Molecular and evolutionary genetics of Anopheles gambiae s.l, a

malaria vector in Africa

Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy

By

Samuel Kweku Dadzie

APRIL 2008

" Copyright © and Moral Rights for this thesis and any accompanying data (where applicable) are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis and the accompanying data cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content of the thesis and accompanying research data (where applicable) must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holder/s. When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g. Thesis: Author (Year of Submission) "Full thesis title", University of Liverpool, name of the University Faculty or School or Department, PhD Thesis, pagination."

DECLARATION

THIS WORK HAS NOT PREVIOUSLY BEEN ACCEPTED IN SUBSTANCE FOR ANY DEGREE AND IS NOT BEING CURRENTLY SUBMITTED IN CANDIDATURE FOR ANY DEGREE

Signed

.

.....(Candidate)

29 (07/08 Date

STATEMENT 1

THIS THESIS IS THE RESULT OF MY OWN INVESTIGATION, EXCEPT WHERE OTHERWISE STATED. OTHER SOURCES ARE ACKNOWLEDGED AND BIBIOGRAPHY IS APPENDED

Signed.....

.....(Candidate)

Date. 29/07/09

STATEMENT 2

I HEREBY GIVE MY CONSENT FOR MY THESIS, IF ACCEPTED, TO BE AVAILABLE FOR PHOTOCOPYING AND FOR INTER-LIBRARY LOAN, AND FOR THE TITLE AND SUMMARY TO BE MADE AVAILABLE TO OUTSIDE ORGANIZATIONS

Signed

.....(Candidate)

ACKNOWLEGEMENTS

First and foremost, I would like to extend my profound gratitude to my primary supervisor, Dr Martin James Donnelly for his ideas, vision and direction in guiding me to the successful completion of my PhD programme. I also thank Professor Harold Townson, my second supervisor for his guidance and encouragement. I also wish to thank Dr. Themba Mzilahowa, Derick Charlwood, Dr João Pinto and Dr Kwang Shik Choi for providing samples for some of the localities studied. Many thanks to all my colleagues at Liverpool School of Tropical Medicine for valuable advice and assistance, especially Mr Ken Sherlock for laboratory assistance and Amy Lynd for providing me with mosquito samples for the melanism study. I am also indebted to Mrs Gwen Finnegan for her assistance and support throughout my stay at the school and for helping me put the thesis in good shape.

Many thanks also to the Director of Noguchi Institute for Medical Research, Ghana, Professor David Ofori-Adjei; Head of Parasitology Unit, Professor Michael Wilson and Mr Maxwell Appawu for giving me the opportunity to pursue this PhD programme and to all my work mates at the institute, I say a big thank you for your moral support.

I wish to acknowledge the contribution of my family, my wife Rose and children Kojo, Adorkoh and Kwabena to the successful completion of my PhD programme. And never enough thanks to the Ghana Government for providing me with funding under the Ghana Educational Trust Fund and the Liverpool School of Tropical Medicine for some financial assistance during the course of my programme.

Finally I will give thanks to the almighty God who gave me strength and sustained me through very difficult times of my PhD programme.

Molecular and evolutionary genetics of *Anopheles gambiae s.l.*, a malaria vector in Africa

Samuel Kweku Dadzie

GENERAL ABSTRACT

One of the most important areas of research regarding adaptation of malaria vectors that has received very little attention is the effect of selection on the population structure of *An. arabiensis* and the ecological significance of melanisation on the ability of *An. gambiae* to survive in different habitats. Most microsatellite-based studies of population structure have selected loci that are located within inversions many of which may be subject to selection. The structure of the population will therefore depend on the nature of the selection on the selected loci and the effect of other nearby loci. Locus 33C1 within chromosome 3Ra inversion of *An. gambiae* showed abberation in the genetic differentiation of *An. arabiensis* population sampled from the north-south transect of East Africa (Donnelly and Townson 2000).

The aim of the first part of this thesis which constituted Chapter 3 is to determine if there is any signature of positive selection on some candidate loci located within the 3Ra inversion and investigate its effect on nucleotide variation of *An. arabiensis* populations. In line with this objective, we obtained 20 sequences each of 4 Epsilon class *Glutathione S-transferases* (GSTs) i.e. (GSTɛ1, 441bp (n=20), GSTɛ2, 800bp (n=20), GSTɛ6, 735bp (n=20) and GSTɛ8, 796bp (n=20) from samples of *An. arabiensis* captured from Sudan, Ethiopia, Malawi and Tanzania. Glutathione s-transferases (GSTs) are detoxication enzymes that are involved in the metabolism, detoxication and excretion of a large number of endogenous and exogenous compounds including DDT from the cells of organisms. Using evolutionary models, we showed that 3 out of the 4 loci deviated from neutral expectations. This is indicative of selective constraints on these loci. Pairwise estimates of population differentiation, F_{ST} values were far in excess of those observed from microsatellite-based studies of the same samples with specimen from Ethiopia much more genetically differentiated from the rest (*e.g.* range of F_{ST} values for pairwise comparisons involving Ethiopia 0.571 to 0.800 other comparisons -0.25 to 0. Inference from phylogenetic analysis indicates that gene duplication events in GST gene family occurred prior to *An. gambiae s.l., An. arabiensis* and *An. stephensi* split.

In Chapter 4, we analysed 15 sequences of a nearby locus, *Dopa decarboxylase* (DDC) from *An. arabiensis* captured in Sudan. The DNA sequence was highly conserved at this locus and phylogenetic analyses of the sequences of *An. arabiensis* at the DDC locus produced a monophyletic genealogy. Fay and Wu *H* test on the coding region of the gene was significant at (H=0.094, P<0.05), indicative of the effect of selection. We hypothesize that the effect of selection on DDC in *An. arabiensis* and the occurrence of its orthologues in *Aedes* and *Drosophila* species suggest that DDC may be a single pleiotropic quantitative gene that is responsible for the generation of adaptive phenotypes.

The third part of my thesis reported in Chapter 5 is the first of a study to determine the interplay between phenotypic plasticity and some life-history traits of An. gambiae. To achieve this objective, we induced melanised and non-melanised phenotypes of An. gambiae larvae by rearing inbred larvae in different colour containers. A total of 800 larvae of laboratory colony of KISUMU strain and 400 An. gambiae collected from Ghana were used for the induction experiment. More than 70% (corrected for mortality) of larvae reared in the dark background developed darker pigmentation whereas those reared in the white containers became paler relative to the parental larval pigmentation, an indication of the occurrence of bi-directional response. Darker melanic larvae had faster developmental time (14 days) than the non-melanic forms (16 days). There were differences in the survivorship of the melanic and non-melanic forms of larvae and this was consistent with a trade-off hypothesis. The melanization rate measured as average grey values on a scale of 0 (black) - 225 (white) was 64.3 + 7.5 for melanic and 106 + 8.6 for the non-melanic forms and these were significantly different (P<0.001). The results of the study indicate a trade-off between melanin production and some life-history traits; darker individuals had faster development time but low survival rate. Our results suggest that the development of melanin in An. gambaie larvae was a phenotypic response modulated by the expression of DDC and phenooxidase (PO) genes.

The results of this PhD thesis provide baseline information that will be key to understanding the evolutionary forces that control the generation of adaptive phenotypes within populations of *An. gambiae s.l.* The study also shares some information on the role of *phenoloxidase* (PO) and *Dopa decaboxylase* genes in the phenotypic response of *An. gambiae* to different colour environments.

TABLE OF CONTENTS

DECLARATION II				
ACKNOWLEGEMENTSIII				
GENERA	L ABSTRACT	IV		
TABLE C	DF CONTENTS	V		
	FIGURES			
	TABLES			
	IATIONS			
	APTER 1: INTRODUCTION AND LITERATURE REVIEW			
	RODUCTION			
$1.1.1 \\ 1.1.2$	RATIONALE OF STUDY OBJECTIVES			
	ERATURE REVIEW			
1.2.1	Malaria: Disease burden			
1.2.1	MALARIA. DISEASE BORDEN			
1.2.3	ANOPHELES GAMBIAE COMPLEX AND DISEASE TRANSMISSION IN AFRICA			
1.2.4	POPULATION GENETICS OF AN. GAMBIAE POPULATIONS			
1.2.5	INSECTICIDE RESISTANCE IN MOSQUITOES			
1.2.6	MELANISM IN INSECTS			
1.2.7	DOPA DECABOXYLASE GENE			
1.2.8	POPULATION GENETIC SIGNATURES OF SELECTION			
1.3 EXI	PECTED OUTCOME OF THE STUDY			
2.0 CH	APTER 2 MATERIALS AND METHODS			
2.1 N	MATERIALS AND METHODS I			
2.1.1	COLLECTION OF AN. ARABIENSIS POPULATIONS			
2.1.2	MOSQUITO COLLECTION SITES			
2.1.3	DNA EXTRACTION METHODS			
2.1.4	PCR IDENTIFICATION OF AN. ARABIENSIS			
2.1.5	DESIGN OF PRIMERS FOR GST AND DDC AMPLIFICATION IN AN. ARABIENSIS			
2.1.6	PCR AMPLIFICATION OF GST AND DDC GENES IN AN. ARABIENSIS			
2.1.7	GEL ELECTROPHORESIS			
2.1.8	SUBCLONING AND SEQUENCING OF GST AND DDC GENES IN AN. ARABIENSIS			
2.1.9	SEQUENCE ANALYSIS			
2.2 MA	TERIALS AND METHODS II			
2.2.1	MELANISM INDUCTION IN AN. GAMBIAE S.L.			
2.2.2	MEASUREMENT OF MELANIZATION			
2.2.3	MEASUREMENT OF LIFE HISTORY TRAITS			
2.2.4	GENE EXPRESSION ANALYSIS	45		
3.0 CHAPTER 3 THE ROLE OF NATURAL SELECTION IN SHAPING NUCLEOTIDE VARIATION IN THE EPSILON CLASS GLUTATHIONE-S-TRANSFERASES GENE FAMILY IN MALARIA VECTOR, ANOPHELES ARABIENSIS (THEOBALD)				
		·················		
3.1 ABS	STRACT			
	STRACT	46		
3.2 INT	STRACT RODUCTION	46 47		
3.2 INT 3.3 MA	STRACT	46 47 49		

3.5	RESULTS	51				
3.6	DISCUSSION					
4.0	CHAPTER FOUR MOLECULAR EVOLUTION OF A DOPA DECABOXYLASE GENE IN POPULATION OF AN. ARABIENSIS FROM SUDAN	74				
4.1	ABSTRACT	74				
4.2	2 INTRODUCTION					
4.3	.3 MATERIALS AND METHODS					
4.4	4 SEQUENCE ANALYSIS					
4.5	RESULTS					
4.6	DISCUSSION	83				
5.0	CHAPTER FIVE ECOLOGICAL IMPLICATIONS OF INTRASPECIFIC DIFFERENCES IN LARVAL MELANIZATION WITHIN POPULATIONS OF <i>ANOPHELES GAMBIAE S.L.</i>	90				
5.1	ABSTRACT	90				
5.2	INTRODUCTION	91				
5.	 2.1 PHENOTYPIC PLASTICITY 2.2 MELANIZATION	92				
5.3	MATERIALS AND METHODS	96				
5.	3.1 STUDY SPECIES	96				
5.4	STATISTICAL ANALYSIS	96				
5.5	RESULTS	97				
5.6	DISCUSSION 1	07				
6.0	CHAPTER 6 GENERAL DISCUSSION AND CONCLUSIONS1	12				
6. 6. 6.	1.1 NATURAL SELECTION AND MAINTENANCE OF NUCLEOTIDE POLYMORPHISMS WITHIN GLUTATHIONE S-TRANSFERASES IN AN. ARABIENSIS	19 21 25				
7.0	REFERENCES 1					
8.0	APPENDICES 1	62				

LIST OF FIGURES

Figure 1: Global distribution (Robinson projection) of dominant or potentially important malaria vectors (Source: Kiszewksi <i>et al.</i> , 2004)3
Figure 2: Candidate genes for melanism in insect melanin biosynthesis (Source: True, 2003)
Figure 3: Global distribution of malaria transmission risk with the degree of severity measured by malaria endemicity (Source: World Health Organization, 2003) 10
Figure 4: 3D structure of Glutathione s-transferase E2 from An. arabiensis
Figure 5: The effect of a selective sweep on genetic variation
Figure 6: Map showing the mosquito collection sites (Modified from Donnelly and Townson, 2000)
Figure 7: Picture of the experimental set up used for the selection of melanic, non-melanic and parental forms in <i>An. gambiae s.l.</i>
Figure 8: Flow chart of the experimental design used for the study of the effect of melanisation on the fitness of <i>An. gambiae s.l.</i> larvae
Figure 9: Measurement of melanization in An. gambiae larvae
Figure 10: Neighbor-joining tree of the coding region of <i>GSTs</i> of <i>An. arabiensis, An. gambiae</i> and <i>An. stephensi</i> based on Kimura's two-parameter distance
Figure 11: Neighbour-joining tree illustrating the relationship between the exonic regions of <i>An. arabiensis</i> and <i>An. gambiae</i> epsilon class A) GST ε 1 and B) GST ε 2 based on Kimura's two-parameter distance with bootstrap probability values based on 1000 replicates
Figure 12: Neighbour-joining tree illustrating the relationship between the exonic region of <i>An. arabiensis</i> and <i>An. gambiae</i> epsilon class C) GST <i>e</i> 6 and D) GST <i>e</i> 8. based on Kimura's two-parameter distance with bootstrap probability values based on 1000 replicates
Figure 13: Sliding window plot of the protein coding region of A) GSTE1 and B) GSTE2 sequenced from <i>An. arabiensis</i> populations
Figure 14: Sliding window plot of the protein coding region of C) GSTE6 and D) GSTE8 sequenced from <i>An. arabiensis</i> populations
Figure 15: Plots showing the squared correlations of allele frequencies (r^2) as a function of physical distance between sites for two GST genes (A) GST ϵ 1 and (B) GST ϵ 2 in <i>An. arabiensis</i>

Figure 16: Plots showing the squared correlations of allele frequencies (r^2) as a function of physical distance between sites for two GST genes, C) GST ϵ 6 and (D) GST ϵ 8 in <i>An. arabiensis.</i>	67
Figure 17: Diagram of chromosome 3R showing the DDC region sequenced in <i>An. arabiensis</i> from Sudan	78
Figure 18: Sliding window analysis of the genetic diversity A) Pi and B) Tajimas D value D within the coding region of the DDC locus in <i>An. arabiensis</i> populations	81
Figure 19: Sliding-window plot of silent polymorhism, <i>Pi</i> (silent) and silent divergence, K(silent) between <i>An. arabiensis</i> and <i>An. aegypti</i>	82
Figure 20: Neighbour joining tree of DDC at the coding region of <i>An. arabiensis</i> , <i>An. gambiae</i> , <i>Drosophila</i> species and <i>Ae. aegypti</i>	83
Figure 21: Proposed melanic encapsulation pathway in mosquitoes	88
Figure 22: Observed colour variation of <i>An. gambiae</i> larvae induced in different colour rearing environments	98
Figure 23: The effect of rearing environment on <i>An. gambiae</i> larval pigmentation measured as average grey value on a scale of 0-225. (0=black and 225=white)	101
Figure 24: Graphs showing the effect of <i>An. gambiae</i> larval coloration on A) survival rate B) developmental time and C) pupal weight	. 103
Figure 25: Plasticity for larval melanisation in population of <i>An. gambiae</i> measured as AGV (average grey value) on the y-axis	105
Figure 26: RT-PCR analysis of A) DDC and B) PO showing average Delta C _T values in the melanised (dark), non-melanised (pale) and parental (control) forms of <i>An. gambiae</i>	. 106
Figure 27: Hypothetical sampling distributions of F_{st} among loci distributed throughout a genome.	. 118

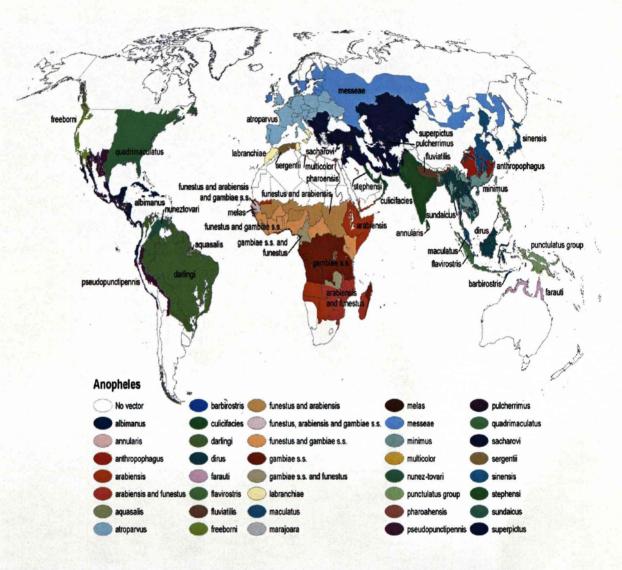
LIST OF TABLES

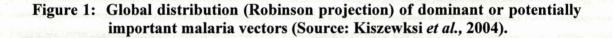
Table 1: Sample collection sites and number of An. arabiensis samples analysed for each gene surveyed
Table 2: Summary of nucleotide polymorphism and tests of selectionin the coding and noncoding regions of GST loci in An. arabiensis
Table 3: Summary statistics of intra population and inter-species variationat the coding region of GST loci in An. arabiensis populations from Ethiopia,Sudan, Malawi and Tanzania60
Table 4: Estimates of genetic differentiation (F_{st}) between An. arabiensispopulations from Ethiopia, Sudan, Tanzania and Malawi62
Table 5: Gene flow estimated (Nm) between An. arabiensis population captured from Ethiopia, Sudan, Malawi and Tanzania
Table 6: Estimates of recombination parameter for all the fourGST loci sequenced from samples of An. arabiensis populations
Table 7: Diversity statistics for the DDC locus in An. arabiensispopulations captured from Sudan
Table 8: Temperature, pH and other life history traits estimatedfor laboratory samples (KISUMU strain) and Ghana samplesof An. gambiae reared in DARK and WHITE backgroundcontainers
Table 9: Results of ANOVA testing the effects of rearing environment(i.e. dark, white or normal) on larval developmental time, pupal weight,degree of melanization and survival rates of An gambiae.104

ABBREVIATIONS

An.	Anopheles
ITNs	Insecticide Treated Nets
Μ	Molar
Kb	Kilobasepair(s)
MgCl2	Magnesium Chloride
U	Unit
Mg	Magnesium
mL	Milliliter (s)
μl	Microliter (s)
DNA	Deoxyribonucleic acid
G	gram
°C	Degrees centigrade
dNTP	Deoxyribonucleic triphosphate
DDT	Dichlorodiphenyltetrachloroethane
mM	Millimolar
PCR	Polymerase Chain reaction
rpm	Revolutions per minute
TE	Tris EDTA
Tris	2-amino-2(hydroxymethyl)-propane-1,3-diol
UV	Ultraviolet
WHO	World Health Organization
mtDNA	mitochondrial DNA
rDNA	ribosomal Deoxyribonucleic acid
KCl	Potassium chloride
HCl	Hydrochloric Acid
TAE	Tris, Acetic Acid and EDTA in solution

CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW

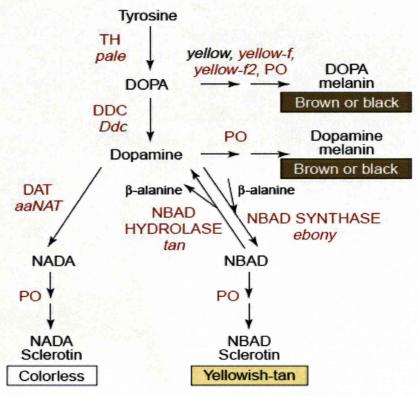

1.1 INTRODUCTION


Anopheles gambiae Giles sensu stricto, Anopheles arabiensis Patton and Anopheles funestus Giles are the most widespread (Figure 1) and important malaria vectors in Africa (White, 1974). Present anti-vector malaria strategies are based on reducing the contact between human host and vectors by the use of insecticides for indoor spraying, bednets, and environmental management. One of the many reasons why control of these vectors has proved difficult is that the species exhibit extreme versatility in their tolerance of a wide variety of micro and macro environmental conditions, as evidenced by their broad geographic distributions and the rapidity with which they evolve insecticide resistance (Coetzee *et al.*, 2000; David *et al.*, 2005). Current work is centred at the development of molecular-level techniques for the genetic control of malaria vectors (Rai, 1996; Collins *et al.*, 2000). However, malaria control strategies based on the genetic manipulation of vectors will require extensive knowledge on vector population genetics.

This thesis examined the rate of selection and local adaptation on two selectively important traits; melanism and insecticide detoxification in Anopheles gambiae s.l. Selection on these traits may result from diverse evolutionary pressures including varying physical environments, predator and insecticide evasion as well as sexual selection (Reznick and Ghalambor 2001). It has been demonstrated that genes that are involved in the generation of divergent adaptive traits could have family lineages and evolutionary histories that are different from those that are not (Wilder et al., 2004). This first part of this thesis analysed the pattern of genetic variation at the Glutathione s-transferases (GSTs) and Dopa decaboxylase (DDC) genes. These genes respectively encode a number of alleles that are involved in the development of insecticide resistance and pigmentation patterns in insects (Prapanthadara et al., 1995; True et al., 1999; Gompel and Carroll 2003). Infact, one of the GST genes, GSTE2 and has been implicated in the detoxication of DDT in An. gambiae (Ranson et al., 2001). The second part of the thesis further examined the effect of melanism on the fitness of melanised phenotypes of An. gambiae against non-melanised types. The importance of melanism in the evolution of Drosophila and other Lepidoptera

has been well studied (McMillan *et al.*, 2002; Wittkopp *et al.*, 2003b; Talloen *et al.*, 2004; Brisson *et al.*, 2005). However, the adaptive significance this trait in *An.* gambiae is not known.

The general focus of the present study was to use sequences from candidate genes, GSTs and DDC to investigate the evolutionary forces shaping *An. gambiae s.l.* species genetic variability. The study further investigated the evolutionary and molecular basics of the development of melanic phenotypes in populations of *An. gambiae*.


1.2 Rationale of study

This thesis focused on understanding how genetic variation is generated and maintained in natural populations of *Anopheles* mosquitoes. The specific interest is the role of natural selection in shaping adaptive genetic and phenotypic variations in populations of *Anopheles gambiae*. The long-term goals of this research are two-fold. First, I hope to provide insight into how natural selection affects DNA nucleotide sequence variation in *Anopheles* mosquitoes and and secondly to determine the rate of phenotypic plasticity on a trait such as the evolution of melanism.

In this study, we selected GSTs and DDC as candidate genes to help us understand more about their role in generating variation within populations of malaria vectors. GSTs are a major family of detoxification enzymes found in most organisms, which are involved in the metabolism, detoxification and excretion of a large number of endogenous and exogenous compounds from the cell. Insect GSTs belonging to the Epsilon class are of particular interest because of their potential to cause resistances to all the major families of insecticide especially organophosphates and DDT (Huang, 1998; Ranson *et al.*, 2001).

The *Dopa decarboxylase* gene (DDC) is involved in diverse physiological events in insects. The product of this enzyme's activity, dopamine, acts as an intermediate substrate for various tanning and melanization reactions, as well as a neurotransmitter (Eveleth and Marsh, 1986; Scholnick *et al.*, 1986). The DDC has been found to affect variation in longevity in *Drosophila* (De Luca *et al.*, 2003) and in mosquitoes the DDC is very important in the biochemical pathway of tanning and melanization reactions (Figure 2). Melanism is very common in several species of insects and melanic forms of Tiger swallowtails, *Papilio glaucus;* Two-spot ladybirds, *Adalia bipunctata; Drosophila elegans* and peppered moth, *Biston betularia* has been observed in nature (True, 2003). However, its adaptive value in natural populations has received very little attention. The present study was designed to answer some important questions regarding the adaptation of *Anopheles* vectors to colour changes in nature. Firstly, I investigated the nature of selection likely to be acting on the *Dopa decarboxylase* gene involved in melanisation pathway and

secondly, I provided some insight into the role of phenotypic plasticity in the evolution of melanism.

TRENDS in Ecology & Evolution

Figure 2: Candidate genes for melanism in insect melanin biosynthesis (Source: True, 2003).

Enzymes are indicated in red type. Genes in *Drosophila melanogaster* known to encode these enzymes or corresponding to known pathway steps are in italics. Pathways shown with two arrows comprise several enzymatic steps and are still not characterized fully. Final pigmentation states are given in boxes indicating their color at the end of each pathway. Abbreviations: DAT, dopamine acetyltransferase (also called arylalkylamine-N-acetyltransferase, encoded by **aaNAT** genes); DDC, DOPA decarboxylase; DOPA, dihydroxyphenylalanine; NADA, N-acetyl dopamine; NBAD

1.2.1 Effect of natural selection on GST and DDC nucleotide variation

Previous studies using neutral microsatellite markers have estimated level of genetic differentiation, (Fst values) for An. gambiae s.s. and An. arabiensis from East and West Africa to be consistently high at locus, 33C1 on chromosome 3R (Lehmann et

al., 1997, 2003; Donnelly and Townson 2000, 2001; Kayondo et al., 2005). A clinal change in modal allele classes in An. arabiensis populations from north-south was also observed at this locus (Donnelly and Townson 2000). Authors proposed that the pattern of allele frequencies observed at the locus could be due to selective foces i.e. natural selection or population demographic history such as population expansion, migration and genetic drift (Donnelly and Townson 2000). In An. arabiensis, locus 33C1 falls within the 'a' inversion on chromosome 3R. Inversions are informative places to investigate signatures of selection (Kreitman and Wayne 1994; Depaulis et al., 1999). This is because recombination is much reduced within chromosomal inversions and this facilitates the coexistence of favourable adaptive genes that are individually adapted to local conditions (Kirkpatrick and Baton 2006). It is known that the frequency of 2La polymorphic inversion in An. gambiae s.l. varies seasonally and clinally in response to aridity tolerance (White et al., 2007). Inversions per say do not confer selective advantage but genes located within the inversions which are free from recombination. The study seeks to determine if putative candidate genes located within the 3Ra inversion showed marked signature of selective pressure at locus 33C1. The effect of selective pressure can be detected within DNA sequence by comparing the observed variation to the distribution derived from neutral theory (Tajima, 1989). One challenge to this population genetics-based signature is how to determine whether a signature is due to selection or demographic events such as recombination, population bottlenecks, population expansion etc. To circumvent this problem, the study uses a multi-locus approach. This is because whereas selection is locus-specific demographic events will affect the entire genome.

1.2.2 Effect of melanisation on life-history traits in An. gambiae

Melanism, defined as the appearance of mostly dark or dark forms of an organism is one of the most conspicuous evidence of biodiversity in insects and melanic forms of *An. gambiae, An. albimanus, An. quadrimaculatus, Culex* species have been observed (Benedict *et al.,* 1987, Besansky *et al.,* 1997a; Benedict and Chang 1996). Also, *An. daudi* a closely related melanic form to *An. gambiae s.l.* was found in Sudan. Melanic forms of adult *An. gambiae* have also been observed in nature in Sudan (Aboud, 2003).

The production of melanin is known to be detrimental in the sense that it affects some life-history traits such as developmental time, hatching and fecundity rates as well as pupal weight of the phenotypes. A study on the effect of melanization on the juvenile stages of the European map butterfly showed that melanized 5th instars grow more slowly than the pale ones (Windig, 1999), and a similar study investigating the interaction between melanization and drought-stress environment in Satyrine butterflies, *Pararge aegenia* showed that darker melanic individuals had slower development and lower survival rates than the pale forms (Talloen, 2004). Although melanic phenotypes have been observed in nature, very little information exists on their origin and adaptive significance in natural populations. This is the first of a study, which investigated the effect of melanisation on the some life-history traits of *An. gambiae s.l.*

1.2.3 Objectives

- To determine the role of natural selection in shaping nucleotide variation at four Glutathione s-transferases (GST) genes within sample populations of *An. arabiensis* from Ethiopia, Sudan, Malawi and Tanzania.
- 2. To determine role of natural selection in shaping nucleotide variation at the *Dopa decaboxylase* (DDC) locus, which is important in the melanisation pathway.
- 3. To determine the response of larval samples of *An. gambiae* to different rearing coloured environments.
- 4. To determine the fitness cost of the induced melanised phenotypes and investigate the role of *Dopa decaboxylase* and *Prophenooxidase* (PO) genes in the phenotypic expression of melanism during the induction.

1.2.4 Research Question 1

The first part of this thesis is a follow-up of previous work by Donnelly and Townson 2000). In that study, microsatellite based analysis of samples of An. *arabiensis* from the same locality showed that a locus, 33C1, within the 3Ra inversion of chromosome was an outlier (i.e the Fst values were far in excess at this locus compared to seven others). The question is whether this aberrant behaviour observed at this locus may be indicative of differences in selective pressure on locus 33C1 or nearby loci within sample population of An. *arabiensis*. To answer this question, we applied some evolutionary models on sequences of four GST genes obtained from specimen of An arabiensis captured from Ethiopia, Sudan, Malawi and Tanzania along north- south transect of Eastern Africa and as well as study the molecular evolution of a nearby locus, DDC from samples obtained from Sudan.

1.2.5 Research Question 2

The first aim is to determine whether the development of melanism is a plastic or genetic response to different environmental or colour cues. To answer the question, we first determine whether melanism can be induced in a population of *An. gambiae*. The second aim is to determine whether the fitness of the melanic phenotypes induced in the population will be affected in anyway and if so what gene are differentially expressed in the melanised phenotypes. To test this we measured the degree of melanisation of the larvae and determined the relationship between their developmental time, pupal weight and survival rates etc. We also determined the role of two genes involved in the melanism pathway, DDC and PO in the expression of the phenotypes.

1.3 LITERATURE REVIEW

1.3.1 Malaria: Disease burden

Malaria remains a disease with a serious public health importance in many areas in the world and approximately 40% of the world's population, mostly those living in the world's poorest countries are at risk of the disease (Figure 3). Globally, it is responsible for 350–500 million clinical cases annually and between one and three million deaths mostly children are attributable to the disease (Breman, 2001).

In Africa, malaria is already estimated to kill between 1 and 2.7 million people every year (Breman 2001) and recent estimates indicated that around 60% of the cases of clinical malaria and over 80% of the deaths occur in Africa south of the Sahara (World Health Organization, 2003). At the core of the magnitude of malaria in Africa is the environment, which is highly conducive to malaria transmission. The most important reason for the persistence of malaria in Africa is the presence of the vectors *An. gambiae* and *An. funestus*. The complexes of *An. gambiae s.l.* and *An. funestus* are about ubiquitous in Africa and they create the world's most efficient vectorial systems for malaria transmission. Of all the factors related to malaria transmission, the number (density), human biting habits, and longevity of anopheline mosquito vectors are the most important. The dominant parasite in Africa is *Plasmodium falciparum*, which is the most pathogenic of all the four human plasmodia and responsible for almost all mortality due to malaria (World Health Organization, 2003).

The socio-economic impact of malaria on African countries cannot be overemphasized. The disease is estimated to be responsible for an estimated average annual reduction of 1.3% in economic growth for those countries with the highest burden and in Africa the economic cost is about 0.6-1% of Gross Domestic Product (GDP), although recent reports indicates that the disease burden on national income is likely to be higher (Sachs, 2001).

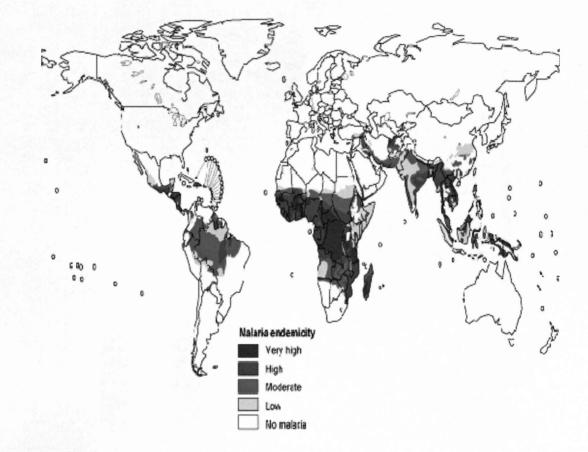


Figure 3: Global distribution of malaria transmission risk with the degree of severity measured by malaria endemicity (Source: World Health Organization, 2003)

1.3.2 Malaria Control Strategies

In malaria-endemic countries the goal of malaria control is to reduce as much as possible the health impact of malaria on a population, using the resources available, and taking into account other health priorities. The main strategies in the control of malaria disease include 1) case management of patients suffering from malaria 2) prevention of infection through vector control and 3) prevention of disease by the use of anti-malarial drugs and vaccines. However, the greatest challenge to malaria control efforts has been the development of resistance to the drugs and insecticides by the parasite and vectors respectively (Nuwaha, 2001).

1.3.2.1 Indoor Residual spraying

Studies have shown that many malaria vectors are endophilic, resting inside houses after taking a blood meal and therefore are particularly susceptible to control through indoor residual spraying (IRS). This method was the primary malaria control tool used during the Global Malaria Eradication Campaign (1955-1969) with great success in some countries such as United States, Europe, Chile and South Asia (Hays, 2000). A curtailment of commitment and resources for malaria control and research characterizes the decades following the global eradication period, as malaria became a disease of the poor nations situated primarily in tropical areas (Shiffman et al., 2002). As a result of the cost of IRS, the negative publicity due to the failure of the Malaria Eradication Campaign, and environmental concerns about residual insecticides, IRS programmes were largely disbanded other than in a few countries with resources to continue them. In fact, previous consensus has been that IRS cannot be used as the main tool for malaria control on long-term basis in tropical Africa (Zahar, 1984). However, the recent success of IRS in reducing malaria cases in South Africa by more than 80% has revived interest in this malaria prevention tool. In fact, IRS is still being used as part of malaria control strategy and some recent large field trials in mainland tropical Africa have produced better results than any of the more recent trials that employed treated nets (Curtis and Mnzava, 2000). In Zanzibar for example and perhaps certain parts of West Africa, DDT resistance in An. gambiae now precludes effective use of DDT. In South Africa, however, reversion to DDT spraying from pyrethroid during 2001 has relieved the increasing malaria problem associated with pyrethroid resistance in An. funestus (Hargreaves et

al., 2000). The effectiveness of indoor residual spraying (IRS) as a vector control measure against malaria have been examined by many studies (Curtis and Mnzava 2000; Pinto *et al.*, 2000; Romi *et al.*, 2002; Sharp *et al.*, 2002; Sharma *et al.*, 2005; Sharp *et al.*, 2007). Kolaczinski *et al.* (2007) suggested that in high transmission settings, IRS must be implemented indefinitely and at high quality to achieve control objectives.

Recent body of evidence suggest that IRS is a more cost-effective intervention against malaria than other intervention strategies (Goodman *et al.*, 1999, 2001; Guyatt *et al.*, 2002; Conteh *et al.*, 2004). Infact, suggestions have been made that IRS may be both more effective and cheaper than ITNs in communities subjected to low, seasonal risks of infection (Guyatt *et al.*, 2002). A recent study demostrated the effectiveness of IRS by dramatically reducing *An. funestus*, *An. gambiae* and *An. melas* populations, followed by a substantial decrease in the transmission index (Sharp *et al.*, 2007). DDT continues to be effective in many indoor spraying programmes and some advocates are currently promoting its reintroduction into the WHO malaria control strategy (Schapira, 2004, 2006).

1.3.2.2 Use of Insecticide-treated Bednets

The use of insecticide-treated nets (ITN) represents a new dimension in the use of physical barriers and chemicals in malaria control. Their efficacy in reducing manvector contact, malaria morbidity and mortality has been demonstrated in various epidemiological situations (Alonso *et al.*, 1991; D'Alessandro *et al.*, 1995; Binka *et al.*, 1996; Lengeler and Snow 1996 ; Nevill *et al.*, 1996; Maxwell *et al.*, 2002; Hawley *et al.*, 2003) Recent studies in Burkina Faso suggested that children who were protected from malaria by Insecticide Treated Materials (ITMs) acquired functional immunity more rapidly than did the control children and are able to clear drug-resistant parasites better than unprotected children (Toure *et al.*, 1998b). Bednets and curtains treated with insecticides such as permethrin have been shown in Mali to have both insecticidal and repellent effects, and may reduce the number of anopheline mosquitoes within houses by more than 95 percent (Toure *et al.*, 1998b). Bifenthrin-impregnated bednets have also been found to have considerable personal protection against *An. funestus* and metabolic pyrethroid resistant *An. gambiae* populations (Chouaibou *et al.*, 2006). Despite the benefits of ITNs, many workers have argued that the use of this strategy might selectively encourage the proliferation of anopheline mosquitoes that bite outside the home or it could shift the malaria mortality currently observed among young children to older children and young adults. However, this assertion was rejected by Lindblade et al. (2004) who showed in a study in Kenya that benefits of insecticide-treated bednets in infants were sustained for up to 6 years and there was no evidence that bednet use from birth increases all-cause mortality in older children in areas of intense perennial transmission of malaria. Another issue which has attracted attention recently is the treatment concentration that provides maximum protection against mosquito bites and the effect this has on the evolution of kdr (knock down resistance) mutations. A recent study showed that nets treated with high permethrin concentrations provided better blood feeding prevention against pyrethroid-resistant An. gambiae than did lower concentrations and that permethrintreated nets seem unlikely to select for pyrethroid resistance in areas where the kdr mutation is rare and present mainly in heterozygous form (Corbel et al., 2004). There has been a report of reduced efficacy of treated bednets as a result of the intensive use of pyrethroids in bednet impregnation and for agricultural purposes (Vulule et al., 1994). In Benin, a major loss of efficacy associated with pyrethroid resistance was observed in An. gambiae, in that only 19% of mosquitoes in the ITN hut and only 22% in the IRS hut were killed, a clear evidence of pyrethroids' failing to control an An. gambiae population that contains kdr resistance at high levels (N'Guessan et al., 2007) ...

1.3.2.3 Modification of vector populations (Transgenesis)

The used of transgenesis in vector control involves the concept of genetically manipulating mosquitoes to make them inefficient vectors. This include identifying gene products that block development of the parasite in the mosquito and introducing these genes into the mosquito germ line to affect their ability to transmit diseases or by reducing reproductive ability of female insects by introducing sterile males or repressible female specific lethal genes in wild populations.

The first demonstration of the genetic transformation of an insect was by (Rubin and Spradling 1982). They showed that the *P*- transposable element could be used to

introduce foreign genes into the germ line of Drosophila. Thereafter, some scientist have demonstrated the P-element transformation in Aedes triseriatus (McGrane et al., 1988), Ae. aegypti (Morris et al., 1989) and quite recently in An. gambiae (Grossman et al., 2001). Other transformation mechanisms such as the use of transposon-based vectors and promoters have been developed recently (Handler, 2002). Moreira et al. (2000) demonstrated that both An. gambiae and An. aegypti carboxypeptidases promoters (Edwards et al., 1997, 2000) could drive strong bloodinducible transgene expression in transgenic Ae. aegypti mid-gut. However, the challenge that many scientist are likely to face will be how to effectively release these transgenic mosquitoes into wild populations. There has been a concern on the environmental impact of the strategy (Moreira et al., 2002) or the fitness of the genetically transformed mosquitoes in their ability to compete with the untransformed ones (Scott et al., 2002). Quite recently a study found that nearly all aspects of development and reproduction of transgenic mosquitoes was severely impaired when compared to non-engineered mosquitoes of the same type (Irvin et al. 2004). However, another study indicated that transgenic mosquitoes lived longer and produced more eggs compared to wild-type mosquitoes (Marrelli et al., 2007) with some malaria-resistant mosquitoes having a fitness advantage when feeding on *Plasmodium*-infected blood (Marrelli *et al.*, 2007). In the light of these challenges, much progress has been made in the area of mosquito transgenesis, although much work remains to be done.

Sterile insect technique (SIT) is another method which has been used successfully to control tsetseflies on the island of Zanzibar in Tanzania (Kabayo 2002). It relies on mass rearing, sterilization and release of large numbers of sterile males over a target. The sterile males will mate with the females and produce sterile offspring therefore reducing the reproductive potential of the wild population. The advantage of the method is that it is highly species-specific and has no adverse effect on non-target species. However, the use of radiation in the method has not encouraged its continous use in vector control.

Another genetic sytem known as RIDL TM(Release of Insects with a Dominant Lethal) has been used in the control of *Drosophila* species (Alphey and Andreasen 2002) and it is recently been used in *Aedes aegypti* populations. It involved a system in which mass reared insects carry a repressible female specific lethal gene that

enables females to produce only males in the population. In comparison with the SIT, this method does not use radiation and the males are normally fit and able to mate and produce viable male offspring.

1.3.2.4 Larval control

This strategy of vector control takes advantage of the fact that *An. gambiae* complex occupy temporary aquatic discrete habitats (Gillies and De Meillon 1968).

Controlling aquatic stages of malaria vectors depends upon finding where and when they occur and then planning the appropriate intervention measures (Killeen et al., 2002). Some of this measures include the application of 1) oils to the water surface, suffocating the larvae and pupae 2) biological control agents include toxins from the bacterium Bacillus thuringiensis var. israelensis (Bti) 3) insect growth regulators such as methroprene to retard the development of larvae 4) mosquito fish (Gambusia affinis) to control mosquitoes in larger bodies of water and 5) other potential biological control agents, such as fungi (e.g. Laegenidium giganteum) or mermithid nematodes. Many larval control strategies have proven successful in many countries including Brazil (Soper et al., 1943), Egypt (Shousha et al., 1948) and quite recently in Diibouti (Louis and Albert 1988) and Ethiopia (Fletcher et al., 1992), Mauritius (Gopaul, 1995) and Cameroon (Barbazan et al., 1998). However, successful implementation of the program depends on how well larval habitats are identified (Killeen et al., 2002) and with the advent of the Geographical Information System (GIS) and molecular techniques, it is now possible to map and characterize the distribution of larval habitats prior to the start of larval control programme (Pinto et al., 2000; Carter et al., 2000a). A recent review of large scale trials of Anopheline larval control methods in Africa within the past 15 years suggest that targeting larvae, particularly in human-made habitats, can significantly reduce malaria transmission in appropriate settings (Lynch, 2007). Compared to other malaria control interventions such as ITNs etc, larval control is more practical and when well organized can be integrated successfully with other control measures (Killeen et al., 2002).

1.3.2.5 Vaccines

Over the years, research has shown that the development of an effective costeffective malaria vaccine represents one of the most important approaches that would be integrated into currently available malaria control strategies. There are many lines of evidence that suggest prophylactic malaria vaccine for humans is feasible (Sabchareon et al., 1991; Egan et al., 1993; Trape et al., 1994; Hoffman et al., 2002). The traditional approach to develop malaria vaccines has focused on targeting one of the different stages of parasite development, i.e. the pre-erythrocytic, the asexual (intra-erythrocytic) or the sexual stage (Girard et al., 2007). In line with this approach, different types of vaccines are currently under consideration. This include 1) pre-erythrocytic vaccines including circumsporozoite protein vaccines and DNA vaccines and live recombinant vaccines 2) asexual blood-stage vaccines based on gene mutations as MSP-1, MSP-2 and RESA combination, MSP-1 and AMA-1, MSP-3, GLURP and SERA and 3) transmission-blocking vaccines which are aimed at inducing antibodies against the sexual stage antigens in order to prevent the development of infectious sporozoites in the salivary glands of the Anopheles mosquitoes (Carter et al., 2000b). Although no malaria vaccine has yet gone into routine use, considerable progress has been made in the development of malaria vaccines during the past 20 years. Field trials involving many of these candidate vaccines have taken place in many areas including Africa (Girard et al., 2007) with promising but in some cases limited success. The challenge facing malaria vaccine development is enormous because of the genetic diversity of the parasite antigens and even with the most optimistic scheme of unlimited resources, it will be many years from now before vaccine formulations with sufficient efficacy is obtained. However, current trends in vaccine development provides some optimism. Currently, a consortium of researchers are in the final step of phase III (step before licencing) of RTS.S vaccine. It is envisaged the vaccine could give protection from malaria by 30% and reduce severe malaria by 50% (Maher, 2008) and it could be in use by the year 2011.

1.3.2.6 Intermittent preventive therapy

Intermittent preventive treatment (IPT), involves the administration of a full course of an anti-malarial treatment to a population at risk at specified time points regardless of whether or not they are known to be infected (Greenwood, 2006). The aim is to decrease the frequency of malarial illness while allowing the development of natural immunity (Munday, 2007). The target group for this strategy are pregnant women, infants and older children who are at a high risk of being infected with malaria.

Non-immune pregnant women risk both acute and severe clinical disease, resulting in up to 60% fetal loss and over 10% maternal deaths, including 50% mortality for severe disease. In pregnant women, IPTp is able to reduce placental infection, maternal anemia, and low birth weight (LBW) in HIV-negative women. Intermittent treatment of pregnant women with sulfadoxinepyrimethamine (SP) has been shown to reduce the risk of maternal anaemia, placental parasitaemia, and low birth weight, and is now being integrated into the malaria control programmes of a number of African countries.

New research has lead to a new treatment regime known as intermittent preventive treatment in infants (IPTi). This involves giving a treatment course of antimalarial drugs, regardless of the level of parasitaemia at intervals over the first year of life. In Tanzania, treatment of infants with SP at 2, 3, and 9 months of age, at the time of routine immunization, reduces episodes of clinical malaria by 60%, and episodes of severe anaemia by 50% (Schellenberg et al., 2001, 2005). Also in northern Ghana, where malaria transmission is intense and highly seasonal, IPTi with SP gave 25% protection against clinical attacks of malaria and 35% protection against hospital admissions with anaemia during the first year of life and no protection during the second (Chandramohan et al., 2005). Recent studies of IPT in children have focused on its impact on malaria. In Mali and Senegal, two treatments with SP reduced the annual incidence of clinical attacks of malaria in children aged 6 months to 10 years by 40% (Dicko et al., 2004; Cisse et al., 2006). IPT has promise as a method of malaria control in older children living in an area with a short transmission season. However, a number of important issues need to be resolved with regard to this new treatment regime. These issues include 1) the interaction of IPTs with other malaria control programmes e.g. ITNs 2) delivery and sustainability 3) choice of drug and

drug resistance 4) impairment of the acquisition of natural immunity and 4) the cost of drugs. The challenge is enormous but IPT, employed as part of an integrated malaria control programme, has the potential to make an immediate impact on the many preventable deaths from malaria that occurs in areas where the transmission of malaria is seasonal.

1.3.3 Anopheles gambiae complex and disease transmission in Africa

Global distribution of dominant or potentially important malaria vectors is shown in figure 1. Although there are about 400 species of *Anopheles*, only 60 of them transmit malaria under natural conditions, and only 30 are of major importance (Bruce-Chwatt, 1985). Of these, the *An. gambiae* complex and *An. funestus* are the most efficient vectors for *P. falciparum* transmission in Africa: the highest rates of sporozoite development are in *An. gambiae*, the most widespread throughout tropical Africa. *An. gambiae* belongs to a complex of morphologically similar but genetically different species. The species differ in their behaviour and vectorial roles in malaria transmission. Hitherto, the species was initially considered to be a single species.

Presently, seven formally named species with different vectorial capacities are widely recognised as sibling species of the *An. gambiae* complex and they can be distinguished by cytotaxonomic and molecular methods (Coluzzi *et al.*, 2002; Scott *et al.*, 2003).

An. gambiae sensu stricto is the most widely distributed and the most efficient and important vector in Africa (White, 1974; Gilles and Coetzee 1987). This exceptional ability to transmit malaria is due to its high anthropophilic and endophilic behavior (Gilles and Coetzee 1987). The genetic structure of this species is complex, with several recognized "chromosomal forms" that differ ecologically. It has also been found that there exist cryptic taxa (M and S forms) within gambiae s.s. (Powell et al., 1999). An. arabiensis although more zoophilic in many areas, is a major vector of malaria particularly in arid or montane areas such as Ethiopia, Sudan, Malawi and Tanzania (White, 1974). In many areas in the absence of An. gambiae it can be a major vector. In areas of sympatry, An. arabiensis is more abundant than An. gambiae in the dry season (Coluzzi et al., 1979). An. gambiae sensu stricto and An. arabiensis, are subdivided into discrete subpopulations, each carrying a unique set of polymorphic chromosomal inversions, some of which have been associated with differences in seasonality of breeding, adaptation to natural vs. human-disturbed habitats, microhabitat selection, and host preferences (Coluzzi, 1979; Rishikesh *et al.*,1985).

1.3.4 Population genetics of *An. gambiae* populations

An. gambiae and An. arabiensis are widespread in many areas in Africa (White, 1974). The numerous fixed and polymorphic chromosomal inversions seem to be one of the driving forces promoting ecological partitioning in An. gambiae s.s. (della Torre et al., 2002). Polymorphic chromosomal inversions are common in An. gambiae s.s and An. arabiensis and these inversions are mostly located on chromosome 2R (Petrarca et al., 1983; Bryan et al., 1987). An. gambiae s.s. is polymorphic for two arrangements, 2La and 2L+^a and it is believed that the 2L+^a arose from the 2La (Avala and Coluzzi 2005; Sharakhov et al., 2006). The frequency of 2La varies clinally and seasonally in a pattern suggesting response to selection for aridity tolerance (White et al., 2007). A molecular technique is now available for karyotyping the 2La inversion in An. gambiae (White et al., 2007). Based on the distribution of 2R inversions, numerous chromosomal forms have been defined (Toure et al., 1998a). The chromosomal forms identified based on inversion karyotypes include the Forest and Savanna forms (Coluzzi et al., 1985) as well as Bamako, Bissau, Mopti and Savanna also identified based on different inversion karvotype frequencies. These chromosomal forms are not reproductively isolated throughout West Africa but rather represent adaptations to particular habitats (Touré et al., 1998a; della Torre et al., 2001). The FOREST form can normally be found in the forest areas whereas the MOPTI form occurs in Guinea, Mali and Burkina Faso (Coluzzi et al., 1985; Toure et al., 1994). The Savanna form is the most widespread throughout the sub-saharan Africa whereas the BISSAU form is restricted to Gambia and Senegal and BAMAKO form to Mali and northern Guinea. Chromosomal inversion patterns of An. gambiae in sourthern Sudan showed characteristics of intergrading Savanna/Forest populations similar to those observed in West Africa (Petrarca et al., 2000). On the other hand, An. arabiensis is polymorphic for inversion systems (2Ra, 2Rb, 2Rd1, 3Ra) in West Africa (Petrarca et al., 2000).

Marked differences exist between and within chromosomes in their ability to introgress from An. gambiae into An. arabiensis (Slotman et al., 2005). Earlier on, a study had suggested local specific unidirectional introgression of mitochondria from An. arabiensis into An. gambiae (Donnelly et al., 2004). Studies of the genetic structure of An. gambiae have reached conflicting results. Using mitochondrial DNA (Donnelly and Townson 2000; Besansky et al., 1997), microsatellite markers (Lehmann et al., 1996; Kamau et al., 1999; Onyabe and Conn 2001), allozymes (Lehmann et al., 1996), some workers have suggested that there is extensive gene flow across Africa in An. gambiae at least 5000 km apart. Other microsatellite-based studies had postulated that there exists limited gene flow between An. gambiae populations (Donnelly et al., 2001; Wondji et al., 2002). Levels of population differentiation were lower in An. arabiensis than An. gambiae in East Africa and Kenya (Donnelly and Townson 2000; Lehmann et al., 2003). However, it is important to take into consideration the location of the microsatellite marker under study since its been reported that the extent of genetic differentiation in An. arabiensis populations from three ecological zones in Kenya varied significantly with respect to microsatellite markers' location relative to chromosomal inversions (Temu and Yan 2005).

An. gambiae s.s. exist as two distinct molecular forms, named M and S and their classification was based on fixed differences in the X-linked rDNA (Favia et al., 1997). However, studies have found that barriers to gene flow do not show throughout the entire range of distribution of M and S forms (Toure et al., 1998a; Taylor et al., 2001; Gentile et al., 2002). Studies of gene flow have found genetic differentiation between the molecular forms to be linked to the rDNA (Wondji et al., 2002; Lehmann et al., 2003) although some other workers could not detect any differentiation between the two cryptic species in Kenya (Gentile et al., 2001; Besansky et al., 1997; della Torre et al., 2001). The Great Rift Valley has been postulated to serve as barrier limiting gene flow within populations in East Africa (Lehmann et al., 1996, 1999).

1.3.5 Insecticide resistance in mosquitoes

Insecticide resistance can be defined as "the development of an ability in some individuals of a given organism to tolerate doses of a toxicant which will prove lethal to a majority of individuals in a normal population of the same organism" (World Health Organization, 1957). Insecticide application remains the most important component of mosquito vector control strategy (Zaim *et al.*, 2000; Najera, 2001; Hemingway *et al.*, 2002). Apart from other classes of insecticides, e.g organochlorines and carbamates, pyrethroids account for 25% of the world insecticide market (Hemingway, 2004) and the most widely used for the treatment of mosquito nets (Najera, 2001). However, with the continuous use of insecticides for mosquito control and agricultural purposes, insecticide resistance has developed in over 100 mosquito species (Hemingway and Ranson 2000) including mosquito vectors (Curtis *et al.*, 1998; Hargreaves *et al.*, 2000; McAbee *et al.*, 2004; Enayati *et al.*, 2005).

1.3.5.1 Mechanism of insecticide resistance

Insecticide resistance in organisms may manifest either biochemically or behaviourally or both. For the purpose of this study, we will focus on biochemical resistance. The two major forms of biochemical resistance are target-site insensitivity and metabolism resistance (Hemingway and Ranson 2000).

1.3.5.1.1 Target site insensitivity of sodium channels

Knock down resistance (kdr) mutation An. gambiae

Sodium channels are special gates within the membrane of insects that separates nerve cells from their surrounding environments (Xu *et al.*, 2006). These channels have been the important target for both pyrethroid insecticides and DDT action (Narahashi, 1996). In the development of resistance to pyrethroids and DDT, insects are able to structurally modify the channels and reduce their sensitivity to insecticides. The term 'knock down resistance' (*kdr*) refers to resistance to pyrethroids and DDT as a result of reduced sensitivity of the sodium channel. *Kdr* mutation *in An. gambiae s.l.* is the substitution of leucine to phenylalanine (Leu to Phe) or leucine to serine in the domain II segment 6 of the sodium channel (Martinez-Torres *et al.*, 1998; Hemingway *et al.*, 2004). The *kdr* mutation in

mosquitoes has received much interest because of the use of pyrethroids in malaria control.

Kdr was first reported in *An. gambiae* from Africa in 1998 (Martinez-Torres, 1998). Two mutations (L1014F and L1014S) have been detected in pyrethroid resistant *An. gambiae s.s.* (Ranson *et al.*, 2000b) and *An. arabiensis* (Diabate *et al.*, 2002; Stump *et al.*, 2004). The predominant *kdr* mutation in *An. gambiae* in several West African countries is the L1014F, termed *kdr*-west (*kdr*-w) whereas the L1014S or *kdr*-east (*kdr*-e) predominates in eastern Africa (della Torre *et al.*, 2001; Fanello *et al.*, 2003b; Diabate *et al.*, 2004; Yawson *et al.*, 2004; Stump *et al.*, 2004; Awolola *et al.*, 2005). However, both the East and West African *kdr* mutations have been found to co-occur in samples from Gabon (Pinto *et al.*, 2006).

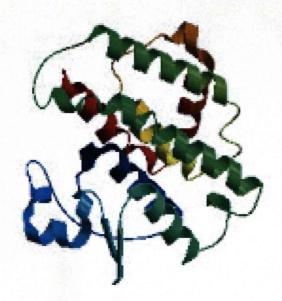
The kdr mutation has more recently been found in both M and S-forms in sympatry in Benin (Fanello et al., 2000), Burkina Faso (Diabate et al., 2004), Ghana (Yawson et al., 2004) and in Cameroon (Etang et al., 2006). In general the frequency of the kdr allele in M-form is much lower than that of S-form. Yawson et al., (2004) observed very high frequency (98-100%) of the kdr mutation within the S form but reached a maximum of only 3.38% in the M form in one population at an irrigation scheme in the Ghanaian coastal savannah zone. Recently, kdr was detected for the first time within the S molecular form of the Bamako chromosomal form (Tripet et al., 2007). Weill et al. (2000) postulated that the kdr allele is present in both M and S-forms as a result of introgression from the S-form to M-form based on sequence analysis of the Intron 1 sequence upstream of the kdr mutation. A single specimen of An. arabiensis carrying kdr was discovered in Burkina Faso and Kenya (Diabaté et al., 2004; Stump et al., 2004) and it was postulated that the kdr may have introgressed into An. arabiensis from An. gambiae (Slotman et al., 2005). However, the kdr mutation observed in An. arabiensis in Burkina Faso was a new and independent mutation event (Diabaté et al., 2004). The impact of kdr on the efficacy of ITNs has come under discussion recently. Recent studies suggest that the efficacy of ITN may be drastically reduced in the presense of kdr (N'Guessan et al., 2007) although studies have shown that mosquito mortality from ITNs remains high and personal protection from biting remains for free flying wild mosquitoes (Darriet et al., 1998, 2000; Chandre et al., 1999).

1.3.5.1.2 Metabolic resistance in An. gambiae

Metabolic detoxification of xenobiotics including insecticides by enzymes is common in insects (Scott *et al.*, 1991) and increased metabolic detoxification is one of the most common mechanisms of insecticide resistance (Hemingway and Karunaratne 1998; Hemingway, 2000). Several detoxifying enzymes have been implicated in the development of metabolic resistance. These include 1) insect cytochrome P450s, 2) insect glutathione S-transferases (GSTs) and 3) esterases or carboxylesterases. There are 111 P450, 31 GST and 51 carboxylesterase in the genome of *An. gambiae* (Collins and Haseltine 2000). Although each of these enzyme families is encoded by supergene families, most of the individual genes that are up-regulated or amplified in insecticide resistant individuals are yet to be identified (David *et al.*, 2005).

