
Skein based invariants and the Kauffman

polynomial

Thesis submitted in accordance

with the requirements of the

University of Liverpool

for the degree of

Doctor in Philosophy

by

Nathan Derek Anthony Ryder

August 2008

" Copyright © and Moral Rights for this thesis and any
accompanying data (where applicable) are retained by the

author and/or other copyright owners. A copy can be
downloaded for personal non-commercial research or study,

without prior permission or charge. This thesis and the
accompanying data cannot be reproduced or quoted
extensively from without first obtaining permission in

writing from the copyright holder/s. The content of the
thesis and accompanying research data (where applicable)

must not be changed in any way or sold commercially in any
format or medium without the formal permission of the
copyright holder/s. When referring to this thesis and any

accompanying data, full bibliographic details must be given,
e.g. Thesis: Author (Year of Submission) "Full thesis title",
University of Liverpool, name of the University Faculty or

School or Department, PhD Thesis, pagination."

Nathan Ryder

Skein based invariants and the Kauffman polynomial

Abstract

This thesis uses Kauffman skein theory to give several new results. We show
a correspondence between Kauffman and Homfly satellite invariants with coef
ficients modulo 2, when we take certain patterns from the respective skeins of
the annulus. Using stacked tangles we construct a polynomial time algorithm

£ for calculating the Kauffman polynomial of links, and then extend the theory
to give a new polynomial time algorithm for calculating the Homfly polyno
mial. We show that the Kauffman polynomials of genus 2 mutants can differ,
and improve on existing examples showing the non-invariance of the Homfly
polynomial under genus 2 mutation. By expressing twists as single crossings
and smoothings in the Kauffman skein we develop an algorithm for calculating
the Kauffman polynomial of pretzel links. Finally we consider the result of
some calculations in the Kauffman skein of the annulus.

i

11

Acknowledgements

A thesis might be written by one person, but that one person could not possibly
write it without many, many more people helping and supporting them. I’d
like to take this opportunity to thank those who have helped me over the last
four years.

First and foremost I have to thank my family, my mum Susan and my sisters
Rebecca and Sophie, for their love, support and encouragement.

Thanks to Professor Hugh Morton, my supervisor, who has been a great
mentor and a patient teacher throughout my studies.

I’ve made many friends while studying at Liverpool, and there are a few I
want to thank in particular. I’d like to thank Shaine, Andy, John and Angela
- “The Mathematicians” - thank you all for your example, your help, your
humour, and your friendship; thank you Helena for being a great office-mate
and for making me think more mathematically; thank you Rachel for being a
fantastic and supportive friend. I’m so lucky that we did our PhDs together.

I acknowledge financial support from EPSRC and the Department of Math
ematical Sciences; my thanks to both, especially for giving me the chance to
attend conferences in the UK and abroad.

In my first lecture at Liverpool the lecturer began, “There is a famous
proverb, ‘three things come not back: the said word, the sped arrow, and the
missed opportunity.’” I’d like to think that I’ve made the most of my time at
Liverpool; thank you to everyone who has been a part of it.

IV

This thesis is dedicated
to my mum and dad,

with love.

VI

1

5

5
5
7
9
9
9

12
14
16
16
16
19
20
20
21

23
24

27
27
28

Contents

In trodu ction

1 Background M aterial
1.1 Introduction..
1.2 Knots and Links

1.2.1 Reidemeister M oves......................
1.2.2 Framed L in k s

1.3 Presentations...
1.3.1 B ra id s ...
1.3.2 Plaits ...

1.4 Knot Invariants..
1.5 Polynomial Invariants................................ ..

1.5.1 History..
1.5.2 H om fly..
1.5.3 K au ffm an ..
1.5.4 The Kauffman Skein Module
1.5.5 Calculating Polynomial Invariants .

1.6 Mutation..
1.7 Satellites..

1.7.1 Distinguishing Mutants...................

2 H om fly and Kauffm an Satellite Invariants
2.1 Introduction...

2.1.1 N o t e ...

vii

2.2 P artitions... 28
2.3 The Kauffman Skein of the Annulus.. 30

2.3.1 Basis Elements of the Annulus... 31
2.3.2 Branching R u le .. 31

2.4 The Homfly Skein of the A n nulus... 34
2.4.1 Basis Elements of the Annulus... 35
2.4.2 Branching Rules ... 35
2.4.3 N o t e ... 38

2.5 Results... 38
2.5.1 Rings of polynom ials... 38
2.5.2 Satellites and p attern s.. 40

2.6 More in the Homfly Skein of the Annulus.. 42
2.7 Proving Conjecture 2 . 1 0 ... 44

3 Stacked ¿-tangles and the Kauffm an Polynom ial 49
3.1 Introduction... 49
3.2 Stacked ¿-tan g les .. 50
3.3 Multiplying stacked tangles by b ra id s.. 53

3.3.1 R enum bering.. 55
3.3.2 Rearrangement.. 56

3.4 A lgorithm ... 60
3.4.1 Calculating the Kauffman polynomial of a ¿-plait 61

3.5 C om p lex ity ... 64
3.6 Implementation... 67
3.7 Plait Presentations... 68
3.8 Discussion... 69

3.8.1 The number of stacked ¿-tangles 69
3.8.2 Improving the a lgorithm .. 71
3.8.3 Numbering arcs in layers.. 72

4 Stacked ¿-tangles and the H om fly Polynom ial 73
4.1 Introduction.. 73

vm

4.2 Oriented stacked /c-tangles.. 74
4.3 Action of braid generators.. 76

4.3.1 R enum bering.. 77
4.3.2 Rearrangem ent.. 79

4.4 A lgorithm ... 82
4.5 C om p lex ity .. 84
4.6 Implementation... 84
4.7 Discussion... 85

4.7.1 Reverse parallel satellites.. 86
^ 4.7.2 Band-generators... 89

4.7.3 Subsets of ft-sequences.. 90
4.7.4 Morse link presentations.. 91
4.7.5 Implementation in a compiled language.............................. 92

4.8 Examples ... 93
4.8.1 Alternating 3-plait f a m i ly ... 93
4.8.2 Alternating 4-plait f a m i ly ... 94

5 Genus 2 M utation 97
5.1 Introduction.. 97
5.2 Genus 2 m utation.. 98

5.2.1 Genus 2 embeddings following a 2 -tan gle 99
5.2.2 Conway mutants .. 102

• 5.2.3 Conway mutants as genus 2 m u ta n ts 104
5.3 Homily polynomials of genus 2 mutants.. 106
5.4 Kauffman polynomials of genus 2 m u ta n ts .. 107
5.5 Main R esu lt...109
5.6 Other R esu lts .. 112

5.6.1 A 72 crossing e x a m p le ...112
5.6.2 A 56 crossing e x a m p le ...113
5.6.3 Further exam ples.. 113

5.7 A recent result ...115
5.8 Discussion.. 116

IX

6 Kauffman Polynom ials o f Pretzel Links 119
6.1 Introduction.. 119
6.2 Pretzel Links ...120
6.3 Twists in the Kauffman s k e in ..121
6.4 Cubic Relation ..125
6.5 Elementary Pretzels... 126
6.6 A lgorithm ... 130
6.7 Implementation..130

6.7.1 Recurrence R elations... 131
6.7.2 Building Up P roced u res... 132
6.7.3 The Main Routine ...134
6.7.4 R e m a rk ..136

6.8 Generating Functions.. 136
6.8.1 R e m a rk ..138
6.8.2 Implementation... 138
6.8.3 Speed of calculation ...140
6.8.4 N o t e .. 141

7 The Skein o f the Annulus 143
7.1 Introduction.. 143
7.2 N otation ...144

7.2.1 The annulus... 144
7.2.2 The annulus with two boundary p o in ts 144
7.2.3 l(X) and r (X) ... 146
7.2.4 Pn(X) and Nn(X) ...147
7.2.5 Yn ... 148

7.3 Calculations for Yi and Y2 .. 148
7.4 A general approach for Yn .. 151

7.4.1 Summary of relations..154
7.5 Calculations for Y3 ..154

7.5.1 P ^ o ^ i Y ^ T g2Ŷ <j \ 1 + Y^g2 1(Ji x) 155
7.5.2 N^aioYYz + g\Yj,g2 1 + YzG\~1g2 *) 161

x

7.5.3 Proof of Theorem 7 .6 ..161
7.6 Yn, n > 3 ... 162

A Program C ode 165
A .l Seqlndex.. 165
A .2 k _p la it... 169
A.3 h_p la it... 185

B Plait Presentations 203

B ibliography 215

xi

Xll

Introduction

The work of this thesis is centred around various results concerning the Kauff-
man polynomial invariant for links. The results cover a range of aspects and

applications, and all are related to the Kauffman polynomial in some way.
While the work of Chapter 4 is an algorithm for calculating the Homily poly
nomial, it is motivated by the work of Chapter 3 related to the Kauffman
polynomial.

We begin in Chapter 1 by introducing some of the background material that
is necessary for the new material contained in the thesis. We begin with the
preliminary notation for knots and links, discussing Reidemeister moves and
presentations for links, as well as the concepts of satellite links and mutation of
knots. I give the skein relations that I will take for the Kauffman and Homily
polynomial invariants throughout this thesis, except where noted otherwise.

Chapter 2 contains a proof of a recent conjecture [39] which is itself an
% extension of a much earlier result [54]. The result concerns a correspondence

between the Kauffman and Homfly polynomials of certain satellites of links.
This is proved by considering branching rules of basis elements in the Kauffman
and Homfly skeins of the annulus. These are eigenvectors of meridian maps,
and it is by considering them in this manner that we are able to prove the main
result (Theorem 2.14):

11 Decorate each component L{ of a framed unoriented link L by yX(i). The
square of the Kauffman polynomial of this decorated link with coefficients in
Tj2 \v , s] is equal to the Homfly polynomial of L when each Li is decorated
by with coefficients in Tj2 [v±1, s±1], with the empty diagram taking the

1

normalisation of 1 for both invariants.

In Chapter 3 we construct an algorithm for calculating the Kauffman poly
nomial of a link. We start with stacked /¿-tangles and represent them as k-
sequences. We consider how braid generators act on /¿-sequences; the concept
of compatibility of braid generators with /¿-sequences allows us to derive con
ditions, Propositions 3.2 and 3.3 that ensure that a /¿-sequence is compatible
with a generator. Subsequently we show that it is possible to express an incom
patible /¿-sequence as a linear combination of Kauffman equivalent /¿-sequences
(Proposition 3.8). This is the foundation of an algorithm for calculating the
Kauffman polynomial of a link presented as a /¿-plait. This algorithm works in
polynomial time; while it was previously known that such a polynomial time
algorithm was possible in principle [49], the algorithm presented in this thesis
appears to be the first algorithm to do so.

Chapter 4 details an extension to the theory of Chapter 3, whereby we
extend the construction of stacked /¿-tangles to oriented stacked /¿-tangles, al
lowing us to construct a polynomial time algorithm for calculating the Homfly
polynomial of a link presented as a plait. While this is not the first algorithm
that allows polynomial time calculation of the Homfly polynomial of a link, un
like previous algorithms it does so without needing to work from closed braid
presentation of the link. We show several sets of examples whose Homfly poly
nomial could not be calculated using previous algorithms (owing to their braid
index being too large). We end the chapter by considering extensions to the
work of both chapters. Some ideas related to improving the algorithms are
considered, as well as considering other situations where the principles of the
algorithm could be developed.

In Chapter 5 we show the non-invariance of the Kauffman polynomial under
genus 2 mutation of knots. The work of this chapter was motivated by a recent
paper [15], and the results that we show in the chapter have been submitted
for publication [44], The non-invariance of the Kauffman polynomial for genus
2 mutants was assumed to be true, but was hard to show with specific exam
ples owing to the general difficulty of calculating the Kauffman polynomial for

2

complicated knots. We take knots presented in genus 2 handlebodies, which
give us a constructive environment for developing examples. We show through
an indirect method that pairs of genus 2 mutants exist which have different
Kauffman polynomials: we give explicit examples, most notably those of The
orems 5.6 and 5.8. In doing so we also obtain new and more simple examples
that show non-invariance of the Homily polynomial under genus 2 mutation.
We also record some interesting features about Vassilliev invariants for these
examples.

Chapter 6 is an account of an algorithm for calculating the Kauffman poly
nomial of pretzel links. The method comes directly from considering the regular
structure of pretzel links with respect to the Kauffman skein. The key result,
Theorem 6.8, shows that we can take a pretzel and express its Kauffman poly
nomial as a linear combination of the Kauffman polynomials of much simpler
diagrams. I give details of the algorithm and how it could be implemented in
Maple based both on the recurrence relations that I develop and generating
functions that arise from these.

In Chapter 7 I present some calculations in the Kauffman skein of the
annulus which are motivated by previous results in the Homfly skein of the
annulus [38]. We explore a family of examples, consisting of closed braids in
the annulus with two boundary points. The results obtained are from explicit
calculations for the first examples in the family, but unfortunately I was not
able to realise a more general result for the family. However, I offer a conjecture
(Conjecture 7.10) on the general result.

I conclude with several appendix chapters. Appendix A contains listings
for the Maple implementations that I have created in relation to algorithms
for calculating the Kauffman and Homfly polynomials of fc-plaits. There are
substantial comments for the code in both cases. In Appendix B I give plait
presentations for all of the knots up to 10 crossings: while there are many
resources for knots presented as braids I have not come across a list of plait
presentations in all of the literature that I have seen.

3

4

Chapter 1

Background Material

1.1 Introduction

In this chapter we introduce most of the basic definitions in knot theory that
we will be using within the rest of this thesis. We begin with fundamental
concepts, such as what we define a knot or a link to be. Following a discussion
of Reidemeister moves and framing, we look at presentations for knots in terms
of braid and plait diagrams. We consider polynomial knot invariants as ways of
distinguishing knots, and give definitions for the Kauffman and Homfly invari
ants. Finally we give the definition of mutation of knots, and the construction
for creating satellites of knots.

1.2 Knots and Links

Many of the definitions given in this chapter are influenced by definitions given
in [14] and [29].
D efin ition

A knot, K , is a smooth embedding of S 1 in R3 (or S3). We can also
consider it as a simple, closed curve without intersections in R3 (or S'3).

5

Definition
A link, L, of l components is an embedding of l copies of S1 in R3 (or

5 3); as with a knot, we can also consider it as l simple, closed curves without
intersections in R3 (or S'3).

There will be instances when we are particularly concerned with links of
more than one component, or of strictly one component; in these cases we will
draw specific attention to the number of components involved. Unless otherwise
stated, we will use the term knot to encompass links in general.

The unknot, in the context defined above, is a curve that is the boundary
of an embedded piecewise linear disc in R3 (or S3).

The fundamental problem in knot theory is being able to state whether or
not two knots Ki and K 2 are different objects, or whether K 2 is some suitably
distorted version of K\. For our purposes an initial definition of equivalence
that we can give is as follows.

Definition
Knots K i and K 2, as defined previously, are equivalent if there is an

orientation-preserving homeomorphism / : S3 -> 5 3 such that f (K i) = K 2.

Definition
A diagram of a knot K is a generic projection of the curve in R3 to the

plane with the information of how arcs cross clearly indicated, i.e., we do not
mark the crossing of two arcs with a singularity, but distinguish how they cross.
We allow no tangencies or intersections of three strands.

There are infinitely many possible diagrams of a knot AT, depending on the
projection and on the embedding of the curve. The simplest diagram of a knot
is the most simple diagram of the unknot, as seen in Figure 1.1.
Definition

A knot is given an orientation by choosing a direction that the curve
describing the knot travels. We orient a link by choosing a direction for each
component of the link.

