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a b s t r a c t 
The over-segmentation problem is to split a pixel-based image into a smaller number of superpixels that 
can be treated as indecompasable regions to speed up higher level image processing such as segmen- 
tation or object detection. A traditional superpixel is a potentially disconnected union of square pixels, 
which can have complicated topology (with holes) and geometry (highly zigzag boundaries). This pa- 
per contributes to new resolution-independent superpixels modeled as convex polygons with straight- 
line edges and vertices with real coordinates not restricted to a fixed pixel grid. Any such convex poly- 
gon can be rendered at any resolution higher than in original images, hence superpixels are resolution- 
independent. 
The key difficulty in obtaining resolution-independent superpixels is to find continuous straight-line 
edges, while classical edge detection focuses on extracting only discrete edge pixels. The recent Persis- 
tent Line Segment Detector (PLSD) avoids intersections and small angles between line segments, which 
are hard to fix before a proper polygonal mesh can be constructed. The key novelty is an automatic 
selection of strongest straight-line segments by using the concept of persistence from Topological Data 
Analysis, which allows to rank segments by their strength. The PLSD performed well in comparison with 
the only past Line Segment Detector Algorithm (LSDA) on the Berkeley Segmentation Database of 500 
real-life images. The PLSD is now extended to the Persistent Resolution-Independent Mesh (PRIM). 

© 2020 Elsevier B.V. All rights reserved. 
1. Introduction: motivations and problem statements 

The traditional over-segmentation problem is to group square 
pixels into superpixels that adhere to object boundaries. The 
boundaries of these pixel-based superpixels consist of short hor- 
izontal and vertical edges restricted to a given grid, see [17] . 

Since images represent a spatially continuous world, it makes 
sense to find segmentations over a continuous image domain , not 
over a discrete grid. Due to anti-aliasing, grayscale values across a 
real image edge change gradually over 2–3 pixels, see (Viola et al. 
[21] , Fig. 1 ). Hence a real edge is often not along pixel boundaries 
and should be found in the infinite family of line segments that 
can have any slope and endpoints with real coordinates. 

The above facts motivate the harder version of edge detection 
to find straight-line segments that approximate object boundaries 
in pixel-based images at subpixel resolution. The next step is to ex- 
tend straight-line segments to a full mesh of polygons that can be 
rendered at any resolution higher than in an original image. Such 
polygons are called resolution-independent superpixels, see [9,20] . 

∗ Corresponding author. 
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The only past algorithm by Grompone von Gioi [10] solving the 
above problem was the Line Segment Detection Algorithm (LSDA). 
This “a contrario” approach guarantees at most one false alarm on 
random data. 

The LSDA often outputs line segments that intersect each 
other near their endpoints, see 48 intersections for the image in 
Fig. 11 from the Berkeley Segmentation Database, see [1] . Duan and 
Lafarge [6] proposed a refinement of the LSDA edge for producing 
Voronoi superpixels at subpixel resolution. 

This refinement has revealed that some LSDA edges are too 
close and almost parallel to each other, see [10, Fig. 1.1 on page 1]. 
So these close lines should be removed or carefully repaired to 
avoid very narrow superpixels. Fig. 11 shows how the PLSD avoids 
all intersections in comparison with the LSDA. 

The hard difficulties above are understandable taking into ac- 
count that the LSDA attempts to capture line segments with any 
possible slope. Since approximate solutions are acceptable in real- 
life, we simplify the problem and will detect line segments that 
are parallel to one of 8 directions: horizontal (1,0), vertical (0,1), 
two diagonal ( ± 1, 1) and four non-diagonal directions ( ± 2, 1), 
( ± 1, 2). Fig. 2 shows that these 8 directions are enough to ap- 
proximate any reasonable shapes in images, e.g., a disk in Fig. 2 is 
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Fig. 1. Left : LSDA outputs (an unpredictable number of) 258 edges with 16 inter- 
sections. Right : the PLSD outputs a given number of 258 edges without any inter- 
sections (a key advantage over LSDA). 

Fig. 2. The new algorithm PLSD outputs line segments in 8 directions, which can 
well approximate complicated shapes, even a large round disk in the last image 
above. 
well-approximated by polygonal curves with 16 edges split into 8 
pairs of opposite parallel edges. 

