfg = LQ;

5 reg wait_m1 = 0, wait_m2 = 0; // sub-module’s working statuses
wire [7:0] o1, o2; // output data of sub-modules
wire r1 = r & ~error, e1; // request & end wires for m1
m m1 (.clk(clk), .r(r1), .i(i), .o(o1), .e(e1));
wire r2 = e1 & (cfg == HQ), e2; // request & end wires for m2

10 m m2 (.clk(clk), .r(r2), .i(o1), .o(o2), .e(e2));
// raise error upon request before end of m1 or m2
assign error = r & (wait_m1 | wait_m2);
// select data output and end signal based on configuration
assign o = (cfg == LQ) ? o1 : o2;

15 assign e = (cfg == LQ) ? e1 : e2;
always @(posedge clk) begin // behavioral assignments

if (r1) begin // accept new request
cfg <= mode; // change mode
wait_m1 <= 1; // wait for end of m1

20 end
if (e1) wait_m1 <= 0;
if (cfg == HQ) begin // HQ Mode

if (r2) wait_m2 <= 1; // wait for end of m2
if (e2) wait_m2 <= 0;

25 end
end

endmodule

List. 4.2: Verilog module main, instantiating m twice.

(e.g., clk), ηmi holds if the values of every registers and output wires of mi are strictly
equivalent before and after the edge of the clock. If translated into a CGL, ηmi can then
be used to save dynamic power by gating the clock of mi by preventing flip-flop switches.
Considering our example Verilog module main again, a piece of circuit encoding the CGL
for sub-module instances m1 and m2 would typically output two wires, say ηm1 and ηm2, used
to filter each of their respective input clocks clk. The extract of Verilog code instantiating
the clock-gated instance of m1 (replacing the beginning of line 8 in List. 4.2) would then be
“m m1 (.clk(clk & ~ηm1),”.

4.2.2 A Fragment of Heptagon

Heptagon [30] is a reactive data-flow language where programs are built as parallel and
hierarchical compositions of data-flow nodes, each having input, local, and output flows. The
body of a node describes how input flows are transformed into output flows, in the form of
a set of equations. These equations define the values of outputs (and possible local flows),
using the current values of inputs, and the current state of the node: the latter is made

Chapter 4. Exercising Symbolic Discrete Control for Designing Low-Power Hardware
Circuits: an Application to Clock-Gating 55

1 type state_t = Idle | Busy
node m (r: bool; i: int) returns (e: bool; o: int)
var last state: state_t = Idle;

last cnt: int = 0; last m: int = 0;
5 let

state = if last state = Idle & r then Busy else
if last state = Busy & e & not r then Idle else

last state;
cnt = if last state = Busy & e then 0 else

10 if last state = Busy & not e then last cnt + 1 else
last cnt;

m = if last state = Idle & r or last state = Busy & e & r then i else
last m;

o = m;
15 e = (cnt = 100);

tel

List. 4.3: Heptagon node encoding the machine of Figure 4.1.

of memorized values expressed by “last” values of flows. New values for input flows are
given at each execution step, where equations are then evaluated all together, and values of
output flows are updated accordingly.

We give an example Heptagon node in List. 4.3; this node symbolically encodes the Mealy
machine given in Figure 4.1 by using “last” flows to memorize its state. One can compose
Heptagon nodes using instantiations; e.g., like “(e1, o1) = inlined m (r1, i1);” for m.

An invariant and controllable flows (each taking its value in the Boolean domain
bool = {false, true}) can be specified for Heptagon nodes using contracts. When it
encounters a node featuring a contract, the BZR compiler involves a symbolic DCS algorithm
to automatically produce a controller constraining the values of the controllable flows so
as to guarantee that the resulting controlled node satisfies the invariant. The controllers
produced take the form of as many predicates as controllable flows, that implement the
following behavior: considering every controllable flow c in turn (according to their order of
declaration), the controller tries to assign c to true unless this could lead to a potential
violation of the desired invariant in subsequent execution steps. Given a Boolean output o,
a contract enforcing that o holds using controllable flows c1 and c2 for a node is declared
as “contract enforce o with (c1, c2: bool)”.

4.2.3 Variables & Further Notations

In Verilog terms, a set of variables V represents wires and outputs of registers; equivalently
in Heptagon terms, variables in V represent flows, including state ones (“last” flows). PV

56 Mete Özbaltan

m1
m2

m3 m4Given Verilog Modules

SM m1
idlem1

SM m2
idlem2

SM m3
idlem3

SM m4
idlem4

Sub-module Models
& Idleness Predicates

CM m1 CM m2 CM m3Composed Models

CIPm1 CIPm2 CIPm3
Clock-inhibition

Predicates

Figure 4.2: Example Verilog module instantiation graph, associated models, and result-
ing CIPs. Arrows (resp.) represents Verilog sub-module (resp. Heptagon node)
instantiation relations. In turn, (resp.) denotes modeling (resp. symbolic DCS)
steps.

is the set of propositional predicates expressed using variables in V . Given an instantiation
Mi of a Verilog module M and a set of variables VM pertained to M, we denote by VMi the set
of variables substituted according to the instantiation Mi. By extension, we write VSubM to
denote

⊎
mi∈SubM Vmi, where] is the disjoint union.

4.3 Computing CGLs using Symbolic DCS

We now describe our technique for computing CGLs. We give an overview of the modeling
principles and how we eventually integrate the resulting CGLs into the original circuit. We
then detail the models and results we obtain from our example.

4.3.1 Overview of the Modeling Technique

Our translation algorithm produces two families of models (represented using Heptagon
nodes) that each fit two distinct purposes:

SM the first family of models, called Sub-module Models, aims at representing generic
sub-modules (i.e., not yet instantiated). They model their behavior using one internal
state flow per marked register, and abstract away any sub-module instantiation;

CM the second kind of models, referred to as Composed Models, is derived from the
Sub-module Models of every Verilog super-module M. CMs instantiate Sub-module
Models, and encode the computation of CIPs as symbolic DCS problems.

Chapter 4. Exercising Symbolic Discrete Control for Designing Low-Power Hardware
Circuits: an Application to Clock-Gating 57

Our algorithm for computing CIPs works by visiting every Verilog module in the
instantiation graph according to an inverse topological order. Every module M is first
translated into a Sub-module Model SM M, accompanied with an idleness predicate idleM that
expresses a condition on which the registers’ values of any instance of M do not change. Then,
every node SM M of a super-module M is further transformed into a Composed Model CM M

that instantiates Sub-module models. Each node CM M features a contract that involves
control objectives (i.e., at least an invariant involving idleness predicates of sub-module
instances) and controllable flows that represent the CIPs of each sub-module instantiated
by M: the enforcement of this contract by using a symbolic DCS algorithm results in correct
CIPs. We sketch this process using an example circuit specification in Figure 4.2. In this
example, three symbolic DCS problems are solved, leading to as many sets of CIPs. Note
that SM m1 and idlem1 are never instantiated: SM m1 is only used to derive CM m1.

During the modeling process, one CGL-enabled Verilog module mi′ is derived from
the each original one mi. Each CIPmi is eventually translated into Verilog code, and then
integrated into mi′ to derive a clock-gated Verilog design.

Tackling Complexity Issues: Consider a Verilog module M with sub-module instantiations
SubM, and assume a perfect knowledge of the values of all its input wires IM, its registers
RM, and the registers of all its direct and indirect sub-module instances. The optimal
CIP for each of its sub-module instances mi ∈ SubM is ηoptimmi ∈ PIM]RM]ISubM]RSub∗M

, where
Sub∗M denotes every direct and indirect sub-module instances within M. In principle, one
can then build the CGL computing a value for ηoptimmi at each clock cycle, and use it to
inhibit the clock of mi within M. However, the size of today’s circuit designs make the exact
computation of optimal CIPs generally intractable. To tackle this problem, we compute
under-approximations of CIPs by: (i) using a layered approach, where CIPs are computed
separately for each super-module and only their direct sub-module instances are taken into
account; and (ii) devising a parametrized abstraction technique.

Marking Variables: To drive the abstractions, we parametrize our algorithm with a set
of variables to be taken into account when modeling the circuits. This key aspect of our
approach allows designers to exploit the knowledge they have on their designs. In particular,
the usual distinction between command parts and operational parts of hardware circuits
permits a quick identification of registers and wires that are relevant for the computation of
CIPs that would otherwise be hard to compute. Referring to our example Verilog module
m in List. 4.1, one can observe that the computations on the input data given using wire

58 Mete Özbaltan

array i and output using wire array o, are driven by the values held in registers state

and cnt, plus input wire r. The output wire e is also relevant w.r.t. the behaviors of any
circuit instantiating m as it indicates the termination of its computations. Regarding module
main of List. 4.2, relevant wires and registers include r, mode, e, error, cfg, wait_m1, and
wait_m2.

Marked wires and registers shall be specified as a union S of sets SM of variables pertained
to a Verilog module M instantiated in the circuit. Note that our modeling algorithm is
sound w.r.t. the set of marked variables, meaning that, although some sets S give better
results than others (e.g., in terms of dynamic power savings), it always produces functionally
equivalent results. In the worst case (SM = ∅), the resulting model for M symbolically
describes a single-state automaton, and it is only likely to result in a module that is never
considered idle.

Abstracting behaviors of the Verilog modules leads to potentially non-deterministic
models. Consider for instance an explicit automaton with an input wire i and two tran-
sitions from the same source and distinct destinations, respectively guarded with i and
¬i; abstracting away i would lead to a non-deterministic automaton. To still construct
Heptagon nodes (that are deterministic by definition), we automatically generate oracles to
replace sub-expressions whose values are abstracted away, thereby explicitly modeling the
non-determinism.

Introducing Oracles: Given an expression e on any set of variables, the oracle ωe is
an interpreted input that proxies e. In particular, ωe takes its values in the domain of e
(e.g., the Booleans if e is a predicate), and can thus be used to model behaviors where e
itself is abstracted away and can non-deterministically take any value in its domain. Every
knowledge about the modeled behaviors is not lost however. Indeed, assuming that e and e′

admit the same canonical representation e′′, every occurrence of e and e′ can be replaced
with the same oracle ωe′′ , and the equality of valuations for e and e′ can still be represented.
For instance, given the expression x + y, where x and y are Integer variables, the oracle
ωx+y can non-deterministically take any Integer value: the addition operation, x, and y
are abstracted away, replaced by some undetermined Integer. Additionally, if y + 1 + x− 1

admits the same canonical representation as x+ y, then it can also be modeled with ωx+y.
When constructing SM M or CM M from a Verilog module M, we introduce a set of oracles

ΩM to handle expressions within M that involve non-marked wires and registers (not belonging
to SM): i.e., the actual values of these expressions are abstracted away in the resulting
models. Yet, our goal is to actually generate circuits that encode CGLs, and that can thus

Chapter 4. Exercising Symbolic Discrete Control for Designing Low-Power Hardware
Circuits: an Application to Clock-Gating 59

SM M

{τ}
SM ∩ IM

ΩM

SM ∩ (RM]OM)

Figure 4.3: Interface of a Sub-module Model SM M.

be used to inhibit the clock of instances of M: the actual values of marked registers and
abstracted expressions computed within M are hence required when translating the resulting
CIPs into Verilog code. As a result, while oracles ΩM are inputs to the models of M, we
also build a CGL-enabled version M’ that features one additional output wire per oracle in
ΩM that does not represent expressions only involving inputs of M; these additional wires
carry the actual values of the corresponding expressions, and are thus used to feed the CGL
of super-modules. Additional output wires of M’ also carry the value of marked registers
belonging to SM.

Bottom-up Clock-inhibition Allowance: Of course, the clock of any instance of M also
drives sub-module instances mi ∈ SubM. As a result the clock of M should not be inhibited
whenever any sub-module instance mi must not be inhibited. However, SM M does not model
the behavior of any of its sub-module instances. Hence, we choose to add a bottom-up
clock-inhibition allowance output wire allowηM to M’, built as the conjunction of every CIPs
of sub-modules instantiated by M, or 1 if there is none.

Resulting CGLs: Eventually, the CGL to be integrated within a Verilog super-module
M consists of one CIP η̃mi ∈ PSM]ΩM]SSubM

]ΩSubM
]
⊎

mi∈SubM
allowηmi per sub-module instance

mi ∈ SubM. η̃mi under-approximates the condition upon which the clock of sub-module
instance mi can be inhibited: i.e., it is such that η̃′mi ⇒ ηoptimmi , η̃′mi being η̃mi where every
oracle ωe is substituted by e. We rely on a symbolic DCS algorithm to compute such CIPs.

4.3.2 Building Sub-module Models & Idleness Predicates

We outline in Figure 4.3 the interface of a Sub-module Model SM M for a Verilog module M.
Its inputs include (i) an enable flow τ ; (ii) flows mirroring marked input wires selected for
this module (SM∩IM); and (iii) a set of input oracles ΩM that are used to model undetermined
behaviors of instances of M. The outputs of SM M comprise flows mirroring the marked
registers and output wires selected for M (SM ∩ (RM]OM)).

We further associate each Sub-module Model SM M with an idleness predicate idleM ∈
PSM]ΩM , that under-approximates the condition on which the registers’ values of any instance

60 Mete Özbaltan

1 type state_t = Idle | Busy
node SM m (τ, r, ωcnt==100: bool)
returns (last state: state_t = Idle; e: bool)
let

5 state = if not τ then last state else
if last state = Idle & r then Busy else

if last state = Busy & ωcnt==100 & not r then Idle else
last state;

e = ωcnt==100;
10 tel

List. 4.4: Heptagon node SM m, obtained from the Verilog module m of List. 4.1 using marked
variables Sm = {state, r, e}.

1 module m’ (input clk, input r, input [7:0] i,
output [7:0] o, output e,
// additional outputs:
output state’, output ωcnt==100, output allowηm);

5 ...
assign state’ = state;
assign ωcnt==100 = (cnt == 100);
assign allowηm = 1; // no clock-gated sub-module instance

endmodule

List. 4.5: Excerpts of the CGL-enabled Verilog module m’ obtained from the module m of
List. 4.1.

of M do not change; i.e., given values for marked input wires, marked internal registers, and
for the oracles, if idleM holds then any assignment to any (both marked and non-marked)
internal and output registers of M would not change the value it memorizes.

One can easily build the Heptagon node SM M and the associated condition idleM from a
Verilog module M where every internal wire is substituted with the expression it is assigned
to. A traversal of clock-triggered assignments to marked registers clocked using clk allows
the construction of cascading conditional statements for the assignments to flows encoding
the state within SM M (“last” flows). A similar traversal can be used to construct idleM as
the conjunction of the negation of every guard leading to the assignment of a register. An
efficient introduction of oracles can be performed by building a canonical representation of
every expression using (basic and/or multi-terminal) binary decision diagrams for instance.
Then, every canonical expression e that involves a non-marked variable becomes an oracles
ωe ∈ ΩM.

Note that the constructions above do not necessarily traverse every expression, register
or wire of a module declaration, hence only a limited number of oracles might be required
even for large modules. This claim is supported by the application of our technique on a

Chapter 4. Exercising Symbolic Discrete Control for Designing Low-Power Hardware
Circuits: an Application to Clock-Gating 61

CM M

SM ∩ IM
Ω′M] ΩSubM

SM ∩ (RM]OM)

{ϕM}

Figure 4.4: Interface of a Composed Model CM M.

realistic case study detailed in Section 4.4.
When applied to the Verilog module m of List. 4.1 with marked variables Sm = {state, r, e},

our construction technique for Sub-module Models builds the Heptagon node of List. 4.4.
The assignment to e on line 9 corresponds to the assignment on line 8 in List. 4.1: the value
of “cnt == 100” is abstracted away using an oracle as cnt does not belong to Sm. In turn,
the predicate that describes the idleness condition of m is idlem = (state = Idle & not r).
Finally, we show in List. 4.5 the additions to module m that are necessary to construct the
corresponding CGL-enabled Verilog module m’. m’ features three additional output wires
(one for as many oracles in Ωm, one per variable in Sm ∩Rm, plus allowηm). The bottom-up
clock-inhibition allowance output allowηm is assigned to 1 as no sub-module instantiation
exists within m to prevent the clock of m from being inhibited.

4.3.3 Building Composed Module Models

A Composed Model CM M is derived from SM M by taking sub-module instantiations mi into
account, and formulating the computation of η̃mi’s as a symbolic DCS problem. Basically,
the instantiation of a sub-module m by M translates within CM M into the instantiation (say,
SM mi) of the Heptagon node SM m. The input τ of each Heptagon node instantiation SM mi

is assigned to the negation of the corresponding CIP “not η̃mi”. CIPs, in turn, are the
controllable flows as they represent the CGL outputs. (The input flow τ modeling the clocks
in Sub-module Models is no longer required, and can be substituted with true everywhere
else in CM M.) Further, we build Ωmi and idlemi according to the appropriate renaming in Ωm

and substitutions in idlem. Note that, with the additional output flows from Sub-module
Models, some oracles in ΩM may represent expressions that are now fully determined. A
substitution of such oracles with their respective expressions is thus necessary in CM M so
that marked outputs of sub-modules are taken into account. Let Ω′M be ΩM pruned from
the latter oracles. At last, the invariant to enforce by control ϕM states that a CIP η̃mi for a
sub-module instance mi should not hold unless idlemi holds:

ϕM =
∧

mi∈SubM
(η̃mi ⇒ idlemi).