6

o
Figure 1.1: The unknot

Hence for an l component link there are 2l ways that it can be presented as
an oriented link.

For our purposes, it is convenient to consider a diagram of a knot as being
equivalent to the knot itself. As we will be considering diagrams of knots we
need to explore what conditions must be satisfied in order for two diagrams to
be equivalent.

The diagrams in Figure 1.2 are equivalent; in the next section we consider
the basic moves that allow us to relate diagrams of knots in the plane.

1.2.1 Reidemeister Moves

There are three Reidemeister moves [51], which we see in Figure 1.3. These
relate diagrams of knots in the plane.

The Type I move, to the left in the figure, allows us to add or remove a
“kink” in the diagram. The Type II move, in the centre of the figure, shows
that we can separate two arcs where one crosses over the other in two places.
The Type III move, to the right of the figure, is the only one of the Reidemeister

7

Figure 1.3: The Reidemeister Moves

moves where the number of crossings of the diagram is preserved; applications
of Type I and Type II moves necessarily decrease or increase the number of
crossings in the diagram.

The Reidemeister moves are essential tools as they provide the framework
for deciding if two knot diagrams are equivalent.

Theorem 1.1 (R eidem eister [51]) Two links L\ and L2 are equivalent if
and only if a diagram of L2 can be obtained by applying a finite number of
Reidemeister moves to a diagram of L\.

An equivalent statement of this theorem is to say that any two diagrams of a
link are related by a finite sequence of Reidemeister moves.

This is an important theorem, but at the same time it provides no insight
as to how one should go about applying Reidemeister moves in order to show
that two knots are equivalent.

For two different knots there will be no sequence of Reidemeister moves
that takes a diagram of one to a diagram of the other, but if we do not already
know that they are different objects how can we show that they are different
purely by considering Reidemeister moves?

In due course we will introduce some of the properties that are used to
distinguish knots. Ideally one would want a property that is easily calculable,
is invariant under application of Reidemeister moves, and able to distinguish
all knots; however, the tools that we possess at present do not satisfy this wish
list.

8

1.2.2 Framed Links

Framed links are obtained by specifying a parallel curve in the neighbourhood
of each component of a link; each parallel curve can be specified by an integer
that is the linking number of the parallel with the original component.

A framed knot is related to a ribbon diagram by considering the knot to
be described by a flat ribbon rather than a curve, with the two boundaries of
the ribbon representing the original knot and its parallel. The framing of the
knot is the linking number of the image of the ribbon with the knot, and we
can extend this idea to consider framed links.

By drawing a link lying in the plane with the parallel running beside it we
obtain the framing that is referred to as the blackboard framing. We can consider
the blackboard framing as being obtained by converting each component to a
ribbon lying flat on the plane. The Type I Reidemeister move changes the
blackboard framing as it changes the number of twists in a ribbon. Type II
and Type III Reidemeister moves do not change the blackboard framing.

1.3 Presentations

There are advantages to be found by considering knots and links in a particular
form or format. Expressing a diagram of a knot in a certain way can sometimes
be enough to distinguish it from another knot. In this section we consider two
types of presentation that will be used several times in this thesis, as well as
some of the consequences of their definition.

1.3.1 Braids

Artin gave the first definitions of the braid group ([3], [4]), although Gauss
had previously considered braids as an interesting and useful way to record
information about knotted arcs.

Geometrically we consider a word in the braid group on n strings to be n
monotonically descending curves that cross over each other freely. Consider

9

the example of Figure 1.4: this is representative of any braid in that we see no
turnbacks and if we were to make a horizontal cut through the braid at any
point we would meet each string only once.

Figure 1.4: A braid on 4 strings

We denote the braid group on n strings by Bn, and consider a generator
Oi to geometrically be the fth string crossing over the (i + l)th string as in
Figure 1.5. We consider inverses cr“ 1 to be the (i + l)th string crossing over
the ith string.

Thus the braid group on n strings has n — 1 generators, cy , . . . , <7n- i , and
the group has relations

O\0j — Oj(7i \i ^ j ^ 1

(Jj — (j i (7 i -|_i 1 ^ ^ ti 2.

The second relation corresponds to a Type III Reidemeister move. We close
a word in the braid group by taking the endpoints at the top of the diagram
to their corresponding endpoints at the bottom of the braid. The closure of a
word in the braid group gives us a link (see Figure 1.6).

This leads to the following theorem.

10

Figure 1.6: Braid closure for ¡3 6 Bn

T heorem 1.2 (A lexander [1]) Every link can be expressed as the closure of
some word in the braid group B„ for some n.

D efinition

The braid index of a link, br(L), is the minimum number of strings
required to express it as the closure of an element in a braid group.

There are various methods for putting a diagram of a link in to a braid
presentation; some of these can be difficult to implement when we consider
the diagram that we start with. Also, these methods do not guarantee that
the resulting word from a braid group will be a word on a minimal number of

4) strings for the link. Expressing a link as a braid risks increasing the number of
crossings in the diagram, and sometimes dramatically so ([36], [60], [61]).

Many sources state that the orientation of braid strings should be the same
in a braid presentation. Orientation is important when we consider some of
the invariants for knots, and will have some importance for some of the new
results that we present, but we will for the most part think of braids purely in
terms of how the strings lie relative to each other.

We will not consider braid presentations directly in this thesis, but we will
borrow the terminology of braids for other purposes. The following format of
presentation uses braid notation.

11

1.3.2 Plaits

The foundation of a plait presentation is the same as that for a braid presen
tation, namely a braid word.
Definition

A fc-plait is a braid word /? e , closed off with k caps at the top and k
cups at the bottom, according to the diagram in Figure 1.7.

rv

P

U ~C7 '• • • KJ

Figure 1.7: Plait presentation for ¡3 £ l>2fc

Other authors have used the term “2£:-plat” to represent the same object
we describe here; see [6] and [7] for some examples.

Theorem 1.3 Every link has a k-plait presentation, for some k.

Proof

Take local maxima and minima in a diagram, and drag these to the top and
bottom of the picture respectively. It is possible that this will add extra cross
ings to the diagram due to Type II Reidemeister moves. If necessary, we comb
the structure in between maxima and minima so that arcs are monotonic. 1

At times I describe a &-plait as being a plait presentation with width k. As
with braid presentations, plait presentations of links are not unique. The main
advantage of plait presentations is that they are generally easier to obtain than
braid presentations.

Briefly we need to consider bridge presentations and how they relate to plait
presentations.

D efinition

We can arrange a knot so that it lies completely in the plane except for a
finite number of bridges - arcs whose projection to the plane result in disjoint
straight lines crossing over the arcs in the plane. An embedding such as this is
called a bridge presentation.

See Figure 1.8 for a bridge presentation of the trefoil. The original con
struction of bridge presentations is due to Schubert [56].

Figure 1.8: Bridge presentation of the trefoil

D efin ition
The bridge num ber of a bridge presentation is the number of bridges in

the diagram. We define the bridge index as the minimum number of bridges
required over all presentations for the knot.

Note that I give a slight difference in my definitions to other writers; others
use the terms bridge number and bridge index to denote the same concept.

Lem m a 1.4 ([9], 1 4 5 -1 4 6) A knot with a k-plait presentation can be pre
sented as a diagram with bridge number k.

This leads to a very neat result about the width of plait presentations.

C orollary 1.5 The width of a plait presentation of a knot K is an upper bound
on the bridge index of K .

An easy example of this is the knot 62, which can be seen in Figure 1.9. This
has an obvious 3-plait presentation, but has bridge index 2; in this case one

13

can obtain a 2-plait presentation with little difficulty, but for more complicated
knots this might not be so clear.

Figure 1.9: The knot 62

Of course, giving a plait presentation of a knot with minimal width does
not guarantee that it will have minimal crossing number.

The work of Chapter 3 and Chapter 4 draws on the ideas of plait presen
tations in order to calculate certain knot invariants, which we now need to
discuss.

1.4 Knot Invariants

The main approach that has been taken in the development of tools for distin
guishing knots has been to find properties of knots, particularly properties that
are invariant across all diagrams of a knot. Some of the early knot invariants
and properties are relatively easy to define and obtain, but do not distinguish
between many knots.
Definition

The crossing num ber of a knot, c(K), is the minimal number of crossings
over all diagrams of a knot.

We have already stated that showing two diagrams represent the same knot
is generally a hard problem, as is showing that two diagrams are of different
diagrams. Imagine a diagram of a very complicated knot; we can count the
number of crossings that the diagram has, but all that this gives us is a bound
on c(K).

The number of knots with crossing number n grows rapidly as n increases,

14

as we can see in Table 1.1. The knot tables are a great resource [52]; however,
even if we have a diagram of a knot with minimal crossing number it may be
radically different from the diagram recorded in one of the knot tables.

Crossing number Number of knots
< 9 84
10 165
11 552
12 2176
13 9988
14 46972
15 253293

Table 1.1: Number of knots with a certain crossing number

If we are to define a property to help us distinguish between knots then
ideally we need a property that is invariant across all possible diagrams for a
knot K. In order for this condition to be satisfied we need a property that does
not vary under application of Reidemeister moves to diagrams.

The class of invariants that we will consider in this thesis are polynomial
invariants. We take a diagram of a knot and apply a method to produce a

• polynomial for that knot. As these properties are invariant, they do not depend
on the diagram that we begin with in order to calculate the property.

Stated more formally, let p be an invariant property based on diagrams of
knots; if K\ and K 2 are diagrams of the same knot then p(Ki) = p(K2). How
ever the converse is not always, or often, true; all of the polynomial invariants
that we will discuss have examples where p{K x) — p (K 2) for diagrams K\, K 2
that are not equivalent. A truly valuable invariant for knots would be one such
that K\ — K 2 if and only if p{K\) = p(K 2), and where the property is readily
calculable in principle: however, the complexity of a diagram might in itself
impose some restriction on the ease of calculation for a property.

15

1.5 Polynomial Invariants

1.5.1 History

The first polynomial invariant for knots was developed by Alexander [2]. The
Alexander polynomial is a property for oriented links in one variable. It cannot
distinguish between reflections of knots.

Although Conway developed a polynomial invariant in the 1960s this was
in fact the Alexander polynomial in another guise [12]. In the mid 1980s Jones
discovered a one-variable polynomial invariant for knots that wasn’t related to
Alexander [22]; this was known almost immediately because it distinguished
the left- and right-handed trefoils.

The Jones polynomial (for oriented links) was quickly followed by the two-
variable Homfly ([17], [50]) and Kauffman ([24], [25]) polynomials.

In this thesis we are concerned with new results for the Kauffman and
Homfly polynomials. We take a skein theoretic approach to calculating them,
and give particular sets of skein relations for each of the invariants that we
consider.

1.5.2 Homfly

There are many different ways that one can define the Homfly polynomial.
There are some variations on skein relations which give the same invariant but
have different algebraic properties, and we will discuss some of these as and
when the need arises.

Figure 1.10: Diagrams for the Homfly skein

We consider three related diagrams, L+, L_ and Lq, which are diagrams for

oriented links that are identical except in the neighbourhood of a single crossing;
in that neighbourhood we have oriented arcs as indicated in Figure 1.10.

The skein relations for the Homily polynomial P ', and for the other knot
polynomials, work by relating the knot polynomials of related diagrams which
differ only in the neighbourhood of a single crossing. One set of skein relations
for the Homily polynomial, in variables z and v, are

v - 1P'(L+) - v P ' (L _) = zP'(L0),

with the value of the unknot set to be 1.
For our purposes it will be convenient to use the skein relations for the

framed Homily polynomial [24], As before, this is a polynomial in two variables
z and v, and we relate the polynomials of the links L+, L_ and L0 with the
relation

P(L+) - P (L _) = zP(L0).

We set the Homily polynomial of the regular unknot diagram to be 1, and
remove a simple loop, using a Type I Reidemeister move, at the expense of
multiplying by a power of u*1, according to Figure 1.11. We remove a disjoint
unknot from a diagram by multiplying by S = v~x~v.

Figure 1.11: Type I Reidemeister moves in the Homfly skein

We use these framed skein relations for our calculations with plait pre
sentations in Chapter 4. In Chapters 2, 5 and 6 we will consider taking the
polynomial in terms of variables s and v, where z — s — s -1 .

If we take the diagram of a link L (that we wish to calculate the Homfly
polynomial of) to be one of L+ and L_ then we have a way of relating the
Homfly polynomial of L in terms of the Homily polynomials of two other links.

By repeating this process and removing kinks we will end up with a linear
combination of unknots, which, having value 1, give us the Homily polynomial
of the original link L as the sum of the coefficients.

At the end of this section we consider problems with calculating polynomial
invariants in this way; before considering the Kauffman polynomial we give
some results for the Homfly polynomial that will be called on later in the
thesis.

Lemma 1.6 Reversing the orientations of all of the components of a link L
leaves the Homfly polynomial invariant.

Proof

This can be observed simply by noting that the skein relations for Homfly are
unchanged by reversing the orientation of the crossings. I

Lemma 1.7 ([17], [28], [50]) We can recover both the Alexander and Jones
polynomials by making a substitution of variables in the Homfly polynomial.
For Alexander we see that

A(t) = P(y = 1, z = £5 — i~i)

and we recover Jones with the substitution

V(t) = P(v = t,z = t* - H) .

In some sense then the Homfly polynomial is a parent invariant of both the
Alexander polynomial and the Jones polynomial.

Theorem 1.8 ([16], [35]) Let E be the largest power of v in the Homfly poly

nomial of a link, and e be the smallest power of v. Then the braid index of the
link, br(L), is bounded in the following way:

br(L) > ±(E - e) + 1.

Theorem 1.8 will be of use in Chapter 4 when we look at a bound on the braid
index of certain examples.

We move on to consider the polynomial invariant that we will be considering
for most of this thesis.

1.5.3 Kauffman

We define the Kauffman two-variable polynomial from skein relations. This
is an invariant for unoriented links, and the skein relations relate diagrams of
four links. In this thesis we refer to the Dubrovnik relations for the Kauffman
polynomial as in [25] and [28].

We define four links which are identical except in the neighbourhood of a
single crossing; one takes a right-handed crossing (L+, which we consider with
out orientation in this setting), one a left-handed crossing (L_) and the other
two take the two possible kinds of smoothing (L0 and L0Q) as in Figure 1.12.

The Kauffman polynomial of a link, D(L) is a polynomial in two variables
z and v. The value of the unknot is normalised as 1 and the main Kauffman
skein relation is

Once again we remove simple loops at the expense of multiplying by a power of
u±1, according to Figure 1.13. As with the Homfly polynomial we can remove a

Figure 1.13: Type I Reidemeister moves in the Kauffman skein

disjoint unknot from a diagram at the expense of multiplying by 6 = + 1.

Figure 1.12: Diagrams for the Kauffman skein

D (L +) - D(LJ) = z (D (L q) - D (L «,)).

1.5.4 The Kauffman Skein Module

Definition
Let F be an orientable surface. The Kauffm an skein m odule of F x 7,

denoted by K (F x /) , is the Z[z±x, n±1]-module freely generated by isotopy
classes of blackboard framed links in F x / including the empty link modulo
the Kauffman skein relations.

In the case that F has a boundary with distinguished points, K (F x I) is
the Z[z±x, u±1]-module freely generated by isotopy classes of blackboard framed
links and framed arcs connecting the distinguished points, modulo the Kauff
man skein relations.
In this thesis there will be three settings that we work in. In the general

setting that we have already laid out we consider F = S2. In Chapter 3, when
considering stacked /c-tangles we will consider F as a rectangle with 2k points.