One more important motivation to improve the LSDA is to con- 
trol the number of edges in a final output. When LSDA edges are 
included into a polygonal mesh, the size of the mesh (number of 
polygons) may depend on the number of original edges. Hence, it 
would be great to order detected edges by some sort of strength 
so that a smaller number of strongest edges can be selected. 
2. Main novelty: selection of persistent segments 

The main novelty of the recent Persistent Line Segment Detec- 
tor (PLSD) by Kurlin and Muszynski [18 , section 3] and its pro- 
posed extension to the Persistent Resolution-Independent Mesh 
(PRIM) is the automatic selection of strongest segments in any 
straight line. 

A grayscale image on ! = [0 , w ] × [0 , h ] is a function I : ! → [0, 
255] sampled at pixel positions p ∈ ! with integer coordinates in 
the image [0, w ] × [0, h ]. An edge detection algorithm outputs pix- 
els p 1 , . . . , p k ∈ !, where the function I substantially changes (de- 
pending on an algorithm) along some direction. This change at a 
fixed pixel is measured as the magnitude of the image gradient. 

For a function f : L → R of contrast values along a straight line 
L ⊂!, we analyze the sequence of superlevel sets f −1 [ u, + ∞ ) = 
{ p ∈ L : f (p) ≥ u } . For every fixed level u of the contrast, the su- 
perlevel set splits into a few continuous segments over which the 
contrast is at least u . 

When the contrast level u goes down, new segments appear 
around local maxima of f and then merge with each other, see 
Fig. 4 . So each segment S persists from its birth (at the maximum 
value of u ) to its death (at the value when S merges with another 
segment having a higher birth), see Definition 2 . 

A segment S is usually characterized by its persistence = birth- 
death (when the parameter u is decreasing). We suggest another 
characteristic (the strength | S| = ∫ S f (p) dp), which is more stable 

under perturbations of contrast values, hence is more suitable for 
noisy data, see formal details in Definition 3 . 

Line segments are ranked according to the concept of persis- 
tence, which was introduced in Topological Data Analysis, see [7] . 
The idea of persistence is to study a nested sequence of shapes 
parameterized across all potential thresholds. 

At every level u the strongest segments are separated from 
noisy artefacts by a widest gap in strength, which is the maxi- 
mum difference between successive ordered strength values over 
all current segments, see Definition 3 . The same widest gap in per- 
sistence was successfully used for segmenting point clouds not re- 
stricted to a pixel grid as in digital images, see [13 - 16] . 

So the strongest segments are independently selected along ev- 
ery straight line L considered in an image. Hence there is no uni- 
form thresholding for the whole image, see details of this new au- 
tomatic method in Subsection 4.2 . 

Here is the summary of key contributions. 
• The edge detection is studied in the continuous setting, which 

is harder than for discrete square-based pixels. 
• The algorithm PLSD can output a desired number of strongest 

straight-line segments that have no intersections guaranteed by 
Stage 2 in Subsection 4.3 . 

• The main innovation of the Persistent Line Segment Detector 
is a data-driven automatic selection of persistent line segments 
without manual thresholding. 

• The PLSD edges are extended to a Persistent Resolution- 
Independent Mesh (PRIM) of superpixels, which are convex 
polygons having straight-line edges and vertices with any real 
coordinates. 

• The PLSD and PRIM algorithms run in a near linear time with 
respect to the number of pixels and required line segments, see 
Theorem 5 and Corollary 7 . 

3. Review of the past closely related work 
This section discusses the algorithms for detecting only straight 

line segments at subpixel precision. 
3.1. From discrete pixels to continuous arcs 

Many past algorithms are based on the famous Canny detector 
of edge pixels [3] , which already requires three parameters. The 
next usual step is to apply a Hough transform by Ballard [2] to 
find lines passing through a certain number of edgels. The Hough 
transform often leads to many false positives in textured regions. 
Another approach by Kahn et al. [11] uses only orientations of im- 
age gradients, but not their magnitudes. Their algorithm produces 
well localized edges, but requires carefully chosen thresholds. One 
of the first algorithms for reconstructing arbitrary planar graphs 
from point clouds was suggested by Chernov and Kurlin [4] . 