62 Mete Özbaltan

1 type cfg_t = LQ | HQ
node CM main (ωr, ωm1_cnt==100, ωm2_cnt==100: bool; ωmode: cfg_t)
returns (last wait_m1: bool = false; last wait_m2: bool = false;

last cfg: cfg_t = LQ; ϕM: bool)
5 contract enforce ϕM with (η̃m1, η̃m2: bool)
var m1_state, m2_state: m_state_t; e1, e2: bool;
let

(m1_state, e1) = inlined SM m (not η̃m1, ωr & not last wait_m1 & not last wait_m2, ωm1_cnt==100);
(m2_state, e2) = inlined SM m (not η̃m2, e1 & not last wait_m2 & last cfg = HQ, ωm2_cnt==100);

10 cfg = if ωr & not last wait_m1 & not last wait_m2 then ωmode else
last cfg;

wait_m1 = if ωr & not last wait_m1 & not last wait_m2 then true else
if e1 then false else

last wait_m1;
15 wait_m2 = if last cfg = HQ & e1 & not last wait_m2 then true else

if e2 then false else
last wait_m2;

ϕM = (η̃m1 => (m1_state = Idle & not (ωr & not last wait_m1 & not last wait_m2)))
& (η̃m2 => (m2_state = Idle & not (e1 & not last wait_m2 & last cfg = HQ)));

20 tel

List. 4.6: Heptagon node CM main obtained from the Verilog module main of List. 4.2 using
marked variables Smain = {cfg,wait_m1,wait_m2} and Sm as used in List. 4.4.

We sketch the interface of a Heptagon node CM M in Figure 4.4; note that it also admits
as inputs the oracles of every instantiated sub-module. We give in List. 4.6 the result we
obtain for CM main.

4.3.4 Computing & Integrating the CGLs

As stated in Section 4.2.2, the compilation of a Heptagon node that features a contract
(as Composed Models do), involves a symbolic DCS computation step that produces a
controller made of one predicate per controllable flow (i.e., CIPs). By virtue of the semantics
assigned to such flows by the Heptagon compiler (i.e., assigning them to true whenever
possible), one can eventually translate the controller into some Verilog code encoding a CGL
that inhibits the clock of sub-module instances whenever possible. We show in List. 4.7
excerpts of the end result that we obtain for our running example. The assignments to
registers1 holding η̃m1 and η̃m2 are clocked using clk: their respective input value consists
in the conjunction between their respective bottom-up clock-inhibition allowance (allowηm1

and allowηm2), and their respective CIPs as computed by using symbolic DCS. The clocks
of sub-module instances m1 and m2 are now filtered according to η̃m1 and η̃m2. As a side
note, remark that ωe1 and ωe2 are output wires of main’ since these outputs of sub-module

1Although using wires for CIPs would seem sufficient from a functional point of view, registers are
required to avoid glitches [11].

Chapter 4. Exercising Symbolic Discrete Control for Designing Low-Power Hardware
Circuits: an Application to Clock-Gating 63

1 module main’ (input clk, input r, input mode, input [7:0] i,
output [7:0] o, output e, output error,
// additional outputs:
output wait_m1’, output wait_m2’, output cfg’,

5 output ωe1, output ωe2, output allowηmain);
reg η̃m1, η̃m2;
always @(posedge clk) begin

η̃m1 <= allowηm1 & (m1_state == idle) & (wait_m1 | wait_m2 | ~r);
η̃m2 <= allowηm2 & (m2_state == idle) & ((cfg == LQ) | wait_m2 | ~ωm1_cnt==100);

10 end
wire allowηm1, m1_state, ωm1_cnt==100;
m’ m1 (.clk(clk & ~η̃m1), .allowηm(allowηm1), ...

.state’(m1_state), .ωcnt==100(ωm1_cnt==100));
wire allowηm2, m2_state, ωm2_cnt==100;

15 m’ m2 (.clk(clk & ~η̃m2), .allowηm(allowηm2), ...
.state’(m2_state), .ωcnt==100(ωm2_cnt==100));

...
// assignments to outputs to be CGL-enabled:
assign wait_m1’ = wait_m1, wait_m2’ = wait_m2;

20 assign cfg’ = cfg; assign ωe1 = e1, ωe2 = e2;
assign allowηmain = η̃m1 & η̃m2; // <- clock-inhibition allowance

endmodule

List. 4.7: Excerpts of resulting Verilog module obtained from module main of List. 4.2.

instances are required to construct SM main and idlemain. However, ωr and ωmode are not part
of these outputs as they represent input wires only.

4.4 Application on a Case Study

To experimentally validate our approach, we have manually applied our clock-gating synthesis
technique on a real hardware component. To this end, we chose to use a Reed-Solomon
(RS) decoder2. RS codes are a group of error-correcting codes, that have wide range of
applications in digital communications and storage [91]. Basically, this decoder takes coded
words of 204 bytes as inputs, and outputs decoded words of 188 bytes. The original decoder
is made of 23 modules that build up a circuit with around 52,000 gates and 3,000 registers
(flip-flops). Among them, 6 modules drive the operations to be performed on the data: they
feature two easily identifiable families of wires and registers that we marked for our modeling:
(i) register arrays named state or step, that take their values into discrete domains made
of a few constants (similarly to state in List. 4.1); these registers are typically used to
encode some command automaton that drives operations on data; and (ii) input and output
wires named *_ready or *_done, that signal end of computations. We then produced a

2https://opencores.org/project,reed_solomon_decoder.

https://opencores.org/project,reed_solomon_decoder

64 Mete Özbaltan

Original CGL-enabled Saving (%)
Cyclone IV (100MHz) 69.98 58.55 16.33
Stratix III (100MHz) 86.99 74.16 14.75
HardCopy IV (100MHz) 15.48 13.84 10.59
Cyclone IV (1GHz) 699.80 585.48 16.34
Stratix III (1GHz) 869.94 741.60 14.75
HardCopy IV (1GHz) 154.85 138.46 10.58

Table 4.1: Estimated mean power dissipation (in mW) of original and resulting RS decoders.

“CGL-enabled” circuit including CIPs produced using symbolic DCS.

To experimentally assess the functional correctness and compare the respective dynamic
power dissipation of each of the designs at hand (original and CGL-enabled), we first
performed logic synthesis on both of them using the Altera Quartus synthesizer. We then
used the Altera ModelSim simulation tool to perform functional simulations using the same
benchmark (provided with the source code of the original decoder) for the two circuits, and
checked that the resulting traces were strictly equivalent. To assess actual dynamic power
savings, we have carried out estimations of mean power dissipation on simulations of the
benchmarks, for various target technologies and main clock frequencies as these factors
have a great impact on dynamic power. The Altera PowerPlay Power Analyzer tool offers
several pre-configured target technologies, among which we chose the Cyclone IV (dedicated
to low-power FPGA designs), the Stratix III (for high-performance FPGA designs), and
the HardCopy IV (ASICs) families. We also setup the main clock frequencies to be either
100Mz or 1GHz.

We show the resulting estimations of power dissipation and respective dynamic power
savings in Table 4.1. We consider that these results are promising when put in perspective
with the relative simplicity of our approach. Indeed, we generated effective CIPs by imposing
invariants only, as our technique do not even incorporate control techniques towards any
sort of optimization yet.

Clock gating is the most used technique for reducing the dynamic power consumption
in synchronous circuits, where the aim is generally switch-off the clock of a component
when it is idle. The subject has been studied for a single register or group of registers,
in several works. However, it has not been applied for module level to the best of our
knowledge. The biggest advantage of this approach is that only one clock-gating cell is
used per module, unlike the other approaches. Thus, our approach requires only a small

Chapter 4. Exercising Symbolic Discrete Control for Designing Low-Power Hardware
Circuits: an Application to Clock-Gating 65

piece of extra logic (i.e., small area usage and higher power saving, compared with other
approaches). Furthermore, our approach relies on formal control techniques. Compared
to other existing techniques for applying clock-gating, the main advantage of it provides a
synthesisable controller with formal correctness. We applied our approach on a realistic case
study, where today’s RTL designs are generally composed as a hierarchical structure. Thus,
we show that it can be applied for any hierarchical design. Although it is not available to
calculate the best available theoretical estimation of a given design, our results (module
based) are promising compared with the register based approaches in the survey paper [87]
(roughly %25 power saving).

4.5 Summary and Discussion

Low-Power Chip Design: Several families of design methods permit the (semi-)automated
use of power-saving technologies: they can be integrated into high-level (aka system level)
or RTL descriptions, or further down the implementation process, during “synthesis” (i.e.,
translation of RTL descriptions into a network of gates and wires), or placement and routing
steps. Nonetheless, [28] found that considering higher levels of abstraction generally leads
to more power savings. Designers most commonly rely on the RTL code itself to implement
clock-gating, yet a few approaches automatically generate RTL code with integrated clock
gating form higher-level descriptions. Among them, [1] developed an environment for
high-level design with their own procedural language. [2] also provide a solution to design
circuits directly using the C language. In these approaches, designers are responsible for the
selection of gated components.

One can distinguish three classes of RTL clock-gating algorithms based on the hierarchical
level at which they consider the circuit: combinatorial or sequential ones focus on individual
registers [100, 67], system- or module-level [19] focus on clock-gating whole modules or
blocks of clock-triggered assignments. We rely on the latter level for the layered abstractions
that it allows.

Several commercial and academic tools already target automated clock-gating from RTL
code. [89] developed an algorithm that automatically insterts CGL into RTL descriptions of
circuits. They focus on the exact computation of idleness conditions for individual registers
within a single module, hence their solution suffers from scalability issues. To partially
overcome these issues, [7] suggest an algorithm that automatically tries to approximate
idleness conditions. Later, [24] used a control-based adaptive clock-gating algorithm to shut

66 Mete Özbaltan

down IP cores based on given explicit finite-state models. In an approach that targets the
conditional activation of individual hardware components using their “enable” signal (an
approach similar to clock-gating), [12] tried to detect idleness conditions by using explicit
finite-state machines. At last, [89] exploited conditional statements and case structures
within blocks of clock-triggered assignments in HDLs to determine such conditions. Our
approach draws from the latter ones in the sense that we also operate at the HDL level,
and build symbolic finite-state machines from conditional clock-triggered assignments. We
additionally bring layered and semi-automated abstractions for the sake of scalability.

Applying DCS for Low-power Hardware Design: Few hardware design techniques rely on
DCS for saving power. [88] present a high-level design flow for reconfigurable FPGA-based
System-on-Chip (SoC); they model potential reconfiguration behaviors and manually derive
a “controller” that automatically takes reconfiguration decisions. Later, [50] and [5, 6] were
among the firsts to apply DCS algorithms for reconfiguration management in SoC design.
Doing so, they could automate the generation of controllers, thereby exploiting the formal
correctness and guarantees that DCS techniques provide. In particular, [5, 6] model the
applications’ behaviors and the needed resources (area in hardware—i.e., regions of the
FPGA) using explicit automata; they then use a symbolic DCS algorithm to automatically
compute a reconfiguration manager for the system.

In this work, we have described a systematic approach for computing the CGL of
synchronous circuits described using the Verilog hardware description language. This
approach exercises symbolic DCS algorithms by means of a semi-automated modeling in
Heptagon of each individual Verilog modules. We have demonstrated its principles using an
example, and have reported on its manual application on a realistic case study.

The next steps involve a formalization of our modeling algorithm to validate its correct-
ness, along with the development of an implementation in a tool. Our approach can also be
extended to compute CGLs for individual registers within modules. Although we exercised
our technique to implement clock-gating as it currently offers the best trade-off between
extra occupied circuit area and power savings [58], it is also applicable to other low-power
design mechanisms such as power-gating (especially for computation-intensive modules that
can be shut down for long periods of time). Also, the abstractions induced by our modeling
approach make it a good candidate for constructing models suitable for the application
of control algorithms that do not scale up to exact whole-circuit models. In particular,
the adaptation of our algorithm for the computation of “suspendability” predicates would
allow to suspend the computations of sub-module instances by control. Combined with the

Chapter 4. Exercising Symbolic Discrete Control for Designing Low-Power Hardware
Circuits: an Application to Clock-Gating 67

recent advances in control algorithms for symbolic infinite-state systems with applications
to quantitative models [14, 15], our framework could permit the application of optimal
control techniques towards the minimization of peak dynamic power or energy dissipation
over several clock cycles. Similarly, incorporating stochastic models (e.g., inferred from
simulation traces) would provide interesting cases for developing new optimal control algo-
rithms targeting such goals. Also, automatically identifying “good” sets of marked variables
constitutes an interesting challenge. At last, the support of black-box sub-modules with
simple user-provided models can also be considered.

Chapter 5

Power-Aware Scheduling of
Data-Flow Hardware Circuits with
Symbolic Control

In this chapter, we advance the framework introduced in the previous chapter. We offer
more abstract models for data-flow hardware circuits, where we achieve the power efficiency
by tackling another hardware design problem, scheduling policy. We also add a new set
of control objectives to implement a scheduling policy, so we do not provide power saving
only in the idleness condition of a sub-circuit, but also the scheduled inactive period of
sub-circuits. Our approach relies on formal control techniques, where the goal is to compute
a strategy that can be used to drive a given model so that it satisfies a set of control
objectives. More specifically, we give an algorithm that derives abstract behavioral models
directly in a symbolic form from original designs described at Register-transfer Level using
a Hardware Description Language, and for formulating suitable scheduling constraints and
power-efficiency objectives. We show how a resulting strategy can be translated into a piece
of synchronous circuit that, when paired with the original design, ensures the aforementioned
objectives. We illustrate and validate our approach experimentally using various hardware
designs and objectives. Our paper1, which includes the contents and results of this chapter,
have been under the submission and review.

1Author: Mete Özbaltan and Nicolas Berthier.

68

Chapter 5. Power-Aware Scheduling of Data-Flow Hardware Circuits with Symbolic
Control 69

5.1 Introduction

High-level models are often required to reason on synchronous circuit designs, as well as apply
scalable techniques to translate them into equivalent designs that meet various performance
goals such as energy-efficiency [106]. Among these models, the family of data-flow process
networks [64] sees circuits as actors that communicate tokens through communication
channels (FIFOs) and react according to specific firing rules. Kahn Process Networks
(KPN) [49] are a sub-class of such models where channels are considered unbounded, and
processes are fired whenever there are enough tokens in its input channels. A consequence of
this property is that writes can be considered non-blocking—i.e., a process is never blocked
when it writes to a channel—, whereas reads to empty channels are blocking. KPNs can be
used to describe systems where the amount of data produced and consumed by a process is
not statically determined.

We consider designs that implement KPNs, and where each process implementation
is described at Register-Transfer Level in a Hardware Description Language (HDL) such
as Verilog. We advance a (mostly-)automated procedure that translates such designs into
functionally equivalent ones that in addition enjoy power-awareness guarantees, in a bid to
reduce their dynamic power dissipation. To this end, we compute a strategy that implements
a power-aware scheduling policy by selectively clock-gating [19] each process. Notice we
do not seek to reduce the total energy consumed (i.e., power integrated over the total
computation time). Rather, we seek to reduce the instantaneous power (possibly integrated
over a small time window), as this kind of power-efficiency policy usually has a positive
impact on the lifetime of battery-powered devices [84], and also provides a means to limit
chip temperature. In effect, we allow ourselves to degrade timing performance to achieve
such goals.

Our approach relies on the construction of abstract symbolic models of the designs, and
employs discrete control techniques to compute a piece of hardware circuit that implements
some power-aware scheduling policies specified in a declarative way. This piece of circuit
can eventually be used to selectively filter the clocks of the processes involved.

Outline: The remainder of the chapter is organized as follows: Section 5.2 gives
necessary background on symbolic models and control. Section 5.3 presents our approach,
which is experimentally evaluated in Section 5.4. At last, Section 5.5 conclude with the
summary and discussion.

70 Mete Özbaltan

5.2 Discrete Control with Symbolic Systems

5.2.1 Symbolic Notations

The symbolic systems we consider are built upon a set of symbols S, each associated with a
domain of definition D ∈ D according to the mapping Dom:S → D. D comprises at least
the Boolean domain B def

=
{

tt,ff
}
, and numerical domains Dnum ⊆ D such as the Integers

(Z) and Rationals (Q), and S notably comprises all constants used to define domains in D
(e.g.,

{
tt,ff, 0,−1

2 . . .
}
). Every domain in D is equipped with equality. Dfin denotes the set

of all finite domains in D.
Given a domain D ∈ D, the set XD of all D-valued symbolic expressions comprises all

formulae ψD that can be generated according to the following grammar:

ψD ::= s | if ψB then ψD else ψD (D ∈ D, s ∈ S,Dom (s) = D)

ψB ::= ¬ψB | ψB ∨ ψB | ψB ∧ ψB | ψB ⇒ ψB

| ψD = ψD | ψD 6= ψD (D ∈ D)

| ψN ./ ψN (N ∈ Dnum, ./∈ {<,6})

ψN ::= cψN | ψN ./ ψN (N ∈ Dnum, c ∈ N , ./ ∈ {+,−}).