In Chapter 7 we will consider some calculations in the skein of the annulus,
and in particular when F is the annulus with two boundary points, one point
on each boundary. Elements in this skein module are composed by placing one
annulus inside the other and connecting endpoints. This composition is clearly
commutative.

1.5.5 Calculating Polynomial Invariants

In general, when calculating either the Homfly or Kauffman polynomial of a
knot we begin by considering one diagram, and express it as a linear combina
tion of the invariant of two or three other diagrams. We repeat the process for
each of the diagrams that we have obtained, repeating again and again until
we have a linear combination of disjoint unknots.

There will be situations where we can use the Type I Reidemeister move
to simplify a diagram, at the expense of multiplying by a power of v, but in
general we will not be able to reduce many crossings in a diagram this way.
While we might be able to use the Type I move and some other tools to make the
calculations easier, we are still faced with an approach that takes exponentially

20

longer with each extra crossing that the starting diagram has.

Another approach that one might take is to use a table of invariants for knots
up to a certain number of crossings, and then when our calculations reach a
certain point using the previous method we can express the invariant in terms
of the previously calculated invariants. However, there are over three hundred
thousand knots with less than 16 crossings and this only includes objects with
one component. Not only would any system working in this way need to be
able to recognise which knot is being represented by a diagram, but we would
also have to have a large resource that we are able to call on containing the

£ calculated invariants.

When calculating polynomial knot invariants, even those of one variable,
we reach a point where we cannot make calculations by hand. Owing to the
exponential nature of the methods outlined, no matter how powerful a computer
we use to aid us in our calculations we will always reach a point where we simply
cannot do any more due to the number of crossings in a diagram. Perhaps this
is not something that can be avoided, owing to the nature of the skein relations.
However, as we shall see in Chapters 3 and 4, by restricting the setting that
we work in, we can give polynomial time methods for calculating polynomial
invariants of certain classes of knots.

1.6 Mutation

There are many different ways that we can define families of knots, i.e., knots
that have some relation between them. In terms of braid diagrams, for example,
we could say that the closures of braids f3m for some braid f3 e and m e Z
form an infinite family of links. We will consider some examples of this type
later in the thesis.

One of the most well known concepts for a family of knots are knots that
are related by mutation [12],
D efin ition

Consider two knots K and K '. Take a ball in S3, T, such that K meets

21

the boundary of T in exactly four places equally placed around the equator.
Remove T and rotate it through ir radians around an axis and then replace it.
If by performing this action we obtain the knot K ' then K and K ' are said to
be related by m utation.

If K and K ' are related by mutation we say that K' is a mutant of K.
The most well known pair of mutant knots are those of Kinoshita-Teresaka and
Conway, which we see in Figure 1.14. These are the first knots in the knot

Figure 1.14: Kinoshita-Teresaka and Conway knots

table related by mutation. Mutants are an important class of knots, primarily
because of the following result.

Theorem 1.9 ([28]) Links related by mutation have identical Homfly and Kauff
man polynomials. Hence they will also have the same Alexander and Jones •
polynomials.

Conway first observed that the Alexander polynomial was unchanged by muta
tion; the observation of Lickorish is on the same principle [28]. Whichever skein
relations we are using, the expression of the diagram contained in T as a linear
combination of basis elements is unchanged by any of the three rotations. The
contribution outside of T is unchanged, and hence K and K ' will share Homfly
and Kauffman polynomials.

We consider mutation in Chapter 5 in the context of genus 2 mutation and
how the Homfly and Kauffman polynomials are effected by that action.

22

1.7 Satellites

An interesting area of study in knot theory is that of satellites of knots and
links, first introduced in [55]. In Chapter 2 we consider some interesting new
results regarding knot polynomials and satellites, but first we define what we
mean by the satellite of a knot.
D efin ition

Take a framed knot K in the plane and also a framed knot P in the annulus.
The knot K * P is a satellite of K with pattern P, defined by embedding the
pattern P into the neighbourhood of the curve of K .

See Figure 1.15 for an example of patterning the trefoil with a simple knot
ted curve from the annulus.

Figure 1.15: Creating a satellite of the trefoil

This is the standard way to define the satellite of a knot.
D efin ition

The 7 7 7 , - p a r a l l e l of a knot K is the satellite link obtained when the pattern
P consists of the closed identity braid on m strings in the annulus.

D efin ition

The r e v e r s e p a r a l l e l of a knot K is the oriented satellite link obtained
when the pattern P consists of the closed identity braid on 2 strings, with the
strings oriented in different directions.

See Figure 1.16 for examples of these patterns. In Chapter 2 we consider

23

Figure 1.16: Patterns for m-parallels and reverse parallels

indexing patterns in a certain way, as linear combinations of links in the an
nulus. We also consider patterning a link by running different patterns around
each of the components in the link.

1.7.1 Distinguishing Mutants

As well as giving interesting families of knots to consider, satellite knots also
allow us to make some headway in distinguishing knots that are related by
mutation. While the Homfly polynomials of two mutant knots K and K' are
identical, for a suitable pattern P it can be seen that K * P and K 1 * P have
different Homfly polynomials. The difference in Homfly polynomials between
K * P and K 1 * P is due to the geometric difference between K and AT', and
so polynomial invariants of satellites can be used to distinguish knots related
by mutation. Invariants of 2-parallels of knots will not distinguish mutants
([30], [48]), as the basis of the rotated tangle will not be changed by the action
of the rotation, even if there are 2-parallels running through.

The rotation of the basis of these tangles will be different for m-parallels
from m = 3 onwards [46], and there are results where certain 3-parallels dis
tinguish mutant pairs. This gives the first opportunity for a difference in in
variants, and hence a chance to distinguish mutant knots. However, there are
also examples where mutant knots are not distinguished by 3-parallels and we
must use more parallel curves in order to distinguish them with satellites [40].

24

Alexander polynomials of satellites of mutants do not differ, and so cannot
be used to distinguish the knots; likewise, the Jones polynomials of cables of
mutants do not differ.

As we have stated previously, many approaches to calculating polynomial
invariants are exponential algorithms by nature. An undecorated m-parallel of
a knot with c crossings gives a diagram with m2c crossings. The first instance
that we can use this technique of satellites to distinguish mutants is with 3-
parallels, meaning that we have to consider calculating invariants of knots with
9c crossings. Recall that the first instance of mutant knots are the Kinoshita-
Teresaka and Conway knots, each of which have 11 crossings. A 99-crossing
knot is too complex for most knot polynomial algorithms that calculate from a
general diagram of a knot; while there are programs and methods which have
some success with satellite knots, in its general form it is a difficult problem.

26

Chapter 2

Homfly and Kauffman Satellite
Invariants

2.1 Introduction

In this chapter we prove a conjecture of Morton on a relationship between the
Kauffman polynomial of a satellite of a link and the Homfly polynomial of a
reverse parallel satellite of a link [39]. This is a generalisation of a result of
Rudolph which showed a certain correspondence between the Kauffman poly
nomial of a link and the Homfly polynomial of the reverse parallel of the link
when we consider coefficients modulo 2 [54].

The background theory for the patterns for the satellites come from results
in the Homfly skein of the annulus ([18], [19]) and the Kauffman skein of the
annulus ([5], [31]). The patterns for the satellites are indexed by partitions,
and so we begin the chapter by considering some definitions of partitions. We
also show a few results (Lemmas 2.1 and 2.2) in establishing the sizes of certain
sets of partitions that will be of importance in later results.

We develop the branching rules in both skeins, as these ultimately allow us
to show a direct comparison between elements in the two skeins. We show by
using products of meridian maps and eigenvalues that we can obtain explicit
constructions for patterns in the Kauffman skein of the annulus (Lemma 2.3);

27

we then develop similar methods in the case of the Homily skein of the annulus
(Theorem 2.6), which we refine further when considering elements modulo 2
(Lemmas 2.11, 2.12 and 2.13).

This culminates in the proof of Conjecture 2.10 (later restated as Theo
rem 2.14). Throughout the chapter we develop results step-by-step so that we
can then show the main result as clearly as possible.

2.1.1 Note

Throughout this chapter we consider polynomials with integer coefficients in •
variables v and s. We allow negative powers of these, and also denominators
of products of sr — s~r for r 6 Z \ {0 }. It is not immediately obvious that
polynomials of this type form a ring, but in Section 2.5 we show that this is
the case. We denote the ring of these polynomials as Z ^ 1, s*1].

We will also consider polynomials in variables v and s with integer coeffi
cients modulo 2 (and with the same possible powers and denominators) which
we will denote Z 2[u±1,s ±1]. We denote the comparison between the two rings
simply as “mod 2” (implicitly there is a homomorphism acting here, which we
mention in Section 2.5).

2.2 Partitions

Most of the definitions of partitions were taken from the excellent introductory
sections in [33].
Definition

A partition A of a positive integer n is a sequence of natural numbers
(Ai,. . . , A*,) with all the A; > 0 and satisfying the following conditions:

Ai > A2 > . . . > A*,

Ai + A2 + • •. + Afc = n = IAI

28

A partition A = (Ai, . . . , Xk) is said to have k parts. One way of representing
a partition A is with a Young diagram. This is a collection of n cells arranged
in rows, with X\ cells in the first row, A2 cells in the second row and so on (for
example, Figure 2.1).

Figure 2.1: The partition (4,3,2) Figure 2.2: (3,2,2) C (4,3,2)

With a slight abuse of notation we denote both the partition and its Young
diagram by A. The Young diagram for |A| — 0 is the empty diagram.

For the purposes of comparing two partitions we can add a finite number
of zeros to the number sequences. A partition p = (px, . . . , /ik) is contained in
a partition A = (A!, . . . , Xk), denoted p C A, if Aj > pi, 1 < i < k. We see
this concept by considering Young diagrams for /i and A, as in the example of
Figure 2.2.
D efin ition

For a partition p define the following sets of partition:

p+ = {p : p C p, \p\ = \p\ + 1}

p~ = { u : v C p, \u\ = \p\ - 1}

Clearly A € p+ <3- p G A- .

Lem m a 2.1 For a partition p, \p+ \ = |p~| + 1.

Proof

Let k be the number of distinct parts of p. An element of p~ is obtained by
removing a cell from p, and with k distinct parts we have k cells that could be
removed. Hence \p~\ = k.

29

An element of p+ is obtained by adding a cell to p. p has k distinct parts
and so there are k + 1 locations where a cell could be added. Hence \p+\ = jfc + 1.

Thus |p+ | — \p~\ + l. I

Definition
For a partition p define the following two sets:

P± = { U u~, u £ p+ } , p* = { u ip+ , ip £ p~ } .

Lem m a 2.2 p± = pT.

Proof

If to £ p~, p £ p+ and lo £ u~, v £ p+ , then either p = v or u = p. If oj ^ p
then its Young diagram has exactly one cell that is not in p, and p has exactly
one cell that is not in uj. Thus if a) £ p± then either u = p or ui has exactly
one cell in its Young diagram that is not in the Young diagram of p, and there
is exactly one cell in p that is not in u.

If ip £ 7 + , 7 £ p~ and ip £ t+, t £ p~, then either 7 = r or ip = p. If
ip ^ p then its Young diagram has exactly one cell that is not in p, and p has
exactly one cell that is not in ip. Then if ip £ p^ either ip = p or ip has exactly
one cell in its Young diagram that is not in the Young diagram of p, and there
is exactly one cell in p that is not in ip.

Elements in p± satisfy the same conditions as elements in pT, and hence
P± = PT- .

It follows immediately from Lemma 2.2 that p± \ {p } = pT \ {p }.
Definition

The content of a cell x in position (*, j) of the Young diagram of a partition
is c(x) — j — i.

Content values are constant down diagonals in Young diagrams.

2.3 The Kauffman Skein of the Annulus

The initial definition of basis elements and their branching rules are due to [5],
while the eigenvalues of the meridian map are due to [31].

2.3.1 Basis Elements of the Annulus

In the Kauffman skein of the annulus, /C, we have elements y\ which are indexed
by partitions A, and form a basis of the Kauffman skein of the annulus. The
y\ are eigenvectors of the meridian map with eigenvalues

Clearly the eigenvalues are all distinct, i.e. C\ — cM = 0 A = y,.
The meridian map relation for (j)K is illustrated in Figure 2.3. We consider

the meridian as being placed around the annulus.

2.3.2 Branching Rule

The element yx is a single string in the skein of the annulus. Multiplication is
considered as a composition of two elements in the annulus, one annulus being
placed outside the other. For example, consider the composition of yp and yx
in Figure 2.4. This action is commutative.

The branching rule for the basis elements is

For a particular A € p+ we can break up the branching rule to give the following
expression:

Figure 2.3: The meridian map <pK

pep+up-

pep+up-\{\}
(2.1)

Figure 2.4: Composition of yp and y\

Definition
For partitions p, A with A G p+ define polynomial R/c(t, p, A) by

Ric(t,p, A) = (i - c , ,) .
p£p+Up-\{A}

This definition, combined with the branching rule, now allows us to give a
construction for a particular element yA as a linear combination of meridians
and longitudes based around yp for A € p+.

Lem m a 2.3 For partitions X, p with A G p+

Vx =
Rk {(/>k ,P, A)
Rk (^a> P, A) (î/pî/i)-

Proof

Apply Ric((f)ic,p, A) to both sides of the branching rule in expression 2.1. The
sum in yp will be cancelled, as for each yp there will be a coefficient </>£ — cp
which will evaluate to cp — cp = 0. Thus

RK((f>K,p,*)(yPyi) = Rk {<!>k , pA) m /a + y»
\ pep+up-\{A}

= -R/c(0/c,P, A)(yA)

=» Ric((1>k ,P, A)(ypî/i) = R)c{c\, p, X)y\

since (0,c - cM)(yA) = (cA - cM)yA by definition.

32

Eigenvalues cx are all distinct, and so Rk (cx, p, A) G Z[n±1, s*1] is non-zero.
Hence we can divide both sides of the expression by R k; (c\, p, A), giving the
result required. I

Note yp can be expressed as a linear combination of some yT (for some r C
Pi \p \ — M + !)• Thus any yx can be expressed as a linear combination of linked
up longitudes and meridians with coefficients from the Kauffman skein of the
annulus.

We will later consider coefficients modulo 2, and we need to show that
certain eigenvalues are distinct modulo 2. We show a more general result and
then show the required result by corollary.

T heorem 2.4 For partitions A and p,

c\ — Cp = 0 mod n A = p, n e N, n > 2.

Proof

Clearly X = p => cx — = 0 mod n.

Take two partitions A = (A1;. . . , A*), p = (pu . . . , pt) such that cA - =

0 mod n. Let z*x be the cell in position (k, 1) in the Young diagram of A (see
Figure 2.5) and z* be the cell in position (l, 1) in the Young diagram of p.
Content values proceed along diagonals in Young diagrams so c(z*x) and c(z*)

Figure 2.5: Location of cell zx in partition A

are unique in A and p respectively. In particular

c(z*x) = 1 - k < c(x) \/x e A \ z*x

C(ZP — 1 — l < c(x) Vx e A \ z*

33

By the definition of c7 and since c\ — = 0 mod n it must be that the contri
butions from these content values cancel, hence c(z*x) = c(z*) => l = k. Thus
A = = (hi , . . . , Hk), i-e., the Young diagrams have the same
number of rows.