A different “a contrario” (by contraries) approach is to validate 
potential candidates by setting thresholds on random data as fol- 
lows. If a parametric algorithm on random data outputs a small 
number of false positives on average, the corresponding thresholds 
should be fixed and applied to real data. The only drawback was 
the exhaustive search through O ( P 4 ) possible straight lines, where 
P is the perimeter of an image. This method has led to the fast 
LSDA described below. 
3.2. The line segment detection algorithm (LSDA) 

The LSDA outputs line segments detected in a grayscale image 
at subpixel resolution, see [10] . The first step is to estimate the 
image gradient dI as the vector ( g x , g y ) whose components are ob- 
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Fig. 3. Left : first 4 basic directions of line segments in the current implementation 
of the PLSD. Middle : for more directions. Right : the contrast function f L : L → R 
from Definition 1 is computed at all red points ( x, y ) ∈ L with both integer coordi- 
nates. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 
tained by convolving with these 2 × 2 masks: 
g x = [−1 +1 

−1 +1 
]
, g y = [+1 +1 

−1 −1 
]
. (3.1) 

The operators above estimate the image derivatives in the x, 
y directions at the corner point shared by 4 pixels (x, y ) , (x, y + 
1) , (x + 1 , y ) , (x + 1 , y + 1) . So ideal edges were expected to be 
along boundaries of square pixels, but the original LSDA code 
shifted the final edges by (0.5, 0.5). After normalising the gra- 
dient by its Euclidean length, the resulting field consists of unit 
length vectors. Pixels whose estimated unit vectors are almost par- 
allel (within a default tolerance τ = 22 . 5 ◦ for angles) are clustered. 
The resulting clusters are approximated by thin rectangles whose 
long middle lines are the final line segments. The output is an un- 
ordered list of line segments whose total number depends on a 
given image, so users may struggle to get a specific number of line 
segments. 
3.3. Applications of line segments for superpixels 

Since rectangles covering adjacent clusters may overlap, LSDA 
edges may have intersections close to their endpoints. The LSDA 
outputs line segments with intersections on about 80% of 500 BSD 
images without any order. Hence any further application of the 
LSDA for segmentation or contour extraction requires a careful re- 
finement of LSDA edges. The LSDA output was used for Voronoi su- 
perpixels by Duan and Lafarge [6] , who designed a multi-step post- 
processing to repair segments that intersect each other or have 
very close endpoints. 

Forsythe et al. [9] and Forsythe and Kurlin [8] used a sophisti- 
cated refinement of the LSDA and proved that the resulting Convex 
Constrained Meshes (CCM) have no small angles with LSDA edges 
as hard constraints. 

The new detector PLSD can be used in both methods above 
without extra refinement, because all final edges have no intersec- 
tions by construction. 
4. PLSD: The persistent line segment detector 

This section describes the 3 stages of the PLSD. 
Stage 1 : estimating the change of contrast along every straight 

line d x x + d y y + t = 0 , where ( d x , d y ) is one of the 8 slopes in Fig. 3 , 
the shift t takes all integer values when the straight line L inter- 
sects the image ! = [0 , w ] × [0 , h ] . 

Stage 2 : automatic selection of strongest line segments by their 
persistence using the contrast function along every line d x x + d y y + 
t = 0 from Stage 1. 

Stage 3 : choosing a required number of strongest segments 
(one by one) so that any weaker segments don’t intersect already 
chosen stronger segments. 

4.1. Stage 1: The contrast functions f along lines L 
The first step convolves a given image I with the Gaussian ker- 

nel 3 × 3 with the default parameter σ = 0 . 8 using the Gaussian- 
Blur function in OpenCV. The second step considers all straight 
lines that intersect the image and are parallel to one of the 8 di- 
rections: (1,0), (0,1), ( ± 1, 1), ( ± 1, 2), ( ± 2, 1) in Fig. 3 . These 
8 directions are chosen to speed up the current implementation. 
Further steps work for any number of directions. 

Let the image domain ! be a rectangle [0, w ] × [0, h ]. Then 
we consider all points ( x, y ) with integer coordinates b ≤ x ≤ w − b, 
b ≤ y ≤ h − b. Here b is a small offset (the default value 3 pixels) 
that allows us to convolve I with gradient masks and avoid bound- 
ary effects. 

For a fixed point ( x, y ) with integer coordinates, the current im- 
plementation uses the simplest 2 × 2 masks g x , g y in formulae 
(3.1) to estimate the image gradient as DI = (g x ∗ I, g y ∗ I) . If I is a 
colour image, the same linear operators g x , g y are applied to every 
colour channel. 
Definition 1. For each of the 8 directions d = (d x , d y ) in Fig. 3 , 
the change of contrast at an integer point ( x, y ) in an image ! = 
[0 , w ] × [0 , h ] is estimated as 
the directional derivative f (x, y ) = || DI(x, y ) · d ⊥ || , (4.1) 
where d ⊥ is the unit vector orthogonal to d . The norm || · || 
is the absolute value for grayscale images and is || (R, G, B ) || ∞ = 
max {| R | , | G | , | B |} for colour images. For every straight line L inter- 
secting the image !, formula (4.1) defines the contrast function 
f L : L → R sampled at points ( x, y ) ∈ ! with integer coordinates. 