Note that rule ψD is polymorphic (i.e., generic) in the domain D, and restricts conditional
constructs to cases where the two rightmost expressions are of the same type. Also, this
grammar features the following constructs that are available as syntactic sugar to ease
readability: ¬, ∨, ∧ and ⇒ are usual logical connectives that can be expressed using
conditional constructs, and ϕ− ψ is equivalent to ϕ+−1ψ. Informally, the rules ψN and
ψB respectively produce guarded linear arithmetic expressions and propositional predicates
with equality and linear (in)equalities.

Non-constant symbols are variables, and a valuation ν ∈ Val (V) for each variable
in V ⊆ S maps every variable x from V to Dom (x). We also note Dom (ν) the set of
variables bound by a valuation ν, and compose valuations for disjoint sets of variables with
]. The support of e, denoted Support (e), is the set of variables that appear anywhere
in its constructs. We shall index sets of expressions with the variables that make up the
smallest super-set of their support when such a precision appears relevant for our exposition:
e.g., XD,V

def
= {e ∈ XD | Support (e) ⊆ V } ; when domains appear irrelevant, however, we

abbreviate the set of all symbolic expressions as X def
=
⋃

D∈D XD.

Chapter 5. Power-Aware Scheduling of Data-Flow Hardware Circuits with Symbolic
Control 71

P def
= XB is the set of all propositional predicates with (in-)equalities; P is closed under

elimination of variables defined on finite domains. Further, for every domain D ∈ D, XD

is also closed under substitution of any symbolic expression that belongs to XD′ for any
variable v s.t Dom (v) = D′. We generalize to multiple variables and denote with e

[
µ
]

such a substitution in e ∈ X according to a mapping µ from a set of variables to symbolic
expressions of the same domain of definition. We use the variable assignment denotation
x := ex to incrementally construct such a mapping in Section 6.32.

Given e ∈ XD,V and a valuation ν s.t Dom (ν) ⊇ V , the value of JeKν belongs to D and
can be computed as follows:
• JsKν = ν(s), if s ∈ V , s otherwise;

• Jif ϕ then ψ else ψ′Kν =

{
JψKν if JϕKν = tt,
Jψ′Kν otherwise;

• Jψ = ψ′Kν = tt if JψKν = Jψ′Kν, ff otherwise;
• Jψ ./ ψ′Kν = tt if JψKν ./ Jψ′Kν, ./∈ {<,6} ,ff otherwise;
• JcψKν = c× JψKν;
• Jψ + ψ′Kν = JψKν + Jψ′Kν.

5.2.2 Symbolic Systems

Symbolic systems are made of disjoint sets of state and input variables, respectively denoted
X and I. The values associated to state variables are initialized with constants, and evolve
according to a discrete step (lock-step) semantics very similar to that of synchronous circuits:
discrete evolutions are defined using a mapping T with one assignment x := ex per state
variable x ∈ X, where ex is a Dom (x)-valued symbolic expression that determines the
value to be memorized by variable x based on the current valuations for state and input
variables, at each tick of an implicit basic clock. The systems we consider may additionally
be equipped with an assertion A, which is a predicate that belongs to PX∪I : A encodes
assumptions on the possible valuations for input variables based on that of state variables.

Such a system induces a state machine whose state-space consists of all possible valuations
for every variable in X, and whose transitions are encoded by the discrete evolutions T and
assertion A. This machine is a finite-state machine (FSM) iff the domain of definition of
every variable in X is finite.

2Throughout the thesis, and unlike :=, s ∆
= e denotes the classical formal definition of a left-hand side

symbol s with a right-hand side expression e: s can be seen as a placeholder for expression e everywhere in
the thesis. Alternatively, we use def

= when defining structures and algorithms.

72 Mete Özbaltan

5.2.3 Symbolic Control

Solving symbolic control problems on such systems can be seen as solving a game where,
at each tick, one player (the environment) gives a value for a fixed portion of the input
variables, then the other player (the controller) assigns values to every other input variable,
and then the game evolves into a subsequent state according to the discrete evolutions and
the inputs given by the players. The control objectives assigned to the second player are
expressed as logic formulas that involve state and/or input variables, and the solution of
the control problem consists in a strategy that this player can follow to win the game by
fulfilling all its objectives. The input variables assigned by the first (resp. second) player
are said non-controllable (resp. controllable); we denote these sets of variables U and C,
respectively. Note that at each turn, the assertion A restricts the choices available for the
players to valuations of their respective input variables that do not falsify A: in a state
q, the first player must pick values u for non-controllable variables such that there exists
at least one valuation for controllable variables (i.e., such that the controller can choose c
s.t JAKq] u] c = tt). Systems where such a choice for the first player always exists are
said deadlock-free, and algorithms solving control problems should preserve (or enforce) this
property.

The control objectives that we use in this chapter and Chapter 6 are twofold: First,
achieving a safety control objective consists in enforcing a safety property. Such properties
can be expressed using some temporal logic like LTL [26]. In our case however, we use the
same symbolic constructs as for the system to build stateful observers that represent the
temporal aspects of the properties we need (e.g., sequence, iteration), and can therefore
restrict the safety objective formulas to propositional logic. Second, satisfying optimal
control objectives consists in minimizing a cost function, possibly summed over a sliding
window of a given number of ticks. In systems as described in Section 5.2.2, when costs are
associated with the transitions of the underlying FSM instead of its states, the cost function
is a total mapping from state and input valuations into some numerical domain: in symbolic
terms, it can therefore be expressed as an expression in XN ,X∪I , with N ∈ Dnum. When
both a safety and an optimal control objective are to be enforced, the combined strategy
can be obtained by first computing a strategy that ensures the safety objective, and then
refining it to satisfy the optimal control objective.

Observe that there does not always exist a strategy that fulfills the desired safety control
objectives, and in this case safety control algorithms terminate but produce no output. We

Chapter 5. Power-Aware Scheduling of Data-Flow Hardware Circuits with Symbolic
Control 73

shall see that in this work, the absence of a strategy specifically reveals unrealizable objectives
regarding the limitation of dynamic power consumption (w.r.t. modeling abstractions).

1) Strategies as Efficient Sequential Code: Usually, strategies that are computed by
algorithms dedicated to operate on symbolic systems eventually take the form of a predicate
over state and input variables: i.e., much as the assertion A, they belong to PX∪I . Then,
given a valuation for state and non-controllable inputs, a constraint solver needs to be
used to find a suitable valuation for controllable inputs that satisfies the predicate. The
existence of such a solution is guaranteed by the control algorithm; when this solution is
always unique, moreover, the strategy is deterministic.

To avoid relying on a constraint solver, a triangularization procedure [53] can be used to
translate the strategy into a mapping from valuations for state and non-controllable input
variables into valuations for controllable input variables, which is basically a combinatorial
circuit. This translation operates by using successive variable substitutions and partial
evaluations of the predicate strategy. Triangularizing non-deterministic strategies notably
requires a total order on solutions, e.g., with a total order on both the controllable input
variables and their respective domains of definition: this can be achieved by ordering
(prioritizing) the controllable input variables, and assigning them with “default” or “preferred”
values.

The triangularized strategy can directly be combined with the original system to form an
controlled system that, when fed with values for non-controllable inputs, keeps track of the
state of the model and outputs appropriate values for controllable variables to enforce the
desired control objectives. This controlled system does not rely on any constraint solver, and
can therefore easily be implemented as a efficient piece of sequential code or synchronous
circuit.

5.2.4 Tooling and Related Works on Optimal Control

Few works have addressed the problems of enforcing safety control and optimization objec-
tives on the kind of symbolic systems we construct; they mostly derive from the seminal
work of [90]. [72] and [77] implemented tools that are suitable for enforcing safety objectives.
[15, 16] extended these algorithms to operate on systems where state variables may take
their values in infinite numerical domains like Integers or Rationals: they implemented these
algorithms as part of the ReaX tool3.

3Available at https://reatk.gforge.inria.fr/.

https://reatk.gforge.inria.fr/

74 Mete Özbaltan

Original Design New Design
clk Control

for Safety
Design Model M

Safety Objective ϕ Strategy σϕ Control for
OptimizationOptimization Objective O

Strategy σϕ+O

CGLclk

Figure 5.1: Overview of the possible work-flows for computing the power-aware CGL.

In turn [73] and [34] implemented solutions for optimization objectives; these works focus
on finite-state systems equipped with cost functions relating to states only, and essentially
consist in symbolic adaptations of Bellman’s algorithm for the computation of optimal
strategies using dynamic programming [10]: as such, they rely on a given set of target states
in the underlying FSM, to be reached using a path that incurs an optimal cost.

The algorithm we present in the next chapter alleviates the need for specifying target
states to better accommodate the modeling of reactive systems for which the solutions above
are inadequate. Instead, we take an alternative approach by focusing on the optimization
on all future paths of a given length at once.

5.3 Models and Objectives for Power-aware Scheduling

5.3.1 Overview of the Approach and Contributions

We describe in Figure 5.1 the work-flows offered by our approach: our goal is to automatically
construct the Clock-gating Logic (CGL) that implements a power-aware scheduler for all
processes involved. A Design Model M is first built from the original design. M is made
of the synchronous parallel composition of, for each process in the design: (i) a process
model, which is a symbolic behavioral abstraction of the process, constructed from the HDL
description of its implementation; (ii) an idleness predicate idlep that must not hold if the
value of any register within p is not strictly equivalent before and after the edge of the clock
(i.e., it is an under-approximation); and (iii) a symbolic power expression Pp that gives
an estimated measure of the instantaneous dynamic power consumption of the modeled
process based on the state and input symbols of p. Each process p is associated with a
clock-inhibition signal, inhibitp, which is a controllable input symbol that shall hold when
the computations of p can be suspended, i.e., its clock can be inhibited.

Then, a safety objective ϕ is built, in the form of a conjunction of propositional formulas
involving state symbols of both M plus, possibly, supporting stateful observers specified
using additional state symbols. These objectives fall into three categories: clock-gating
constraints relate each clock-inhibition signal with the model of its process within M ;

Chapter 5. Power-Aware Scheduling of Data-Flow Hardware Circuits with Symbolic
Control 75

scheduling constraints restrict the set of eligible control strategies to those that ensure
progress, fairness, and absence of starvation; lastly, peak power constraints can be used to
specify an upper-bound on the sum of all power expressions upon any tick.

At this stage, a symbolic safety control algorithm is used to compute a strategy σϕ, which
is guaranteed to select values for the controllable inputs that ensure that the safety objective
ϕ are fulfilled. Since clock-inhibition signals belong to the set of controllable inputs, σϕ and
M can be used in combination to form a piece of circuit that filters the individual clock
signals for the respective processes. Alternatively, the strategy σϕ can be improved by using
our new symbolic control algorithm that ensures an additional optimization objective O.
The cost function that we use to define O basically consists of the sum of power expressions
Pp for all processes. The resulting refined strategy σϕ+O can be used in the same way as
σϕ to filter the clocks of each process.

Other Contributions: We have implemented a set of open-source tools4 that helps
putting our approach into practice. These tools allow designers to: (1) construct the
model M and the associated safety and optimization objectives from an HDL description
of the original design; (2) compute suitable strategies, and (3) translate them into an
HDL description of the CGL (the sought after strategies for clock-inhibition are given in
a symbolic form, so their translation into a description of synchronous circuit in an HDL
is essentially syntactical); (4) construct a new design that integrates this CGL. Note that
only step (1) above requires some insight from designers about the design, and all the other
stages are fully automated.

We further detail the process abstraction procedure and associated definition of control
objectives to obtain a power-aware CGL in the remainder of this Section.

5.3.2 Abstracting Process Implementation Behaviors

Our translation and modeling algorithm takes as inputs the set P of all processes in the
original design, and produces a model M along with objectives suitable for computing an
implementable CGL by means of symbolic control. The computations within each individual
process is described using a module in an HDL, that accepts a dedicated clk signal used to
drive the updates of its registers.

1) Selected HDL Variables: Our abstraction algorithm is parametrized with a set of

4Each available at https://github.com/mozbaltan/dcs4cgl, https://scm.gforge.inria.fr/anonscm/
git/reatk/reatk.git/, and https://gforge.inria.fr/anonscm/git/reatk/ctrl2hdl.git.

https://github.com/mozbaltan/dcs4cgl
https://scm.gforge.inria.fr/anonscm/git/reatk/reatk.git/
https://scm.gforge.inria.fr/anonscm/git/reatk/reatk.git/
https://gforge.inria.fr/anonscm/git/reatk/ctrl2hdl.git

76 Mete Özbaltan

selected HDL variables that make up the portion of state and input spaces that is precisely
represented in the constructed model of each process. This key aspect allows designers to
exploit the knowledge they have on their designs, in particular the usual distinction between
command parts and operational parts. Every wire and register that is not explicitly selected
is abstracted away and replaced by oracles:

2) Oracle Symbols: Indeed, while translating HDL expressions into their symbolic
counterpart, our algorithm abstracts away sub-expressions by creating a set of oracles to
replace them in the models. From the point of view of the constructed models, oracles
are non-controllable input symbols, which means that the sought after strategy must be
computed by assuming they can take any value at any tick. From the point of view of the
resulting CGL, however, the actual values of the expressions abstracted away with oracles
need to be known so as to evaluate the strategy it encodes. To this end, we also produce an
“open” HDL implementation of every process, that features additional output wires carrying
the values of the oracles (i.e., the value of the expressions they represent). These additional
wires are then used to feed the CGL when building up the new design.

Given an HDL expression e on any set of variables, the oracle symbol ωe is an unknown
input whose value is that of e at every tick. we can thus be used to model behaviors where
e itself is abstracted away and can take any value in its domain. Every knowledge about
the modeled behaviors is not lost however. Indeed, assuming that e and e′ admit the same
canonical representation e′′, every occurrence of e and e′ can be replaced with the same
oracle ωe′′ , and the equality of valuations for e and e′ can still be represented. Then, every
expression e that involves a non-selected HDL variable is first translated into a canonical
form e′, and replaced with ωe′ . An efficient way to compute canonical representations
consists in using (multi-terminal) binary decision diagrams [20].

3) HDL Traversal Procedure: Our process behavior abstraction algorithm operates
on a representation of the module implementation of each process p where occurrences of
local wires have all been substituted with their respective expression. The algorithm first
associates a guard with every clock-triggered assignment to selected registers by traversing
every conditional/case constructs of the implementation. Then, for each selected register, it
generates a series of cascading conditional constructs, whose leave expressions and predicate
conditions are respectively built from values and guards by substituting any expression from
the module implementation that involves non-selected HDL variables with oracles. In turn,
the idleness predicate idlep corresponds to the conjunction of the negation of all guards
from the above mapping.

Chapter 5. Power-Aware Scheduling of Data-Flow Hardware Circuits with Symbolic
Control 77

1 module p (input clk, input start, input [31:0] i,
output reg done, output reg [31:0] o);

reg r1, r2; reg [31:0] r3;
initial begin r1=0; r2=0 r3=0; o=0; done=0; end

5 always @(posedge clk) begin
if (start & ~done) r1<=1;
else if (r1 & ~done) begin

if (r2 & r3==i) begin o<=r3+i; done<=1; r1<=0; r2<=0; end
else if (r2) begin o<=i; done<=1; r1<=0; r2<=0; end

10 else begin r2<=1; r3<=i; end
end else if (done) done<=0;

end
endmodule

List. 5.1: A simple process in Verilog.

done : = if inhibitp then done else
if ¬(start ∧ ¬done) ∧ (r1 ∧ ¬done) ∧ ωr2 ∧ ωi-r3=0 then 1 else
if ¬(start ∧ ¬done) ∧ (r1 ∧ ¬done) ∧ ωr2 ∧ ¬ωi-r3=0 then 1 else
if ¬(start ∧ ¬done) ∧ ¬(r1 ∧ ¬done) ∧ done then 0 else done

idlep
∆
= ¬(start ∧ ¬done) ∧ ¬(r1 ∧ ¬done) ∧ ¬done

Pp
∆
= if inhibitp then 0 else

if (start ∧ ¬done) then 1 else
if ¬(start ∧ ¬done) ∧ (r1 ∧ ¬done) ∧ ωr2 ∧ ωi-r3=0 then 35 else
if ¬(start ∧ ¬done) ∧ (r1 ∧ ¬done) ∧ ωr2 ∧ ¬ωi-r3=0 then 35 else
if ¬(start ∧ ¬done) ∧ (r1 ∧ ¬done) ∧ ¬ωr2 then 33 else
if ¬(start ∧ ¬done) ∧ ¬(r1 ∧ ¬done) ∧ done then 1 else 0

Figure 5.2: Extracts of symbolic model built from the example process of List. 5.1.

A similar process as for selected registers is used to construct the power expression Pp,
where leaves of cascading conditional constructs denote the amount of potential register bit-
flips (i.e., the sum of the width of assigned registers) instead of assigned values or symbols.
We claim that this measure gives us cost functions that are suitable for demonstrating the
effectiveness of our approach.

Let us exemplify our translation procedure by examining the result we obtain from the
toy process of List. 5.1. Assuming start, r1, and done constitute the set of selected HDL
variables (as they all carry control-flow within p), we give in Figure 5.2 the discrete evolution
that corresponds to done, the idleness predicate, and the power expression (the result for
r1 is similar to that of done). State symbol done is the counterpart of done in the model.
Notice it does not evolve when the computations of p are inhibited. Also, observe that there
is a one-to-one correspondence between every portion of guards of conditional constructs

78 Mete Özbaltan

and conditions in the HDL code. Further, Pp states that, e.g., 33 bits may flip whenever the
HDL expression ~(start & ~done) & (r1 & ~done) & ~r2 holds, which manifests in the
model as a guard involving the oracle ωr2 since r2 is abstracted away (r2 is not selected).