Cytochrome P450s are a superfamily of haemoproteins that are responsible for the oxidative metabolism of a wide variety of xenobiotic compounds and endogenous compounds. Insect cytochrome P450s have been implicated in the detoxification of insecticides and plant toxins (Scott *et al.*, 1998; Feyereisen, 1999). There are approximately 100 different P450 enzymes predicted in *An. gambiae* and over 25 classes of insect P450s have been identified (Ranson *et al.*, 2002a). P450 enzymes are known to confer high levels of resistance (Scott and Georghiou 1986) as well as being cross-resistant to other unrelated compounds (Scott *et al.*, 1991). Several studies have shown elevated levels of cytochrome P450 monooxylase and esterase activities in pyrethroid resistant mosquitoes (Vulule *et al.*, 1999; Enayati *et al.*, 2003; Hemingway, 2004). Other P450s such as *CYP6Z1* was overexpressed in pyrethroid resistant *An. gambiae* (Nikou *et al.*, 2003).

Carboxylesterases structurally belong to a superfamily of α/β -fold proteins, which consist of alternate α -helix and β -sheets connected by loops with a varying length (Oakeshott *et al.*, 1999). These enzymes hydrolyze chemicals containing such functional groups as a carboxylic acid ester, amide, and thioester (Wheelock *et al.*, 2005). Carboxylesterase activity is widely distributed in mammalian tissues, with the highest levels present in liver microsomes (Wheelock *et al.*, 2005).


1.3.6 Glutathione s-transferases in insects

Glutathione s-transferases (GSTs) are a major family of detoxication enzymes found in most organisms. They are soluble dimeric proteins that are ubiquitous in nature and are involved in the metabolism, detoxication and excretion of a large number of endogenous and exogenous compounds from the cell. A typical GST-catalysed reaction involves the transfer of the tripeptide glutathione to an electrophilic substrate. To facilitate this reaction, each GST monomer has two distinct binding sites, a G site, which binds glutathione, and an H site which binds the substrate. A typical structure of a GST gene is shown in Figure 4. Variability in the structure of the H site, largely accounts for the wide range of substrate specificities of the GSTs (Sheeban, 2001). Over 40 GST genes have been detected in the genomes of higher eukaryotes and these have been classified into at least 13 different classes based on their amino acid sequence identities, immunological properties and substrate specificities. Some classes are found across multiple eukaryote phyla, for example the Zeta and Omega classes (Board et al., 2000), whereas others, such as the insectspecific Delta and Epsilon classes are more restricted in their distribution (Ranson, 2001).

Epsilon class GSTs belonging to insect specific GSTs are of particular interest because of their potential to cause resistances to all the major families of insecticide especially organophosphates and DDT (Huang, 1998). Many studies have associated GSTs with the detoxification of insecticides (Fournier *et al.*, 1992; Tang and Tu 1994; Ranson *et al.*, 1997; Brogdon and McAllister 1998; Hemingway, 2000; Hemingway and Ranson 2000; Lumjuan *et al.*, 2007). Several GSTs have been found to be overexpressed in *An. gambiae* (Ding *et al.*, 2003) and their role in the dehydrochlorinase activity of DDT has been studied (Ranson, 2001). A study implicated one member of the GST cluster, GSTe2 in the development of DDT resistance on the basis that this gene was over-transcribed in a DDT-resistant strain of *An. gambiae* (GST) group and occur on the right arm of chromosome 3 within the polymorphic chromosomal inversion 3Ra (subdivision locus 33B). Earlier biochemical studies had indicated that DDT resistance is associated with both

24

qualitative and quantitative changes in multiple GST enzymes (Prapanthadara and Ketterman 1993). Muller *et al.* (2007) recently profiled samples of *An. gambiae* from Ghana, West Africa and found that genes up-regulated in these samples differed from those East African strain of pyrethroid resistant strains. This finding implied that metabolic resistance may have multiple origin in *An. gambiae*.

Figure 4: 3D structure of Glutathione s-transferase E2 from An. arabiensis

N-terminus domain is coloured green and the C-terminal is coloured red, GST is the substrate binding site is coloured light blue (Modelled from one GSTe2 sequence described in Chapter 3).

1.3.7 Melanism in insects

Melanism (the occurrence dark or black form of a species) has intrigued evolutionary biologists for over a century (Majerus, 1998). Numerous hypotheses have been proposed to explain the origin and maintenance of melanic phenotypes. Melanism has been particularly well studied in insects as it plays an important role in ecology and defence against parasites (Siva-Jothy, 2000), mate signalling (Ellers and Boggs 2003) and thermoregulation (Jong *et al.*, 1996); Ottenheim *et al.*, 1999). Melanism in larval *Lepidoptera* has been particularly well studied, and previous work has shown that the expression of melanism may be affected by a range of environmental factors, including temperature (Gunn, 1998; Hazel, 2002; Solensky and Larkin 2003), light (Faure, 1943), humidity (Goulson, 1994), nutrition (McGraw, 2007) and population density (Kazimirova, 1992; Goulson and Cory 1995; Gunn, 1998; Hagen *et al.*, 2006).

Melanism is often thought to occur as a result of genetic mutation, but can it now known that it can result from other stimuli, such as exposure to abnormal temperature changes which transiently alter gene transcription or translation. In larval *Lepidoptera* and other soft-bodied insects, melanism has been shown to be a dynamic trait both within and between larval instars (Chapman, 1998) and its expression changes with the development of the larvae. The relationship between melanization and life history traits has been studied in several species of lepidoptera including *Inachis io* and *Araschnia levana* (Windig, 1999). Studies have also linked short juvenile development time and large adult size to fitness (Nylin and Gotthard 1998), and variation in melanization is also linked to these traits (Majerus, 1998).

1.3.7.1 Melanism in An. gambiae complex

Numerous phenotypic mutants have been described in anophelines (Kitzmiller, 1976; Seawright *et al.*, 1985). A red stripe phenotype, which was apparent in larvae and pupae of *An. arabiensis*, was described earlier by Mason (1967) but he was uncertain of the pattern of inheritance of the trait. A similar phenotype called red stripe has been observed and analyzed in *An. albimanus* (Nakashima *et al.*, 1975) and *An. quadrimaculatus* (Mitchell and Seawright 1984). Recessive lethals of anopheline mosquitoes have been observed (Seawright and Benedict 1985) but they were characterized by various deformities of setae, eye, and body shape. However, among this class are *An. albimanus* mutants, *bubblehead* (Seawright and Benedict 1985) and *curled* (Seawright *et al.*, 1985) which had no deformities because they were expressed in hemizygous males (XY), and such mutations can be maintained through viable heterozygous sibling females (XX).

Among the rarely detected mutations are those that modify normal physiological responses to environmental conditions but otherwise have no visible effect. Homochromy (larval colour change as a result of rearing background-colour) in Anopheles is one response in which such mutants are easily detected, since the colour-change is dramatic and simple to induce (Fuzeau-Braesch, 1972). When larvae of some organisms are reared on an illuminated dark background, larvae darken significantly and this effect has been described extensively in various mosquito species (Benedict and Seawright 1987). However, it was interesting to note that larvae (mutants) that did not respond to the background colour were eye-colour mutants (Benedict and Chang 1996; Benedict and Seawright 1987). It was therefore suggested that the colour change is stimulated by the perception of the rearing background colour by the larval ocelli and the response is affected through the neurophysiological pathway. Therefore, it is reasonable to expect that numerous mutations that interfere with transduction of the appropriate signals or pigment synthesis and transport might interfere with the response (Benedict and Seawright 1987).

1.3.8 Dopa decaboxylase gene

Dopa decarboxylase gene (DDC) contributes to diverse physiological events in insects. The product of this enzyme's activity, dopamine, acts as an intermediate substrate for various tanning and melanization reactions (Eveleth *et al.*, 1986; Scholnick *et al.*, 1986). The DDC gene has been characterized in many insects (Hirsh and Davidson 1981; Hiruma *et al.*, 1995; Ferdig *et al.*, 2000; Noguchi *et al.*, 2003). In mosquitoes the biochemical pathway of tanning and melanization reactions has been well characterized. The tanning process is initiated by the action of phenol oxidase (PO) on the substrate tyrosine to produce 3, 4-dihydroxyphenylalanine that subsequently converted by DDC to dopamine (Li and Christensen 1993). DDC

activity in tanning of the egg chorion of Ae. aegypti was initiated by the ingestion of a blood meal (Li and Christensen 1993). During oviposition, the chorion blackens to form a protective outer layer that allows the eggs to withstand an indeterminate desiccation period required in this species life cycle. Also differential tissue-specific regulation of DDC has been studied in D. melanogaster and Manduca sexta by experimental promoter analysis (Scholnick et al., 1986; Konrad and Marsh 1987; Hodgetts et al., 1995; Hiruma et al., 1995) and several regulatory elements required for tissue-specific expression have been identified (Bray and Kafatos 1991; Scholnick et al., 1986). In each case, the regulation of this enzyme seems to occur at the level of transcription. The Drosophila DDC gene produces two different transcripts, one in the epidermis and another in the central nervous system (CNS), which can be accounted for by an alternative splicing mechanism in which all four exons are involved in neuronal transcription, but the second exon is spliced out of the epidermal message (Eveleth et al., 1986; Morgan et al., 1986). Catecholamine metabolism in mosquitoes also plays a role in the melanotic encapsulation defence response against parasites.

1.3.9 Population genetic signatures of selection

One of the main effects of selection is to modify levels of variability within and between species (Nielsen, 2005). Selection leaves signatures that can be detected within the genome. For example, a selective sweep illustrated in Figure 5 tends to drastically reduce variation and the reduction affects level of population subdivision especially if the sweep is new in the population (Charlesworth, 1997; Slatkin and Wiehe 1998). When a locus shows a high level of genetic differentiation compared with other loci, it may be interpreted as evidence of balancing selection. Akey *et al.* (2002) used estimates of differentiation, *Fst* to identify regions of increased populations. Selection can also affect the distribution of alleles within populations. Selection against deleterious mutations will increase the fraction of mutations segregating at low frequency in the population whilst a positive selection will tend to increase the frequency in a sample of mutations segregating at high frequency (Nielsen, 2005).

The statistical tests of neutrality are designed to detect selection within populations or between species. The basics of these statistical test emanates from the neutral theory of molecular evolution (Kimura, 1968) that stipulates that sequence differences between species reflect neutral polymorphisms that have drifted to fixation in one or the other species. Adaptive evolution focuses largely on cases where the data departs from neutral model. Such departures from neutrality may be detected through both interspecific and intraspecific DNA sequence comparison. A number of statistical tests have been proposed to detect departures from neutrality using intraspecific polymorphism data. Many of the common population genetic methods for detecting selection are based on comparing variation within and between species or comparing the rate of polymorphisms to divergence for multiple loci (Hudson *et al.*, 1987).

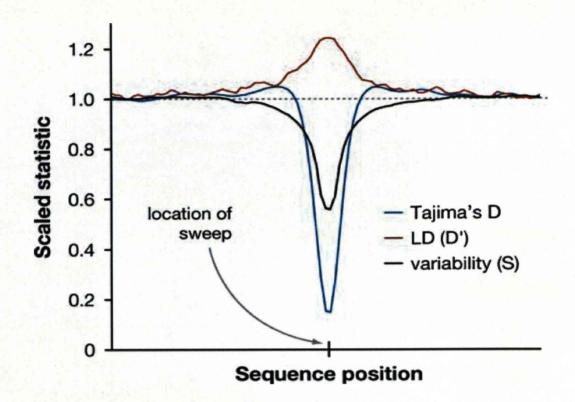


Figure 5: The effect of a selective sweep on genetic variation.

The figure is based on averaging over 100 simulations of a strong selective sweep. It illustrates how the number of variable sites (variability S) is reduced, Linkage disequilibrium (LD) is increased, and the frequency spectrum as measured by Tajima's D is skewed in the region around the sweep. All statistics are calculated in a sliding window along the sequence after the advantageous allele has reached frequency 1 in the population. All statistics are scaled so that the expected value under neutrality equals one (Source: Nielsen, 2005).

1.3.9.1 Tajima's test of neutrality

The test of Tajima uses intra-population data and compares the observed frequencies of variants at polymorphic sites to the frequencies expected under the neutral theory (Tajima, 1989). It compares the difference between the two estimators of the parameter θ , the number of segregating sites in a sample, S and the average pairwise difference, π , in the number of nucleotides. The expected difference between the two estimators should be zero under the neutral model of molecular evolution. Positive and negative values of the test correspond to departures from equilibrium neutral expectations in the direction of having the frequency spectrum skewed towards many intermediate-frequency polymorphisms or too many low-frequency polymorphisms respectively. Significantly positive values of Tajimas D test are consistent with balancing selection for two or more alleles, but can also indicate the presence of population sub-division. Significantly negative values of Tajimas D test are consistent with a recent selective sweep or purifying selection of a linked mutation, population bottleneck and/or, a recent expansion in population size (Slatkin and Hudson 1991). However, the Tajimas test has a limited power to detect selection because the test statistics is sensitive to sample size, S and timing of selection events (Simonsen *et al.*, 1995).

1.3.9.2 The Hudson, Kreitman and Aguade (HKA)

The Hudson, Kreitman and Aguade (HKA) test uses intraspecific and interspecific nucleotide data to test the null hypothesis that the ratio of polymorphism to divergence is equivalent among loci (Hudson *et al.*, 1987), The HKA test rejects a neutral model if the ratio of polymorphism to divergence differs significantly among independent loci, provided that one genetic locus evolves according to predictions of the neutral theory. A ratio of polymorphism to divergence that is significantly lower neutral expectation indicates that directional selection has recently fixed a new adaptive mutation within species. When the observed polymorphism levels exceed neutral expectations, then balancing selection has maintained alleles within populations for many generations. This test may not always detect directional selection events if the adaptive increase in allele frequency is fairly recent (Hudson *et al.* 1992).

1.3.9.3 McDonald and Kreitman test

McDonald and Kreitman (1991) proposed a test of neutral protein evolution that compares the ratio of variability in replacement and synonymous sites, but do so for both within-species polymorphism and between-species divergence. The test estimates from interspecific DNA data the ratio of nonsynonymous substitution rate (Ka) to that of synonymous substitution (Ks). Ka/Ks=1 is expected for genes evolving neutrally, where selection neither favors nor disfavors changes in the amino acid sequence. Ka/Ks <1 is the commonly observed situation and suggests negative

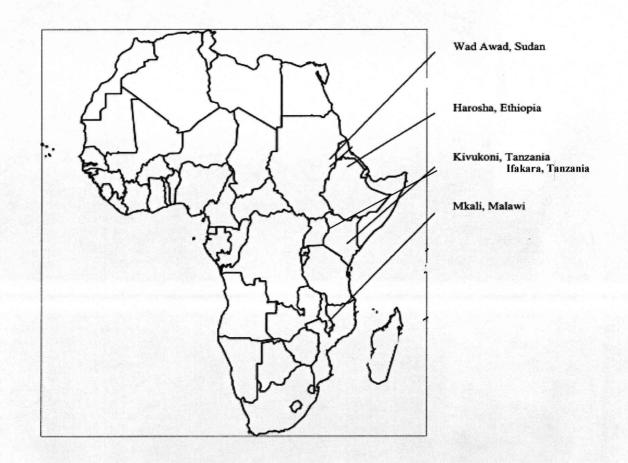
(purifying) selection acting to remove amino acid replacements. Ka/Ks >1 indicates positive selection and is rarely observed. Directional selection is detected if the nonsynonymous/synonymous ratio is greater for fixed differences than for polymorphism, suggestion that too many amino acid replacements have accumulated between species relative to the interspecific number of synonymous changes.

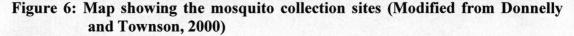
1.3.9.4 Fu and Li test of neutrality

Fu and Li (1993) derived a test of selective neutrality that examines the number of mutations that occur on external versus internal branches of a geneology. The test uses the within-and between-species data to estimate the number of internal and external mutations. The test statistic D is used to determine if there is an excess or deficiency of external mutations. A significantly negative value of D indicates directional selection that is due to an excess of external mutations, while a significant positive value of D denotes balancing selection that is due to a deficiency of external mutations.

1.4 EXPECTED OUTCOME OF THE STUDY

The present study on the molecular level generated information on the evolutionary forces shaping patterns of nucleotide variation within natural populations of *An. arabiensis* and also provided insight into the concept of phenotypic plasticity and the generation of adaptive phenotypes in populations of *An. gambiae*, both of which are malaria vectors in Africa. *Anopheles gambiae* Giles genome sequencing project is almost completed. This is a necessary tool towards developing more effective strategies in reducing not only malaria but other vector borne diseases transmitted by the mosquito. To be able to meet this challenges, one needs baseline information on genome structure, gene function and environmental effects on genetic expression. The information generated in this study will be useful in understanding the various molecular and evolutionary mechanisms underlying adaptation of *An. gambiae s.l.* to heteregenous environments and help formulate new genetic tools or enhance already existing malaria control strategies.


CHAPTER 2 MATERIALS AND METHODS


2.1 MATERIALS AND METHODS I

The role of natural selection in shaping nucleotide polymorphisms within GST and DDC loci of *An. arabiensis* populations

2.1.1 Collection of *An. arabiensis* populations

The mosquito samples used in this study were collected from 4 locations in Africa (Figure 6) and have been described in detail elsewhere (Donnelly and Townson 2000). For this study, we analysed mosquito samples from Wad Awad, Sudan ; Harosha, Ethiopia ; Mkali, Malawi and Ifakara, Tanazania. Species collection location and date were as follows: Mkali, Malawi (August 1997), Wad Awad, Sudan (1997), Harosha, Ethiopia (August 1997) and Ifakara, Tanzania (1999). For interspecific analyses, *An. stephensi* samples from Bahewahay, Pakistan (2002) were used.

2.1.2.1 Ethiopia

Mosquitoes were collected using CDC light-trap methods by Asefaw Getachew on the 16th and 17th August 1997 from a village in Harosha (12° 19'00''N 39°39'00''E) at an altitude of 1450m above sea level on the Ethiopian Plateau (Figure 6). Ethiopia has population of 74,777, 981 million with a land area of 1,127,127km². Harosha is one of the most populated places in Ethiopia.

2.1.2.2 Sudan

Specimens from Sudan was collected from Wad Awad (13°53'N 34°34'E) 140km East of Khartoum the capital of Sudan (Figure 6). The collections were done by Derek Charlwood using Pyrethrum Spray collection method. Sudan is the largest country in Africa, comprising more than 8% of the entire continent. The total population is estimated to be 30.3 million inhabitants, of whom 75% live in rural areas. In Sudan, there are 7.5 million cases and 35,000 malaria deaths every year.

2.1.2.3 *Malawi*

Specimen from Malawi used for this study were collected during the period from July to September 1997 from a village, Mkali (14°21'S 35°18'E) at an altitude of 500m above sea level (Figure 6). Some specimens were also provided by Dr Themba Mzilahowa previously of the Liverpool School of Tropical Medicine, UK. Malawi is situated in southeastern Africa (Figure 6) and it is surrounded by Lake Malawi which is the third-largest lake in Africa, making about 20% of Malawi's land area. The country has a population of 12,884,000 (July 2005 estimate) with a total area of 118,484 km². Malawi's climate is subtropical. The rainy season runs from November through April. There is little or no rainfall throughout most of the country from May to October. It is hot and humid from October to April along the lake and in the Lower Shire Valley. Malaria is the most frequent cause of morbidity and mortality in children under five years of age, and over 40% of deaths in children under two years.

2.1.2.4 Tanzania

Specimens from Ifakara (8° 18' 0 S, 36° 25' 0 E), Tanzania were aspirated from rooms between the 18th and 21st July 1995 by Derek Charlwood. Tanzania is located in East Africa. It borders the Indian Ocean and located between Kenya and Mozambique (figure 6). It has a population of 39,384,223 and covers a land area of 945,087 km². Its climate varies from tropical along coast to temperate in the highlands.

2.1.3 DNA extraction methods

2.1.3.1 Ballinger–Crabtree Method (Ballinger–Crabtree et al., 1992)

Individual mosquitoes were homogenized in a 1.5 ml micro centrifuge tube in 270 μ l of lysis buffer and 30 μ l of 10% SDS and 5 μ l of 20mg/ml proteinase K. The suspension was then incubated overnight at 50°C and thereafter 305ul of phenol: isoamyl:chloroform (24:1:1) solution was added and mixed by spinning on a wheel at 20 rpm for 20 minutes. After centrifugation at 13,000 rpm for 10 minutes, equal volume of phenol: chloroform (24:1) was added to the supernatant, mixed and centrifuged again as previous. The supernatant was removed and 0.2 volume of 10M ammonium acetate added to precipitate pellets of DNA. The solution was vortexed and centrifuged at 13,000 rpm at 4°C for 30 minutes. The supernatant is discarded and the pellets were washed first in 500 μ l ice-cold absolute alcohol. The suspension was then centrifuged again and the supernatant discarded. The process was repeated with 70% alcohol and the pellets were finally air-dried and resuspended in 200 μ l of distilled water. The DNA was stored at -20°C.

2.1.3.2 *Livak method (Livak, 1984)*

Individual mosquitoes were homogenized in 100 μ l of Livak grinding buffer in 1.5 micro-centrifuge tubes and incubated at 65°C for 30 minutes. 14 μ l of 8M K⁺ acetate solution was added and left on ice for 30 minutes. Samples were centrifuged at 14,000 rpm at 4°C for 20-25 minutes and 200 μ l of ice cold 100% ethanol was added to the supernatant. The samples were again centrifuged at 14,000 rpm for 20 minutes at 4°C and the supernatant was discarded. The above process was repeated with 70%

ethanol and the pellets were left at room temperature to dry before resuspending in 100µl of distilled water.

			GENE		
Place of collection	GSTE1	GSTE2	GSTE6	GSTE8	DDC
Ethiopia					
Harosha	5	5	5	5	- (*
Sudan					
Wad awad	5	5	5	5	-
Shambat/Hagusuf	-	-	-	-	15
Malawi					
Mkali	5	5	5	5	
Tanzania					
Ifakara	5	5	5	5	-
Total	20	20	20	20	15

Table 1: Sample collection sites and number of An. arabiensis samples analysed for each gene surveyed

(GSTE1, Glutathione s-transferases E1:GSTE2, Glutathione s-transferases E2: GSTE6, Glutathione s-transferases E6:GSTE8, Glutathione stransferases E8)

2.1.4 PCR identification of An. arabiensis

Members of *An. gambiae* complex were identified by PCR (Scott *et al.*, 1993) using species-specific primers. PCR was done in a total reaction mix of 25µl containing 1X PCR buffer, 0.5mM each of dNTPs, 0.5µM each of primer and 0.5U taq DNA polymerase. Amplification conditions were: One cycle at 94°C for 5 minutes followed by 30 cycles of at 94°C for 30 seconds, 55°C for 30 seconds, and 72°C for 1 minute. An additional extension of 72°C for 10 minutes was included for 1 cycle at the end of the reaction

2.1.5 Design of primers for GST and DDC amplification in An. arabiensis

Putative GST genes from *An.gambiae* were identified online (www.ncbi.nlm.nih.gov/blast/mmtrace.html) and primers were designed for each gene using primer 3 software (Rozen and Skaletsky 1999). Details of the primers are given in the Appendix. Four epsilon class GSTs were selected; GSTɛ1, GSTɛ2, GSTɛ6 and GSTɛ8. GSTɛ2 is known to be over- expressed in DDT resistant *An*.

gambiae (Ding et al., 2003).

2.1.6 PCR amplification of GST and DDC genes in An. arabiensis

Amplification of GST genes was performed using technique as previously described by Ranson *et al.*, 2001 with slight modifications. The PCR conditions were as follows: 25 μ l reaction containing, 1X reaction buffer (500mM KCl, 100mM Tris-HCl pH 8.3), 1.5 mM MgCl₂, 0.5mM each of dNTP, 0.5 μ M each of primer, 0.5U taq DNA polymerase. Amplification conditions were: One cycle at 94°C for 15 minutes followed by 30 cycles of at 94°C for 20 seconds, 52°C for 30 seconds, and 72°C for 20 seconds. An additional extension of 72°C for 10 minutes was included for 1 cycle at the end of the reaction.

PCR amplification of the Dopa gene (DDC) was performed in a 25µl reaction mix containing, 1X reaction buffer (500mM KCl, 100mM Tris-HCl, pH 8.3), 1.5 mM MgCl₂, 10mM each of dNTP, 0.5μ M each of primer, 0.5U taq DNA polymerase. Amplification conditions were: One cycle at 95°C for 10 minutes followed by 29 cycles of at 95°C for 30 seconds, 58°C for 30 seconds, and 72°C for 1min. An.

additional extension of 72°C for 10 minutes was included for 1 cycle at the end of the reaction. The sequences of the primers used for the PCR are shown in the appendix.

2.1.7 Gel electrophoresis

Gel electrophoresis was used to separate and visualize DNA fragments after amplification with PCR. Between $(5\mu l \text{ and } 10\mu l)$ of the genomic PCR products were electrophoresed in 2% agarose (proportion 1grams agarose + 50mls of TAE), stained with ethidium bromide and visualised on a UV-light spectrophotometer.

2.1.8 Subcloning and sequencing of GST and DDC genes in *An. arabiensis*

The resultant PCR products of Epsilon GSTs and DDC were ligated into pGEM-T Easy vector (Promega) overnight at 4°C in a 10µl reaction mix. The 10µl ligation reaction mix contained 1µl (strong band) or 2µl (weak band) of PCR product, 5µl of 2X Rapid ligation buffer, 1µl of T4 DNA ligase (3 weiss units/µl), 0.5µl of pGEM-T Easy Vector (50ng) and distilled water.

The resultant ligation product was used to transform *Escherichia coli* competent cells (JM109). This was done by adding 25µl of competent cells to 1.5µl of the ligated product on ice. The reaction was left on ice for 25minutes and then heat-shocked at 42°C for 45sec. 450µl of SOC medium was then added and incubated at 37°C for 1.5 hours whilst shaking at 250 rpm. 50µl of the transformed reaction was then spread on Agar plates inoculated with 50 ug/ml of ampicillin and coated with 10mM isopropylbeta-D-thiogalactopyranoside (IPTG) and 2% 5-bromo-4 chloro-3-indol-β-Dgalactopyranoside (X-gal). The reaction was then incubated at 37°C overnight. White colonies were then screened by PCR using M13 forward and reverse primers (Stratagene) to determine colonies containing the full-length cDNA. The colonies containing the desired inserts were picked and grown overnight in 2ml LB inoculated with 2µl of 50ug/ml ampicillin at 37°C with shaking at 250rpm. The plasmids were purified using QIAprep spin miniprep kits (Qiagen) and then the plasmid concentration was determined using Nanodrop® (Nanodrop Technologies) according to manufacturer's instruction. Sequencing was performed after electrophoresis using an ABI 3100 sequencing machine at the Cardiff DNA sequencing service.

2.1.9 Sequence analysis

Sequences were multiple aligned using the Clustal W program within BioEdit software, version 5.0.9.1 (http://www.mbio.ncsu.edu/bioedit/page2.html) and then adjusted manually. Most interlocus, intraspecific and interspecific statistics were calculated using DnaSP, version 3.51 (Rozas and Rozas 1999; Rozas *et al.*, 2003). DNA polymorphism $\theta = 4$ Neu was estimated from the mean number of pairwise differences between sequences π , and from the number of segregating sites (θ_k). Phylogenetic analysis was performed with genetic distances using the neighbourjoining (Saitou and Nei, 1987) implemented in the MEGA version 3 (Kumar *et al.*, 2004).

2.2 MATERIALS AND METHODS II

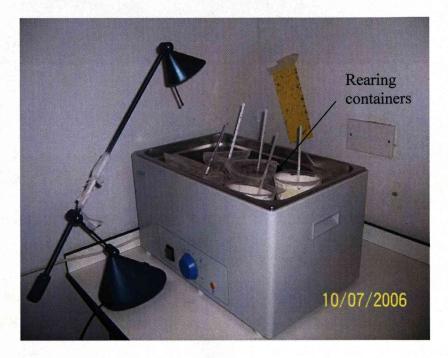
Ecological implications of intraspecific differences in larval melanization within populations of *Anopheles gambiae s.l.*

2.2.1 Melanism induction in *An. gambiae s.l.*

2.2.1.1 Rearing and handling of larvae

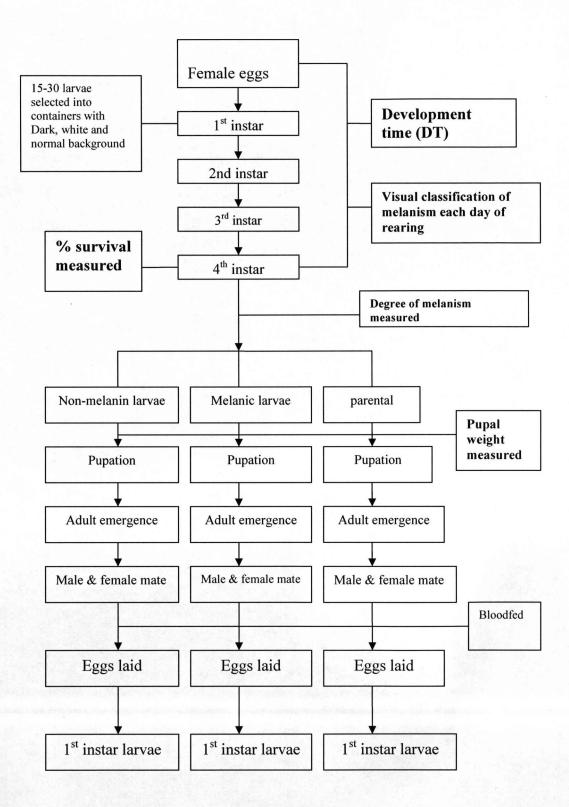
The melanin induction experiment on *An. gambiae* was performed in the insectary of the Liverpool School of Tropical Medicine. Adult female susceptible inbred *An. gambiae* mosquitoes were bloodfed and females allowed to lay eggs in individual larval rearing trays in the insectary. The larvae from each individual adult mosquito constituted an iso-female line. This was to provide progeny that have a common genetic background prior to the induction. The larvae were fed every two days on Tetra Min Fish food.

Four days after hatching, when the larvae were sufficiently robust to withstand handling, up to 30 larvae from each iso-female line were transferred into one of three test containers (1000ml Polypropylene Beakers, VWR International: Catalogue No 212-9306). The three treatment groups were classified into DARK (those larvae reared in containers with dark background), WHITE (those larvae reared in containers with white background) and PARENTAL (those larvae reared in containers that had no covering). Each container contained 200 ml of distilled water. The outside surfaces of the transparent, colourless plastic containers described earlier


were covered with either white or black adhesive materials to provide the white and dark rearing background (Figure 7). The larvae were reared concurrently in the white, dark and normal containers under fluorescent lighting and the larvae were observed daily to assess larval pigmentation changes (Figure 22).

Initial trials showed there was a 1°C difference in temperature of the rearing water in the black and white containers so the experiment was run using a water bath as a holding tank for the rearing containers. This was to maintain an approximate temperature of 28.0°C and remove any comfounding effect of temperature on the development of larvae.

An attempt was made to maintain a constant pH in the containers by using distilled water for rearing the larvae and changing the rearing water every two days prevent any build up of mould in the containers. A detailed plan of the experimental set up is shown in Figure 8.


The larvae were examined every day under a dissection microscope (MEIJI) for signs of colour change. When larvae have reached the fourth instars, individuals are in each treatment regime were examined under a stereomicroscope (MEIJI) against a white backgrounds.

In order to investigate the genetic basis of the observed phenotypic, melanised pupae were allowed to emerge into adults. They were then fed and put in egg laying tubes for laying. The eggs laid were hatched into 1st instar larvae and reared in normal larval trays till they develop into 4th instar larvae. Individual larvae were then examined under the microscope for any visible changes in larval pigmentation. We obtained insufficient data from this aspect of the study and therefore we did not include it in the current analysis.

Figure 7: Picture of the experimental set up used for the selection of melanic, non-melanic and parental forms of *An. gambiae s.l.*

(The rearing containers were mounted inside a water bath filled with 2 liters of distilled water to control for temperature differences between the containers). Rearing containers i.e DARK, WHITE and TRANSPARENT indicated by the arrow.

Figure 8: Flow chart of the experimental design used for the study of the effect of melanisation on the fitness of *An. gambiae s.l.* larvae.

2.2.2 Measurement of melanization

2.2.2.1 *Quantification of degree of melanism in larvae*

Photographs of all 4th instar larvae were taken against a white background using a Nikon Coolpix 4500 digital camera mounted on a MEIJI dissection microscope with an annular ring light source. Variation in larvae colour was measured on the head, thorax and abdomen (Figure 9). All the images were imported into Able Image Analyzer® software (Mu Labs Imaging) and the degree of larval melanisation was quantified on an average grey scale (scaled from 0, i.e. black, to 225. i.e white) of the areas shown in figure 9. Based on an initial subsample of 15 individual larvae, melanisation measurements were highly repeatable and the average grey value were averaged over the three measurements taken from each segment (Head/thorax, abdomen and final segment) of larval body. Initial estimated of average grey values measured on the head and thorax separately did not show any significant differences between the two segments. Subsequent estimates were therefore made on both the head and thorax together (Figure 9). The last segment (tail) was measured separately because of the attachments of numerous setae and the siphon which the larvae uses for gaseous exchange.

2.2.2.2 Visual classification

Fourth instars larvae were visually classified as DARK (appearance of black pigment above the dorsal thoracic and abdominal integument and/or setae and head capsule) and PALE (no signs of dark scales on the abdominal integuments or paleness of the cuticle). Figure 22 shows pictures of larvae visually classified into dark, pale and parental forms. All larvae were visually scored as melanic using the criteria described above and the frequency of melanic and pale forms estimated in percentage.

Final segment	
Abdomen	
Head/Thorax	

Figure 9: Measurement of melanization in An. gambiae larvae.

Dorsal view of larvae showing the regions of the body (Head/Thorax, abdomen and final segment) where measurements were made. Total area where average grey value were estimated is indicated by the rectangle

2.2.3 Measurement of life history traits

Larval development time of larvae was estimated as the time (days) from oviposition to entering the pupal stage. Larval survival was measured as percentage of larvae that survive up to on the average day 14 (black background rearing trays) and 17 (white background containers). Pupal weight was estimated as the average weight of 10 randomly selected pupae from each rearing trays.

2.2.4 Gene expression analysis

2.2.4.1 Total RNA extraction and cDNA synthesis

Total RNA was extracted from a pool of 10 larvae or pupae using the TRI reagent (SIGMA), according to the manufacturer's instructions. After the extraction, the total RNA was treated with DNase to remove any genomic DNA. The mRNA was then reverse transcribed into cDNA using superscript II (GIBCO BRL) and an oligo (dT) adapter primer (5'-GACTCGAGTCGACATCGA(dT)₁₇-3'). The PCR conditions for amplifying DDC and PO cDNAs were determined empirically for each gene. The DDC and PO standard plasmid contained 249-bp and 146-bp cDNA fragments respectively and this was amplified using primers for DDC and PO. Products of the expected size were subcloned into pGEM-T Easy vectors (Promega) and used as templates for sequencing. Sequencing reactions were performed using Beckman chemistry and the resultant products analysed on a Beckman CEQ800 capillary sequencer.

2.2.4.2 Quantitative PCR

Total RNA was reverse transcribed into cDNA as described above. Plasmids containing the gene of interest were diluted to produce seven standard templates at concentrations ranging from 1 ng/ μ l to 1 fg/ μ l. The incorporation of the fluorescent dye SYBR Green during PCR amplification of these templates was detected using a DNA Engine Opticon (MJ Research). For each experiment two replicates of each of the seven plasmid templates and two replicates of three cDNA samples from each form were used. A control plasmid containing a partial fragment of the S7 ribosomal protein gene was used to standardise the initial cDNA concentration in each sample.

CHAPTER 3 The role of natural selection in shaping nucleotide variation in the Epsilon class Glutathione-Stransferases gene family in malaria vector, Anopheles arabiensis (Theobald)

3.1 ABSTRACT

This chapter follows on from the observation of aberrant patterns of genetic differentiation among An. arabiensis samples at microsatellite locus 33C1 on the right arm of chromsome 3. This microsatellite locus showed a clinal change in modal allele classes in samples from East Africa. It was suggested that the pattern observed among the samples at locus 33C1 may be indicative of a low rate of mutation at the locus as a result of mutational constraints. This locus (33C1) is adjacent (~10-20kb) to a cluster of Glutathione-S-Transferase genes. Members of this gene family metabolise insecticides and other toxins and are therefore likely to be subject to strong selection. In this chapter we describe DNA sequence variation within and among four populations of Anopheles arabiensis at four Glutathione s-transferase genes ($GST\epsilon 1$, $GST\epsilon 2$, $GST\epsilon 6$ and $GST\epsilon 8$). We used the sequence data to investigate whether patterns of intraspecific and interspecific variation (used An. stephensi as outgroup) in An. arabiensis species will indicate any evidence of positive selection on GST loci surveyed. We detected marked sequence conservation of GSTs within the Cellia group (subgenus of anopheles Meigen) i.e An. gambiae Giles and An.stephensi. Based on the analysis, we postulate that the divergence of the GST epsilon family may predate the An. gambiae and An. stephensi split. GSTE2 locus showed a relatively high (5.9%) percentage sequence divergence than the rest of the loci. We detected evidence of a weak selection at three of the four loci and also show evidence of restricted gene flow between Ethiopia and the rest of the populations. Based on our findings, we infer that gene duplication events are important within the GST gene family in generating and maintaining adaptive phenotypes in natural populations of An. arabiensis.

3.2 INTRODUCTION

Across the genome of *An. gambiae*, the effect of random genetic drift on loci is similar whereas natural selection creates a marked difference in variation from purely neutral loci (Bonin *et al.*, 2006). These loci (outliers) affected directly by selection, are scattered throughout the genome and may be detected by their divergence from empirical neutral expectations (Luikart *et al.*, 2003). In contrast to what happens in the rest of the genome, these outliers have an atypical behaviour sometimes involving having an excess or a deficit of rare alleles in a given population or an aberrant pattern of genetic variability within and between populations eg. a higher differentiation between populations (Luikart *et al.*, 2003). In the context of local adaptation studies, such loci deserve particular attention because selection may be the underlying cause of their atypical behavior either because they are direct targets of selection or because they are genetically linked to a selected locus (Bonin *et al.*, 2006).

Therefore, scanning the patterns of DNA polymorphisms at the genomic level enables one to evaluate the amount of neutral genetic diversity and to identify "outlier" loci, i.e., loci that behave differently from the rest of the genome. So far, genome scans have been used to track outlier loci under selection especially in situations where individual adaptive traits segregate into two contrasting phenotypes (Bonin *et al.*, 2006). However, some local adaptations may arise often along environmental gradients and create an adaptive phenotypic continuum instead of discrete phenotypes.

Recently, inbreeding coefficients (F_{st}) have been used to detect outlier loci and use the distribution of estimates of F_{st} from individual genetic loci to detect the effects of natural selection (Storz and Nachman 2003; Storz and Dubach 2004; Storz, 2005; Beaumont, 2005; Guinand *et al.*, 2006).

A microsatellite based study of genetic differentiation between samples of *An. arabiensis* showed that locus 33C1, within 3Ra inversion was an outlier (Donnelly and Townson 2000). This is because interpopulation values of Fst measured at the locus were far in excess with a characteristic clinal change in modal allele classes in samples from the north and south of the East African region. The authors suggested

that because the locus is located within an inversion, the clinal change observed could reflect the increasing isolation with distance between populations studied or it could be a result of a clinal change in the inversion frequency, resulting from selective pressure upon genes within the inversion ((Donnelly and Townson 2000).

The present study hypothesizes that the observed pattern and distribution of allele frequencies at microsatellite locus 33C1 may largely reflect differences in selective pressures exerted on this or nearby loci in the sample populations. Given that locus 33C1 is intronic and microsatellites are predicted to be selectively neutral it is likely that neighbouring loci are the ones subject to selection. Locus 33C1 is within the polymorphic 3Ra inversion on the right arm of chromosome together with, amongst other loci, a cluster of Glutathione s-Transferases (*GSTs*) genes and the *Dopa decarboxylase* gene. Details on GST genes can be found in Chapter 1 whereas *dopa decarboxylase* locus is discussed in greater detail in Chapter 4. Genetic mapping showed that chromosome 3 division 33B adjacent to locus 33C1 contains a major locus controlling DDT resistance (Ranson *et al.*, 2000).

Interestingly, insecticides have been used intensively to control mosquito populations over the last 50 years and many species of insects have developed resistance to several families of insecticides. Previous study found that adult An. arabiensis Patton from Sudan were resistant to malathion and phenthoate but susceptible to all other organophosphates and the authors of the study suggested that a carboxylesterase enzyme may be responsible for malathion resistance in this strain (Hemingway, 1983). However, surveys of insecticide resistance carried out recently in Sudan on An. arabiensis colonies showed that the species exhibits the most widespread resistance in terms of its response to different classes of insecticides than any member of the An. gambiae complex including permethrin (Matambo et al., 2007). The first report of kdr mutation was detected in samples of An. arabiensis from Burkina Faso (Diabate et al., 2004). A study by Balkew et al. (2003) also established 43% DDT resistance in populations of An. arabiensis from Eastern Ethiopia. As part of the study by Matamboa et al. (2007), elevated glutathione stransferase was detected in DDT-resistant strain of An. arabiensis as well as kdr (Leu-Phe mutation in the sodium channel gene). Of interest also is the fact that, whilst Kulkarni et al. (2006) identified the West African leucine-phenylalanine kdr mutation in two An.arabiensis heterozygous individuals from Tanzania and in Uganda, Verhaeghen *et al.* (2006) detected the presence of both East-*kdr* and West*kdr* mutations in *An. arabiensis* in the same geographical region. These findings may be a good evidence for the direct change in DDT resistance status of *An. arabiensis* and the wide geographic distribution of some of these *kdr* mutations. This pattern can also be explained by the balance between migration and selection at the population level. However, we know little about several important properties of this beneficial *kdr* mutations, including their mutational origin, their phenotypic effects and the frequency and rapidity with which they become fixed in a population. One signature of the spread of beneficial mutations is the reduction of heterozygosity at linked sites.

To characterize the signature of natural selection at the loci and to understand the levels and patterns of sequence variation at this locus, we surveyed variation in DNA sequences at four GST loci (GST ϵ 1, GST ϵ 2, GST ϵ 6 and GST ϵ 8) in four populations of *An. arabiensis* from East Africa. Comparing loci within the same gene family that have or have not been implicated in conferring resistance to insecticides is a powerful for approach for identifying the role of selection in shaping patterns of genetic variation in *An. arabiensis* populations. The ability to identify targets of selection using this approach will be critical in understanding the evolution of *An. arabiensis*, one of the major vectors of malaria. Perhaps, a more compelling reason for understanding the genetic mechanisms i.e. natural selection, genetic drift etc. responsible for adaptations of *An. arabiensis* at the individual level is that it can allow for prediction of future response to selection and rates of response., the combination of which could be important in improving our understanding of evolutionary principles underlying a range of biological functions (*eg* immune function, longevity *etc*) that have impacts on public-health.

3.3 MATERIALS AND METHODS

Sample collection sites

The mosquito samples i.e *An. arabiensis* used in this study were collected from Ethiopia, Sudan, Malawi and Tanzania in Africa. *An. stephensi* were collected from Bahewahay, Pakistan in South Asia. Samples from Ethiopia, Sudan, Tanzania and

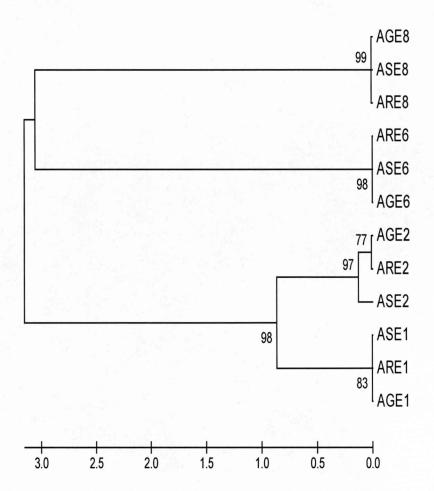
Malawi used for the current study have been used in a previous study (Donnelly and Townson, 2000).

Sample collection, DNA extraction, species identification and locus selection are given in details in Chapter 2.

3.4 SEQUENCE ANALYSIS

Sequences were aligned using the Clustal W program within BioEdit software, version 5.0.9.1 (http://www.mbio.ncsu.edu/bioedit/page2.html) and then adjusted manually. Interlocus, intraspecific, interspecific analyses were calculated using DnaSP, version 3.51 (Rozas *et al.*, 2003) and relationships between haplotypes were illustrated using neighbor-joining trees (Saitou and Nei 1987) built by running MEGA version 2.1 (Kumar *et al.*, 1994) on Kimura's two-parameter distance (Kimura, 1980). The recombination parameter C = 2Nc, where N is the effective population size and c is the recombination rate per generation between the most distant sites was estimated using the methods of (Kaplan and Hudson 1985) and (Hudson,1987). The method was based on R_M or the minimum number of recombination events in the sample and the estimates of R_M were used to estimate C by coalescent simulations.

The decay of linkage disequilibrium with physical distance was estimated using nonlinear regression of linkage disequilibrium between polymorphic sites vrs the distance in base pairs between sites (Remington *et al.*, 2001). This analysis was done within populations at each locus. Linkage disequilibrium was scored between pairs of polymorphic sites using the squared allele frequency correlations, r^2 (Weir, 1979). An algorithm used for computing the statistic from DNA sequence data and for estimating its confidence intervals are implemented in DNAsP software. Details of other analytical methods are given in Chapter 2.


The An. arabiensis and An. stephensi DNA sequences used in this study were all obtained by sequencing products from amplified fragments of GST genes. GST ϵ 2 of An. stephensi was obtained from the GeneBank (Accession No: AY573189). Data for An. gambiae were also obtained from GeneBank with corresponding accession numbers AY063776, AF316636, AY070256 and AY070257 for GST ϵ 1, GST ϵ 2, GST ϵ 6 and GST ϵ 8 respectively.

3.5 **RESULTS**

3.5.1 Phylogenetic relationship between the GSTs of An. arabiensis and An. gambiae and An. stephensi

Figure 10 shows a phylogenetic tree illustrating the relationship between An. arabiensis, An. gambiae and An. stephensi GST sequences, based on a CLUSTAL W Kimura 2 parameter distance with 1000 bootstrap alignment. GST sequences of An. gambiae and An. stephensi were retrieved from the An. gambiae and An. stephensi genome database. The tree showed marked conservation of GSTs within the Cellia group and indicated that the divergence of the GST epsilon family predates the An. gambiae and An. stephensi split. The tree also showed a substantial divergence between GSTE2 in An. stephensi and two close relatives (An.arabiensis and An. gambiae) in 90% of 1000 replicates. Levels of divergence for GSTE2 (5.9%) far exceeded that for the other 3 genes, suggesting that this locus may have been subject to selection in one or both of the taxa.

Figures 11 and 12 shows phylogenetic trees illustrating the relationships between *An. arabiensis and An. gambiae* sequences. On the basis of the phylogeny, all GST haplotypes within *An. arabiensis* were relatively undifferentiated from *An. gambiae* although the distance between loci were all over 75% of 1000 bootstrap replicates (Figures 11 and 12). With the exception of GST haplotypes from Ethiopia which showed some degree of geographical isolation, all the GST haplotypes from Sudan, Malawi and Tanzania were to some extent geographically undifferentiated. Previous classifications have designated GSTs as being members of the same class if their amino acid sequences are more than 40% identical. By this criterion, GSTɛ8 of the *An. arabiensis* GSTs would be classification of insect GSTs into only two classes might need re-evaluating.

Figure 10: Neighbor-joining tree of the coding region of GSTs of An. arabiensis, An. gambiae and An. stephensi based on Kimura's two-parameter distance.

The number of bootstrap probability values based on 1000 replicates. The trees are based on total length of 298 bp. The *An. gambiae* sequences for $GST\varepsilon 1$, $GST\varepsilon 2$ and $GST\varepsilon 8$ were obtained from the Genebank (AR=*An. arabiensis*, AG=*An.gambiae*, AS=*An. stephensi*).

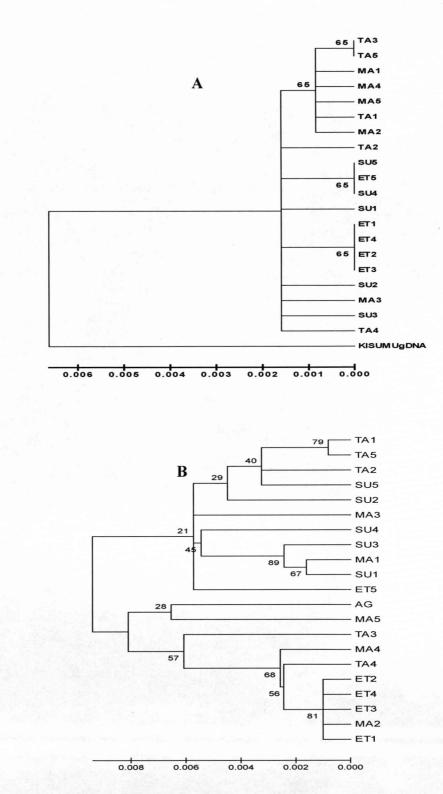
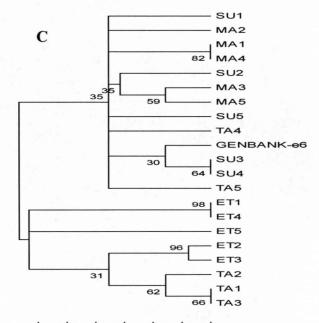
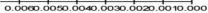
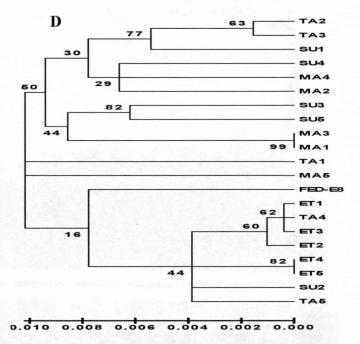





Figure 11: Neighbour-joining tree illustrating the relationship between the exonic regions of An. arabiensis and An. gambiae epsilon class A) GSTE1 and B) GSTE2 based on Kimura's two-parameter distance with bootstrap probability values based on 1000 replicates.

The trees are based on amplified GST fragments (GST ϵ 1, 298bp; GST ϵ 2, 500bp; GST ϵ 6, 644bp; GST ϵ 8, 651bp). The *An. gambiae* sequences for *GST\epsilon1* and *GST\epsilon2* were obtained from the Genebank (SU=Sudan, MA= Malawi, ET= Ethiopia, TA=Tanzania, *An.gambiae*=KISUMUgDNA, AG).

Figure 12: Neighbour-joining tree illustrating the relationship between the exonic region of An. arabiensis and An. gambiae epsilon class C) GSTE6 and D) GSTE8. based on Kimura's two-parameter distance with bootstrap probability values based on 1000 replicates.

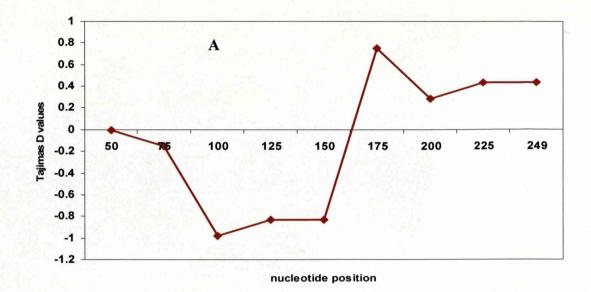
The trees are based on amplified GST fragments. The *An. gambiae* sequences for $GST\epsilon6$ and $GST\epsilon8$ were obtained from the Genebank (SU=Sudan, MA= Malawi, ET= Ethiopia, TA=Tanzania, *An. gambiae*=GENBANK, AG

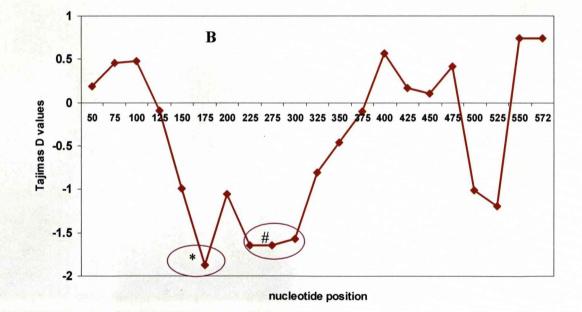
3.5.2 Tajima's D and Fu and Li's D test of selection

We tested whether the observed pattern of nucleotide variation is compatible with that expected under neutrality. We applied several tests that compare different estimates of θ either using only intraspecific data (Tajima, 1989) or using intraspecific data and sequence information of another species (the outgroup) to determine the polarity of mutations (Fu and Li 1993). The HKA test (Hudson et al., 1987) was conducted to assess whether levels of polymorphism and divergence were correlated. We applied the tests first to the exonic region to determine any signature of selection on the coding region of the four loci. To further investigate the effect of selection on the genomic regions of the genes, we applied the test to the whole region of the genes (Table 2). Also because population structuring can affect the tests, the analysis was repeated on individual populations with a concomitant reduction in power (Table 3.). Negative values of Tajima D were obtained for all the loci i.e. GST ε 1, GST ε 2, GSTE6 and GSTE8 and none of the values approached significance (Table 2). Tajima's D, a statistic that measures the difference between two estimators of $4N\mu$ (π and Θ), is expected to be zero under a neutral model with constant population size (Tajima, 1989). Although, we obtained negative values of D and Fu & Li D, they were not significantly different at all GST loci of An. arabiensis and the pattern was the same for the corresponding estimates of Fu & Li D test (Table 2).

We repeated some of these analyses within populations (Table 3). The tests revealed positive values for Fu & Li* test for Ethiopia at GST ε 8 locus and in 2 out of four loci in Tanzania populations (Table 3). Positive but not significant (P>0.05) values of Tajima's D values at the GST ε 8 locus were estimated for the Ethiopia and Malawi populations. The MKA (Mcdonald and Kreitman 1991) test for loci

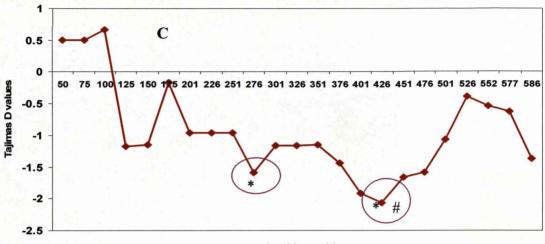
GST ϵ 6 and GST ϵ 8 in the Ethiopian sample showed P-values approaching significance (p<0.05). The MKA test on Ethiopian population could not be computed for locus GST ϵ 2 because there were no synonymous and nonsynonymous polymorphic sites between the sequences.


Locus /region	\$	Nonsynonymous/ Synonymous mutations	π	Tajimas D	Fu & Li's D*
<i>GSTε1(441bp)</i> N=20					
Coding	6	- 11	0.005	-0.409 NS	-0.154 NS
overall	10	2/4	0.005	-0.878 NS	-0.966 NS
GSTE2 (800bp) N=20					
Coding	37	16 / 21	0.015	-0.535 NS	-1.232 NS
overall	53	16 / 21	0.017	-0.385 NS	-0.754 NS
<i>GSTε6(788bp)</i> N=20					
Coding	38	and the second	0.012	-1.375 NS	-1.448 NS
overall	46		0.012	-1.245 NS	-1.297 NS
<i>GST</i> ɛ8(796bp) N=20					
Coding	65		0.018	-1.521 NS	-1.384 NS
overall	83		0.022	-1.244 NS	-1.859 NS


Table 2: Summary of nucleotide polymorphism and tests of selection in the coding and noncoding regions of GST loci in An. arabiensis

Tajimas D and Fu and Li's D* test used the total number of mutations, rather than the number of segregation sites to estimate theta because the latter does take into account several instances of multiple mutations at the same sites. NS indicates a nonsignificantly negative value of a given index (P<0.05). S, number of segregation sites (number of mutations π , average pair wise nucleotide diversity; D, Tajimas D value)

3.5.3 Sliding-window analysis of coding region of GST loci


Because selection may be localized within the gene and the tests of selection are not sufficiently sensitive to detect, we applied a sliding window analysis to the data (with a window size of 100bp and a slide of 25bp). Although, whole estimates of Tajima's D values did not reveal any significant deviations from neutrality, the sliding window plot of the coding regions of the four loci revealed areas of significantly (P<0.10) low Tajima D. This values deviations from neutral expectations at the GST ϵ 2, GST ϵ 6 and GST ϵ 8 loci (Figure 13 and 14). We also applied the Fu and Li D* sliding window analysis suggests that polymorphism distribution in three GST genes; GST ϵ 2, GST ϵ 6 and GST ϵ 8 significantly deviate from the expectations of neutrality at specific regions within the genes (indicated by the circles in Figures 13 and 14).