Definition 1 may use another norm for RGB images and men- 
tions only 8 directions d for simplicity of the current implemen- 
tation, The derivatives in (4.1) can be computed for any direc- 
tion d . For a fixed directional vector d , consider all straight lines 
L given by d x x + d y y + t = 0 with the gradient d such that the 
shift t takes all integer values when the line intersects the image 
! = [0 , w ] × [0 , h ] . 

We select segments S ⊂ L such that the contrast function f L over 
S has persistently larger values than over the rest of L . Here are the 
steps of Stage 1. 

Step (1a). After Gaussian filtering, compute the image gradient 
DI using 2 × 2 masks in (3.1) . Any more advanced de-noising is 
possible. One can consider other estimates of DI instead of 2 × 2 
masks in (3.1) . 

Step (1b). For every line L parallel to one of 8 directions d and 
an integer point ( x, y ) ∈ ! estimate the derivative of I in the di- 
rection orthogonal to d by (4.1) . 

The naive edge detection in the discrete setting can actually 
stop at this stage and output all points whose gradient magnitudes 
are above a certain threshold. 
4.2. Stage 2: Segments selected by their persistence 

The aim of this Stage 2 is to automatically select one or several 
segments within a fixed line L that well approximate contours of 
an image I within L . 

Stage 1 has reduced the detection problem from dimension 2 to 
1, because the input for Stage 2 is a graph of the contrast function 
f L : L → R sampled at integer points in the line L . The output will 
be segments S 1 , . . . , S k ⊂ L over which the function f is substan- 
tially larger than over the rest of L . The traditional approach is to 
manually choose a contrast threshold u and consider line segments 
where the contrast is sufficiently high: f ≥ u . This superlevel set 
splits into several connected components, which are line segments 
within the line L . Some of these segments can be filtered out by 
(say) their short length or compared with segments in other lines. 
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Fig. 4. Segments in superlevel sets f −1 
L [ u, + ∞ ) of a contrast function f L grow and 

merge when the contrast level u goes down. The strength of a segment S is ∫ S f ( p ) dp . 
The new approach is very different and has no thresholds at 

this stage. Following the key idea of Topological Data Analysis, we 
consider the sequence of all superlevel sets f −1 

L [ u, + ∞ ) when the 
level u goes down from a global maximum to a reasonable mini- 
mum. During this evolution, connected components of f −1 

L [ u, + ∞ ) 
appear at local maxima of f , grow and merge into larger compo- 
nents. Fig. 4 shows two segments that merge into a longer one. 
Definition 2. The birth of each component (line segment S ) is the 
maximum value of f L over S . The death of S is the level where S 
merges with another component. By the standard elder rule of per- 
sistence, see [7, p. 150], the older component (with a larger birth 
here) survives and the younger one dies. 

The whole process can be combinatorially described by a topo- 
logical barcode of intervals ( death, birth ] or a persistence diagram of 
pairs ( birth, death ). 

The main advantage of the persistence diagram is the stability 
under bounded noise. If a function f L is perturbed up to ϵ (say 
with respect to the L ∞ norm), the diagram is perturbed also up to 
ϵ with respect to the so-called bottleneck distance, see [5] . Since 
outliers may destroy this stability, we suggest a new measure for 
selecting segments by analyzing the sequence of superlevel sets. 
Definition 3. At every fixed level u , any current segment (a con- 
nected component of f −1 

L [ u, + ∞ ) ) has the strength | S| = ∫ S f L (p) dp, 
which is approximated for a pixel-based image as the sum of f L ( p ) 
for all points p ∈ S with integer coordinates. Fig. 4 shows the 
strength | S | as the area below the graph of f L . Now all segments 
at the fixed level u can be ranked according to their strengths, say 
S 1 > . . . > S k . 

To separate strongest segments from the rest, we use the 
heuristic of the widest gap between these ordered strengths. 
Find an index i such that S i − S i +1 (the gap between successive 
strengths) is largest over i = 1 , . . . , k − 1 . The segments with the 
strengths S 1 , . . . , S i (u ) above this widest gap are called strongest at 
the current level u . 