5.3.3 Abstract Process Observers & Control Means

We now describe in this section the additional parts of the constructed model, i.e., observers
and control objectives, that allow us to compute a strategy suitable to obtain a power-aware
CGL. All these parts are automatically derived from the original design. For each process p,
our construction assumes the availability of the following additional non-controllable input
symbols: (i) one FIFO emptiness symbol emptyp, that holds whenever all FIFOs p feeds
from are empty; and (ii) one termination symbol donep, that holds for one tick whenever p
terminates a job. A “slow” global clock slow -clk non-controllable input symbol may be used
to enforce a preemptive model of concurrency among all processes.

1) Abstract Process Observer: The operational status of each process is modeled using
a symbolic encoding of a two-state Mealy machine that transitions whenever its input holds.
For a process p, this symbolic model is defined as

suspendedp: = if suspendedp then ¬cp else cp. (5.1)

The suspendedp symbol is a Boolean component of the state space that holds whenever the
operations of p are suspended, whereas the symbol cp denotes the Boolean input that drives
suspendedp. cp is controllable, meaning that it serves as a leaver for the control strategy to
suspend or activate p so as to fulfill its objectives. For readability, we additionally define
activatep

∆
= suspendedp ∧ cp as a symbol that holds iff the process resumes its computations;

we also define activate
∆
=
∨

p∈M activatep that holds iff at least one process of the design is
being activated at the current tick.

Observe that the design objectives that we are aiming for (e.g., power-optimization),
can straightforwardly be fulfilled by preventing every process involved from computing at
all. A very simple strategy that induces such a behavior consists in ensuring that every
suspendedp state variable holds at any tick; one can observe in Eq. (5.1) that such a strategy
always exists. To restrict the set of eligible strategies to those that ensure progress and
fairness, we devise a set of additional safety objectives that the target design must satisfy.

2) Enforcing Strict Progress: The most basic progress objective states that at least
one process must be active at every clock tick unless all FIFOs are empty. It is ensured by

Chapter 5. Power-Aware Scheduling of Data-Flow Hardware Circuits with Symbolic
Control 79

means of the predicate ϕstrict-progress
∆
=
∨

p∈P ¬suspendedp ∨
∧

p∈P emptyp.

3) Enforcing Fairness: In order to express the fairness objective, we symbolically
encode scheduling constraints as part of safety objectives. To this end, we first augment
the set of state components of the model by introducing one bounded inactivity counter qp
per process p: qp is reset whenever p is activated, and increases if any process except p is
activated:

qp: =

0 if activatep

qp + 1 if activate ∧ ¬activatep ∧ qp + 1 < |P|

qp otherwise.

Remark that every counter qp takes its values in the domain Q
∆
= {0, . . . , |P| − 1}. We

further declare a priority list by using an additional set of symbols pi, for i ∈ {1, . . . , |P|}.
The pi’s also take their values in Q, and are constrained according to the invariant ϕprios

defined as:

ϕprios
∆
=

∧
i∈{1,...,|P|−1}

pi > pi+1∧ [p-sorted]

∧
i∈{1,...,|P|}

∨
p∈P

pi = qp ∧
∑

i∈{1,...,|P|}

pi =
∑
p∈P

qp. [p-values]

The above constraint basically states that the list of values associated to the sequence
(pi)i∈{1,...,|P|} is decreasing [p-sorted], and only contains values that belong to the set of all
inactivity counters qp’s [p-values]. The pi’s belong to the controllable input space of the
model: this means that the actual computation of the priority list that these symbols denote
(i.e., sorting the values of all activity counters) is encoded as part of the target control
strategy, and thus eventually within the piece of circuit that computes the CGL.

We eventually express the fairness constraint in terms of the above symbols as the
conjunction

ϕfairness
∆
= ϕprios ∧

∧
p∈P

(
activatep ⇒ qp ∈

{
p1, . . . , p|Pact|

})
where |Pact|

∆
=
∣∣{p ∈ P

∣∣ activatep}∣∣ denotes the number of processes that are being activated.
ϕfairness states that if a process p is activated (activatep), then the value of its inactivity
counter must belong to the |Pact| highest ones. Put another way, ϕfairness imposes that if a
process is activated, then every other process whose inactivity counter is strictly higher is

80 Mete Özbaltan

also activated.
4) Avoiding Starvation by Enforcing Concurrency: One must also ensure the absence

of starvation, which in our case may happen if a process is never suspended. A model of
concurrency is therefore declared to ensure that processes are forcibly suspended upon certain
circumstances. To clarify the definitions below, we define stalledp

∆
= suspendedp ∧ ¬idlep to

hold whenever the computations of some process p are suspended while its idleness condition
does not hold. We give below two invariants that each correspond to a model of concurrency:

Forcing cooperation between processes makes use of the job termination symbol donep
of each process p:

ϕcoop
∆
=
∧
p∈P

termp ⇒
∨

p′∈P\{p}

stalledp′ ⇒
∨

p′∈P\{p}

activatep′

,

where termp
∆
= ¬suspendedp ∧ (donep ∨ idlep), holds iff at least one stalled process distinct

from p is activated whenever p terminates its current job or becomes idle. Alternatively,
one can implement periodic preemption of processes. This is achieved with the help of the
additional non-controllable input symbol slow -clk that acts as a “slow” clock, with

ϕpreempt
∆
= slow -clk ⇒

∨
p∈P

stalledp ⇒
∨
p∈P

activatep,

which states that at least one process be activated whenever slow -clk holds while some
process is stalled.

ϕconcurrency can be defined so as to hold whenever either or both ϕcoop and/or ϕpreempt

hold, according to the desired model of concurrency.
5) Putting it All Together with Clock-inhibition Signals: We finally relate the controllable

input symbols inhibitp with the model using the invariant

ϕinhib-suspended-only
∆
=
∧
p∈P

(
inhibitp ⇒ suspendedp

)
,

which states that a process must be suspended for its clock to be gated. Overall, the global
safety objective that the strategy must ensure by choosing values for all controllable signals
(i.e., for each process p, cp and inhibitp, and the pi’s) corresponds to the conjunction

ϕstrict-progress ∧ ϕfairness ∧ ϕconcurrency ∧ ϕinhib-suspended-only. (5.2)

Chapter 5. Power-Aware Scheduling of Data-Flow Hardware Circuits with Symbolic
Control 81

Besides enforcing that clock-inhibition signals hold at appropriate clock cycles, this objective
also enforces progress, fairness, and a suitable model of concurrency, by virtue of the encoded
scheduling constraints.

5.3.4 Achieving Power-efficiency by Control

We define the estimated measure of the total instantaneous power consumption (in number
of register flips) of all process from the original design as PP

∆
=
∑

p∈P Pp.

Optional Peak Power Constraint: The first means of using our derived models to
achieve objectives related to power efficiency is to specify that the sought after strategy
should ensure a given upper-bound Pmax on the value of PP: one can achieve this with
the help of the additional safety objective ϕPmax

∆
= PP 6 Pmax, to be appended with a

conjunction to Eq. (5.2).

Energy Minimization: Further, our models offer an alternative means for enforcing
some level of power-awareness of the scheduling induced by the CGL. They can indeed
be used to refine a strategy towards minimizing the value of PP (i.e., some measure of
instantaneous power consumption) summed over a time window, i.e., minimizing the energy
consumed.

5.3.5 Enabling Dynamic CGL Reconfiguration

The invariant of the model as defined above can optionally be refined to support the dynamic
reconfiguration of power-awareness policies. For instance, introducing a user-accessible
register that switches to/from a clock-gating logic based on idleness conditions only boils
down to: (i) add a non-controllable Boolean input symbol cfg idle to the model; and (ii) replace
ϕinhib-suspended-only in Eq. (5.2) with ϕinhib-configurable

∆
=∧

p∈P

(
inhibitp ⇒ (if cfg idle then idlep else suspendedp)

)
.

This way, the power-aware scheduling policy can be turned off by setting the input wire of
the resulting CGL that corresponds to cfg idle to 1, thereby inducing a CGL behavior that
corresponds to a classical clock-gating based on idle conditions only.

82 Mete Özbaltan

5.4 Experimental Evaluation

We have applied our approach on a series of various designs built from three RTL implemen-
tations of widespread signal coding or decoding algorithms: we use a Run-Length Encoder
(RLE), a Huffman decoder, and a serial Reed-Solomon (RS) decoder5: (a) our first design
consists of a pipeline made of the RS decoder followed by the RLE, and then the Huffman
decoder; (b) remaining designs comprise a variable number N of RLEs put in parallel (i.e.,
they receive and output jobs from external ports). Due to the size of the RS decoder, and
its internal structure divided into many sub-modules, for this particular process we have
applied our implementation abstraction procedure (cf. Section 5.3.2) on a clearly identifiable
sub-module that encodes its control-flow. In addition, in all cases selected registers were
easy to identify, as most control-flow related HDL variables were named “state”, “done”, etc.
Overall, each resulting abstract process implementation model features around 7 Boolean
state symbols, and 15 Boolean non-controllable input symbols (oracles).

To experimentally assess the functional correctness and compare the respective dynamic
power dissipation of each of the designs at hand (the originals and all the power-aware ones),
we first carried out logic synthesis on all of them using the Altera Quartus synthesizer. We
then used the Altera ModelSim simulation tool to perform functional simulations using the
same benchmark for all circuits originating from the same designs, and checked that the
resulting output traces were strictly equivalent.

5Each available at https://github.com/peterqt95/rle, https://github.com/rahuldhameja/
Huffman-Decoder, and https://opencores.org/project,reed_solomon_decoder.

https://github.com/peterqt95/rle
https://github.com/rahuldhameja/Huffman-Decoder
https://github.com/rahuldhameja/Huffman-Decoder
https://opencores.org/project,reed_solomon_decoder

C
hapter

5.
P
ow

er-A
w
are

Scheduling
of

D
ata-F

low
H
ardw

are
C
ircuits

w
ith

Sym
bolic

C
ontrol

83

Design Objective Strategy Computation Total Size (bits) Power Consumption of Resulting Design
Time (s) Max Memory (MB) Logic Registers Cycles Cycle Average (mW) Saving (%)

Original n/a n/a 30914 23835 5969 353.68 –
Idleness 0.08 45.56 30924 23837 5969 344.81 2.51
Pmax 6 200 0.40 48.12 31270 23857 11935 231.49 34.55
Pmax 6 199 0.25 47.27 n/a n/a n/a n/a n/a
Optim. 3.96 262.87 31224 23857 11932 223.20 36.89
Cfg.-Idleness 5.69 235.68 31305 23858 5969 363.97 -2.91
Cfg.-Optim. 5.69 235.68 31305 23858 11932 226.60 35.93

Table 5.1: Evaluation results for the original and power-aware designs; the “Cycles” column denotes the total number
of clock cycles required for processing the considered test-bench (Device: Cyclone IV, Frequency: 100Mhz).

84 Mete Özbaltan

N Design Objective Time (s) Memory (MB) Feasibility

2

Pmax 6 70 0.08 45676 3

Pmax 6 69 0.10 45676 7

Pmax 6 70 +Optim. 0.22 46844 3

Pmax 6 69 +Optim. 0.09 47328 7

3

Pmax 6 70 0.47 48148 3

Pmax 6 69 0.64 50760 7

Pmax 6 70 +Optim. 3.54 126504 3

Pmax 6 69 +Optim. 0.66 50840 7

4

Pmax 6 70 3.54 78980 3

Pmax 6 69 23.18 225616 7

Pmax 6 70 +Optim. 250.62 3249848 3

Pmax 6 69 +Optim. 23.08 225784 7

Table 5.2: Performance of the strategy computation tool for N RLE instances.

The original design (a) was subject to various objectives and configurations, the cor-
responding results of which we report in Table 5.1. The “Idleness” objective corresponds
to a design where the CGL operates based on idleness conditions only. “Pmax 6 200” and
“Pmax 6 199” both seek to impose a strict upper-limit to instantaneous power consumption
based on some maximum amount of register flips. “Optim.” results from a CGL that achieves
a minimization of energy over a sliding window of 3 ticks. Lastly, lines where objectives are
prefixed with “Cfg.-” correspond to a single design that incorporates a reconfigurable CGL,
as described in Section 5.3.5.

We first observe that there does not exist a strategy that is able to impose the safety
objective Pmax 6 199; this actually reveals that it is not possible to meet both this objective
and the scheduling constraints for this particular design. Further, even using a small time
window of 3 ticks for the optimization objective, we can compute a CGL that reduces the
(simulated) average power consumption per cycle by about 37%.

We have further evaluated the efficiency of the strategy computation tool by applying our
approach on original designs (b). We report the results in Table 5.2, where objectives suffixed
with “+Optim.” correspond to designs where both an upper-limit on power consumption
and a minimization of energy over a sliding window of 3 ticks is desired.

In the literature, there are several works for the implementation of scheduling policies on
hardware designs, where the inactivity is supported by the clock-gating technique. However,
the switch-off signal of a clock signal is an external signal, where its control logic is built in

Chapter 5. Power-Aware Scheduling of Data-Flow Hardware Circuits with Symbolic
Control 85

the software part of a system. Similarly, a few works, which addressed the management
of the dynamic region of reconfigurable devices, use an external signal, which is built with
software, for management (e.g., [4]). However, the scheduling policy has not been applied
in the literature for the module level (i.e., in the hardware part of a system). We offer
embedded control signal generation, in the hardware part of a system, unlike the other
approaches. The main advantage of our approach is that one can access any variable of a
design and combine the problem with some kind of hardware design problems such as idleness
condition. Our approach allows for higher power savings with a single controller, where
the results support our claim although it is not available to calculate the best theoretical
estimation. Furthermore, we applied our approach on realistic RTL designs, where today’s
RTL designs are generally composed as a hierarchical structure. Thus, we show that it can
be applied for any hierarchical design.

5.5 Summary and Discussion

Several commercial and academic tools already target automated clock-gating from RTL
code. [89] developed an algorithm that automatically introduce the some clock-gating logic
into RTL descriptions of circuits, although they focus on the exact computation of idleness
conditions for each individual registers. In turn, [7] suggest an algorithm that automatically
tries to approximate idleness conditions. [12] detect idleness conditions by using explicit
finite-state machines in an approach that targets the conditional activation of individual
hardware components using their “enable” signal (an approach similar to clock-gating). At
last, [89] exploited conditional statements and case structures within blocks of clock-triggered
assignments in HDL languages to determine such conditions. Our approach draws from
the latter since it also works based on module-level HDL descriptions, and we build our
symbolic models based on the conditional clock-triggered assignments.

[105] develop a formal framework based on data-flow models to analyze hardware circuits,
and derive some control logic to drive them towards various performance objectives; our
technique operates on similar models, and rely on abstracted versions of the circuits to
tackle the state-space explosion problem. More practically, [19] also focus on system-level
to suggest a clock gating technique that operates on whole modules.

We have advanced a tool-supported framework for producing power-aware designs from
RTL implementations of KPNs. Our technique permits the automated construction of
an abstract symbolic model of the design, as well as associated control objectives. The

86 Mete Özbaltan

automatically computed strategy is then translated into a piece of circuit that encodes
a clock-gating logic for the design, and guarantees that the specified objectives are met.
We plan to design guidelines for using our approach on black-box IPs with user-provided
symbolic models. As stated in Section 5.2, the strategies are usually computed under the
assumption that the environment of the model behaves as an adversary: in a sense the
strategy is pessimistic. A natural extension of our work is to take some stochastic models of
the environment (e.g., inferred from simulation traces) into account to compute strategies
that achieve better power efficiency on average.

Chapter 6

A Case for Symbolic Limited
Optimal Control: Energy
Minimization in Data-flow Circuits

In the previous chapter, we constructed a generic abstract model for data-flow networks to
implement the power-aware scheduler. In this chapter, we build our models for configurable
data-flow networks, where the hardware design problem we consider is achieving the
efficient dynamic reconfiguration of configurable data-flow networks subject to global design
objectives such as mutual exclusions and minimization of energy consumption. Thus, we
re-specify the control objectives and the abstraction behavior of processes introduced in
the previous chapter, and also abstract the FIFOs, in order to implement the energy-aware
configuration manager. Our approach relies on discrete control techniques, where the goal
is to compute a strategy that can be used to drive a given system model so that it satisfies
a set of control objectives. We base our framework on a new symbolic limited optimal
control algorithm that is able to optimize a cost function summed over a sliding window of
a given number of ticks (steps). We present an original technique for constructing symbolic
models of configurable data-flow networks and automatically compute dynamic configuration
managers. We use these models to experimentally evaluate our new control algorithm, and
make the case for optimal control on such networks. Our paper1, which includes the contents
and results of this chapter, have been under the submission and review.

1Author: Mete Özbaltan and Nicolas Berthier.