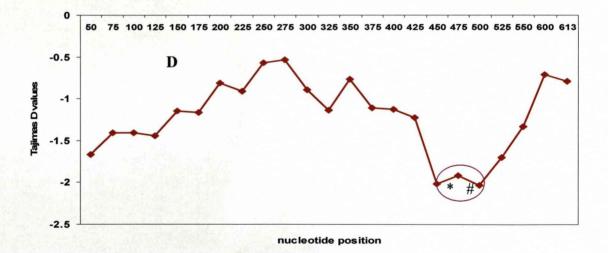


Figure 13: Sliding window plot of the protein coding region of A) GSTE1 and B) GSTE2 sequenced from *An. arabiensis* populations

Region indicated by the # are significant at P<0.105 respectively

nucleotide position

Figure 14: Sliding window plot of the protein coding region of C) GSTE6 and D) GSTE8 sequenced from An. arabiensis populations

Region indicated by the # and * are significant at P<0.10, P<0.05 respectively

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Locus	Locus/population	z	S	ĸ	$\mathbf{D}(T)$	Fu & Li*	P-value	(P-value)	sequence Divergence (%)
	GSTel	(N=20)								1.0
wi 5 2 0.003 -0.973 -0.973 0.37 1.00 ania 5 2 0.003 0.243 0.243 0.37 1.00 pia 5 2 0.004 1.459 1.459 1.459 0.36 0.33 pia 5 12 0.010 0.027 0.027 0.37 0.76 0.33 mia 5 12 0.013 0.496 0.496 0.560 1.00 mia 5 15 0.013 0.496 0.496 0.53 0.35 mia 5 15 0.012 -0.267 -0.076 0.70 0.66 1.00 mia 5 9 0.007 0.197 0.977 0.37 0.095 mia 5 13 0.006 -0.526 0.520 0.0400 mia 5 13 0.0022 0.057 0.057 0.019		Ethiopia	5	2	0.003	-0.973	-0.973	D	1.00	
$ \begin{array}{lcccccccccccccccccccccccccccccccccccc$		Malawi	5	2	0.003	-0.973	-0.973	0.37	1.00	
ania 5 2 0.004 1.459 1.459 0.60 0.33 pia 5 9 0.006 -1.184 -1.184 1D D wi 5 23 0.018 -0.027 0.301 0.37 0.76 wi 5 12 0.013 0.496 0.496 0.60 1.00 mia 5 12 0.013 0.496 0.496 0.60 1.00 wi 5 13 0.012 -0.027 -0.076 0.70 0.065 wi 5 9 0.007 -0.197 0.197 0.35 0.095 mia 5 9 0.006 -0.526 -0.526 0.59 0.400 mia 5 3 0.006 -0.526 -0.526 0.59 0.400 mia 5 3 0.006 -0.526 0.520 0.59 0.099 mia 5 3 0.002 -0.526		Sudan	5	2	0.003	0.243	0.243	0.58	1.00	
pia 5 9 0.006 -1.184 1.1 1 D wi 5 23 0.018 -0.027 -0.037 0.37 0.76 ania 5 12 0.010 0.301 0.301 0.37 0.76 ania 5 16 0.013 0.496 0.496 0.406 1.00 pia 5 15 0.012 -0.267 -0.076 0.70 0.063 via 5 9 0.007 -0.197 -0.197 0.35 0.099 ania 5 9 0.006 -0.526 -0.526 0.367 0.36 0.099 ania 5 9 0.003 0.957 0.957 0.36 0.099 ania 5 30 0.003 0.957 0.957 0.36 0.099 ania 5 30 0.003 0.957 0.957 0.19 0.063 0.109 ania 5 31		Tanzania	5	2	0.004	1.459	1.459	0.60	0.33	
pia 5 9 0.006 -1.184 -1.184 ID D mi 5 12 0.010 -0.027 0.37 0.76 mi 5 12 0.013 0.496 0.496 0.58 0.53 mia 5 15 0.013 0.496 0.496 0.60 1.00 mia 5 15 0.012 -0.267 -0.076 0.58 0.53 via 5 13 0.007 -0.197 0.197 0.35 0.009 n 5 9 0.006 -0.526 -0.526 0.35 0.009 n 5 9 0.006 -0.526 0.526 0.36 1.000 n 5 31 0.003 0.957 0.576 0.36 1.000 n 5 31 0.0022 0.155 0.526 0.36 1.000 n 5 31 0.022 0.155 0.526 0.	GSTe2	? (N=20)								5.9
wi 5 23 0.018 -0.027 -0.027 0.37 0.76 ania 5 12 0.010 0.301 0.301 0.37 0.58 0.53 ania 5 16 0.013 0.496 0.496 0.496 0.58 0.53 pia 5 15 0.012 -0.267 -0.076 0.70 0.66 1.00 n 5 9 0.007 -0.197 -0.197 0.35 0.099 n 5 9 0.006 -0.526 -0.526 0.59 0.400 nia 5 9 0.006 -0.526 -0.526 0.57 0.301 0.009 nia 5 30 0.003 0.957 0.957 0.19 0.099 nia 5 31 0.021 -0.526 0.507 0.63 1.000 n 5 31 0.022 0.155 0.207 0.63 0.119 n <td></td> <td>Ethiopia</td> <td>5</td> <td>6</td> <td>0.006</td> <td>-1.184</td> <td>-1.184</td> <td>D</td> <td>D</td> <td></td>		Ethiopia	5	6	0.006	-1.184	-1.184	D	D	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Malawi	S	23	0.018	-0.027	-0.027	0.37	0.76	
ania 5 16 0.013 0.490 0.490 0.00 1.00 pia 5 15 0.012 -0.267 -0.076 0.70 0.065 0.065 wi 5 9 0.007 -0.197 -0.977 0.079 0.065 0.009 m 5 13 0.008 -0.977 -0.977 0.35 0.099 0.099 m 5 9 0.006 -0.526 -0.526 0.35 0.099 mia 5 4 0.003 0.957 0.957 0.119 mia 5 31 0.003 0.957 0.957 0.15 0.119 mia 5 31 0.003 0.957 0.957 0.15 0.119 mia 5 31 0.021 -0.528 0.72 0.119 mia 5 19 0.013 -0.258 0.77		Sudan	ŝ	12	0.010	0.301	0.301	0.58	0.53	
		I anzania	n	16	0.013	0.496	0.496	0.60	1.00	
	GSTeb	5 (N=20)								2.0
wi 5 9 0.007 -0.197 -0.197 0.59 0.400 ania 5 13 0.008 -0.977 -0.977 0.35 0.099 ania 5 9 0.006 -0.526 -0.526 0.80 1.000 pia 5 4 0.003 0.957 0.957 0.957 0.119 via 5 31 0.002 0.957 0.957 0.15 0.119 ania 5 19 0.013 -0.554 -0.564 0.63 1.000 ania 5 19 0.013 -0.558 0.72 0.13 0.319		Ethiopia	5	15	0.012	-0.267	-0.076	0.70	0.065	
$ \begin{array}{lcccccccccccccccccccccccccccccccccccc$		Malawi	5	6	0.007	-0.197	-0.197	0.59	0.400	
and 0 0.000 -0.220 -0.220 0.000 1.000 pia 5 4 0.003 0.957 0.957 0.15 0.119 wi 5 31 0.0021 0.057 0.207 0.63 1.000 ania 5 31 0.021 -0.644 -0.644 0.75 0.319 ania 5 19 0.013 -0.421 -0.258 0.72 0.319		Sudan	vo v	13	0.008	-0.977	-0.977	0.35	0.099	
pia 5 4 0.003 0.957 0.957 0.15 0.119 wi 5 30 0.022 0.155 0.207 0.15 0.119 n 5 31 0.021 -0.644 -0.644 0.75 0.319 ania 5 19 0.013 -0.421 -0.258 0.72 1.000		1 dilzdilla	C	٨	0.000	070-	070-	0.00	1.000	
Ethiopia540.0030.9570.9570.15Malawi5300.0220.1550.2070.63Sudan5310.021-0.644-0.6440.75Tanzania5190.013-0.421-0.2580.72	GSTe8	R (N=20)								1.6
Malawi 5 30 0.022 0.155 0.207 0.63 Sudan 5 31 0.021 -0.644 0.75 Tanzania 5 19 0.013 -0.421 -0.258 0.72		Ethiopia	5	4	0.003	0.957	0.957	0.15	0.119	
Sudan 5 31 0.021 -0.644 -0.644 0.75 Tanzania 5 19 0.013 -0.421 -0.258 0.72	F	Malawi	5	30	0.022	0.155	0.207	0.63	1.000	
5 19 0.013 -0.421 -0.258 0.72	-	Sudan	5	31	0.021	-0.644	-0.644	0.75	0.319	
		Tanzania	5	19	0.013	-0.421	-0.258	0.72	1.000	

аганеты роршацону и ош даноры, зацан, макам ана тапханы Table

Tajimas D test and Fu and Li's D and F tests used the total number of mutations, rather than the number of segregating sites were used to estimate theta because the latter does take into account several instances of multiple mutations at the same sites. * indicates a significantly positive value of a given index (P<0.05). S, number of segregation sites (number of mutations) ; II, average pairwise nucleotide diversity; $D(_T)$, Tajimas D value; D(F&L), Fu and Li's D* value; HKA was done considering all substitutions; MK (Mcdonald and Kreitman, 1991) was done considering for both synonymous and non-synonymous substitutions. An. stephensi was used as outgroup for the interspecies comparison, ID = statistics could not be determined

60

3.5.4 Interspecific analysis of nucleotide polymorphism between An. arabiensis populations

3.5.4.1 Genetic differentiation and gene flow between An. arabiensis populations from Ethiopia, Sudan, Tanzania and Malawi

The locus-by-locus pairwise estimates of population differentiation, Fst (Hudson et al., 1992) are shown in Table 4. The estimates showed that pairwise F_{ST} comparisons involving Ethiopian population (ET/SU, ET/MW and ET/TZ) for GSTɛ1 and GSTɛ8 were significantly greater that zero (P<0.05; permutation test; range (0.306 - 0.600) Table 4. This pattern of genetic differentiation between populations at all the GST loci is reflected in the neighbour-joining trees (Figures 11 and 12). The F_{ST} values estimated in this study are far in excess of those observed from microsatellite and mitochondrial (mtDNA) sequence based studies of the same populations, Table 4. This may be highly suggestive of differential selection pressures acting upon one or all of these genes in Ethiopian populations of *An. arabiensis*. It may also reflect the effect of homoplasy on microsatellite markers and how estimates of differentiation are constrained by heterozygosity (Estoup et al., 2002).

We computed the average level of gene flow, assuming the island model of population structure (Wright, 1946). Estimates of gene flow, Nm within and between *An. arabiensis* across the four study sites at GST ε 1, GST ε 2, GST ε 6 and GST ε 8 were Nm= 0.15, 0.36, 0.21 and 0.53 respectively (Table 5).

			loci			
Population comparison	GSTel	GST£2	GSTe6	GST _E 8	microsatellites ND5 mtDNA	NA
ET/SU	0.467*	0.599**	0.392*	0.388*	0.0175° 0.01425 ⁺	+
ET / MW	0.600*	0.251	0.323**	0.388*	$0.0459^{\#}/0.0383^{\circ}$ 0.10884^{+}	+ + +
ET / TZ	0.533*	0.348*	0.136	0.306*	0.0378° -	
SU / MA	0.350	0.081	0.357	0.084	0.0292° 0.07172 ⁺	5+
SU / TZ	0.250	0.169*	0.309	0.016	0.0212° -	
MA / TZ	0.028	0.038	0.239	0.144	0.0313°	
					-	

Table 4: Estimates of genetic differentiation (Fst) between An. arabiensis populations from Ethiopia, Sudan, Tanzania and Malawi

*P<0.05, **P<0.005, Fst estimates in Donnelly & Townson 2000°, Donnelly *et al.*, 2004⁺, Donnelly *et al.*, 2001[#], ET=Ethiopia, SU=Sudan, MW=Malawi, TZ=Tanzania

62

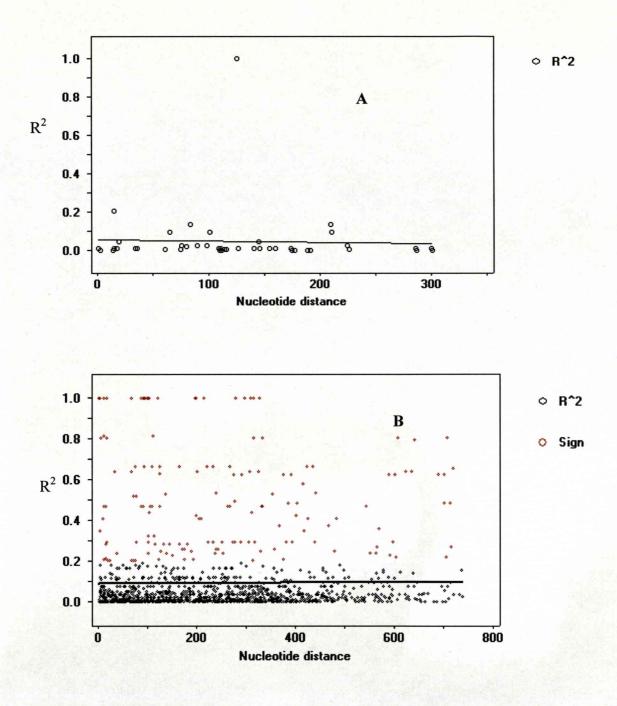
GSTe8	Nm	0.48	0.48	0.52	1.10	2.21	0.96	0.53
GSTE6	Nm	0.32	0.33	0.50	0.32	0.24	0.35	0.21
$GST \varepsilon 2$	Nm	0.22	0.59	0.25	1.21	1.04	1.05	0.36
GSTEI	Nm	0.06	0.14	0.10	0.50	0.50	0.83	0.15
	- Populations	ET-SU	ET-MA	ET-TZ	SU-MA	SU-TZ	MA-TZ	Average

Table 5: Gene flow estimated (Nm) between An. arabiensis population captured from Ethiopia, Sudan, Malawi and Tanzania Nm (Nei, 1982) values were estimated from sequence data information, (ET-Ethiopia, SU-Sudan, MA-Malawi, TZ-Tanzania)

63

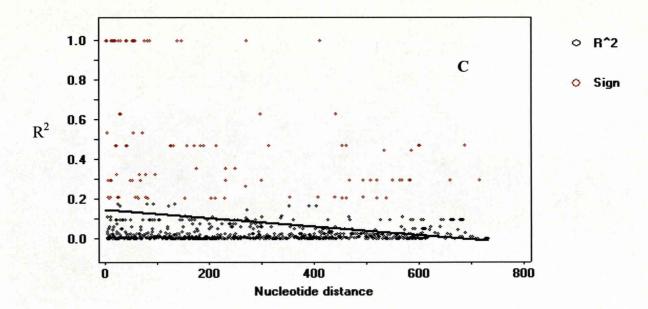
3.5.4.2 Estimates of linkage disequilibrium and recombination rates

To obtain a high power of detection, recombination rates and linkage disequilibrium was estimated from the whole set of sequences for the four *GST* loci. Using the four gamete test of Hudson and Kaplan (1985), all loci except *GST* ε 1 showed marked recombination indicated by the percentage of pairs of sites where four gametes were found i.e. *GST* ε 2 (*11.2%*), *GST* ε 6 (7%) and *GST* ε 8 (3%). The minimum recombination events, Rm (Hudson and Kaplan 1985) needed to explain these data were 10, 5 and 5 for *GST* ε 2, *GST* ε 6 and *GST* ε 8 respectively with corresponding population recombination parameters.


Within $GST\varepsilon 1$, 1 out of 45 pairwise comparisons (2.2%) between nonsingleton pairs of polymorphisms show statistically significant linkage disequilibrium (p<0.05) by the Fisher exact test; although after a Bonferroni correction for multiple comparisons, this was not significant. $GST\varepsilon 2$ and $GST\varepsilon 6$ showed 4.1% and 1.5% significant associations respectively but no association after Bonferroni correction. For $GST\varepsilon 8$, 99 out of 3081 pairwise comparisons (32.1.6%) between showed statistically significant linkage disequilibrium by the Fisher exact test; after the Bonferroni correction for multiple comparisons, 4 (0.1%) were still significant.

Figures 15 and 16 show the nonlinear relationship between linkage disequilibrium (LD) and nucleotide distance in the specimen analysed. With the exception of $GST\varepsilon 1$ and $GST\varepsilon 2$, all the other loci showed that LD decays with distance (Figure 16C-D). It should be noted that estimates of within-population rate of decay of LD are subject to much larger standard errors, due to the smaller number of sites that were polymorphic within populations. Despite the rapid decline of LD, several sites in $GST\varepsilon 2$ and $GST\varepsilon 8$ showed linkage disequilibrium over distances that approach the length of the sequenced region.

Locus	R _M	4 <i>N</i> c
GSTe1	0	0.0260
GSTe2	10	0.1629
GSTE6	5	0.1530
GSTe8	5	0.1644


Table 6: Estimates of recombination parameter for all the four GST loci sequenced from samples of An. arabiensis populations

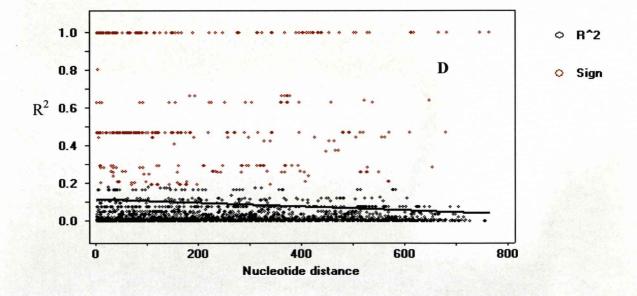

Estimate of the population recombination parameter, C=4Nc (Hudson, 1987) from the minimum number of recombination events, R_M (Hudson and Kaplan 1985). N=the effective population size and c=mutation rate

Figure 15: Plots showing the squared correlations of allele frequencies (r^2) as a function of physical distance between sites for two GST genes (A) GSTE1 and (B) GSTE2 in *An. arabiensis*.

Thin lines depict within-population decline in linkage disequilibrim. The red dots denote areas of significant linkage disequilibrium.

Figure 16: Plots showing the squared correlations of allele frequencies (r^2) as a function of physical distance between sites for two GST genes, C) GSTE6 and (D) GSTE8 in An. arabiensis.

Thin lines depict within-population decline in linkage disequilibrim. The red dots denote areas of significant linkage disequilibrium.

3.6 DISCUSSION

3.6.1 Phylogenetic lineage between GSTs within the Cellia group

The present study provides evidence of marked conservation within the GST sequences in *Anopheles* from within the Cellia group *An. gambiae, An. arabiensis* and *An. stephensi.* This implies that gene duplication events that resulted in the cluster of GST genes on chromosome 3R are likely to predate the division of Cellia from other anopheline sub-groupings i.e apparent radiation occurred before Cellia split about 90 – 106 million years ago (Krzywinski *et al.,* 2001; Della Torre *et al.,* 2002). Using the white gene as a marker, Krzywinski *et al.* (2001) suggested that there is a close relationship between members of the *Anopheles* subgenera Cellia and our results to some extent is in agreement with that assession. Although, we did not produce sequence data on the *Anopheles* subgenus for comparison during this particular study, it will be interesting to extend the study to *Anopheles* to confirm our findings. The study detected no obvious associations between haplotypes and geographic locations as evident in the phylogenetic analysis.

Surprisingly, with the exception of Ethiopia samples which seem to be grouped into clusters at all loci, samples of *An. arabiensis* from Sudan, Tanzania and Malawi showed little differentiation. Using other markers such as mitochondrial DNA (mtDNA), similar patterns have been observed in *An. arabiensis* in East Africa (Besansky *et al.*, 1997; Donnelly and Townson 2004) and in *An. gambiae* and these pattern were thought to reflect similarities in ecological zones and the absence of topographic barriers to gene flow (Lehmann *et al.*, 2003). Some workers had detected extensive mtDNA haplotype sharing between *An. gambiae* and *An. arabiensis* across Africa (Besansky *et al.*, 1997; Donnelly *et al.*, 2004).

This study showed over 98% sequence similarity between An. gambiae and An. arabiensis in the coding region of all four loci. With the exception of locus GST ϵ 2 which showed 86% sequence identity between An. gambiae and An. stephensi, all the other three loci, GST ϵ 1, GST ϵ 6, GST ϵ 8 showed between 97-98% identities. It is now known that GSTs share sequence and structural similarities with several stress-related proteins in a wide range of organisms and this allows GSTs to be used to identify patterns of divergence in many organisms (Rossjohn *et al.*, 1996).

Insect GSTs have been shown to be orthologous to the Sigma GST class found in a diverse range of species from nematodes to mammals (Agianian *et al.*, 2003). Epsilon GST classes are also known to have expanded independently in *D. melanogaster, Ae. eagypti* and *An. gambiae*, suggesting that the enzymes play important roles in the adaptation of the species to their specific environments (Ranson *et al.*, 2002b; Lumjuan *et al.*, 2007).

GSTE8 locus shares very little similarity with the other three GST loci. The classification of GSTE8 within the Epsilon cluster has previously been described ambiguous because it has less than 40% identity with other members of the Epsilon class, the cut off widely used to classify *GST*s (Hayes and Pulford 1995). However, protein products of this gene was found to react with anti-sera raised against Epsilon GST (Ding *et al.*, 2003) and also a BLAST search using putative translation of GST*e*8 as query identified *P. xyloslla* Epsilon GSTs as the characterized protein (Altschul *et al.*, 1997). This study found that GST*e*8 in *An. arabiensis* had between 6-13% identities to other *GST*'s in the Epsilon class, much less than what was reported by Hayes and Pulford 1995 and Ortelli *et al.*, 2003. Using this criterion (cut off of 40% identity), we postulate that GST*e*8 may belong to other class of GSTs. More research on the classification of GST*e*8 is needed in line with the evidence from this study.

3.6.2 Intraspecific nucleotide diversity of GSTs within An. arabiensis populations

Intraspecific analyses revealed a significant non-neutral pattern of diversity at three of the loci. The nucleotide variability across three of the loci i.e. GSTE2, GSTE6 and *GSTE8* was relatively high compared to that of locus GSTE1. Highly negative estimates of Tajimas D and Fu and Li's D* for GSTE2, GSTE6 and GSTE8 loci were observed but they failed to reach significance. The relatively low numbers of individuals sampled would have reduced the power of the two tests to detect significance. However there were regions within each gene (GSTE2, GSTE6 and GSTE8) which were associated with non-synonymous changes and this was revealed by less conservative sliding window plots of Tajima's D statistic. More nonsynonymous mutations were found in 3 out of the 4 populations in the domain of the GST ε 2 and GST ε 8 loci and sequence divergence estimated for all the loci showed GST ε 2 to be highly divergent, 5.9% compared to the other loci (Table 3). Elevated GST activity has been associated with resistance to all the major classes of insecticides (Prapanthadara and Ketterman 1993; Wheelock *et al.*, 2005; Vontas *et al.*, 2001; Enayati *et al.*, 2001). GST ε 2 specifically has been found to be over expressed in DDT resistant mosquitoes as it encodes an enzyme that is effective at catalyzing the dehydrogenation of DDT insecticide (Ranson *et al.*, 2000a; Ortelli *et al.*, 2003; David *et al.*, 2005).

The observed nucleotide variability within GSTs may be adaptive in the context of insecticide usage and the data strongly suggest that the variations observed within the GST ϵ 2, GST ϵ 6 and GST ϵ 8 loci may be shaped by purifying selection which is consistent with most metabolic enzymes (Harwood, 1988). The signature of positive selection seen only in Ethiopia population suggests that GST ϵ 6 may possess specific alleles that have conferred local adaptation to some environmental pressure. The significance of the Great Rift Valley as barrier to gene flow in this case cannot be overlooked as postulated by Lehmann *et al.* (1999). Also there was a 12 base pair nucleotide insertion in the intronic region of GST ϵ 2 and this insertion was only found in the Ethiopia samples. Ranson *et al.* (2003) had previously shown that there is considerable conservation of intron positions within the epsilon and delta class of *GST*s and therefore further research is needed to determine the evolutionary significance of the insertion in these samples.

3.6.3 Interpopulation variation and differentiation within and between species of An. arabiensis

Inter-population analysis with all the GST loci showed different patterns of nucleotide variation and differentiation especially between Ethiopia and the rest of the populations. The relatively high F_{ST} values for all loci especially for the GST ϵ 2 are in contradiction with neutral expectations, suggesting diversifying and/or local selection on the between populations. The F_{ST} values estimated for *An. arabiensis* are much greater than what was estimated by Donnelly and Townson (2000). The authors of explained that the large between-locus variation in values observed in their study may have been caused by selection upon some of the loci; possibly a result of linkage effects with nearby coding regions or chromosomal inversions. Based on the non-

uniform pattern of F_{ST} estimates across GST loci, we can infer that the GST gene family may be under some selective constraint in *An. arabiensis*.

3.6.4 Recombination and linkage disequilibrium at GST loci

The study detected that recombination is frequent within the 3Ra inversion of chromsome 3 of An. arabiensis. This was evident in the recombination rates C = (4Nc)estimated for 3 of the GST loci (Range: 4Nc= 0.1530 -1644) Table 6. This pattern was also reflected in the minimum number of recombination events/generation, R_M estimated for the three loci (Table 6). A plot of linkage disequilibrium (LD) against nucleotide distance (Figures 15 and 16) showed a reduction in LD with nucleotide distance especially within loci GSTE6 and GSTE8. Another mtDNA based analysis and also detected high linkage disequilibrium within population of An. arabiensis in Kenya (Donnelly et al., 2001). It has been suggested that there could be marked heterogeneity in recombination rates across the genome of An. gambiae (Black et al., 2008). Interestingly we detected recombination within GST genes located within 3Ra inversion and we postulate that recombination, together with selection may be responsible for the pattern of nucleotide variation observed at the GST loci in this study. The role of chromosomal inversions in determining the pattern of nucleotide polymorphisms in the genome is also worth noting. Inversions have been shown to have effects on recombination rates (Andolfatto, 2001) and hence modulate nucleotide variability in a complex way. (Navarro et al., 1997) postulated that inversions strongly influence nucleotide polymorphisms by reducing and redistributing recombination in chromosomal variants. Inversions are common in An. gambiae, they are thought to confer selective advantages under different environmental conditions (Toure et al., 1994). However, despite the potential impact of inversions on nucleotide variability; they have been overlooked in nucleotide variation surveys (Andolfatto, 2001). The frequency of An. gambiae 3Ra inversion in Ethiopia is high, 0-35% (Petrarca and Beier 1992; Abose, 1998) whilst that in Sudan is 13% (Petrarca, 2000). Further research is needed to elucidate the effect of inversions on nucleotide variability in An. gambiae since this may help explain the pattern of population differentiation and recombination rates observed in this study.

Linkage disequilibrium is important for detecting valid genotype-phenotype associations i.e linkage mapping depends on the markers under study being in disequilibrium with the genes that actually conditions the expression of the phenotypes (Black *et al.*, 2008). Recent work has shown that inversions may facilitate speciation by creating linkage disequilibrium between these genes (Noor *et al.*, 2001; Rieseberg, 2001; Navarro and Barton 2003). Linkage mapping studies for insecticide reistance in *An. gambiae* is currently being pursued and the extensive disequilibrium of segregating sites observed at the GST loci will make them good candidates for Linkage mapping. GSTs are known for detoxifying insecticides (Ranson *et al.*, 2000a). However, marked recombination observed at the loci may reduce LD across and these needs to be considered in future when doing linkage mapping studies.

3.6.5 Gene flow estimates across An. arabiensis populations

There was variation in the values of gene flow, Nm (Nei, 1982) averaged across all the loci. Gene flow estimates between Sudan, Malawi and Tanzania *An. arabiensis* populations were relatively high especially at the GST ε 2 locus (Nm > ~1.0) compared to the gene flow values from Ethiopia populations, (Nm < ~1.0) for each of the four loci (Table 5). This is consistent with findings from the phylogenetic analysis and genetic differentiation, i.e. F*st* estimates. This pattern of genetic differentiation could be explained by the fact that Ethiopia population may have an independent origin and hence may be geographically isolated from the rest of the population.

In comparison, Lehmann *et al.* (1996) obtained much significantly higher values of gene flow between populations of *An. gambiae* from East and West Africa separated by a distance of approximately 6000 km (*Nm* 7.7 and 3.4 for *Fst* and *Rst* respectively). Using microsatellite and mitochondrial DNA based analysis, another study found that the Great Rift Valley in East Africa is an important gene flow barrier for *An. gambiae* (Kamau *et al.*, 1998, 1999). Again, microsatellite analysis of samples from nine localities along a 4500 km transect from Sudan to Mozambique revealed highly significant differences in genotype frequencies between populations separated by more than 200 km with extensive barriers to gene flow in this region (Donnelly and Townson 2000). Both *An. gambiae* and *An. arabiensis* are known to have recently expanded its range into new habitats (Donnelly *et al.*, 2001). Based on our findings,

we postulate that the Ethiopian population of *An. arabiensis* may be undergoing local adaptation in response to selection and the local selection may be responsible for the pattern of differentiation observed. The selection could be due to insecticide pressure as result of their continuous use for malaria control as well as for agricultural purposes or some other source of selective pressure.

CHAPTER FOURMOLECULAR EVOLUTION OF A DOPADECABOXYLASE GENE IN POPULATION OF AN. ARABIENSIS FROM SUDAN

4.1 ABSTRACT

For insects, several environmental factors including temperature influence an individual's ability to adapt to various environments. An. arabiensis is a cosmopolitan species that has had great success in adapting and colonizing dry environments. This adaptation may have resulted in complex pattern of genetic variation. Identifying genes controlling adaptive genotypes in natural population of An. arabiensis is crucial for understanding the evolutionary history of the species. In this study, we examine DNA sequence variation among specimens of An. arabiensis from Sudan at the Dopa decaboxvlase (DDC) locus. This locus plays an integral role in pigmentation patterning and other physiological processes in insects. Interspecies analysis of polymorphisms showed an excess of high-frequency derived variants within the coding region of the sequence. Phylogenetic analyses sequences of An. arabiensis at the DDC locus produced gene genealogies with topologies that mirror one lineage. However, when compared to the sequences of Drosophila and Aedes species, three distinct lineages were observed with the Aedes lineage sharing extensive ancestral polymorphism with An. arabiensis. Fay and Wu H test on the coding region of the gene was significant at (P=0.094, P<0.05). The conservation of the DDC gene over evolutionary time scale in An. arabiensis, Drosophila and Aedes highlights the importance of the gene in the evolution of the three groups of insects. We postulate that positive selection within the coding region of the DDC gene is maintaining advantageous mutations in the gene so as to maintain its multiple functional polymorphisms in the adaptation of An. arabiensis populations in Sudan.

4.2 INTRODUCTION

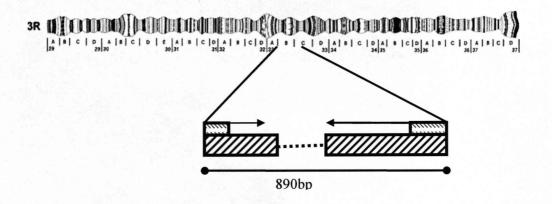
Understanding the genetic architecture of quantitative traits in organisms begins by identifying the genes regulating the traits in natural population. Throughout its long evolutionary history, the Dopa decarboxylase gene (DDC) has acquired a variety of functions in insects (Hodgetts and O'Keefe 2006) including cuticular sclerotization in insects as well as melanic encapsulation in malaria parasites (Beerntsen et al., 2000). Dopa decarboxylase converts dopa to dopamine (Figure 2) and also catalyzes the production of the neural transmitter dopamine and serotonin (Hiruma and Riddiford 1985; Hiruma et al., 1985). Its key role in behaviour and development of insects and its potential utility in studies of molecular systematics in Noctuoid moths were latter highlighted by Fang et al., 2000. (Refer chapter 1 and 5 for detailed information on DDC). Subsequent workers have characterized the DDC gene in many insects (Hirsh and Davidson 1981; Hiruma et al., 1995; Ferdig et al., 2000; Noguchi et al., 2003). The most important use of this gene is its role in the production of melanin and defence in parasites and insects (Paskewitz et al., 1998, 1999; Nappi and Christensen 2005; Huang et al., 2005). Also many DDC mutations have been shown to affect the acquisition of learned responses in Drosophila (Tempel et al., 1984) and morphological defects of the cuticle and/or catecholamine-related abnormalities in Drosophila melanogaster (Wright, 1996). A study has also established that there exist a high degree of sequence conservation within DDC-coding regions and this has allowed comparisons from various insects, facilitating a number of recent studies on insect systematics (Hodgetts and O'Keefe 2006) and melanism has been known to be the target for parallel evolution in many animal species (Pearse and Pogson 2000).

The present chapter is a follow-up of our findings in Chapter 3. In chapter 3, we found that GST genes use duplication events to acquire diverse phenotypes in *An. arabiensis* populations. To understand the pattern of genetic variation at this locus and identify genes within the genome that are responsible for generating diverse phenotypes, we selected the DDC gene. The DDC is of interest to us for two reasons 1) it is located near microsatellite locus 33C1 within the 3Ra inversion on chromosome 3 in proximity to the 4 Epsilon class GSTs studied in Chapter 3, and 2) its role in diverse immunological, physiological as well as biochemical mechanisms in many species of

insects including the development of insect melanism (True, 2003). A number of workers have also observed that An. gambiae or closely related species in Sudan showed marked increase in melanism (Aboud, 2003). Analysis of sequence data showed a clustering of mtDNA haplotypes corresponding to melanic and normal forms and the authors postulated that the melanic forms may have adapted to survive severe drought and heat in the Sudan (Aboud, 2003). However, there is very little information on the molecular basis of the evolution of these phenotypes within populations. It is known that genes that encode for divergent adaptive traits may have genealogies that contrast with those from loci that are not functionally involved in differentiation (Wilder et al., 2004). Findings from studies cited above indicates that the DDC may be involved in the evolution of adaptive phenotypes in populations of insects and any selective constraints on this gene is likely to affect the pattern of nucleotide variation observed at other nearby loci. In the context of adaptation in insects, melanization is of interest for two reasons. First, the ecological niche of An. arabiensis is postulated to be largely defined by the climatic conditions (species prefer dry arid habitats) and therefore mechanisms such as the tanning of the cuticle may be important for the adaptation of An. arabiensis to its environment. Secondly, An. arabiensis is a vector of the malaria parasite and studies has shown that menalic encapsulation of the melanise ookinetes and early oocysts which involves the DDC locuss is a defensive mechanism against the parasite. This means that the DDC locus may be under some selective constrains and therefore may be the obvious target of natural selection.

An. arabiensis is known to predominate in arid savanna and montane areas (White, 1974; Lindsay et al., 1998; Hargreaves et al., 2000) and it is a major vector of malaria particularly in areas such as Ethiopia, Sudan, Malawi and Tanzania (White, 1974). The present study examined the molecular evolution of *Dopa decarboxylase*, in the context of identifying the type of evolutionary forces shaping nucleotide variation at the locus. We therefore used DDC sequences of *An. arabiensis* from Sudan to gain insight into the evolution of the species in nature.

4.3 MATERIALS AND METHODS


Source of samples and sequencing of DDC gene

Mosquito samples were collected from Sudan using Pyrethrum spray technique and were kindly provided by Drs Kwang Shik Choi and Derek Charlwood (See Chapter 2 for detailed information on the samples). DNA extraction followed the technique of Ballinger–Crabtree *et al.*(1992) (see Chapter 2). Species identification followed Scott *et al.*, (1993) i.e. see Chapter 2. Details of PCR amplification and sequencing of DDC gene are detailed in Chapter 2.

4.4 SEQUENCE ANALYSIS

Sequences were multiple aligned using the Clustal W program within BioEdit (http://www.mbio.ncsu.edu/bioedit/page2.html). software. version 5.0.9.1 Intraspecific and interspecific statistics were calculated using DnaSP, version 3.51 (Rozas et al., 2003). Nucleotide variation was estimated as nucleotide diversity, π (Nei, 1987) for all sites and subsequently for the coding region. The genetic divergence between species was estimated as the average number of pairwise differences between species, K (average proportion of nucleotide differences between species), according to the methods of Nei, 1987, by computing the average of all comparisons between sequences of An. arabiensis and Ae. aegypti (outgroup). We examined the frequency spectrum of polymorphisms for deviations from neutral equilibrium expectations using Tajimas D (TD), Fu & Li F and Fay & Wu's H (FWH). FWH compares the estimator π against $\theta_{\rm H}$ which is weighted toward high frequency derived alleles. Significant deviations from neutral expectations for both TD and FWH were assessed using 1000 coalescent simulations conditioned on the observed value of θ from the data. Based on the observed recombination events in our dataset (Table 6), we assumed an intermediate rate of recombination (R=10) for the simulation. A distance tree was constructed using the neighbour-joining algorithm as implemented in MEGA version 3.51 (Kumar et al., 1994). Thousand bootstrap replicates were performed and distances were estimated according to the twoparameter model of Kimura (1980). Sequences from An. gambiae, Ae. aegypti and two Drosophila species included in the analysis were obtained from the GeneBank (Anopheles gambiae: AF063021, Aedes aegypti: AAU27581, AY064102.1,

AY064101.1; *Drosophila immigrans*: AF293738, *Drosophila sordidula*:AF324979). Phylogenetic analysis were performed on the sequences using the MEGA version 3 software (Kumar *et al.*,2004).

Figure 17: Diagram of chromosome 3R showing the DDC region sequenced in *An. arabiensis* from Sudan

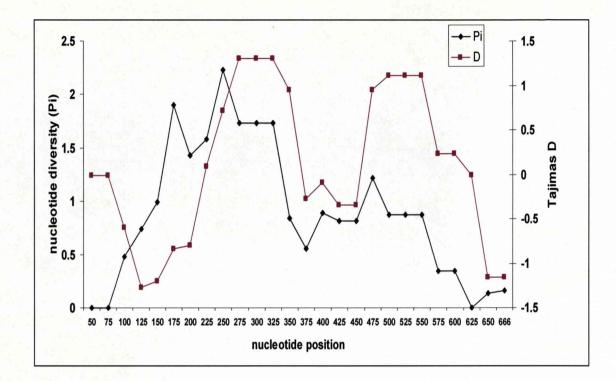
Exons are represented by intron Arrows indicate the direction of forward and reverse primers and similar indicated the position of primers

4.5 **RESULTS**

4.5.1 Nucleotide variation at DDC locus

We sequenced 890bp of the DDC gene (Figure 17) from 15 samples of An. arabiensis from Sudan. In the nucleotide survey of the 890bp region of DDC, we detected a total of 35 polymorphic sites within the entire sequence out of which 19 were found within the coding region of the DDC locus (Table 7). 12 of the 19 sites were synonymous and 7 nonsynonymous (i.e. encoding amino acid substitution). The rest were found in the intronic region of the gene. Overall total nucleotide diversity, $\pi = 0.0120$ was estimated for the DDC gene with the coding region contributing about 66% ($\pi = 0.0083$) of the diversity (Table 7). Polymorphic sites were not uniformly distributed throughout the coding region of the gene; a sliding window plot of genetic diversity showed several peaks of polymorphism in the samples (Figure 18). Minimum number of recombination events in the sequence was 5 per species (Rm=5) for the DDC locus Table 7.

4.5.2 Intraspecific test of selection at DDC locus


We applied tests of selection on both the coding and non-coding regions of the DDC locus to assess whether the observed allele frequency deviates from neutral expectation. Although, no test was statistically significant at 95% confidence interval, the frequency spectrum of polymorphic sites across the sequenced region was skewed towards rare variants, as revealed by the negative Tajima's test (D=-0.1883), Table 7. The Fu and Li F* statistics provided concordant results. However, a positive Tajima's D (D=0.0296) was observed within the coding region of the DDC gene. The synonymous and non-synonymous substitutions at the DDC locus were markedly different in the entire sequence (Table 7).

Sliding-window analysis of Tajima's D values is shown in Figure 18. The figure showed several peaks indicating that the distribution of allele frequency varied across the entire coding region of DDC gene, indicated by the numerous peaks observed (Figure 18). The frequency distribution of derived variants in the DDC was estimated by the FWH (Fu and Way's H statistics) using coalescent simulations that incorporated recombination equal to 10 per gene. The values of *H*, using *Ae. aegypti* as outgroup revealed a skew towards an excess of high-frequency variants within the coding region relative to neutral equilibrium model, indicated by the near significance of H (H=0.094, P<0.05).

Region	S	S +NS	π	TD	Fu & Li F*	FWH <i>H</i> -value	R _M
Coding N=707bp	19	12+7	0.0083	0.0296 (NS)	0.2694 (NS)	0.094	5
Total N=890bp	35	14+8	0.0120	-0.1883 (NS)	-0.26011 (NS)	0.135	5

Table 7: Diversity statistics for the DDC locus in An. arabiensis populations captured from Sudan

S= the number of segregating sites, S=synonymous substitutions, NS=nonsynonymous substitution, π = the average number of pairwise differences between sequences, TD= Tajimas (1989) D value, Fu & Li F*, FWH=Fay and Wu's (2000) *H* value, R_M=the observed minimum number of recombination events. Significance was determined at 95%

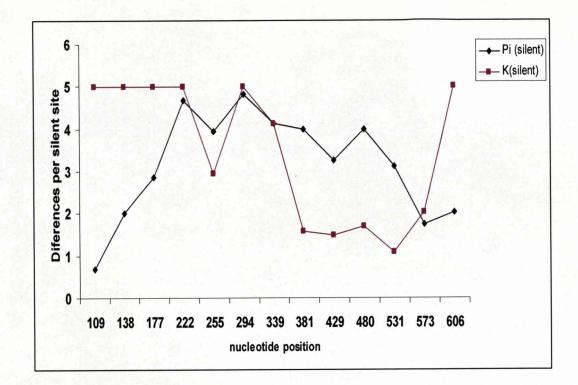


Figure 18: Sliding window analysis of the genetic diversity A) Pi and B) Tajimas D value D within the coding region of the DDC locus in An. arabiensis populations

Window length of 100bp was used with 25bp step length. The nucleotide values (Pi) values were multiplied by 100

4.5.3 Nucleotide polymorphism and divergence

The silent polymorphism and divergence at the coding resgion of the DDC locus is shown in Figure 19. The overall silent polymorphism in *An. arabiensis* was 0.02622, and divergence from *Ae. aegypti* was 0.7529. Nucleotide diversity at nonsynonymous (replacement) sites was estimated as 0.00270, and divergence between *An. arabiensis* and *Ae. aegypti* (outgroup) at nonsynonymous sites was estimated as 0.08055. Figure 19 shows that silent divergence was much higher than silent polymorphism (values multiplied by 100) across the coding region.

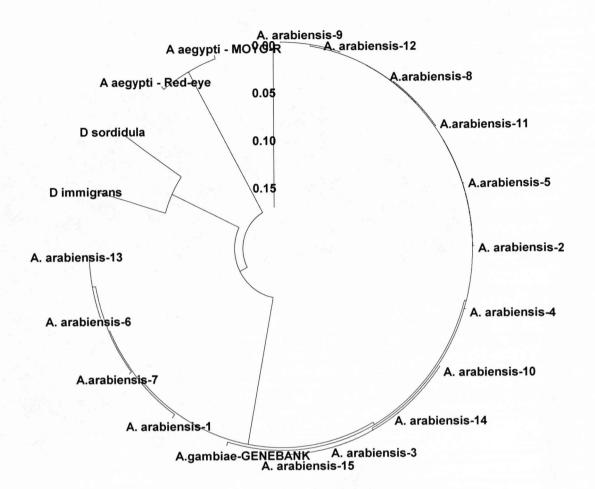


Figure 19: Sliding-window plot of silent polymorhism, *Pi* (silent) and silent divergence, K (silent) between *An. arabiensis* and *Ae. aegypti*

Pi (polymorphism) and and K (Divergence) was measured as differences per silent site on the y-axis. Window length of 100bp was used for the analysis. Silent polymorphism values were multiplied by 100. Ae. *aegypti* was used as an outgroup

4.5.4 Phylogenetic analysis

Phylogenetic analysis of the DDC revealed three major clades as shown in Figure 20. One lineage consists of all sequences from *An. arabiensis* and *An. gambiae* (with 99% bootstrap support-values not shown in diagram). The second lineage contains all *Ae. aegypti* individuals (99% bootstrap support) and the third contains sequences from *Drosophila* species also with 99% bootstrap support. The data did not allow resolution of the two species individuals from the *An. gambiae* complex.

Figure 20: Neighbour joining tree of DDC at the coding region of An. arabiensis, An. gambiae, Drosophila species and Ae. aegypti

Bootstrap support for major nodes indicated (percentage of 1000 bootstrap). Abbrevations are as follows D=Drosophila, Ae. aegypti = Aedes aegypti, An. arabiensis = Anopheles arabiensis, Genebank = (An. gambiae Dopa decarboxylase isoform)

4.6 **DISCUSSION**

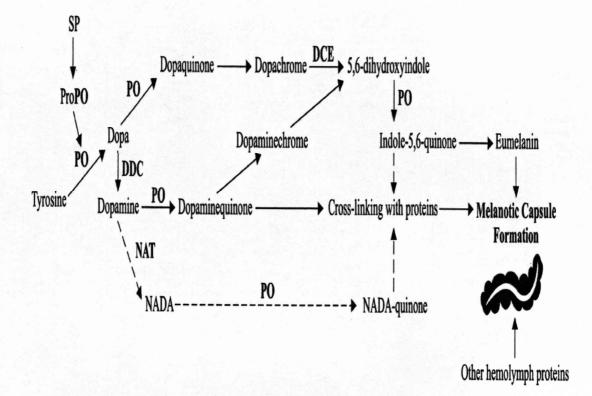
Colouration is one of the most variable characters among animals and is a rich source of models of phenotypic evolution (Wittkopp *et al.*, 2003a). Also of interest are loci that underlie the phenotypic divergence between species. *Dopa decarboxylase* contributes to diverse physiological events in insects including cuticular sclerotization (Hiruma and Riddiford 1985), defence and survival mechanisms (Gorman *et al.*,

1997; Paskewitz, 1999; Wilson *et al.*, 2001; Nappi and Christensen 2005). In *Anopheles* mosquitoes, the DDC gene is located in the middle of a large cluster of other functionally related genes e.g GSTs on chromosome 3. We observed a high degree of sequence conservation within DDC coding region within populations of *An. arabiensis* from Sudan. This pattern has been observed within DDC sequence of *Drosophila* (Wang *et al.*, 1996) and a study by Joron *et al.* (2006) showed that a conserved 'supergene' (group of neighbouring genes on a chromosome which are inherited together because of close genetic linkage and are functionally related in an evolutionary sense, although they are rarely co-regulated genetically) locus controls colour pattern in *Heliconius* butterflies. It has been shown that the conservation of genes over evolutionaty time-scales is important for many biological processes that affect homologous traits in many species (Mackay, 2001).

In the present study, analysis of nucleotide variation at the DDC locus revealed an excess of high-frequency variants within the DDC as evident by the near significant *H* value of Fay and Wu's (2000) test. An excess of high-frequency derived alleles have been observed in *D. melanogaster* DDC locus (Tatarenkov and Ayala 2007). This pattern of evolution may have lead to a high rate of synonymous substitutions within the species. More than 50 DDC mutations have been isolated in *Drosophila*, many of which are recessive lethals (Wright, 1996) indicating the importance of the gene in the evolution of the species. The gene has been used recently to study insect systematics (Fang *et al.*, 2000; Hodgetts and O'Keefe 2006). The DDC therefore provides a unique opportunity to examine the evolution of not only pigmentation but other functions such as parasite encapsulation, defence etc. in natural populations of *An. arabiensis* and their adaptive value in habitat selection.

We estimated a minimum recombination events/generation of 5 (R_M =5) in 707bp of DNA sequence. Another study (Goto *et al.*, 2004) observed 7 recombination events in 580bp of *Drosophila* sequence. Although we cannot extrapolate the recombination events observed in *An. arabiensis* to *Drosophila* species because the two species may not be under the same selective pressure or evolutionaty constrains, we can highlight the fact that recombination events are common in both species.

Based on the pattern of phylogenetic differentiation, the DDC delineate three divergent lineages between *Anopheles*, *Aedes* and *Drosophila* species but shows one lineage within the *An. arabiensis* species. The DDC is known to be involved in the cuticular pigmentation in insects such as Tobacco hornworm, *Manduca sexta* (Hiruma *et al.*, 1985) and in colonies of the New Zealand black coral, *Antipathes fiordensis* (Holl *et al.*, 1992).


Neutrality tests on the coding region of DDC showed that both Tajima's D and Fu and Li's test as well as Fay and Wu's H test had values that deviated from what is expected under neutral expectation. In most populations, positive D or Fu and Li values are often interpreted as evidence for balancing selection, population subdivision, or decrease in population size many of which are factors that result in a relative overabundance of derived variants with intermediate frequencies. The H test, derived by Fay and Wu (2000) showed that in the presence of recombination, positive selection may be acting on the locus and the effect may be contributing to relative excess of intermediate- and high-frequency variants. However, an excess of derived alleles at high frequency, according to the H-test, may also be consistent with the effect of hitchhiking caused by directional selection. This hitchhiking may be occurring with other functionally important genes such as GSTs (described in Chapter 3) clustered the DDC locus (distance of about 3MB). Tatarenkov and Ayala (2007) observed hitchhiking effect on DDC in D. melanogaster and discussed that the complicated pattern of variation and pattern observed at the locus may be a result of an unusually high density of functionally important genes located around the locus. However, this further investigations is needed to ascertain the effect of these neighbouring genes on the overall pattern of nucleotide variation at the DDC locus. Sliding window analysis of genetic diversity Pi and Tajimas D values showed a fluctuating symmetry with both peaks coinciding with each other. We observed a low intraspecific but high interspecific divergence within the DDC locus of An. arabiensis as evident in the relatively high (8%) nonsynonymous site divergence between An. arabiensis and Ae. aegypti.

Another evolutionary scenario could be that, after several million years of evolution of the DDC gene, there may be an increase in the selective constraints on this locus. The nature of this constrains is not very clear. It may be as a result of environmental changes or it could be due to its functional role in many biological processes. Wittkopp et al. (2003b) recently studied the DDC locus in D. americana and D. novamexicana and found that there was no association between DDC and the observed melanisation pattern. The authors postulated that the lack of association between DDC and melanisation could be as a result of the DDC locus being functionally constrained due to its upstream role as a regulator of melanin precursors and also because it acts pleiotropically in many different biological pathways. For example, it is known that the DDC is alternatively spliced and produces two primary transcripts, one which is expressed in the central nervous system and may be necessary for neural transmission and a second, which is necessary for melanization, in hypodermal tissue (Morgan et al., 1986). The 4th exon, which Wittkopp et al. (2003b) surveyed was included in both of these transcripts and therefore that region of DDC may be constrained due to its role in several biological processes. This highlights the importance of the DDC in many biological mechanisms and one has to be cautious when linking the DDC locus to the expression of phenotypes or phenotypic patterns.

It has also been postulated that genes in evolutionary conserved signalling pathways affecting metabolism, nutritional control and stress response regulate longevity in novel organisms (Hopkins and Kramer 1992). The DDC has been shown to affect variation in *Drosophila* longevity (De Luca *et al.*, 2003) and also polymorphisms at DDC have been found to be associated with naturally occurring genetic variation in locomotor behaviour in *D. melanogaster* (Jordan *et al.*, 2006). Given the highly pleotropic effect of DDC on many phenotypes , the DDC can be excellent candidates for the generation and maintenance adaptive phenotypes in natural populations of *An. arabiensis*, although we recommend that further studies using much larger samples size to confirm this assertion.

Vectorial capacity is also dependent on the continuous transmission of pathogens including malaria parasites by *Anopheles* mosquitoes (Beerntsen *et al.*, 2000). Earlier studies have revealed the importance of melanisation response of *An. gambiae* to intrathoracically inoculated CM-Sephadex beads (Gorman and Paskewitz 1997; Gorman *et al.*, 1997; Paskewitz and Riehle 1994). As part of the defence mechanisms against malaria parasites, *An. gambiae* is able to encapsulate and melanise ookinetes

and early oocysts of the malaria parasite and kill them. The deposition of melanin during the encapsulation process is commonly initiated by the haemocytes and in some cases by melanogenic enzymes (phenoloxidases) circulating in the plasma (Nappi and Christensen 2005). This means that in terms of mosquito-parasite (in this case *An. arabiensis-Plasmodium*) interaction, the DDC known to be involved in this process (Figure 21) may be under intense mutational contrains due to the presence of malaria parasites.

Figure 21: Proposed melanic encapsulation pathway of mosquitoes.

In the proposed melanotic encapsulation pathway of mosquitoes, a serine protease (SP) proteolytically cleaves an inactive prophenoloxidase (ProPO) to form an active phenoloxidase (PO). Tyrosine, the initial substrate, then is hydroxylated by the activated PO to form dopa, a key branchpoint substrate. Next, dopa is oxidized by PO to form dopaquinone, which then forms a dopachrome intermediate. A dopachrome conversion enzyme (DCE) converts this intermediate to 5.6-dihydroxyindole, which subsequently is oxidized by PO to form indole-5,6-quinone. This latter compound forms eumelanin or cross-links with proteins to eventually produce a melanized capsule. Dopa also can be decarboxylated by dopa decarboxylase (DDC) to form dopamine, which forms another branch point. A PO-based oxidation of dopamine produces dopaminequinone, which can cross-link with proteins or form melanin via the indole pathway. Dopamine also may be acetylated by *N*-acetyltransferase (NAT) to form N-acetyldopamine (NADA). PO oxidation of NADA then produces NADA-quinone, which cross-links with other proteins to form a melanotic capsule. Solid arrows designate likely major pathways, and dashed arrows denote probable minor pathways. (Source: Beerntsen et al., 2000).

An. arabiensis is an important vector of malaria in many areas in Africa and malaria parasite challenge may put selective pressure on the DDC gene. These mutational constrains may generate nucleotide polymorphisms within the DDC locus. We postulate that positive selection within the coding region of the DDC gene is maintaining advantageous mutations in the gene so as to maintain its pleotropic functional roles in the adaptation of *An. arabiensis* populations in Sudan.

In conclusion, based on our result and the review of other studies, we can suggest that the DDC is a very important gene in the genome of *An. arabiensis* involved in many biological processes. This was evident in its pleotropic effect on many quantitative traits, whilst maintaining its functional role in many species after several million years of evolutionary time-scale. The DDC may be involved in generating diverse phenotypes through a single gene (epistasis) as way of adapting populations of *An. arabiensis* to heterogeneous environments. Further work is needed to examine the influence of the observed nucleotide changes on pigmentation phenotypes and the role of DDC in the generation of adaptive phenotypic traits in the *An. arabiensis*.

5.0 CHAPTER FIVE ECOLOGICAL IMPLICATIONS OF INTRASPECIFIC DIFFERENCES IN LARVAL MELANIZATION WITHIN POPULATIONS OF *ANOPHELES GAMBIAE S.L.*

5.1 ABSTRACT

This chapter details the effect of a phenotypic response in the form of larval pigmentation on the life-history traits of the malaria vector, An. gambiae. Larval melanism, i.e appearance of black pigment above the dorsal thoracic and abdominal integument, setae and head capsule) was induced by rearing concurrently larvae from iso-female lines in containers with dark and white backgrounds. A total of 900 larvae of the KISUMU laboratory strain and 400 progeny from females collected from Ghana were used for the induction experiment. There were no significant differences in the phenotypic response of the KISUMU and the Ghana samples so the two samples were pooled for all analysis. More than 70% (corrected for mortality) of larvae reared in the dark background developed darker pigmentation. The melanization rate measured as average grey values on a scale of 0 (black) - 225 (white) was 64.3 + 7.5 for melanic and 106 ± 8.6 for the non-melanic forms and these were significantly different (P<0.001). A higher proportion of larvae survived in white containers (N=456/510, 89.4%) than in Dark containers (N=372/510, 72.9%, P < 0.05) although the difference was not significant. Larvae reared in dark containers produced significantly larger pupae, 5.3 ± 2.2 mg (mean \pm S.E) than larvae reared in white, 3.0 + 1.5mg (P<0.001). There was considerable variation in juvenile melanization rates and these correlated with rearing habitat. Melanization in An. gambiae influenced developmental time and pupal weight. Darker melanic larvae had faster developmental time (13.9 days) than the non-melanic larvae (15.6 days). There were differences although not significant in the survivorship of the melanic and nonmelanic forms of larvae and this was consistent with a trade-off hypothesis. We demonstrated a bi-directional response of An. gambiae larvae to different rearing habitats and showed that phenotypic response was modulated by the elevated activity of DDC and PO in the melanised larvae relative to the parental during the induction of melanism. The effect of the phenotypic response on the fitness of the larvae is discussed.

5.2 INTRODUCTION

5.2.1 Phenotypic plasticity

Organisms live in complex environments that change over a variety of scales in space and time and they have evolved mechanisms that enable them to adapt to this changing variable environment. In some cases, the variability in environment stimulates individual organism to produce different phenotypes, a phenomenon referred to as phenotypic plasticity (Agrawal, 2001; Garland and Kelly 2006). This change in phenotype may take the form of changes in morphology, behavioural or physiological (Price,2006). For example, phenotypic plasticity induced morphological change in a planktonic crustacean, *Daphnia galeata* (Oda *et al.*, 2007), behavioural change in tits, *Parus* species on a Sweddish Island (Alatalo and Moreno 1987) as well physiological change (influence of colour preference by carotenoids in diet) as observed in the house finch, *Carpodacus mexicanus* (Hill, 1994). This changes may be important for the survival, reproduction and persistence of the organisms in their environment.