Contrast values of real images have wide gaps usually in a high- 
value range, because low values tend to be densely packed. Hence 
selecting segments with strengths above the widest gap (in every 
line L individually) is a better data-driven approach than guessing 
one threshold for contrast over the whole image. 
4.3. Stage 3: A given number of non-intersecting segments 

After Stage 2 above we have one or more strongest segments 
within every line L parallel to one of 8 directions. So a straight line 
may continue a few disjoint segments, not necessarily one. Final 
Stage 3 greedily selects a required number of strongest segments 
without intersections. We first take the strongest segment S from 
those obtained at Stage 2 in all lines L . Then we remove all line 
segments that contradict the strongest segment S as follows. 
Definition 4. A line segment S ′ contradicts another line segment S 
if either 

( 4 a) S ′ is parallel to S and is away from S within 2 pixels (a 
default value) or 

( 4 b) S ′ intersects the segment S , endpoints of S can be inside S ′ 
and vice versa. !

The default value of 2 pixels between line segments is the rea- 
sonable minimum, because the accuracy of human-drawn contours 
in the BSD is 2 pixels. After removing the chosen segment S 1 all 
segments contradicting S 1 , we select the strongest segment S 2 from 
the remaining ones, again remove all segments contradicting S 2 
and so on until we have found a required number of segments or 
there are no segments left from Stage 2. 

To quickly check the conditions of Definition 4 , we keep all seg- 
ments parallel to one of 8 directions d in a binary tree T d ordered 
by the following identifier of a line parallel to d . This tree is imple- 
mented as a multi-map structure of pairs (identifier of a line L , a 
segment S within L ). 

For any non-horizontal infinite line L , this identifier is the x - 
coordinate at the intersection of L with the x -axis. For a horizontal 
line L parallel to d = (1 , 0) , the identifier of L is the constant y - 
coordinate of L . 

Since the number k of required segments is usually much 
smaller than the number n of pixels, Theorem 5 justifies that the 
PLSD algorithm has a near linear time, see the proof in [18, sec- 
tion 3]. 
Theorem 5. For any image consisting of n pixels, the algorithm PLSD 
outputs k straight line segments in time O ( kn log n ) and requires O ( n ) 
space. 
5. PRIM: Persistent resolution-independent mesh 

This section describes a new mesh of convex polygons whose 
boundaries include all PLSD straight-line edges as hard constraints. 
The key idea is to extend PLSD segments in both directions until 
a convex partition is formed. The brute-force extension of k seg- 
ments can create O ( k 2 ) intersections and polygons in time O ( k 2 ). 

The faster approach below uses Shewchuk’s Triangle [19] , which 
accepts any planar straight line graph and outputs a Steiner con- 
strained Delaunay Triangulation without small angles in a near lin- 
ear time. 
Theorem 6. [19 , Theorem 12] For a planar straight line graph G hav- 
ing m vertices and no angles smaller than ϕ ≤ 60 ◦, in time O ( m log m ) 
one can build a triangulation T ( G ) without angles smaller than the 
minimum angle equal to arcsin ( 1 √ 

2 sin ϕ 2 ) . 
If ϕ = 60 ◦, the minimum angle is arcsin ( 1 √ 

2 sin ϕ 2 ) ≈ 20 . 7 ◦. Due 
to only 8 directions in Fig. 3 , the minimum angle between PLSD is 
at least ϕ = 22 . 5 ◦, hence the minimum angle in polygons of PRIM 
is about 8 ◦. 

A Persistent Resolution-Independent Mesh (PRIM) of convex 
polygons is built as follows. 

PRIM Step 1: add to PLSD edges the four boundary edges of a 
given image to restrict a final mesh to the image. 

PRIM Step 2: run Shewchuk’s Triangle code to get a constrained 
triangulation T containing all PLSD edges. 

PRIM Step 3: order unconstrained and non-boundary edges of 
the triangulation from lower to higher strength. 

PRIM Step 4: for each edge in the ordered list, merge the in- 
cident polygons if the resulting polygon is convex, which requires 
computing 4 angles as shown in Fig. 5 (left). 
Corollary 7. For any image consisting of n pixels, if the algorithm 
PRIM outputs k straight line segments whose extended infinite lines 
have m intersections, the total complexity is O ( kn log n ) . 
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Fig. 5. Left : a simple merge of adjacent polygons respects convexity. Right : a more 
advanced merge may perturb constrained edges. 

Proof follows from Theorems 5 and 6 , because we have m ≤
2 k = O (k ) vertices. Step 3–4 sort O ( k ) edges and compute 4 an- 
gles per edge to check if merging two polygons respects convexity. 
The total complexity is dominated by the near linear time in the 
number n of pixels. 