87

88 Mete Özbaltan

6.1 Introduction

In this work, we consider reactive data-flow circuit designs similar to KPNs, where each
process offers a discrete configuration means that impacts its computation speeds and power
consumption. This can be the case in practice when several implementations are available
to perform a given computational task, each with various levels of resource consumption,
quality of service, etc. Process implementations may also make use of shared resources in
such a way that mutual exclusion constraints must be enforced. Here, reactive additionally
means that the designs has to respond to a potentially infinite stream of new data. Finding
the optimal configuration for such a network at any given time is intrinsically a challenging
task.

We advance a framework for automatically computing and integrating a dynamic
configuration manager into such designs. This manager is able to satisfy global design
objectives, such as reducing the overall energy consumption of the design while meeting the
mutual exclusion constraints. We rely on the construction of an abstract symbolic system
model of the design, and employ discrete control techniques to compute a piece of code (e.g.,
a synchronous circuit) that implements energy-efficient configuration management.

In addition, as we shall observe in Section 5.2, existing discrete optimal control solutions
that address the kind of optimization problems only focus on runs that reach a given set
of target states. As such, they do not suit the needs imposed by the reactive designs
we consider, for which one cannot identify a suitable set of target states. Therefore, we
first devise a new algorithm for achieving symbolic limited optimal control in Section 6.2,
and then present in Section 6.3 our approach for constructing symbolic system models
of configurable data-flow networks that permit the construction of energy-aware dynamic
configuration managers. In Section 6.4, we then use the models to: (i) experimentally
evaluate our new algorithm; (ii) make the case for applying limited optimal control on such
designs; (iii) demonstrate the power of such symbolic techniques for producing results that
can directly be implemented as control mechanisms in, e.g., hardware circuits. At last, we
conclude with the summary and discussion in Section 6.5.

6.2 An Algorithm for Symbolic Limited Optimal Control

Let us now present the algorithm we devised for refining a base strategy σ towards fulfilling
a given optimization objective.

Chapter 6. A Case for Symbolic Limited Optimal Control: Energy Minimization in
Data-flow Circuits 89

Inputs: We consider the optimization objective that seeks the minimization of a cost
function ζ ∈ XN ,X∪I summed over k ∈ N+ ticks, with N ∈ Dnum. Observe that ζ actually
associates a cost on every transition of the model: given a state q ∈ Val (X) and a valuation
for every inputs ι ∈ Val (I), JζKq] ι gives the cost incurred by the current tick as a quantity
in N . In turn, the base strategy σ is given as a predicate on state and input variables: it
belongs to PX∪I .

6.2.1 Computing Expected Outcomes

Our algorithm starts by computing the best outcome ηk as a symbolic outcome expression on
the numerical domain N ∗ def

= N ∪{∞}, i.e., N extended with∞ so that∞ is the supremum
element for N ∗, and ∞ < ∞ does not hold2. ηk ∈ XN ∗,X∪I gives the best outcome that
any strategy refined from σ can achieve from any valuation of the state and input variables
on a time window of k ticks. ηk can be recursively computed as

η1
def
= if σ then ζ else ∞ (6.1)

ηi+1
def
= if σ then

(
max
U
◦min

C
(ηi)

)[
T
]

+ ζ else ∞ (6.2)

where

min
V

(s), s ∈ S def
= s (6.3)

min
V

(ce), c ∈ N def
=

cminV (e) if c > 0

cmaxV (e) if c < 0
(6.4)

min
V

(e1 + e2)
def
= min

V
(e1) + min

V
(e2) (6.5)

min
V

(if p then e1 else e2)
def
=

if ∃V p ∧ ∃V ¬p then min
(

minV (e1),minV (e2)
)

else if ∃V p then minV (e1) else minV (e2)
(6.6)

with min
(
e1, e2

) def
= if e1 < e2 then e1 else e2 (and similarly for maxV , max). ∃V p denotes

the existential elimination of every finite variable in V from a predicate p. Eqs (6.3)-(6.6)
describe a solution to the symbolic optimization problem that consists in finding, given a
set of variables V and a numerical expression e ∈ XN ,W , a numerical expression e′ without

2In the case of a maximization, N is extended with −∞ instead.

90 Mete Özbaltan

any variable from V (i.e., e′ ∈ XN ,W\V) such that: (i) e evaluated according to any possible
valuation for all variables in V is always greater or equal than e′; and (ii) there exists a
valuation for V such that e equals e′; i.e., ∀ω ∈ Val (Support (e) \ V),

(i) ∀ν ∈ Val (V), JeKω] ν > Je′Kω; and
(ii) ∃ν ∈ Val (V), JeKω] ν = Je′Kω.

Eq. (6.3) is straightforward since V must not contain infinite variables and s ∈ XN : therefore
s /∈ V . Eqs (6.4)-(6.6) operate recursively on the structure of the expression e. Elimination in
conditional constructs essentially involves building a new expression that separately handles
three sub-cases based on whether there exist valuations for V that maintain satisfaction
of the condition p or not—the fourth case, that does not appear in Eq. (6.6), equates to p
unsatisfiable.

Going back to Eqs (6.1)-(6.2) for the computation of ηk, the base case for k = 1 consists
in associating every transition that does not satisfy σ with the supremum cost ∞. In turn,
the computation of ηi+1 given ηi in Eq. (6.2) can be broken down as follows: (minC) solve
the symbolic optimization problem of finding the minimum for every controllable variable
(C): this actually represents the choice of values for controllable input variables that
best fulfill the objective; (maxU) solve the dual symbolic optimization problem for every
non-controllable variable (U), representing the worst possible move of the environment
against the desired objective. This leads to a numerical expression that only involves state
variables since the combined optimization problems above eliminate all input variables;
(·
[
X 7→ T

]
) substitute every state variable with its corresponding evolution expression

(note that this may re-introduce input variables); (· + ζ) add ζ to account for the cost
of the additional transition. The result of this operation builds a new cost function that
associates any transition in the underlying state-machine with the best expected outcome
that can be achieved using any choice for controllable variables against the worst choices
for non-controllable variables on a subsequent path of length i; (if σ then · else ∞) lastly,
associate any choice for inputs that does not satisfy the strategy to be refined σ with the
supremum cost.

6.2.2 Computing the Refined Strategy

The result ηk ∈ XN ∗,X∪I of the above computations represents the best expected outcome
towards the optimization objective depending on the valuations of state and input variables.
Therefore, a strategy that fulfills the objective consists in choosing values for variables in C

Chapter 6. A Case for Symbolic Limited Optimal Control: Energy Minimization in
Data-flow Circuits 91

Configurable Design Managed Design

Control
for Safety

Design Model M
Safety Objective ϕ Strategy σϕ Optimal

ControlOptimization Objective O
Strategy σϕ+O

Manager

Figure 6.1: Overview of our suggested work-flows for computing energy-aware configuration
managers.

that minimize ηk at the current tick, given valuations for state and non-controllable input
variables. We compute the predicate that encodes this strategy as

σ′
def
=
(
@C′(ηk

[
C 7→ C ′

]
< ηk)

)
∧ σ (6.7)

where C ′ are primed versions of all variables in C. The innermost parenthesized expression
in Eq. (6.7) denotes the condition upon which choices for variables in C ′ are expected to
produce a strictly better outcome according to ηk, than choices for variables in C. The
resulting strategy σ′ thus consists in keeping only choices for C such that no strictly better
choice for variables in C ′ exists, and ensuring that these choices are indeed compatible with
the strategy to be refined σ.

6.3 Use-case: Energy-aware Configuration Management

6.3.1 Management of Configurable Designs

We consider controllable designs made of processes that communicate through channels.
Each process consumes and processes data from one or more input channels whenever
possible—i.e., a process does not wait unless one of its input channels is empty—, and
produces results into at least one output channel. Upon consumption of new pieces of data,
each process reads a configuration signal that influences the speed (e.g., the number of
clock cycles in a hardware circuit) and power consumption its takes it to finish processing
the data and produce an output. Lastly, the design may feature a set of shared resources
that processes may make use of depending on their configuration (e.g., a specialized signal
processing unit in an FPGA): choices for process configurations must therefore obey a set
of mutual exclusion constraints. The design receives pieces of data from its environment
through one or more input queues.

Given such a design, our goal is to automatically construct an energy-aware configuration
manager whose role is to dynamically select configurations for each process according to

92 Mete Özbaltan

various global design objectives.

6.3.2 Overview of the Approach for Computing Managers

We describe in Figure 6.1 the work-flows offered by our approach. A symbolic system model
M is first constructed from the configurable design. M is made of the synchronous parallel
composition of: (i) a model for each channel, defined using state and non-controllable
variables, and appropriate encoding of discrete evolutions; (ii) a similar model for each
process, that additionally involves controllable variables that offer levers for the sought-after
manager to select configurations. We associate the symbolic system model with a series
of definitions based on process and channel models, that permit the expression of control
objectives (see below).

Then, a safety objective ϕ is built, in the form of a conjunction of propositional formulas
that involve the state variables of process models. Each one of these formulas expresses
a mutual exclusion constraint between process configurations that make use of a shared
resource.

At this stage, a symbolic safety control algorithm can be used to compute a strategy
σϕ. This strategy is guaranteed to select values for the process configuration inputs (i.e.,
controllable input variables ofM) that ensure that the safety objective ϕ is satisfied. σϕ and
M can be used in combination to form a manager that outputs configuration choices for each
process; a design whose processes are configured according to the outputs of this manager
cannot violate any of the aforementioned mutual exclusion constraints. Alternatively, the
strategy σϕ can be improved by using a symbolic optimal control algorithm, such as the
one we will present in Section 6.2, that ensures an additional optimization objective O. In
our case, the cost function that we use to define O basically consists of an estimation of the
energy consumption for all processes. The resulting refined strategy σϕ+O can be used in
the same way as σϕ to dynamically select configurations for each process.

We further detail the construction of the symbolic system model M and associated
definition of control objectives to obtain energy-aware designs in the remainder of this
Section.

6.3.3 Abstract Channel Model

Several options are available when modeling the kind of channels featured in the configurable
models we consider. The choice for one option or the other notably depends on whether

Chapter 6. A Case for Symbolic Limited Optimal Control: Energy Minimization in
Data-flow Circuits 93

Empty Low High

prod i ∧ ¬consj ∧ ωi,j prod i ∧ ¬consj ∧ ωi,j

¬prod i ∧ consj ∧ ωi,j¬prod i ∧ consj ∧ ωi,j

* * *

Figure 6.2: Automaton representation for 3-state channel model encoded as qi,j .

the manager that we seek to obtain needs to precisely track the level of occupation of the
FIFOs or not, or, if FIFOs were bounded for instance, if it actually needs to ensure the
absence of overflows.

In our use-case the configuration manager can only alter the speed of processes by
selecting appropriate configurations, and preventing FIFO overflows would therefore require
more insight (such as computation rates) about the processes at hand. We can however
suppose that a manager that is able to distinguish almost empty FIFOs will be able to
leverage this additional knowledge of future process activities to achieve a more energy-
efficient planning for process configurations. In order to permit such a distinction while
limiting the growth of the state-space, we abstract the state of a queue from process i to
process j using a state variable qi,j ∈ X that takes its values in {Empty, Low,High} ∈ Dfin.
We further introduce non-determinism in each channel model qi,j with the help of a Boolean
oracle input ωi,j ∈ U . This oracle is a non-controllable input used to non-deterministically
transition between the abstract states of the queue.

We illustrate in Figure 6.2 the abstract behavior of a FIFO using an automaton parti-
tioned according to the domain of qi,j ; this automaton is strictly equivalent to the assignment
that we use to define the discrete evolutions of every qi,j in the symbolic model M . prod i
and consj denote predicates that hold whenever production and consumption of elements
occurs in the queue: we define the associated symbolic expressions in the next Section as
part of the model of processes. Observe that, for instance, this automaton clearly shows
that the shortest path from High to Empty involves two ticks where consj holds (and prod i

does not).

94 Mete Özbaltan

6.3.4 Abstract Process Model

Let us now turn our attention to the symbolic model of a process p, defined as:

consp
∆
=

∧
i∈Qp

(qi,p 6= Empty) ∧ if pp = Idle then tt else ep

prodp
∆
= pp 6= Idle ∧ ep

p′p
∆
= if consp then Active-cfgp else (6.8)

if ¬consp ∧ prodp then Idle else pp

pp := p′p

A process p becomes or remains active whenever a data token is available in all its input
queues (a set that we note here with Qp): this is represented in the model using a predicate
consp . The model of a process p also features an predicate prodp , which indicates that
the active process p has terminated its computations and produced a new piece of data
into (each one of) its output queue(s). Since the model does not track any internal
operational process state, and in particular none of its progress towards terminating its
computations, an input variable ep is used to drive process terminations. Upon termination
of its current computations (this event manifests in the system model as a tick where ep

holds), p either becomes idle if any one of its input queue is empty, or consumes a new
element from all of them and remains active. Eq (6.8) defining expression p′p represents
the value held by state variable pp starting from the next tick ; the new abstract state
of p’s model that this expression represents is either Idle, or some active state that is
tagged with the configuration that was selected by the controller as controllable variable
cfgp when p last consumed data. The state variable pp ∈ X takes its values in the
domain Modesp

def
=
{

Idle,Active-1, . . . ,Active-|Configsp |
}
∈ Dfin where |Configsp | ∈ N+ is

the number of available configuration options for p; in turn, cfgp ∈ C is defined in the
domain

{
1, . . . , |Configsp |

}
∈ Dfin.

Wort-case Energy Estimation: In our modeling approach, the designer associates each
configuration c for a process p with a worst-case execution-time wcetp,c ∈ N and peak-power
consumption ppp,c ∈ N , using a numerical domain N ∈ Dnum. An over-approximation of
the energy consumption incurred by any configuration choice for a process p that consumes
some data during a tick (and thus starts a new computation cycle) can therefore be expressed

Chapter 6. A Case for Symbolic Limited Optimal Control: Energy Minimization in
Data-flow Circuits 95

qr,i
.

r cons i

pi

pi,1

..
.

pi,n

cfg i

ei
qi,j

.

prod i consj

pj

pj,1

..
.

pj,m

cfgj

ej

Figure 6.3: Graphical representation of a 2-process 2-channel configurable design; the
pi,1, . . . , pi,n’s represent the distinct configurations of process i—similarly for j. Notice
that r, cfg i, cfgj , ei, and ej are inputs of the system model, whereas cons i, prod i and consj
denote expressions (predicates).

as
wep

∆
=

∑
c∈Modesp

if p′p = c then wcetp,c × ppp,c else 0

and the global energy consumption we ∈ XN ,X∪I is the sum over all processes P :

we
∆
=
∑
p∈P

wep .

Observe that (wcetp,c × ppp,c) terms are constants that can be evaluated during the con-
struction of the symbolic model. Also, we involves expressions for p′p as defined in Eq (6.8),
and it thus associates energy costs to transitions of the system.

We illustrate a simple configurable design in Figure 6.3, using the state and input
variables for process and channel models as defined above. Input r denotes the arrival of a
new piece of data into the network.

6.3.5 Control Objectives

Our control objectives fall into two categories: safety objective ϕ and optimization objective
O. In our use-case, the former category embodies mutual exclusion constraints between
process configurations that share resources. For instance, a safety property given as predicate
ϕ

∆
= ¬(pp = Active-i ∧ pq = Active-j) indicates that processes p and q cannot be active in

their respective ith and jth configurations at the same time. At last, one can make use of
the worst-case energy estimation expression we defined above to specify an optimization
objective O to be enforced using the symbolic optimal control algorithm we presented in
Section 6.2.

96 Mete Özbaltan

g
Designer

system.ctrln

simbench.v

ReaX manager.ctrld ctrl2hdl manager.v

+
Integration managed.v Executions

Í
Modeling Symbolic Control Code Generation Evaluation

Figure 6.4: Synthesis & simulation tool-chain for assessing global design objectives.

6.4 Experimental Evaluations

Let us now turn to the experimental evaluations of our contributions. Apart from carrying out
some performance evaluations on our implementation of the new optimal control algorithm of
Section 6.2, we also want to empirically assess that it is actually able to enforce optimization
goals by using the models constructed above. Indeed, such actual performance evaluations
are necessary in the case of symbolic implementations, where one usually observes significant
gaps between the practical performances and theoretical complexity results. We also want
to experimentally assess whether configuration managers as produced using our approach
effectively improve energy consumption whatever the sequences of inputs the resulting
designs are subject to. This essentially means that the energy-efficiency of a manager needs
to be evaluated on as many (realistic) scenarios as possible. At last, we want to observe
the impact of the size of the sliding window used to specify the limited optimal control
objectives.

6.4.1 Constructing Simulators of Managed Designs

We represent in Figure 6.4 an overview of the series of modeling steps and tools that we used
to carry out our evaluations. The “Modeling” box on the left-hand side depicts the designer’s
manual tasks of both constructing the symbolic system model and control objectives (in
system.ctrln), as well as a simulation bench in the form of a Verilog file simbench.v. The
latter will be used to carry out multiple stochastic simulations of the resulting managed
design, encoded as a sequential circuit (we give more details on the simulation bench in
Section 6.4.2 below).