Phenotypic plasticity has been observed to be common in nature (Harvell 1990; Karban and Baldwin 1997; West-Eberhard, 2003). Previously, phenotypic plasticity within populations was thought to result solely from genetic differences among individuals. However, it is now known that in certain cases, phenotypes are not fixed but can be influenced by the environment in which an organism lives (Schlichting, 1986; Tollrian and Harvell 1999; Pigliucci, 2001; West-Eberhard, 2003). However, some questions still remain over the basis and significance of phenotypic plasticity in the life-history of organisms. Since it has been established that plasticity does not necessarily reflect genetic variation, the question is what is the link between natural selection and plasticity? Secondly, since it will be expected that alternative phenotypes within populations must have greater fitness in different environmental conditions, what will be the link between phenotypic plasticity and fitness measured by life-history traits? The life history of an organism in terms of evolutionary biology refers to how the various mechanisms that enables an organism to develop, reproduce and die in its habitat is shaped by natural selection (Roff, 1992). Examples of some life history traits include developmetal time, generation time, fecundity rate, mortality rate etc. It has been shown that an organisms life-history defines its finess because positive effects of plasticity on life-history enhances adaptation to environment (Stearne, 1992). For example, male body size can be important in male-male competition for females (Goldsmith and Alcork 1993) as well as for female choice of mates (Gilburn and Day 1994). Studies have also expounded the theory that trade-off in fitness between alternative phenotypes produced in response to different environments exist (Tufto, 2000; Sultan, 2000). Several studies in *Lepidoptera* and *Drosophila* species have linked some life history traits, such as short juvenile development time and large adult size as being highly relevant to fitness (Nylin and Gotthard 1998).

For example, it was shown that larval melanization in European map butterfly, *Araschnia levana* influences plasticity of development time in the 5th instar and adult size so that dark larvae have short 5th instar periods but instars 1–4 take longer relative to pale larvae and the difference is especially large in long day (Windig, 1999). In that same study, adult wing size from dark larvae were larger, especially in short day, resulting in a significant daylength by colour interaction (Windig, 1999). Also a study by Bochdanovits and De jong (2003) showed that under conditions of food deprivation two temperate and two tropical populations of *Drosophila melanogater* reared at high and low temperatures produced different adult body sizes coinciding with different chances of reaching adult stage. These changes in life-history traits in *Araschnia levana* and *Drosophila melanogater* may have important consequences for the survival and fitness of individuals in all stages.

Therefore increasing our knowledge of phenotypic plasticity for fitness components is important to gaining more insight into observed ecological differences among species (Ford and Seigel 1989).

5.2.2 Melanization

The study of pigmentation is one of the traits that is most amenable to exploring the connection between genotype and phenotype (Hoeskstra, 2006). Pigmentation is one of the most variable traits in the genus *Drosophila* (Wittkopp *et al.*, 2003b) and many studies have used *D. melanogaster* tools to help explain the genetic and developmental mechanisms involved in pigment patterns.

The present study is a follow-up from Chapter 4. The results from Chapter 4 indicated that the *Dopa decaboxylase* gene (DDC), a pigmentation gene important in the cuticular pigmentation in insects (refer to Figure 2 in Chapter 1) showed very little differentiation between specimens of *An. arabiensis* from Sudan, suggesting a selective constraint on the locus. We hypothesize that this pigmentation gene may be important in generating adaptive phenotypic traits (melanic patterns) in populations of *An. gambiae*.

In order to further understand the ecological implications of phenotypic plasticity in nature, we used a pigmentation system known as melanism which is defined as the appearance of wholly or mostly dark forms of an organism, to investigate the relationship between melanization in juvenile *An. gambiae* species and some life-history traits such as developmental time, survival rates and pupal weight.

Melanism plays important roles in insect ecology, including defence against parasites and predators (Siva-Jothy, 2000) e.g. winter moth larvae (Operophtera brumata) and in the peppeth moth (Biston betularia); mate signaling (Wiernasz, 1989; Ellers and Boggs 2002) e.g. populations of eastern mosquitofish (Gambusia holbrooki), and thermoregulation (Ottenheim et al., 1999) e.g. butterfly, Parnassius phoebus. Melanism is common in many different animal groups (Majerus et al., 1998). Studies has hypothesized that melanin is a complex polymer, and its synthesis may be hindered if ambient conditions limit the resource budget (Talloen et al., 2004). Other studies suggest that both faster growth and larger size may be traded off against one another or against potentially costly traits such as melanin production (Blois, 1978). For example, a study on the effect of melanization on the juvenile stages of the European map butterflies showed that melanized 5th instars grow more slowly than the pale ones (Windig, 1998). A recent study investigated interaction between melanization and drought-stress environment in Satyrine butterflies, Pararge aegenia and also indicated that darker larvae showed slower development and lower survival compared to pale larvae (Talloen et al., 2004).

5.2.3 Melanization in An. gambiae

Melanised forms of *An. gambiae* have been observed in nature and sampled in the desert scrub areas of Sudan (Aboud, 2003) and a dark species of *An. daudi* thought to be closely related species to *An. gambiae s.l.* has also been observed in the same area. The ability of *Anopheles* to change colour (homochromy) in response to the background colour of rearing trays was first demostrated by Fuzeau-Braesch (1972). This prompted other studies in laboratory colonies of *Anopheles* mosquitoes; in this case *An. albimanus* and *An. quadrimaculatus* (Benedict *et al.*, 1996) demonstrated homochromy but *Culex* and *Aedes* species did not (Benedict *et al.*, 1987). However, the ecological significance of this observed phenomenon and its effect on the fitness components of the species was never investigated in these mosquitoes.

To gain more insight into the phenomenon of phenotypic plasticity and its effect on life history traits in populations of *An. gambiae*, I formulated the following hypotheses:

1) As a result of the cost involved in the production of melanin, phenotypic response in the form of larval pigmentation (melanization) induced by environmental colour cues will have effect on the survival, development time and pupal weight of *An. gambiae.*

2) Larval pigmentation (melanization) in the juvenile stages of *An. gambiae* larvae is a plastic response to environmentally induced stimulus as a way of an adaptation to heterogeneous habitats. To investigate this, we induced homochromy in inbred lines of *An. gambiae* larvae and looked for signatures of bi-directional selection.

3) We expect to find that populations collected from different localities (location effect) will respond differently to the same environmental stimulus with resultant effect on their life history traits. To investigate this hypothesis, we used laboratory colonies (KISUMU strain) of *An. gambiae* and as well as field samples from northern Ghana.

4) Larval pigmentation is modulated by genes that are involved in the melanin production pathway. To investigate this hypothesis, we did gene expression analysis the melanised as well as non-melanised larvae using two candidate genes, *Dopa decaboxylase* (DDC) and *Phenoloxidase* (PO) important in the melanin production pathway to ascertain their role in larval pigmentation.

The present study is the first of a kind that investigated the effect of melanization on the life-history traits of juvenile stages of *An. gambiae*, an important malaria vector in Africa.

5.3 MATERIALS AND METHODS

5.3.1 Study species

5.3.1.1 Laboratory colonies of KIS strain An. arabiensis

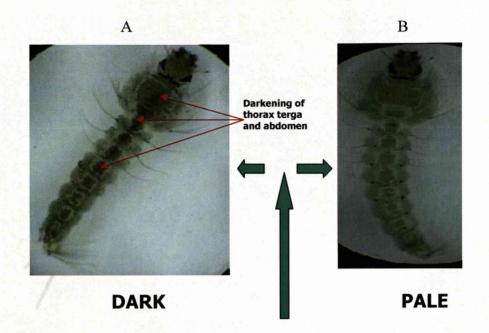
Laboratory colonies of the Kisumu strain of *An. gambiae* were used to set up isofemale lines for the induction experiment. The Kisumu strain (S-form of *An. gambiae*) originated from Kisumu, Western Kenya, and is susceptible to permethrin (Vulule *et al.*, 1994). They were established in the insectary of the Liverpool School of Tropical Medicine, UK and provided to me by Amy Lynd.

5.3.1.2 Field colonies of An. gambiae

Additional *An. gambiae s.l.* adults were collected resting indoor from northern Ghana in June 2006 by Mr Victor Asoala using indoor resting collecting techniques. The gravid females were kept in cages in the insectary of Navrongo Health Research Centre in Ghana and allowed to lay eggs. The eggs were then transported to Liverpool School of Tropical Medicine by courier service and immediately placed in distilled water. Larvae were reared through the first generation of adults and iso-female lines used for the induction experiments. The iso-female lines were used in the experiment to provide a common genetic background to the population under study.

Information on the procedure for laboratory induction experiments and larval melanization measurements as well the molecular analysis detailed in Chapter 2.

5.4 STATISTICAL ANALYSIS


Simple t-test was used to estimate significance of the differences in the experimental variables. Multifactor Analysis of variance (ANOVA) was used in EPIIFO statistical software to evaluate the influence of larval melanization on the life history characters. GraphPad Prism, version 5.01 software (www.graphpad.com) was used to plot graphs of the life-history traits. A comparative analysis of the effect of larval pigmentation on some life history traits of laboratory (Kisumu samples) and field (Ghana samples) did not show location effect (See results). We therefore pooled the data from Ghana

samples and Kisumu strain for our analysis to increase the power of the analysis. We used the Delta Delta (Ct) method (Livak and Schmittgen 2001) to relatively quantify and determine the relative gene expression profiling. In this method, the threshold cycles of the gene of interest and a reference or housekeeping gene are subtracted to yield a Delta Ct value for each RNA sample. The difference between the Delta Ct values for an experimental RNA sample and control RNA sample (Delta Delta Ct) is directly related to the relative amount of product in the two samples if and only if the PCR amplification efficiencies of the gene of interest and the reference gene are similar.

5.5 **RESULTS**

5.5.1 Rearing environmental conditions and phenotypic response of larvae collected from different locations

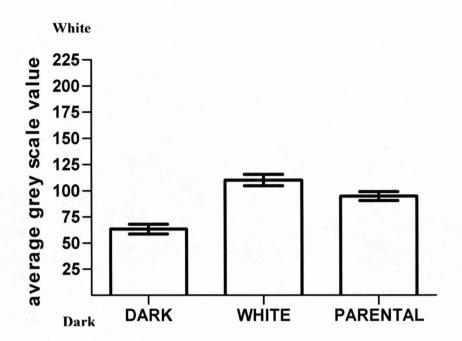
A total of 1300 larvae of *An. gambiae* were used for the induction experiment. These comprised, 69.2%, (900) of KISUMU strain and 30.3%, (400) of field samples from Ghana. Visual classification of dark and pale larvae is based on the appearance of larvae as shown in Figure 22. In the study, over 70% of larvae in the dark rearing environment were scored as dark morphs. Table 1 shows the temperature, pH and other life-history traits measured for KISUMU samples and field (Ghana) samples. Both KISUMU and Ghana samples showed similar phenotypic response to the colour stimulus in the three rearing environments (Table 8). There was no significant difference (P>0.05) between the rearing water temperature and pH of the rearing containers. Average temperature in the dark container for KISUMU and Ghana samples were 28.1 ± 0.1 and 28.2 ± 0.1 respectively whilst that for the white container averaged 27.8 ± 0.5 and 28.1 ± 0.06 respectively. No dark larvae were observed in the rearing containers with the white background (Table 8).

PARENTAL

Figure 22: Observed colour variation of An. gambiae larvae induced in different rearing colour environments

A) dark larvae reared in dark container, B) pale larvae reared in white containers and C) parental larvae reared in transparent larval bowls (no colour background)

Variable	DARK			WHITE			
	KISUMU strain	Ghana samples	Test of location effect	KISUMU strain	Ghana samples	Test of location effect	
	(n=360)	(n=150)	(t-test)	(n=360)	(n=150)	(t-test)	
			P value			P value	
Water temperature	28.1 <u>+</u> 0.1	28.2 <u>+</u> 0.1	0.294 (NS)	27.8 <u>+</u> 0.5	28.05 <u>+</u> 0.06	0.158 (NS)	
рН	7.2 ± 0.02	7.3 <u>+</u> 0.01	0.147 (NS)	7.2 <u>+</u> 0.04	7.2 <u>+</u> 0.02	0.373 (NS)	
% survival rate	74.7 ± 17.3	71.2 <u>+</u> 14.2	0.197 (NS)	90.9 <u>+</u> 7.6	87.6 <u>+</u> 4.3	0.097 (NS)	
Larval development time (days)	13.6 <u>+</u> 1.5	14.2 <u>+</u> 1.6	0.187 (NS)	16.4 <u>+</u> 1 .1	14.8 <u>+</u> 0.8	0.345 (NS)	
Pupal weight (mg)	5.1 <u>+</u> 2.9	5.5 ± 1.5	0.313 (NS)	2.8 <u>+</u> 1.6	3.2 <u>+</u> 1.1	0.621 (NS)	
Melanism score (%)	76.2 <u>+</u> 8.6	73.5 <u>+</u> 7.7	0.064 (NS)	0.00	0.00	-	
Degree of melanization (av.grey values)	63.5 <u>+</u> 9.0	65.1 <u>+</u> 5.3	0.212 (NS)	110 <u>+</u> 10.8	102 <u>+</u> 6.4	0.390 (NS)	


Table 8: Temperature, pH and other life history traits estimated for laboratorysamples (KISUMU strain) and Ghana samples of An. gambiae rearedin DARK and WHITE background containers.

Student t- test was used and significance determined at 95% confidence interval, P>0.05, i.e NS=test not significant

NB: A total of 180 KISUMU and 100 larvae from Ghana were used as controls (Parentals)

5.5.2 Effect of rearing environment on larval pigmentation of An. gambiae

In all experiments, there was a significant effect of colour cues on the phenotypic responses of *An. gambiae* larvae (Figure 22). Figure 23 shows the effect of rearing environment on larval pigmentation. There was a significant difference (P<0.003) in the degree of melanization between the dark and pale larvae. Larval pigmentation was most observable at the 4th instar stage of development. The results showed a bidirectional selection in that larvae in the dark container became more melanised, whereas those reared in the white containers became much paler than parentals (Figure 23). The differences observed among treatments indicates that background colour induced a plastic response which in turn affect some life-history traits such as developmental time, pupal weight and to a less extent the survival rate of the larvae (Figure 24A-C). There was variation in the pattern of larval pigmentation as shown in Figure 25. There was a significant difference (P<0.05) between the average grey values estimated from the Head/thorax and the rest of the body. The Head/thorax region was the most melanised part of the larval body.

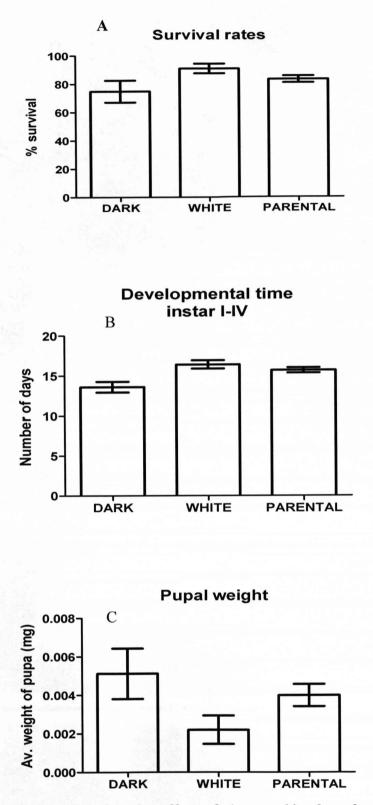
Figure 23: The effect of rearing environment on *An. gambiae* larval pigmentation measured as average grey value on a scale of 0-225. (0=black and 225=white)

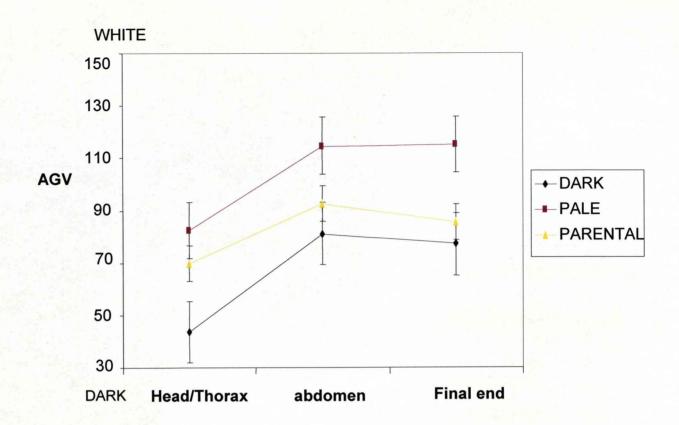
X-axis represents rearing environment categories of DARK, WHITE and TRANSPARENT containers

5.5.3 Effect of larval melanization on developmental time, survival rates and pupal weight of An. gambiae

The effect of larval pigmentation on the life history traits of *An. gambiae* is shown in Figures 24A-C. The results of our study showed that dark larvae reared in dark containers produced significantly larger pupae, 5.3 ± 2.2 mg than larvae reared in white, 3.0 ± 1.5 mg (P<0.001). However, the dark larvae had a lower survival rates compared to the pale larvae although the values were not statistically significant (Figure 24A). Dark larvae in the dark containers developed much faster than the pale larvae ones in the white containers (Figure 24B) and difference between the mean developmental times was significant (P<0.05).

There was variation in the life-history traits estimated for larvae reared in different environments. Larvae from dark containers also had much faster average development time (13.9 days) than larvae in the white containers (15.6 days). Results of the ANOVA test (Table 9) showed that the rearing environment did affect developmental time, DT (F=10.89, P<0.011), pupal weight (F=7.19, P<0.028), larval melanization (F=44.12, P<0006) and to a less extent the survival rates (F=3.68, P<0.091).




Figure 24: Graphs showing the effect of *An. gambiae* larval coloration on A) survival rate B) developmental time and C) pupal weight.

X-axis represents rearing larval categories. Error bars indicate level of significance

Trait	Source	Sum of squares	df	F	P value
Developmental time (Days)	between	19.6	1	10.89	<0.011
	error	14.4	8		
	total	34.0	9		
Pupal weight (mg)	between	26.9	1	7.19	<0.028
	error	29.9	8		
	total	56.8	9		
Melanization (Degree of darkening)	between	4364	1	44.12	<0.0006
	error	593.4	6		
	total	4957	7		
Survival rate (%)	between	655.6	1	3.68	0.091
	error	1425	8		
	total	20.81	9		

Table 9: Results of ANOVA testing the effects of rearing environment (i.e. dark, white or normal) on larval developmental time, pupal weight, degree of melanization and survival rates of An. gambiae.

F statistics (F) fixed effects, (df) degree of freedom

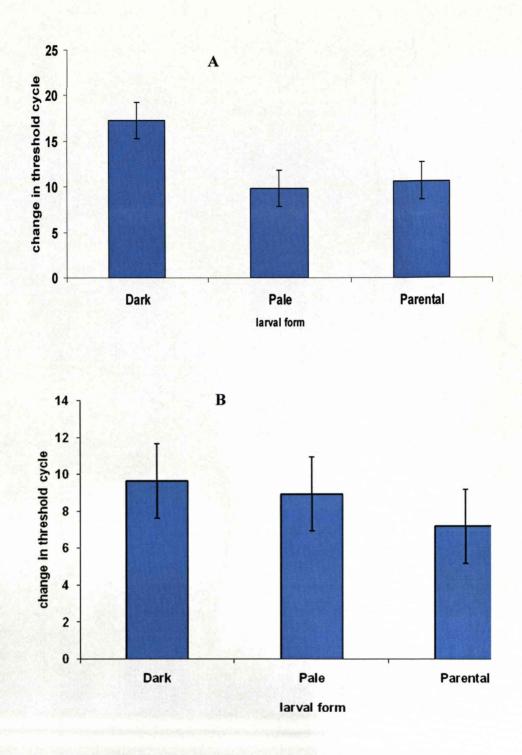


Figure 25: Plasticity for larval melanisation in population of *An. gambiae* measured as AGV (average grey value) on the y-axis.

Measurement was made on a scale of 0-225, dark –white). Error bars show standard error

5.5.4 Relative gene expression profiling of DDC and PO

In order to determine the potential role of DDC and PO in pigment synthesis of the induced larvae, we examined the DDC and PO activity in melanised (dark), nonmelanised (pale) and parental larvae (control) Figure 26. The average threshold cycle (Δt) between the melanised and non-melanised larvae was significantly different (P<0.05). The pattern observed showed that there was 33% increase of DDC activity in the melanised larvae compared to the parental with a corresponding decrease of about 4% in the non-melanised larvae. However, the PO activity increased by about 20% in the melanised and 13% in non-melanised larvae relative to the parental (control) larvae.

Figure 26: RT-PCR analysis of A) DDC and B) PO showing average Delta C_T values in the melanised (dark), non-melanised (pale) and parental (control) forms of *An. gambiae*.

Error bars are standard error from the mean at 95% CI (confidence interval). Change in threshold cycle (Δt) of Delta C_T is shown on the y-axis

5.6 **DISCUSSION**

The ecological distribution of a species is often influenced by the individual pattern of response to environment for traits that contribute to fitness (Sultan 2001). For example, at the population level, species may be excluded from certain environmental conditions in which individuals produce few or poor-quality offprings, and hence fail to establish populations (Futuyma and Moreno 1988). Phenotypic plasticity is now recognized as the major source of variation in nature (Ford and Seigel 1989; Travis 1994). However, little is known about the nature of species differences in plasticity for fitness-related traits (Lönn et al., 19198; Roskam and Brakefield 1999). Issues about the evolution of adaptive phenotypic plasticity, the underlying genetic mechanisms and the way plasticity is affected by natural selection in different environments remains a subject of much debate (Via et al., 1995). For example, in terms of adaptation to environment, individuals can become more adapted to different parts of the environment or more so individuals can evolve plastic phenotypes that that are adapted to the extreme ends of the environments (Scheiner and Callahan 1999). This was illustrated in a study by Buskirk et al. (1997) where it was shown that when confronted with a dragonfly predator Anax, Pseudacris triseriata tadpoles adjusted their tail shape but not body shape in the direction of selection imposed by the predator. This indicates that phenotypic plasticity of some morphological traits can evolved under intermittent selection imposed by the inducer (predator, temperature etc.). How this selection will affect fitness components such as survival and growth is not clear. Therefore increasing our understanding of phenotypic plasticity for fitness components will provide the framework for gaining more insight into ecological differences among species at the population level.

The results of the present study showed that larval pigmentation can be induced in *An.* gambiae larvae as phenotypic response to different colour environments. This phenomenon i.e the ability of organisms to alter its morphology in different environments has been demonstrated in other animals. Examples include the predator-induced morphological defences in *Daphnia pulex* (Schneider and Berrigan 1998); induced melanization in the juvenile stages of the European map butterfly (*Araschnia levana*) and the peacock butterfly (*Inachis io*) (Windig, 1999); coat colour polymorphisms in rock pocket mice, *Chaetodipus intermedius* (Majerus and Mundy

2003) and quite recently in some species of *Anopheles* mosquitoes (Benedict *et al.*, 1987, 1996a). It is known that when *Anopheles* is reared on an illuminated dark background, larvae darken significantly and *Anopheles* background-colour can stimulated larval colour change (Benedict *et al.*, 1996). *An. gambiae* and its closely related species in has been shown to have marked increase in melanism in Sudan (Aboud, 2003). However, none of previous investigators had tested the effect of induced melanisation on life-history traits in populations of *An. gambiae*.

The study also showed that different environmental colour cues can induce a bidirectional effect on An. gambiae population (Figure 23). Over 70% of dark and pale larvae were selected in dark and white background containers respectively. That is, larvae reared in a white rearing container resulted in paler larvae and larvae reared in black rearing container resulted in darker larvae compared to the parental larvae. This observation can be viewed in the context of adaptive evolution in heterogeneous environments which is very important in contemporary adaptation in natural populations (Reznick and Ghalambor 2001). Extreme environments have not only been shown to disrupt normal development of organism but also induce large phenotypic changes in new directions, and these changes simultaneously exert strong phenotypic selection that favours changes in these directions (Bradshaw and Hardwick 1989; Jablonka et al., 1995). However, the ecological significance of these phenotypic changes remains to be investigated. Other environmental factors including temperature (Brady and Jones 1994; Bayoh and Lindsay, 2003, 2004; Lyimo et al., 1992 ; Stillwell et al., 2007), food availability and photoperiod (Kooi and Brakefield 1996; Reilly et al., 2006) and stress (Badyaev, 2005) have been known to induce variation in populations of organism including An. gambiae (Bayoh and Lindsay, 2003, 2004; Lyimo et al., 2002). Also, Lehmann et al. (2006) recently demonstrated that there is a genetic component to the variation observed in the developmental time, adult size and longevity of starved wild populations of An. gambiae. However, we did not think that there was any genetic component in the colour variation observed in this study neither do we think that any of these factors listed above affected the pattern of pigmentation observed because these environmental factors were kept constant during the induction experiment.

We hypothesize that since melanin is a complex polymer, its synthesis may be constrained if ambient conditions limit the resource budget, and in this case one will expect a trade-off between melanisation and its fitness components. In this study, larvae in the dark environment produced larger pupae than those in the white environment at a relatively short developmental time. However, dark larvae had a much lower survival rates than pale.

Although, one will expect that if the theory 'bigger is better' is true, then melanised larvae should have a much better chance of adapting to the dark rearing environment. However, this study indicated the reverse i.e smaller pale non-melanised larvae induced in white containers had high survival rates than the large darker individuals reared in black containers. Furthermore the with the exception of pupal weight, estimates of life-history traits of parental larvae reared in normal containers and those reared in the white containers were not significantly different (Figure 24).

There appears to be a trade-off between melanin production and life history traits such that dark individuals had faster development time but had low survival rates. This finding is in contrast to what has been found in other species such as European map butterflies (Windig, 1998) and recently in Satyrine butterflies (Talloen, 2004) where melanised larvae grew slower than the non-melanized ones. However, several studies in Lepidoptera and Drosophila species have shown that short juvenile development time and large adult size are highly relevant to fitness (Nylin and Gotthard 1998), and so is variation in melanization (Majerus, 1998). Therefore, in the present study, if the dark colour induced in the larvae is at least initially is a predator avoidance behaviour, then one would expect that naturally, they will have a much higher survival rates than the pale or parental larvae whose colour makes them vulnerable to potential predators. However, in this study, larvae reared in the white containers also produced pale larvae in responce to the rearing white colour background. This presupposes that with the exception of larvae reared in transparent containers (controls), the colour change of larvae to the dark and pale forms may be an adaptation in response to the background colour for reason of either camouflaging (crypsis) themselves against predators or some other reasons which needs further investigation. However, the low survival rates of dark larvae are surprising in this study. The possible explanation is that since melanin production is costly, more energy in the form of food is used in its production during the course of the development of the larvae and by the 4^{th} stages this competition for food leads to the death of many larvae in the dark environment. This hypothesis needs to be further investigated in future studies. In adult moths of *Ephestia kuhniella*, melanised strains are more active relative to pale strain due to the presence of dopamine, a precursor of melanin and also a neurotransmitter.

Studies in Lepidoptera have suggested that both faster growth and larger size may be traded off against one another or against costly traits such as melanin production, which requires protein (Blois, 1978). Significant amount of dark pigmentation was observed on the head/thorax compared to the other segments of the body of the 4th instar larvae reared in containers with dark background. The adaptive significance of this pattern needs further elucidation.

Fast growth rate of dark 4th instars, relative to pale larvae observed in An. gambiae may be the consequence of their coloration. It is well known that dark insects such as butterflies heat up fast and have high growth rates (Dennis, 1993). Although temperature has been shown to have effect on larval development of An. gambiae (Bayoh and Lindsay 2004; Lyimo et al., 1992), in this particular study the temperature was not significantly different in the rearing environments and therefore the effect of temperature could be discounted here. The study detected a increase of both DDC and PO Delta C_T values in the melanised larvae compared to the parental larvae. Delta C_{T} values correlates with the relative amount of RNA produced in the sample during the RT-PCR analysis. These two genes are important in the melanization pathway (Figure 2) and the DDC has been shown to be expressed during colour pattern formation in melanic tiger swallowtail butterflies (Koch et al., 1998) and in the tanning of the egg chorion of Ae. aegypti (Li and Li 2006). This is the first of a study that has showed the direct link between elevated DDC and PO activity and formation of melanised phenotypes of An. gambiae under different environmental colour cues. However, considering the fact that our analysis involved a low sample size, we recommend a much detailed study in this area of research to ascertain the veracity of our finding.

An. gambiae s.s. is the most widely distributed and the most efficient and important vector of malaria in Africa (Gilles and Coetzee 1987). This species is most versatile

and most adaptable to many heterogeneous environments and considering the fact that the species breeds in small temporary pools which easily dries out, the need to maximize resources for fast growth and protection against predators is paramount. We hypothesize that unlike other organisms which have more permanent breeding sites where predation may not be high, the phenotypic plasticity (melanization of larvae) demostrated in response to colour cues by *An. gambiae* may be a costly but necessary adaptation to developmental constrains such as predation. The study concludes that the generation of adaptive melanised phenotypes is important for the survival of *An. gambiae* in nature and that may explain the selective constrains on DDC gene observed in Chapter 4. Melanism has been shown to be a dynamic trait both within and between larval instars and because the expression changes with the development of the larvae it means that melanism is likely to be a highly dynamic and plastic trait, and this has potential implications not only for quantifying melanism in individual insects, but also for understanding the adaptive value of melanism and the selection pressures associated with it.

CHAPTER 6 GENERAL DISCUSSION AND CONCLUSIONS

6.1. Natural selection and maintenance of nucleotide polymorphisms within Glutathione s-transferases in *An. arabiensis*

One of the important aims of evolutionary biology is to understand the various forces that control how populations and species evolve. In terms of molecular evolution, this involves understanding the contribution of genetic drift and natural selection to patterns of DNA variation (Kimura and Takahata 1983; Gillespie, 1991). Of interest to the evolutionary biologist in terms of adaptive evolution is the role of natural selection in shaping nucleotide polymorphisms of genes within the genome. Scanning the genome of *An. arabiensis* to identify genes that are important for fitness and adaptation is therefore crucial for understanding mechanisms involved in adaptive population divergence as well as the evolutionary history of the species. One of the traditional methods of investigating this is to use intra and interspecific comparisons of DNA sequence variation within and between species and determine 'outlier' loci (loci effected directly by positive selection). These loci (outliers) are scattered throughout the genome are responsible for deviant level of variation relative to the rest of the genome and in most cases diverge from empirical neutral expectations (Luikart *et al.*, 2003).

In this study we used a multi-locus approach to investigate locus-specific rather than genome-wide effects of DNA variation on the evolution of the species. This is because, it is only locus-specific effects that help to identify genes that contribute to fitness and hence the adaptation of the species.

6.1.1. Intraspecific variation between An. arabiensis populations

Intra-specific comparison of *An. arabiensis* samples provided marked evidence of sequence conservation of GSTs within the Cellia group with the exception of the GSTɛ2 locus which showed high percentage divergence. This conservation was evident in the fact that both *An. gambiae* and *An. arabiensis* share over 98% sequence identity in the coding region of all four GST loci. With the exception of locus GSTɛ2 which showed 86% sequence identity between *An. gambiae* and *An. stephensi*, all the

other three loci, GSTE1, GSTE6, GSTE8 showed between 97-98% identities. The sequence conservation observed implies that gene duplication events that resulted in the cluster of GST genes on chromosome 3R are likely to predate the division of Cellia from other anopheline sub-groupings i.e apparent radiation occurred before Cellia split (Besansky and Fahey 1997; Krzywinski et al., 2001; Besansky et al., 2003; Turner et al., 2005). GSTs have been implicated in insecticide resistance in many species of insects (Fournier et al., 1992; Tang and Tu 1994; Collins et al., 2000; Hemingway 2000; Hemingway and Ranson, 2000; Lumjuan et al., 2005). Similar findings were observed in a study by Low et al. (2007) who showed that GST orthologs and 24 duplication events occurred within genus Drosophila and subgenera Sophophora which include D. melanogaster species group. Also Lumjuan et al. (2007) confirmed that the GST supergene family is conserved between Ae. aegypti and An. gambiae and that several clear orthologs could be identified between the two but not in Drosophila. This means that over several million years since An. arabiensis and other members of the Cellia group diverge, GST gene cluster have undergone duplication events and still has slowly diverging orthologs. Gene duplication involved duplication of a region of DNA that contains a gene; it may occur as an error in during homologous recombination, a retrotransposition event, or duplication of an entire chromosome (Zhang, 2003). Gene duplication is known to be fundamental to the creation of substantial heterogeneity among the genomes of organisms (Ohta 2003; Moore and Purugganan 2003). This is because it is known that the two genes that exist after a gene duplication event (paralog genes) usually code for proteins with a different function and/or structure or loose their function. GST gene family is made up of a cluster of genes many of which are involved in detoxification of endogenous and xenobiotic substances including insecticides (Huang, 1998). This means that many of this genes may be under enomours selective pressure and mutational constraints. We infer from our findings that the occurrence of duplication events prior to the split of the Cellia (including An. arabiensis) may be necessary in the context of adaptation of this group of mosquitoes to heterogenous environments.

Also of interest is the high sequence divergence observed at the GST ε 2 locus. However, although GST ε 1 locus (region sequenced was shorter in length in this study) showed lower nucleotide diversity in the coding region (π =0.005) in our study, that for GST ε 2 was much higher (π =0.015) than expected. The pattern of nucleotide variation observed at this (i.e GST ε 2) locus can be explained against the background that some authors have specifically implicated GST ε 2 in the detoxifixation of insecticides including DDT in *An. gambiae* and *Ae. aegypti* (Ranson *et al.*, 2001; Ding *et al.*, 2003; Lumjuan *et al.*, 2005) and therefore this gene may be under some insecticide selective pressure as a result of its role in the generation of adaptive traits in the context of insecticide resistance. Generally, based on our findings and the review from other authors, one can deduce that the GST gene cluster may have special functions and these unique functions or temporal expression patterns may impose significant selective constraints on the cluster and this selective pressure may be important in shaping nucleotide polymorphisms in populations of *An. arabiensis*.

The study also found that GSTE8 locus in *An. arabiensis* had between 6-13% identities to other GSTs in the Epsilon class. This percentage identity was less than what Ortelli *et al.*, 2003 found in *An. gambiae* and much less than the 40% identity criterion (Hayes and Pulford 1995) required for the inclusion of GSTs into the Epsilon class. Although protein products of GSTe8 reacted with anti-sera raised against Epsilon class GSTs (Ding *et al.*, 2003), in line with the evidence from our study, we recommend that the classification of this particular gene as a member of the Epsilon class requires further investigation.

Another issue of concern in the classification of GSTs is the occurrence of pseudogenes (non-functional genes) within the GST clusters. Ding *et al.*, (2003) detected three unclassified GSTs in *An. gambiae* and clear orthologues of each of these unclassified genes were also found in *Ae. aegypti* mosquitoes (Lumjuan *et al.*, 2007). Again Lumjuan *et al.* (2007) did not detect transcript for GSTe1 in *Ae. aegypti* and therefore classified GSTe1 as a non-transcribed pseudogene. This means that pseudogenes do occur within the GST cluster. Considering the fact that GST orthologues are common within the Cellia, one has to be careful in distinguishing pseudogenes from functional one. With the exception of GSTe8, the striking parallel or homology observed in the GST sequences of *An. arabiensis, An. gambiae* and *An. stephensi* suggest that these genes may be undergoing parallel evolution in nature (independent evolution of similar traits starting from a similar ancestor due to similar environment or other evolutionary pressures). This phenomenon of parallel evolution is frequently seen in instances of insecticide resistance (Low *et al.*, 2007) and

therefore its importance in the evolution of GSTs, some of which has been known to detoxify insecticides cannot be overemphasized.

The study also detected evidence of weak selection at the GST loci as evident by the departure from expectations of Tajima's values under the standard neutral model. This departure was significant at some regions (Figures 13 & 14) of GST ϵ 1, GST ϵ 6 and GST ϵ 8 genes when a detailed scan of the entire gene was done using the sliding window-plot. However, one has to be cautious in interpreting this data because we hypothesize that the lack of significance of Tajima's values may be due to the reduction in the power of the test as a result of the low sample sizes used in the analysis. Further studies using much larger sample may be needed to confirm our finding. This effect may be more apparent in the GST ϵ 1 because we unable to obtain the full length of the gene.

The rejection of the neutral model in *An. arabiensis* populations may reflect the combined action of natural selection and demographic forces shaping genome variability patterns of *An. arabiensis* populations. The idea of demographic forces affecting the pattern of nucleotide variability of the species seems to play on well since the species has been shown recently to inhabit novel habitats (Donnelly and Townson 2000). However, we can rule out the effect of demographic forces including population expansion on the observed nucleotide variation because the effects of demographic forces are expected to be uniform across the genome whereas selection is locus-specific. Therefore the pattern of nucleotide variation observed at the three loci (i.e. GSTE2, GSTE6 and GSTE8) may be suggestive of the action of selection on the loci.

We also estimated recombination rates for GST genes and again based on the four gamete test (Hudson and Kaplan 1985), GST ϵ 2 showed twice the number of recombination events/generation (R_M=10) in comparison with that of GST ϵ 6 (R_M=5) and GST ϵ 8 (R_M=5). This means that more recombination events have occurred between sites within the GST ϵ 2 gene in their past history. In human, multiple recombination events have been known to cause heterogeneity of thalassemia haplotypes (Fodde *et al.*, 1991). As discussed earlier, GST ϵ 2 has been specifically implicated in the detoxification of DDT and other insecticides. Based on this premix,

we hypothesize that the multiple recombination events in the presence of selection i.e. albeit insecticide pressure may had led to the great degree of genetic divergence observed at the locus. If this is generally true, this finding may reflect the fact that a high rate of substitution is required at locus GST ϵ 2 in order to generate adaptive phenotypes within populations of *An. arabiensis* in the context of the development of insecticide resistance phenotypes. Also we suggest that the non-uniformity of recombination rates estimated for the GST loci across the genome indicates that these genes evolve independently.

The pattern of linkage disequilibrium observed at the GST loci in this study is quite interesting. This is because it is known that how fast a pair of alleles at a given locus approach linkage equilibrium is primarily a function of the recombination rate between the two loci and recombination is known to reduce linkage disequilibrium. Based on this premix, one will expect a much reduced non-random associations between the GST loci in the presence of recombination. However, this was not the case in our findings. We detected evidence of linkage disequilibrium within the GST loci and GSTE8 locus much more showed significant linkage disequilibrium after Bonferroni correction in the presence of recombination. Although, it may be difficult to assign any one reason for the observed pattern, but we can attempt to provide some explanations based on the physical location of these loci within the genome and the effect of selection. An. gambiae epsilon class GSTs are located within inversion 3Ra of chromosome 3. Chromosomal inversions have been found to be associated with disequilibrium among loci and they have the potential to lock up co-adapted genes by suppression recombination (Hoffmann et al., 2004). Therefore the observed pattern is to be expected for genes closely linked to inversion breakpoints (Andolfatto et al., 1999; Andolfatto and Kreitman 2000). Inversions are frequent within An. gambiae genome and their frequency varies in the sample collection sites. Ethiopia has the highest An. gambiae 3Ra inversion frequency of 0-35% (Abose et al., 1998) and as discussed in the next section (interpopulation comparisons), Ethiopia populations of An. arabiensis are highly differentiated from the rest of the samples. Also in Sudan, the degree of polymorphism for chromosomal paracentric inversion 3Ra was high compared to that of An. gambiae (Petrarca et al., 2000). It is known that inversions are able to maintain favourable groups of alleles at loci within them (Coluzzi, 1982) and therefore they are expected to influence recombination and linkage disequilibrium and hence the general pattern of DNA variation. It is not known how far inversion frequencies may have influenced the pattern of nucleotide variation observed in our sampling sites. Hitherto, the role of inversions in DNA variation has been overlooked in many cases and we recommend that this needs to be considered in interpreting DNA sequence variation.

The non-random association of alleles within the GST loci will be important for Linkage disequilibrium (LD) mapping since LD mapping relies on the markers being in disequilibrium to the genes that aids in the expression of the phenotypes (Black *et al.*, 2008) and for a pest species such as *An. arabiensis*, linkage disequilibrium within GSTs will facilitate their being used for genotype-phenotype mapping. Linkage mapping using single nucleotide polymorphisms (SNPs) clustered around detoxification enzymes as cytochrome P450s and GSTs is currently underway and information from our study will help formulate new approaches to LD mapping.

6.1.2. Interpopulation comparison of An. arabiensis

いいたのでいたので、あるないという

The study showed that the populations of *An. arabiensis* from Ethiopia were highly differentiated from the rest of the samples. This was evident from the significant genetic differentiation, Fst estimates observed in comparison with samples from Sudan, Malawi and Tanzania. This pattern of differentiation was consistent with findings of other microsatellite-based and mtDNA studies (Lehmann *et al.*, 1997; Donnelly and Townson 2000; Kayondo *et al.*, 2005). As proposed by Donnelly and Townson (2000), we will expect a locus under locus-specific selection to have high Fst values i.e values that will exceed the expected variance (Figure 27).

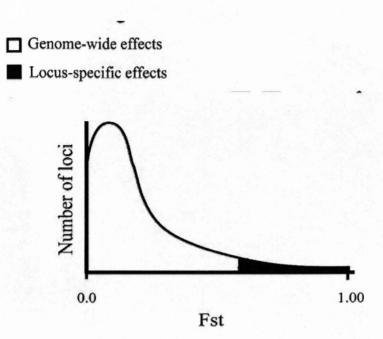


Figure 27: Hypothetical sampling distributions of F_{st} among loci distributed throughout a genome. Fst follows a Poisson (random) distribution owing largely to genome-wide effects. However, Fst at the locus that is under selection will exceed the expected variance because it is subject to locus specific selection and will fall within the black region of the sampling distribution (Source: Modified from Black *et al.*, 2001)

The study also showed extensive gene flow between populations of *An. arabiensis*. Microsatellite-based analysis also showed high level of gene flow estimated for *An. arabiensis* in Tanzania and Ethiopia (Donnelly *et al.*, 2004). This pattern is most worrying because in terms of control of the vector, it may facilitate the spread of insecticide resistant genes which if under selection will spread rapidly.

The isolation of Ethiopian populations from the rest may be due to the effect of Great Rift Valley which restricted migration and hence gene flow between *An. arabiensis* populations. Ethiopia occupies most of the Horn of Africa and it shares frontiers with Sudan, Kenya, Somalia, and Djibouti. The major physiographic features are a massive highland complex of mountains and plateaus divided by the Great Rift Valley and surrounded by lowlands along the periphery. Much of the Ethiopian landmass is part of the East African Rift Plateau. Some microsatellite and mitochondrial DNA based studies has implicated the Great Rift Valley in East Africa as an important barrier to gene flow in *An. gambiae* (Kamau *et al.*, 1998, 1999) and in *An. arabiensis* populations (Donnelly and Townson 2000). The Great Rift Valley has also been shown to affect the population structure of *An. arabiensis* populations in Ethiopia (Nyanjom *et al.*,2003). The specimens used for this analysis were collected from different geographical areas, i.e. Sudan, Ethiopia, Tanzania and Malawi where the pressure of insecticide usage may be different. We propose that selection at the GST loci due to insecticide pressure will lead to alleles being fixed in the different populations and therefore create an excess of heterozygotes in the population. We might therefore expect estimates of Fst to be far greater than zero (Figure 27). However, one must be careful in interpreting the high Fst estimates because the high values may reflect the choice and location of loci within the genome.

Over several million years of the evolution of GST genes, apparent sequence conservation within the Cellia group may be indicative of the importance of this gene cluster in adaptive response to selective pressure in heterogeneous environments. Epsilon class multigene family represent an example of genes that may have provided important insight into the recent population history that microsatellites and mtDNA variation have not been able to reveal and it is hoped that future studies will take advantage of this insight whenever possible.

In conclusion, based on our findings we postulate the gene duplication events which occurred within the Cellia group of mosquitoes over the evolutionary time- scale may predate the split of the subgenus such that the nucleotide sequence were much conserved within the subgenus. We also demonstrated that GSTe2 may be important in the generation of adaptive phenotypes in natural populations of *An. arabiensis* with reference to its role in the detoxification of DDT and other insecticides.

6.2 Evolution of *Dopa decaboxylase* gene and its role in the generation of divergent phenotypes

In Chapter 4 of this thesis, based on phylogenetic analysis, the DDC locus showed marked sequence conservation between *An. arabiensis*, *Aedes* and *Drosophila* species. This pattern showed that the locus is constrained with regard to the pattern of amino acid substitutions. The low recombination rates and the strong non-random

association of the locus to other nearby genes within the 3Ra inversion of chromosome 3 may reflect the action of selection on the DDC and the subsequent hitchhiking effect on advantageous substitution occurring within the GST loci. A high degree of sequence conservation has allowed comparisons of the DDC-coding regions from various insects, facilitating a number of recent studies on insect systematics (Hodgetts and O'Keefe 2006).

A study of nucleotide variation of DDC in *Drosophila* species showed that the three species groups studied, *melanogaster*, *obscura*, and *willistoni* were each monophyletic and all three combined form a monophyletic group, which corresponds to the subgenus Sophophora (Tatarenkov *et al.*, 2001). Linkage disequilibrium analysis shows presence of two groups of haplotypes in the populations, each of which is fairly diverged, suggesting epistasis or inversion polymorphism. Also the McDonald-Kreitman test indicates a deficit of fixed amino acid differences between *D. melanogaster* and *D. simulans*, which may be due to negative selection. An excess of derived alleles at high frequency, significant according to the *H*-test, is consistent with the effect of hitchhiking (Tatarenkov and Ayala 2007). De Luca *et al.* (2003) applied the test of selection on DDC in samples of *Drosophila* but did not detect any significant departure from neutrality. However, he observed considerable linkage disequilibrium between polymorphic sites throughout the region.

A study demonstrated sufficient conservation between DDC sequences of *D. virilis* and *D. melanogaster* (Bray and Hirsh 1986) and others have shown evidence of duplication events within the DDC of *Drosophila* (Eveleth and Marsh 1986). The same authors showed for the first time the structural homology of DDC and other genes in *Drosophila* and suggested that the functional relationship between the DDC and other genes may be that they both share common evolutionary histories.

It has also been shown that DDC occurs as a cluster of genes which are functionally related and it was postulated that the clustering of the genes is necessary to ensure that their regulation could be coordinated (Wright, 1996). It was shown that even with the proximal and distal clusters of DDC separated by a large segment of the chromosome in *D. virilise* and *D. pseudoobscura*, the clusters were identical in the two species and even more importantly in *An. gambiae*. In line with our findings, we suggest that

some functional rationale may underlie the clustering of these genes in *An. arabiensis* genome.

We therefore propose two models to explain the pattern of nucleotide variation observed at the DDC locus: 1) parallel evolution may be maintaining the functional role of DDC in all the species surveyed, 2) positive selection may be acting on the DDC in *An. arabiensis* and this facilitates the generation of adaptive phenotypes in nature. Further studies using much larger sample size is recommended to assess the veracity of the explanation. We suggest that given the pleotropic effect (genetic effect of a single gene on multiple phenotypic traits) of DDC on many phenotypes, the DDC can be excellent candidates for the maintenance of natural variation in *An. arabiensis* populations.

6.3 Effect of melanization on life-history traits of An. gambiae

6.3.1 Relationship between melanisation and life-history traits

To understand the evolutionary and ecological significance of phenotypic plasticity in nature, it is important to know how phenotypic traits are generated. In chapter 5, we induced phenotypic plastic response in the 1st instars of *An. gambiae* by rearing larvae in different colour environments and generating melanic and non-melanic phenotypes. We observed a bi-directional response in the response of the larvae to the rearing containers. This means that dark containers induced melanised larvae whereas white ones induced pale larvae relative to the parental colouration.

The present study showed that larvae reared in dark containers produced bigger larvae but had a low survival rate and short developmental time whereas smaller pale larvae produced from white containers had a much higher survival rate and a much longer developmental time. This finding contradicts what Windig (1999) discovered in a *Lepidoptera*, *Araschnia levana*. In that study, it was demostrated that melanized 5th instars of *A. levana* grow more slowly in early instars. However, one has to be cautious in comparing *A. levana* and *An. gambiae* since each has its own unique habitats and therefore each may be under different selective pressures.

As discussed in Chapter 5, temperature has been shown to affect the development of *An. gambiae* (Bayoh and Lindsay 2003, 2004; Impoinvil *et al.*, 2007). However, in

this particular study because water temperature was constant and larvae were fed the same amount of food, it means that other factors other than temperature and food may be responsible for the fast growth and large size of larvae in the dark containers. We can however hypothesize that the fast developmental time of larvae reared in dark containers in comparison to the pale larvae observed in *An. gambiae* may be the consequence of their coloration. Further research is needed to fully understand the mechanisms involved. The study established that melanisation of larvae did affect the life-history traits of juvenile *An. gambiae* populations and this effect has also been demonstrated in other insect species as in *Inachis io* and *Araschnia levana* (Windig 1999) and in *Helicoverpa armigera* (Ma *et al.*, 2007).

6.3.2 Phenotypic plasticity of An. gambiae larval colour trait

It has been assumed that phenotypic plasticity acts as a constraint on evolutionary change, however, it has become increasing clear that phenotypic plasticity actually represents a fundamental component of evolutionary change (Thompson, 1991). It is also now clear that genotypes that perform best in one environment usually perform less well than other genotypes in a different environment, and therefore a plastic response is not necessarily an adaptation to the environmental. This is because a response to environmental variation is only adaptive if it represents a mechanism by which relative fitness is maintained in the face of environmental variation (Thompson, 1991).

In this study we were able to demonstrate bi-directional selection of dark and pale *An. gambiae* larvae in the laboratory using the background colour of rearing containers as the environmental cue. The mechanism underlying this colour change is not clear, however, in a similar experiment by (Benedict and Seawright 1987), it was suggested that the noticeable colour change was stimulated by perception of the background colour by the larval ocelli which in turn send signals to the neurophysiological pathway for the responce.

During the induction, we used inbred lines of *An. gambiae*. This was to ensure that all the larvae used for the induction had a uniform genetic background prior to their introduction into the rearing containers. The appearance of dark larvae in the dark containers may therefore signal a plastic rather genetic response to colour stimuli. It

can also be suggested that the elevated activity of DDC and PO in the melanised phenotypes during the induction process may be an indication that these two genes are involved in the melanin synthesis pathway and therefore are important in the development of the plastic response observed in the study. Other genes not included in the current study, such as the *ebony* (Wittkopp *et al.*, 2003a;Takahashi *et al.*, 2007) and *tan* (True *et al.*, 2005) have been implicated in the development of pigments in insects. It is known that like most traits, pigmentation is controlled by regulatory genes, such as transcription factors, which control the expression of other genes although different regulatory genes might control their expression in different body regions (Wittkopp *et al.*, 2003b). The question is whether it is the same genes that controlled the observed regional variation in larval body pigmentation. Further studies will be needed to investigate whether it is the same DDC and PO genes that are expressed in the different areas (head, thorax and abdomen) of the *An. gambiae* larvae.

6.3.3 Trade-offs and cost

Although it is known that natural selection favors certain kinds of plastic response in populations, there may be some measurable cost to maintaining plasticity, as well as limits to the ability of an organism to be adaptively plastic (DeWitt *et al.*, 1998).

In this study, the importance of the generation of melanised phenotypes of *An.* gambiae was tested against its effect on some life-history traits such as developmental time, survival rates and pupal weight. We detected that melanised larvae had shorter developmental time and much larger pupal weight when compared to the pale and parental individuals (Figure 24). However, the survival rates of the menalised larvae was lower, though not significant than the pale and parental larvae. Previous studies on the European map butterflies (Windig, 1999) and Satyrine butterflies (Talloen et al., 2004) found that melanised larvae grew slower than the non-melanized ones. Also studies in *Lepidoptera* and *Drosophila* species have linked short juvenile development time and large adult size (Nylin and Gotthard 1998) and variation in melanization (Majerus, 1998) to be important for the fitness of the species.

Therefore, the observed behaviour (melanised larvae with short developmental time and low survival rate) in *An. gambiae* may be a trade-off between being able to develop mechanisms (camouflage) to avoid being preyed upon and its ability to survive in its habitat. Since melanin production is known to be costly, it means that the larvae in the dark rearing containers may be competing for the available food resources to produce melanism for use as camouflage and as a result those larvae that that do not get adequate food resources die before the pupation stage. The behaviour may therefore be viewed in the context of adaptation to different heterogeneous environments i.e different organisms will develop adaptation in relation to the peculiarity of its breeding habitats. In case of *An. gambiae*, the darkening of the cuticle and the subsequent fast development time may be a predator avoidance behaviour. Further investigation on the non-additive effects of predators on plasticity will need to be conducted in further to confirm this accession. Further studies will also be necessary to ascertain the effect the colour change in larvae will have on the development of adult individuals.

The study concludes that the generation of adaptive melanised visible phenotypes although costly is important for the survival of An. gambiae in nature especially in avoiding potential predators, and that may explain the selective constrains on DDC gene observed in Chapter 4. However, the question that will continue to challenge and inform future research is that if plasticity is adaptive, at what stage and how does natural selection favour or maintain the phenotypic phenotypes? Issues about costs of plasticity are also difficult to detect (Dewitt et al., 1999; Karan et al., 2000), although more recently they have been detected in plants (Agrawal et al., 2002), ; juvenile treefrogs, Oecologia (Relyea and Hoverman 2003) and in the common frog, Rana temporaria populations (Merila et al., 2004). However, we hypothesize that the cost of melanin production in darker individual larvae observed in the study, although adaptive in the context of predator avoidance strategy may be responsible for the low survival rates estimated. Other authors demonstrated that compared to the pale individuals, the development of darker individuals was slower and less stable as estimated by the level of fluctuating asymmetry of the Satyrine butterfly, Pararge aege (Talloen et al., 2004). However, the trade-off hypothesis is not supported by some authors. A study investigated the effect of melanisation on antibacterial immune response of An. gambiae (Lambrechts et al., 2004) and determined that genetic association between the melanization response and an antibacterial response in wellfed and undernourished larvae were positively genetically correlated (Lambrechts et

al., 2004). This meant that melanised larvae were able to clear injected bacteria irrespective of whether they were well fed or undernourished and hence the trade-off hypothesis was not supported in this case.

We demonstrated in this study that DDC and PO genes are up-regulated in the development of melanised phenotypes of *An. gambiae*. Some authors (Koch *et al.*, 1998) also demonstrated the regulation of DDC expression during colour formation in wild-type and melanic swallowtails. In consonance with our study objectives, we selected only DDC and PO for our gene expression analysis, therefore we do not rule out other genes that may be involved in the development of melanised phenotypes. For example, some authors have shown the *yellow* (Wittkopp *et al.*, 2003b) and *tan* (True *et al.*, 2005) genes are also involved at some stages of the melanisation pathway. The *yellow* gene converts DOPA to DOPA melanin whish the *tan* gene converts Dopamine to N-acetyl dopamine (NBAD) in the biochemical pathway of tanning and melanisation (Figure 2).

Information on the effect of melanization and its adaptive significance in natural populations of *An. gambiae* will require multiple lines of evidence on the role of trade-offs, phenotypic plasticity and its effect on life-history traits in the development of both the larvae and adults. We also recommend further studies into the impact of the melanic trait on the adult life of *An. gambiae*. It will be a very useful and important area of research to pursue in future in line of the evidence discussed in this study.

6.4 Conclusions and implications for malaria control

Our study has provided insight into three different areas that have bearing on the ability of *An. gambiae* to adapt to changing environments.

a) The first finding is that *An. arabiensis* uses GSTs to acquire diverse phenotypes through gene duplication events. This is important for maintaining the function of these genes within the species as well as between different members of the Cellia group (*An. gambiae* and *An. stephensi*). We also showed that GSTE2 may be important in the generation of adaptive phenotypes within the Cellia group.

- b) The second finding is that unlike GSTs, the DDC cluster acquires diverse phenotypes through a single gene. This gene shows much pleotropic effect i.e. plays different roles in the survival and adaptation of *An. arabiensis* to heterogeneous environments.
- c) The third finding of our study showed it is possible to induce bi-directional selection of *An. gambiae* melanic phenotypes. We further showed that the induction is modulated by the expression of genes, in this case *Phenoloxidase* (PO) and *Dopa decaboxylase* (DDC) and that the survival and hence longevity (fitness) of juvenile *An. gambiae* is affected by the characteristics of the rearing environments.

An. gambiae s.s. and *An. arabiensis* are important vectors of malaria in Africa and several mosquito-related and environmental factors influence the vectorial competence of these two species. Generally the study provides some information necessary to understand how nucleotide polymorphisms are maintained by genes under selection and also shows how the local ecology (environment) affects the fitness of the malaria vectors. The information generated from this study can be used a basis for future studies and also for formulation of future malaria control interventions such as the use of transgenic mosquitoes for malaria control in order to formulate strategies for successful vector control.

6.5 Recommended future studies

Based on the findings of our study, we wish to recommend the following areas of interest for future research. More information on these areas will provide a more comprehensive picture of the mechanisms involved in the expression of phenotypic plasticity and also allow one to gain more insight into strategies that enables *An. gambiae* to adapt to different habitats. We will recommend the following for future studies:

a) A study into the role of other genes such as e.g. *ebony*, *yellow*, *tan* etc in the expression on *An. gambiae* melanised phenotypes during the induction process. This may be done by inducing melanised phenotypes of *An. gambiae*

larvae and using RT-PCR analysis to investigate the expression profile of *ebony*, *yellow, tan* and any other genes known to be involved in the melanisation pathway.