Define Aw = (Ai+1, . . . , Afc), /iW = (/xf+1, . . . , p,k) with A(0) = A, = p.
Define x*x. to be the cell in position (i , A¿) in A and x*. to be the cell in position
(i, Pi) in p, i.e., the last cells in each of these rows. c(x*x.) and c(x*.) are by
definition unique in their respective rows, and by similar considerations to
previously we see

c{x*x.) — Ai — i > c(x) Vx G A^-1 ̂\ x*x.

c(x li) = V i ~ i > c{x) Vx G p{l~l) \ x*.

Clearly

c(xai) = Ai — 1 > c(x) Vx G A \x *Xl

c(^ i) = Mi “ 1 > c(a) Vx G // \ x*j,

and since the contribution of these contents are unique in their partitions, in
order to have cx — = 0 mod n it must be the case that c (x ^) = c(x*t)
Xi = px. Proceeding by induction on A^ and pW and considering c(x*x.) and
c(x*.) we see that cx — = 0 mod n =4* A* = pi, 1 < i < A: => A = p. I

Corollary 2.5 77ie expression Ric(c\, p, A) ¿s non-zero mod 2.

Proof

The expression R/c(c\, p, A) is a product of terms of the form (c* — cM) with
A ^ p. By Theorem 2.4, all of these terms will be non-zero mod 2, hence
R/c{c\,p, A) is non-zero mod 2. i

2.4 The Homily Skein of the Annulus

The branching rules for the Homily skein of the annulus are due to [18], while
the eigenvalues of the meridian maps are due to [19].

34

2.4.1 Basis Elements of the Annulus

In the Homfly skein of the annulus we have elements Q\:Cr which are indexed by
pairs of partitions (A, a) and form a basis for the Homfly skein of the annulus.
These elements are also eigenvectors of the meridian maps 0C, with eigenvalue

S\,a = (s - s-1) f V-1 ^ 2 S2c(x) - V ^ 2 S_2c(x)
\ a:£A xGcr

for 4>c , and eigenvalue sâ \ for the meridian map 0c (Figure 2.6). As with the
eigenvalues of the meridian map fa , the eigenvalues s\tC are all distinct.

\Qx, a \Qx,ct

0C — ~ SX,c

l Qx,a Qx,c ^Qx,a U

,a 0C = c = ^ >A
t

/
1

; A,<t

Figure 2.6: Meridian maps 0c and 0c

Note that cx = sA;A + 1. We say that Q\t<7 is reversible if A = a.

2.4.2 Branching Rules

• By work of Hadji we have branching rules for Qx,a [18]:

Qp,eQl,Vl = }] Qp,t + y ̂ Qp,T
p£p+ ree-

Qp,eQ®, 1 — ^] Qu,e + y ' Qp,S
v€p~ ¿£e+

As with the Kauffman branching rules we consider composition of two elements
as diagrams in two annuli being placed one within the other. This action is
commutative.

In general we want to consider QPt£Q iti where Q hl is Q i jQm - and
where Qq,$ is the identity element, the empty diagram in the annulus. The

35

element can also be understood as the pattern for the reverse parallel
satellite, as seen in Figure 1.16.

We are particularly interested in defining an analogous relation to the
branching rule for y py\.

By symmetry we know that

Qp,pQ 1,1 -E O-m Q m + 'y ̂ aot,p(Qa,/3 + Q/3,a),
{/*} {(«,«}

where ap^, aa$ £ N. With the next theorem we show explicitly the branching
rule for QPiP> and the values of and aQtp.

Theorem 2.6 For A £ p+ we have the following relation between Qp,p and

Q x,x :

Qp,pQ 1,1 Qx,X + *y ̂ Q p ,p P y] {Qa,P + Qp,a) + 2|/3 |Qp,p-
p.ep+up-\x {(<*,P)}

Proof

We begin by applying the branching rules:

Qp,pQ 1,1 — Q p,p{Qi,<hQ i/i,i id)

Q p,pQi,oQ<t,i Q P,p

y > Qp,p + y] Qp,v j q<d,i Qp,p
Kpep+ i'£p~

y ̂ Qp,pQ<t,i T y) Qp,i/Qih,i Q p,p
pep+ vep-

Qui,p I + j Q p ,v + /W Q p ,u j Q p,p
ui€p,- v£p~ \p£p~

y ̂ Qp,v + y ' Qp.,v + y ̂ Qu,p + y ̂ Qp,w—Qp„
lj£v+

p
p,vep+ p,vep- wep ,

pe p+
wEi/-*-,
v£p~

By definition, A £ p+ and so Qx,x is a term in the sum of Q over p+. For the

36

sums over p+ and p we extract terms where the partitions are the same:

X! Q w ^ 2 ~ Â>A ^ 2 Qp,p
p,vep+ p^ep- pep+up-\{\}

+ X + Qp,a) + X/ + Qp,a)
a,/3ep+ a,pep~
ot+P a^P

A consequence of Lemma 2.2 is that p± \ {p} = p^\{p} . We use this result to
split up the other sums of terms:

y ' Qu,p — y ̂ Qu,p+ \p+ \Qp,p
wep~, wep±\{p}
pep+

y ' Qp*> — y ' Qp,u+1 p i Qp,p
u>eu+, wep̂ \{p}
vep-

Combining these two equations and using the result of Lemma 2.1 we can
rearrange the remainder of the expression for QPtPQip:

X Qu,p + X QP,u Qp,p — X Qu,p + \p+ \QP,p + X Qpv + \p IQp,p — Qp,p
u&p.~, uev+, wgpWfp} wep̂ Mp}
m£p+ vep~

^] (Qu,p + Qp,cj) + (|p+ | + Ip I — i)Qp,p
wep±\{p}

y ̂ (Qw,p+ Qp,w) + 2|p iQp,p.
w£p± \{p}

Thus we express QPtPQip in the format desired,

Q p , p Q l , l — Q \,A + X ! Qp,p + X I (Qa,p + Qp,a)
pep+Up-\{A} a,Pep+

a^p

+ X ! (Qa./S + <2 /3,<*) + X (^ .P + ̂ P.w) + ‘¿\P~\Qp,p-
a,pep- wep±\{p}
<*#£

37

2.4.3 Note

In the proof of Theorem 2.6 we obtained the explicit details of the sets that the
sums of pairs of elements are taken over. The details of these are not of great
consequence in the proof of the main result of this chapter: the importance of
Theorem 2.6 is showing the general relation between QPtP and Qx,\ for A G p+,
and showing that other terms are in the form of pairs Qa# + Qp>a.

2.5 Results

In this section we introduce the theorem that motivates this chapter; this gives
a correspondence between the Homily and Kauffman polynomials of certain
related links. We state the conjecture made in [35], the proof of which is the
work of the remainder of this chapter. We give several other results that will
be essential in this proof.

2.5.1 Rings of polynomials

It is clear that Z[w, s] and Z 2[u, s] are both rings, and that a map / between the
two of them that takes integer coefficients modulo 2 is a ring homomorphism.
Our situation is different because we have to account for the possibility of
negative powers of v and s and also for products of denominators of the form
sr — s r; we must verify that the inclusion of these elements still gives a ring.

Fortunately there is a result given in [21] that guarantees this. We need to
give two definitions before we can state the theorem.
Definition

For a ring R, M is a m ultiplicatively closed subset not containing 0 if
M C R , l e M , 0 < £ M and M is closed under multiplication.

Let Z (M) be the set {r G R : rm = 0 for some m G M}.

We are now in a position to give the theorem that will allow us to confirm
that the objects we wish to work with are rings.

38

T heorem 2.7 ([21] p.247) Let M C R be a multiplicatively closed subset,
and assume that Z(M) = 0. Then there exists a unique overring S D R such
that every element of M is a unit in S and every element of S has the form
r m '1 for some r £ R, m £ M .

We use this theorem in the proof of the following proposition to confirm
that Z[v±1, s±x] is a ring.

P rop osition 2.8 The set { ar_°_r : a £ Z fv*1, £ Z \ {0 } } is a ring.

Proof

We know R = Z[v, s] is a ring. Take a subset M of R defined as

k
M = {wmsn J J (sr< - s~ri) : m , n £ Z , n £ Z \ {0}, k £ N}.

¿=o

Clearly M is closed under multiplication, and 1 € M, 0 ^ M, hence by Theo
rem 2.7 there is an overring S such that every element has the form rm~l for
some r £ Z[v, s], m £ M. Then

S = (m -1 : r £ Z[v, s\,m £ M }

= ^ sr - s - r : a e Z[«± 1,g ±1] , r 6 Z \ { 0 }}.
#

l

S is the object we have previously denoted as Z ^ * 1, ^ 1]. Similarly, we can
show that the object we have denoted Z 2[u±1,s ±1] is a ring.

A map / : Z[v±l,s ±l] —» Z 2[u±1, s*1] where the integer coefficients of the
polynomial are reduced modulo 2 is clearly a homomorphism between the rings.

Having cleared up the status of the rings that we will work in, we now
consider some other important results that we will need in the main proof of
this chapter. We begin with the result of Rudolph which motivates the more
general result that we wish to show.

39

2.5.2 Satellites and patterns

Theorem 2.9 (R udolph [54]) The Kauffman polynomial of a link with sub
stitution v, s —> v2,s 2 and taking coefficients from Z2[v± l, s^1] is the same as
the Horn fly polynomial of its reverse parallel satellite taking coefficients from
%2 [v±l,s ±l], with the empty diagram taking the normalisation of 1 for both
invariants.

Note that for this result and for others in this chapter we take a different
normalisation to those given in Chapter 1.

Morton’s conjecture [35] offers a much greater generalisation of this theorem,
by allowing us a much greater degree of freedom in decorating the components
of the link. Recall that in Section 1.7 we defined decorating a knot with a
pattern from the annulus. In the case of Conjecture 2.10 we (potentially)
decorate each link component with a different pattern.

Conjecture 2 .10 (M orton [35]) Decorate each component Li of a framed
unoriented link L by yX(i). The Kauffman polynomial of this decorated link with
substitution v ,s —>■ u2, s2 and taking coefficients from Z2[v^1, s^1] is the same
as the Horn fly polynomial of L when each Li is decorated by taking

coefficients from Z2[v±1,s ±1], with the empty diagram taking the normalisation
of 1 for both invariants.

In light of this conjecture we restate Theorem 2.9 as follows:
Restatem ent o f Theorem 2.9 Decorate each component Li of a framed un
oriented link L by yi. The Kauffman polynomial of this decorated link with
substitution v ,s —> v2,s 2 and taking coefficients from TL2[u^1, s^1] is the same
as the Homfly polynomial of L when each Li is decorated by Qhl taking coef

ficients Z2[u±1,s ±1], with the empty diagram taking the normalisation of 1 for
both invariants.

Before considering the branching rules in the Homfly skein of the annulus
again, there is one more result that we need for our proof of Conjecture 2.10.
For satellites of decorated by certain linear combinations of patterns from the

40

Homfly skein of the annulus, we show that we are able to dispose of certain
parts of the pattern without affecting the invariant modulo 2.

Lem m a 2.11 Decorate each component Li of a link L with linear combinations
of patterns from the Homfly skein of the annulus of the form

P i — ^ 2 (Qa,,Pi + Qpi,CLi) + ^ 2 QeiA-
{(««A)}

With coefficients from Z 2[n± ,s ±]J the Homfly polynomial of L where each com

ponent Li decorated by Pi is the same as the Homfly polynomial of L where
each component Li decorated by

Fix patterns Pj on all other components Lj of the link L. The Homfly polyno
mial of L with decorations Pj on components Lj and the decoration Pj on Lj is
equal to the sum of the Homfly polynomials of L with decorations P3 on Lj and
each term in Pj counted separately on Lj. Consider the Homfly polynomial of
L with Pj on Lj and on Lj. By Lemma 1.6, reversing orientations of all
components leaves the Homfly polynomial unchanged and leaves the patterns
Pj unchanged, but the pattern on Lj becomes

Hence the Homfly polynomial of L with patterns Pj on components Lj and
Qai\Pi* on Lj is equal to the Homfly polynomial of L with patterns Pj on

Pi = £ « » „ » , •
FT

Proof

Consider a pair of partitions {a*,fli*) £ {{ai, f l) } and write Pj as

{(“ ¿A)}

41

components Lj and Q on Lj. Thus

pi ~ X + Qft.aJ + X Qft.ft

X ! Qoti,Pi + X + X ^ft’ft
{(<*•>&)} {(“ ¡.A)} {ft}

X I Qai,Pi + X A + X ^ ft - ft
{(<*i>ft)} {(“ oft)} {ft}

ft + X Q f t A
{(<*>>£<)} {ft}

X Qoifii mod 2
{ft}
Pi mod 2

where mod 2 denotes taking coefficients from Z2[v±1, s±1]. I

2.6 More in the Homfly Skein of the Annulus

We return to considering the multiplication QPtPQip. By Theorem 2.6 we have
evaluated this as

Qp,pQi,i Q\,x + y 1 Qp.,p + 'y ' {Qa,p + Qp,a) T 2|p |Q P,P-
p.ep+up-\{\} {(a,P)}

As with the expression for y\ we wish to eliminate the sum of terms in QPtP
from the expression.
Definition

For partitions p and A, A G p+, define the polynomial Rc(t, p, A) by

Rc(t,P, A) - Y l (¿ “ (W ^ “ 1))-
Mep+up-\{A}

Let 4>c<pc~ 1 be the map elements Q7;0 and Qgt7 have eigenvalue sltgsgn — 1
for

Lem m a 2.12 For partitions a, /3, a ^ /3

Rc Pi A)(f3ai|g + Re (Sa,pS/3t a 1, p, A){Q a,p T Qp,ot)-

42

Proof

Rc(Sot,pSl3,a 1i Pi ^)Qa,p

~̂ ~Pc(Sf),aSot,P 1 iPi^)Qp,a

Pc{Sa,pS/3,a 1; Pi ^)(Qa,f) T Qp,a)-

Lemma 2.12 shows that the coefficient of each element in a sum Qat/3 + Q^a
remains equal after we apply i?c ($ 1)l5 p, A).

The next step in our construction is to apply i?c($i,i, P, A) to the relation
we have already derived from the branching rules.

Lem m a 2.13

This follows almost immediately from applying Rc (<biti, p, A) to the relation
from Theorem 2.6. The sum of elements Q ^ over p+ Up~\{A} is cancelled out
by applying ^ ($ 1,1, P, A). Using Lemma 2.12 on the sum of terms Qa,p + Qp,a

i.e., multiplying a sum of terms Qrn + Q7iT by Q M results in a similar sum of
terms.

{(M)}

Proof

and the remaining terms gives the coefficients indicated.

By the symmetry we observed earlier we note that

43

2.7 Proving Conjecture 2.10

We prove the conjecture by induction, and use the constructions that we have
already noted for y\, Qx,x, R>c(t, p, A) and Rc (t,p, A) to draw out correspon
dences between the two sets of branching rules when we consider coefficients
from Z 2[u±1, s*1].
Proof

Take a link L with l components L\,. . . , Lt. Let L(A(1),. . . , A(l)) denote the
link L with each component Li paired with a partition A(i).

Let

JV = ¿(|A(*)I - 1) , |A(i)|>l,
¿=1

and we use this to base our induction on. By definition N > 0 and the only case
when N — 0 is when |A(z)| = 1 for all i. This is the situation when the patterns
decorating each component are yi in the Kauffman skein of the annulus and
Q i,i in the Homfly skein of the annulus. By Theorem 2.9 we know that the
case N = 0 satisfies the conditions of the conjecture, and thus provides a basis
for our proof by induction.