In the “Symbolic Control” phase, we use ReaX to perform safety and limited optimal
control on the system, triangularize the resulting strategy, and combine it with the original
system to construct the manager. The latter is a controlled system (in file manager.ctrld),
that can directly be translated into a sequential circuit using ReaX’s companion tool ctrl2hdl:

Chapter 6. A Case for Symbolic Limited Optimal Control: Energy Minimization in
Data-flow Circuits 97

1 module process (input clk, input r, output reg e, input [15:0] et);
reg [15:0] cnt;
reg state;
initial begin e = 0; cnt = 0; state = 0; end

5 always @(posedge clk) begin
if (r) state <= 1; // start counting upon ‘r’
if (state) begin

if (cnt != et) cnt <= cnt + 1;
else begin e <= 1; state <= 0; cnt <= 0; end

10 end
if (e) e <= 0; // reset end signal ‘e’

end
endmodule

List. 6.1: Verilog module for simulating a process’s behaviors.

1 module fifo (input clk, input c, input p, output ω);
reg [31:0] fifo;
wire low_u = 10;
wire empty = 0;

5 assign ω = (p & ~c & (fifo==empty | fifo==low_u)) |
(~p & c & (fifo==empty+1 | fifo==low_u+1));

initial fifo = 0;
always @(posedge clk) begin

if (p & ~c) fifo <= fifo + 1;
10 if (~p & c) fifo <= fifo - 1;

end
endmodule

List. 6.2: Verilog module for FIFO’s simulated behaviors

this translator turns deterministic symbolic systems into equivalent code in a hardware
definition language such as Verilog: this step produces manager.v. The integration of this
manager with the test-bench produces a hardware circuit that can be efficiently executed
using compilers and simulators for such synchronous circuits.

6.4.2 Simulation Bench

We give in List.s 6.1, 6.2, 6.3 and 6.4 the Verilog modules that make up a simulation bench
for a design with 5 processes.

Module process of List. 6.1 simulates computations of dynamically parameterizable
length. It accepts a parameter et, and basically starts counting upon receiving a run signal
r. It emits e when its counter reaches the value of its parameter et. The value of et for a
process will be randomly drawn upon every one of its data consumptions (cf. simbench.v
below).

In turn, module fifo of List. 6.2 accurately tracks the amount of simulated payload

98 Mete Özbaltan

in a FIFO channel, and reports when this occupation level crosses some fixed boundaries
using a dedicated output signal ω, which is fed as input to the manager (see module main

below) to drive the corresponding abstract 3-state behavior illustrated in the automaton of
Figure 6.2. In this particular instance, every concrete simulated FIFO that has between
1 and 10 elements is considered in the abstract state Low; the value of 10 is here chosen
arbitrarily.

Module main of List. 6.3 assembles processes and FIFOs along with the manager produced
by ReaX and ctrl2hdl (note that for an easier accounting of energy consumption by the
simulation bench we include as many instances of the process module as individual process
configurations). This module reflects the behavior of the modeled system: the simulated
data tokens it receives through input r are directly pushed into FIFO f01. The manager
is instantiated on line 47. It monitors r, the end of computation signal output by every
simulated process (e*), as well as the oracle signals output by every FIFO (w*). The
manager outputs the state of each channel (q*) and process (p*) as per the symbolic system
model used to construct it. The state of processes as output by the manager encodes its
configuration (it is a member of Modes2), and it can therefore be used in main to drive the
corresponding process module instance.

At last, the Verilog bench that performs simulations of the managed design is given in
List. 6.4. The simbench module feeds the simulated design by periodically raising r. When
a simulated process configuration terminates, it draws new random values that are used in
place of its actual power consumption and execution time in accord with the specification
used to define the system model (in system.ctrln in Figure 6.4). simbench also reports
simulated energy consumption data every 1000 clock cycles. This way of partitioning the
resulting stochastic simulation trace into chunks of 1000 clock cycles allows us to gather
statistics on the simulated energy consumption for the design under multiple configurations
and loads (i.e., state of the queues) at once.

Chapter 6. A Case for Symbolic Limited Optimal Control: Energy Minimization in
Data-flow Circuits 99

1 module main (input clk, input r);
wire [1:0] p1,p2,p3,p4,p5;
wire [1:0] q01,q12,q14,q23,q35,q45;
wire e1,e2,e3,e4,e5;

5 wire e11,e12,e21,e22,e31,e32,e41,e42,e51,e52;
wire [15:0] et11,et12,et21,et22,et31,et32,et41,et42,et51,et52;
wire cons1,cons2,cons3,cons4,cons5;
wire w01,w12,w14,w23,w35,w45;

10 // Empty channel: value of Empty assigned by ctrl2hdl
wire [1:0] empty = 2’b10;

// Process modes: constants corresponding to modes Idle, Active-1, Active-2, assigned by ctrl2hdl
wire [1:0] idle = 2’b10;

15 wire [1:0] active1 = 2’b01;
wire [1:0] active2 = 2’b00;

assign e1 = e11 | e12;
assign e2 = e21 | e22;

20 assign e3 = e31 | e32;
assign e4 = e41 | e42;
assign e5 = e51 | e52;
assign cons1 = ((p1!=idle ? e1 : 1) & q01!=empty);
assign cons2 = ((p2!=idle ? e2 : 1) & q12!=empty);

25 assign cons3 = ((p3!=idle ? e3 : 1) & q23!=empty);
assign cons4 = ((p4!=idle ? e4 : 1) & q14!=empty);
assign cons5 = ((p5!=idle ? e5 : 1) & q35!=empty & q45!=empty);

process p11 (.clk(clk & p1==active1),.r(cons1),.e(e11),.et(et11));
30 process p12 (.clk(clk & p1==active2),.r(cons1),.e(e12),.et(et12));

process p21 (.clk(clk & p2==active1),.r(cons2),.e(e21),.et(et21));
process p22 (.clk(clk & p2==active2),.r(cons2),.e(e22),.et(et22));
process p31 (.clk(clk & p3==active1),.r(cons3),.e(e31),.et(et31));
process p32 (.clk(clk & p3==active2),.r(cons3),.e(e32),.et(et32));

35 process p41 (.clk(clk & p4==active1),.r(cons4),.e(e41),.et(et41));
process p42 (.clk(clk & p4==active2),.r(cons4),.e(e42),.et(et42));
process p51 (.clk(clk & p5==active1),.r(cons5),.e(e51),.et(et51));
process p52 (.clk(clk & p5==active2),.r(cons5),.e(e52),.et(et52));

40 fifo f01 (.clk(clk),.c(cons1),.p(r), .w(w01));
fifo f12 (.clk(clk),.c(cons2),.p(e1),.w(w12));
fifo f14 (.clk(clk),.c(cons4),.p(e1),.w(w14));
fifo f23 (.clk(clk),.c(cons3),.p(e2),.w(w23));
fifo f35 (.clk(clk),.c(cons5),.p(e3),.w(w35));

45 fifo f45 (.clk(clk),.c(cons5),.p(e4),.w(w45));

manager manager(.clock(clk),
.r(r),.e1(e1),.e2(e2),.e3(e3),.e4(e4),.e5(e5),
.q01(q01),.q12(c12),.q14(q14),.q23(q23),.q35(c35),.q45(q45),

50 .w01(w01),.w12(w12),.w14(w14),.w23(w23),.w35(w35),.w45(w45),
.p1(p1),.p2(p2),.p3(p3),.p4(p4),.p5(p5));

endmodule

List. 6.3: Verilog module for a managed design with 5 processes; the manager module is the
result of the control algorithms (cf. Figure 6.4).

100 Mete Özbaltan

1 module simbench;
integer cnt_100,cnt_1000,cnt_completed; // counters
integer power11,...,power52; // configurations’s power
integer power1,...,power5; // processes’ power

5 integer energy; // accumulates total energy
integer pp11 = 55,...,pp52 = 60; // peak-power specs.
integer wcet11 = 100,...wcet52 = 90; // wcet specs.
// Process modes: constants corresponding to modes Idle, Active-1, Active-2, assigned by ctrl2hdl
integer idle, active1, active2;

10
reg clk, r;
main DUT(.clk(clk),r(r)); // main module is instantiated as DUT

initial begin
15 // randomly draw first (mean) powers and execution times for each simulated process instance

power11 <= $random(0.7 * pp11, pp11);
DUT.et11 <= $random(0.7 * wcet11, wcet11);
// ...

end
20

always @ (posedge(clk)) begin // at each clock-cycle:
cnt_100 <= cnt_100+1; cnt_1000 <= cnt_1000+1;
if (r) r <= 0; // reset r when it holds
// In these simulations, raise r (simulate the arrival of a new piece of data) every 100 cc

25 if (cnt_100==100) begin r <= 1; cnt_100 <=0; end
// process power depends on the process mode in main (DUT)
if (DUT.p1==idle) power1 <= 0;
if (DUT.p1==active1) power1 <= power11;
if (DUT.p1==active2) power1 <= power12;

30 // ...
// accumulate all processes’ power consumption
energy <= energy+power1+...+power5;
if (cnt_1000==1000) begin

// display total energy/completely processed data, and reset
35 $display("%d",energy/cnt_completed);

energy <= 0; cnt_completed <= 0; cnt_1000 <=0;
end

end

40 always @ (posedge(DUT.e5))
// Increment data processing completion counter when p5 terminates
cnt_completed <= cnt_completed+1;

// At each cycle where p1 terminates,
45 // randomly draw new (already averaged) power-consumptions and execution times

// for each one of its modes
always @ (posedge(DUT.e1)) begin

power11 <= $random(0.7 * pp11, pp11);
DUT.et11 <= $random(0.7 * wcet11, wcet11);

50 power12 <= $random(0.7 * pp12, pp12);
DUT.et12 <= $random(0.7 * wcet12, wcet12);

end
// ...

endmodule

List. 6.4: Excerpts of stochastic simulation bench in Verilog for a design with 5 processes;
this particular bench simulates the arrival of a new piece of data once every 100 clock cycles
(cc), and reports every 1000 clock cycles the total energy consumed by the simulated design
per piece of data completely processed. The quantitative values (power consumption and
execution times of each process configuration) are drawn within 70% and 100% of their
respective specifications. The code that stops the simulation is not shown.

Chapter 6. A Case for Symbolic Limited Optimal Control: Energy Minimization in
Data-flow Circuits 101

p1

p1,1

p1,2

cfg1

e1
q1,2

.

prod1 cons2

p2

p2,1

p2,2

cfg2

e2

q1,5

.

prod1 cons5

p5

p5,1

..
.

p5,3

cfg5

e5

q2,3

.

prod2 cons3

p3

p3,1

p3,2

cfg3

e3
q3,4

.

prod3 cons4

p4

p4,1

p4,2

cfg4

e4
q4,6

.

prod4 cons6

p6

p6,1

p6,2

cfg6

e6

q5,6

.

prod5 cons6

qr,1
.

r cons1

Figure 6.5: Example of configurable design with 6 processes.

Process p c ∈ Modesp wcetp,c ppp,c

p1
Active-1 100 55
Active-2 150 35

p2
Active-1 40 70
Active-2 50 27

p3
Active-1 40 50
Active-2 43 80

p4
Active-1 40 50
Active-2 43 80

p5

Active-1 180 8
Active-2 210 7
Active-3 195 7

p6
Active-1 80 70
Active-2 90 60

Table 6.1: Specification values for our example design with 6 processes; the Worst-case
Execution Times are given in number of clock cycles.

6.4.3 Simulation Results

Let us now present the simulation results we obtain for the design with 6 processes shown
in Figure 6.5, whose specification values for worst-case execution times and power peaks
for each process configuration are given in Table 6.1. Observe that in this instance process
p5 offers 3 possible configurations. Additional mutual exclusion constraints must ensure
that process p3 must not be in mode Active-1 while p5 is in mode Active-1 (and conversely);
similarly for mode Active-1 of p4 and Active-2 of p5.

We represent in Figure 6.6 the gains in energy consumption per processed data that we
observe w.r.t. the size of the sliding window used for the limited optimal control algorithm;
observe that a plateau is reached for sliding windows of size greater than 5. This graph
clearly illustrates that the size of the sliding window can greatly impact the ability of
the limited optimal control algorithm to actually achieve a noticeable reduction in energy
consumption.

102 Mete Özbaltan

−25

−20

−15

−10

−5

0

5

10

0 1 2 3 4 5 6 7

%

Size of sliding window

Figure 6.6: Gain in simulated energy per completely processed data for the design with 6
processes illustrated in Figure 6.5. For each size of sliding window (x-axis), we give the
minimum, average, and maximum gain in percentage, as well as the low and high quartiles.
A window of size 0 indicates that the manager is produced without any enforcement of
optimal control objective. All gains (y-axis) are given in percentage of the average energy
consumption obtained for the non-optimized design (represented with the dashed horizontal
line).

N k Time (s) Memory (KB) Manager size (Logic elements)

5

0 0.07 45924 -
1 0.78 61264 -
2 2.44 94108 -
3 6.14 246576 -
4 8.73 284640 -
5 10.38 276716 -
6 10.99 266640 -
7 12.45 290976 -

6

0 0.13 50424 660
1 7.49 192940 661
2 37.40 523300 663
3 89.86 1572140 839
4 133.2 2848112 1035
5 164.42 2531132 1161
6 198.01 3030064 1190
7 210.84 3054040 1192

Table 6.2: Synthesis time and memory footprint of ReaX for designs involving either 5
or 6 processes (N), w.r.t. size of sliding window selected for the limited optimal control
algorithm (k); we also report the size of the resulting manager circuit for the design with 6
processes.

Chapter 6. A Case for Symbolic Limited Optimal Control: Energy Minimization in
Data-flow Circuits 103

We further report in Table 6.2 the run-time performances of ReaX for the designs models
with 5 and 6 processes.

The studies of configuration management works have started to increase since the dynamic
region has been integrated into reconfigurable devices. The management is implemented
on the dynamic region as a software program (e.g., [4, 95]). However, there is not any
configuration management work on the static region of reconfigurable devices. We have
addressed this issue for classical reconfigurable devices (i.e., they do not have a dynamic
region). We offer embedded controllers in the static region, so one can access any variable
of a design and combine the problem with some kind of hardware design problems such
as idleness condition. Furthermore, we propose our new optimization control algorithm,
which alleviates the need for specifying target states to better accommodate the modeling of
reactive systems for which the solutions are inadequate. As an example, [4]’s work focuses
on finite-state systems equipped with cost functions relating to states only, and the work
has not shown the effect of the higher steps. Thus, our approach allows for higher power
savings, where the results support our claim although it is not available to calculate the
best theoretical estimation. We applied our approach to a generic artificial design model, so
one can easily adapt any RTL implementation to our generic design model.

6.5 Summary and Discussion

We have presented a new algorithm for achieving limited optimal control on symbolic system
models. This algorithm alleviates the need for specifying target states by operating on
a finite sliding window of parameterizable length. It also accepts cost functions directly
defined on transitions, which is a novelty among symbolic approaches for optimal control.

In order to carry out some empirical evaluations of this new control algorithm, we have
also advanced a framework for producing an energy-aware dynamic configuration manager
for reactive data-flow circuits. Our technique permits the systematic construction of abstract
symbolic models of such designs, as well as associated global control objectives. Through
the construction of an efficient simulator using a hardware description language, we have
also demonstrated that the symbolic model and the resulting strategy can be translated
into a piece of circuit that encodes an efficient configuration manager. By construction, this
manager ensures any set of mutual exclusion constraints on the design, and is able to reduce
energy consumption.

We plan to develop a tool and design guidelines for using our approach on the automated

104 Mete Özbaltan

construction of the abstract symbolic models. As stated in Section 5.2, the strategies are
usually computed under the assumption that the environment of the model behaves as an
adversary: in a sense the strategy is pessimistic. A natural extension of our work is to
take some stochastic models of the environment (e.g., inferred from simulation traces) into
account to compute strategies that achieve better energy efficiency on average. Last, our
symbolic optimization algorithm could be extended in the two following directions: (i) the
tool ReaX that we use for computing strategies is already able to enforce safety properties
on infinite-state systems. An extension of our limited optimal control algorithm towards
handling such systems appears a natural extension of our work; (ii) in some cases more than
one design metrics are relevant for specifying optimal control objectives. Regarding our
circuit use-case, one can for instance also identify the temperature as a factor that would be
interesting to take into account.

Chapter 7

Conclusions and Future
Recommendations

The research presented in the thesis achieves the power efficiency in hardware circuits
with symbolic discrete control. The power efficiency of circuits is nowadays of paramount
importance for constructing embedded electronic devices, as it is one of the major design
constraints in today embedded systems limiting performance, battery life, and reliability [9].
However, as the technology advances and the transistor size decreases, designers are placing
a higher amount of transistors on a circuit in order to build high-performance devices,
but it brings extra power consumption and complex design [44, 45, 81]. To manage the
increasing design complexity and power consumption of hardware circuits as well as to
optimize various performance properties, the modeling and analysis are becoming a common
practice [105]. We advocate safe design methodologies based on formal control techniques and
formal abstract models for synchronous circuits. We have developed a systematic modeling
framework, which can assist designers in tackling average and/or instantaneous power
consumption after designed their behavioral models. The framework can be automatically
employed to derive power-efficient versions from original circuit designs. Furthermore, we
also used the framework to evaluate the power efficiency of various hardware designs. This
chapter summarizes the main conclusions and future recommendations of this thesis.

This chapter is organized as follows: Section 7.1 summarizes the main conclusions of
the work presented in this thesis; and Section 7.2 identifies open issues and recommends
research and investigation areas for future directions.