The approach above applied to LSDA edges with intersections 
led to unsatisfactory because of small angles. LSDA edges are of- 
ten short and form long “almost connected” zigzag chains along 
boundaries of curved objects. Extending almost parallel edges cre- 
ates very small angles, which required a sophisticated refinement 
by using Shewchuk’s triangulations in [8] . 
6. Discussion and conclusions 

Figures 6 , 7 , 8 , 9 , 10 and 11 compare outputs of the LSDA 
and PLSD algorithms, see more examples in [18, section 5]. Typ- 
ically, the LSDA outputs many short (often intersecting) segments, 
while PLSD outputs longer segments without intersections. The 
novel method of automatic selection in Subsection 4.2 can be used 
for finding skeletons, where thresholds should be avoided, see 
[12,14,15] . 

Table 1 
BR is the boundary recall on the Berkeley segmentation 
database BSD500. The numbers for PLSD and PRIM with 8 
directions are offsets (minimum distance between close par- 
allel edges). 

8 dir. PLSD3 PLSD4 PRIM3 PRIM4 PRIM5 
BR 0.561 0.541 0.672 0.661 0.639 

Table 2 
Boundary recall when only 4 directions are used in PLSD. 

4 dir. PLSD3 PLSD4 PRIM3 PRIM4 PRIM5 
BR 0.542 0.509 0.657 0.637 0.617 

The algorithm LSDA has the Boundary Recall of 0.517, i.e. about 
51.7% of human-labeled boundary pixels were within 2 pixels from 
LSDA segments. Table 1 shows how extending PLSD edges to a full 
mesh captures more boundary pixels. Table 2 justifies 8 directions, 
because the Boundary Recall of PLSD (with offset of 4 pixels) for 
4 directions drops below BR of LSDA. Since the drop is small, then 
increasing directions may not add big value. 

The experiments in [18, section 5] have demonstrated that the 
proposed detection of line segments parallel to one of 8 directions 
performs better than the LSDA and guarantees no intersections and 
no small angles between final segments. Here is the summary of 
contributions to the line segment detection and over-segmentation 
problems. 

Fig. 6. Left : 378 LSDA edges with 28 intersections on image 223,060 in BSD. Right : PRIM with 378 PLSD edges without intersections. 

Fig. 7. Left : 269 LSDA edges with 32 intersections on image 10 0,0 07 in BSD. Right : PRIM with 269 PLSD edges without intersections. 
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Fig. 8. Left : 230 LSDA edges with 1 intersection on image 5096 in BSD. Right : PRIM with 230 PLSD edges without intersections. 

Fig. 9. Left : 359 LSDA edges with 86 intersections on image 69,007 in BSD. Right : PRIM with 359 PLSD edges without intersections. 

Fig. 10. Left : 424 LSDA edges with 5 intersections on image 56,028 in BSD. Right : PRIM with 424 PLSD edges without intersections. 
• The PLSD allows a user to choose a number of required line 

segments, which are ranked by their strength. 
• A thresholding of contrast values was avoided due to the new 

data-driven method motivated by a multi-scale approach of 
Topological Data Analysis. 

• All PLSD line segments have no intersections by Definition 4 , 
which has allowed us to extend PLSD edges to the PRIM mesh 
of convex polygonal superpixels. 

• The PLSD and PRIM algorithms have a near linear time in the 
number of pixels by Theorem 5 and Corollary 7 . 

• Table 1 shows that the PRIM algorithm has further improved 
the PLSD performance in comparison with the LSDA on the 
Boundary Recall for BSD500. 
Other possible improvements are better filtering, e.g. optimizing 

the size and sigma in the Gaussian kernel, and more advanced de- 
noising before Step ( 4.1 a). The current non-optimized code runs for 
about 1 s per BSD image on a laptop with 8 Gb Ram, which is a 
bit slower than the LSDA on the same machine. 

The straight line segments can be used as very economical de- 
scriptors of complicated scenes. For example, training convolution 
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Fig. 11. Left : 193 LSDA edges with 48 intersections on image 41,029 in BSD. Right : PRIM with 193 PLSD edges without intersections. 
neural networks on straight line sketches can be much faster than 
on original images. 

The PLSD/PRIM algorithms have provisional C++ codes at http:// 
kurlin.org/polygonal-meshes/PLSD.zip . This work was supported by 
the EPSRC grant EP/R018472/1 “Application-driven Topological Data 
Analysis”. 

We thank all reviewers for their helpful suggestions. 
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