Assume that for all N < n — 1 the conjecture is true. For any case when
N = n we know that only one partition A(i) is different from some case when
N = n — 1, and it is different by the addition of only one cell to that partition,
p[i). Without loss of generality, we can assume that the partition that has
changed is attached to component Li. Effectively the difference between the
two links resulting from the attached partitions is p(l) paired with Lt when
N = n — 1 and A(l) paired with Li when N = n.

As the difference between A(Z) := A and p(l) \= p is one cell then we know
p C A, |A| = \p\ + 1. Thus, when we decorate the link either in the Kauffman
or Homfly skein we can use the branching rules to find expressions for y\ and
Qxtx in terms of yp and QPtP respectively.

By Lemma 2.3 we know that yx can be expressed as a certain linear com
bination of longitudes and meridians, but we now need to show that this is in
alignment under the conditions of the conjecture with the more complicated

expression that we have for the Homily case.
Due to the way that we are building up patterns we must (at least at this

stage) include the possibility that there are pairs of patterns (as we have defined
them previously) which are also going to be multiplied by Q it\. However, by
the note that we made before, this will itself only contribute another sum over
pairs of patterns in the branching rule. By Theorem 2.6 and Lemma 2.13 the
expression that we need to consider is

There are differences in the skeins between the branching rules for yx and Q\t\.
If we work modulo 2 and with the substitution v ,s -> v2,s 2 for Kauffman there
is no immediate change that we can observe.

However, working modulo 2 for Homfly we simplify the expression that we
have for Qx,x- the term of QPjP on the right hand side obviously vanishes mod
2. The sums of pairs of patterns cancel by Lemma 2.11 since all of the other
components in the link L are being decorated by patterns Q p(j),p(j) for fixed
partitions p(j). Hence mod 2 we have

Pi ^) | I Qp,p + y] (Qt,7 + Q-y,r) j Q l,l J — ~ 1, P, ^)Qx,X\ \) J
in the Homfly skein of the annulus. We can go a step further and eliminate the
sum of pairs on the left hand side of the expression to give

From similar considerations to Theorem 2.4 and Corollary 2.5 it can be
shown that R c{s\x — l,p, A) is non-zero mod 2, and hence we can give the
following construction for elements in the Homfly skein of the annulus when we

+ ^ 2 Rc(sc,,pSp,a - l ,P ,^) (Q a,l3 + Ql3,a)-
{(«./»)}

45

consider coefficients mod 2:

Q\,x —
Rc(*i,uP,

Rc(s l tX- l , p , X) {Qp,pQ 1,1) •

There is clearly a parallel between the expressions for the two branching rules.
By the assumption of the inductive argument the decoration of QPtP and yp
agree, and by the result of Rudolph we know that Qi, 1 and yi agree.

To prove the conjecture we must show that p, A) and RK{<j)K, p,\)

agree, and that Rc(s2 x — 1, p, A) and Rk.(c\, p, A) agree under the conditions of
the conjecture. Recall

Ric(t,P, A) = YL (t - cp)
nep+up-\{\}

R c(t,p ,\) = n (i - (» « . 2 - i))
iiep+up-\{A}

which are both defined as products over the same set of partitions, with the
difference being the factors in each. A typical factor in RK(t, p, A) is (t — c7)
and a typical factor in Rc(t, p, A) is (t — (s7l72 — 1)). In the first instance we
need to compare c7 and s7i72 — 1 under the conditions of the conjecture.

For the Kauffman polynomial D(v,s) the substitution v, s —» v2, s2 modulo
2 is equivalent to squaring the polynomial modulo 2, i.e.,

D(v2, s2) = (D(v,s))2 mod 2.

We noted previously that c7 = s7i7 + 1. Under the substitution c7 is equivalent
to Cry2 mod 2. Then

Cry2 = (s7j7 + l) 2 mod 2

= ¿>7,7 T 2s7i7 T 1 mod 2

= s7i72 — 1 mod 2,

as required. Thus Rc {s\ x — 1, p, A) = Rk {c\, p, A) under the conditions of the
conjecture, and for Rc(<F1;1, p, A) and Rk,(4>ic, p, A) we need only note that

$1,1 = — 1 = <I>k * Ql,l

C> 46

and so the meridian maps and coefficients from eigenvalues of the meridian
maps agree, as required. I

Owing to the fact that D(v2, s2) = (D{ v , s))2 mod 2 we can then state the
theorem as follows:

T heorem 2 .14 Decorate each component Li of a framed unoriented link L
by V\(i)- The square of the Kauffman polynomial of this decorated link with
coefficients in Z 2[u±1, s1*11] is equal to the Homfly polynomial of L when each Li
is decorated by Qx(i),x(i) with coefficients in Z^rP1, s*1], with the empty diagram
taking the normalisation of 1 for both invariants.

There is a fairly neat corollary that we can give to Theorem 2.14, for the
situation that we want to take linear combinations of patterns when we decorate
our links. Before stating and proving it, it is in our best interests to introduce
some notation so that we can give the corollary and proof as simply as possible.
Definition

Let L(A(1), . . . , A(/)) denote the link L with each component Lj paired
with a set of partitions A(i) = (A(H),. . . , A(ij)}, where j = |A(z)|.

Then let LK{A (l) , . . . , A (/)) denote the link L with each component Lj dec
orated by a linear combination of patterns

^A(t) = y\(h) + ■ • ■ + yx(ij)

and let LC(A(1), . . . , A(Z)) denote the link L with each component Lj decorated
by a linear combination of patterns

f>A(i) — Qx(ii),X(h) + • • • + Qx^i^Xij)-

Finally, take D(LK(A (l) , . . . , A {l))) to denote the Kauffman polynomial of
Lx:(A (l) , . . . , A(/)), and let P (LC(A(1) , . . . , A(/))) denote the Homfly polyno
mial of LC(A(1), . . . , A (l)).

C orollary 2.15 D(LK(A.(1) , . . . , A(Z)))2 = P(LC(A(1) , . . . , A (/))) mod 2, i.e.,
taking coefficients Z 2[u±1,s ±1], and with the empty diagram taking the normal
isation of 1 for both invariants.

Proof

The Kauffman polynomial of a satellite decorated by a linear combination of
patterns is equal to the sum of the Kauffman polynomials of the link if it is
decorated by each pattern separately; a similar statement can be made about
the Homfly polynomial of satellites decorated in such a way.

In the case that we are considering, as a first step we can state the following:

D{LK(A(l), ■ • •, A(0)) = D(Lk(A(lr),. . . , A(/))) + ... + , A(/)))
|A(1)|

= £ d (L*(A(1*),...,A(Z)))
fc=1
l |A(m)|

= E E « . . , « , . . » .
m =l fc=l

Then with coefficients in Z 2[u±1,s :i:1],

s-ts2
l |A(m)|

= E E B (i K(. . . ,A (m t) , . . .))
m = 1 k = l

l |A(m)|

= E E « . , « - .))
m= 1 fc=l

= P(LC(A(1) , . . . ,A (0)).

v—tv*
s—>s2

48

Chapter 3

Stacked ¿-tangles and the
Kauffman Polynomial

3.1 Introduction

In this chapter we give details of an algorithm for calculating the Kauffman
polynomial of a link. As noted previously, calculating knot polynomials from
skein relations generally gives an exponential time algorithm based on the num
ber of crossings in the diagram that we start with.

Przytycki showed that a polynomial time algorithm was possible in principle
for the Kauffman polynomial [49], although the method he gave only calculates
a part of the coefficients for the Kauffman polynomials. The work of this
chapter presents the first complete polynomial time algorithm for calculating
the Kauffman polynomial.

We explore ¿-tangles and stacked ¿-tangles, and how we compose a stacked
¿-tangle with a word from the braid group By representing stacked k-

tangles as ¿-sequences, and then exploring conditions that guarantee a desired
outcome we obtain the foundation of the algorithm that we construct (leading
to Proposition 3.8).

49

3.2 Stacked k-tangles

Tangle diagrams are often given in terms of inputs and outputs to a box, with
the arcs inside being knotted somehow.
Definition

An (m, n)-tangle is a box with m inputs at the top of the box and n
outputs at the bottom, where m + n = 21 for some l. Connecting the m + n
points are l arcs, and these can be freely knotted inside the box. We also allow
closed components in the tangle box.

Definition

A k -tangle consists of k arcs connected to 2k points on a line, with arcs
lying in the upper half space and each having a single local maximum. There
are no restrictions on how the arcs lie relative to each other, but we do not
allow closed components within the tangle.

Essentially, a A;-tangle is a (0, 2/c)-tangle with unknotted arcs and the extra
condition not allowing closed components. A consequence of the definition
of a A;-tangle is that the arcs are all individually knotted. See Figure 3.1 for
examples of 3- and 4-tangles.

Figure 3.1: Examples of 3- and 4-tangles

A £;-tangle can be drawn as a 2k braid with a plait closure of k caps at the
top.

We now give the most important definition of the next two chapters; the
methods that we will begin to outline shortly depend on this definition and its
consequences.

50

Definition

A stacked fc-tangle is a ft-tangle such that arcs do not wind around each
other, i.e., no two arcs are linked.

Figure 3.2 shows some examples of stacked 4-tangles, and as before note that
we do not allow the possibility of closed components in the stacked tangles.

Figure 3.2: Examples of stacked 4-tangles

A variation on this definition was originally given in [41].
As the arcs are stacked, we can consider them as being in separate layers,

and then give a numbering to these arcs. The top-most arc is numbered 1, and
the bottom-most is numbered k, with the arcs inbetween numbered according
to the rule that an overcrossing arc has a lower number than the arc it crosses
over. For example, we number the stacked 4-tangle to the left in Figure 3.2 as
in Figure 3.3.

2

Figure 3.3: Numbering arcs of a stacked 4-tangle

There is not necessarily a unique numbering for the arcs of a diagram; it is
clear that we can have stacked ^-tangles which have two or more arcs in the
same layer. In this case we need only give the arcs a numbering so that they
respect whatever arcs might lie above or below them in the diagram.

51

Consider the stacked 4-tangle to the right of Figure 3.2: this has two possible
numberings, as can be seen in Figure 3.4.

Figure 3.4: A stacked 4-tangle without a unique numbering

By considering the numbers of the endpoints of the arcs of a stacked tangle
we see that this information determines the diagram. Reading these numbers
from left to right we use the number sequence to represent the stacked tangle.
Definition

A /¿-sequence is a sequence of numbers representing the endpoints of the
arcs of a stacked /¿-tangle; the /¿-sequence determines the stacked /¿-tangle.

For example, the 4-sequence for the stacked 4-tangle in Figure 3.3 is (12314234),
and the two possible number sequences for the stacked 4-tangle in Figure 3.4
are (32134214) and (42143213).

As there are stacked /¿-tangles without unique /¿-sequences determining
them, it is clear that the number of /¿-sequences will be greater than the number
of stacked /¿-tangles for k > 2.

Proposition 3.1 The set of k-sequences has elements.

Proof

The number of elements in the set of /¿-sequences is easily calculable from simple
combinatorics. We permute 2k objects - but there are k distinct objects, each
of which occurs twice. Hence the number of elements is i

Calculating the size of the set of stacked /¿-tangles is more complicated, and it
is less clear if there is a simple way to do this in general. We will consider this
problem further in Section 3.8.

52

3.3 Multiplying stacked tangles by braids

Our aim in this section is to express a general /c-tangle as a linear combination
of stacked /c-tangles with respect to the Kauffman skein relations. We work in
the Kauffman skein module of stacked /c-tangles.

As stated previously, a /c-tangle can be expressed as a 2 k braid with a
plait closure at the top. We can also consider a /c-tangle as a stacked /c-tangle
composed from below with a word from B^. In both cases we do this in an
obvious way, by pulling the arcs, lengthening the diagram until we can see a
stacked /c-tangle composed with a braid.

We consider this idea in the example of Figure 3.5, which is taken from the
3-tangle of Figure 3.1.

Figure 3.5: Multiplying a stacked 3-tangle by a braid

By considering diagrams of this type we begin to examine what we mean
by multiplying a stacked tangle by a braid word in the skein. We consider this
as the action of the braid group B o n the Kauffman skein module of stacked
/c-tangles.

We start by considering what happens when we multiply a stacked tangle
by a braid generator. In order to give a consistent system for this, we give
conditions for when multiplication by a braid generator results in a stacked
tangle.

53

Definition

A stacked £;-tangle ¿1 is com patible with a braid generator cq if the action
of multiplying t x by cq results in another stacked A;-tangle t2 or multiplied by
a scalar v. Similarly, a stacked k -tangle t x is compatible with an inverse a f 1 if
the action of multiplying by the inverse results in another stacked £;-tangle t2

or ti multiplied by a scalar v ~ l .

We use ^-sequences to represent stacked ¿-tangles and so must give a statement
as to how we consider compatibility with respect to ¿-sequences.
Definition

A ¿-sequence s is compatible with a generator cq if the stacked ¿-tangle
defined by s is compatible with cq. Similarly, s is compatible with an inverse
er f1 if the stacked ¿-tangle defined by s is compatible with erf1.

The following proposition gives conditions that ensure a ¿-sequences is com
patible with a given generator.

Proposition 3.2 I f the num ber at position i in a k-sequence s is greater than

or equal to the num ber at position i + 1 then s is compatible with Oi.

P ro of

Let s (j) stand for the number at position j in the ¿-sequence. If s (i) = s (i + 1)
then s is compatible with <j, as the two positions in s represent the two ends of
one arc. This arc results in the original stacked A;-tangle being multiplied by v

in order to remove a kink by a Type I Reidemeister move.
If s(i) > s(i + 1) then this means that the arc which has an endpoint at

s(i + 1) is numbered in such a way that it is considered to be above the arc
which has an endpoint at s(i). Thus, s is compatible with cq as the action of
the generator brings the lower-numbered arc across the higher-numbered. 1

We can state something similar when dealing with inverses.

Proposition 3.3 I f the num ber at position i in a k-sequence s is less than or

equal to the num ber at p osition i + 1 then s is compatible with erf1.

54

For the purpose of constructing the algorithm, in all following references to
compatibility we assume that we describe /¿-sequences that satisfy the condi
tions of Propositions 3.2 and 3.3.

3.3.1 Renumbering

We have previously noted that a stacked /¿-tangle can have more than one valid
/¿-sequence that defines it.
D efinition

Let s and s' be /¿-sequences. We say that s is equivalent by renum bering to
s ' if and only if s' arises from a valid numbering for the same stacked /¿-tangle
that s determines.

We will consider renumbering as an essential relation for the purpose of
obtaining /¿-sequences which satisfy the compatibility conditions of Proposi
tions 3.2 and 3.3. The following results give the foundation for showing when
renumbering is possible.

P roposition 3.4 L et 1 < a < k — 1 and b = a + 1. C on sid er two k-sequences

Si and S2, such that fo r l < p < q < r < t < 2 k

Si(p) = n si(q) = a si(r) = b Si(t) = b

s2(p) = b s2(q) = b s2(r) = a s2(t) = a

and S i(i) = s 2(i) fo r all other 1 < i < 2k.

T hen s j is related to s 2 by renum bering.