105

106 Mete Özbaltan

7.1 Conclusions

This thesis started in Chapter 2 by providing the necessary overview of the current state-
of-the-art in the context of integrated circuits, their design methodologies and low-power
design techniques, and some CAD tools. More specifically, the chapter discussed the major
challenges that occur while designing new generation integrated circuits (i.e., containing a
higher amount of transistors and including more complex design). The design complexity
of circuits has been dealt with top-down abstraction methodology; however, performance
goals (e.g., power efficiency) still be a task to be applied [44, 45, 81]. Furthermore, a single
integrated circuit can include different kinds of sub-circuits and architectures by using a
HDL, which can support that a circuit is modeled by using a mixture of concepts of different
design steps. As a result, it is essential to have a general knowledge about integrated circuits
for performing scalable techniques to meet various performance goals.

Among these performance goals, the power efficiency is one of the major design constraint
limiting performance, battery life, and reliability [9, 58, 94]. RTL clock gating is a low-power
technique that promises maximum power saving among other low-power techniques applied
on hardware circuits. Meanwhile, the implementation of this kind of technique applied on a
hardware circuit is generally tedious and error-prone. As a result, providing a systematic
framework that applies RTL clock gating allows automatically deriving power-efficient
versions from original circuit designs.

To apply a technique for meeting some performance goals requires an efficient analysis;
the use of modeling formalisms significantly reduces the effort of analysis to achieve such
performance goals on hardware circuits, where the models abstract away the irrelevant
details so that they allow designers to focus only on the essential properties of the system
under design [105]. Chapter 3 discussed the existing modeling formalisms on hardware
circuits designs emerged in the literature. As it is mentioned, the data-flow family is more
effective modeling method than automata-based models to express hardware circuits, as
they do not include the well-known state explosion problem [4, 105]. There are three main
distinct variants of the data-flow model of computation emerged in the literature. KPNs can
be used to describe systems where the amount of data produced and consumed by a process
is not statically determined, and it can be generally assumed that a behavioral hardware
design implements KPN, as KPN is a generalization form of the data-flow family. On the
other hand, the main advantage of the synchronous language is that it allows the model can
be built by effectively using conditional expressions; unlike the others, such as SDF. As a

Chapter 7. Conclusions and Future Recommendations 107

result, it is essential to perform abstract modeling in the context of synchronous language
in order to analyze a behavioral hardware design that implements KPN, while applying a
technique that allows achieving some performance goals.

The techniques applied on hardware models for meeting various performance properties
can be provided by means of several kinds of self-management approaches, such as control
theory, model checking, heuristics, and machine learning techniques [4]. Compared to other
existing techniques for achieving various performance goals, the main advantage of DCS is
that it provides a synthesisable controller with formal correctness. Chapter 3 also provides
the necessary overview of DCS and its implementations. As a result, performing the DCS
technique on an abstract model of a hardware circuit to achieve various performance goals
by means of some tools (e.g., ReaX and BZR) encapsulated with the DCS operation, where
the model is built in the form of the synchronous languages aspect, provides scalability and
formal correctness for the controller synthesized within the compilation process.

In Chapter 4, we proposed a tool-supported framework for achieving power-efficiency
of synchronous circuits from RTL behavioral designs, as hierarchical compositions of sub-
circuits, described using the popular hardware description language Verilog. We have
described a systematic approach that computes the CGL of synchronous circuits in order
to switch off the clock of each sub-circuits (i.e., to save power) when they are in an
idleness status. More specifically, we encode the computation as several small symbolic
discrete controller synthesis problems (i.e., an abstract symbolic synchronous model by
using Heptagon language for each individual Verilog modules) by means of the BZR tool,
and use the resulting controllers (where controllable variables represent output wires of
CGLs) to derive power efficient versions from original circuit designs. We have demonstrated
the principles using an example, reported on its manual application on a realistic case
study, and validated our approach experimentally. As a result, the resulting designs provide
considerable power efficiency and guarantee the correct behavior (i.e., the original design
and its power-efficient version have the same behavior and produce strictly equivalent
outputs). Furthermore, compared to other clock gating approaches applied to provide power
efficiency on idle portions of a circuit, the approach comes with just a small number of logic
units.

In Chapter 5, we have advanced a tool-supported framework for producing power-aware
designs from RTL implementations of KPNs (described using a HDL, such as Verilog). Our
approach relies on the automatic construction of abstract symbolic models of the designs, as
well as associated control objectives, and employs discrete control techniques to compute a

108 Mete Özbaltan

piece of hardware circuit that implements some power-aware scheduling policies specified in
a declarative way. This piece of circuit can eventually be used to selectively filter the clocks
of the processes involved. The resulted designs are automatically produced by means of our
tool dcs4cgl, where the DCS technique is performed by the tool ReaX, and the abstract
models are encoded on the ReaX environment as well. We have illustrated and validated our
approach and the strategies it provides, experimentally using various RTL designs described
using Verilog. As a result, performing the approach/strategies provides the automatic
construction of power-aware hardware circuits with the trade of timing performance from
the considered original designs, where the resulted designs are functionally equivalent to
originals and guarantee formal correctness; such designs offer a considerable impact on
hardware resources (e.g., increasing the lifetime of battery-powered devices and reducing
the chip temperature and maximum supply voltage), where the power-awareness offered the
approach is based on the minimization or limitation of the instantaneous power.

In Chapter 6, we have described a tool-supported framework in order to employ an
energy-efficient configuration manager for choosing the optimal configuration, by means of
the clock-gating logic, among the alternatives on data-flow hardware circuits implemented
as KPNs, with parallel synchronous processes. Our technique permits the systematic
construction of abstract symbolic models of such designs, as well as associated control
objectives, so it is easily implementable. Then, we have employed the DCS technique along
with the associated control objectives on the models by means of the ReaX tool, in order
to produce a piece of hardware circuits that implements a configuration manager with
energy reduction guarantees, where the manager behaves as a clock-gating constraint. We
have applied and validated our approach on a series of various design flows built from
RTL implementations (described using the HDL Verilog), where we use artificial processing
modules and memory components. As a result, using our approach offers the systematic and
semi-automated construction of an energy-aware configuration manager for such designs,
where the manager then dynamically chooses the optimal one among all configuration
alternatives involved in each process, by ensuring the given restrictions and the parallel
synchronization of all processes, over a sliding window of a given number of ticks.

7.2 Open Issues and Future Recommendations

In this section, some open issues, which have been identified in the research presented in
this thesis, are listed together with possible future research directions.

Chapter 7. Conclusions and Future Recommendations 109

• With respect to the framework of Chapter 4 for the construction of energy-efficient
synchronous circuits with symbolic discrete control based on the idleness conditions:

– Our approach can be applied to hierarchical Verilog designs, which we applied
to several such designs; however, it can also be extended to compute CGLs
for individual registers within modules, and/or to apply for other HDLs and
abstraction levels.

– Although we exercised our technique to implement clock-gating as it currently
offers the best trade-off between extra occupied circuit area and power savings,
it is also applicable to other low-power design mechanisms such as power-gating
(especially for computation-intensive modules that can be shut down for long
periods of time).

– Automatically identifying good sets of marked variables constitutes an interesting
challenge.

– The support of black-box sub-modules with simple user-provided models can
also be considered.

• With respect to the framework of Chapter 5 for the construction of power-aware
hardware circuits with symbolic discrete control based on the scheduling constraints
and power-efficiency objectives:

– Guidelines can be designed for using our approach on black-box IPs with user-
provided symbolic models.

– Our approach can be applied to the RTL designs that implement KPN, and
we have implemented the approach on Verilog codes; however, it can be easily
applied to other HDLs and can be easily extended for other abstraction levels.

– Symbolic power expression that gives an estimated measure of the instantaneous
dynamic power consumption of the modeled process is based on the state and
input symbols of the process. The estimated measurement can be provided more
accurately using a different kind of approaches, such as simulation.

– The strategies stated in Chapter 5 are usually computed under the assumption
that the environment of the model behaves as an adversary: in a sense the
strategy is pessimistic. A natural extension of our work is to take some stochastic

110 Mete Özbaltan

models of the environment (e.g., inferred from simulation traces) into account to
compute strategies that achieve better power efficiency on average.

• With respect to the framework of Chapter 6 for the construction of an energy-
aware configuration manager with symbolic discrete control, based on the energy
optimization objective and configuration constraints by supporting with parallel
synchronous processes:

– A tool and design guidelines can be developed for using our approach on the
automated construction of the abstract symbolic models.

– Optimization control algorithms work, from current states to target states, to
produce a controller at the best cost of controllable events against the worst moves
of uncontrollable events, so they (as well as our control algorithm) are pessimistic.
Our control algorithm can be advanced in order to make a computation under
the assumption of some stochastic inputs, where the computation achieves better
energy-efficiency on average.

– Our approach can be combined with some existing control techniques, such as that
applies some power-aware scheduling policies, and/or the classical clock-gating
implementation for the idleness objective.

– Our approach can be enriched with other design metrics, such as temperature
and area.

Bibliography

[1] Nainesh Agarwal and Nikitas Dimopoulos. High-level fsmd design and automated
clock gating with codel. Canadian Journal of Electrical and Computer Engineering,
33(1), 2008.

[2] Sumit Ahuja, Wei Zhang, Avinash Lakshminarayana, and Sandeep K Shukla. A
methodology for power aware high-level synthesis of co-processors from software
algorithms. In Proceedings of the 23rd International Conference on VLSI Design,
VLSID ’10, pages 282–287. IEEE, 2010.

[3] Karine Altisen, Aurélie Clodic, Florence Maraninchi, and Eric Rutten. Using controller-
synthesis techniques to build property-enforcing layers. In European Symposium on
Programming, pages 174–188. Springer, 2003.

[4] Xin An. High Level Design and Control of Adaptive Multiprocessor Systems-on-Chip.
PhD thesis, Université de Grenoble, 2013.

[5] Xin An, Eric Rutten, Jean-Philippe Diguet, and Abdoulaye Gamatié. Model-based
design of correct controllers for dynamically reconfigurable architectures. ACM
Transactions on Embedded Computing Systems (TECS), 15(3):51, 2016.

[6] Xin An, Eric Rutten, Jean-Philippe Diguet, Nicolas Le Griguer, and Abdoulaye
Gamatié. Discrete control for reconfigurable fpga-based embedded systems. IFAC
Proceedings Volumes, 46(22):151–156, 2013.

[7] Pietro Babighian, Luca Benini, and Enrico Macii. A scalable algorithm for rtl insertion
of gated clocks based on odcs computation. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 24(1):29–42, 2005.

111

112 Mete Özbaltan

[8] Nilanjan Banerjee, Kaushik Roy, Hamid Mahmoodi, and Swarup Bhunia. Low power
synthesis of dynamic logic circuits using fine-grained clock gating. In Proceedings of
the conference on Design, automation and test in Europe: Proceedings, pages 862–867.
European Design and Automation Association, 2006.

[9] Edith Beigné, Fabien Clermidy, Hélène Lhermet, Sylvain Miermont, Yvain Thonnart,
Xuan-Tu Tran, Alexandre Valentian, Didier Varreau, Pascal Vivet, Xavier Popon,
et al. An asynchronous power aware and adaptive noc based circuit. IEEE Journal of
Solid-State Circuits, 44(4):1167–1177, 2009.

[10] Richard Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ,
USA, 1 edition, 1957.

[11] Luca Benini, Giovanni De Micheli, Enrico Macii, Massimo Poncino, and Riccardo
Scarsi. Symbolic synthesis of clock-gating logic for power optimization of synchronous
controllers. ACM Transactions on Design Automation of Electronic Systems (TO-
DAES), 4(4):351–375, 1999.

[12] Luca Benini, Polly Siegel, and Giovanni De Micheli. Saving power by synthesizing
gated clocks for sequential circuits. IEEE Design & Test of Computers, 11(4):32–41,
1994.

[13] Nicolas Berthier. Programmation synchrone de pilotes de périphériques pour un
contrôle global de ressources dans les systèmes embarqués. PhD thesis, Grenoble, 2012.

[14] Nicolas Berthier, Xin An, and Hervé Marchand. Towards applying logico-numerical
control to dynamically partially reconfigurable architectures. IFAC-PapersOnLine,
48(7):132–138, 2015.

[15] Nicolas Berthier and Hervé Marchand. Discrete controller synthesis for infinite state
systems with reax. IFAC Proceedings Volumes, 47(2):46–53, 2014.

[16] Nicolas Berthier and Hervé Marchand. Deadlock-free discrete controller synthesis for
infinite state systems. In 2015 54th IEEE Conference on Decision and Control (CDC),
pages 1000–1007. IEEE, 2015.

[17] Nicolas Berthier, Hervé Marchand, and Éric Rutten. Symbolic limited lookahead
control for best-effort dynamic computing resource management. IFAC-PapersOnLine,
51(7):112–119, 2018.

Bibliography 113

[18] Nicolas Berthier, Eric Rutten, Noël De Palma, and Soguy Mak-Karé Gueye. De-
signing autonomic management systems by using reactive control techniques. IEEE
Transactions on Software Engineering, 42(7):640–657, 2016.

[19] Rani Bhutada and Yiannos Manoli. Complex clock gating with integrated clock gating
logic cell. In Design & Technology of Integrated Systems in Nanoscale Era, 2007.
DTIS. International Conference on, pages 164–169. IEEE, 2007.

[20] JP Billon. Perfect normal forms for discrete programs. Bull, Tech. Rep, 1987.

[21] David C Black, Jack Donovan, Bill Bunton, and Anna Keist. SystemC: From the
Ground Up, chapter 1–2. Springer Science & Business Media, 2 edition, 2010.

[22] Leticia Bolzani, Andrea Calimera, Alberto Macii, Enrico Macii, and Massimo Poncino.
Enabling concurrent clock and power gating in an industrial design flow. In Proceedings
of the Conference on Design, Automation and Test in Europe, pages 334–339. European
Design and Automation Association, 2009.

[23] Christos G Cassandras and Stephane Lafortune. Introduction to Discrete Event
Systems. Springer Science & Business Media, 2009.

[24] Xiaotao Chang, Mingming Zhang, Ge Zhang, Zhimin Zhang, and Jun Wang. Adaptive
clock gating technique for low power ip core in soc design. In 2007 IEEE International
Symposium on Circuits and Systems, pages 2120–2123. IEEE, 2007.

[25] Pong P Chu. RTL hardware design using VHDL: Coding for Efficiency, Portability,
and Scalability, chapter 1. John Wiley & Sons, 2006.

[26] Edmund M. Clarke, E Allen Emerson, and A Prasad Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems (TOPLAS), 8(2):244–263, 1986.

[27] David E Culler, Jaswinder Pal Singh, and Anoop Gupta. Parallel Computer Architec-
ture: A Hardware/Software Approach, chapter 5, pages 260–262. Gulf Professional
Publishing, 1999.

[28] Mitch Dale. Utilizing clock-gating efficiency to reduce power. EE Times, India, 2008.

114 Mete Özbaltan

[29] Gwenaël Delaval, Hervé Marchand, and Eric Rutten. Contracts for modular discrete
controller synthesis. In ACM Sigplan Notices, volume 45, pages 57–66. ACM, 2010.

[30] Gwenaël Delaval, Éric Rutten, and Hervé Marchand. Integrating discrete controller
synthesis into a reactive programming language compiler. Discrete Event Dynamic
Systems, 23(4):385–418, 2013.

[31] JackB Dennis. Data Flow Graphs, page 513. Springer US, 2011.

[32] Srinivas Devadas and Sharad Malik. A survey of optimization techniques targeting low
power vlsi circuits. In Proceedings of the 32nd annual ACM/IEEE Design Automation
Conference, pages 242–247. ACM, 1995.

[33] Monica Donno, Alessandro Ivaldi, Luca Benini, and Enrico Macii. Clock-tree power
optimization based on rtl clock-gating. In Proceedings of the 40th annual Design
Automation Conference, pages 622–627. ACM, 2003.

[34] Emil Dumitrescu, Alain Girault, Hervé Marchand, and Éric Rutten. Multicriteria
optimal reconfiguration of fault-tolerant real-time tasks. IFAC Proceedings Volumes,
43(12):356–363, 2010.

[35] Aniryudh Reddy Durgam and Ken Choi. Optimized clock gating cell for low power
design in nanoscale cmos technology. In Fifth Asia Symposium on Quality Electronic
Design (ASQED 2013), pages 85–88. IEEE, 2013.

[36] Bruno Dutertre. Spécification et Preuve de Systemes Dynamiques. PhD thesis, Rennes
1, 1992.

[37] Maurizio Di Paolo Emilio. Microelectronics: From Fundamentals to Applied Design,
page ix. Springer, 2015.

[38] Cagkan Erbas. System-level Modeling and Design Space Exploration for Multiprocessor
Embedded System-on-Chip Architectures, volume 132, page 1. Amsterdam University
Press, 2007.

[39] Yvan Eustache and Jean-Philippe Diguet. Specification and os-based implementation
of self-adaptive, hardware/software embedded systems. In Proceedings of the 6th
IEEE/ACM/IFIP international conference on Hardware/Software codesign and system
synthesis, pages 67–72. ACM, 2008.