- b) Determine the effect of melanisation on the life-history traits of adult mosquitoes. This study may be done my selecting melanised and non-melanised forms of *An. gambiae* larvae (as in this study) and raising the larvae through several generations with a view to finding out how the change in larval colour will affect the colour, survival, fecundity rates, hatching rate and the general morphology of adults.
- c) Predator-induced morphological and behavioural change has been observed in many organisms and it is known that melanin production is also linked to the protection from adverse effect of UV-light. It will be interesting to investigate if the introduction of a predator during the induction process will affect the number of larvae being melanised and also what effect UV-light will have on the induction response when used instead of the normal florescent light.
- d) Do RNA interference studies by introducing RNAi (homologous double stranded RNA to specifically target gene's product of DDC and PO) and investigate its effect on phenotypic response. The Specific RNAi pathway proteins will "cleave" to the target mRNA, breaking it down into smaller portions that can no longer be translated into protein. The absence of observable colour change in *An. gambiae* will show that DDC and PO are important for the expression of melanin in larvae.

127

REFERENCES

- Aboud, M.A.E.M (2003) Ecology and population structure of *Anopheles arabiensis* in Sudan. PhD thesis, The University of Liverpool, Liverpool, United Kingdom
- Abose, T., Yeebiyo, Y., Olana, D., Alamirew, D., Beyene, Y., Regassa, L. and Mengesha, A. (1998) Re-orientation and definition of the role of malaria vector control in Ethiopia. *World Health Organization/Malaria*/, 98,1085
- Agianian, B., Tucker, P.A., Schouten, A., Leonard, K., Bullard, B. and Gros, P. (2003) Structure of a *Drosophila* sigma class *glutathione S-transferase* reveals a novel active site topography suited for lipid peroxidation products. *Journal of Molecular Biology*, **326**, 151-65.
- Agrawal, A. (2001) Phenotypic plasticity in the interactions and evolution of species. *Science*, **294**, 321-326.
- Agrawal, A.A., Conner, J.K., Johnson, M.T. and Wallsgrove, R. (2002) Ecological genetics of an induced plant defense against herbivores: additive genetic variance and costs of phenotypic plasticity. *Evolution International Journal of Organic Evolution*, **56**, 2206-2213
- Akey, J.M., Zhang, G., Zhang, K., Jin, L. and Shriver, M.D. (2002). Interrogating a high-density SNP map for signatures of natural selection. *Genome Research*, 12, 1805-1814.
- Alatalo, R.V. and Moreno, J. (1987) Body size, interspecific interactions, and use of foraging sites in tits (Paridae). *Ecology*, **68**, 1773–1777
- Alonso, P.L., Lindsay, S.W., Armstrong, J.R., Conteh, M., Hill, A.G., David, P.H., Fegan,G., de Francisco, A., Hall, A.J. and Shenton. F.C. (1991). The effect of insecticide-treated bed nets on mortality of Gambian children. *Lancet*, 337, 1499-1502.
- Alphey, L. and Andreasen, M. (2002) Dominant lethality and insect population control. *Molecular and Biochemical Parasitology*, **121**, 173–178.
- Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Research*, 25, 3389-3402.
- Ananthakrishnan, T. N. and Whitman, D. (2005) Insect Phenotypic Plasticity: diversity of Responses. *Entomology*, : 222

- Andolfatto, P. (2001) Contrasting patterns of X-linked and autosomal nucleotide variation in *Drosophila melanogaster* and *Drosophila simulans*. *Molecular Biology Evolution*, **18**, 279-290.
- Andolfatto, P. and Kreitman, M. (2000) Molecular variation at the In(2L)t proximal breakpoint site in natural populations of *Drosophila melanogaster* and *Drosophila simulans. Genetics*, **154**, 1681-1691.
- Andolfatto, P., Wall, J.D. and Kreitman, M. (1999) Unusual haplotype structure at the proximal breakpoint of In(2L)t in a natural population of *Drosophila* melanogaster. Genetics, **153**, 1297-1311.
- Awolola, T.S., Oyewole, I.O., Amajoh, C.N., Idowu, E.T., Ajayi, M.B., Oduola A., Manafa, O.U., Ibrahim, K., Koekemoer, L.L. and Coetzee, M. (2005) Distribution of the molecular forms of *Anopheles gambiae* and pyrethroid knock down resistance gene in Nigeria. *Acta Tropica*, 95, 204-209.
- Ayala, F.J. and Coluzzi, M. (2005) Chromosome speciation: humans, *Drosophila*, and mosquitoes. *Proceedings of the National Academy of Science*, USA, **102**, Suppl 1: 6535-6542.
- Balkew, M., Gebre-Michael, T. and Hailu, A. (2003) Insecticide susceptibility level of *Anopheles arabiensis* in two agrodevelopment localities in eastern Ethiopia. *Parassitologia*, **45**, 1-3.
- Badyaev A. (2005) Stress-induced variation in evolution : from behavioural plasticity to genetic assimilation. Proceedings of the Royal Society of London, 272, 877-886
- Ballinger-Crabtree, M.E., Black, W.C. and Miller, B.R. (1992) Use of genetic polymorphisms detected by the polymerase chain reaction (RAPD-PCR) for differentiation and identification of *Aedes aegypti* subspecies and populations. *American Journal of Tropical Medicine and Hygiene*, **42**, 893-901.
- Baird, J.K. (1998) Age-dependent characteristics of protection v. susceptibility to *Plasmodium falciparum. Annals of Tropical Medicine and Parasitology*, **92**, 367-390.
- Barbazan, P., Baldet, T., Darriet, F., Escaffre, H., Djoda, D.H. and Hougard, J.M. (1998) Impact of treatments with *Bacillus sphaericus* on *Anopheles* populations and the transmission of malaria in Maroua, a large city in a savannah region of Cameroon. *Journal of American Mosquito Control Association*, 14, 33-39.
- Bayoh, M.N. and Lindsay, S.W. (2004) Temperature-related duration of aquatic stages of the Afrotropical malaria vector mosquito *Anopheles gambiae* in the laboratory. *Medical and Veterinary Entomology*, **18**, 174-179.

- Bayoh M.N. and Lindsay S.W. (2003) Effect of temperature on the development of the aquatic stages of *Anopheles gambiae* sensu stricto (Diptera: Culicidae). *Bulletin of Entomological Research*, **93**, 375-381
- Beaumont, M.A. (2005) Adaptation and speciation: what can F(st) tell us? *Trends in Ecology and Evolution*, **20**, 435-440.
- Beerntsen, B.T., James, A.A. and Christensen, B.M. (2000) Genetics of mosquito vector competence. *Microbiology and Molecular Biology Review*, 64, 115-137.
- Benedict, M.Q., Besansky, N.J, Chang, H, Mukabayire, O. and Collins, F.H. (1996a) Mutations in the Anopheles gambiae pink-eye and white genes define distinct, tightly linked eye-color loci. Journal of Hereditary, 87, 48-53
- Benedict, M.Q. and Chang, H. (1996) Rapid isolation of *anopheline* mosquito eyecolour mutants based on larval colour change. *Medical and Veterinary entomology*, **10**, 93-96
- Benedict, M.Q. and Seawright, J.A. (1987) Changes in pigmentation in mosquitoes (Diptera: Culicidae) in response to the color of the environment. *Annals of the Entomological Society of America*, **80**, 55-61.
- Besansky, N. J. and Fahey, G.T. (1997) Utility of the white gene in estimating phylogenetic relationships among mosquitoes (Diptera: Culicidae). *Molecular Biology Evolution*, 14, 442-454.
- Besansky, N.J., Lehmann, T., Fahey, G.T., Fontenille, D., Braack, L.E., Hawley, W.A. and Collins, F.H. (1997) Patterns of mitochondrial variation within and between African malaria vectors, *Anopheles gambiae* and *An. arabiensis*, suggest extensive gene flow. *Genetics*, 147, 1817-1828.
- Besansky, N.J., Krzywinski, J., Lehmann, T., Simard, F., Kern, M., Mukabayire, O., Fontenille, D., Toure, Y. and Sagnon, N. (2003) Semipermeable species boundaries between *Anopheles gambiae* and *Anopheles arabiensis*: evidence from multilocus DNA sequence variation. *Proceedings of the National Academy of Sciences*, USA, **100**, 10818-10823.
- Besansky, N.J., Mukabayire, O., Benedict, M.Q., Rafferty, C.S., Hamm, D.M. and McNitt, L. (1997a). The Anopheles gambiae tryptophan oxygenase gene expressed from a baculovirus promoter complements Drosophila melanogaster vermilion. Insect Biochemistry and Molecular Biology, 27, 803-805.
- Binka, F.N., Kubaje, A., Adjuik, M., Williams, L.A., Lengeler, C., Maude, G.H., Armah, G. E., Kajihara, B., Adiamah, J.H. and Smith, P.G. (1996) Impact of permethrin impregnated bednets on child mortality in Kassena-Nankana district, Ghana: a randomized controlled trial. *Tropical Medicine and International Health*, 1, 147-154.

- Black, W.C., Baer, C.F., Antolin, M.F. and DuTeau, N.M. (2001) Population genomics: genome-wide sampling of insect populations. *Annual Review of Entomology*, **46**, 441-469.
- Black, W.C., Gorrochetegui-Escalante, N., Randle, N.P. and Donnelly, M.J. (2008). The Yin and Yang of linkage disequilibrium: mapping of genes and nucleotides conferring insecticide resistance in insect disease vectors. Advances in experimental medicine and biology, 71-83.
- Blois, M.S. (1978) The melanins: their synthesis and structure. In. *Photochemical and Photobiological Reviews*. Smith, K.C. (ed.), **3**, pp. 115-134, Plenum Press, New York.
- Board, P.G., Coggan, M., Chelvanayagam, G., Easteal, S., Jermiin, L.S., Schulte, G.K., Danley, D.E., Hoth, L.R., Griffor, M.C., Kamath, A.V., Rosner, M.H., Chrunyk, B. A., Perregaux, D.E., Gabel, C.A., Geoghegan, K.F. and Pandit, J. (2000) Identification, characterization, and crystal structure of the Omega class glutathione transferases. Journal of Biological Chemistry, 275, 24798-24806.
- Bochdanovits, Z. and De Jong, G. (2003) Temperature dependent larval resource allocation shaping adult body size in *Drosophila melanogaster*. Journal of evolutionary biology, **16**, 1159–1167
- Bonin, A., Taberlet, P., Miaud, C. and Pompanon, F. (2006) Explorative genome scan to detect candidate loci for adaptation along a gradient of altitude in the common frog (*Rana temporaria*). *Molecular Biology and Evolution*, 23, 773-783.
- Braby, M.F. and Jones, R.E. (1994) Effect of Temperature and Hostplants on Survival, Development and Body-Size in 3 Tropical Satyrine Butterflies From North-Eastern Australia. *Australian Journal of Zoology*, 42, 195 – 21
- Bradshaw, A.D. and Hardwick, K. (1989) Evolution and stress—genotypic and phenotypic components. *Biological Journal of the Linnean Societ*, **37**:137–155.
- Bray, S.J. and Hirsh, J. (1986) The Drosophila virilis dopa decarboxylase gene is developmentally regulated when integrated into Drosophila melanogaster. The European Molecular Biology Organization Journal, 5, 2305-2311.
- Bray, S.J. and Kafatos, F.C. (1991) Developmental function of Elf-1: an essential transcription factor during embryogenesis in *Drosophila*. Genes and *Development*, **5**,1672–1683

- Breman, J.G. (2001) The ears of the hippopotamus: manifestations, determinants, and estimates of the malaria burden. *American Journal of Tropical Medicine* and Hygiene, **64**, 1-11.
- Brogdon, W.G. and McAllister, J.C. (1998) Insecticide resistance and vector control. Emerging Infectious Diseases Journal, 4, 605-613.
- Bruce-Chwatt, L.J. (1985) John Hull Grundy lecture. Mosquitoes, malaria and war; then and now. *Journal of Royal Army Medical Corps*, **131**, 85-99.
- Bryan, J.H., Petrarca, V., Di Deco, MA. and Coluzzi, M. (1987) Adult behaviour of members of the *Anopheles gambiae* complex in the Gambia with special reference to *An. melas* and its chromosomal variants. *Parassitologia*, 29, 221-249.
- Brisson, J.A., De Toni, D.C., Duncan, I. and Templeton, A.R. (2005) Abdominal pigmentation variation in *Drosophila polymorpha*: geographic variation in the trait, and underlying phylogeography. *Evolution International Journal of Organic Evolution*, **59**, 1046-1059.
- Buskirk, J., Van McCollum, S.A and Werner, E.E. (1997) Natural Selection for Environmentally Induced Phenotypes. *Evolution*, **51**, 1983-1992
- Carter, R., Mendis, K.N. and Roberts, D. (2000a) Spatial targeting of interventions against malaria. *Bullentin of World Health Organization*, **78**, 1401-1411.
- Carter, R., Mendis, K.N., Miller, L.H., Molineaux, L. and Saul, A. (2000b) Malaria transmission-blocking vaccines--how can their development be supported? *Nature Medicine*, **6**, 241-244.
- Chandramohan, D., Owusu-Agyei, S., Carneiro, I., Awine, T., Amponsa-Achiano, K., Mensah, N., Jaffar, S., Baiden, R., Hodgson, A., Binka, F. and Greenwood, B. (2005) Cluster randomised trial of intermittent preventive treatment for malaria in infants in area of high, seasonal transmission in Ghana. *British Medical Journal*, 331, 727-733.
- Chandre, F., Darrier, F., Manga, L., Akogbeto, M., Faye, O., Mouchet, J. and Guillet, P. (1999) Status of pyrethroid resistance in *Anopheles gambiae sensu lato*. *Bullentin of World Health Organization*, 77: 230-234.
- Chapman, R.F. (1998) The Insects. Structure and Function. (4th edn) Cambridge: Cambridge University Press
- Charlesworth, B., Nordborg, M. and Charlesworth, D. (1997) The effects of local selection, balanced polymorphism and background selection on equilibrium patterns of genetic diversity in subdivided populations. *Genetics Research*, **70**, 155-174.

- Chouaibou, M., Simard, F., Chandre, F., Etang, J., Darriet, F. and Hougard, J.M. (2006) Efficacy of bifenthrin-impregnated bednets against Anopheles funestus and pyrethroid-resistant Anopheles gambiae in North Cameroon. Malaria Journal, 5, 77.
- Cisse, B., Sokhna, C., Boulanger, D., Milet, J., Ba el, H., Richardson, K., Hallett, R., Sutherland, C., Simondon, K., Simondon, F., Alexander, N., Gaye, O., Targett, G., Lines, J., Greenwood, B. and Trape. J.F. (2006) Seasonal intermittent preventive treatment with artesunate and sulfadoxinepyrimethamine for prevention of malaria in Senegalese children: a randomised, placebo-controlled, double-blind trial. *Lancet*, 367, 659-667.
- Coetzee, M., Craig, M. and le Sueur, D. (2000) Distribution of African malaria mosquitoes belonging to the *Anopheles gambiae* complex. *Parasitology Today*, **16**, 74-77.
- Collins, F.H., Kamau, L., Ranson, H.A. and Vulule, J.M. (2000) Molecular entomology and prospects for malaria control. *Bullentin of World Health Organization*, **78**, 1412-1423.
- Collins, F.S. and Haseltine, W.A. (2000) Of genes and genomes: what lies between the base pairs. *Journal of Investigative Medicine*, **48**, 295-301.
- Coluzzi, M., Sabatini, A., della Torre, A., Di Deco, M.A. and Petrarca, V. (2002) A polytene chromosome analysis of the *Anopheles gambiae* species complex. *Science*, **298**, 1415-1418.
- Coluzzi, M., Petrarca, V. and di Deco, M.A. (1985). Chromosomal inversion intergradation and incipient speciation in *Anopheles gambiae*. *Bollettino di Zoologia*, **52**: 45–63.
- Coluzzi, M (1982) Spatial distribution of chromosomal inversions and speciation in Anopheline mosquitoes. Progress in Clinical Biological Research, **96**:143-53.
- Coluzzi, M., Sabatini, A., Petrarca, V. and Di Deco, M.A. (1979) Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex. *Transaction of the Royal Society of Tropical Medicine and Hygiene*, **73**, 483-497.
- Conteh, L., Sharp, B.L., Streat, E., Barreto, A. and Konar, S. (2004) The cost and cost-effectiveness of malaria vector control by residual insecticide house-spraying in southern Mozambique: a rural and urban analysis. *Tropical Medicine and International Health*, **9**, 125-132.
- Corbel, V., Chandre, F., Brengues, C., Akogbeto, M., Lardeux, F., Hougard, J.M. and Guillet, P. (2004) Dosage-dependent effects of permethrin-treated nets on the behaviour of *Anopheles gambiae* and the selection of pyrethroid resistance. *Malaria Journal*, 3, 22.

- Curtis, C.F. and Mnzava, A.E. (2000) Comparison of house spraying and insecticidetreated nets for malaria control. *Bullentin of World Health Organization*, **78**, 1389-1400.
- Curtis, C. F., Maxwell, C.A., Finch, R.J. and Njunwa, K.J. (1998) A comparison of use of a pyrethroid either for house spraying or for bednet treatment against malaria vectors. *Tropical Medicine and Internationa Health*, **3**, 619-631.
- D'Alessandro, U., Olaleye, B.O., McGuire, W., Thomson, M.C., Langerock, P., Bennett, S. and Greenwood, B.M. (1995) A comparison of the efficacy of insecticide-treated and untreated bed nets in preventing malaria in Gambian children. *Transactions of the Royal Society of Tropical Medicine and Hygiene*, **89**, 596-598.
- Darriet, F., Guillet, P., N'Guessan, R., Doannio, J.M., Koffi, A., Konan, L.Y. and Carnevale, P. (1998) Impact of resistance of *Anopheles gambiae* s.s. to permethrin and deltamethrin on the efficacy of impregnated mosquito nets. *Médecine tropicale*, 58, 349-354.
- Darriet, F., N'Guessan, R. and Carnevale, P. (2000) Evaluation in test huts of the protective effects of untreated mosquito nets against *Anopheles gambiae* s.s. bites. *Sante*, **10**, 413-417.
- David, J.P., Strode, C., Vontas, J., Nikou, D., Vaughan, A., Pignatelli, P.M., Louis, C., Hemingway, J. and Ranson, H. (2005) The Anopheles gambiae detoxification chip: a highly specific microarray to study metabolic-based insecticide resistance in malaria vectors. Proceedings of the National Academy of Science, USA 102, 4080-4084.
- della Torre, A., Fanello, C., Akogbeto, M., Dossou-yovo, J., Favia, G., Petrarca, V. and Coluzzi, M. (2001) Molecular evidence of incipient speciation within *Anopheles gambiae* s.s. in West Africa. *Insect Molecular Biology*, **10**, 9-18.
- della Torre, A., Costantini, C., Besansky, N.J., Caccone, A., Petrarca, V., Powell, J.R. and Coluzzi M. (2002) Speciation within *Anopheles gambiae*--the glass is half full. *Science*, **298**, 115-117.
- De Luca, M., Roshina, N.V., Geiger-Thornsberry, G.L., Lyman, R.F., Pasyukova, E.G. and Mackay, T.F. (2003) *Dopa decarboxylase* (Ddc) affects variation in *Drosophila* longevity. *Nature Genetics*, **34**, 429-433.
- Dennis, R.L.H. (1993). Butterflies and Climate Change. Manchester University Press, Manchester
- Depaulis, F., Brazier, L. and Veuille, M. (1999) Selective sweep at the *Drosophila melanogaster* Suppressor of Hairless locus and its association with the In(2L)t inversion polymorphism. *Genetics*, **152**, 1017-1024.

- Dewitt, T.J., Sih, A. and Hucko, J.A. (1999) Trait compensation and cospecialization in a freshwater snail: size, shape and antipredator behaviour. *Animal Behaviour*, **58**, 397-407.
- DeWitt, T.J. (1998) Costs and limits of phenotypic plasticity: tests with predatorinduced morphology and life history in a freshwater snail, *Journal of Evolutionary Biology*, **11**, 465–480.
- Diabate, A., Baldet, T., Chandre, F., Guiguemde, R.T., Brengues, C., Guillet, P., Hemingway, J. and Hougard, J.M. (2002) First report of the kdr mutation in Anopheles gambiae M form from Burkina Faso, West Africa. Parassitologia, 44, 157-158.
- Diabate, A., Baldet, T., Chandre, F., Dabire, K.R., Simard, F., Ouedraogo, J.B., Guillet, P. and Hougard, J.M. (2004) First report of a kdr mutation in Anopheles arabiensis from Burkina Faso, West Africa. Journal of Americal Mosquito Control Association, 20, 195-196.
- Diabate, A., Brengues, C., Baldet, T., Dabire, K.R., Hougard, J.M., Akogbeto, M., Kengne, P., Simard, F., Guillet, P., Hemingway, J. and Chandre, F. (2004)
 The spread of the Leu-Phe kdr mutation through *Anopheles gambiae* complex in Burkina Faso: genetic introgression and de novo phenomena. *Tropical Medicine and International Health*, 9, 1267-1273.
- Dicko, A., Klion, A.D., Thera, M.A., Sagara, I., Yalcouye, D., Niambele, M.B., Sogoba, M., Dolo, G., Dao, A., Diallo, D.A., Doumbo, O.K. and Miller, L.H. (2004) The etiology of severe anemia in a village and a periurban area in Mali. *Blood*, **104**, 1198-1200.
- Ding, Y., Ortelli, F., Rossiter, L.C., Hemingway, J. and Ranson, H. (2003) The *Anopheles gambiae* glutathione transferase supergene family: annotation, phylogeny and expression profiles. *BMC Genomics*, **4**, 35.
- Donnelly, M.J. and Townson, H. (2000) Evidence for extensive genetic differentiation among populations of the malaria vector Anopheles arabiensis in Eastern Africa. Insect Molecular Biology, 9, 357-367.
- Donnelly, M.J. Licht, M.C. and Lehmann, T. (2001) Evidence for recent population expansion in the evolutionary history of the malaria vectors *Anopheles arabiensis* and *Anopheles gambiae*. *Molecular Biology and Evolution*, **18**, 1353-1364.
- Donnelly, M.J., Pinto, J., Girod, R., Besansky N.J. and Lehmann, T. (2004) Revisiting the role of introgression vs shared ancestral polymorphisms as key processes shaping genetic diversity in the recently separated sibling species of the *Anopheles gambiae* complex. *Heredity*, **92**, 61-68.

- Edwards, M.J., Lemos, F.J., Donnelly-Doman, M. and Jacobs-Lorena, M. (1997) Rapid induction by a blood meal of a carboxypeptidase gene in the gut of the mosquito Anopheles gambiae. Insect Biochemistry and Molecular Biology, 27, 1063-1072.
- Edwards, M.J., Moskalyk, L.A., Donelly-Doman, M., Vlaskova, M., Noriega, F.G., Walker, V.K. and Jacobs-Lorena, M. (2000) Characterization of a carboxypeptidase A gene from the mosquito, Aedes aegypti. Insect Molecular Biology, 9, 33-38.
- Egan, J.E., Hoffman, S.L., Haynes, J.D., Sadoff, J.C., Schneider, I., Grau, G.E., Hollingdale, M.R., Ballou, W.R. and Gordon, D.M. (1993) Humoral immune responses in volunteers immunized with irradiated *Plasmodium* falciparum sporozoites. American Journal of Tropical Medicine and Hygiene, 49, 166-173.
- Ellers, J. and Boggs, C.L. (2002) The evolution of wing color in Colias butterflies: heritability, sex linkage, and population divergence. *Evolution International Journal of Organic Evolution*, **56**, 836-840.
- Ellers, J. and Boggs, C.L. (2003) The evolution of wing color: male mate choice opposes adaptive wing color divergence in Colias butterflies. *Evolution International Journal of Organic Evolution*, **57**, 1100-1106.
- Enayati, A.A., Ranson, H. and Hemingway, J. (2005) Insect glutathione transferases and insecticide resistance. *Insect Molecular Biology*, 14, 3-8.
- Enayati, A.A., Vatandoost, H., Ladonni, H., Townson, H. and Hemingway, J. (2003) Molecular evidence for a kdr-like pyrethroid resistance mechanism in the malaria vector mosquito *Anopheles stephensi*. *Medical and Veterinary Entomolology*, **17**, 138-144.
- Enayati, A.A., Vontas, J.G., Small, G.J., McCarroll, L. and Hemingway, J. (2001) Quantification of pyrethroid insecticides from treated bednets using a mosquito recombinant glutathione S-transferase. *Medical and Veterinary Entomolology*, 15, 58-63.
- Estoup A., Jarne, P. and Cornuet, J.M. (2000) Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. *Molecular Ecology*, **11**, 1591-1604.
- Etang, J., Fondjo, E., Chandre, F., Morlais, I., Brengues, C., Nwane, P., Chouaibou, M., Ndjemai, H. and Simard, F. (2006) First report of knockdown mutations in the malaria vector *Anopheles gambiae* from Cameroon. *American Journal of Tropical Medicine and Hygiene*, 74,795-797
- Eveleth, D.D. and Marsh, J.L. (1986) Evidence for evolutionary duplication of genes in the *dopa decarboxylase* region of *Drosophila*. *Genetics*, **114**, 469-483.

- Eveleth, D.D., Gietz, R.D., Spencer, C.A., Nargang F.E., Hodgetts, R.B. and Marsh J.L. (1986) Sequence and structure of the *dopa decarboxylase* gene of *Drosophila*: evidence for novel splicing variant. *European Molecular Biology Organization Journal*, 5,2663–2672
- Fanello, C., Akogbeto, M. and Della Torre, A. (2000) Distribution of the pyrethroid knockdown resistance gene (kdr) in *Anopheles gambiae* s.l. from Benin. *Transaction of the Royal Society of Tropical Medicine and Hygiene*, 94, 132.
- Fanello, C., Petrarca, V., della Torre, A., Santolamazza, F., Dolo, G., Coulibaly, M., Alloueche, A., Curtis, C.F., Toure, Y.T. and Coluzzi, M. (2003b) The pyrethroid knock-down resistance gene in the *Anopheles gambiae* complex in Mali and further indication of incipient speciation within *An. gambiae* s.s. Insect Molecular Biology, 12, 241-245.
- Fang, Q.Q., Mitchell, A., Regiera, J.C., Mitter, C., Friedlander, T.P. and Poole, R.W. (1997) Phylogenetic Utility of the Nuclear Gene Dopa Decarboxylase in Noctuoid Moths (Insecta: Lepidoptera: Noctuoidea). Molecular Phylogenetics and Evolution, 15, 473-486
- Faure, J.C. (1943) Phase variation in the armyworm Laphygma exempta (Walk.) Union of South Africa, Department of Agriculture and Forestry Scientific Bulletin, 17, pp234.
- Favia, G., della Torre, A., Bagayoko, M., Lanfrancotti, A., Sagnon, N., Toure, Y.T. and Coluzzi, M. (1997) Molecular identification of sympatric chromosomal forms of *Anopheles gambiae* and further evidence of their reproductive isolation. *Insect Molecular Biology*, 6, 377-383.
- Fay, J.C. and Wu, C.I. (2000) Hitchhiking under positive Darwinian selection. Genetics, 155, 1405-1413.
- Ferdig, M.T., Taft, A.S., Smartt, C.T., Lowenberger, C.A., Li, J. and Christensen, B.M. (2000) Aedes aegypti dopa decarboxylase gene structure and function. Insect Molecular Biology, 9, 231–239
- Feyereisen, R. (1999) Insect P450 enzymes. Annual Review of Entomology, 44, 507-533.
- Fletcher, M., Teklehaimanot, A. and Yemane, G. (1992) Control of mosquito larvae in the port city of Assab by an indigenous larvivorous fish, *Aphanius dispar. Acta Tropica*, **52**, 155-166.
- Fodde, R., Harteveld, C.L., Losekoot, M., Giordano, P.C., Khan, P.M., Nayudu, N.V. and Bernini, L.F. (1991) Multiple recombination events are responsible for the heterogeneity of alpha(+)-thalassemia haplotypes among the forest tribes of Andhra Pradesh, India. *Annals of Human Genetics*, 55, 43-50.

- Fournier, D., Bride, J.M., Poirie, M., Berge, J.B. and Plapp, Jr. F. W. (1992) Insect glutathione S-transferases. Biochemical characteristics of the major forms from houseflies susceptible and resistant to insecticides. Journal of Biological Chemistry, 267, 1840-1845.
- Ford, N.B. and Seigel, R.A. (1989) Relationships among body size, clutch size, and egg size in three species of oviparous snakes *Herpetologica*, **45**, 75-83
- Fu, Y.X. and Li, W.H. (1993) Statistical tests of neutrality of mutations. *Genetics*, 133, 693-709.
- Futuyma, D.J. and Moreno, G. (1998) The Evolution of Ecological Specialization. Annual Review of Ecology and Systematics, 19, 207-233
- Fuzeau-Braesch, S. (1972) Pigments and color changes. Annual Review of Entomology, 17,403-424
- Garland, T. Jr and Kelly, S.A. (2006) Phenotypic plasticity and experimental evolution *Journal of Experimental Biology*, **209**, 2344-2361
- Gentile, G., Della Torre, A.B., Maegga, J., Powell, R. and Caccone, A. (2002). Genetic differentiation in the African malaria vector, *Anopheles gambiae s.s.*, and the problem of taxonomic status. *Genetics*, **161**, 1561-1578.
- Gentile, G., Slotman, M., Ketmaier, V., Powell, J.R. and Caccone, A. (2001) Attempts to molecularly distinguish cryptic taxa in *Anopheles gambiae* s.s. *Insect Molecular Biology*, **10**, 25-32.
- Gilburn, A.S. and Day, T.H. (1994). Evolution of female choice in seaweed flies: Fisherian and good genes mechanisms operate in different populations. *Proceedings of the Royal Society of Medicine*, **255**, 159–165

Gillespie, J. H. (1991) The Burden of Genetic Load. Science, 254, 1049.

- Gillies, M.T. and Coetzee, M. (1987) Supplement to the Anophelinae of Africa South of the Sahara. Publication no. 55. Johannesburg, South Africa: South African Institute of Medical Research.
- Gilles, M.T. and De Meillon, G. (1968) *The Anophelinae of Africa South of Sahara*, Ethiopian Zoogeographical Region, 2nd edn, No.54. The South African Institute for Medical Research, Johannesburg, 343pp
- Girard, M.P., Reed, Z.H., Friede, M. and Kieny, M.P. (2007) A review of human vaccine research and development: malaria. *Vaccine*, **25**, 1567-1580.
- Goldsmith, S.K. and Alcock, J. (1993) The mating chances of small males of the cerambycid beetle *Trachyderes mandibularis* differ in different environments (Coleoptera, *Cerambycidae*). Journal of Insect Behaviour, 6, 351-360

- Gompel, N. and Carroll, S.B. (2003) Genetic mechanisms and constraints governing the evolution of correlated traits in *drosophilid* flies. *Nature*, **424**, 931-935.
- Goodman, C.A., Coleman, P.G. and Mills, A.J. (1999) Cost-effectiveness of malaria control in sub-Saharan Africa. *Lancet*, **354**, 378-385.
- Goodman, C. A., A. E. Mnzava, S. S. Dlamini, B. L. Sharp, D. J. Mthembu, and J. K. Gumede. 2001. Comparison of the cost and cost-effectiveness of insecticide-treated bednets and residual house-spraying in KwaZulu-Natal, South Africa. *Tropical Medicine and International Health* 6: 280-95.
- Goulson, D. (1994) Determination of larval melanization in the moth, *Mamestra* brassicae, and the role of melanin in thermoregulation. *Heredity*, **73**, 471–479.
- Goulson, D. and Cory, J.S. (1995) Responses of *Mamestra brassicae* (Lepidoptera, Noctuidae) to crowding interactions with disease resistance, color phase and growth. *Oecologia*, **104**, 416–423.
- Gopaul, R. (1995) Entomological surveillance in Mauritius. Sante, 5, 401-405.
- Gorman, M.J. and Paskewitz, S.M. (1997) A genetic study of a melanization response to Sephadex beads in *Plasmodium*-refractory and-susceptible strains of *Anopheles gambiae*. American Journal of Tropical Medicine and Hygiene, 56, 446-451.
- Gorman, M.J., Severson, D.W., Cornel, A.J., Collins, F.H. and Paskewitz, S.M. (1997) Mapping a quantitative trait locus involved in melanotic encapsulation of foreign bodies in the malaria vector, *Anopheles gambiae*. *Genetics*, **146**, 965-971.
- Goto, H., Inomata, N., Szmidt, A.E. and Yamazaki, T. (2004) Nucleotide variation of seven genes in *Drosophila kikkawai*. Genes and Genetic Systems, **79**, 19-26.
- Greenwood, B. (2006) Review: Intermittent preventive treatment a new approach to the prevention of malaria in children in areas with seasonal malaria transmission. *Tropical Medicine and International Health*, **11**, 983-991.
- Grossman, G.L., Rafferty, C.S., Clayton, J.R., Stevens, T.K., Mukabayire, O. and Benedict, M.Q. (2001) Germline transformation of the malaria vector, *Anopheles gambiae*, with the piggyBac transposable element. *Insect Molecular Biology*, **10**, 597-604.
- Gunn, A.(1998) The determination of larval phase coloration in the African armyworm, Spodoptera exempta and its consequences for thermoregulation and protection from UV light, Entomologia Experimentalis et Applicata. 86, 125–133.

- Guinand, B., Scribner, K.T., Page, K.S., Filcek, K., Main, L. and Burnham-Curtis, M.K. (2006) Effects of coancestry on accuracy of individual assignments to population of origin: examples using Great Lakes lake trout (Salvelinus namaycush). Genetica, 127, 329-340.
- Guyatt, H.L., Corlett, S.K., Robinson, T.P., Ochola, S.A. and Snow, R.W. (2002) Malaria prevention in highland Kenya: indoor residual house-spraying vs. insecticide-treated bednets. *Tropical Medicine and International Health*, 7, 298-303.
- Hagen, S.B., Sørlibråten, O., Ims R.A. and Yoccoz, N.G. (2006) Density-dependent melanism in winter Moth larvae (Lepidoptera:Geometridae): A countermeasure against parasitoids? Environmental Entomology, 35, 1249-1253
- Handler, A.M. (2002) Use of the piggyBac transposon for germ-line transformation of insects. *Insect Biochemistry and Molecular Biology*, **32**, 1211-1220.
- Hargreaves, K., Koekemoer, L.L., Brooke, B.D., Hunt, R.H., Mthembu, J. and Coetzee, M. (2000) Anopheles funestus resistant to pyrethroid insecticides in South Africa. Medical and Veterinary Entomolology, 14, 181-189.
- Harvell, C.D. (1990) The ecology and evolution of inducible defenses. *Quarterly Review of Biology*, **65**, 323-340.
- Harwood, J.L. (1988) Fatty acid metabolism. *Annual Review of Plant Physiology*, **39**, 101-138
- Hawley, W.A., Phillips-Howard, P.A., ter Kuile, F.O., Terlouw, D.J., Vulule, J.M., Ombok, M., Nahlen, B.L., Gimnig, J.E., Kariuki, S.K., Kolczak, M.S. and Hightower, A. W. (2003) Community-wide effects of permethrin-treated bed nets on child mortality and malaria morbidity in western Kenya. *American Journal of Tropical Medicine and Hygiene*, 68, 121-127.
- Hazel, W.N. (2002) The environmental and genetic control of seasonal polyphenism in larval color and its adaptive significance in a swallowtail butterfly. *Evolution International Journal of Organic Evolution*, **56**, 342-348.
- Hayes, J.D. and Pulford, D.J. (1995) The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. *Critical Reviews in Biochemistry and Molecular Biology*, **30**, 445-600.
- Hays, C.W. (2000) The United States Army and malaria control in World War II. *Parassitologia*, **42**, 47-52.
- Hemingway, J. (1983) Biochemical studies on malathion resistance in Anopheles arabiensis from Sudan. Transactions of the Royal Society of Tropical Medicine and Hygiene, 77, 477-480.

Hemingway, J. (2000) The molecular basis of two contrasting metabolic mechanisms of insecticide resistance. *Insect Biochemistry and Molecular Biology*, **30**, 1009-1015.

Hemingway, J. (2004) Taking aim at mosquitoes. Nature, 430, 936.

- Hemingway, J. and Karunaratne, S.H. (1998) Mosquito carboxylesterases: a review of the molecular biology and biochemistry of a major insecticide resistance mechanism. *Medical and Veterinary Entomology*, **12**, 1-12.
- Hemingway, J. and Ranson, H. (2000) Insecticide resistance in insect vectors of human disease. Annual Review of Entomological Research, 45, 371-391.
- Hemingway, J., Field, L. and Vontas, J. (2002) An overview of insecticide resistance. *Science*, **298**, 96-97.
- Hemingway, J., Hawkes, N.J., McCarroll, L. and Ranson, H. (2004) The molecular basis of insecticide resistance in mosquitoes. *Insect Biochemistry and Molecular Biology*, 34, 653-665.
- Hill, G.E. (1994) House finches are what they eat: a reply to Hudon. Journal of Ornithology, 111, 221–225.
- Hirsh, J. and Davidson, N. (1981) Isolation and characterization of the *dopa decarboxylase* gene of *Drosophila melanogaster*. *Molecular and Cellular Biology*, **1**, 475-485.
- Hiruma, K. and Riddiford, L.M. (1985) Hormonal regulation of *dopa decarboxylase* during a larval molt. *Developmental Biology*, **110**, 509-513.
- Hiruma, K., Carter, M.S. and Riddiford, L.M. (1995) Characterization of the *dopa decarboxylase* gene of *Manduca sexta* and its suppression by 20-hydroxyecdysone. *Developmental Biology*, **169**, 195-209.
- Hiruma, K., Riddiford, L.M., Hopkins, T.L. and Morgan, T.D. (1985) Roles of dopa decarboxylase and phenoloxidase in the melanization of the tobacco hornworm and their control by 20-hydroxyecdysone. Journal of Comparative Physiology, 155, 659-669.
- Hirsh, J. and Davidson, N. (1981) Isolation and characterization of the dopa decarboxylase gene of Drosophila melanogaster. Molecular and. Cellular Biology, 1,475–486
- Hodgetts, R.B. and O'Keefe, S.L. (2006) *Dopa decarboxylase*: a model gene-enzyme system for studying development, behavior, and systematics. *Annual Review of Entomology*, **51**, 259-284.
- Hodgetts, R.B., Clark, W.C., O'Keefe, S.L., Schouls, M. and Crossgrove, K. (1995) Hormonal induction of *dopa decarboxylase* in the epidermis of *Drosophila* is mediated by the *Broad-Complex. Development*, **121**,3913–3922.

- Hoekstra, H.E. (2006) Genetics, development and evolution of adaptive pigmentation in vertebrates. *Heredity*, **97**, 222-234.
- Hoffman, S.L., Goh, L.M., Luke, T.C., Schneider, I., Le,T.P., Doolan, D.L., Sacci, J., de la Vega, P., Dowler, M., Paul, C., Gordon, D.M., Stoute, J.A., Church, L.W., Sedegah, M., Heppner, D.G., Ballou, W.R. and Richie, T.L. (2002) Protection of humans against malaria by immunization with radiation-attenuated *Plasmodium falciparum* sporozoites. *Journal of Infectious Diseases*, 185, 1155–1164.
- Hoffmann, A.A., Sgro, C.M. and Weeks, A.R. (2004) Chromosomal inversion polymorphisms and adaptation. *Trends in Ecology and Evolution*, **19**, 482-488.
- Holl, S.M., Schaefer, J., Goldberg, W.M., Kramer, K.J., Morgan, T.D. and Hopkins, T.L. (1992) Comparison of black coral skeleton and insect cuticle by a combination of carbon-13 NMR and chemical analyses. Archives of Biochemistry and Biophysics, 292, 107-111.
- Hopkins, T. L. and Kramer, K. J. (1992) Insect Cuticle Sclerotization. *Annual Review* of Entomology, **37**: 273-302
- Huang, C.-Y., Chou, S.-Y., Bartholomay, L.C., Christensen, B.M. and Chen, C.-C. (2005) The use of gene silencing to study the role of *dopa decarboxylase* in mosquito melanization reactions. *Insect Molecular Biology*, 14, 237-244
- Huang, H.S., Hu, N.T., Yao, Y.E., Wu, C.Y., Chiang, S.W. and Sun, C.N. (1998) Molecular cloning and heterologous expression of a *glutathione S-transferase* involved in insecticide resistance from the diamondback moth, *Plutella xylostella. Insect Biochemistry and Molecular Biology*, 28, 651-658.
- Hudson, R.R. (1987) Estimating the recombination parameter of a finite population model without selection. *Genetical Research*, **50**, 245-250.
- Hudson, R.R., Kreitman, M. and Aguade, M. (1987) A test of neutral molecular evolution based on nucleotide data. *Genetics*, **116**, 153-159.
- Hudson, R.R., Boos, D.D. and Kaplan. N. L. (1992) A statistical test for detecting geographic subdivision. *Molecular Biology and Evolution*, **9**, 138-151.
- Hudson, R.R. and Kaplan, N.L. (1985) Statistical properties of the number of recombination events in the history of a sample of DNA sequences. *Genetics*, **111**, 147-164.
- Impoinvil, D.E., Cardenas, G.A., Gihture, J.I., Mbogo, C.M. and Beier, J.C. (2007) Constant temperature and time period effects on *Anopheles gambiae* egg hatching. *Journal of the American Mosquito Control Association*, **23**,124-130

- Irvin, N., Hoddle, M.S., O'Brochta, D.A., Carey, B. and Atkinson, P.W. (2004) Assessing fitness costs for transgenic Aedes aegypti expressing the GFP marker and transposase genes. Proceedings of the National Academy of Science, USA, 101, 891-896.
- Jablonka, E., Oborny, B., Molnar, I., Kisdi, E., Hofbauer, J. and Czaran, T. (1995) The adaptive advantage of phenotypic memory in changing environments. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 350,133-141
- Jong, P., Gussekloo, S. and Brakefield, P. (1996) Differences in thermal balance, body temperature and activity between non-melanic and melanic two-spot ladybird beetles (*Adalia bipunctata*) under controlled conditions. *Journal of Experimental Biology*, **199**, 2655-2666.
- Jordan, K.W., Morgan, T.J. and Mackay, T. F. (2006). Quantitative Trait Loci for Locomotor Behavior in *Drosophila melanogaster*. *Genetics*, **174**, 271-284.
- Joron, M., Papa, R., Beltran, M., Chamberlain, N., Mavarez, J., Baxter, S., Abanto, M., Bermingham, E., Humphray, S.J., Rogers, J., Beasley, H., Barlow, K., ffrench-Constant, R.H., Mallet, J., McMillan, W.O. and Jiggins, C.D. (2006) A conserved supergene locus controls colour pattern diversity in *Heliconius* butterflies. *PLoS Biology*, 4, e303.
- Kabayo, J.P. (2002) Aiming to eliminate tsetse from Africa. *Trends in Parasitology*, **18**, 473–475.
- Kamau, L., Lehmann, T., Hawley, W.A., Orago, A.S. and Collins, F.H. (1998) Microgeographic genetic differentiation of *Anopheles gambiae* mosquitoes from Asembo Bay, western Kenya: a comparison with Kilifi in coastal Kenya. *American Journal of Tropical Medicine and Hygiene*, **58**, 64-69.
- Kamau, L., Mukabana, W.R., Hawley, W.A., Lehmann, T., Irungu, L.W., Orago, A.A. and Collins, F.H. (1999) Analysis of genetic variability in *Anopheles* arabiensis and *Anopheles gambiae* using microsatellite loci. *Insect Molecular Biology*, 8, 287-297.
- Kaplan, N. and Hudson, R.R. (1985) The use of sample genealogies for studying a selectively neutral m-loci model with recombination. *Theoretical Population Biology*, 28, 382-396.
- Karan, D., Morin, J.P., Gibert, P., Moreteau, B., Scheiner, S.M. and David, J.R. (2000) The genetics of phenotypic plasticity. IX. Genetic architecture, temperature, and sex differences in *Drosophila melanogaster*. *Evolution International Journal of Organic Evolution*, 54, 1035-1040.
- Karban, R. and Baldwin, I.T. (1997) Induced responses to herbivory. University of Chicago Press, Chicago, Illinois, USA.

- Kayondo, J.K., Mukwaya, L.G., Stump, A., Michel, A.P., Coulibaly, M.B., Besansky, N.J. and Collins, F.H. (2005) Genetic structure of *Anopheles gambiae* populations on islands in northwestern Lake Victoria, Uganda. *Malaria Journal*, 4, 59.
- Kazimirova, M. (1992) The role of physical contact in the induction of phase polymorphism of *Mamestra brassicae* (Lepidoptera, Noctuidae). Acta Entomologica Bohemoslovaca, 89, 87–95.
- Killeen, G.F., Fillinger, U. and Knols, B.G. (2002) Advantages of larval control for African malaria vectors: low mobility and behavioural responsiveness of immature mosquito stages allow high effective coverage. *Malaria Journal*, 1, 8.
- Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. *Journal* of Molecular Evolution, 16, 111-120.
- Kimura, M. and Takahata, N. (1983) Selective constraint in protein polymorphism: study of the effectively neutral mutation model by using an improved pseudosampling method. *Proceedings of the National Academy of Science*, USA. 80, 1048-1052.
- Kimura, M. (1968) Evolutionary rate at the molecular level. Nature, 217, 624-626
- Kirkpatrick, M. and Barton, N. (2006) Chromosome inversions, local adaptation and speciation. *Genetics*, **173**, 419–434.
- Kitzmiller, J.B. (1976) Genetics, Cytogenetics, and Evolution of Mosquitoes. In: Advances in Genetics, Vol. 18 (Caspari E, ed). New York: Academic Press; 315–433
- Koch, P. B., Keys, D.N., Rocheleau, T., Aronstein, K., Blackburn, M., Carroll, S.B. and ffrench-Constant, R.H. (1998) Regulation of *dopa decarboxylase* expression during colour pattern formation in wild-type and melanic tiger swallowtail butterflies. *Development*, **125**, 2303-2313.
- Kolaczinski, K., Kolaczinski, J., Kilian, A. and Meek, S. (2007) Extension of indoor residual spraying for malaria control into high transmission settings in Africa. *Transaction of the Royal Society of Tropical Medicine and Hygiene*, 101, 852-853.
- Kooi, R.E. and Brakefield, P.M. (1999) The critical period for wing pattern induction in the polyphenic tropical butterfly *Bicyclus anynana* (Satyrinae). *Journal* of Insect Physiology, 45, 201–212.
- Konrad, K.D. and Marsh, J.L. (1987) Developmental expression and spatial distribution of *dopa decarboxylase* in *Drosophila*. *Developmental Biology*, **122**, 172–185

- Kreitman, M. and Wayne, M.L. (1994) Organization of genetic variation at the molecular level: lessons from *Drosophila*. EXS, **69**, 157-183.
- Krzywinski, J., Wilkerson, R.C. and Besansky, N.J. (2001) Toward understanding *Anophelinae* (Diptera, Culicidae) phylogeny: insights from nuclear singlecopy genes and the weight of evidence. *Systems Biology*, **50**, 540-556.
- Kulkarni, M.A., Rowland, M., Alifrangis, M., Mosha, F., Matowo, W.J., Malima, R., Peter, J., Kweka, E., Lyimo, I., Magesa, S., Salanti, A., Rau, M.E. and Drakeley, C. (2006) Occurrence of the leucine-to-phenylalanine knockdown resistance (kdr) mutation in *Anopheles arabiensis* populations in Tanzania, detected by a simplified high-throughput SSOP-ELISA method. *Malaria Journal*, 5, 56.
- Kumar, S., Tamura, K. and Nei. M. (1994) MEGA: Molecular Evolutionary Genetics Analysis software for microcomputers. *Computer Applications in the Biosciences*, **10**, 189-191.
- Kumar, S., Tamura, K. and Nei, M. (2004) MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. *Briefings in Bioinformatics*, **5**, 150-163.
- Lambrechts, L., Vulule, J.M. and Koella, J.C. (2004) Genetic correlation between melanization and antibacterial immune responses in a natural population of the malaria vector *Anopheles gambiae*. *Evolution*, **58**, 2377-2381.
- Lehmann, T., Besansky, N.J., Hawley, W.A., Fahey, T.G., Kamau, L. and Collins, F.H. (1997) Microgeographic structure of *Anopheles gambiae* in western Kenya based on mtDNA and microsatellite loci. *Molecular Ecology*, 6, 243-253.
- Lehmann, T., Dalton, R., Kim, E.H., Dahl, E., Diabate, A., Dabire, R. and Dujardin, J.P. (2006) Genetic contribution to variation in larval development time, adult size, and longevity of starved adults of *Anopheles gambiae*. *Infection*, *genetics and Evolution*,6, 410-416
- Lehmann, T., Hawley, W.A., Kamau, L., Fontenille, D., Simard, F. and Collins, F.H. (1996) Genetic differentiation of *Anopheles gambiae* populations from East and west Africa: comparison of microsatellite and allozyme loci. *Heredity*, 77, 192-200.
- Lehmann, T., Hawley, W.A., Grebert, H., Danga, M., Atieli, F. and Collins, F.H. (1999) The Rift Valley complex as a barrier to gene flow for *Anopheles gambiae* in Kenya. *Journal of Hereditary*, **90**, 613-621.
- Lehmann, T., Licht, M.N., Elissa, B.T., Maega, J.M., Chimumbwa, F.T., Watsenga, Wondji, C.S. Simard, F. and Hawley, W.A. (2003) Population Structure of *Anopheles gambiae* in Africa. *Journal of Hereditary*, 94, 133-147.

- Lengeler, C. and Snow, R.W. (1996) From efficacy to effectiveness: insecticidetreated bednets in Africa. *Bulletin of the World Health Organization*, **74**, 325-332.
- Li, J. and Christensen, B.M. (1993) Involvement of L-tyrosine and phenol oxidase in the tanning of *Aedes aegypti* eggs. *Insect Biochemistry and Molecular Biology* 23,739–748
- Li, J.S. and Li, J. (2006) Major chorion proteins and their crosslinking during chorion hardening in *Aedes aegypti* mosquitoes. *Insect Biochemistry and Molecular Biology*, **36**, 954-964
- Lindblade, K.A., Eisele, T.P., Gimnig, J.E., Alaii, J.A., Odhiambo, F., ter Kuile, F.O., Hawley, W.A., Wannemuehler, K.A., Phillips-Howard, P.A., Rosen, D.H., Nahlen, B.L., Terlouw, D.J., Adazu, K., Vulule, J.M. and Slutsker, L. (2004) Sustainability of reductions in malaria transmission and infant mortality in western Kenya with use of insecticide-treated bednets: 4 to 6 years of follow-up. *The Journal of the American Medical Association*, 291, 2571-2580.
- Lindsay, S.W., Parson, L. and Thomas, C.J. (1998) Mapping the ranges and relative abundance of the two principal African malaria vectors, *Anopheles gambiae* sensu stricto and *Anopheles arabiensis*, using climate data. *Proceedings of* the Royal Society of Biological Sciences, **265**, 847-854.
- Livak, K.J. and Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods*, **25**, 402-408.
- Lönn, M., Sandberg, A. and Redbo-Torstensson, P. (1998) Fitness-related traits of allozyme genotypes in *Bromus hordeaceus* L. (Poaceae) associated with field habitat and experimental flooding. *Biological Journal of the Linnean Society*, 64, 207–222.
- Louis, J.P. and Albert, J.P. (1988) Malaria in the Republic of Djibouti. Strategy for control using a biological antilarval campaign: indigenous larvivorous fishes (*Aphanius dispar*) and bacterial toxins. *Medicina Tropical*, 48, 127-131.
- Low, W.Y., Ng, H.L., Morton, C.J., Parker, M.W., Batterham, P. and Robin, C. (2007) Molecular evolution of glutathione s-transferases in the genus Drosophila. Genetics, 177, 1363-1375.
- Luikart, G., England, P.R., Tallmon, D., Jordan, S. and Taberlet, P. (2003) The power and promise of population genomics: from genotyping to genome typing. *Nature Reviews of Genetics*, **4**, 981-994.

- Lumjuan, N., McCarroll, L., Prapanthadara, L.A., Hemingway, J. and Ranson, H. (2005) Elevated activity of an Epsilon class glutathione transferase confers DDT resistance in the dengue vector, *Aedes aegypti. Insect Biochemistry Molecular Biology*, 35, 861-871.
- Lumjuan, N., Stevenson, B.J., Prapanthadara, L.A., Somboon, P., Brophy, P.M., Loftus, B.J., Severson, D.W. and Ranson, H. (2007) The Aedes aegypti glutathione transferase family. *Insect Biochemistry and Molecular Biology*, 37, 1026-1035.
- Lynch, W. (2007) Contributions of Anopheles larval control to malaria supression in tropical Africa: review of achievements and potentials. *Medical and Veterinary Entomology*, 21, 2-21
- Lyimo, E.O., Takken, W. and Koella, J.C. (1992) Effect of rearing temperature and larval density on larval survival, age at pupation and adult size of *Anopheles gambiae. Entomologia Experimentalis et Applicata*, **63**, 265–271.
- Ma, W., Chen, L., Wang, M.O. and Li, X. (2007) Trade-offs between melanisation and life-history traits in *Helicoverpa armigera*. *Ecological Entomology*, 33,37 - 44.
- Mackay, T.F.C. (2001) The genetic architecture of quantitative traits. *Annual Reviews* of Genetics, **35**, 303-339
- Maher, B. (2008) Malaria: The end of the beginning. Nature, 451, 1042-1046

Majerus, M.E.N. (1998) Melanism: Evolution in Action. Oxford university press

- Majerus, M.E.N. and Mundy, N. I. (2003) Mammalian melanism: natural selection in black and white. *Trends in Genetics*, **19**, 585-588
- Mannervik, B. (1985) The isoenzymes of glutathione transferase. Advances in Enzymology and Related Areas of Molecular Biology, **57**, 357-417.
- Marrelli, M.T., Li, C., Rasgon, J.L. and Jacobs-Lorena, M. (2007) Transgenic malaria-resistant mosquitoes have a fitness advantage when feeding on *Plasmodium*-infected blood. *Proceedings of the National Academy of Sciences*, **104**, 5580-5583.
- Martinez-Torres, D., Chandre, F., Williamson, M.S., Darriet, F., Berge, J.B., Devonshire, A.L., Guillet, P., Pasteur, N. and Pauron, D. (1998) Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector *Anopheles gambiae s.s. Insect Molecular Biology*, **7**, 179-184.
- Mason, G.F. (1967) Genetic studies on mutations in species A and B of the Anopheles gambiae complex. Genetics Research, 10, 205-217

- Matambo, T.S., Abdalla, H., Brooke, B.D., Koekemoer, L.L., Mnzava, A., Hunt, R.H. and Coetzee, M. (2007) Insecticide resistance in the malarial mosquito Anopheles arabiensis and association with the *kdr* mutation. *Medical and Veterinary Entomology*, 21, 97-102.
- Maxwell, C.A., Msuya, E., Sudi, M., Njunwa, K.J., Carneiro, I.A. and Curtis, C.F. (2002) Effect of community-wide use of insecticide-treated nets for 3-4 years on malarial morbidity in Tanzania. *Tropical Medicine and International Health*, 7, 1003-1008.
- McAbee, R.D., Kang, K.D., Stanich, M.A., Christiansen, J.A., Wheelock, C.E., Inman, A.D., Hammock, B.D. and. Cornel, A.J. (2004) Pyrethroid tolerance in *Culex pipiens pipiens var molestus* from Marin County, California. *Pest Management Science*, **60**, 359-368.
- McDonald, J.H. and Kreitman, M. (1991) Adaptive protein evolution at the Adh locus in *Drosophila*. *Nature*, **351**, 652-654
- McGrane, V., Carlson, J.O., Miller, B.R. and Beaty, B.J. (1988) Microinjection of DNA into *Aedes triseriatus* ova and detection of integration. *American Journal of Tropical Medicine and Hygiene*, **39**, 502-510.
- McGraw, K.J. (2007) Dietary mineral content influences the expression of melaninbased ornamental coloration. *Behavioral Ecology*,**18**, 137-142
- McMillan, W.O., Monteiro, A. and Kapan, D.D. (2002) Development and evolution on the wing. *Trends in Ecology and Evolution*, **17**,125-133
- Merila, J., Laurila, A. and Lindgren, B. (2004) Variation in the degree and costs of adaptive phenotypic plasticity among *Rana temporaria* populations. *Journal of Evolutionary Biology*, **17**, 1132-1140.
- Mitchell, S.E. and Seawright, J.A. (1984) A red stripe mutant and its relationship in an allelic series in *Anopheles quadrimaculatus*. Journal of Hereditary, **75**, 421-422
- Moreira, L.A., Edwards, M.J., Adhami, F., Jasinskiene, N., James, A.A. and Jacobs-Lorena, M. (2000) Robust gut-specific gene expression in transgenic Aedes aegypti mosquitoes. Proceedings of the National Academy of Sciences, USA 97, 10895-10898.
- Moreira, L.A., Ghosh, A.K., Abraham, E.G. and Jacobs-Lorena, M. (2002) Genetic transformation of mosquitoes: a quest for malaria control. *International Journal of Parasitology*, 32, 1599-1605.
- Morgan, B.A., Johnson, W.A. and Hirsh, J. (1986) Regulated splicing produces different forms of *dopa decarboxylase* in the central nervous system and hypoderm of *Drosophila melanogaster*. *European Molecular Biology Organization Journal*, **5**,:3335–3342

- Moore, R.C. and Purugganan, M.D. (2003) The early stages of duplicate gene evolution. *Proceedings of the National Academy of Sciences*, USA, **100**, 15682-15687.
- Morris, A.C., Eggleston, P. and Crampton, J.M. (1989) Genetic transformation of the mosquito *Aedes aegypti* by micro-injection of DNA. *Medical and Veterinary Entomology*, **3**, 1-7.
- Muller, P., Donnelly, M.J. and Ranson, H. (2007) Transcription profiling of a recently colonised pyrethroid resistant *Anopheles gambiae* strain from Ghana. *BMC Genomics*, 8, 36.
- Munday, S. (2007) Review of intermittent preventive treatment for malaria in infants and children. *Journal of Paediatrics and Child Health*, **43**, 424-428.
- Najera, J.A. (2001) Malaria control: achievements, problems and strategies. *Parassitologia*, **43**, 1-89.
- Nakashima, M.J., Georghiou, G.P. and Yermanos, D.M. (1975) A red stripe character and its inheritance in *Anopheles albimanus*. Wiedemann. *Mosquito News*, **35**, 334-337.
- Nappi, A.J. and Christensen, B.M. (2005) Melanogenesis and associated cytotoxic reactions: applications to insect innate immunity. *Insect Biochemistry and Molecular Biology*, 35, 443-459.
- Narahashi, T. (1996) Neuronal ion channels as the target sites of insecticides. *Pharmacology and Toxicology*, **79**, 1-14.
- Navarro, A., Betran, E., Barbadilla, A. and Ruiz, A. (1997) Recombination and gene flux caused by gene conversion and crossing over in inversion heterokaryotypes. *Genetics*, **146**, 695-709.
- Navarro, A. and Barton, N.H. (2003) Accumulating postzygotic isolation genes in parapatry: A new twist on chromosomal speciation. *Evolution International Journal of Organic Evolution*, **57**, 447–459.
- Nei, M. (1982). Evolution of human races at the gene level, In: Bonne-Tamir,B., Cohen,T. and Goodman,R.M. (eds.), Human genetics, part A: The unfolding genome. Alan, R. Liss, New York, NY.
- Nevill, C.G., Some, E.S., Mung'ala, V.O., Mutemi, W., New, L., Marsh, K., Lengeler, C. and Snow, R.W. (1996) Insecticide-treated bednets reduce mortality and severe morbidity from malaria among children on the Kenyan coast. *Tropical Medicine and International Health*, 1, 139-146.
- N'Guessan, R., Corbel, V., Akogbeto, M. and Rowland, M. (2007) Reduced efficacy of insecticide-treated nets and indoor residual spraying for malaria control in pyrethroid resistance area, Benin. *Emerging Infectious Diseases*, **13**, 199-206.