P r o o f

In the stacked /¿-tangle determined by Si we would consider the arc numbered a

as being immediately “above” arc b. Regardless of how the other arcs lie relative
to a and b, we consider a and b as in the left-hand diagram in Figure 3.6, i.e.,
they do not cross. The numbering of s 2 would result in the same situation, and
hence Sj and s 2 are related by renumbering. I

55

Proposition 3.5 Let 1 < a < k — 1 and b = a + 1. Consider two k-sequences
Si and s2, such that for l < p < q < r < t < 2 k

si(p) = a s1 (q) = b s^r) = b si(t) = a
s2 {p) = b s2 (q) = a s2 (r) = a s2 (t) = b

and si(i) = s2 (i) for all other 1 < i < 2 k.

Then si ¿s related to s2 by renumbering.

Proof

As with the previous proof, regardless of how the other arcs in the stacked
/¿-tangle defined by Si lie relative to a and b, we consider a and b as in the
right-hand diagram in Figure 3.6, i.e., they do not cross. The numbering of
s2 would result in the same situation, and hence si and s2 are related by
renumbering. I

r\ r\ r rC \
Figure 3.6: Non-crossing arcs

We say that a and b are adjacent where 1 < a < k — 1 and b = a + 1.

3.3.2 Rearrangement

Consider the diagram of Figure 3.7. This shows the stacked 3-tangle given by

Figure 3.7: (121323) multiplied by <ti

3-sequence (121323) being multiplied by a generator <ti that is incompatible.

56

Definition

A ¿-sequence s is Kauffman equivalent to 'Jf, ajSj, a linear combination of
¿-sequences with coefficients from the Kauffman skein module, if and only if
a linear combination of stacked ¿-tangles corresponding to the linear combina
tion of ¿-sequences can be obtained from the stacked ¿-tangle defined by s by
applying the Kauffman skein relation.

We say that we use a rearrangement action when applying Kauffman skein
relations in order to obtain a Kauffman equivalent linear combination of Re
sequences.

It follows that two Re-sequences equivalent by renumbering are Kauffman
equivalent.

Proposition 3.6 Let 1 < a < ¿ — 1 and b = a + 1. Consider four k-sequences
si, s2, s3, s4 such that for l < p < q < r < t < 2 k

si{p) = a si(q) = b si(r) = a si(t) = b

S2 (p) = b s2 (q) = a s2 (r) = b s2 (t) = a
«3ip) = a s3(ç) = a s3(r) = b s3 (t) = b
s4 (p) = a s4(g) = b s4(r) - b s4(i) = a

and for all other 1 < i < 2 k Si(z) = s2(f) = s3(z) = s4(i).
Then s\ is Kauffman equivalent to s2 — zs3 -I- zs4.

Proof

We consider the occurrences of a and b within the four Re-sequences as 2-
sequences. We can write these as

s[= iabab) s '2 = ibaba) s3 = iaabb) = iabba)

and by considering the stacked 2-tangles that they determine and the main
Kauffman skein relation we can state si is Kauffman equivalent to s'2 -z s '3 +zs'A.

By comparing this with the ¿-sequences that we started with, and because
this rearrangement will not effect the other arcs in the stacked ¿-tangles that

57

lie above or below arcs a and b we can thus state that Si is Kauffman equivalent
to S2 — 2S3 -|- ZS4 . g

Note that the terms S3 and S4 can be renumbered, and hence the larger
^-sequences S3 and S4 can be renumbered.

P roposition 3.7 A k -sequ en ce s with the num ber r at position j , where 2 <

r < k is K a uffm an equivalent to a linear com bination o f k -sequ en ces each with

r — 1 at position j .

P ro of

If the numbers r and r — 1 in s represent arcs which do not cross then Proposi
tions 3.4 and 3.5 guarantee that there is a ^-sequence s' such that s '{ j) = r — 1.

If the numbers r and r —1 in s represent arcs which cross then Proposition 3.6
allows us to express s as a linear combination of three ft-sequences, s'j, s'2, s'3,
such that s'ffj) = s 'ffj) = s 'ffj) = r - 1. I

In order to be consistent let us say that we always act to reduce the number
of a larger numbered endpoint in a k -sequence in an effort to make it satisfy
the conditions of Proposition 3.2 or 3.3.

P roposition 3.8 A k-sequ en ce s that is incompatible with a gen era tor o r in

verse o f 1 is K auffm an equivalent to a linear com bination o f k -seq u en ces com

patible with a f l .

P roof

This follows from Proposition 3.7 by repeated application of the result on the
relevant position j in the linear combination of ^-sequences. 1

For example, consider again the diagram of Figure 3.7, which we can rep
resent as (121323) being multiplied by o\. We need to rearrange the adjacent
arcs 1 and 2 according to the relation we defined. Hence, by Proposition 3.6

(212313) - (121323) = z((112323) - (122313)).

The final term does not satisfy Proposition 3.7, but we renumber the 3-sequence
as arcs 1 and 2 in the diagram it determines do not cross, and hence obtain the

following linear combination of 3-sequences for (121323) that are compatible
W ith CTi,

(121323) = (212313) - *(112323) + *(211323)

and thus

(121323)^ (212313)cti - *(112323)0-! + *(211323)cr1

(122313) - u*(112323) + *(121323).

Consider the diagram in Figure 3.8. This can (only) be represented as the

3-sequence (132132) multiplied by G\. We cannot renumber the 3-sequence so
we must rearrange. In this case we need to reduce the second number in the
sequence, and have to perform two sets of rearrangement; the first involves arcs
2 and 3, and the second involves possibly several rearrangement actions on arcs
1 and 2. Some of the resulting 3-sequences from the first rearrangement will
only require renumbering so that they are compatible.

This example underlines the fact that we can require several acts of rear
rangement and renumbering in order to express an incompatible ¿-sequence as
a linear combination of compatible ¿-sequences.

Before we move on to consider the algorithm, let us formally state the
relation between the ¿-sequences and the stacked ¿-tangles now that we have
introduced structure from the renumbering and Kauffman equivalence.

Proposition 3.9 The m odule o f k -sequ en ces m odulo renum bering and K a u ff

m an equivalence relations is isom orph ic to the K a u ffm a n skein module o f stacked

k-tan gles.

59

Proof

This follows immediately from the definitions of equivalence by renumbering
and Kauffman equivalence. i

3.4 Algorithm

In the previous sections we have discussed how we might express a general k-
tangle with respect to the Kauffman skein relations. We begin by expressing
the ¿¡-tangle as a stacked ¿¡-tangle multiplied by a braid word from ®2fc.

We represent stacked ¿¡-tangles by ¿¡-sequences, and consider multiplying
them by the braid word, considered one generator at a time. By Proposi
tions 3.2 and 3.3 we impose conditions to ensure that ¿¡-sequences are compat
ible with a braid generator or inverse; if these are not met then we use the
actions of renumbering and rearrangement to express the ¿¡-sequence in terms
of a linear combination of ¿¡-sequences that are compatible.

We provide a rigorous system for making rearrangements and renumberings
so that we do not needlessly pass coefficients to and from ¿¡-sequences. We want
to give as simple a system as possible, and not perform unnecessary operations;
the aim of our efforts is to define an algorithm for calculating the Kauffman
polynomial of a A;-plait, and define it in such a way that it can be implemented
without difficulty in a computer language.

The following description of this algorithm follows the flow diagram of Fig
ure 3.10 up to the last decision box (after which we have the concluding part
for calculating the Kauffman polynomial of a /¡¡-plait).

We consider expressions involving a linear combination of ¿¡-sequences. With
out loss of generality, take the case when we multiply by a generator cq. The
process of this algorithm is to ensure that we have a linear combination of
/¡¡-sequences that are compatible with a generator, in particular that the con
ditions of Proposition 3.2 (respectively Proposition 3.3 in the case of inverses)
are met following a process of rearrangement and renumbering.

In order that we do not perform unnecessary operations, we begin by con

sidering /¿-sequences that are not compatible with cq and have number k in
the (i + l)th position. By Proposition 3.7 we guarantee that we can perform
actions on incompatible /¿-sequences with number k in the (i + l)th position to
express them as linear combinations of /¿-sequences with k - 1 in that position.

We repeat the procedure for all /¿-sequences which have k — 1 in position
i + 1 but which are not compatible, and so on, repeating the process until
finally we have performed rearrangements and renumberings for incompatible
/¿-sequences with a 2 in position * -1-1. By reducing numbers in incompatible
/¿-sequences in this way, we remove the possibility of any duplication of work
and ensure that we do not miss any incompatible /¿-sequences.

There is a similar set of steps for the situation that we are multiplying by
cr“ 1, in which case we will be concerned with the number in the /¿-sequence at
position i. After completing this series of operations we have a linear combi
nation of /¿-sequences that are compatible with the generator (or inverse) by
Proposition 3.2 (or Proposition 3.3 for an inverse). Due to the way that we
ensure compatibility, multiplication involves switching the numbers in the i
and (i + l)th place in the /¿-sequences, and multiplying the coefficient of those
/¿-sequences which have the same number in positions i and i + 1 by v (or i>-1).

After this the linear combination of /¿-sequences is ready to be multiplied by
the next generator (or inverse) in the braid word, and so we repeat the process
outlined above. When the end of the braid word is reached, the stacked /¿-tangle
multiplied by the braid word will have been expressed as a linear combination
of /¿-sequences (representing stacked /¿-tangles) in the Kauffman skein.

3.4.1 Calculating the Kauffman polynomial of a &-plait

In order to calculate the Kauffman polynomial of a /¿-plait we must consider
the closure at the bottom of the /¿-plait structure. Thus, we have to consider
how we might calculate the Kauffman polynomial of a stacked ft-tangle that is
closed off by k cups in the manner for /¿-plaits. Consider Figure 3.9, where we
see the stacked 4-tangle given by (12314234) closed off.

In this case it is not difficult to evaluate the diagram’s Kauffman polynomial

Figure 3.9: Closure of stacked 4-tangle given by 4-sequence (12314234)

(it has value v) , but for a sufficiently complicated diagram and large enough ¿
the closure of a stacked k -tangle could be a non-trivial knot, or even a link.

In general we need a different approach. Consider the left-most cup that
effects the first two endpoints. If we pull this above the line, and use a Type
I Reidemeister move to remove the kink (multiplying by a scalar of v) we see
that we now have a stacked 3-tangle with 3-sequence (213123).
Definition

A stacked k -tangle is closure-com patible if the introduction of a cup to
the two left-most endpoints results in a stacked (k — l)-tangle multiplied by a
scalar from the set { 1, v , w-1, <5}.

Definition

A ¿-sequence, s, is closure-compatible if the stacked ¿-tangle defined by s

is closure-compatible.

As before, we show a condition that ensures closure-compatibility for a k-

sequence.

Proposition 3 .10 I f the first two num bers o f a k -sequence, s(l) and s(2), are

such that |s(l) - s(2)| < 1 then s is closure-com patible.

P ro o f

If s (l) = s(2) then the introduction of a cup to the stacked ¿-tangle represented
by s results in a disjoint unknot that we remove by multiplying by d, leaving a
stacked (k — l)-tangle that we can represent as a (k — l)-sequence.

62

For the remaining cases we will definitely be able to close off to valid stacked
¿-tangles, and hence obtain valid ¿-sequences, as the two arcs are adjacent and
thus the closure will not effect the relative ordering of the other arcs. We must
consider the pattern that the values of s(l) and s(2) have in the ¿-sequence.
If |s(l) — s(2)| < 1 then the values of s(l) and s (2) are adjacent, so either
s (l) = a and s(2) = b or s (l) = b and s(2) = b i o r l < a < k — 1 and b = a + 1.

If s (l) = a and s(2) = b then the two possible patterns in the k-sequence are
(abba) and (abab): for the pattern (abba) it is not difficult to see that this will
result that closure will result in some (k — l)-sequence multiplied by 1 as there
is no twisting. For the pattern (abab) we will be able to find a (k — l)-sequence
after we remove a twist by multiplying by v.

If s (l) = b and s(2) = b then the two possible patterns in the ¿-sequence
are (baab) and (baba): for the pattern (baab) we will once again obtain some
(k — l)-sequence multiplied by 1. For the pattern (baba) we will obtain a valid
(k — l)-sequence after removing a twist by multiplying by v~l . ■

We now discuss ¿-sequences as being closure-compatible by satisfying the
conditions of Proposition 3.10, following the approach that we took previously
when we considered conditions ensuring compatibility with braid generators.

As before we perform actions on a linear combination of ¿-sequences. Again
we take advantage of the result of Proposition 3.7 to ensure that our actions
proceed in an organised way. In the first instance we act on all ¿-sequences
that have a k in one of the first two positions and which are not closure-
compatible. We perform renumbering or rearrangement to reduce k to k — 1,
and perform similar reduction operations in subsequent cycles. This differs
from the previous procedure in that the conditions for closure-compatibility are
different from the conditions for compatibility. We have to perform fewer cycles
through the linear combination of ¿-sequences, as after we have performed the
check for the number 3 we can guarantee that all of the ¿-sequences will be
closure-compatible.

Closing off from ¿-sequences and (k — l)-sequences involves observing where
the two numbers lie relative to each other in the ¿-sequence as explored in

Proposition 3.10. Using these results we can determine the scalar required
when we close to a (k — l)-sequence.

The simplest way that we can relate the numbers of arcs represented in a
^-sequence and the (k — l)-sequence that it closes to is by removing the first
two numbers in the A:-sequence, then subtracting 1 from all of the numbers in
the new sequence that are greater than the minimum of the two numbers we
removed from the ^-sequence. This gives a valid (k — l)-sequence, though as
before there may not be a unique (k - l)-sequence for the stacked (k - l)-tangle
that is being represented.

We continue in this manner, closing off from linear combinations of m-
sequences to linear combinations of (m — l)-sequences, until we close off from
2-sequences to the 1-sequence, (11). The coefficient of (11) is the Kauffman
polynomial of the closure of the stacked ^-tangle (represented as a ^-sequence)
that we began with.

Hence, by combining this with the algorithm for representing a stacked k-
tangle multiplied by a word from the braid group B2a;, we can calculate the
Kauffman polynomial of a /c-plait. We first express the ft-plait as a ^-sequence
multiplied by a braid word, and then use the main algorithm outlined previously
to express it as a linear combination of /c-sequences. We then close these off
using the method described in this section, with the final coefficient of the
1-sequence (11) giving us the Kauffman polynomial of the /c-plait.

A flow diagram to illustrate the algorithm can be seen in Figure 3.10.

3.5 Complexity

The number of /^-sequences for a fixed k is (Proposition 3.1). Immediately
then we can state that the algorithm is not exponential with respect to c, the
number of crossings, for a fixed k, in the sense of the general algorithm outlined
in Section 1.5.5. Rather than produce an increasing number of diagrams as each
crossing is considered, we are able to limit the number of objects by representing
stacked A>tangles as ^-sequences.

64

Start

i

Closure
1

Output
Figure 3.10: Flow diagram showing algorithm for calculating the Kauffman
polynomial. At box 1 we look to see if the ft-sequence is incompatible with
an r at the relevant point; at box 2 we check if we are considering the last
^-sequence in the set or not; box 3 checks to see if r is now equal to 1; box 4
checks to see if the end of the input has been reached.

65

Proposition 3.11 The num ber o f k -sequences satisfying P roposition 3 .2 or

P roposition 3 .3 fo r a given generator or inverse o f 1 is

,2 (2 (* - l)) !