Bibliography 115

[40] Tiziana Fanni, Lin Li, Timo Viitanen, Carlo Sau, Renjie Xie, Francesca Palumbo,
Luigi Raffo, Heikki Huttunen, Jarmo Takala, and Shuvra S Bhattacharyya. Hardware
design methodology using lightweight dataflow and its integration with low power
techniques. Journal of Systems Architecture, 78:15–29, 2017.

[41] Mohammed Ferdjallah. Introduction to Digital Systems: Modeling, Synthesis, and
Simulation Using VHDL, chapter 9, pages 165–166. John Wiley & Sons, 2011.

[42] Pascal Fradet, Alain Girault, Ruby Krishnaswamy, Xavier Nicollin, and Arash Shafiei.
Rdf: Reconfigurable dataflow (extended version). Technical report, INRIA Grenoble -
Rhône-Alpes, 2018.

[43] Stephen B Furber, James D Garside, Peter Riocreux, Steven Temple, Paul Day,
Jianwei Liu, and Nigel C Paver. Amulet2e: An asynchronous embedded controller.
Proceedings of the IEEE, 87(2):243–256, 1999.

[44] Daniel D Gajski, Samar Abdi, Andreas Gerstlauer, and Gunar Schirner. Embedded
System Design: Modeling, Synthesis and Verification, chapter 1–2. Springer Science
& Business Media, 2009.

[45] Daniel D Gajski, Nikil Dutt, Allen Wu, and Steve Lin. High level synthesis, introduc-
tion to chip and system design, 1992.

[46] Daniel D Gajski and Robert H. Kuhn. New vlsi tools. Computer, pages 11–14, 1983.

[47] Govin Das Gautam, Shyam Akashe, and Sanjay Sharma. Transistor sizing for low
power cmos circuits. International Journal, 1(1):37–59, 2011.

[48] Frank Ghenassia et al. Transaction-Level Modeling With SystemC, volume 2, chapter
1–3. Springer, 2005.

[49] KAHN Gilles. The semantics of a simple language for parallel programming. Informa-
tion processing, 74:471–475, 1974.

[50] Sébastien Guillet, Florent de Lamotte, Nicolas Le Griguer, Eric Rutten, Guy Gogniat,
and Jean-Philippe Diguet. Designing formal reconfiguration control using uml/marte.
In 7th International Workshop on Reconfigurable and Communication-Centric Systems-
on-Chip (ReCoSoC), pages 1–8. IEEE, 2012.

116 Mete Özbaltan

[51] K Hariharan and C Jaya Kumar. Clock gating for low power circuit design by merge
and split methods. IOSR Journal of Engineering, 2(4):1–5, 2012.

[52] David Harris and Sarah Harris. Digital Design and Computer Architecture, chapter
2–3. Morgan Kaufmann, 2010.

[53] Yann Hietter, Jean-Marc Roussel, and Jean-Jacques Lesage. Algebraic synthesis of
transition conditions of a state model. In 2008 9th International Workshop on Discrete
Event Systems, pages 187–192. IEEE, 2008.

[54] Idress Husien, Nicolas Berthier, and Sven Schewe. A hot method for synthesising cool
controllers. In Proceedings of the 24th ACM SIGSOFT International SPIN Symposium
on Model Checking of Software, pages 122–131. ACM, 2017.

[55] Hans M Jacobson, Prabhakar N Kudva, Pradip Bose, Peter W Cook, Stanley E
Schuster, Eric G Mercer, and Chris J Myers. Synchronous interlocked pipelines. In
Proceedings Eighth International Symposium on Asynchronous Circuits and Systems,
pages 3–12. IEEE, 2002.

[56] Ravindra Jejurikar, Cristiano Pereira, and Rajesh Gupta. Leakage aware dynamic
voltage scaling for real-time embedded systems. In Proceedings of the 41st annual
Design Automation Conference, pages 275–280. ACM, 2004.

[57] Ahmed Jerraya and Wayne Wolf. Multiprocessor Systems-on-Chips, chapter 1–10,
page 1. Elsevier, 2004.

[58] Jagrit Kathuria, M Ayoubkhan, and Arti Noor. A review of clock gating techniques.
MIT International Journal of Electronics and Communication Engineering, 1(2):106–
114, 2011.

[59] Krishna Kavali, S Rajendar, and R Naresh. Design of low power adaptive pulse
triggeredflip-flop using modified clock gating schemeat 90 nm technology. Procedia
Materials Science, 10:323–330, 2015.

[60] SV Lakshmi, PS Vishnu Priya, and Mrs S Prema. Performance comparison of various
clock gating techniques. IOSR Journal of VLSI and Signal Processing (IOSR-JVSP),
5(1):2319–4197, 2015.

Bibliography 117

[61] Marco Lanuzza, Pasquale Corsonello, and Stefania Perri. Low-power level shifter for
multi-supply voltage designs. IEEE Transactions on Circuits and Systems II: Express
Briefs, 59(12):922–926, 2012.

[62] Bilung Lee. Fusing Dataflow with Finite State Machines, chapter 1–2. Electronics
Research Laboratory, College of Engineering, University of California Berkeley, 1996.

[63] EA Lee. A denotational semantics for dataflow with firing, memorandum ucb/erl
m97/3. Electronics Research Laboratory, UC Berkeley, 1997.

[64] Edward A Lee and Thomas M Parks. Dataflow process networks. Proceedings of the
IEEE, 83(5):773–801, 1995.

[65] Li Li. Power Optimization From Register Transfer Level To Transistor Level In Deeply
Scaled CMOS Technology, chapter 1–2. Illinois Institute of Technology, 2012.

[66] Li Li, Ken Choi, and Haiqing Nan. Activity-driven fine-grained clock gating and
run time power gating integration. IEEE transactions on very large scale integration
(VLSI) systems, 21(8):1540–1544, 2013.

[67] Jianfeng Liu, Mi-Suk Hong, Kyungtae Do, Jung Yun Choi, Jaehong Park, Mohit
Kumar, Manish Kumar, Nikhil Tripathi, and Abhishek Ranjan. Clock domain crossing
aware sequential clock gating. In Proceedings of the 2015 Design, Automation & Test
in Europe Conference & Exhibition, pages 1–6. EDA Consortium, 2015.

[68] Yan Luo, Jia Yu, Jun Yang, and Laxmi Bhuyan. Low power network processor design
using clock gating. In Proceedings of the 42nd annual Design Automation Conference,
pages 712–715. ACM, 2005.

[69] Martina Maggio, Henry Hoffmann, Alessandro V Papadopoulos, Jacopo Panerati,
Marco D Santambrogio, Anant Agarwal, and Alberto Leva. Comparison of decision-
making strategies for self-optimization in autonomic computing systems. ACM Trans-
actions on Autonomous and Adaptive Systems (TAAS), 7(4):36, 2012.

[70] Hamid Mahmoodi, Vishy Tirumalashetty, Matthew Cooke, and Kaushik Roy. Ultra
low-power clocking scheme using energy recovery and clock gating. IEEE transactions
on very large scale integration (VLSI) systems, 17(1):33–44, 2009.

118 Mete Özbaltan

[71] Florence Maraninchi and Yann Rémond. Argos: an automaton-based synchronous
language. Computer languages, 27(1-3):61–92, 2001.

[72] Hervé Marchand, Patricia Bournai, Michel Le Borgne, and Paul Le Guernic. Synthesis
of discrete-event controllers based on the signal environment. Discrete Event Dynamic
Systems, 10(4):325–346, 2000.

[73] Herve Marchand and Michel Le Borgne. On the optimal control of polynomial
dynamical systems over z/pz. In 4th International Workshop on Discrete Event
Systems, pages 385–390, 1998.

[74] Hervé Marchand and Mazen Samaan. Incremental design of a power transformer
station controller using a controller synthesis methodology. IEEE Transactions on
Software Engineering, 26(8):729–741, 2000.

[75] Peter Marwedel. Embedded System Design, volume 1, chapter 2. Springer, 2006.

[76] Uwe Meyer-Baese, A Vera, A Meyer-Baese, M Pattichis, and R Perry. Smart altera
firmware for dsp with fpgas. In Independent Component Analyses, Wavelets, Unsuper-
vised Nano-Biomimetic Sensors, and Neural Networks V, volume 6576, page 65760T.
International Society for Optics and Photonics, 2007.

[77] Sajed Miremadi, Bengt Lennartson, and Knut Akesson. A bdd-based approach for
modeling plant and supervisor by extended finite automata. IEEE Transactions on
Control Systems Technology, 20(6):1421–1435, 2011.

[78] Gordon E Moore et al. Progress in digital integrated electronics. In Electron Devices
Meeting, volume 21, pages 11–13, 1975.

[79] Juanjo Noguera and Rosa M Badia. System-level power-performance trade-offs in
task scheduling for dynamically reconfigurable architectures. In Proceedings of the
2003 international conference on Compilers, architecture and synthesis for embedded
systems, pages 73–83. ACM, 2003.

[80] Mete Özbaltan and Nicolas Berthier. Exercising symbolic discrete control for designing
low-power hardware circuits: an application to clock-gating. IFAC-PapersOnLine,
51(7):120–126, 2018.

Bibliography 119

[81] Samir Palnitkar. Verilog HDL: A Guide to Digital Design and Synthesis, volume 1,
chapter 1–9,14. Prentice Hall Professional, 2003.

[82] Thomas M Parks, José Luis Pino, and Edward A Lee. A comparison of synchronous and
cycle-static dataflow. In Conference Record of the Twenty-Ninth Asilomar Conference
on Signals, Systems and Computers, volume 1, pages 204–210. IEEE, 1995.

[83] Sangeeta Parshionikar, Deepak V Bhoir, and Sapna Prabhu. Leakage power reduction
using multi threshold voltage cmos technique. International Journal of Scientific &
Engineering Research, 4(10), 2013.

[84] Massoud Pedram and Qing Wu. Design considerations for battery-powered electronics.
In Proceedings 1999 Design Automation Conference (Cat. No. 99CH36361), pages
861–866. IEEE, 1999.

[85] Volnei A Pedroni. Circuit Design with VHDL, chapter 1. MIT press, 2004.

[86] Douglas L Perry. VHDL: Programming by Example, volume 4, chapter 1. McGraw-Hill
New York, NY, USA, 2002.

[87] Georgios Pouiklis and Georgios Ch Sirakoulis. Clock gating methodologies and tools:
a survey. International Journal of Circuit Theory and Applications, 44(4):798–816,
2016.

[88] Imran Rafiq Quadri, Huafeng Yu, Abdoulaye Gamatié, Samy Meftali, Jean-Luc
Dekeyser, and Éric Rutten. Targeting reconfigurable fpga based socs using the marte
uml profile: from high abstraction levels to code generation. International Journal of
Embedded Systems, 2010.

[89] Nithya Raghavan, Venkatesh Akella, and Smita Bakshi. Automatic insertion of gated
clocks at register transfer level. In Proceedings of the 12th International Conference
on VLSI Design, VLSID ’99, pages 48–54. IEEE, 1999.

[90] Peter JG Ramadge and W Murray Wonham. The control of discrete event systems.
Proceedings of the IEEE, 77(1):81–98, 1989.

[91] Irving S Reed and Gustave Solomon. Polynomial codes over certain finite fields.
Journal of the society for industrial and applied mathematics, 8(2):300–304, 1960.

120 Mete Özbaltan

[92] Dushyant Kumar Sharma. Effects of different clock gating techinques on design.
International Journal of Scientific & Engineering Research, 3(5):1–4, 2012.

[93] Richard Sharp. Higher-Level Hardware Synthesis, chapter 1–2. Springer, 2004.

[94] Jitesh Shinde and SS Salankar. Clock gating—a power optimizing technique for vlsi
circuits. In 2011 Annual IEEE India Conference, pages 1–4. IEEE, 2011.

[95] Kamana Sigdel. System-Level Design Space Exploration of Reconfigurable Architectures,
chapter 1. PhD Thesis, Delft University of Technology, 2011.

[96] Harpreet Singh and Sukhwinder Singh. A review on clock gating methodologies for
power minimization in vlsi circuits. Int. J. Sci. Engin. App. Sci, 2, 2016.

[97] Priya Singh and Ravi Goel. Clock gating: A comprehensive power optimization
technique for sequential circuits. International Journal of Advanced Research in
Computer Science & Technology (IJARCST), 2(2):321–324, 2014.

[98] Nandita Srinivasan, Navamitha S Prakash, D Shalakha, D Sivaranjani, B Bala Tripura
Sundari, et al. Power reduction by clock gating technique. Procedia Technology,
21:631–635, 2015.

[99] Antonio GM Strollo, Ettore Napoli, and Davide De Caro. New clock-gating techniques
for low-power flip-flops. In Proceedings of the 2000 international symposium on Low
power electronics and design, pages 114–119. ACM, 2000.

[100] J Sudhakar, A Mallikarjuna Prasad, and Ajit Kumar Panda. Gfcg: Glitch free combi-
national clock gating approach in nanometer vlsi circuits. In 2015 2nd International
Conference on Electronics and Communication Systems (ICECS), pages 146–150.
IEEE, 2015.

[101] BL Theraja and AK Theraja. Textbook of Electrical Technology, volume 4, chapter 67,
pages 2471–2478. S. Chand, 2005.

[102] Donald E Thomas, Elizabeth D Lagnese, Robert A Walker, Jayanth V Rajan, Robert L
Blackburn, and John A Nestor. Algorithmic and Register-Transfer Level Synthesis:
The System Architect’s Workbench: The System Architect’s Workbench, volume 85,
chapter 1,2. Springer Science & Business Media, 1989.

Bibliography 121

[103] Jason G Tong, Ian DL Anderson, and Mohammed AS Khalid. Soft-core processors
for embedded systems. In 2006 International Conference on Microelectronics, pages
170–173. IEEE, 2006.

[104] Lionel Torres, Pascal Benoit, Gilles Sassatelli, Michel Robert, Fabien Clermidy, and
Diego Puschini. An introduction to multi-core system on chip – trends and challenges.
In Multiprocessor System-on-Chip, pages 1–21. Springer, 2011.

[105] Stavros Tripakis, Rhishikesh Limaye, Kaushik Ravindran, Guoqiang Wang, Hugo
Andrade, and Arkadeb Ghosal. Tokens vs. signals: On conformance between formal
models of dataflow and hardware. Journal of Signal Processing Systems, 85(1):23–43,
2016.

[106] Yan Zhang, Jussi Roivainen, and Aarne Mammela. Clock-gating in fpgas: A novel and
comparative evaluation. In 9th EUROMICRO Conference on Digital System Design
(DSD’06), pages 584–590. IEEE, 2006.

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Listings
	List of Tables
	Introduction
	Problem Statement
	Contributions
	Thesis Outline

	State of The Art on Low Power Synchronous Circuits Design
	Integrated Circuits (ICs)
	Classification of ICs
	Architectures of ICs

	Chip Design Process
	Evolution of Chip Design
	Abstraction Levels
	Chip Design Methodologies

	Hardware Description Languages (HDLs)
	Data Types
	Functional Blocks and Ports
	Instantiations
	Statements
	Structural Representation
	Data-Flow Representation
	Behavioral Representation

	Low Power Synchronous Circuits Design Techniques
	Clock Gating Technique
	Existing Approaches

	Existing Tools Used on Chip Design
	Summary and Discussion

	Modeling Formalisms on Hardware Circuits Designs, & Symbolic Tools, Languages, and Techniques for Discrete Control
	Modeling Formalisms Applied on Chip Design
	Automata-Based Modeling Formalisms
	Data-Flow Based Modeling Formalisms

	Discrete Controller Synthesis (DCS)
	BZR/Heptagon Synchronous Language
	ReaX Synchronous Language
	Existing Approaches
	Summary and Discussion

	Exercising Symbolic Discrete Control for Designing Low-Power Hardware Circuits: an Application to Clock-Gating
	Introduction
	Motivation
	Contributions
	Overview

	Running Example
	The Verilog Hardware Description Language
	A Fragment of Heptagon
	Variables & Further Notations

	Computing CGLs using Symbolic DCS
	Overview of the Modeling Technique
	Building Sub-module Models & Idleness Predicates
	Building Composed Module Models
	Computing & Integrating the CGLs

	Application on a Case Study
	Summary and Discussion

	Power-Aware Scheduling of Data-Flow Hardware Circuits with Symbolic Control
	Introduction
	Discrete Control with Symbolic Systems
	Symbolic Notations
	Symbolic Systems
	Symbolic Control
	Tooling and Related Works on Optimal Control

	Models and Objectives for Power-aware Scheduling
	Overview of the Approach and Contributions
	Abstracting Process Implementation Behaviors
	Abstract Process Observers & Control Means
	Achieving Power-efficiency by Control
	Enabling Dynamic CGL Reconfiguration

	Experimental Evaluation
	Summary and Discussion

	A Case for Symbolic Limited Optimal Control: Energy Minimization in Data-flow Circuits
	Introduction
	An Algorithm for Symbolic Limited Optimal Control
	Computing Expected Outcomes
	Computing the Refined Strategy

	Use-case: Energy-aware Configuration Management
	Management of Configurable Designs
	Overview of the Approach for Computing Managers
	Abstract Channel Model
	Abstract Process Model
	Control Objectives

	Experimental Evaluations
	Constructing Simulators of Managed Designs
	Simulation Bench
	Simulation Results

	Summary and Discussion

	Conclusions and Future Recommendations
	Conclusions
	Open Issues and Future Recommendations

	References