- Nielsen, R. (2005) Molecular signatures of natural selection. Annual Review of Genetics, **39**, 197-218.
- Nikou, D., Ranson, H. and Hemingway, J. (2003) An adult-specific CYP6 P450 gene is overexpressed in a pyrethroid-resistant strain of the malaria vector, *Anopheles gambiae. Gene*, **318**, 91-102.
- Noguchi, H., Tsuzuki, S., Tanaka, K., Matsumoto, H., Hiruma, K. and Hayakawa, Y. (2003) Isolation and characterization of a *dopa decarboxylase* cDNA and the induction of its expression by an insect cytokine, growth-blocking peptide in *Pseudaletia separata*. *Insect Biochemistry and Molecular Biology*, 33, 209-217.
- Noor, M.A.F., Grams, K.L., Bertucci, L.A. and Reiland, J. (2001) Chromosomal inversions and the reproductive isolation of species. *Proceedings of the National Academy of Sciences*, USA, **98**, 12084–12088
- Nuwaha, F. (2001) The challenge of chloroquine-resistant malaria in sub-Saharan Africa. *Health Policy Plan*, 16, 1-12.
- Nyanjom, S.R., Chen, H., Gebre-Michael, T., Bekele, E., Shililu, J., Githure, J., Beier, J.C. and Yan, G. (2003) Population genetic structure of *Anopheles arabiensis* mosquitoes in Ethiopia and Eritrea. *Journal of Hereditary*, **94**, 457-463.
- Nylin, S. and Gotthard, K. (1998) Plasticity in life-history traits. Annual Review of Entomology, 43, 63-83.
- Oakeshott, J.G., Claudianos, C., Russell, R.J. and Robin, G.C. (1999) Carboxyl/cholinesterases: a case study of the evolution of a successful multigene family. *Bioessays*, **21**, 1031-1042.
- Oda, S., Hanazato, T. and Fujii, K. (2007) Changes in phenotypic plasticity of a morphological defence in *Daphnia galeata* (Crustacea: *Cladocera*) in selection experiment, *Journal of Limnology*, **66**, 142-152.
- Ohta, T. (2003) Evolution by gene duplication revisited: differentiation of regulatory elements versus proteins. *Genetica*, **118**, 209-16.
- Onyabe, D. Y. and Conn, J.E. (2001) Genetic differentiation of the malaria vector Anopheles gambiae across Nigeria suggests that selection limits gene flow. Heredity, 87, 647-658.
- Ortelli, F., Rossiter, L.C., Vontas, J., Ranson, H. and Hemingway, J. (2003) Heterologous expression of four *glutathione transferase* genes genetically linked to a major insecticide-resistance locus from the malaria vector *Anopheles gambiae*. *Biochemical Journal*, **373**, 957-963.

- Ottenheim, M.M., Wertheim, B., Holloway, G.J. and Brakefield, P.M (1999) Survival of colour-polymorphic *Eristalis arbustorum* hoverflies in semi-field conditions. *Functional Ecology*, **13**,72-77.
- Paskewitz, S. and Riehle, M.A. (1994) Response of Plasmodium refractory and susceptible strains of *Anopheles gambiae* to inoculated Sephadex beads. *Developmental and Comparative Immunology*, **18**, 369-375.
- Paskewitz, S.M., Schwartz, A.M. and Gorman, M.J. (1998) The role of surface characteristics in eliciting humoral encapsulation of foreign bodies in *Plasmodium*-refractory and -susceptible strains of *Anopheles gambiae*. *Journal of Insect Physiology*, 44, 947-954.
- Paskewitz, S.M., Reese-Stardy, S. and Gorman, M.J. (1999) An easter-like serine protease from *Anopheles gambiae* exhibits changes in transcript abundance following immune challenge. *Insect Molecular Biology*, **8**, 329-337.
- Pearse, D.E. and Pogson, G.H. (2000) Parallel evolution of the melanic form of the California legless lizard, Anniella pulchra, inferred from mitochondrial DNA sequence variation. Evolution International Journal of Organic Evolution, 54, 1041-1046.
- Petrarca, V. and Beier, J.C. (1992). Intraspecific chromosomal polymorphism in the Anopheles gambiae complex as a factor affecting malaria transmission in the Kisumu area of Kenya. American Journal of Tropical Medicine Hygiene, 46, 229-237.
- Petrarca, V., Carrara, G.C., Di Deco, M.A. and Petrangeli, G. (1983) The Anopheles gambiae complex in Guinea Bissau. Parassitologia, 25, 29-39.
- Petrarca, V., Nugud, A.D., Ahmed, M.A., Haridi, A.M., Di Deco, M.A. and Coluzzi, M. (2000) Cytogenetics of the *Anopheles gambiae* complex in Sudan, with special reference to *An. arabiensis*: relationships with East and West African populations. *Medical and Veterinary Entomology*, 14, 149-164.
- Pigliucci, M. (2001) Phenotypic Plasticity: Beyond Nature and Nurture. Baltimore, MD: The Johns Hopkins University Press
- Pinto, J., Lynd, A., Elissa, N., Donnelly, M.J., Costa, C., Gentile, G., Caccone, A. and do Rosario, V.E. (2006) Co-occurrence of East and West African kdr mutations suggests high levels of resistance to pyrethroid insecticides in Anopheles gambiae from Libreville, Gabon. Medical and Veterinary Entomology, 20, 27-32.
- Pinto, J., Sousa, C.A., Gil, V., Ferreira, C., Goncalves, L., Lopes, D., Petrarca, V., Charlwood, J.D. and do Rosario, V.E. (2000) Malaria in Sao Tome and Principe: parasite prevalence and vector densities. *Acta Tropica*, 76, 185-193.

- Powell, J.R., Petrarca, V., della Torre, A., Caccone, A. and Coluzzi, M. (1999) Population structure, speciation, and introgression in the *Anopheles* gambiae complex. *Parassitologia*, 41, 101-113.
- Prapanthadara, L.A. and Ketterman, A.J. (1993) Qualitative and quantitative changes in *glutathione S-transferases* in the mosquito *Anopheles gambiae* confer DDT-resistance. *Biochemical Society Transactions*, **21**, 304S.
- Prapanthadara, L.A., Kuttastep, S., Hemingway, J. and Ketterman, A.J. (1995) Characterization of the major form of *glutathione transferase* in the mosquito *Anopheles dirus A. Biochemical Society Transactions*, **23**, 81S.
- Price, T.D. (2006) Phenotypic plasticity, sexual selection and the evolution of colour patterns. *Journal of Experimetal Biology*, **209**, 2368-2376.
- Rai, K. (1996) Genetic Control of Vectors. In: *The Biology of Disease Vectors, Beaty, B. and Marquardt, W.* pp. 564–574. University Press of Colorado
- Ranson, H., Claudianos, C., Ortelli, F., Abgrall, C., Hemingway, J., Sharakhova, M.V., Unger, M.F., Collins, F.H. and Feyereisen, R. (2002b) Evolution of supergene families associated with insecticide resistance. *Science*, 298, 179-181.
- Ranson, H., Jensen, B., Vulule, J.M., Wang, X., Hemingway, J. and Collins. F.H. (2000b) Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan *Anopheles gambiae* associated with resistance to DDT and pyrethroids. *Insect Molecular Biology*, 9, 491-497.
- Ranson, H., Jensen, B., Wang, X., Prapanthadara, L., Hemingway, J. and Collins, F.H. (2000a) Genetic mapping of two loci affecting DDT resistance in the malaria vector *Anopheles gambiae*. *Insect Molecular Biology*, 9, 499-507.
- Ranson, H., Nikou, D., Hutchinson, M., Wang, X., Roth, C.W., Hemingway, J. and Collins, F.H. (2002a) Molecular analysis of multiple cytochrome P450 genes from the malaria vector, Anopheles gambiae. Insect Molecular Biology, 11, 409-418.
- Ranson, H., Prapanthadara, L. and Hemingway, J. (1997) Cloning and characterization of two *glutathione S-transferases* from a DDT-resistant strain of *Anopheles gambiae*. *Biochemical Journal*, **324**, 97-102.
- Ranson, H., Rossiter, L., Ortelli, F., Jensen, B., Wang, X., Roth, C.W., Collins, F.H. and Hemingway, J. (2001) Identification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector Anopheles gambiae. Biochemical Journal, 359, 295-304.
- Relyea, R.A. and Hoverman, J.T. (2003) The impact of larval predators and competitors on the morphology and fitness of juvenile treefrogs. *Oecologia*, 134, 596-604.

- Reilly, S.J., Oum, R. and Heideman, P.D. (2006) Phenotypic plasticity of reproductive traits in response to food availability and photoperiod in white-footed mice (*Peromyscus leucopus*), Oecologia, **150**, 373-392.
- Remington, D.L., Thornsberry, J.M., Matsuoka, Y., Wilson, L.M., Whitt, S.R., Doebley, J., Kresovich, S., Goodman, M.M. and Buckler IV E.S. (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. *Proceedings of the National Academy of Sciences of the* USA, 98, 11479–11484.
- Reznick, D.N. and Ghalambor, C.K. (2001) The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution. *Genetica*, **112**, 183-98
- Rieseberg, L.H. (2001) Chromosomal rearrangements and speciation. *Trends in Ecology and Evolution*, **16**, 351–358.
- Rishikesh, N., Di Deco, M.A., Petrarca, V. and Coluzzi, M. (1985) Seasonal variations in indoor resting *Anopheles gambiae* and *Anopheles arabiensis* in Kaduna, Nigeria. *Acta Tropica*, **42**, 165-170.
- Roff, D.A. (1992) The Evolution of Life Histories: Theory and Analysis. New York: Chapman and Hall
- Romi, R., Razaiarimanga, M.C., Raharimanga, R., Rakotondraibe, E.M., Ranaivo, L.H., Pietra, V., Raveloson, A. and Majori, G. (2002) Impact of the malaria control campaign (1993-1998) in the highlands of Madagascar: parasitological and entomological data. *American Journal of Tropical Medicine and Hygiene*, 66, 2-6.
- Roskam, J.C. and Brakefield, P. M. (1999) Seasonal polyphenism in Bicyclus (Lepidoptera: *Satyridae*) butterflies: different climates need different cues. *Biological Journal of the Linnean Society*, **66**, 345-356.
- Rossjohn, J., Board, P.G., Parker, M.W. and Wilce, M.C. (1996) A structurally derived consensus pattern for theta class *glutathione transferases*. *Protein Engineering*, **9**, 327-332.
- Rozen, S. and Skaletsky, H. (1999) "Primer3 on the WWW for general users and for biologist programmers." In: *Bioinformatics Methods and Protocols* in the series *Methods in Molecular Biology*. Krawetz, S. Misener, S. (eds). Humana Press, Totowa, NJ, 2000, pages 365-386
- Rozas, J. and Rozas, R. (1999) DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. *Bioinformatics*, 15, 174-175.

- Rozas, J., Sanchez-DelBarrio, J.C., Messeguer, X. and Rozas, R. (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. *Bioinformatics*, **19**, 2496-2497.
- Rubin, G.M. and Spradling, A.C. (1982) Genetic transformation of *Drosophila* with transposable element vectors. *Science*, **218**, 348-53.
- Sabchareon, A., Burnouf, T., Ouattara, D., Attanath, P., Bouharoun-Tayoun, H., Chantavanich, P., Foucault, C., Chongsuphajaisiddhi, T. and Druilhe, P. (1991) Parasitologic and clinical human response to immunoglobulin administration in *falciparum* malaria. *American Journal of Tropical Medicine and Hygiene*, **45**, 297-308.
- Sachs, J. D. (2001) A new global commitment to disease control in Africa. *Nature Medicine*, 7, 521-3.
- Saitou, N. and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. *Molecular Biology and Evolution*, **4**, 406-425.
- Schapira, A. (2004) DDT still has a role in the fight against malaria. Nature, 432, 439.
- Schapira, A. (2006) DDT: a polluted debate in malaria control. Lancet, 368, 2111-2113.
- Schellenberg, D., Menendez, C., Aponte, J.J., Kahigwa, E., Tanner, M., Mshinda, H. and Alonso, P. (2005) Intermittent preventive antimalarial treatment for Tanzanian infants: follow-up to age 2 years of a randomised, placebocontrolled trial. *Lancet*, 365, 1481-1483.
- Schellenberg, D., Menendez, C., Kahigwa, E., Aponte, J., Vidal, J., Tanner, M., Mshinda, H. and Alonso, P. (2001) Intermittent treatment for malaria and anaemia control at time of routine vaccinations in Tanzanian infants: a randomised, placebo-controlled trial. *Lancet*, **357**, 1471-1477.
- Scheiner, S. M. and Callahan, H. S. (1999) Measuring Natural Selection on Phenotypic Plasticity. *Evolution*, **53**, 1704-1713
- Schneider, S.M. and Berrigan, D. (1998) The genetics of phenotypic plasticity. VIII. The cost of plasticity in *Daphnia pulex*. *Evolution*, **52**, 368–378.
- Schlichting, C.D. (1986) The evolution of phenotypic plasticity in plants. Annual Review of Ecology and Systematics, 17, 667–693.
- Scholnick, S.B., Bray, S.J., Morgan, B.A., McCormick, C.A. and Hirsh, J. (1986) CNS and hypoderm regulatory elements of the *Drosophila melanogaster dopa decarboxylase* gene. *Science*, 234, 998-1002.

- Scott, J.A., Brogdon, W.G. and Collins, F.H. (1993) Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. American Journal of Tropical Medicine and Hygiene, 49, 520-529
- Scott, J.G. and Georghiou, G.P. (1986) Malathion-specific resistance in Anopheles stephensi from Pakistan. Journal of American Mosquito Control Associations, 2, 29-32.
- Scott, J.G., Liu, N. and Wen, Z. (1998) Insect cytochromes P450: diversity, insecticide resistance and tolerance to plant toxins. Comparative Biochemistry and Physiology Part C: Pharmacology Toxicology and Endocrinology, 121, 147-55.
- Scott, J.G., Roush, R.T. and Liu, N. (1991) Selection of high-level abamectin resistance from field-collected house flies, *Musca domestica. Experientia*, 47, 288-291.
- Scott, T.W., Takken, W., Knols, B.G. and Boete, C. (2002) The ecology of genetically modified mosquitoes. *Science*, **298**, 117-119.
- Seawright, J.A., Benedict, M.Q. and Narang, S. (1985) Color mutants in Anopheles albimanus (Diptera: Culicidae). Annals of the Entomological Society of America, 78,177-181
- Seawright, J.A. and Benedict, M.Q. (1985) Recessive lethal mutations in Anopheles albimanus. Journal of the American Mosquito Control Association, :1,227-232
- Sharakhov, I.V., White, B.J., Sharakhova, M.V., Kayondo, J., Lobo, N.F., Santolamazza, F., Della Torre, A., Simard, F., Collins, F.H. and Besansky, N.J. (2006) Breakpoint structure reveals the unique origin of an interspecific chromosomal inversion (2La) in the Anopheles gambiae complex. Proceedings of the National Academy of Sciences, USA, 103, 6258-6262.
- Sharma, S.N., Shukla, R.P., Raghavendra, K. and Subbarao, S.K. (2005) Impact of DDT spraying on malaria transmission in Bareilly District, Uttar Pradesh, India. *Journal of Vector Borne Diseases*, **42**, 54-60.
- Sharp, B., van Wyk, P., Sikasote, J.B., Banda, P. and Kleinschmidt, I. (2002) Malaria control by residual insecticide spraying in Chingola and Chililabombwe, Copperbelt Province, Zambia. *Tropical Medicine and International Health*, 7, 732-736
- Sharp, B.L., Ridl, F.C., Govender, D., Kuklinski, J. and Kleinschmidt, I. (2007) Malaria vector control by indoor residual insecticide spraying on the tropical island of Bioko, Equatorial Guinea. *Malaria Journal*, 6, 52.

- Sheeban, D., Meade, G., Foley, M.V. and Dowd, C.A. (2001) Structure, function and evolution of *glutathione transferases*: implications for classification of nonmammalian members of an ancient enzyme superfamily. *Biochemical Journal*, **360**, 1-16
- Shiffman, J., Beer, T. and Wu, Y. (2002) The emergence of global disease control priorities. *Health Policy Planning*, **17**, 225-234.
- Shousha, A.T. (1948) The eradication of *Anopheles gambiae* from Upper Egypt 1942-1945. *Bulletin of the World Health Organisation*, **1**, 309-342
- Simonsen, K.L., Churchhill, G.A. and Aquadro, C.A. (1995) Properties of statistical tests of neutrality for DNA polymorphism data. *Genetics*, **141**,413-429
- Siva-Jothy, M.T. (2000) A mechanistic link between parasite resistance and expression of a sexually selected trait in a damselfly. *Proceedings of the Royal Society of Biological Sciences*, **267**, 2523-2527.
- Slatkin, M. and Hudson, R.R. (1991) Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. *Genetics*, **129**, 555-562
- Slatkin, M. and Wiehe, T. (1998) Genetic hitch-hiking in a subdivided population. Genetics Research, 71, 155-160.
- Slotman, M.A., Della Torre, A., Calzetta, M. and Powell, J.R. (2005) Differential introgression of chromosomal regions between Anopheles gambiae and Anopheles arabiensis. American Journal of Tropical Medicine and Hygiene, 73, 326-335.
- Solensky, M.J. and Larkin, E. (2003) Temperature-induced variation in larval coloration in *Danaus plexippus* (Lepidoptera: *Nymphalidae*), *Annals of the Entomological Society of America*, **96**, 211-216
- Soper, F.L. and Wilson, D.B. (1943) Anopheles gambiae in Brazil. 1943: The Rockefeller Foundation
- Stearne, S.C. (1992) The evolution of Life- histories, Oxford University Press, Oxford pp 249
- Stillwell, R. C., Wallin, W.G., Hitchcock, L. J. and Fox, C.W. (2007) Phenotypic plasticity in a complex world: interactive effects of food and temperature on fitness components of a seed beetle. *Oecologia*, **153**, 309-321
- Storz, J.F. (2005) Using genome scans of DNA polymorphism to infer adaptive population divergence. *Molecular Ecology*, **14**: 671-688.
- Storz, J.F. and Nachman, M.W. (2003) Natural selection on protein polymorphism in the rodent genus *Peromyscus*: evidence from interlocus contrasts. *Evolution International Journal of Organic Evolution*, **57**, 2628-2635.

- Storz, J.F. and Dubach, J.M. (2004) Natural selection drives altitudinal divergence at the albumin locus in deer mice, *Peromyscus maniculatus*. *Evolution International Journal of Organic Evolution*, **58**, 1342-1352.
- Stump, A.D., Atieli, F.K., Vulule, J.M. and Besansky, N.J. (2004) Dynamics of the pyrethroid knockdown resistance allele in western Kenyan populations of *Anopheles gambiae* in response to insecticide-treated bed net trials. *American Journal of Tropical Medicine and Hygiene*, **70**, 591-596.
- Sultan, S.E. (2000) Phenotypic plasticity for plant development, function and life history. *Trends in Plant Sciences*, **5**, 537-542.
- Sultan, S.E. (2001) Phenotypic plasticity for fitness components in *Polygonum* species of contrasting ecological breadth, *Ecology*, **82**, 328–343
- Takahashi, A., Takahashi, K., Ueda, R. and Takano-Shimizu, T. (2007) Natural variation of ebony gene controlling thoracic pigmentation in *Drosophila melanogaster*. *Genetics*, **177**, 1233-1237.
- Talloen, W., Van Dyck, H. and Lens, L. (2004) The cost of melanization: butterfly wing coloration under environmental stress. *Evolution International Journal of Organic Evolution*, 58, 360-366.
- Tajima, F. (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. *Genetics*, **123**, 585-595.
- Tang, A.H. and Tu, C.P. (1994) Biochemical characterization of Drosophila glutathione S-transferases D1 and D21. Journal of Biological Chemistry, 269, 27876-27884.
- Tatarenkov, A. and Ayala, F.J. (2007) Nucleotide variation at the dopa decarboxylase (Ddc) gene in natural populations of Drosophila melanogaster. Journal of Genetics, 86, 125-137.
- Tatarenkov, A., Zurovcova, M. and Ayala, F.J. (2001) DDC and AMD sequences resolve phylogenetic relationships of *Drosophila*. *Molecular Phylogenetics and Evolution*, **20**, 321-325.
- Taylor, C., Toure, Y.T., Carnahan, J., Norris, D.E., Dolo, G., Traore, S.F., Edillo, F.E. and Lanzaro, G.C. (2001) Gene flow among populations of the malaria vector, *Anopheles gambiae*, in Mali, West Africa. *Genetics*, 157, 743-750.
- Tempel, B.L., Livingstone, M.S. and Quinn, W.G. (1984) Mutations in the Dopa decarboxylase gene affect learning in Drosophila. Proceedings of the National Academy of Sciences of the USA, 81, 3577–3581.
- Temu, E. A. and Yan, G. (2005) Microsatellite and mitochondrial genetic differentiation of Anopheles arabiensis (Diptera: Culicidae) from western Kenya, the Great Rift Valley, and coastal Kenya. American Journal of Tropical Medicine and Hygiene, 73, 726-733.

- Thompson, J.D. (1991) Phenotypic plasticity as a component of evolutionary change. *Trends in Ecology and Evolution*, **6**, 246-249.
- Tollrian, R. and Harvell, C.D. (1999) The Evolution of inducible defenses: current ideas, In: *The Ecology and Evolution of Inducible Defenses*. Tollrian, R. and Harvell, C.D. (eds). Princeton University Press, Princeton, New Jersey.
- Toure, Y.T., Petrarca, V., Traore, S.F., Coulibaly, A., Maiga, H.M., Sankare, O., Sow, M., Di Deco, M.A. and Coluzzi, M. (1994) Ecological genetic studies in the chromosomal form Mopti of *Anopheles gambiae* s.str. in Mali, West Africa. *Genetica*, 94, 213-223.
- Toure, Y.T., Petrarca, V., Traore, S.F., Coulibaly, A., Maiga, H.M., Sankare, O., Sow, M., Di Deco, M.A. and Coluzzi, M. (1998a). The distribution and inversion polymorphism of chromosomally recognized taxa of the *Anopheles* gambiae complex in Mali, West Africa. *Parassitologia*, 40, 477-511.
- Toure, Y.T., Doumbo, O., Toure, A., Bagayoko, M., Diallo, M., Dolo, A., Vernick, K.D., Keister, D.B., Muratova, O. and Kaslow, D.C. (1998b) Gametocyte infectivity by direct mosquito feeds in an area of seasonal malaria transmission: implications for Bancoumana, Mali as a transmissionblocking vaccine site. *American Journal of Tropical Medicine and Hygiene*, 59, 481-486.
- Trape, J.F., Rogier, C., Konate, L., Diagne, N., Bouganali, H., Canque, B., Legros, F., Badji, A., Ndiaye, G., Ndiaye, P., Brahimi, K., Faye, O., Druilhe, P. and Pereira Da Silva, L.P. (1994) The Dielmo project: a longitudinal study of natural malaria infection and the mechanisms of protective immunity in a community living in a holoendemic area of Senegal. *American Journal of Tropical Medicine and Hygiene*, **51**, 123-137.
- Travis, J. (1994). Ecological genetics of life-history traits: variation and its evolutionary significance. In: Real, L. A. (ed.) *Ecological Genetics*, pp. 171–204. Princeton University Press, Princeton, NJ.
- Tripet, F., Wright, J., Cornel, A., Fofana, A., McAbee, R., Meneses, C., Reimer, L., Slotman, M., Thiemann, T., Dolo, G., Traore, S. and Lanzaro, G. (2007). Longitudinal survey of knockdown resistance to pyrethroid (kdr) in Mali, West Africa, and evidence of its emergence in the Bamako form of Anopheles gambiae s.s. American Journal of Tropical Medicine and Hygiene, 76, 81-87.
- True, J.R., Yeh, S.D., Hovemann, B.T., Kemme, T., Meinertzhagen, I.A., Edwards, T.N., Liou, S.R., Han, Q. and Li, J. (2005) *Drosophila* tan encodes a novel hydrolase required in pigmentation and vision. *PLoS Genetics*, 1, e63.
- True, J.R. (2003) Insect melanism: the molecules matter. *Trends in Ecology and Evolution*, **8**,640-647

- True, J.R., Edwards, K.A., Yamamoto, D. and Carroll, S.B. (1999) *Drosophila* wing melanin patterns form by vein-dependent elaboration of enzymatic prepatterns. *Current Biology*, **9**, 1382-1391.
- Tufto, J. (2000) The Evolution of Plasticity and Nonplastic Spatial and Temporal Adaptations in the Presence of Imperfect Environmental Cues. *The American Naturalist*, **156**, 121-130.
- Turner, T.L., Hahn, M.W. and Nuzhdin, S.V. (2005) Genomic islands of speciation in Anopheles gambiae. PLoS Biology, **3**, e285.
- Verhaeghen, K., Van Bortel, W., Roelants, P., Backeljau, T. and Coosemans, M. (2006) Detection of the East and West African kdr mutation in Anopheles gambiae and Anopheles arabiensis from Uganda using a new assay based on FRET/Melt Curve analysis. Malaria Journal, 5, 16.
- Via, S., Gomulkiewicz, R., De Jong, G., Scheiner, S.M., Schlichting, C.D. and Van Tienderen, P.H. (1995). Adaptive phenotypic plasticity: consensus and controversy. *Trends in Ecology and Evolution*, 5: 212–217.
- Vontas, J.G., Small, G.J. and Hemingway, J. (2001) *Glutathione S-transferases* as antioxidant defence agents confer pyrethroid resistance in *Nilaparvata lugens*. *Biochemical Journal*, **357**, 65-72.
- Vulule, J.M., Beach, R.F., Atieli, F.K., Roberts, J.M., Mount, D.L. and Mwangi, R.W. (1994) Reduced susceptibility of *Anopheles gambiae* to permethrin associated with the use of permethrin-impregnated bednets and curtains in Kenya. *Medical and Veterinary Entomololy*, 8, 71-75.
- Vulule, J.M., Beach, R.F., Atieli, F.K., McAllister, J.C., Brogdon, W.G., Roberts, J.M., Mwangi, R.W. and Hawley, W.A. (1999) Elevated oxidase and esterase levels associated with permethrin tolerance in *Anopheles gambiae* from Kenyan villages using permethrin-impregnated nets. *Medical and Veterinary Entomology*, 13, 239-244.
- Wang, D., Marsh, J.L. and Ayala, F.J. (1996) Evolutionary changes in the expression pattern of a developmentally essential gene in three *Drosophila* species. *Proceedings of the National Academy of Sciences*, 93, 7103-7107.
- Weill, M., Chandre, F., Brengues, C., Manguin, S., Akogbeto, M., Pasteur, N., Guillet, P. and Raymond, M. (2000) The kdr mutation occurs in the Mopti form of Anopheles gambiae s.s. through introgression. Insect Molecular Biology, 9, 451-455.
- Weir, B.S. (1979) Inferences about linkage disequilibrium. Biometrics, 35, 235-254.
- West-Eberhard, M.J. (2003) Developmental plasticity and evolution. Oxford University Press, Oxford

- Wheelock, C.E., Eder, K.J., Werner, I., Huang, H., Jones, P.D., Brammell, B.F., Elskus, A.A. and Hammock, B.D. (2005) Individual variability in esterase activity and CYP1A levels in Chinook salmon (Oncorhynchus tshawytscha) exposed to esfenvalerate and chlorpyrifos. Aquatic Toxicology, 74, 172-192.
- White, B.J., Santolamazza, F., Kamau, L., Pombi, M., Grushko, O., Mouline, K., Brengues, C., Guelbeogo, W., Coulibaly, M., Kayondo, J.K., Sharakhov, I., Simard, F., Petrarca, V., Della Torre, A. and Besansky, N.J. (2007) Molecular karyotyping of the 2La inversion in *Anopheles gambiae*. *American Journal of Tropical Medicine and Hygiene*, **76**, 334-339.
- White, B.J, Matthew, W.H., Pombi, M., Cassone, B.J., Lobo, N.F., Simard, F. and Besansky N.J. (2007) Localization of Candidate Regions Maintaining a Common Polymorphic Inversion (2La) in *Anopheles gambiae*. PLoS Genetics, 3, 217
- White, G.B. (1974) Anopheles gambiae complex and disease transmission in Africa. Transactions of the Royal Society of Tropical Medicine and Hygiene, **68**, 278-301.
- Wiernasz, D.C (1989) Female Choice and Sexual Selection of Male Wing Melanin Pattern in *Pieris occidentalis* (Lepidoptera) *Evolution*, **43**:1672-1682
- Wilder, J.A., Dyreson, E.G., O'Neill, R.J., Spangler, M.L., Gupta, R., Wilder, A.S. and Hollocher, H. (2004) Contrasting modes of natural selection acting on pigmentation genes in the Drosophila dunni subgroup. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 302, 469-482.
- Wilson, K., Cotter, S.C., Reeson, A.F. and Pell, J.K. (2001) Melanism and disease resistance in insects. *Ecology letters*, **4**, 637-649
- Windig, J.J. (1998) Evolutionary genetics of fluctuating asymmetry in the peacock butterfly (Inachis io). Heredity, 80, 382-392.
- Windig, J.J. (1999) Trade-offs between melanization, development time and adult size in *Inachis io* and *Araschnia levana* (Lepidoptera: *Nymphalidae*)? *Heredity*, 82, 57-68
- Wittkopp, P.J., Carroll, S.B. and Kopp, A. (2003a) Evolution in black and white: genetic control of pigment patterns in *Drosophila*. *Trends in Genetic*, **19**, 495-504.
- Wittkopp, P.J., Williams, B.L., Selegue, J.E. and Carroll, S.B. (2003b) Drosophila pigmentation evolution: divergent genotypes underlying convergent phenotypes. Proceedings of the National Academy of Sciences, USA, 100, 1808-1813.

- Wright, S. (1946) Isolation by Distance under Diverse Systems of Mating. *Genetics*, **31**, 39-59.
- Wright, T.R.F. (1996) Phenotypic analysis of the Dopa decarboxylase gene cluster mutants in Drosophila. The journal of Heredity, 87, 175-190
- Wondji, C., Simard, F. and Fontenille, D. (2002) Evidence for genetic differentiation between the molecular forms M and S within the Forest chromosomal form of *Anopheles gambiae* in an area of sympatry. *Insect Molecular Biology*, 11, 11-19.
- World Health Organization, (1957). Sixth Report, Expert Committee on Malaria. World Health Organization Technical Report Series, 123.
- World Health Organization, (2003) The Africa malaria report, World Health Organization, 69,1-115
- Xu, Q., Wang, H., Zhang, L. and Liu, N. (2006) Sodium channel gene expression associated with pyrethroid resistant house flies and German cockroaches. *Gene*, 379, 62-67.
- Yawson, A.E., McCall, P.J., Wilson, M.D. and Donnelly, M.J. (2004) Species abundance and insecticide resistance of *Anopheles gambiae* in selected areas of Ghana and Burkina Faso. *Medical and Veterinary Entomology*, **18**, 372-377.
- Zahar, A.R. (1984) Vector control operations in the African context. *Bulletin of the World Health Organization*, **62**, 89-100.
- Zaim, M., Aitio, A. and Nakashima, N. (2000) Safety of pyrethroid-treated mosquito nets. *Medical and Veterinary Entomology*, **14**, 1-5.
- Zhang, J. 2003. Evolution by gene duplication: an update. *Trends in Ecology and Evolution*, **18**, 292-298.

APPENDICES Appendix 1

AG-GENEBANK 37

....

DNA sequence alignment of GSTe1

		10	20	30	40	50
						••••
ET1	1	CTGGGCAAAA	TTTGACACCT	GAGTTCTTGA	AGGTATAGCA	CGTGTTTGTA
ET2	1					
ET3	1					
ET4	1					
ET5	1				· · · · · · · · · · ·	
SU1	1					
SU2	1					
SU3	1					
SU4	1			• • • • • • • • • • •		
SU5	1					
MA1	1					
MA2	1			•••••		•••••
MA3	1					
MA4	1					••••
MA5	1					
TA1	1				••••	
TA2	1				· · · · · · · · · · · · · · ·	
TA3 TA4	1					
TA4 TA5	1					
AG-GENEBANK	1					
AG-GENEDANK					· · ·	
		60	70	80	90	100
ET1	51		AGATAACCCT		GTATTTGCTA	the second second second second
ET2	51					
ET3	51					
ET4	51					
ET5	51			.C		
SU1	51			.c		
SU2	51			.c		•••••
SU3	51			.C		
SU4	51			.C		
SU5	51	<mark>.</mark>		.c	. <mark>.</mark> . 	
MA1	51	• • • • • • • • • • • •		.C		
MA2	51		<mark>.</mark>	.C		
MA3	51	• • • <mark>•</mark> • • • <mark>•</mark> • •	•••••	.C	• • • • • • • • • • • •	<mark></mark>
MA4	51		· · · · · · · · · ·	.C		
MA5	51	•••• <mark>•</mark> •••	• • • • • • • • • • • •	.C		• • • • • • • • • • •
TA1	51		• • • • • • • • • • •	AC		
TA2	51			.C		
TA3	51			.c		
TA4	51	· · · · · · · · · · · ·		.c		•••••
TA5	51	••••••••••••••		.c		
AG-GENEBANK	32	the second second second second second	and one one has been and the same and			••••
		110	120	130	140	150
				and the second		
ET1	101			GTGCTGGACG		
ET2	101					
ET3	101					
ET4	101					
ET5	101					
SU1	101					
SU2		********				
SU3	101					
SU4	101					
SU5		·····	•••••	·····		
MA1	101				·····	
MA2	101					
MA3				•••••		
MA4	101					•••••
MA5	101					
TA1 TA2	101			•••••		
TA2 TA3	101					
TA3 TA4	101					
TA5	100 million and					
	27					

162

C

AG-GENEBANK	37			c			
		160	170	180	190	200	
					· · · · [· · · ·]		
ET1	151	GAAAGCCACG	CGATCATGAT	CTATCTCGTG	CGTAAGTACG	GCCAGGGGGA	
ET2	151						
ET3	151						
ET4	151					••••••••	
ET5	151					C	
SU1	151					C	
SU2	151					C	
SU3	151					C	
SU4	151					C	
SU5	151					C	
MA1	151	· · · · · · · · · · · · · · · · · · ·			Т	C	
MA2	151					C	
MA3	151					C	
MA4	151					C	
MA5	151						
TA1	151					C	
TA2	151					C	
TA3	151					C	
TA4	151						
TAS	151						
AG-GENEBANK	87						
AG-GENEDANK	07						
		210	220	230	240	250	
ET1	201	AGGGAAGGAT	GCGCTGTACC	CAACGGACAT	TGTCGAGCAG	GCTCGGGTCA	
ET2	201	AGGGAAGGAI	GCGCIGIACC	CAACGGACAI	IGICGAGCAG	GCICGGGICA	
	201				•••••	••••	
ET3	201	••••••••••	•••••••			· · · · · · · · · · · · · · ·	
ET4		· · · · · · · · · · · ·	·····	• • • • • • • • • • •	••••		
ET5	201	••••••••••	••••••C•••	••••••••••••••••••••••••••••••••••••••	•••••		
SU1	201		· · · · · · · · · · · · · ·	· · · · · · · · · · · ·	•••••••••••	· · · · · · · · · · · · ·	
SU2	201		• • • • • • • • • • •		• • • • • • • • • • • •		
SU3	201				••••		
SU4	201		C	·····	•••••	····	
SU5	201		C				
	001						
MAI	201		· · · · · · · · · · · ·	·····	•••••	••••	
MA2	201	•••••••••••••••••••••••••••••••••••••••	·····	····	•••••		
MA2 MA3	201 201		·····	·····	••••••		
MA2 MA3 MA4	201 201 201		·····				
MA2 MA3 MA4 MA5	201 201 201 201		·····	·····		·····	
MA2 MA3 MA4 MA5 TA1	201 201 201 201 201			·····			
MA2 MA3 MA4 MA5 TA1 TA2	201 201 201 201 201 201			•••••••••	•••••		
MA2 MA3 MA4 MA5 TA1 TA2 TA3	201 201 201 201 201 201 201					·····	
MA2 MA3 MA4 MA5 TA1 TA2 TA3 TA4	201 201 201 201 201 201 201 201			•••••••••	·····		
MA2 MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5	201 201 201 201 201 201 201 201 201		·····			······	
MA2 MA3 MA4 MA5 TA1 TA2 TA3 TA4	201 201 201 201 201 201 201 201				·····	······	
MA2 MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5	201 201 201 201 201 201 201 201 201		·····				
MA2 MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5	201 201 201 201 201 201 201 201 201	260	270		290	300	
MA2 MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 AG-GENEBANK	201 201 201 201 201 201 201 201 137	260	270		290 		
MA2 MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 AG-GENEBANK	201 201 201 201 201 201 201 201 137 251	260 ATGAGGCACT	270 GCACTTCGAG	280 	290 TGTTTGCTCG	GTTGCGATTC	
MA2 MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 AG-GENEBANK	201 201 201 201 201 201 201 201 137 251 251	260 ATGAGGCACT	270 	280 I TCCGGTGTGC	290 	 GTTGCGATTC	
MA2 MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 AG-GENEBANK	201 201 201 201 201 201 201 201 201 137 251 251 251	260]] ATGAGGCACT	270 	280 	290 	GTTGCGATTC	
MA2 MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 AG-GENEBANK	201 201 201 201 201 201 201 201 201 137 251 251 251 251	260 	270 	280 I.T TCCGGTGTGC	290 TGTTTGCTCG	GTTGCGATTC	
MA2 MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 AG-GENEBANK ET1 ET2 ET3 ET4 ET5	201 201 201 201 201 201 201 201 137 251 251 251 251	260 	270 	280 II TCCGGTGTGC	290 	GTTGCGATTC	
MA2 MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 AG-GENEBANK ET1 ET2 ET3 ET4 ET5 SU1	201 201 201 201 201 201 201 201 201 137 251 251 251 251 251	260 ATGAGGCACT	270 	280 	290 	GTTGCGATTC	
MA2 MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 AG-GENEBANK ET1 ET2 ET3 ET4 ET5 SU1 SU2	201 201 201 201 201 201 201 201 137 251 251 251 251 251 251 251	260 ATGAGGCACT	270 	280 	290 	GTTGCGATTC	
MA2 MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 AG-GENEBANK ET1 ET2 ET3 ET4 ET5 SU1 SU2 SU3	201 201 201 201 201 201 201 201 201 201	260 ATGAGGCACT	270 	280 	290 	GTTGCGATTC	
MA2 MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 AG-GENEBANK ET1 ET2 ET3 ET4 ET5 SU1 SU2 SU3 SU4	201 201 201 201 201 201 201 201 201 201	260 ATGAGGCACT	270 GCACTTCGAG	280 	290 TGTTTGCTCG	GTTGCGATTC	
MA2 MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 AG-GENEBANK ET1 ET2 ET3 ET4 ET5 SU1 SU2 SU3 SU4 SU5	201 201 201 201 201 201 201 201 201 201	260 	270 	280 	290 I TGTTTGCTCG	GTTGCGATTC	
MA2 MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 AG-GENEBANK ET1 ET2 ET3 ET4 ET5 SU1 SU2 SU3 SU3 SU4 SU5 MA1	201 201 201 201 201 201 201 201 201 201	260 	270 GCACTTCGAG	A 280 	290 I TGTTTGCTCG	GTTGCGATTC	
MA2 MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 AG-GENEBANK ET1 ET2 ET3 ET4 ET5 SU1 SU2 SU3 SU4 SU2 SU3 SU4 SU5 MA1 MA2	201 201 201 201 201 201 201 201 201 201	260 	270 GCACTTCGAG	280 A 280 II TCCGGTGTGC	290 I TGTTTGCTCG	GTTGCGATTC	
MA2 MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 AG-GENEBANK ET1 ET2 ET3 ET4 ET5 SU1 SU2 SU3 SU4 SU3 SU4 SU5 MA1 MA2 MA3	201 201 201 201 201 201 201 201 201 201	260 	270 	280 	290 III TGTTTGCTCG	GTTGCGATTC	
MA2 MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 AG-GENEBANK ET1 ET2 ET3 ET4 ET5 SU1 SU2 SU3 SU4 SU3 SU4 SU5 MA1 MA2 MA3 MA4	201 201 201 201 201 201 201 201 201 201	260 	270 GCACTTCGAG	280 TCCGGTGTGC	290 TGTTTGCTCG	GTTGCGATTC	
MA2 MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 AG-GENEBANK ET1 ET2 ET3 ET4 ET5 SU1 SU2 SU3 SU4 SU3 SU4 SU5 MA1 MA2 MA3 MA4 MA5	201 201 201 201 201 201 201 201 201 201	260 	270 	280 	290 TGTTTGCTCG A A A	GTTGCGATTC	
MA2 MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 AG-GENEBANK ET1 ET2 ET3 ET4 ET5 SU1 SU2 SU3 SU4 SU5 SU4 SU5 MA1 MA2 MA3 MA4 MA5 TA1	201 201 201 201 201 201 201 201 201 201	260 ATGAGGCACT	270 	280 	290 TGTTTGCTCG A A A A	GTTGCGATTC	
MA2 MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 AG-GENEBANK ET1 ET2 ET3 ET4 ET5 SU1 SU2 SU3 SU4 SU3 SU4 SU5 MA1 MA2 MA3 MA4 MA5 TA1 TA2	201 201 201 201 201 201 201 201 201 201	260 ATGAGGCACT	270 GCACTTCGAG		290 I TGTTTGCTCG 	GTTGCGATTC	
MA2 MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 AG-GENEBANK ET1 ET2 ET3 ET4 ET5 SU1 SU2 SU3 SU3 SU4 SU5 MA1 MA2 MA3 MA4 MA5 TA1 TA2 TA3	201 201 201 201 201 201 201 201 201 201	260 I ATGAGGCACT	270 	A 280 I TCCGGTGTGC	290 I TGTTTGCTCG 		
MA2 MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 AG-GENEBANK ET1 ET2 ET3 ET4 ET5 SU1 SU2 SU3 SU4 SU2 SU3 SU4 SU5 MA1 MA2 MA3 MA4 MA5 TA1 TA2 TA3 TA4	201 201 201 201 201 201 201 201 201 201	260 	270 GCACTTCGAG	A 280 II TCCGGTGTGC	290 I TGTTTGCTCG 	II GTTGCGATTC	
MA2 MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 AG-GENEBANK ET1 ET2 ET3 ET4 ET5 SU1 SU2 SU3 SU4 SU2 SU3 SU4 SU5 MA1 MA2 MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5	201 201 201 201 201 201 201 201 201 201	260 	270 GCACTTCGAG	280 A 280 TCCGGTGTGC	290 I TGTTTGCTCG 	I GTTGCGATTC 	
MA2 MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 AG-GENEBANK ET1 ET2 ET3 ET4 ET5 SU1 SU2 SU3 SU4 SU2 SU3 SU4 SU5 MA1 MA2 MA3 MA4 MA5 TA1 TA2 TA3 TA4	201 201 201 201 201 201 201 201 201 201	260 	270 GCACTTCGAG	A 280 III TCCGGTGTGC	290 I TGTTTGCTCG 	I GTTGCGATTC 	

		310	320	330	340	350
ET1	201	ATTACCGTAG	GTTTCGGCAG	GAAGACCCTT	ATGTTGAAGC	CCACAAGTAA
					AIGIIGAAGC	
ET2	301					
ET3	301					
ET4	301					
ET5	301					
SU1	301					
SU2	301					
SU3	301					
SU4	301					
SU5	301				Sector States	
MA1	301					
		· · · · · · · · · · · · · · · ·				
MA2	301					
MA3	301					
MA4	301					
MA5	301					
TA1	301					
TA2	301					
TA3	301					
TA4	301					
TA5	301					
AG-GENEBANK	237					
AG-GENEDAM	231					
		360	370	380	390	400
		360	370	380	390 •••• ••••	400
ET1	351	1				
ET1 FT2	351	TGAGGAAGTC	 ATTTTATGTA	TCTACACATA	TAGGAGTTGG	 CAATTTTTGG
ET2	351	 TGAGGAAGTC	 ATTTTATGTA 	 TCTACACATA		
ET2 ET3	351 351	 TGAGGAAGTC	 ATTTTATGTA 	TCTACACATA	TAGGAGTTGG	 CAATTTTTGG
ET2 ET3 ET4	351 351 351	 TGAGGAAGTC	 ATTTTATGTA 	 TCTACACATA	TAGGAGTTGG	 CAATTTTTGG
ET2 ET3	351 351	 TGAGGAAGTC	 ATTTTATGTA 	TCTACACATA	TAGGAGTTGG	 CAATTTTTGG
ET2 ET3 ET4	351 351 351	TGAGGAAGTC	 ATTTTATGTA	TCTACACATA	TAGGAGTTGG	 CAATTTTTGG
ET2 ET3 ET4 ET5 SU1	351 351 351 351 351	TGAGGAAGTC	 ATTTTATGTA	TCTACACATA	TAGGAGTTGG	CAATTTTTGG
ET2 ET3 ET4 ET5 SU1 SU2	351 351 351 351 351 351	TGAGGAAGTC	ATTTTATGTA	TCTACACATA	TAGGAGTTGG	 CAATTTTTGG
ET2 ET3 ET4 ET5 SU1 SU2 SU3	351 351 351 351 351 351 351	TGAGGAAGTC	 ATTTTATGTA	TCTACACATA	TAGGAGTTGG	CAATTTTTGG
ET2 ET3 ET4 ET5 SU1 SU2 SU3 SU4	351 351 351 351 351 351 351 351	TGAGGAAGTC	ATTTTATGTA	T. T	TAGGAGTTGG	 CAATTTTTGG
ET2 ET3 ET4 ET5 SU1 SU2 SU3	351 351 351 351 351 351 351	TGAGGAAGTC	 ATTTTATGTA	TCTACACATA	TAGGAGTTGG	 CAATTTTTGG
ET2 ET3 ET4 ET5 SU1 SU2 SU3 SU4	351 351 351 351 351 351 351 351	TGAGGAAGTC	ATTTTATGTA	T. T	TAGGAGTTGG	 CAATTTTTGG
ET2 ET3 ET4 ET5 SU1 SU2 SU3 SU4 SU5	351 351 351 351 351 351 351 351 351 351	TGAGGAAGTC	ATTTTATGTA	TTTACACATA	TAGGAGTTGG	 CAATTTTTGG
ET2 ET3 ET4 ET5 SU1 SU2 SU3 SU4 SU5 MA1 MA2	351 351 351 351 351 351 351 351 351 351	TGAGGAAGTC	ATTTTATGTA	T. T	TAGGAGTTGG	 CAATTTTTGG
ET2 ET3 ET4 ET5 SU1 SU2 SU3 SU4 SU5 MA1 MA2 MA3	351 351 351 351 351 351 351 351 351 351	TGAGGAAGTC	ATTTTATGTA	T.T.	TAGGAGTTGG	 CAATTTTTGG
ET2 ET3 ET4 ET5 SU1 SU2 SU3 SU4 SU5 MA1 MA2 MA3 MA4	351 351 351 351 351 351 351 351 351 351	TGAGGAAGTC	ATTTTATGTA	T. T	TAGGAGTTGG	 CAATTTTTGG
ET2 ET3 ET4 ET5 SU1 SU2 SU3 SU4 SU5 MA1 MA2 MA3 MA4 MA5	351 351 351 351 351 351 351 351 351 351	TGAGGAAGTC	ATTTTATGTA	T.	TAGGAGTTGG	 CAATTTTTGG
ET2 ET3 ET4 ET5 SU1 SU2 SU3 SU4 SU5 MA1 MA2 MA3 MA4	351 351 351 351 351 351 351 351 351 351	TGAGGAAGTC	ATTTTATGTA	T. T	TAGGAGTTGG	 CAATTTTTGG
ET2 ET3 ET4 ET5 SU1 SU2 SU3 SU4 SU5 MA1 MA2 MA3 MA4 MA5	351 351 351 351 351 351 351 351 351 351	TGAGGAAGTC	ATTTTATGTA	T.	TAGGAGTTGG	 CAATTTTTGG
ET2 ET3 ET4 ET5 SU1 SU2 SU3 SU4 SU5 MA1 MA2 MA3 MA4 MA5 TA1 TA2	351 351 351 351 351 351 351 351 351 351	TGAGGAAGTC	ATTTTATGTA	T.	TAGGAGTTGG	 CAATTTTTGG
ET2 ET3 ET4 ET5 SU1 SU2 SU3 SU4 SU5 MA1 MA2 MA3 MA4 MA5 TA1 TA2 TA3	351 351 351 351 351 351 351 351 351 351	TGAGGAAGTC	I ATTTTATGTA	T. T	TAGGAGTTGG	
ET2 ET3 ET4 ET5 SU1 SU2 SU3 SU4 SU5 MA1 MA2 MA3 MA4 MA5 TA1 TA2 TA3 TA4	351 351 351 351 351 351 351 351 351 351	TGAGGAAGTC	I ATTTTATGTA	T.	TAGGAGTTGG	
ET2 ET3 ET4 ET5 SU1 SU2 SU3 SU4 SU5 MA1 MA2 MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5	351 351 351 351 351 351 351 351 351 351	TGAGGAAGTC	I ATTTTATGTA	T. T	TAGGAGTTGG	 CAATTTTTGG
ET2 ET3 ET4 ET5 SU1 SU2 SU3 SU4 SU5 MA1 MA2 MA3 MA4 MA5 TA1 TA2 TA3 TA4	351 351 351 351 351 351 351 351 351 351	TGAGGAAGTC	I ATTTTATGTA	T.	TAGGAGTTGG	

		410	420	430	440		
ET1	401	ACGCAAACCA	GAAATTCCGG	AAGATCGCAT	CGAGTACGTC	С	
ET2	401						
ET3	401						
ET4	401						
ET5	401						
SU1	401						
SU2	401						
SU3	401						
SU4	401					•	
SU5	401		· · · · · · · · · · · ·				
MA1	401						
MA2	401						
MA3	401						
MA4	401						
MA5	401				·····		
TA1	401						
TA2	401						
TA3	401						
TA4	401						
TA5	401						
AG-GENEBANK	260	A					

APPENDIX 2

DNA sequence alignment of GSTe2

		10	20	30	40	50
						•••• ••••
AG-GENEBANK	1	GTACACCCTG	CACCTTAGCC		TGCCGTGGAG	CTGACGGCCA
TA1 TA2	1 1	•••••	•••••	• • • • • • • • • • •	•••••••	G G
TA2 TA3	1			••••••••••••		G
TA4	1					
TA5	1					G
MA1	1			A		G
MA2	1	• • • • • • • • • • •			•••••	•••••
MA3	1				•••••	•••••
MA4 MA5	1				•••••	
ET1	1					
ET2	1					
ET3	1				.	G
ET4	1				• • • • • • • • • • • •	
ET5	1					G
SUI	1	•••••	******	••••• <mark>•</mark> ••••	•••••	G
SU2 SU3	1 1	•••••		••••••••••••••••••••••••••••••••••••••		G
SU4	1					G
SU5	1					G
		60	70	80	90	100
	F 1		CTTGGAGCTG	GAGCAGAAGA	CCATTAATCT	GCTAACGGGT
AG-GENEBANK TA1	51 51	AAGCATTGGG	CITGGAGCIG	GAGCAGAAGA	CCATTAATCI	G
TA2	51	G				G
TA3	51	G				G
TA4	51	.			• • • • • • • • • • • • • • • • • • •	G
TA5	51	G	· · · · · · · · · · ·	••••	• • • • • • • • • • •	G
MA1	51	G	····	•••• <mark>•</mark> •••••	••• <mark>•••</mark> ••• <mark>•</mark> •••	••••G••••••
MA2 MA3	51 51	GA.		••••		G
MA4	51	A.				G
MA5	51	A.				G
ET1	51	<mark></mark>	· · · · · · · · · · · ·			G
ET2	51	· · · · · · · · · · · · ·	· · · · · · · · · · ·	••••	•••••	G
ET3	51		••••	••••		G
ET4 ET5	51 51	G				G
SU1	51	G				G
SU2	51	G				G
SU3	51	G <mark>.</mark> G
SU4	51	G	••••		•••••	G
SU5	51	••••G•••••	••••••••		•••••	•••• G•••••
		110	120	130	140	150
AG-GENEBANK	101		AGCCGGAATT	TGTGAAG		
TA1	101		••••••••••••••		CGTAATGGGA	
TA2	101		••••••••		CGTAATGGGA	
TA3 TA4	101 101		· · · · · · · · · · · · · ·		CGTAATGGGA CGTAATGGGA	
TA5	101			the state of the second s	CGTAATGGGA	
MA1	101				CGTAATGGGA	
MA2	101				CGTAATGGGA	
MA3	101	•••••			CGTAAAGGGA	
MA4	101	•••••			CGTAATGGGA	
MA5 ET1	101				CGTAATGGGA CGTAATGGGA	
ET2	101				CGTAATGGGA	
ET3	101		G		CGTAATGGGA	
ET4	101				CGTAATGGGA	
ET5	101				CGTAATGGGA	
SU1	101	•••••••	·····		CGTAATGGGA	
SU2 SU3	101 101				CGTAATGGGA CGTAATGGGA	
SU4	101				CGTAATGGGA	
SU5	101				CGTAATGGGA	

		160	170	180	190	200
					1	
AG-GENEBANK	127					
TA1	148		GAAAGTTAGA	AAGAAAGCAA	TTGGTATGCA	TTACATTACC
TA2	148		GAAAGTTAGA	AAGAAAGCAA	TTGGTATGCA	TTACATTACC
TA3	148		GAAAGTTAGA	AAGAAAGCAA	TTGGTATGCA	TTACATTACC
TA4	151	GTGATGAAGA	GAACGTTAGA	AAGAAAGCGA	TTGGTATGCA	TTACATTACC
TA5	148		GAAAGTTAGA	AAGAAAGCAA	TTGGTATGCA	TTACATTACC
MA1	148		GAAAGTTAGA	AAGAAAGCGA	TTGGTATGCA	TTACATTACC
MA2	151	GTGATGAAGA	GAACGTTAGA	AAGAAAGCGA	TTGGTATGCA	TTACATTACC
MA3	148		GAAAGTTAGA	AAGAAAGCAA	TTGGTATGCA	TTACATTACC
MA4	148		GAACGTTAGA	AAGAAAGCGA	TTGGTATGCA	TTACATTACC
MA5	148		GAACGTTAGA	AAGAAAGCGA	TTGGTATGCA	TTACATTACC
ET1	151	GTGATGAAGA	GAACGTTAGA	AAGAAAGCGA	TTGGTATGCA	TTACATTACC
ET2	151	GTGATGAAGA	GAACGTTAGA	AAGAAAGCGA	TTGGTATGCA	TTACATTACC
ET3	151	GTGATGAAGA	GAACGTTAGA	AAGAAAGCGA	TTGGTATGCA	TTACATTACC
ET4	151	GTGATGAAGA	GAACGTTAGA	AAGAAAGCGA	TTGGTATGCA	TTACATTACC
ET5	148		GAAAGTTAGA	AAGAAAGCAA	TTGGTATGCA	TTACATTACC
SU1	148		GAAAGTTAGA	AAGAAAGCGA	TTGGTATGCA	CTACATTACC
SU2	148		GAAAGTTAGA	AAGACAGCGA	TTGGTATGCA	TTACATTACC
SU3	148		GAAAGTTAGA	AAGAAAGCGA	TTGGTATGCA	TTACATTACC
SU4	148		GAAAGTTAGA	AAGAAAGCGA	TTGGTATGCA	TTACATTACC
SU5	148		GAAAGTTAGA	AAGACAGCGA	TTGGTATGCA	TTACATTACC
		210	220	230	240	250
		· · · · · · · ·		· · · · · · · · ·	· · · · · · · ·	
AG-GENEBANK	127		CTAAACC	CGCAACATAC	GATCCCGGTG	CTGGATGACA
TA1	189	CTTATGTGCA	CAG			•••••
TA2	189	CTTATGTGCA	CAG		• • • • • • • • • • • •	
TA3	189	CTTATGTGCA	CAG		• • • • • • • • • • • • • •	• • • • • • • • • • •
TA4	201	CATATGTGCA	CAG		<mark></mark>	·····
TA5	189	CTTATGTGCA	CAG	<mark></mark> .	<mark>.</mark>	
MA1	189	CTTACGTGCA	CAG			· • · · · • • · · · ·
MA2	201	CATATGTGCA	CAG	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·	
MA3	189	CTTATGTGCA	CAG	••••••••••••••••••••••••••••••••••••••	<mark>.</mark>	
MA4	189	CTTACGTGCA	CAG			

TA4	201	CATATGTGCA	CAG		<mark></mark> <mark>.</mark> .	· · · · · · · · · · · ·
TA5	189		CAG			
MA1	189	CTTACGTGCA	CAG			. . .
MA2	201	CATATGTGCA	CAG	· · · · · · · · · · · ·		· · · · · · · · · · · ·
MA3	189	CTTATGTGCA	CAG			· · · · · · · · · · · · ·
MA4	189	CTTACGTGCA	CAG			
MA5	189	CTTACGTGCA	CAG	· · · · · · · · · · · ·		· · · · · · · · · · · · ·
ET1	201	CATATGTGCA	CAG		• • • • • • • • • • •	
ET2	201	CATATGTGCA	CAG		· · · · · · · · · · ·	
ET3	201	CATATGTGCA	CAG			
ET4	201	CATATGTGCA	CAG	.	• • • • • • • • • • • •	. . .
ET5	189	CATATGTGCA	CAG			
SU1	189	CTTACGTGCA	CAG		· · · · · · · · · · ·	
SU2	189	CATATGTGCA	CAG		•••••	• • • • • • • • • • • •
SU3	189	CTTACGTGCA	CAG		· · · · · · · · · ·	
SU4	189	CTTACGTGCA	CAG		• • • • • • • • • • • •	• • • • • • • • • • • •
SU5	189	CATATGTGCA	CAG	•••••••••	••••••••••••••••••••••••••••••••••••••	·····
		260	270	280	290	300

 260
 270
 280
 290
 300

|....|
|
|
|
|

AG-GENEBANK	165	ACGGTACGAT	CATCACCGAG	AGCCACGCAA	TCATGATCTA	TCTGGTGACG	
TA1	239			G.			
TA2	239		A	G.			
TA3	239			G.			
TA4	251			G.			
TA5	239			G.			
MA1	239			G.		· · · · · · · · · · · · · · · ·	
MA2	251			G.		C	
MA3	239			G.			
MA4	239			G.			
MA5	239			G.			
ET1	251			G.			
ET2	251			G.			
ET3	251		*********	G.			
ET4	251			G.			
ET5	239		G.	G.			
SU1	239		····	G.	********		
SU2	239			G.			
SU3	239			G.			
SU4	239			G.	********		
SU5	239			G.			