P ro of

Consider first of all the case for a generator cq. There are fc-sequences with
the value r at position i, 1 < r < k. A ^-sequence s which is not compatible
with Oi is such that s[i + 1) > s(i). There are k - r choices for the value of
s(i + 1), thus we enumerate the number of incompatible ^-sequences with r in
position i as

(2(k — 1))!
(k — r)-

2k~ 2
Taken over all r we can then evaluate the number of ^-sequences compatible
with <ji as

T— 1 ' 2k-2
\ (2k)\ {2 (k - 1))! y 'V j \
) - 1 Ï ----------2 ^ — 2 v (* ~ r)

7 r= l
(2*0! _ (2(fc — 1))! k (k - 1)

= - V d)
,_2 (2(fc-l))'

2k - l ■

The same method shows that the value holds for inverses. I

From this bound it follows that there is a limit to the number of actions
of renumbering and rearrangement required to ensure compatibility. Of course
there is growth in terms of the number of operations performed; the number of
operations performed to ensure compatibility for the first crossing will be less
than the number performed to ensure compatibility for the tenth crossing. For
a sufficiently long braid word we will reach a point where our linear combination
contains the maximum number of ^-sequences. For each successive crossing the
number of operations required to ensure compatibility will remain more or less
constant, and from this point we could consider the amount of work performed
by the main algorithm to be linear with respect to c.

66

As there is growth in terms of the number of operations performed be
fore this point, we state that the main work of the algorithm is performed in
polynomial time, degree 2.

The growth of the coefficients of the ¿-sequences is not exponential either.
k — \ passes are made through the set of ¿-sequences during a sequence of
rearrangements, and so at most the spread of z will increase by k — 1. The
spread of v only increases (potentially) during the multiplication stage of the
algorithm, and does so by 1 at most as we multiply relevant ¿-sequences by v or
v 1 depending on whether we multiply by a generator or an inverse. Hence, for

coefficients we have linear growth in z and linear growth in v, giving quadratic
growth overall in coefficients.

As the action of the main algorithm is polynomial, degree 2, and the growth
of coefficients is polynomial degree 2 (all with respect to c for a fixed k) then the
algorithm as a whole is a polynomial time algorithm of degree 4. However, once
the number of ¿-sequences reaches a certain bound the number being acted on
by subsequent will be constant with only minor fluctuations. As the number
of operations performed is bounded the main algorithm becomes linear with
respect to c. Hence the overall algorithm will effectively, from that point on,
be polynomial degree 3 with respect to c for a fixed k.

3.6 Implementation

The algorithm described in this chapter lends itself to implementation in a
computing language. Although the algorithm works in polynomial time, as
with other algorithms for calculating polynomial invariants of knots it is too
complicated to allow any serious calculation by hand.

In Appendix A .2 we give a listing for a Maple procedure that implements the
algorithm developed in this chapter. The code is documented in that appendix,
but there are a few points that are worth touching on here.

The first is to note that we use the “permute” command in Maple to gen
erate the set of ¿-sequences at the start of a calculation. We use this command

67

on the numbers in the string equivalent to the ¿-sequence (1122.. .kk), which
has the effect of creating a list with a very regular ordering that we can exploit.

The actions of rearrangement and renumbering are performed by looking in
relevant places within ¿-sequences, and seeing how adjacent numbers lie relative
to each other. By considering a few simple cases and factors we determine the
appropriate course to take, i.e., rearrangement or renumbering.

There are two main arrays of information kept in memory by the program.
One is the array holding the set of ¿-sequences, and the other is the table of
coefficients that are paired with the ¿-sequences. The actions of rearrangement,
renumbering and multiplication are performed by altering coefficients in the
second array to reflect changes in the linear combination of ¿-sequences.

I have not found a command in Maple that simply gives the index of a k-
sequence in the first array, so 1 created a simple routine that allows us to narrow
the list of entries that we search through. Seqlndex is listed in Appendix A .l,
and exploits the regular ordering that the permute command gives the list of
/c-sequences.

3.7 Plait Presentations

In Appendix B we give tables of plait presentations of all knots up to ten
crossings; while plait presentations are fairly well known (as “2/c-plats”) it seems
that there is no record of the braid words for plait presentations. These tables
record presentations for all knots up to ten crossings. The source diagrams are
due to the Rolfsen Knot Table as recorded at the Knot Atlas [52], with some
additional diagrams from Knotlnfo [26].

While plait presentations of knot diagrams are not in principle difficult to
obtain, it can be difficult to find presentations of minimal width; of course, a
plait presentation might not have the minimal number of crossings for the link
presented. All of the presentations that 1 give have minimal width, as each has
a width equal to the knot’s bridge index, but it remains to be seen whether
some of them could have the number of crossings improved, i.e., by reducing

the length of the braid word that we close-off in the plait format.

3.8 Discussion

There are some questions that the work of this chapter raises; there are possible
extensions that we can make to the theory as well, but we will examine those
in detail in the following chapter.

0 3.8.1 The number of stacked A>tangles

There are ^-sequences, and the implementation of the algorithm that I
have given for this operates on a spanning set which is the entire set of k-
sequences. There are lots of interesting questions that we can ask regarding
spanning sets for the space of ^-sequences and for stacked /c-tangles.

For example, we can begin by giving the size of a basis for the ft-sequences
in the Kauffman skein.

L em m a 3.12 A basis for the space of k-sequences contains n * =1(2r — 1) ele
ments.

Proof

® Let S be the set of ^-sequences such that the numbers in a ^-sequence in S
occur in counting order as the sequences are examined from left to right.

We can perform renumbering and rearrangement operations on any k-sequence
to express it as a linear combination of /^-sequences from the set S by Propo
sition 3.7. The set S is thus a spanning set of the space of ^-sequences.

We calculate the size of S as follows: there is a 1 in the first place of the
sequence, and there are 2k — 1 possible places where the other 1 could be. By
removing these we have a sequence of length 2 k — 2 with a 2 at the start; there
are 2k — 3 places that we can place the other 2. We continue in this way, and
see that the number of possible sequences of this format is the product of all

69

of the odd numbers from 1 to 2k — 1, or

|S| = n<2r - 1).
r = 1

We cannot remove any element of S and express it as a linear combination of
the others, hence the elements of S form a basis of the space of ^-sequences. I

A problem that I have not been able to answer is the question of how many
stacked A>tangles there are for a given k. For k = 2 and k = 3 there are
few enough ^-sequences that we can enumerate the set of stacked /c-tangles
by inspection. For k = 4 we have 2520 diagrams to consider and the task
becomes too difficult to consider simply by comparing all of the stacked 4-
tangle diagrams.

By considering relative positions of neighbouring arcs in the set of 4-sequences
we can eliminate duplicate sequences that represent stacked 4-tangles which do
not have unique numberings. This argument, however, does not guarantee that
the 4-sequences it obtains account for all of the duplicate copies of stacked 4-
tangles, and it unfortunately also produces “false positives.” In the absence of
further results, the quoted number of 550 must remain an upper bound, with
a lower bound provided by the number of stacked 4-tangles in a basis. We
display these with the values for k — 2 and k = 3 in Table 3.1.

k | {Stacked A;-tangles}|
2 4
3 35
4 x, 105 < x < 550

Table 3.1: Size of sets of stacked fc-tangles

It is possible that a combinatorial answer exists in [10]; however, to date,
I have not been able to understand all of the terminology and results in the
paper in order to fully decide whether an answer to the problem exists there.

Now that the upper bound has been reduced from 2520 to 550 it is possible
that the remaining work has been reduced enough to confirm by inspection the

size of the set of stacked 4-tangles. However, this approach will be too time-
consuming for calculating the size of the set of stacked /c-tangles in general.

3.8.2 Improving the algorithm

The natural question that one might ask is whether or not an even better, more
efficient algorithm exists for calculating the Kauffman polynomial. While this
question is much too broad to answer in general, there are some points that we
can note for the case of calculating the Kauffman polynomial of a &-plait.

In Chapter 6 we show results for repeated twists on two strings in a braid
and how these can be expressed in the Kauffman skein. These results may
have some application here, either in simplifying diagrams before a run of the
algorithm or by supplementing the algorithm.

One thought that I have examined is the possibility of working from a
basis of the space of ^-sequences. While it is true that we can express any
linear combination of ^-sequences as a linear combination of basis elements
it does not follow that these basis elements will be compatible with a given
generator or inverse. Extending this idea, we might consider working with
two bases, and rearranging from expressions in one basis to another to obtain
compatibility; however, a little experimentation shows that two bases will not
be enough to ensure compatibility, and combined with the extra operations
that an implementation would be required to perform it is not clear that we
would be reducing the work performed.

In the extensions section of the next chapter we discuss how one might
calculate a 2-parallel of a &-plait, and how we can use the methods of this
chapter in order to reduce the work needed in those cases. These are based
around situations where the braid word gives a long arc crossing over (or under)
other braid strings. In this case we perform rearrangements to allow the arc to
cross over (or under) all of these strings in the act of one multiplication, rather
than in several stages. This affords a reduction of the amount of work done in
comparison.

3.8.3 Numbering arcs in layers

One problem with the algorithm that we have outlined is that it performs op
erations to ensure compatibility (Propositions 3.2 and 3.3), rather than simply
performing operations on ^-sequences that are incompatible.

Consider the example of multiplying (11442233) by a2, which is not incom
patible. The algorithm that we have outlined would tell us to use renumbering
actions to rearrange 4 and 3, then 3 and 2, and then 2 and 1 before the multi
plication could be performed. In this case, all of the arcs in the stacked 4-tangle
are in the same layer, and so the numbering that we give them is arbitrary in
some respect.

An improvement to the algorithm would be to consider the numbering of
arcs which are in the same layer as being irrelevant. The difficulty with this
approach is that essentially we are considering the stacked /c-tangle diagrams
rather than representations. The machinery of any such implementation would
doubtless be increased dramatically to allow for these possibilities.

72

Chapter 4

Stacked /.-tangles and the
Homily Polynomial

4.1 Introduction

We extend the definition of stacked /¿-tangles to allow oriented arcs, and sub
sequently develop a method for calculating polynomial invariants for oriented
links; the example that we give is for calculating the Homfly polynomial of links
given as plait presentations. The steps leading to this algorithm are similar to
the work of the previous chapter, and so we state many of the results without
proof. These lead to Proposition 4.8 which is the key result for the algorithm.

As with the previous algorithm for calculating the Kauffman polynomial
for knots presented as plaits, we show that this algorithm is a polynomial time
algorithm for a fixed k with respect to the number of crossings c. There are
existing polynomial time algorithms for calculating the Homfly polynomial, but
these are based on braid presentations [45]. After searching through the liter
ature I believe that the algorithm given in this chapter is the first polynomial
time algorithm not based around presentations for closed braids.

We conclude the chapter by considering some extensions to the general
theory of calculating polynomial invariants by representing stacked /¿-tangles
as /¿-sequences (oriented or unoriented). We investigate several possibilities for

73

reducing the amount of work that our existing algorithm performs. We consider
this with respect to calculating the Homily polynomial of a reverse parallel of a
knot; this generalises to m-parallels in general (for Homily and Kauffman). We
briefly consider a possible application by shifting from words in a braid group
to considering words written in terms of band generators [8], [23].

4.2 Oriented stacked ^-tangles

As the Homily polynomial is an invariant for oriented links, we must now
consider tangles with oriented arcs. We use the ¿-tangle from the previous
chapter as our starting point.
Definition

An oriented ¿-tangle is a ¿-tangle with each arc oriented.
See Figure 4.1 for examples of oriented ¿-tangles.

Figure 4.1: Examples of oriented 3- and 4-tangles

Definition

An oriented stacked ¿-tangle is a stacked ¿-tangle with each arc ori
ented.

In Figure 4.2 we see two examples of oriented stacked 4-tangles; these are the
two examples from the previous chapter with arcs now oriented.

We give a numbering to the arcs of oriented stacked ¿-tangles in exactly the
same way as we did previously for unoriented stacked ¿-tangles. Diagrammat-
ically we see numbered arcs with the orientation indicated on the arcs (as in
the example of Figure 4.3, showing a numbering for the left-hand example of

74

Figure 4.2: Examples of oriented stacked 4-tangles

Figure 4.2). The orientation is extra information that we have to pass to the
analogue of ¿-sequences for this oriented case.

Figure 4.3: An oriented stacked 4-tangle with numbered arcs

Definition

An oriented ¿-sequence is a sequence of numbers, ± i, 1 < i < k, rep
resenting the endpoints of arcs of an oriented stacked ¿-tangle. The absolute
value of the number indicates the arc and we take the convention that the
orientation of the arc runs in the direction from — i to +i.

For example the oriented stacked 4-tangle given in Figure 4.3 has oriented
4-sequence (~1 ~2 3 1 ~4 2 “ 3 4). As in the previous chapter, the set of oriented
¿-sequences is larger than the set of oriented ¿-tangles.

Proposition 4.1 The set of oriented k-sequences has (2¿)! elements.

Proof

This follows immediately as we permute 2¿ different numbers.

4.3 Action of braid generators

In Section 3.3 of the previous chapter we showed that it was possible to express a
/¡-sequence as a linear combination of /¡-sequences satisfying certain conditions.
We did this specifically with the aim of showing that one could express a
stacked k-tangle composed with a braid word from as a linear combination
of stacked /¡-tangles. In this section we show that similar results can be obtained
for Homfly.

We begin by returning to compatibility, defining the concept for oriented
stacked /¡-tangles and oriented /¡¡-sequences.
Definition

An oriented stacked /¡¡-tangle ti is com patible with a generator or inverse
o f 1 if the result of multiplying ti by erf1 gives another oriented stacked /¡¡-tangle
¿2, or t\ multiplied by a scalar v*1.

Definition

An oriented /¡-sequence s is com patible with a generator or inverse erf1 if
the oriented stacked /¡-tangle determined by s is compatible with o f 1.

As orientation is kept with the arcs in the tangle, we can see that orientation
does not have a direct bearing on compatibility. We can impose the following
conditions to ensure compatibility as we did with Propositions 3.2 and 3.3 in
the previous chapter.

Proposition 4 .2 If the absolute value of the number at position i in an ori

ented k-sequence s is greater than or equal to the absolute value of the number
at position i + 1 then s is compatible with Oi.

Proposition 4 .3 If the absolute value of the number at position i in an ori

ented k-sequence s is less than or equal to the absolute value of the number at
position i + 1 then s is compatible with o f 1.

The proofs of Propositions 4.2 and 4.3 are essentially the same to those of
Propositions 3.2 and 3.3.

We now move on to show that similar concepts of renumbering and rear
rangement can be applied in the Homfly skein module of oriented ¿-sequences,
respecting operations in the Homfly skein module of oriented stacked ¿-tangles.

4.3.1 Renumbering

Definition

Let s and s' be oriented ¿-sequences. We say that s is equivalent by ren um

bering to s' if and only if s' arises from a valid numbering for the same oriented
stacked ¿-tangle that s determines.

The following two propositions mirror the propositions related to renumber
ing in the previous chapter, Propositions 3.4 and 3.5. There are four parts to
each, owing to the four different possibilities for orientation in oriented stacked
2-tangles. We state them without proof.

P roposition 4.4 L et 1 < a < k — 1 and b = a + 1.

1. C on sid er two oriented k -sequences Si and S2, such that fo r 1 < p < q <

r < t < 2k

Si(p) = a Si(q) = ~a Si(r) = b s 1(t) = ~b

s 2(p) = b s 2{q) = ~b s 2(r) = a s 2 (t) = ~a

and Si(z') = s 2 (i) fo r all other 1 < i < 2k.

T hen S\ is related to s 2 by renum bering.

2. C on sid er two oriented k -sequences Si and s 2, such that fo r l < p < q <

r < t < 2k

si(p) — a s iiq) = ~a Si(r) = ~b s ^ t) = b

s 2ip) = b s 2iq) = ~b s 2ir) = ~ a s2(i) = a

and Siii) = s2(f) fo r all other 1 < i < 2k.