		310	320	330	340	350	
				1	1		
AG-GENEBANK	215	AAGTATGGCA	AAGATGATAG	CCTCTATCCG	AAAGACCCCG	TCAAGCAGGC	
TA1	289			A			
TA2	289			A		•••••	
TA3	289				<mark></mark>		
TA4	301					<mark></mark>	
TA5	289			A			
MA1	289		.G	A	· · · · · · · · · · · ·		
MA2	301						
MA3	289	· · · · · · · · · · · · ·		A	· · · · · · · · · · · ·	G	
MA4	289					• • • • • • • • • • • •	
MA5	289				A	••••••	
ET1	301						
ET2	301		<mark>.</mark> <mark>.</mark>	<mark></mark>		•••••	
ET3	301				<mark></mark> .	• • • • • • • • • • •	
ET4	301						
ET5	289				******	·····	
SU1	289			A			
SU2	289			A			
SU3	289			A			
SU4	289	Acres		A		• • • • • • • • • • •	
SU5	289	<mark>.</mark>		A			

		360	370	380	390	400
		1		···· ····		••••
AG-GENEBANK	265	CCGTGTAAAT	TCGGCCCTGC	ACTTCGAGTC	CGGCGTACTG	TTCGCCCGGA
TA1	339		•••••••••	• • <mark>• • •</mark> • • • • • •		
TA2	339	G				• • • • • • • • • • •
TA3	339	• • • • • • • • • • •		••• <mark>•</mark> ••••••		••••
TA4	351					
TA5	339					
MA1	339				<mark>.</mark>	
MA2	351	· · · · · · · · · · · ·			C.G	
MA3	339					
MA4	339					
MA5	339	G			· · · · · · · · · · ·	
ET1	351				· · · · · · · · · · · ·	
ET2	351					
ET3	351					
ET4	351					
ET5	339					
SU1	339				· · · · · · · · · · · ·	
SU2	339					
SU3	339					T
SU4	339					
SU5	339					
Constant Party and						
		410	420	430	440	450

		410	420	430	440	400
AG-GENEBANK	315	TGAGATTCAA	TTTCG			
TA1	389	T	.CTAAGT	GACGTGACCT	GTTTTTCCCC	TAAAAAGAC-
TA2	389	T	TAAGT	GACGTGACCT	GTTTTTCCCC	TAAAAAGAC-
TA3	389	T	TAAGT	GACGTGACCT	GTTTTTCCTC	TAAAAAGAC-
TA4	401	T	TAAGT	GACGTGACCT	GTTTTTCCTC	TAAAAAGAC -
TA5	389	T	TAAGT	GACGTGACCT	GTTTTTCCCC	TAAAAAGAC-
MA1	389	T	T.TAAGT	GACGTGACCT	G-TTTTCCCC	TAAAAAGAC-
MA2	401	T	TAAGT	GACGTGACCT	GTTTTTCCTC	TAAAAAGAC-
MA3	389	T	TAAGT	GACGTGACCT	GTTT-TCCCT	TAAAAAGAC-
MA4	389	T	TAAGT	GACGTGACCT	GTTTTTCCTC	TAAAAAGAC-
MA5	389	T	TAAGT	GACGTGACCT	GTTTCTCCCA	TAAAGAGAA-
ET1	401	T	TAAGT	GACGTGACCT	GTTTTTCCTC	TAAAAAGAC-
ET2	401	T	TAAGT	GACGTGACCT	GTTTTTCCTC	TAAAAAGAC-
ET3	401	T	TAAGT	GACGTGACCT	GTTTTTCCTC	TAAAAAGAC-
ET4	401	T	TAAGT	GACGTGACCT	GTTTTTCCTC	TAAAAAGAC-
ET5	389	T	TAAGT	GACGTGACCT	GTTTTTCCCT	TAAAAAGAC-
SU1	389	T	T. TAAGT	GACGTGACCT	G-TTTTCCCT	TAAAAAGAC-
SU2	389	T	TAAGT	GACGTGACCT	GTTTTTCCCC	TAAAAAGAC-
SU3	389	T	T. TAAGT	GACGTGACCT	G-TTTTCCCT	TAAAAAGAC-
SU4	389	T	TAAGT	GACGTGACCT	GTTTCTCCCA	TAAAGAGAA-
SU5	389	T	TAAGT	GACGTGACCT	GTTTTTCCCC	TAAAAAGAC-

		460	470	480	490	500
AG-GENEBANK	329					
TA1	437	TGAGACCG	GTTCCAGTTC	CAGCATAACG	CCAAGCATTT	TCCAAACCCC
TA2	437	TGAGACCG	GTTCCAGTTC	CAGCATAACG	CCAAGCATTT	TCCAAACCCC
TA3	437	TGAGACAG	GTTCCAGTTC	CAGCATAACG	CCAAGCATTT	TCCAA-TCCT
TA4	449	TGAGACAG	GTTCCAGTTC	CAGCATAACG	CCAAGCATTT	TCCAA-TCCT
TA5	437	TGAGACCG	GTTCCAGTTC	CAGCATAACG	CCAAGCATTT	TCCAAACCCC
MA1	436	TGAGACCG	GTTCCAGTTC	CAGCATAACG	CCAAGCATTT	TCCAAACCCC
MA2	449	TGAGACAG	GTTCCAGTTC	CAGCATAACG	CCAAGCATTT	TCCAAACCCC
MA3	436	TGAGACCG	GTTCCAGTTC	CAGCATAACG	CCAAGCATTT	TCCAAACCCC
MA4	437	TGAGACAG	GTTCCAGTTC	CAGCATAACG	CCAAGCATTT	TCCAAACCCC
MA5	437	TGAGACCG	GTTTCAGTTC	CAGCATAACG	CCAAGCATTT	TCCAA-CCCC
ET1	449	TGAGACAG	GTTCCAGTTC	CAGCATAACG	CCAAGCATTT	TCCAAACCCC
ET2	449	TGAGACAG	GTTCCAGTTC	CAGCATAACG	CCAAGCATTT	TCCAAACCCC
ET3	449	TGAGACAG	GTTCCAGTTC	CAGCATAACG	CCAAGCATTT	TCCAAACCCC
ET4	449	TGAGACAG	GTTCCAGTTC	CAGCATAACG	CCAAGCATTT	TCCAAACCCC
ET5	437	TGAGACCG	GTTCCAGTTG	CAGCATAACG	CCAAGCATTT	TCCAAACCCC
SU1	436	TGAGACCG	GTTCCAGTTC	CAGCATAACG	CCAAGCATTT	TCCAA-CCCC
SU2	437	TGAGACCG	GTTCCAGTTC	CAGCATAACG	CCAAGCATTT	TCCAAACCCC
SU3	436	TGAGACCG	GTTCCAGTTC	CAGCATAACG	CCAAGCATTT	TCCAA-CCCC
SU4	437	TGAGACCG	GTTCCAGTTC	CAGCATAACG	CCAAGCATTT	TCCAA-CCCC
SU5	437	TGAGACCG	GTTCCAGTTC	CAGCATAACG	CCAAGCATTT	TCCAAACCCC

		510	520	530	540	550	
AG-GENEBANK	329	GA	ACGTATCCTG	TTCTTCGGCA	AATCGGACAT	CCCCGAGGAT	
TA1	486	TTCCACAG	· · · · · · · · · · · ·			Τ	
TA2	486	TTCCACAG					
TA3	485	TTCCACAG	A		C		
TA4	497	TTCCACAG	A		C		
TA5	486	TTCCACAG			· · · · · · · · · · ·	Τ	
MA1	485	TTCCACAG	A				
MA2	498	TTCCACAG			C		
MA3	485						
MA4	486	TTCCACAG			C		
MA5	485	TTCCACAG	A				
ET1	498						
ET2	498						
ET3	498						
ET4	498						
ET5	486						
SU1	484						
SU2	486			T			
SU3	484						
SU4	485			T			
SU5	486						

		1100110110				
SU5	486	TTCCACAG	• • • • • • • • • • • •	•••••••••	·····	••• <mark>•</mark> •••••
		560	570	580	590	600
AG-GENEBANK	372	CGCGTTGAGT	ACGTGCAGAA	ATCGTACGAG	CTGCTGGAGG	ACACACTGGT
TA1	536	 		
TA2	536		• • • • • • • • • • • • • • • • • • •	. 	• • • • • • • • • • • • • • • • • • •	
TA3	535				•••••	G
TA4	547		· · · · · · · · · · · · ·		· · · · · · · · · · · · ·	G
TA5	536				•••••	
MA1	535					
MA2	548				· · · · · · · · · · · · ·	
MA3	535					
MA4	536					
MA5	535				· · · · · · · · · · · · ·	
ET1	548					
ET2	548					
ET3						
ET4						
ET5						
SU1						
SU2	536					
SU3	534					
SU4	535					
SU5	536					

		610	620	630	640	650	
AG-GENEBANK	422	GGACGACTTT	GTCGCCGGAC	CGACCATGAC	GATCGCCGAC	TTTAGCTGCA	
TA1	586						
TA2	586						
TA3	585						
TA4	597						
TA5	586						
MA1	585			G	· T		
MA2	598						
MA3	585			G			
MA4	586						
MA5	585		·	G			
ET1	598						
ET2	598						
ET3	598						
ET4	598						
ET5	586						
SU1	584			G	T		
SU2	586						
SU3	584			G	· · · T · · · · · ·		
SU4	585	A		G			
SU5	586						
	1910						

		660	670	680	690	700
		· · · · [· · · ·]				
AG-GENEBANK	472	TTTCCACGAT	CTCGAGCATT	ATGGGTGTGG	TGCCGTTGGA	GCAGTCGAAG
TA1	636					
TA2	636					
TA3	635					· · · · · · · · · · · ·
TA4	647			·		• • • • • • • • • • • •
TA5	636		T			· · · ·
MA1	635		'		•••••	·····
MA2	648					· · · · · · · · · · · ·
MA3	635				<mark></mark>	
MA4	636			• • • • • • • • • •		· · · · · .
MA5	635					· · · · · · · · · · · ·
ET1	648					· · · · · · · · · · · ·
ET2	648					• • • • • • • • • • •
ET3	648					
ET4	648					<mark></mark>
ET5	636			. <mark>.</mark> . <mark>.</mark>	. .	• • • • • • • • • • • •
SU1	634				.	
SU2	636					<mark>.</mark>
SU3	634					
SU4	635					
SU5	636		· · · · · · · · · · · ·			

		710	720	730	740	750
			All States of the States of the		740	750
				•••• ••••		
AG-GENEBANK	522	CATCCCCGGA	TCTACGCGTG	GATCGATCGG	CTGAAGCAGC	TGCCCTACTA
TA1	686				. .	••••••••
TA2	686				• • • • • • • • • • •	
TA3	685					
TA4	697				·····	
TA5	686					
MA1	685					
MA2	698					
MA3	685		•••••			
MA4	686					
MA5	685					
ET1	698					
ET2	698					
ET3	698					• • • • • • • • • • •
ET4	698					
ET5	686					
SU1	684					
SU2	686					
SU3	684					
SU4	685		A			
SU5	686	····				

		760	770	780	790	800	
AG-GENEBANK	572	CGAGGAAGCG	AACGGTGGCG	GTGGCACCGA	TCTGGGCAAG	TTTGTGCTAG	
TA1	736						
TA2	736			.A			
TA3	735	G	T.	.A			
TA4	747	G	T.	· T			
TA5	736						
MA1	735			.A			
MA2	748	G	. T .	T			
MA3	735						
MA4	736	G	T.	• • • • T • • • • •			
MA5	735						
ET1	748	G	T.	· T			
ET2	748	G	T.	• • • • T • • • • •			
ET3	748	G		· T			
ET4	748	G	T.	· . · . T			
ET5	736						
SU1	734			.A			
SU2	736						
SU3	734			.A			
SU4	735						
SU5	736	· · · · · · · · · · · ·	· · · · · · · · · · · ·	. . .			

AG-GENEBANK	621
TA1	785
TA2	785
TA3	784
TA4	796
TA5	785
MA1	784
MA2	797
MA3	784
MA4	785
MA5	784
ET1	797
ET2	797
ET3	797
ET4	797
ET5	785
SU1	783
SU2	785
SU3	783
SU4	784
SU5	785

Appendix 3

DNA sequence alignment of GSTe6

		10	20	30	40	50
						· · · · · · · ·
AG-GENBANK	1					
SU1	1	ATGTCGAGCA	AGCCGGTCCT	GTACACGCAC	ACGATTAGTC	CCGCCGGCCG
SU2	1					
SU3	1		· · · · · · · · · · · ·			
SU4	1					
SU5	1				. . .	· · · · · · · · · · · ·
ET1	1				.T	<mark></mark>
ET2	1	A				
ET3	1					
ET4	1				.T	
ET5	1				.T	
MA1	1					
MA2	1					
MA3	1					
MA4	1					
MAS	1					
TA1	1					
TA2	1			•••••	•••••	
TA3	1	••••		••••••	• • • • • • • • • • •	•••• <mark>••</mark> ••••
TA3 TA4	1		· · · · · · · · · · · · · · ·	•••••	•••••	•••••
		•••••		••••••••••••••••••••••••••••••••••••••	<mark>.</mark>	•••••
TA5	1	· · · · · · · · · · · ·	· · · · · · · · · · · · · · ·	• • • • • • • • • • •	• • • • • • • • • • • •	•••••••••
		60	70	80	90	100
- 1		•••• ••••	•••• ••••	••••	••••	
AG-GENBANK	51		· · · · · · · · · · · ·	•••••••••••	• • • • • • • • • • •	••••
SU1	51	TGCGGTCGAG	CTGACCGTGA	AGGCGTTGAA	CCTTGACGTC	GATGTTCGGT
SU2	51		• <mark>• •</mark> • • • • • • • •	••• <mark>•</mark> •• <mark>•</mark> ••••	••••	••••
SU3	51	•••••	• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · ·		
SU4	51		•••••	• • • • • • • • • • • •	••• <mark>•</mark> •••••	••••
SU5	51	••••••	••••••••	• • • <mark>• • • •</mark> • • •	•••••	•••••
ET1	51	A	••••••A.	• • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·
ET2	51	A	•••••A.	• • • • • • • • • • • •	••• <mark>•</mark> •••••	
ET3	51	A	A.	• • • • • • • • • • •		· · · · · · · · · · · ·
ET4	51	A	A.			
ET5	51	A	A.			
MA1	51	A	A.	· · · · · · · · · · · ·		
MA2	51	.	••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · ·		
MA3	51 51	A	A.			
MA3	51	A	A.		· · · · · · · · · · · · ·	
MA3 MA4	51 51	A A	A.	····		
MA3 MA4 MA5	51 51 51	A A A	A. A. A.			
MA3 MA4 MA5 TA1	51 51 51 51	A A A	A. A. A. A.	·····	·····	·····
MA3 MA4 MA5 TA1 TA2	51 51 51 51 51	A A A A A	A. A. A. A. A.			·····
MA3 MA4 MA5 TA1 TA2 TA3	51 51 51 51 51 51	A A A A A A	A. A. A. A. A. A. A. A.		·····	·····
MA3 MA4 MA5 TA1 TA2 TA3 TA4	51 51 51 51 51 51 51	A A A A A A	A. A. A. A. A. A. A. A.		·····	······
MA3 MA4 MA5 TA1 TA2 TA3 TA4	51 51 51 51 51 51 51	A A A A A A	A. A. A. A. A. A. A. A.		·····	······
MA3 MA4 MA5 TA1 TA2 TA3 TA4	51 51 51 51 51 51 51	AAAAAAAA	A. A. A. A. A. A. A. A. A. A. A. A. A. A			······
MA3 MA4 MA5 TA1 TA2 TA3 TA4	51 51 51 51 51 51 51	AAAAAAAA	A. A. A. A. A. A. A. A. A. A. A. A. A. A	 		150
MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5	51 51 51 51 51 51 51 51	AAAAAAAA	A. A. A. A. A. A. A. A. A. A. A. A. A. A			150
MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 AG-GENBANK	51 51 51 51 51 51 51 51	AAAAAAAA	A. A. A. A. A. A. A. A. A. A. A. A. A. A	 	140 I	
MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 AG-GENBANK SU1	51 51 51 51 51 51 51 51 98 101	AAAAAAAAAA	A. A. A. A. A. A. A. A. A. A. A. A. A. A	130 I TCGCCTTTTC	140 ACGTGTGTCG	150
MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 AG-GENBANK SU1 SU2	51 51 51 51 51 51 51 51 98 101 101	AAAAAAAAAA	A. A. A. A. A. A. A. A. A. A. A. A. A. A	130 TCGCCTTTTC	140 I	150 II TAAAACGAAT T
MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 AG-GENBANK SU1 SU2 SU3	51 51 51 51 51 51 51 51 51 98 101 101	AAAAAAAAAA	A. A. A. A. A. A. A. A. A. A. A. A. A. A	130 TCGCCTTTTC	140 	150
MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 AG-GENBANK SU1 SU2 SU3 SU4	51 51 51 51 51 51 51 51 51 98 101 101 101	AAAAAAAAAA	A. A. A. A. A. A. A. A. A. A. A. A. A. A	130 TCGCCTTTTC	140 ACGTGTGTCG	150
MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 AG-GENBANK SU1 SU2 SU3 SU4 SU5	51 51 51 51 51 51 51 51 98 101 101 101 101	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	A. A. A. A. A. A. A. A. A. A. A. A. A. A	130 	140 ACGTGTGTCG A.	150 I TAAAACGAAT T
MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 AG-GENBANK SU1 SU2 SU3 SU3 SU4 SU5 ET1	51 51 51 51 51 51 51 51 98 101 101 101 101	AAAAAAAAAA	A. A. A. A. A. A. A. A. A. A. A. A. A. A	130 TCGCCTTTTC	140 ACGTGTGTCG 	150
MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 AG-GENBANK SU1 SU2 SU3 SU4 SU5 ET1 ET2	51 51 51 51 51 51 51 51 51 51 98 101 101 101 101	AAAAAAAAAA	A. A. A. A. A. A. A. A. A. A. A. A. A. A	130 	140 ACGTGTGTCG 	150
MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 AG-GENBANK SU1 SU2 SU3 SU4 SU5 ET1 ET2 ET3	51 51 51 51 51 51 51 51 51 101 101 101 1	AAAAAAAAAA	A. A. A. A. A. A. A. A. A. A. A. A. A. A	130 1 TCGCCTTTTC C. C. C. C.	140 	150
MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 AG-GENBANK SU1 SU2 SU3 SU4 SU5 ET1 ET2 ET1 ET2 ET3 ET4	51 51 51 51 51 51 51 51 51 51 51 101 101	AAAAAAAAAA	A. A. A. A. A. A. A. A. A. A. A. A. A. A	130 11 TCGCCTTTTC C C C	140 ACGTGTGTCG 	150 II TAAAACGAAT T T T T T T T
MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 AG-GENBANK SU1 SU2 SU3 SU4 SU5 ET1 ET2 ET2 ET3 ET4 ET5	51 51 51 51 51 51 51 51 51 51 51 51 101 10	AAAAAAAAAA	A. A. A. A. A. A. A. A. A. A. A. A. A. A	130 1 TCGCCTTTTC C. C. C. C.	140 I ACGTGTGTCG 	150 TAAAACGAAT T T T T T T T T T T T T T
MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 AG-GENBANK SU1 SU2 SU3 SU4 SU5 ET1 ET2 ET3 ET4 ET5 MA1 MA2	51 51 51 51 51 51 51 51 51 51 51 01 101 1	AAAAAAAAAA	A. A. A. A. A. A. A. A. A. A. A. A. A. A	130 TCGCCTTTTC C. C. C. C. C. C. C. C. C. C. C. C. C.	140 	150
MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 AG-GENBANK SU1 SU2 SU3 SU4 SU5 ET1 ET2 ET3 ET4 ET5 MA1 MA2 MA3	51 51 51 51 51 51 51 51 51 51 51 01 101 1	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGCCACTGA	A. A. A. A. A. A. A. A. A. A. A. A. A. A	130 11 TCGCCTTTTC C .A.C .A.C .A.C .A.C	140 	150
MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 AG-GENBANK SU1 SU2 SU3 SU4 SU5 ET1 ET2 ET3 ET4 ET5 MA1 MA2 MA3 MA4	51 51 51 51 51 51 51 51 51 51 51 01 101 1	AAAAAAAAAA	A. A. A. A. A. A. A. A. A. A. A. A. A. A	130 	140 	150
MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 SU1 SU2 SU3 SU4 SU5 ET1 ET2 ET3 ET4 ET5 MA1 MA2 MA3 MA4 MA5	51 51 51 51 51 51 51 51 51 51 51 51 01 101 1	AAAAAAAAAA	A. A. A. A. A. A. A. A. A. A. A. A. A. A	130 	140 	150
MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 SU1 SU2 SU3 SU4 SU5 ET1 ET2 ET3 ET4 ET5 MA1 MA2 MA3 MA4 MA5 TA1	51 51 51 51 51 51 51 51 51 51 51 51 01 101 1	AAAAAAAAAA	A. A. A. A. A. A. A. A. A. A. A. A. A. A	130 	140 	150
MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 SU2 SU3 SU2 SU3 SU4 SU5 ET1 ET2 ET3 ET1 ET2 ET3 ET4 ET5 MA1 MA2 MA3 MA4 MA5 TA1 TA2	51 51 51 51 51 51 51 51 51 51 51 51 101 10	AAAAAAAAAA	A. A. A. A. A. A. A. A. A. A. A. A. A. A	130 11 TCGCCTTTTC C .A.C .A.C .A.C .A.C .A.C .A.C .A.C .A.C .A.C .A.C .A.C .A.C .A.C .A.C	140 	150 TAAAACGAAT T
MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 SU2 SU3 SU4 SU2 SU3 SU4 SU5 ET1 ET2 ET3 ET1 ET2 ET3 ET4 ET5 MA1 MA2 MA3 MA4 MA5 TA1 TA2 TA3	51 51 51 51 51 51 51 51 51 51 51 51 51 101 10	AAAAAAAAAA	A. A. A. A. A. A. A. A. A. A. A. A. A. A	130 	140 	150
MA3 MA4 MA5 TA1 TA2 TA3 TA4 TA5 SU2 SU3 SU2 SU3 SU4 SU5 ET1 ET2 ET3 ET1 ET2 ET3 ET4 ET5 MA1 MA2 MA3 MA4 MA5 TA1 TA2	51 51 51 51 51 51 51 51 51 51 51 51 101 10	AAAAAAAAAA	A. A. A. A. A. A. A. A. A. A. A. A. A. A	130 11 TCGCCTTTTC C .A.C .A.C .A.C .A.C .A.C .A.C .A.C .A.C .A.C .A.C .A.C .A.C .A.C .A.C	140 	150 TAAAACGAAT T

		160	170	180	190	200
AG-GENBANK	98					
SU1	151	GCTTCCTTCT	GTCTTCTTTT	TACTCTTCTC	CTTGTCCAGC	GAGATGAACG
SU2	151					
	151		•••••		•••••	*****
SU3		• • • • • • • • • • •			· · · · · · · · · · ·	· · · · · · · · · · · · · ·
SU4	151	••••	• • • • • • • • • • •			· · · · · · · · · · · · ·
SU5	151	GG	••••	•••••		• • • • • • • • • • • •
ET1	151					
ET2	151				• • • • • • • • • • •	
ET3	151					•••••
ET4	151					· · · · · · · · · · · ·
ET5	151					
MA1	151					
MA2	151					
MA3	151					
MA4	151					
MA5	151					
TA1	151		and the second se			
			•••••			
TA2	151	•••••			••••	
TA3	151			••••	• • • • • • • • • • •	•••••
TA4	151			*******		• • • • • • • • • •
TA5	151	· · · · · · · · · · · · · · ·				
		210	220	230	240	250
AG-GENBANK	110					
SU1	201	TCTTCAAGGG	TCAGCATATG	AGCGACGAGT	TCAAGAAGCT	AAACCCCGTC
SU2	201					
SU3	201					
SU4	201					
SU5	201					
ET1	201					
ET2	201					
ET3	201					
				· · · · · · · · · · · · · · ·	••••••••••••••••••••••••••••••••••••••	
ET4	201			· · · · · · · · · · · ·	•••••	• • • • • • • • • • • •
ET5	201			· · · · · · · · · · · ·		•••• <mark>•••••</mark> •
MA1	201		••••••••••	• • • • • <mark>•</mark> • • • • •	•••••••••	• • • • • • • • • • •
MA2	201	••••	.T			
MA3	201			• • • • • • • • • • • • • • •		
MA4	201			•••••		
MA5	201				••••••••	
TA1	201		. .		<mark></mark>	. .
TA2	201					
TA3	201			<mark></mark>	· · · · · · · · · · ·	· · · · · · · · · · · ·
TA4	201					
TA5	201					
		444 <u>0</u>				
		260	270	280	290	300
			and the second se			
AG-GENBANK	160					the state of the state of the state
SU1					TTCGTGCTGT	
SU2	251					
SU3	251					
SU4	251					
					•••••	
SU5	251	•••••				
ET1	251				•••••	
ET2	251					
ET3	251					
ET4	251					
ET5	251					
MA1	251					
MA2	251			N		T
MA3	251					
MA4	251					
MA5	251					
TA1	251					
TA2	251					
TA3	251					
TA4	251					
						•••••
TA5	251					

		310	320	330	340	350	
AG-GENBANK	210		•••••••••				
SU1	301	CGCCATCATG	ATCTATCTGG	CGCGCCGTTA	CGGTGCCGAC	TCCGGCCTCT	
SU2	301				G.		
SU3	301	••• <mark>••••</mark> •	· · · · · · · · · · · ·	••••••••	• • • • • • • • • • • • • • • • • • •		
SU4	301	••••••••	• • • • • • • • • • • •				
SU5	301						
ET1	301	T	• • • • • • • • • • • • • • • • • • •	C.			
ET2	301	T	· · · · · · · · · · · ·		• • • • • • • • • • • •	••••••••	
ET3	301	T		********			
ET4	301	T		C.			
ET5	301	T					
MA1	301						
MA2	301						
MA3	301						
MA4	301						
MA5	301						
TA1	301	T					
TA2	301	T					
TA3	301	T					
TA4	301			.C		• • • • • • • • • • • •	
TA5	301				•••••		

		360	370	380	390	400
				· · · · · · · · [
AG-GENBANK	260	<mark>.</mark>	. 	<mark></mark>	. .	• • • • • • • • • • • •
SU1	351	ACACGGACGA	GTACGAGCAG	CAGGCCCGCA	TCAATGCGGC	CCTCTTCTTC
SU2	351		· · · · · · · · · · ·			
SU3	351		• • • • • • • • • • •			• • • • • • • • • • • •
SU4	351					
SU5	351			<mark>.</mark>		
ET1	351				•••••	
ET2	351					
ET3	351				. .	
ET4	351			• • • • • • • • • • • • • • • • • • •		
ET5	351		T			
MA1	351				<mark>.</mark>	
MA2	351					
MA3	351					
MA4	351					
MA5	351		T			
TA1	351					
TA2	351					
TA3	351					
TA4	351					
TA5	351					

AG-GENBANK 310			
AG-GENBANK 310			0 440 450
SU1 401 GAGAGTTCGA TCCTGTTCGC GCGGCTCCGC TTCTGCACGG ACAATCTGA SU2 401 SU3 401 SU4 401 SU5 401 ET1 401 401			
SU2 401 SU3 401 SU4 401 SU5 401 ET1 401 401	K 310	AG-GENBANK	· · · · · · · · · · · · · · · · · · ·
SU3 401	401	SU1	TCCGC TTCTGCACGG ACAATCTGAC
SU4 401	401	SU2	· · · · · · · · · · · · · · · · · · ·
SU5 401	401	SU3	
ET1 401 ET2 401 ET3 401 ET4 401 MA1 401 MA2 401 MA3 401 MA4 401 MA5 401	401	SU4	
ET2 401	401	SU5	
ET3 401 ET4 401 ET5 401 MA1 401 MA2 401 MA3 401 MA4 401 MA5 401	401	ET1	
ET4 401	401	ET2	
ET5 401	401	ET3	
MA1 401 MA2 401 MA3 401 MA4 401 MA5 401	401	ET4	
MA2 401 MA3 401 MA4 401 MA5 401	401	ET5	
MA3 401 MA4 401 MA5 401	401	MA1	
MA4 401 MA5 401	401	MA2	
MA5 401C	401	MA3	· · · · · · · · · · · · · · · · · · ·
	401	MA4	
TA1 401	401	MA5	
	401	TA1	
TA2 401	401	TA2	
TA3 401	401	TA3	
TA4 401	401	TA4	
TA5 401	401	TA5	

		460	470	480	490	500	
AG-GENBANK	360			.	·····		
SU1	451	CGTGCTGGGC	AAGAGTGCGA	TACCGGAGGA	GAACCTGCAG	CGTGCGCTGG	
SU2 SU3	451	•••••	•••••	•••••	•••••		
SU3 SU4	451 451						
SU5	451						
ET1	451						
ET2	451		· · · · · · · · · · · ·	<mark></mark>			
ET3	451	· · · · · · · · · · ·	• • • • • • • • • • • •	<mark></mark>	· · · · · · · · · · · ·		
ET4	451	•••••	· · · · · · · · · · · ·	•••••	· · · · · · · · · · · ·		
ET5 MA1	451 451					A	
MA2	451						
MA3	451						
MA4	451	· · · · · · · · · · · ·					
MA5	451				·····		
TA1	451						
TA2 TA3	451 451						
TA4	451			•••••	•••••		
TA5	451						
		510	520	530	540	550	
		•••• ••••	••••	•••• •• <mark>•</mark> ••	• • • • <mark> </mark> • • • •		
AG-GENBANK SU1	410 501	AAGGGCTGCA	GCGGCTGGAG	AGGATGCTAC	AGTCGGAGTA	TGTGGCCGGC	
SU2	501	AAGGGCIGCA	GCGGCTGGAG	AGGAIGCIAC	AGICGGAGIA	19199666966	
SU3	501						
SU4	501						
SU5	501	<mark>.</mark>	<mark>.</mark>	<mark>.</mark> <mark>.</mark>	· · · · · · · · · · · · · · ·		
ET1	501	• • • • • • • • • • • •	A	• • • • • • • • • • • • • • • •	· · · · · · · · · · ·	••••	
ET2 ET3	501 501	· · · · · · · · · · · · · · ·		· · · ·	· · · · · · · · · · · · · · ·	••••	
ET4	501	· · · · · · · · · · · · · · · · · · ·	A	·····			
ET5	501		C	G	GT		
MA1	501						
MA2	501						
MA3	501	••••••••••••••••••••••••••••••••••••••	•••••	· · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	••••	
MA4 MA5	501 501	·····	·····				
TA1	501						
TA2	501					G	
TA3	501			· · · · · · · · · · · ·			
TA4	501	<mark>.</mark>	• • • • • • • • • • • •	• • • • • • • • • • • • •		····	
TA5	501		•••••	· · · · · · · · · · · · ·	••••••••	••••	
		560	570	580	590	600	
AG-GENBANK	460						
SU1	551	GATCAGCTGA	and the second sec	TCTGAGCTGC	GTGAGCAGTG	TGGCCACACT	
SU2	551			.T		•••••••	
SU3 SU4	551 551				A		
SU5	551						
ET1	551						
ET2	551						
ET3	551						
ET4	551			••••			
ET5 MA1	551 551	A		.T	C		
MA1 MA2	551			.T			
MA3	551			.T			
MA4	551			.T			
MA5	551			.T	·····		
TAI	551	·······				•••••	
TA2	551		·····	••••••	·····		
TA3 TA4	551 551			•••••••		G	
TA5	551						
State State				Contraction of the			

		610	620	630	640	650
AG-GENBANK	510					
SU1	601	GCACCTGATG	CTGAAACCGT	CGGCGGAAGA	GTTCCCCAAA	ACGTTCGCCT
SU2	601				C	
SU3	601					
SU4	601					
SU5	601					
ET1	601					
ET2	601					
ET3	601			<mark></mark>		
ET4	601					
ET5	601	· · · · · · · · · · · · · ·				
MA1	601			•••••••••••••••		
MA2	601					
MA3	601	· · · · · · · · · · · ·				
MA4	601					
MA5	601					
TA1	601					
TA2	601					
TA3	601					
TA4	601			<mark>.</mark> <mark>.</mark> .	· · · · · · · · · · · ·	
TA5	601	· · · · · · · · · · · · ·		••••		

		660	670	680	690	700	
AG-GENBANK	560	.GC	.T				
SU1	651	GAATGGAACG	GGTGTCGAAG	TTGCCGTACT	ACGGGGAGGT	GATGGGACGG	
SU2	651	.G	·T. · · · · · · · ·				
SU3	651	.G	.T				
SU4	651		.T				
SU5	651	.G	.T				
ET1	651	.G	.T				
ET2	651	.G				Т	
ET3	651	.G				Τ	
ET4	651	.G					
ET5	651	.G					
MA1	651		-				
MA2	651		.T				
MA3	651	.G	.T				
MA4	651		.T				
MA5	651		.T	••••••		•••	
TA1	651	.G	.T				
TA2	651	.G	.T				
TAS	651			•••••		••••	
TA4	651	.G					
TA5	651	.G	·T	•••••			
IND	100	.G	·T. · · · · · · ·	•••••	· · · · · · · · · · · ·	••• <mark>•</mark> •••• <mark>•</mark> •••	

		710	720	730		
AG-GENBANK	610	G	G.	AG		
SU1	701	GGGCCTAAAA	CGGGCGGAAA	GCTGATGCCA	AACGC	
SU2	701	G	G.	AG		
SU3	701	G	G.	AG		
SU4	701	G	G.	AG	· · · · ·	
SU5	701		G.			
ET1	701	G	G.	AG	A	
ET2	701	G	C	AG		
ET3	701	G	C	AG		
ET4	701	G	G.	AG	A	
ET5	701	G	G.	AG		
MA1	701	G	CG.	AG		
MA2	701	G	G.	AG		
MA3	701	G	CG.	AG		
MA4	701	G	GG.	AG		
MA5	701	G	CG.	AG		
TA1	701	G	CG.	AG		
TA2	701	G	G.	AG		
TA3	701	G	CG.	AG		
TA4	701	G	CG.	AG	.CGCT	
TA5	701	G	G.	AG		

Appendix 4

DNA sequence alignment of GSTe8

		10	20	30	40	50
					40	
AG-GENEBANK	1	GCCATGATTC	TGTACTACGA	CGAGGTCAGC	CCACCGGTTC	GGGGCGTCCT
ET1	1	· · · · · · · · · · · · · ·		T		· · · · · · · · · · · · · · · · · · ·
ET2	1			T		· · · · · · · · · · ·
ET3	1	••••	<mark>a i a i a i</mark> a i a a i	T	· · · · · · · · · · · · · · · ·	•••••
ET4 ET5	1	••••••••••••		T	•••••	· · · · · · · · · · · · · ·
SU1	1		·····	T		
SU2	1			T		
SU3	1			T		· · · · · · · · · · · ·
SU4	1	· · · · · · · · · · · · · · ·		T		• • • • • • • • • • •
SU5	1	• • • • • • • • • • • • •	••••••	T	· · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • •
MA1	1			T		•••••
MA2 MA3	1			T		·····
MA4	1			т		56.68
MA5	1			T		
TA1	1			T		<mark></mark>
TA2	1	····	· · · · · · · · · · · · · · · ·	T	· · · · · · · · · · · · ·	
TA3	1		•••••••	T	••••••••	• • • • • • • • • • •
TA4	1		••••	••••• T	· · · · · · · · · · · · ·	•••••
TA5	1	•••••	•••••	•••••T	••••••••••••	• • • • • • • • • • •
		60	70	80	90	100
AG-GENEBANK	51	GCTAGCGATT	GCAGCACTCG	GTGTGAAGGA	CCGCATCAAG	CTCGAGTACA
ET1	51	····		• • • • • • • • • • • •	••••••	• • • • • • • • • •
ET2	51		····A	•••••	••••	•••••
ET3 ET4	51 51	••••	A			•••••
ET4 ET5	51					
SUI	51					
SU2	51				G.	
SU3	51	· · · · · T · · · ·	• • • • • • • • • • • • • •		· · · · · · · · · · · ·	
SU4	51		• • • • • • • • • • • • • •	••••	· · · · · · · · · · · ·	· · · · · · · · · · · ·
SU5 MA1	51 51	· A		•••••	····	
MA1 MA2	51		•••••	••••		
MA3	51					
MA4	51					
MA5	51		. 			
TA1	51	••••	• • • • • • • • • • • • •	••••		•••••
TA2	51		· · · · · · · · · · · · · · · ·	•••••		••••••••••
TA3 TA4	51 51		A			
TA5	51		G			
N States						
		110	120	130	140	150
Ball States and						
AG-GENEBANK ET1	101	TCGATCTCTT		CATTTAAGTA		TAAG
ET1 ET2	101					GTAGTA
ET3	101					GTAGTA
ET4	101					GTAGTA
ET5	101					GTAGTA
SU1	101					GTAGTA
SU2	101					GTAGTA
SU3 SU4	101 101					GTAGTA
SU5	101					GTAGTA
MA1	101		т.			GTAGTA
MA2	101					GTAGTA
MA3	101		T.			GTAGTA
MA4	101		•••••	•••••		GTAGTA
MA5 TA1	101 101					GTAGTA
TAL TA2	101					GTAGTA
TA3	101					GTAGTA
TA4	101					GTAGTA
TA5	101	•••••		·····	·····	GTAGTA

		160	170	180	190	200
AG-GENEBANK	144					
ET1		CAACCCCAAG	CAACGACTAG	CGAATAGTTG	ATCTAATTA	ACCTCTCTCT
ET2			CAACGACTAG			
ET3			CAACGACTAG			
ET4			CAACGACTAG			
ET5			CAACGACTAG			
SU1			CAACGACTAG			
SU2			CAACGACCAG			
SU3			CAACGACTAG		the state of the state of the state of	
SU4			CAACGACTAG			
SU5			CAACGACTAG			
MA1	151	GAGCCCCTCG	CAACGACTAG	CGAATAGTTG	ATCTAATTTA	AGCTCTCTTT
MA2	151	CAACCCCAAG	CAACGACCAG	CGAATAGTTG	ATCTAATTTA	AGCTCTCTCT
MA3	151	GAGCCCCTCG	CAACGACTAG	CGAATAGTTG	ATCTAATTTA	AGCTCTCTTT
MA4	151	CAACCCCAAG	CAACGACCAG	CGAATAGTTG	ATCTAATTTA	AGCTCTCTCT
MA5	151	CAACCCCAAG	CAACGACCAG	CGAATAGTTG	ATCTAATTTA	AGCTCTCTCT
TA1	151	CAACCCCAAG	CAACGACCAG	CGAATAGTTG	ATCTAATTTA	AGCTCTCTCT
TA2	151	GAGCCCCTCG	CAACGACTAG	CGAATAGTTG	ATCTAATTTA	AGCTCTCTCT
TA3			CAACGACTAG			
TA4		the second of the second second second second	CAACGACTAG	A second s		
TA5			CAACGACCAG			
	101	011100001110	or moorie official	COMMINCI I C		
		210	220	230	240	250
AG-GENEBANK	144	•••• ••••	(Apr).		ACACGGTCCC	
ET1						
			TTTCCAG			
ET2			TTTCCAG			
ET3			TTTCCAG			
ET4			TTTCCAG			
ET5			TTTCCAG			
SU1			TTTCCAG			
SU2			TTTCCAG			
SU3	201	CTCTCTTCAA	TTTCCAG			
SU4	201	CTCTTCAA	CTTCCAG			
SU5	201	CTCTTCAA	TTTCCAA			<mark>.</mark> <mark>.</mark>
MA1	201	CTCTT-CAA	CTTCCAG	· · · · · · · · · · ·		<mark></mark>
MA2	201	CTCTTCAA	TTTCCAG		• • • • • • • • • • •	
MA3	201	CTCTTCAA	CTTCCAG	· · · · · · · · · · · ·	<mark>.</mark>	
MA4	201	CTCTTCAA	TTTCCAG		<u>.</u>	· · · · · · · · · · · ·
MA5	201	CTTCAA	TTTCCAG			
TA1	201	CTCTT-CAA	TTTCCAG		<mark>.</mark> <mark></mark> .	
TA2	201	CTCTTCAA	TTTCCAG			
TA3	201	CTCTTCAA	TTTCCAG			
TA4			TTTCCAG			
TA5			TTTCCAG			
					1948 Contra 1	
		260	270	280	290	300
AG-GENEBANK	178	CACGGTGAGT			GCTATTTTAG	
ET1	251	T.				
ET2	251	т.				
ET3	251	т.				
ET4	251	т.				
ET5	251	т.				
SUI	249					
SU2	249					
SU3	251	T.				
SU4	249	т.				
SU5	249	T.				
MA1	249	T.				•••••
MA2	249	T.			•••••	•••••
MA3	249	T.	•••••		•••••	
MA4	249	T.	•••••		•••••	••••
MA5	247	T.	•••••		•••••	
TA1	249	T.	•••••			·······
TA2	249	T.	•••••		•••••	
TA3	249	T.				
TA4	251					
TA5	249	T.				

		310	320	330	340	350
				1		
AG-GENEBANK	228	CGATACATTT	GCCCCACCAG	GGCACACGCT	AGCCCTGCCC	GACGCACTGA
ET1	301	C				••••••••
ET2	301	C	•••••			
ET3	301	C			<mark>.</mark>	· · · · · · · · · · · · ·
ET4	301				<mark>.</mark>	· · · · · · · · · · · ·
ET5	301	C				
SU1	299	C				
SU2	299				.	· · · · · · · · · · · ·
SU3	301	C		T		
SU4	299	C			1	· · · · · · · · · · · ·
SU5	299	C				
MA1	299	C				
MA2	299	C		G		
MA3	299	C				
MA4	299	C		G		
MA5	297	C		G		
TA1	299	C				
TA2	299	C				
TA3	299	C				
TA4	301	C				
TA5	299	C				

		36	0 37	0 380	390	0 400
	070					Search search search
AG-GENEBANK	278	CGCGCGCCAA	AGTTTTCAAC	ATGCTGTGCT	TCAACAACGG	CTGTTTGTTT
ET1	351					
ET2	351					
ET3	351				• • • • • • • • • • •	
ET4	351	.CG	G			
ET5	351	.CG	G			
SU1	349	GG.				
SU2	349	G	GT.T			
SU3	351					
SU4	349					
SU5	349				<mark></mark>	
MA1	349		T			
MA2	349					
MA3	349		T		.	
MA4	349					
MA5	347					
TA1	349	G	G			
TA2	349	G	G		T	
TA3	349	G	G		T	
TA4	351					
TA5	349	G	G			

		410	420	430	440	450
AG-GENEBANK	328	CAGCGCGATG	CGGAAGTTAT	G		
ET1	401			.GTATGTAGC	GCGGCTTCTA	GAAACCAATT
ET2	401			.GTATGTAGC	GCGGCTTCTA	GAAACCAATT
ET3	401			.GTATGTAGC	GCGGCTTCTA	GAAACCAATT
ET4	401			.GTATGTAGT	GCGGACTTTA	GAAACCAATT
ET5	401			.GTATGTAGT	GCGGACTTTA	GAAACCAATT
SU1	399			.GTATGTAGC	GCGGTTTCTA	GAAACCAATT
SU2	399			.GTATGTAGC	GCGGCTTCTA	GAAACCAATT
SU3	401			.GTATGTAGC	GCGGCTTCTA	GAAACCCATT
SU4	399			.GTATGTAGC	GCGGCTTCTA	GAAACCAATT
SU5	399			.GTATGTAGC	GCGGCTTCTA	GAAACCAATT
MA1	399			.GTATGTAGC	GCAGCTTCTA	GAAACCAATT
MA2	399			.GTATGTAGC	GCGGCTTCTA	GAAACCAATT
MA3	399			.GTATGTAGC	GCAGCTTCTA	GAAACCAATT
MA4	399			.GTATGTAGC	GCGGCTTTTA	GAAACCAATT
MA5	397			.GTATGTAGC	GCGGCTTCTA	GAAACCAATT
TA1	399	AG		.GTATGTAGC	GCGGCTTCTA	GAAACCAATT
TA2	399			.GTATGTAGC	GCGGTTTCTA	GAAACCAATT
TA3	399			.GTATGTAGC	GCGGTTTCTA	GAAACCAATT
TA4	401			.GTATGTAGC	GCGGCTTCTA	GAAACCAATT
TA5	399			.GTATGTAGC	GCGGCTTCTA	GAAACCAATT

		460	470	480	490	500
AG-GENEBANK 3	48				CGT	AAAATCTTCA
ET1 4	51	CCCTTTCTTT	GCCATTTAAA	ACCGTTCTCT	TGTGTAG	
ET2 4	51	CCCTTTCTTT	GCCATTTAAA	ACCGTTCTCT	TGTGTAG	· · · · · · · · · · · ·
ET3 4	51	CCCTTTCTTT	GCCATTTAAA	ACCGTTCTCT	TGTGTAG	
ET4 4	51	CCCTTTCTTT	GCCATTTAAA	ACCGTTCTCT	TGTGTAG	
ET5 4	51	CCCTTTCTTT	GCCATTTAAA	ACCGTTCTCT	TGTGTAG	<mark></mark>
SU1 4	49	CCCTTTCTTT	GCCATTTAAA	ACCGTTCTCT	TGTGTAG	
SU2 4	49	CCCTTTCCTT	GCCATTTAAA	ACCGTTCTCT	TGTGTAG	· · · · · · · · · · · · · · · · · · ·
SU3 4	51	CCCTTTCTTT	GCCATTTAAA	ACCGTTCTCT	TGTGTAG	
SU4 4	49	CCCTTTCTTT	GCCATTTAAA	ACCGTTCTCT	TGTGTAG	<mark>T</mark> .
SU5 4	49	CCCTTTCTTT	GCCATTTAAA	ACCGTTCTCT	TGTGTAG	
MA1 4	49	CCCTTTCTTT	GCCATTTAAA	ACCGTTCTCT	TGTGTAG	
MA2 4	49	CCCTTTCTTT	GCCATTTAAA	ACCGTTCTCT	TGTGTAG	· · · · · · · · · · · · · ·
MA3 4	49	CCCTTTCTTT	GCCATTTAAA	ACCGTTCTCT	TGTGTAG	<mark></mark>
MA4 4	49	CCCTTTCTTT	GCCATTTAAA	ACCGTTCTCT	TGTGTAG	
MA5 4	47	CCCTTTCTTT	GCCATTTAAA	ACCGTTCTCT	TGTGTAG	
TA1 4	49	CCCTTTCTTT	GCCATTTAAA	ACCGTTCTCT	TGTGTAG	
TA2 4	49	CCCTTTCTTT	GCCATTTAAA	ACCGTTCTCT	TGTGTAG	
TA3 4	49	CCCTTTCTTT	GCCATTTAAA	ACCGTTCTCT	TGTGTAG	
TA4 4	51	CCCTTTCTTT	GCCATTTAAA	ACCGTTCTCT	TGTGTAG	
TA5 4	49	CCCTTTCTTT	GCCATTTAAA	ACCGTTCTCT	TGTGTAG	•••••
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	530		550
AG-GENEBANK 3	62				TGAAACCGAT	

			••••			· · · · · · · ·
AG-GENEBANK	362	GCGGTGCCAT	TACCGACCCA	ACGCAGCATC	TGAAACCGAT	CGAGGCAGCG
ET1	501					
ET2	501		C			
ET3	501		.			
ET4	501					
ET5	501		·····	· · · · · · · · · · · · ·		
SU1	499			T	.C	A.
SU2	499					
SU3	501			T	.C	*********
SU4	499			Τ	.C	
SU5	499			Τ	.C	
MA1	499		T	T	.C	
MA2	499			Τ	.CC	
MA3	499		T	T	.C	
MA4	499			Τ	.C	
MA5	497	· · · · · · · · · · ·	C			• • • • • • • • • • •
TA1	499	A				
TA2	499			T	.C	
TA3	499			T	.C	
TA4	501					
TA5	499				••••••••••••••••••••••••••••••••••••••	

		560	570	580	590	600	
AG-GENEBANK	412	ATCGATGCGC	TGGAGCAGTT	TCTGCAGCGA	TCGCGCTACA	CCGCACACGA	
ET1	551						
ET2	551						
ET3	551						
ET4	551						
ET5	551						
SU1	549						
SU2	549						
SU3	551				T		
SU4	549				A		
SU5	549						
MA1	549						
MA2	549			A			
MA3	549						
MA4	549			A			
MA5	547						
TA1	549						
TA2	549					G	
TA3	549						
TA4	551						
TA5	549						

		610	620	630	640	650
				1		
AG-GENEBANK	462	TCAGCTTTCG	GTGGCAGATT	TCGCAATCGT	CGCGACACTC	AGCACGGTGG
ET1 ET2	601	• • • • • • • • • •	•••••	••••••••••••••		· · · · · · · · · · · · · · · ·
ET2 ET3	601 601					
ET4	601					
ET5	601					
SU1	599				G	
SU2	599		. <mark>.</mark> <mark>.</mark> .	.	<mark>.</mark>	
SU3	601			G		
SU4	599					· · · · · · · · · · · · ·
SU5	599		· · · · · · · · · · · ·	G	•••••	· · · · · · · · · · · · · · ·
MA1	599		•••••	••••G••••		
MA2 MA3	599 599	· · · · · · · · · · · ·	•••••••••••••••	G	•••••	
MA3 MA4	599			•••••G•••••		
MA5	597	C		C		.c.c
TA1	599					
TA2	599					
TA3	599					
TA4	601				••••••••••••	
TA5	599		·····		• • • • • • • • • • • • • • • • • • •	<mark>.</mark>
		660	670	680	690	700
		660 	670 	680 	690 	700 •••• ••••
AG-GENEBANK	512	L. C. S. S. S.				
ET1	651	CCATTTTTGT	 GCCGCTCCCG GTT	 GCGGATCGTT	 GGCCGCGGGT	ATGCGAGTGG
ET1 ET2	651 651	 CCATTTTTGT	 GCCGCTCCCG GTT GTT	GCGGATCGTT	GGCCGCGGGT	 ATGCGAGTGG
ET1 ET2 ET3	651 651 651	CCATTTTTGT	GCCGCTCCCG GTT GTT GTT	GCGGATCGTT	GGCCGCGGGT	ATGCGAGTGG
ET1 ET2 ET3 ET4	651 651 651 651	CCATTTTTGT	GCCGCTCCCG GCCGCTCCCG GTT GTT GTT GTT	GCGGATCGTT	GGCCGCGGGT	ATGCGAGTGG
ET1 ET2 ET3 ET4 ET5	651 651 651 651 651	 CCATTTTTGT	 GCCGCTCCCG GTT GTT GTT GTT	GCGGATCGTT	GGCCGCGGGT	ATGCGAGTGG
ET1 ET2 ET3 ET4 ET5 SU1	651 651 651 651 651 649	CCATTTTTGT	 GCCGCTCCCG GTT GTT GTT GTT GTT	GCGGATCGTT	GGCCGCGGGT	ATGCGAGTGG
ET1 ET2 ET3 ET4 ET5	651 651 651 651 651	 CCATTTTTGT	 GCCGCTCCCG GTT GTT GTT GTT	GCGGATCGTT	GGCCGCGGGT	ATGCGAGTGG
ET1 ET2 ET3 ET4 ET5 SU1 SU2	651 651 651 651 651 649 649	CCATTTTTGT	GCCGCTCCCG GTT GTT GTT GTT GTT GTT GTT G	GCGGATCGTT	GGCCGCGGGT	ATGCGAGTGG
ET1 ET2 ET3 ET4 ET5 SU1 SU2 SU3	651 651 651 651 651 649 649 651	CCATTTTTGT	GCCGCTCCCG GTT GTT GTT GTT GTT GTT GTT G	GCGGATCGTT	GGCCGCGGGT	ATGCGAGTGG
ET1 ET2 ET3 ET4 ET5 SU1 SU2 SU3 SU4 SU4 SU5 MA1	651 651 651 651 649 649 649 649 649 649	CCATTTTTGT	 GCCGCTCCCG GTT GTT GTT GTT GTT GTT GTT GTT GTT	GCGGATCGTT	GGCCGCGGGT	ATGCGAGTGG
ET1 ET2 ET3 ET4 ET5 SU1 SU2 SU3 SU4 SU5 MA1 MA2	651 651 651 651 649 649 651 649 649 649 649		 GCCGCTCCCG GTT GTT GTT GTT GTT GTT GTT GTT GTT GTT	GCGGATCGTT	GGCCGCGGGT	I I ATGCGAGTGG T A.A.
ET1 ET2 ET3 ET4 ET5 SU1 SU2 SU3 SU4 SU5 MA1 MA2 MA3	651 651 651 651 649 649 649 649 649 649 649 649			GCGGATCGTT	GGCCGCGGGT	II ATGCGAGTGG
ET1 ET2 ET3 ET4 ET5 SU1 SU2 SU3 SU4 SU5 MA1 MA2 MA3 MA4	$\begin{array}{c} 651 \\ 651 \\ 651 \\ 651 \\ 649 \\ 640 \\ 640 \\ 640 \\ 640 \\ 640 \\ 640 \\ 640 \\ 640 \\ 640 \\ 640 \\ 640 \\ 640 \\ 640 \\$	 CCATTTTTGT		GCGGATCGTT	GGCCGCGGGT	T. A.A.
ET1 ET2 ET3 ET4 ET5 SU1 SU2 SU3 SU4 SU5 MA1 MA2 MA3 MA4 MA5	 651 651 651 651 649 647 	II CCATTTTTGT 		GCGGATCGTT		T A. A
ET1 ET2 ET3 ET4 ET5 SU1 SU2 SU3 SU4 SU5 MA1 MA2 MA3 MA4	651 651 651 651 649 649 649 649 649 649 649 649 649 649			GCGGATCGTT	GGCCGCGGGT	T. A.A.
ET1 ET2 ET3 ET4 ET5 SU1 SU2 SU3 SU4 SU5 MA1 MA2 MA3 MA4 MA5 TA1	 651 651 651 651 649 647 	II CCATTTTTGT 		GCGGATCGTT		II ATGCGAGTGG TA.A TA.A
ET1 ET2 ET3 ET4 ET5 SU1 SU2 SU3 SU4 SU5 MA1 MA2 MA3 MA4 MA5 TA1 TA2	651 651 651 649 649 649 649 649 649 649 649 649 649] CCATTTTTGT		GCGGATCGTT]] GGCCGCGGGGT 	T A. A
ET1 ET2 ET3 ET4 ET5 SU1 SU2 SU3 SU4 SU5 MA1 MA2 MA3 MA4 MA5 TA1 TA2 TA3	$\begin{array}{c} 651 \\ 651 \\ 651 \\ 651 \\ 649 \\$	 CCATTTTTGT		GCGGATCGTT		T A. A

		710	720	730	740	750
AG-GENEBANK	562	TTCGCGGTGA	TGGAAGCGCT	GCCATACTAC	AACGACCAGA	ACCGTGTTGG
ET1	701		G			
ET2	701		G			
ET3	701		G			
ET4	701		G			
ET5	701		G			
SU1	699			A		
SU2	699		G			
SU3	701				A	
SU4	699			A		
SU5	699			.T	A	
MA1	699			C		
MA2	699		C	A		
MA3	699			C		· · · · · · · · · · · · · · ·
MA4	699			A		
MA5	697	G	C	A		
TA1	699			A		
TA2	699			A		
TA3	699			A		
TA4	701		G			
TA5	699		G			

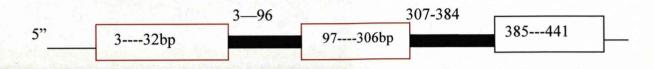
		760	770	780	790	
					· · · ·] · · · ·]	
AG-GENEBANK	612	GTTGGACATG	TTGCGCAAAC	ATTTAGCGGG	AAAGATTAAG	CTGTAG
ET1	751	· · · · · · · · · · · · · · · · · · ·				
ET2	751	·				
ET3	751					
ET4	751				<u></u>	
ET5	751	· · · · · · · · · · · ·		. 	· · · · · · · · · · · · · · ·	
SU1	749				.G	
SU2	749	· · · · · · · · · · · · ·		.c	<mark></mark>	
SU3	751	· · · · · · · · · · ·				
SU4	749					
SU5	749					
MA1	749					
MA2	749					
MA3	749	· · · · · · · · · · · ·			<mark></mark>	
MA4	749					
MA5	747					
TA1	749					
TA2	749					
TA3	749					
TA4	751					
TA5	749					

Appendix 5

DNA sequence alignment of Dopa decaboxylase gene

10)	20	30	40	50	
			· · · · <mark> · · · · </mark>			
AG-GENEBANK	1	AGGAGTTCCT	GGCCTGCTCC	GGTGGGCAGG	GTGGCGGTGT	CATTCAGGGC
A. arabiensis-1	1				• • • • • • • • • • •	
A. arabiensis-6	1		· · · · · · · · · · · · ·	• • <mark>•</mark> • • • • • • • •		
A.arabiensis-7	1		• • • • • • • • • • • •	· · · · · · · · · · · · · · ·		
A. arabiensis-9	1				• • • • • • • • • •	
A. arabiensis-10	1	••••••			•••••	
A. arabiensis-4	1	· · · · · · · · · · · ·	•••••	· · · · · · · · · · · · · · ·	•••••	
A. arabiensis-3	1					
A.arabiensis-8	1		····			
A. arabiensis-2	1					
A.arabiensis-5	1		· · · · · · · · · · · ·	the second second second second		
A.arabiensis-11	1	and the state of the state of the	••••••			
A. arabiensis-12	1					
A. arabiensis-13	1					•••••
A. arabiensis-14	1		•••••			
A. arabiensis-15	1					
		60	70	80	90	100
AG-GENEBANK	51	A 120 COLOR & LOS COLOR OF MAL	AGGCAACGCT			
A. arabiensis-1	51					
A. arabiensis-6	51		G			
A.arabiensis-7	51		G			
A. arabiensis-9	51					
A. arabiensis-10	51		the state of the second state of the			
A. arabiensis-4	51					
A. arabiensis-3	51		G			
A.arabiensis-8	51					
A. arabiensis-2	51					
A.arabiensis-5	51					
A.arabiensis-11	51					
A. arabiensis-12	51					
A. arabiensis-13	51		G	· · · · · · · · · · · ·	· · · · · · · · · · · ·	
A. arabiensis-14	51		G		• • • • • • • • • • •	
A. arabiensis-15	51				A	
		110	120	130	140	150
		•••• ••••	••••			
AG-GENEBANK		see servers a sta	GTCAAGGAGG	199 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A. arabiensis-1	101		• • • • • • • • • • • •		•••••	
A. arabiensis-6				•••• <mark>•</mark> •••••		
A.arabiensis-7			• • • • • • • • • • • •			
A. arabiensis-9			•••••		· • • • • • • • • • • • •	
A. arabiensis-10			•••••			
A. arabiensis-4		and the second second second second				
A. arabiensis-3 A.arabiensis-8			•••••			
A.arabiensis-8 A. arabiensis-2						
A. arabiensis-2 A.arabiensis-5						
A.arabiensis-11						1 CE
A. arabiensis-12	101					
A. arabiensis-12 A. arabiensis-13	101					
A. arabiensis-14	101					
A. arabiensis-15	101					
	101			and a second second		

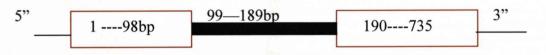
		160	170	180	190	200
		100	170	100		200
AG-GENEBANK	151	TGTCGAAGCT	GGTCGGATAC	ACATCCA		
A. arabiensis-1	151			GTG	AGTGTTGCCT	TCTCATCCTC
A. arabiensis-6						
A.arabiensis-7	151			GTG	AGTGTTACCC	TCTCATGCTC
A. arabiensis-9	151			CTTC	ACTCTTCCCC	THERE
A. arabiensis-10	151		••• <u>•</u> •••••	GTG	AGTGTTGCCC	TCTCATGCTC
A. arabiensis-4	151			GTG	AGTGTTGCCC	TCTCATCCTC
A. arabiensis-3	151	•••••	· · · · · · · · · · · · · · · · · · ·	•••••GTG	AGTGTTGCCC	TCTCATGCTC
A.arabiensis-8	151			GTG	AGTGTTGCCC	TCTCATGCTC
A. arabiensis-2						
A.arabiensis-5	151	<mark>.</mark>		GTG	AGTGTTGCCC	TTTTATGCTC
A.arabiensis-11	151			GTG	AGTGTTGCCC	TCTCATGCTC
A. arabiensis-12						
		•••••				
A. arabiensis-13	151			GTG	AGTGTTACCC	TCTCATGCTC
A. arabiensis-14	151			GTG	AGTGTTGCCC	TCTCATGCTC
A. arabiensis-15	151				AGTGTTGCCC	TCTCATGCTC
		210	220	230	240	250
				••••		••••
AG-GENEBANK	177					
A. arabiensis-1		CTAATGTACT				
A. arabiensis-6		CTGATTTACT	the same of a subscription of the	and the second s		
A.arabiensis-7	201	CTGATTTACT	CCTGAACCTT	CTTAACCATT	CGTTTTCGTC	CTCCCTCTCT
A. arabiensis-9		CTGATTTACT				
A. arabiensis-10	201	CTGATTTACT	CCTGAACCTT	TCTGACCATC	CGTTTTCGTC	CTCTCTCTCT
A. arabiensis-4	201	CTGATTTACT	CCTGAACCTT	TCTGACCATC	CGTTTTCGTC	CTCTCTCTCT
A. arabiensis-3		CTGATTTACT				
A.arabiensis-8	201	CTGATTTACT	CCTGAACCTT	TCTGACCATC	CGTTTTCGTC	CTCTCTCTCT
A. arabiensis-2	201	CTGATTTACT	CCTGAACCTT	TCTGACCATC	CGTTTTCGTC	CTCTCTCTCT
A.arabiensis-5		CTGATTTACT				
A.arabiensis-11	201	CTGATTTACT	CCTGAACCTT	TCTGACCATC	CGTTTTCGTC	CTCTCTCTCT
A. arabiensis-12	201	CTGATTTACT	CCTCAACCTT	TCTCACCATC	CGTTTTCCTC	CTCTCTCTCT
A. arabiensis-13		CTGATTTACT				
A. arabiensis-14	201	CTGATTTACT	CCTGAACCTT	TCTGACCATC	CGTTTTCGTC	CTCTCTCTCT
A. arabiensis-15	201	CTGATTTACT	CCTCAACCTT	TCTCACCATC	CCTTTTCCTC	CTCTCTCTCT
A. alabiensis is	201	CIGATITACI	CCIGAACCII	ICIGACCAIC	COLLICOIC	CICICICICI
		260	270	280	290	300
	1 7 7		1			
AG-GENEBANK		···· ····	TCAATCCCAC	 TCCTCGGTGG	AGCGTGCCGG	ACTGCTCGGC
AG-GENEBANK A. arabiensis-1			TCAATCCCAC	 TCCTCGGTGG	AGCGTGCCGG	ACTGCTCGGC
A. arabiensis-1	243	 CACCGGTAG.	TCAATCCCAC	···· ···· TCCTCGGTGG	AGCGTGCCGG	ACTGCTCGGC
A. arabiensis-1 A. arabiensis-6	243 251	CACCGGTAG. CACCGCTAG.	TCAATCCCAC	···· ··· TCCTCGGTGG	AGCGTGCCGG	ACTGCTCGGC
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7	243 251 251	CACCGGTAG. CACCGCTAG. CACCGCTAG.	TCAATCCCAC	TCCTCGGTGG	AGCGTGCCGG	ACTGCTCGGC
A. arabiensis-1 A. arabiensis-6	243 251 251	CACCGGTAG. CACCGCTAG. CACCGCTAG.	TCAATCCCAC	TCCTCGGTGG	AGCGTGCCGG	ACTGCTCGGC
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9	243 251 251 251	CACCGGTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG.	TCAATCCCAC	TCCTCGGTGG	AGCGTGCCGG	ACTGCTCGGC
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10	243 251 251 251 251	CACCGGTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG.	TCAATCCCAC	 TCCTCGGTGG	AGCGTGCCGG	ACTGCTCGGC
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4	243 251 251 251 251 251	CACCGGTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG.	TCAATCCCAC	 TCCTCGGTGG	AGCGTGCCGG	ACTGCTCGGC
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10	243 251 251 251 251 251	CACCGGTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG.	TCAATCCCAC	 TCCTCGGTGG	AGCGTGCCGG	ACTGCTCGGC
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3	243 251 251 251 251 251 251	ACCCGGTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG.	TCAATCCCAC	TCCTCGGTGG	AGCGTGCCGG	ACTGCTCGGC
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8	243 251 251 251 251 251 251 251	CACCGGTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG.	TCAATCCCAC	TCCTCGGTGG	AGCGTGCCGG	ACTGCTCGGC
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2	243 251 251 251 251 251 251 251	ACCCGGTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG.	TCAATCCCAC	TCCTCGGTGG	AGCGTGCCGG	ACTGCTCGGC
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8	243 251 251 251 251 251 251 251 251	CACCGGTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG.	TCAATCCCAC	TCCTCGGTGG	AGCGTGCCGG	ACTGCTCGGC
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-5	243 251 251 251 251 251 251 251 251 251	CACCGGTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG.	TCAATCCCAC	TCCTCGGTGG	AGCGTGCCGG	
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-5 A.arabiensis-11	243 251 251 251 251 251 251 251 251 251 251	CACCGGTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG.	TCAATCCCAC	TCCTCGGTGG	AGCGTGCCGG	ACTGCTCGGC
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-5 A.arabiensis-11 A. arabiensis-12	243 251 251 251 251 251 251 251 251 251 251	CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG.	TCAATCCCAC	TCCTCGGTGG	AGCGTGCCGG	ACTGCTCGGC
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-5 A.arabiensis-11	243 251 251 251 251 251 251 251 251 251 251	CACCGGTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG.	TCAATCCCAC	TCCTCGGTGG	AGCGTGCCGG	ACTGCTCGGC
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-5 A.arabiensis-11 A. arabiensis-12 A. arabiensis-13	243 251 251 251 251 251 251 251 251 251 251	CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG.	TCAATCCCAC	TCCTCGGTGG	AGCGTGCCGG	ACTGCTCGGC
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-5 A.arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14	243 251 251 251 251 251 251 251 251 251 251	CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG.	TCAATCCCAC	TCCTCGGTGG	AGCGTGCCGG	ACTGCTCGGC
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-5 A.arabiensis-11 A. arabiensis-12 A. arabiensis-13	243 251 251 251 251 251 251 251 251 251 251	CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG.	TCAATCCCAC	TCCTCGGTGG	AGCGTGCCGG	ACTGCTCGGC
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-5 A.arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14	243 251 251 251 251 251 251 251 251 251 251	CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG.	TCAATCCCAC	TCCTCGGTGG	AGCGTGCCGG	ACTGCTCGGC
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-5 A.arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14	243 251 251 251 251 251 251 251 251 251 251	CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG. CACCGCTAG.	TCAATCCCAC	TCCTCGGTGG	AGCGTGCCGG	ACTGCTCGGC
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-5 A.arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14	243 251 251 251 251 251 251 251 251 251 251	CACCGCTAG. CACCGCTAG.	320	330	AGCGTGCCGG	ACTGCTCGGC
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-9 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-12 A. arabiensis-12 A. arabiensis-12 A. arabiensis-14 A. arabiensis-15	243 251 251 251 251 251 251 251 251 251 251	CACCGGTAG. CACCGCTAG.		330	AGCGTGCCGG	ACTGCTCGGC
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-5 A.arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14	243 251 251 251 251 251 251 251 251 251 251	CACCGCTAG. CACCGCTAG.		330	AGCGTGCCGG	ACTGCTCGGC
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-12 A. arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14 A. arabiensis-15	243 251 251 251 251 251 251 251 251 251 251	CACCGCTAG. CACCGCTAG.			адсатассаа 	ACTGCTCGGC
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-10 A. arabiensis-3 A. arabiensis-8 A. arabiensis-8 A. arabiensis-2 A.arabiensis-11 A. arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14 A. arabiensis-15	243 251 251 251 251 251 251 251 251 251 251	CACCGCTAG. CACCGCTAG.			AGCGTGCCGG	ACTGCTCGGC
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A. arabiensis-8 A. arabiensis-2 A.arabiensis-12 A. arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14 A. arabiensis-15 A. arabiensis-15	243 251 251 251 251 251 251 251 251 251 251	CACCGCTAG. CACCGCTAG.		I TCCTCGGTGG 	AGCGTGCCGG	ACTGCTCGGC
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-10 A. arabiensis-3 A. arabiensis-8 A. arabiensis-8 A. arabiensis-2 A.arabiensis-11 A. arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14 A. arabiensis-15	243 251 251 251 251 251 251 251 251 251 251	CACCGCTAG. CACCGCTAG.			AGCGTGCCGG	ACTGCTCGGC
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-7 A.arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14 A. arabiensis-15 A. arabiensis-15 A. arabiensis-15	243 251 251 251 251 251 251 251 251 251 251	CACCGCTAG. CACCGCTAG.	CALCERT	II TCCTCGGTGG 	 AGCGTGCCGG	ACTGCTCGGC
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-7 A.arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14 A. arabiensis-15 A. arabiensis-15 A. arabiensis-1 A. arabiensis-1 A. arabiensis-1 A. arabiensis-1 A. arabiensis-1 A. arabiensis-7 A. arabiensis-9	243 251 251 251 251 251 251 251 251 251 251	CACCGCTAG. CACCGCTAG.	320 11 TGCGCGGGCT T	II TCCTCGGTGG 		ACTGCTCGGC
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-9 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-1 A. arabiensis-11 A. arabiensis-12 A. arabiensis-14 A. arabiensis-14 A. arabiensis-15 A. arabiensis-15 A. arabiensis-1 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10	243 251 251 251 251 251 251 251 251 251 251	CACCGCTAG. CACCGCTAG.			340 I	ACTGCTCGGC
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-7 A.arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14 A. arabiensis-15 A. arabiensis-15 A. arabiensis-1 A. arabiensis-1 A. arabiensis-1 A. arabiensis-1 A. arabiensis-1 A. arabiensis-7 A. arabiensis-9	243 251 251 251 251 251 251 251 251 251 251	CACCGCTAG. CACCGCTAG.	320 11 TGCGCGGGCT T	II TCCTCGGTGG 		ACTGCTCGGC
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-9 A. arabiensis-4 A. arabiensis-3 A. arabiensis-8 A. arabiensis-2 A.arabiensis-12 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14 A. arabiensis-15 A. arabiensis-15 A. arabiensis-16 A. arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-10 A. arabiensis-4	243 251 251 251 251 251 251 251 251 251 251	CACCGCTAG. CACCGCTAG.	320 T		340 I GAAAATCTGA	ACTGCTCGGC
 A. arabiensis-1 A. arabiensis-6 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A. arabiensis-8 A. arabiensis-8 A. arabiensis-12 A. arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14 A. arabiensis-15 AG-GENEBANK A. arabiensis-6 A. arabiensis-7 A. arabiensis-9 A. arabiensis-9 A. arabiensis-9 A. arabiensis-9 A. arabiensis-10 A. arabiensis-10 A. arabiensis-4 A. arabiensis-4 A. arabiensis-3 	243 251 251 251 251 251 251 251 251 251 251	CACCGCTAG. CACCGCTAG.	320 T TGCGCGGCCT	330 GAAGGCGGAC	340 I GAAAATCTGA	ACTGCTCGGC
 A. arabiensis-1 A. arabiensis-6 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A. arabiensis-8 A. arabiensis-2 A. arabiensis-12 A. arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14 A. arabiensis-15 	243 251 251 251 251 251 251 251 251 251 251	CACCGCTAG. CACCGCTAG.	320 T	330 GAAGGCGGAC	340 I GAAAATCTGA	ACTGCTCGGC
 A. arabiensis-1 A. arabiensis-6 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A. arabiensis-8 A. arabiensis-8 A. arabiensis-12 A. arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14 A. arabiensis-15 AG-GENEBANK A. arabiensis-6 A. arabiensis-7 A. arabiensis-9 A. arabiensis-9 A. arabiensis-9 A. arabiensis-9 A. arabiensis-10 A. arabiensis-10 A. arabiensis-4 A. arabiensis-4 A. arabiensis-3 	243 251 251 251 251 251 251 251 251 251 251	CACCGCTAG. CACCGCTAG.	320 T TGCGCGGCCT	330 GAAGGCGGAC	340 I GAAAATCTGA	
 A. arabiensis-1 A. arabiensis-6 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A. arabiensis-8 A. arabiensis-8 A. arabiensis-12 A. arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14 A. arabiensis-15 AG-GENEBANK A. arabiensis-6 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-10 A. arabiensis-3 A. arabiensis-3 A. arabiensis-4 	243 251 251 251 251 251 251 251 251 251 251	CACCGCTAG. CACCGCTAG.	320 T. 	330 GAAGGCGGAC	340 I GAAAATCTGA	ACTGCTCGGC
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-11 A. arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14 A. arabiensis-15 A. arabiensis-15 A. arabiensis-6 A.arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-9 A. arabiensis-4 A. arabiensis-8 A. arabiensis-8 A. arabiensis-2 A.arabiensis-8 A. arabiensis-2 A.arabiensis-5	243 251 251 251 251 251 251 251 251 251 251	CACCGCTAG. CACCGCTAG.	320 T TGCGCGGGCT	II TCCTCGGTGG	I AGCGTGCCGG	ACTGCTCGGC
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A. arabiensis-8 A. arabiensis-7 A. arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14 A. arabiensis-14 A. arabiensis-15 A. arabiensis-7 A. arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-9 A. arabiensis-9 A. arabiensis-4 A. arabiensis-3 A. arabiensis-8 A. arabiensis-8 A. arabiensis-5 A.arabiensis-11	243 251 251 251 251 251 251 251 251 251 251	CACCGCTAG. CACCGCTAG.	320 T. 	II TCCTCGGTGG	I AGCGTGCCGG	ACTGCTCGGC
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-11 A. arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14 A. arabiensis-15 A. arabiensis-15 A. arabiensis-6 A.arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-9 A. arabiensis-4 A. arabiensis-8 A. arabiensis-8 A. arabiensis-2 A.arabiensis-8 A. arabiensis-2 A.arabiensis-2 A.arabiensis-5	243 251 251 251 251 251 251 251 251 251 251	CACCGCTAG. CACCGCTAG.	320 T TGCGCGGGCT		I AGCGTGCCGG	ACTGCTCGGC
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-9 A. arabiensis-4 A. arabiensis-3 A.arabiensis-3 A.arabiensis-2 A.arabiensis-1 A. arabiensis-11 A. arabiensis-12 A. arabiensis-14 A. arabiensis-14 A. arabiensis-15 A. arabiensis-16 A. arabiensis-6 A.arabiensis-7 A. arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-3 A.arabiensis-5 A.arabiensis-5 A.arabiensis-11 A. arabiensis-11 A. arabiensis-12	243 251 251 251 251 251 251 251 251 251 251	CACCGCTAG. CACCGCTAG.	320 TT		340 I GAAAATCTGA	ACTGCTCGGC
 A. arabiensis-1 A. arabiensis-6 A. arabiensis-7 A. arabiensis-9 A. arabiensis-4 A. arabiensis-4 A. arabiensis-3 A. arabiensis-8 A. arabiensis-12 A. arabiensis-11 A. arabiensis-12 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14 A. arabiensis-15 AG-GENEBANK A. arabiensis-6 A. arabiensis-7 A. arabiensis-9 A. arabiensis-9 A. arabiensis-9 A. arabiensis-10 A. arabiensis-7 A. arabiensis-10 A. arabiensis-5 A. arabiensis-5 A. arabiensis-11 A. arabiensis-11 A. arabiensis-5 A. arabiensis-12 A. arabiensis-12 A. arabiensis-11 	243 251 251 251 251 251 251 251 251 251 251	CACCGCTAG. CACCGCTAG.	320 		340 I GAAAATCTGA	ACTGCTCGGC
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-9 A. arabiensis-4 A. arabiensis-3 A.arabiensis-3 A.arabiensis-2 A.arabiensis-1 A. arabiensis-11 A. arabiensis-12 A. arabiensis-14 A. arabiensis-14 A. arabiensis-15 A. arabiensis-16 A. arabiensis-6 A.arabiensis-7 A. arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-3 A.arabiensis-5 A.arabiensis-5 A.arabiensis-11 A. arabiensis-11 A. arabiensis-12	243 251 251 251 251 251 251 251 251 251 251	CACCGCTAG. CACCGCTAG.	320 TT		340 I GAAAATCTGA	ACTGCTCGGC
 A. arabiensis-1 A. arabiensis-6 A. arabiensis-7 A. arabiensis-9 A. arabiensis-4 A. arabiensis-4 A. arabiensis-3 A. arabiensis-8 A. arabiensis-12 A. arabiensis-11 A. arabiensis-12 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14 A. arabiensis-15 AG-GENEBANK A. arabiensis-6 A. arabiensis-7 A. arabiensis-9 A. arabiensis-9 A. arabiensis-9 A. arabiensis-10 A. arabiensis-7 A. arabiensis-10 A. arabiensis-5 A. arabiensis-5 A. arabiensis-11 A. arabiensis-11 A. arabiensis-5 A. arabiensis-12 A. arabiensis-12 A. arabiensis-11 	243 251 251 251 251 251 251 251 251 251 251	CACCGCTAG. CACCGCTAG.	320 T.	330 GAAGGCGGAC	340 I GAAAATCTGA	ACTGCTCGGC
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-4 A. arabiensis-3 A. arabiensis-3 A. arabiensis-2 A. arabiensis-12 A. arabiensis-12 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14 A. arabiensis-15 A. arabiensis-16 A. arabiensis-7 A. arabiensis-7 A. arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-9 A. arabiensis-10 A. arabiensis-3 A.arabiensis-8 A. arabiensis-5 A.arabiensis-5 A.arabiensis-5 A.arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-13 A. arabiensis-14	243 251 251 251 251 251 251 251 251 251 251	CACCGCTAG. CACCGCTAG.	320 T.	330 GAAGGCGGAC	340 	ACTGCTCGGC


		360	370	380	390	400
and the Base of the state	1.1.1.1	250 C 166 C 161 D 262 X 105 C 1	i capito del porte de destrue des la	A REAL AND A REAL AND A REAL AND AND		to the fact of the state of the second
AG-GENEBANK	269					
A. arabiensis-1	343		· · · · · · · · · · · ·			· · · · · · · · · · ·
A. arabiensis-6	350			A.		
A.arabiensis-7	351	C			A	
A. arabiensis-9	351				G	
A. arabiensis-10						
A. arabiensis-4		ter or has a pas about average av				
A. arabiensis-3	351					
A.arabiensis-8	351				••••G	• • • • <mark>• • • • • •</mark>
A. arabiensis-2	351					· · · · · · · · · · · ·
A.arabiensis-5	351					
A.arabiensis-11	351					
A. arabiensis-12	351		Constant of the second		G	C
A. arabiensis-13	350					
A. arabiensis-14						
A. arabiensis-15	351	· · · · · · · · · · · · ·				· · · · · · · · · · · · ·
		410	420	430	440	450
AG-GENEBANK	319	CGTTCTACGT				
A. arabiensis-1	10,000				a a casa a concernante de la	
A. arabiensis-6						
A.arabiensis-7	401				• • • • • • • • • • •	
A. arabiensis-9	401		625 C C 16 AB, C 28 C 16 A	S (51 2 10 10 10 10 10 10 10 10 10 10	<mark></mark>	
A. arabiensis-10	401		· · · · · · · · · · · ·			T
A. arabiensis-4	401					T
A. arabiensis-3	401	- 1				T
A.arabiensis-8	401		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
A. arabiensis-2	401					
A. arabiensis-5						
A.arabiensis-11	401				••••••	
A. arabiensis-12	401					
A. arabiensis-13	400				• • • • • • • • • •	T
A. arabiensis-14	401				· · · · · · · · · · ·	T
A. arabiensis-15	401				••••••••••••	T
		1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0				
		460	470	480	490	500
		460	470	480	490	500
	260	1		1		
AG-GENEBANK		CGGCTGGACG	AGATTGGACC	 CGTCGCCAAC	CAGTACAACG	TGTGGGTGCA
A. arabiensis-1	443	CGGCTGGACG	AGATTGGACC	 CGTCGCCAAC G	 CAGTACAACG C	 TGTGGGTGCA
A. arabiensis-1 A. arabiensis-6	443 450	 CGGCTGGACG	 AGATTGGACC CG CG	 CGTCGCCAAC G G	 CAGTACAACG C	TGTGGGTGCA
A. arabiensis-1	443 450	 CGGCTGGACG	 AGATTGGACC CG CG	 CGTCGCCAAC G G	 CAGTACAACG C	TGTGGGTGCA
A. arabiensis-1 A. arabiensis-6	443 450	CGGCTGGACG	AGATTGGACC CG CG CG	 CGTCGCCAAC G G G	 CAGTACAACG C	TGTGGGTGCA
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7	443 450 451 451	CGGCTGGACG	AGATTGGACC CG CG CG CG	 CGTCGCCAAC G G G	CAGTACAACG C C	TGTGGGTGCA
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10	443 450 451 451 451	CGGCTGGACG	AGATTGGACC CG CG CG G G.	 CGTCGCCAAC G G G	 CAGTACAACG C C	II TGTGGGTGCA
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4	443 450 451 451 451 451	CGGCTGGACG	AGATTGGACC CG CG CG G G G	 CGTCGCCAAC G G G	 CAGTACAACG C C C	II TGTGGGTGCA
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3	443 450 451 451 451 451 451	CGGCTGGACG	AGATTGGACC CG CG CG G G G G G G	 CGTCGCCAAC G G G	 CAGTACAACG C C C	TGTGGGTGCA
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8	443 450 451 451 451 451 451 451	CGGCTGGACG	AGATTGGACC CG CG CG G G G G G G	I CGTCGCCAAC G G G	 CAGTACAACG C C	 TGTGGGTGCA
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2	443 450 451 451 451 451 451 451 451	CGGCTGGACG	AGATTGGACC CG. CG. CG. G. G. G. G. G.]I CGTCGCCAAC G G G		II TGTGGGTGCA
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-5	443 450 451 451 451 451 451 451 451 451	CGGCTGGACG	AGATTGGACC CG. CG. CG. G. G. G. G. G. G. G.	I CGTCGCCAAC G G G		II TGTGGGTGCA
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-5 A.arabiensis-11	443 450 451 451 451 451 451 451 451 451 451	CGGCTGGACG	AGATTGGACC CG. CG. G. G. G. G. G. G. G. G. G. G.			TGTGGGTGCA
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-5 A.arabiensis-11 A. arabiensis-12	443 450 451 451 451 451 451 451 451 451 451	CGGCTGGACG	AGATTGGACC CG. CG. CG. G. G. G. G. G. G. G. G. G. G. G.	I CGTCGCCAAC G G G]] CAGTACAACG C C	TGTGGGTGCA
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-5 A.arabiensis-11	443 450 451 451 451 451 451 451 451 451 451	CGGCTGGACG	AGATTGGACC CG. CG. CG. G. G. G. G. G. G. G. G. G. G. G. G.]] CAGTACAACG C C	TGTGGGTGCA
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-5 A.arabiensis-11 A. arabiensis-12	443 450 451 451 451 451 451 451 451 451 451	CGGCTGGACG	AGATTGGACC CG. CG. CG. G. G. G. G. G. G. G. G. G. G. G. G.]] CAGTACAACG C C	TGTGGGTGCA
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-5 A.arabiensis-11 A. arabiensis-12 A. arabiensis-13	443 450 451 451 451 451 451 451 451 451 451 451	CGGCTGGACG	AGATTGGACC CG. CG. CG.]] CAGTACAACG C C	TGTGGGTGCA
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-5 A.arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14	443 450 451 451 451 451 451 451 451 451 451 451	CGGCTGGACG	AGATTGGACC CG. CG. CG.]] CAGTACAACG C C	TGTGGGTGCA
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-5 A.arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14	443 450 451 451 451 451 451 451 451 451 451 451	CGGCTGGACG	AGATTGGACC CG. CG. CG. CG. G.	G]] CAGTACAACG C C	TGTGGGTGCA
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-5 A.arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14	443 450 451 451 451 451 451 451 451 451 451 451	CGGCTGGACG	AGATTGGACC CG. CG. CG.]] CAGTACAACG C C C C C C C C	TGTGGGTGCA
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-9 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-12 A. arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14 A. arabiensis-15	443 450 451 451 451 451 451 451 451 451 451 451	510	AGATTGGACC CG. CG. CG. CG. 	G	CAGTACAACG C.C C.	550
A. arabiensis-1 A. arabiensis-6 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-10 A. arabiensis-3 A. arabiensis-8 A. arabiensis-8 A. arabiensis-2 A. arabiensis-12 A. arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14 A. arabiensis-15 A. arabiensis-15	443 450 451 451 451 451 451 451 451 451 451 451	CGGCTGGACG	AGATTGGACC C.G. C.G. C.G. C.G. G.	G	CAGTACAACG C.C C	 TGTGGGTGCA
A. arabiensis-1 A. arabiensis-6 A. arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A. arabiensis-8 A. arabiensis-8 A. arabiensis-12 A. arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14 A. arabiensis-15 AG-GENEBANK A. arabiensis-1	443 450 451 451 451 451 451 451 451 451 451 451	CGGCTGGACG	AGATTGGACC C.G. C.G. C.G. C.G. G.	G	CAGTACAACG C.C C	 TGTGGGTGCA
A. arabiensis-1 A. arabiensis-6 A. arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-10 A. arabiensis-3 A. arabiensis-8 A. arabiensis-8 A. arabiensis-7 A. arabiensis-11 A. arabiensis-11 A. arabiensis-12 A. arabiensis-14 A. arabiensis-15 AG-GENEBANK A. arabiensis-1 A. arabiensis-1 A. arabiensis-1 A. arabiensis-1	443 450 451 451 451 451 451 451 451 451 451 451	CGGCTGGACG	AGATTGGACC C.G. C.G. C.G. C.G. G.	G	CAGTACAACG C.C C	550 GAGTACCGGT
A. arabiensis-1 A. arabiensis-6 A. arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-10 A. arabiensis-3 A. arabiensis-8 A. arabiensis-8 A. arabiensis-7 A. arabiensis-11 A. arabiensis-12 A. arabiensis-14 A. arabiensis-15 A. arabiensis-15 A. arabiensis-1 A. arabiensis-1 A. arabiensis-1 A. arabiensis-1 A. arabiensis-1 A. arabiensis-1 A. arabiensis-1 A. arabiensis-1	443 450 451 451 451 451 451 451 451 451 451 451	CGGCTGGACG	AGATTGGACC C.G. C.G. C.G. C.G. G.	G	CAGTACAACG C.C C	550 GAGTACCGGT
A. arabiensis-1 A. arabiensis-6 A. arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-10 A. arabiensis-3 A. arabiensis-8 A. arabiensis-8 A. arabiensis-7 A. arabiensis-11 A. arabiensis-11 A. arabiensis-12 A. arabiensis-14 A. arabiensis-15 AG-GENEBANK A. arabiensis-1 A. arabiensis-1 A. arabiensis-1 A. arabiensis-1	443 450 451 451 451 451 451 451 451 451 451 451	CGGCTGGACG	AGATTGGACC C.G. C.G. C.G. C.G. G.	G	CAGTACAACG C.C	TGTGGGTGCA
A. arabiensis-1 A. arabiensis-6 A. arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-10 A. arabiensis-3 A. arabiensis-8 A. arabiensis-8 A. arabiensis-7 A. arabiensis-11 A. arabiensis-12 A. arabiensis-14 A. arabiensis-15 A. arabiensis-15 A. arabiensis-1 A. arabiensis-1 A. arabiensis-1 A. arabiensis-1 A. arabiensis-1 A. arabiensis-1 A. arabiensis-1 A. arabiensis-1	443 450 451 451 451 451 451 451 451 451 451 451	CGGCTGGACG	AGATTGGACC C.G. C.G. C.G. C.G. G.		ll CAGTACAACG C C C 	
 A. arabiensis-1 A. arabiensis-6 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A. arabiensis-8 A. arabiensis-2 A. arabiensis-11 A. arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14 A. arabiensis-15 	443 450 451 451 451 451 451 451 451 451 451 451	CGGCTGGACG	AGATTGGACC C.G. C.G. C.G. C.G. G.	G	ll CAGTACAACG C C C 	
A. arabiensis-1 A. arabiensis-6 A. arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-9 A. arabiensis-4 A. arabiensis-3 A. arabiensis-2 A. arabiensis-2 A. arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14 A. arabiensis-15 A. arabiensis-15 A. arabiensis-6 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4	443 450 451 451 451 451 451 451 451 451 451 451	CGGCTGGACG	AGATTGGACC C.G. C.G. C.G. C.G. G.	G	ll CAGTACAACG C C C C C C C C C C C	550 GAGTACCGGT
 A. arabiensis-1 A. arabiensis-6 A. arabiensis-7 A. arabiensis-9 A. arabiensis-9 A. arabiensis-4 A. arabiensis-4 A. arabiensis-3 A. arabiensis-8 A. arabiensis-2 A. arabiensis-12 A. arabiensis-11 A. arabiensis-12 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14 A. arabiensis-6 A. arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-10 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 	443 450 451 451 451 451 451 451 451 451 451 451	CGGCTGGACG	AGATTGGACC C.G. C.G. C.G. C.G. G.	G	ll CAGTACAACG C C C C C C C C C C C C	550 GAGTACCGGT
 A. arabiensis-1 A. arabiensis-6 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A. arabiensis-8 A. arabiensis-2 A. arabiensis-12 A. arabiensis-11 A. arabiensis-12 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14 A. arabiensis-15 	443 450 451 451 451 451 451 451 451 451 451 451	S10 CGTCGATGCG	AGATTGGACC C.G. C.G. C.G. C.G. G.	G	CAGTACAACG C.C C	550
 A. arabiensis-1 A. arabiensis-6 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A. arabiensis-8 A. arabiensis-2 A. arabiensis-12 A. arabiensis-11 A. arabiensis-12 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14 A. arabiensis-15 AG-GENEBANK A. arabiensis-6 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-3 A. arabiensis-4 	443 450 451 451 451 451 451 451 451 451 451 451	CGGCTGGACG	AGATTGGACC C.G. C.G. C.G. C.G. G.	G	CAGTACAACG C.C C	550 GAGTACCGGT
A. arabiensis-1 A. arabiensis-6 A. arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A. arabiensis-8 A. arabiensis-7 A. arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14 A. arabiensis-15 A. arabiensis-15 A. arabiensis-6 A. arabiensis-7 A. arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-9 A. arabiensis-8 A. arabiensis-8 A. arabiensis-2 A. arabiensis-2 A. arabiensis-2 A. arabiensis-5	443 450 451 451 451 451 451 451 451 451 451 451	CGGCTGGACG	AGATTGGACC C.G. C.G. C.G. G.	G	ll CAGTACAACG C C C 	TGTGGGTGCA
A. arabiensis-1 A. arabiensis-6 A. arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-10 A. arabiensis-3 A. arabiensis-3 A. arabiensis-2 A. arabiensis-2 A. arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14 A. arabiensis-15 A. arabiensis-15 A. arabiensis-1 A. arabiensis-1 A. arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-9 A. arabiensis-4 A. arabiensis-8 A. arabiensis-8 A. arabiensis-5 A. arabiensis-11	443 450 451 451 451 451 451 451 451 451 451 451	CGGCTGGACG	AGATTGGACC C.G. C.G. C.G. G.			550 GAGTACCGGT
A. arabiensis-1 A. arabiensis-6 A. arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A. arabiensis-2 A. arabiensis-2 A. arabiensis-12 A. arabiensis-11 A. arabiensis-13 A. arabiensis-14 A. arabiensis-15 A. arabiensis-16 A. arabiensis-7 A. arabiensis-7 A. arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A. arabiensis-3 A. arabiensis-5 A. arabiensis-5 A. arabiensis-11 A. arabiensis-11 A. arabiensis-12	443 450 451 451 451 451 451 451 451 451 451 451	510 I. CGTCGATGCG	AGATTGGACC C.G. C.G. C.G. C.G. G.	G	ll CAGTACAACG C 	
A. arabiensis-1 A. arabiensis-6 A. arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-10 A. arabiensis-3 A. arabiensis-3 A. arabiensis-2 A. arabiensis-2 A. arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14 A. arabiensis-15 A. arabiensis-15 A. arabiensis-1 A. arabiensis-1 A. arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-9 A. arabiensis-4 A. arabiensis-8 A. arabiensis-8 A. arabiensis-5 A. arabiensis-11	443 450 451 451 451 451 451 451 451 451 451 451	510 I. CGTCGATGCG	AGATTGGACC C.G. C.G. C.G. G.	G	ll CAGTACAACG C 	
A. arabiensis-1 A. arabiensis-6 A. arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A. arabiensis-2 A. arabiensis-2 A. arabiensis-12 A. arabiensis-11 A. arabiensis-13 A. arabiensis-14 A. arabiensis-15 A. arabiensis-16 A. arabiensis-7 A. arabiensis-7 A. arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A. arabiensis-3 A. arabiensis-5 A. arabiensis-5 A. arabiensis-11 A. arabiensis-11 A. arabiensis-12	443 450 451 451 451 451 451 451 451 451 451 451	510 I.I.CGTCGATGG	AGATTGGACC C.G. C.G. C.G. C.G. G.	G	ll CAGTACAACG C 	550 I
 A. arabiensis-1 A. arabiensis-6 A. arabiensis-7 A. arabiensis-9 A. arabiensis-9 A. arabiensis-4 A. arabiensis-3 A. arabiensis-2 A. arabiensis-12 A. arabiensis-11 A. arabiensis-12 A. arabiensis-12 A. arabiensis-14 A. arabiensis-15 AG-GENEBANK A. arabiensis-6 A. arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-9 A. arabiensis-10 A. arabiensis-7 A. arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-5 A. arabiensis-3 A. arabiensis-5 A. arabiensis-5 A. arabiensis-5 A. arabiensis-11 A. arabiensis-5 A. arabiensis-12 A. arabiensis-12 A. arabiensis-12 A. arabiensis-12 	443 450 451 451 451 451 451 451 451 451 451 451	510 I.I.CGTCGATGG	AGATTGGACC C.G. C.G. C.G. C.G. 			550 GAGTACCGGT

		560	570	580	590	600
AG-GENEBANK	160					
Sector Contraction of the sector of the sect		ACCTGATGAA				
A. arabiensis-1		••••				
A. arabiensis-6	550					
A.arabiensis-7	551		•••••		· · · · · · · · · · · · · · · · · · ·	
A. arabiensis-9	551	T	·····			
A. arabiensis-10	551	T				
A. arabiensis-4	551	T	· · · · · · · · · · · ·			
A. arabiensis-3	551					
A.arabiensis-8	551					
A. arabiensis-2	551					
A. arabiensis-5	551					
A.arabiensis-11	551		and server to be a server of the server			
A. arabiensis-12	551	a same the second start for the			••• <mark>••</mark> •••	
A. arabiensis-13	550					
A. arabiensis-14	551	T				
A. arabiensis-15	551					
		610	620			
AG-GENEBANK	519	AAGTGGATGC				
A. arabiensis-1	593			a capacity states of a		
A. arabiensis-6	600					
A.arabiensis-7	601					
A. arabiensis-9	601				c	
A. arabiensis-10	601				· · · · · · · · · · · ·	
A. arabiensis-4	601					
A. arabiensis-3	601					
A.arabiensis-8	601					
A. arabiensis-2	601					
A.arabiensis-5	601				C	
A.arabiensis-11	601					
A. arabiensis-12	601					
A. arabiensis-13	600					
A. arabiensis-14	601	The second state of your states of				
		A A A A A A A A A				
A. arabiensis-15	601				• • • • <mark>• • • • • •</mark> • • •	
		660	670	680	690	700
AG-GENEBANK	569					
AG-GENEBANK A. arabiensis-1	569 643	 G <mark>T</mark> ACTGGATC	 GTGAACGCGT	TCAACGTCGA		CTGAAGCACG
		 GTACTGGATC	 GTGAACGCGT	 TCAACGTCGA	TCCGCTCTAC	CTGAAGCACG
A. arabiensis-1	643	GTACTGGATC	GTGAACGCGT	TCAACGTCGA	···· ··· TCCGCTCTAC	CTGAAGCACG
A. arabiensis-1 A. arabiensis-6	643 650	GTACTGGATC	GTGAACGCGT	TCAACGTCGA	TCCGCTCTAC	CTGAAGCACG
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9	643 650 651 651	GTACTGGATC	GTGAACGCGT	TCAACGTCGA	TCCGCTCTAC	CTGAAGCACG
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10	643 650 651 651 651	GTACTGGATC	GTGAACGCGT	TCAACGTCGA	TCCGCTCTAC	 CTGAAGCACG
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4	643 650 651 651 651 651	GTACTGGATC	GTGAACGCGT	TCAACGTCGA	TCCGCTCTAC	 CTGAAGCACG
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3	643 650 651 651 651 651 651	GTACTGGATC	GTGAACGCGT	TCAACGTCGA	TCCGCTCTAC	 CTGAAGCACG
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8	643 650 651 651 651 651 651 651	GTACTGGATC	GTGAACGCGT	TCAACGTCGA	TCCGCTCTAC	
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2	643 650 651 651 651 651 651 651 651	GTACTGGATC	GTGAACGCGT	TCAACGTCGA	TCCGCTCTAC	
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-5	643 650 651 651 651 651 651 651 651	GTACTGGATC	GTGAACGCGT	TCAACGTCGA	TCCGCTCTAC	II CTGAAGCACG
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-5 A.arabiensis-11	643 650 651 651 651 651 651 651 651 651	GTACTGGATC	GTGAACGCGT	TCAACGTCGA	TCCGCTCTAC	
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-5 A.arabiensis-11 A. arabiensis-12	643 650 651 651 651 651 651 651 651 651 651	GTACTGGATC	GTGAACGCGT	TCAACGTCGA	TCCGCTCTAC	
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-5 A.arabiensis-11 A. arabiensis-12 A. arabiensis-13	643 650 651 651 651 651 651 651 651 651 651 651	GTACTGGATC	GTGAACGCGT	TCAACGTCGA	TCCGCTCTAC	I CTGAAGCACG
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-5 A.arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14	643 650 651 651 651 651 651 651 651 651 651 651	GTACTGGATC	GTGAACGCGT	TCAACGTCGA	TCCGCTCTAC	
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-5 A.arabiensis-11 A. arabiensis-12 A. arabiensis-13	643 650 651 651 651 651 651 651 651 651 651 651	GTACTGGATC	GTGAACGCGT	TCAACGTCGA	TCCGCTCTAC	
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-5 A.arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14	643 650 651 651 651 651 651 651 651 651 651 651	GTACTGGATC	GTGAACGCGT	TCAACGTCGA	TCCGCTCTAC	
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-5 A.arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14	643 650 651 651 651 651 651 651 651 651 651 651	GTACTGGATC	GTGAACGCGT	TCAACGTCGA	TCCGCTCTAC	
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-5 A.arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14	643 650 651 651 651 651 651 651 651 651 651 651	GTACTGGATC		730	TCCGCTCTAC	
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-5 A.arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14	643 650 651 651 651 651 651 651 651 651 651 651	GTACTGGATC		730	 TCCGCTCTAC	
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-9 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-12 A. arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14 A. arabiensis-15	643 650 651 651 651 651 651 651 651 651 651 651		720 	TCAACGTCGA	740 	
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-12 A. arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14 A. arabiensis-15 A. arabiensis-15	643 650 651 651 651 651 651 651 651 651 651 651	T10 T10 T10 T10 T10 T10	720 I	TCAACGTCGA	740 I	
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-11 A. arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14 A. arabiensis-15 A. arabiensis-15	643 650 651 651 651 651 651 651 651 651 651 651		720 I	TCAACGTCGA	740 I	
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-7 A.arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14 A. arabiensis-15 A. arabiensis-15 A. arabiensis-1 A. arabiensis-1 A. arabiensis-1 A. arabiensis-1 A. arabiensis-1 A. arabiensis-1 A. arabiensis-1	643 650 651 651 651 651 651 651 651 651 651 651		 GTGAACGCGT	TCAACGTCGA	740 	
 A. arabiensis-1 A. arabiensis-6 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A. arabiensis-8 A. arabiensis-2 A. arabiensis-5 A. arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14 A. arabiensis-15 	643 650 651 651 651 651 651 651 651 651 651 651					
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-9 A. arabiensis-4 A. arabiensis-3 A.arabiensis-8 A. arabiensis-2 A.arabiensis-12 A. arabiensis-11 A. arabiensis-12 A. arabiensis-14 A. arabiensis-15 A. arabiensis-15 A. arabiensis-1 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10	643 650 651 651 651 651 651 651 651 651 651 651					
 A. arabiensis-1 A. arabiensis-6 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A. arabiensis-8 A. arabiensis-2 A. arabiensis-12 A. arabiensis-11 A. arabiensis-12 A. arabiensis-14 A. arabiensis-15 AG-GENEBANK A. arabiensis-6 A. arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-10 A. arabiensis-10 	643 650 651 651 651 651 651 651 651 651 651 651					
 A. arabiensis-1 A. arabiensis-6 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A. arabiensis-8 A. arabiensis-2 A. arabiensis-12 A. arabiensis-12 A. arabiensis-12 A. arabiensis-14 A. arabiensis-15 AG-GENEBANK A. arabiensis-6 A. arabiensis-7 A. arabiensis-9 A. arabiensis-9 A. arabiensis-16 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-10 A. arabiensis-4 A. arabiensis-4 	643 650 651 651 651 651 651 651 651 651 651 651	T10 TATAGGAGGG	720 I		740 I	
 A. arabiensis-1 A. arabiensis-6 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A. arabiensis-8 A. arabiensis-2 A. arabiensis-12 A. arabiensis-11 A. arabiensis-12 A. arabiensis-14 A. arabiensis-15 AG-GENEBANK A. arabiensis-6 A. arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-10 A. arabiensis-10 	643 650 651 651 651 651 651 651 651 651 651 651	710 	720 	730 GACTACCGCC	740 	
 A. arabiensis-1 A. arabiensis-6 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A. arabiensis-8 A. arabiensis-2 A. arabiensis-12 A. arabiensis-12 A. arabiensis-12 A. arabiensis-14 A. arabiensis-15 AG-GENEBANK A. arabiensis-6 A. arabiensis-7 A. arabiensis-9 A. arabiensis-9 A. arabiensis-16 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-10 A. arabiensis-4 A. arabiensis-4 	643 650 651 651 651 651 651 651 651 651 651 651	710 	720 	730 GACTACCGCC	740 I	
 A. arabiensis-1 A. arabiensis-6 A. arabiensis-7 A. arabiensis-9 A. arabiensis-4 A. arabiensis-4 A. arabiensis-3 A. arabiensis-8 A. arabiensis-2 A. arabiensis-11 A. arabiensis-12 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14 A. arabiensis-15 AG-GENEBANK A. arabiensis-6 A. arabiensis-7 A. arabiensis-9 A. arabiensis-9 A. arabiensis-10 A. arabiensis-14 	643 650 651 651 651 651 651 651 651 651 651 651	710 	720 	730 GACTACCGCC	740 	
 A. arabiensis-1 A. arabiensis-6 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A. arabiensis-8 A. arabiensis-2 A. arabiensis-2 A. arabiensis-11 A. arabiensis-12 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14 A. arabiensis-15 AG-GENEBANK A. arabiensis-6 A. arabiensis-7 A. arabiensis-9 A. arabiensis-9 A. arabiensis-10 A. arabiensis-3 A. arabiensis-4 	643 650 651 651 651 651 651 651 651 651 651 651	T10 T10 ATATGCAGGG	720 	730 GACTACCGCC	740 	
A. arabiensis-1 A. arabiensis-6 A.arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A. arabiensis-8 A. arabiensis-8 A. arabiensis-12 A. arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14 A. arabiensis-15 A. arabiensis-15 A. arabiensis-1 A. arabiensis-1 A. arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-9 A. arabiensis-3 A. arabiensis-8 A. arabiensis-8 A. arabiensis-5 A.arabiensis-11	643 650 651 651 651 651 651 651 651 651 651 651		 GTGAACGCGT 	730 GACTACGCCC	740 	
 A. arabiensis-1 A. arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-4 A. arabiensis-3 A. arabiensis-3 A. arabiensis-2 A. arabiensis-2 A. arabiensis-11 A. arabiensis-11 A. arabiensis-12 A. arabiensis-13 A. arabiensis-14 A. arabiensis-15 AG-GENEBANK A. arabiensis-6 A. arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-10 A. arabiensis-3 A. arabiensis-3 A. arabiensis-3 A. arabiensis-5 A. arabiensis-5 A. arabiensis-11 	643 650 651 651 651 651 651 651 651 651 651 651		720 		740 	
 A. arabiensis-1 A. arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-4 A. arabiensis-3 A. arabiensis-3 A. arabiensis-2 A. arabiensis-12 A. arabiensis-11 A. arabiensis-12 A. arabiensis-12 A. arabiensis-14 A. arabiensis-14 A. arabiensis-15 AG-GENEBANK A. arabiensis-6 A. arabiensis-7 A. arabiensis-9 A. arabiensis-9 A. arabiensis-10 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-3 A. arabiensis-4 A. arabiensis-5 A. arabiensis-5 A. arabiensis-5 A. arabiensis-5 A. arabiensis-5 A. arabiensis-11 A. arabiensis-5 A. arabiensis-5 A. arabiensis-11 A. arabiensis-12 A. arabiensis-12 A. arabiensis-11 A. arabiensis-12 A. arabiensis-12 A. arabiensis-12 A. arabiensis-12 	6433 6500 6511 6511 6511 6511 6511 6511 6511				740 I	
 A. arabiensis-1 A. arabiensis-6 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-4 A. arabiensis-3 A. arabiensis-2 A. arabiensis-2 A. arabiensis-12 A. arabiensis-11 A. arabiensis-12 A. arabiensis-12 A. arabiensis-14 A. arabiensis-15 AG-GENEBANK A. arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-9 A. arabiensis-9 A. arabiensis-10 A. arabiensis-7 A. arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-9 A. arabiensis-10 A. arabiensis-2 A. arabiensis-5 A. arabiensis-5 A. arabiensis-5 A. arabiensis-11 A. arabiensis-12 A. arabiensis-5 A. arabiensis-12 	643 650 651 651 651 651 651 651 651 651 651 651	T10 TATATGCAGGG	720 	730 GACTACCGCC	740 	
 A. arabiensis-1 A. arabiensis-7 A. arabiensis-7 A. arabiensis-9 A. arabiensis-4 A. arabiensis-3 A. arabiensis-3 A. arabiensis-2 A. arabiensis-12 A. arabiensis-11 A. arabiensis-12 A. arabiensis-12 A. arabiensis-14 A. arabiensis-14 A. arabiensis-15 AG-GENEBANK A. arabiensis-6 A. arabiensis-7 A. arabiensis-9 A. arabiensis-9 A. arabiensis-10 A. arabiensis-7 A. arabiensis-9 A. arabiensis-10 A. arabiensis-3 A. arabiensis-4 A. arabiensis-5 A. arabiensis-5 A. arabiensis-5 A. arabiensis-5 A. arabiensis-5 A. arabiensis-11 A. arabiensis-5 A. arabiensis-5 A. arabiensis-11 A. arabiensis-12 A. arabiensis-12 A. arabiensis-11 A. arabiensis-12 A. arabiensis-12 A. arabiensis-12 A. arabiensis-12 	643 650 651 651 651 651 651 651 651 651 651 651		720 	730 GACTACCGCC	740 	

			760	770	780	790	800
			the stand of the second stands		the contract of the second sec		the second s
AG-GENEB		669	CGCCGGTTCC	GTGCGCTGAA	GCTGTGGTTC	GTGCTGCGCC	TGTACGGGGT
A. arabi		743					
A. arabi		750	•• T ••••				
A.arabie		751	T				
A. arabi		751				· · · · · · · · · · · · · · ·	121 121 21 21 12 12 12 12 12 12 12 12 12
A. arabi		751				· · · · · · · · · · · ·	• • • • • • • • • • •
A. arabi		751	<mark>.</mark>				ter sale terter solar salar e
A. arabi		751	•••• <mark>•</mark> ••• <mark>•</mark> •••				
A.arabie		751		• • • • • • • • • • • • •			
A. arabi		751					
A.arabie		751	•••••••••		the ender other to be a reader of	• • • • • • • • • • •	
A.arabie		751		• • • • • • • • • • • • • • • • • • •			
A. arabi		751				· · · · · · · · · · · ·	
A. arabi		750	••• T •••••••			• • • • • • • • • • • •	
A. arabi		751	the second as a large terminal		the state of the state of the	teres branches and and	and the second state of the
A. arabi	ensis-15	751					
			benere Filterset				
			810	820		840	850
					••••	•••• ••••	
AG-GENEB				CAGGCCCACA			
A. arabi		793					
A. arabi		800	· · · · · · · · · · · · · ·			G	
A.arabie		801					
A. arabi		801		•••••			
A. arabi		801		*****			
A. arabi		801		· · · · · · · · · · · ·			
A. arabi		801					
A.arabie		801		••••• <u>•</u> ••••			
A. arabi A.arabie		801	12 3 12 2 3 5 5 5				
A.arabie		801		•••••			
		801		•••• <mark>••••</mark> •			
A. arabi	Contraction of the second second	801			ter el a corre e cer el el		
A. arabi A. arabi		800		•••••			
A. arabi A. arabi		801 801		•••••			
A. arabi	ensis-15	801	•••••	•••••	•••••	•••••G•••	
			860	870	880	890	
AG-GENEB	ANK	760	the second second second second	GTGCCGGGCG			
A. arabi		843	ICGAGGCGCI		GACGACCGGI		
A. arabi		850					
A.arabie		851					
A. arabi		851					
A. arabi		851					
A. arabi		851					
A. arabi		851					
A.arabie		851					
A. arabi		851				and the second se	
A.arabie		851			The second second second second second	the rest of the second second second	
A.arabie		851					
A. arabi		851	Contraction of the second s		AND DECEMBER OF THE OWNER.		
A. arabi		850					
A. arabi		851					
A. arabi		851					
arabr		001					

APPENDIX 6: GENE ANNOTATION FOR GSTE1,GSTE2, GSTE6 AND GSTE8


A) GSTe1 (441bp)

B) GSTe2 (800bp)


```
C) GSTe6 (783bp)
```


D) GSTe8 (796bp)

5"	4144bp	145217bp	218421bp	422-487bp	488793bp	
Belog State						

Legend	
Exon	
Intron	

APPENDIX 7: Primer information for GST genes amplified

Locus	forward sequence	reverse sequence	Annealing temperature °C	Expected band size	GeneBank Accession No
GSTel	5'CTGGGCAAAATTTGACACCT 3'	3'GGACGTACTCGATGCGATCT 5'	55°C	441	AY063776 »
GSTe2	5'GTACACCCTGCACCTTAGCC 3'	3'CTAGCACAAACTTGCCCAGA 5'	55°C	788	AF316636
GSTe6	s'GCGAAGATCAACGGTAGTGGTG 3' 3' GTAAGCTCTACAGCTCGTTC 5'	3' GTAAGCTCTACAGCTCGTTC 5'	52 °C	788	AY070256
GSTe8	5'GCCATGATTCTGTACTACG 3'	3'CTACAGCTTAATCTTTCCCG 5'	52 °C	796	AY070257
AS-STe8	5-ACTACGACCAGGTCAGTCCA-3	5-TCTTTCCCGCTAAATGTTTG-3	58 °C	744	