T hen si is related to s 2 by renum bering.

Si(p) = ~a si(q) = a sj(r) = b si(t) = ~b
s2(p) = “ 6 s2(?) = fc s2(r) = a s2 {t) = “ a

and = s2(z) for all other 1 < i < 2 k.

Then si is related to s2 by renumbering.

4- Consider two oriented k-sequences Si and s2, such that for 1 < p < q <
r < t < 2 k

s i(p) = ~a s i (q) = a s 1 (r) = ~b Sl(t) = b
s2{p) — ~b s2(q) = b s2 (r) = ~a s2(t) - a

and s i (i) = s 2[i) fo r all other 1 < i < 2k.

Then Si is related to s2 by renumbering.

P roposition 4.5 Let 1 < a < k - 1 and b = a + 1.

1 . Consider two oriented k-sequences si and s2, such that for 1 < p < q <
r < t < 2 k

s\{p) = a s 1 (q) = b Si(r) = ~b si(t) = ~a
s2 (p) = b s2 (q) - a s2 (r) -- a s2 (t) = ~b

and si(i) = s2 (i) for all other 1 < i < 2 k.

Then s\ is related to s2 by renumbering.

2 . Consider two oriented k-sequences sx and s2, such that for 1 < p < q <
r < t < 2 k

3. Consider two oriented k-sequences sx and s2, such that for 1 < p < q <
r < t < 2k

si{p) = a si(q) = ~b si(r) = b si(t) =
s2(p) = b s2(q) = ~a s2(r) = a s2(t) =

and sx{i) = s2(i) for all other 1 < i < 2 k.

Then sx is related to s2 by renumbering.

a

b

78

#

3. Consider two oriented k-sequences Si and s2, such that for 1 < p < q <
r < t < 2 k

S\{p) = ~a si(q) — b sx{r) = ~b sx(t) = a
S2 (p) = ~b s2 (q) = a s2 (r) = ~a s2 (t) = b

and Si(z) = s2 (i) for all other 1 < i < 2 k.

Then Si is related to s2 by renumbering.

4 . Consider two oriented k-sequences sx and s2, such that for l < p < q <
r < t < 2k

Si(p) = ~a Si(q) = ~b sx(r) = b sx(t) = a

«2 (p) = ~b s2(q) = ~a s2(r) = a s2 (t) = b

and sx(i) = S2(i) for all other l < i < 2 k.

Then sx is related to s2 by renumbering.

4.3.2 Rearrangement

Definition

An oriented /c-sequence s is Homfly equivalent to Yl,aisi-> a linear combi
nation of oriented ^-sequences with coefficients from the Homfly skein module,
if and only if a linear combination of oriented stacked A;-tangles correspond
ing to the linear combination of oriented ^-sequences can be obtained from
the oriented stacked fc-tangle determined by s by applying the Homily skein
relation.

We say that we use a rearrangement action when applying Homfly skein
relations in order to obtain a Homfly equivalent linear combination of oriented
^-sequences.

It follows that two oriented /¿-sequences that are equivalent by renumbering
are Homfly equivalent.

Whereas in the case of Kauffman equivalence we had one relation that
we showed for adjacent arcs, in the case of Homfly equivalence there are four

79

relations that we must make clear. We state them in the next two propositions,
which are proved in a similar way to the proof of Proposition 3.6.

Proposition 4.6 Let 1 < a < k - 1 and b = a + 1.

1. Consider three oriented k-sequences Si, s2, s3 such that for 1 < p < q <

r < t < 2 k

si (p) — a si(q) = ~b si(r) = ~a si(t) = b
sz(p) = b s2 (q) = ~a s2 (r) = ~b s2 (t) = a
s3 ip) = a s3(ç) = ~a s3(r) = ~b s3(i) = b

and for all other 1 < i < 2 k si(i) = s2(0 = s3 (i).

Then Si is Homfly equivalent to s2 — zs3.

2. Consider three oriented k-sequences sx, s2, s3 such that for 1 < p < q <
r < t < 2 k

Siip) = ~a Sliq) = b Sj(r) = a s:(i) = ~b
S2ip) = ~b s2iq) = a s2(r) = b s2it) = ~a
S3 ip) = ~a s3(q) = a s3(r) = b s3(i) = ~b

and for all other 1 < i < 2 k Si(z) = s2(z) = s3(i).

Then is Homfly equivalent to s2 — zs3.

Proposition 4.7 Let 1 < a < k - 1 and b = a + 1.

1 . Consider three oriented k-sequences su s2 ,s 3 such that for 1 < p < q <
r < t < 2 k

si{p) = a si{q) = b Si(r) = ~a siit) = ~b
s2 ip) = b s2 iq) = a s2(r) = ~b s2(i) - “ a
s3 (p) = a s3 iq) = b s3 (r) = ~b s3 (t) = ~a

and for all other 1 < i < 2 k = s2(i) = s3(z).

Then Si is Homfly equivalent to s2 + zs3.

2. Consider three oriented k-sequences S\,s2,s 3 such that for 1 < p < q <
r < t < 2k

Si(p) = ~a si(q) = ~b sflr) = a Si(t) = b
52 (p) = ~h s2(q) = ~a s2(r) = b s2(t) = a

53 (p) = ~a s3 (q) = ~b s3(r) = b s3(t) = a

and for all other 1 < i < 2k Si(i) = s2(i) = s3(i).

Then si is Homfly equivalent to s2 + zs3.

Having given these statements we are in a position to give a result that
mirrors Proposition 3.7, which was the cornerstone of the algorithm that we
outlined for calculating the Kauffman polynomial of A:-plaits.

P rop osition 4.8 An oriented k-sequence s with number r at position j where
2 < r < k is Homfly equivalent to a linear combination of oriented k-sequences
each with r — 1 at position j .

An oriented k-sequence s with number —r at position j where 2 < r < k
is Homfly equivalent to a linear combination of oriented k-sequences each with
— (r — 1) at position j .

Proof

This follows from Propositions 4.4-4.7 by similar considerations to the proof
of Proposition 3.7. I

P rop osition 4.9 An oriented k-sequence s that is incompatible with a gener

ator or inverse is Homfly equivalent to a linear combination of oriented
k-sequences compatible with o f 1.

Proof

This follows from Proposition 4.8.

4.4 Algorithm

In this section we outline the ways in which this algorithm differs from that
of the previous chapter. Most of these considerations are due to how we make
allowances for dealing with the orientation information encoded in oriented
/¡-sequences.

We begin with a A:-plait presentation represented as a stacked /¡-tangle mul
tiplied by a braid word from B2fc closed off by k cups at the bottom of the
presentation. We assign an orientation, or orientations if dealing with a link,
and determine the initial orientations of the arcs in the stacked /¡-tangle.

Proposition 4.8 shows that the signs of numbers in oriented /¡-sequences
do not change as we perform operations. As a result, we can use the set of
(unoriented) /¡-sequences along with one sequence to record the orientations of
the arcs that the /¡-sequences represent. In this way the algorithm operates
considering a much smaller set of objects: we return to considering the ^
/¡-sequences plus a sequence of Is and —Is that contain the information for the
orientation of arcs.

The previous algorithm for calculating the Kauffman polynomial worked in
two stages: first we performed a series of renumberings and rearrangements in
order to ensure that /.-sequences were compatible with the next generator in the
braid word. Then we multiplied the /¡-sequences in our linear combination, es
sentially switching the two numbers at the appropriate point in the /¡-sequences
or multiplying coefficients by u±1 if the endpoints represented belonged to the
same arc.

Thus the algorithm for calculating the Homily polynomial of a knot pre
sented as a plait presentation functions in the same way as that for the Kauff
man polynomial: we perform operations on /¡-sequences, rearranging the linear
combination at each stage so that all of the /¡-sequences are compatible with
the next generator. The rearrangements are decided by how adjacent-numbered
arcs are related in the /¡-sequence and from the sequence of Is and —Is that
carry the orientation information.

As with the algorithm of Chapter 3, we proceed at each stage by ensuring

that generators and inverses satisfy the compatibility conditions of Proposi
tions 4.2 and 4.3. We consider /¿-sequences with the number k in the affected
position, and work to reduce this number by renumbering or rearrangement to
 ̂— 1 if the conditions for compatibility are not met; we then work in turn on

/¿-sequences with k — 1 in that position and so on. Renumbering is the same as
before, as that operation on the oriented /¿-sequence reflects the fact that two
arcs are in the same layer in the oriented stacked /¿-tangle.

Rearrangement in the Homfly case is not as straight-forward as the Kauff
man case as we have additional information given by the orientation. The
orientation of adjacent arcs has a bearing on the application of the skein rela
tions, particularly the oriented /¿-sequence representing the smoothing. While
this is extra information to consider in our application of the algorithm, it is
not something that is extremely difficult to resolve, and there are only a very
limited number of cases to be considered. The relationships for all of these can
be seen in Propositions 4.6 and 4.7.

Once we have completed a series of renumbering and rearrangements we
have a linear combination of oriented /¿-sequences (by combining the /¿-sequences
and the information of the sequence of signs) that are compatible with the re
quired generator or inverse; we multiply and then move on to the next gener
ator or inverse. In this way we express an oriented /¿-sequence composed with
a braid word from B2/t as a linear combination of oriented /¿-sequences. In cal
culating the Homfly polynomial of a /¿-plait these actions take us to the point
of considering closure by k cups much as it did in the case of the algorithm for
calculating the Kauffman polynomial.

The action of closing off proceeds in the same manner as for the algorithm
of the previous chapter. We will not discuss this in detail here as the procedure
is so similar: we perform rearrangements and renumberings on the linear com
bination of /¿-sequences (with information from the sequence of signs) to satisfy
an analogous condition to Proposition 3.10 ensuring closure-compatibility.

4.5 Complexity

The algorithm outlined in this chapter differs from the algorithm of the previous
chapter, but only in the respect that a rearrangement operation now expresses
a /¿-sequence as a linear combination of two other /¿-sequences, whereas in
the algorithm for calculating the Kauffman polynomial a rearrangement action
expressed it as a linear combination of three /¿-sequences. This does not change
the order of complexity of the algorithm.

The size of coefficients in v and z grow quadratically with respect to c as
in the previous algorithm. Hence, considered together, the algorithm works in
polynomial time, degree 4, with respect to c for a fixed k.

As with the algorithm for the Kauffman polynomial, after a certain point
the algorithm will essentially perform the same amount of work with each
subsequent crossing. From this point we can view the algorithm as a whole as
being polynomial degree 3. Each generator in the braid word after the critical
point has been reached will act on a set of roughly the same size. It is possible
that terms can combine and reduce the number of /¿-sequences in an expression,
but it will not vary greatly.

The main area that the complexity necessarily differs in is the fact that rear
rangement in the algorithm for Homily is expressed in terms of two /¿-sequences
rather than three. There are fewer terms in a rearrangement operation and so
the growth of the number of terms in the linear combination of /¿-sequences is
less rapid. As we use the /¿-sequences plus a sequence of signs the number of
/¿-sequences compatible with a given generator or inverse will be the same as in
the case for the Kauffman algorithm under the conditions of Proposition 3.11.

4.6 Implementation

In Appendix A.3 we give the listing of the code for this algorithm, implemented
once again in Maple; it is well documented and commented, and so we will now
briefly consider the few areas where it deviates from the algorithm for Kauffman
in Appendix A.2.

84

As before we use the “permute” command to obtain the full set of k-
sequences. If we were to consider the explicit set of oriented ¿-sequences we
could generate them in the same way. The problem with using the set of ori
ented /c-sequences to keep track of coefficients is that there are substantially
more oriented ¿-sequences than there are (unoriented) ¿-sequences. We are
fortunate that we have the observation about the signs of endpoints so that
we can use the set of ¿-sequences plus one other sequence which stores the
information about the signs of endpoints. This drastically reduces the number
of elements that we must keep in memory and search through.

Once again we use the subroutine Seqlndex (Appendix A .l) in order to
obtain the index of a k-sequence that we require, either for renumbering, rear
rangement or multiplication. In the absence of a direct command which could
take us to a desired ¿-sequence this is a useful routine to have.

The only advantage we would have in using the oriented ¿-sequences is that
we could have extended Seqlndex to obtain the index of a desired ¿-sequence:
as any oriented ¿-sequence is a permutation of 2k distinct symbols, and given
that we know how Maple permutes elements in a list, we can derive a system
for finding one of these elements.

The implementation that we give operates under the assumption that the
order of signs in the starting sequence is (- 1 ,1 , - 1 ,1 , . . . , - 1 ,1) . This is easy
enough to force using Type I Reidemeister moves, but if this is inconvenient
then the program could be easily altered so that it takes the starting configu
ration of the sequence of signs as another argument.

4.7 Discussion

In this section we discuss ways in which the work of the last two chapters can
be extended, either to look at problems that arise from the theory we have
discussed or to look at ways in which we can improve on what I have outlined.

4.7.1 Reverse parallel satellites

In Chapter 2 we considered an extension to the result of Rudolph regarding
Homily polynomials of reverse parallels of knots [54]. When we consider the
reverse parallel of a /¿-plait with c crossings, we are essentially considering a
plait of width 2k (although the closure is not immediately that of a plait as we
have defined it) with 4c crossings.

A 2-parallel of a braid word from is a word from the braid group M4k,
and words are mapped by their generators according to the following map:

We move from considering linear combinations of /¿-sequences to linear com
binations of 2/c-sequences. This dramatically increases both the number of se
quences considered and the number of sequences that will be compatible with
a particular generator or inverse. Given that we will be considering four times
as many crossings, we need to do everything that we can in order to reduce the
amount of work performed by the algorithm.

We consider the action of multiplication and conditions that ensure com
patibility in order to reduce the amount of work performed by the algorithm.
Consider the diagram c r 11 1 r ' ' "Agure 4.4.

Figure 4.4: 2-parallel of generator ai} <r2icr2i+1cr2i_icr2i

P roposition 4.10 A 2k-sequence s with s(2i — 1) = s(2i) ors(2i + l) = s(2i +
2) is compatible with <J2i(72i+i^2i-i^2i, the 2-parallel of a generator ai G B2fc.

P r o o f

The stacked 2&-tangle determined by the 2/c-sequence in this case would have an
arc joining one of the two possible adjacent positions, and the four generators
in the 2-parallel of the single crossing would switch the location of the joined
area. See Figure 4.5 for an illustration. ■

Figure 4.5: Exceptional compatibility

If the conditions of Proposition 4.10 are met then we say that the 2/c-sequence
has exceptional com patibility with the 2-parallel of cq.

P roposition 4.11 I f a 2 k-sequ en ce s is such that

s (2 i + 1) < m in {s (2 i — 1), s(2i)} and s { 2 i + 2) < m in {s { 2 i — 1), s(2i)}

then s is compatible with the 2 -parallel o f a gen erator cq £ B2fc.

P r o o f

£ In order to satisfy Proposition 4.2 it must be the case that s (2 i + 1) < s(2 i - 1)
and s (2 i + 1) < s (2 i) , and also s (2 i + 2) < s (2 i - 1) and s (2 i + 2) < s(2z), as
these reflect overcrossing arcs in the stacked 2fc-tangle. However, it cannot be
true that both s (2 i H- 1) = s { 2 i — 1) and s (2 i + 1) = s (2 i) (and similarly for
s (2 i + 2)). Hence to satisfy compatibility conditions

s (2 i + 1) < min{s(2i - 1), s(2f)} and s { 2 i + 2) < min{s(2f - 1), s(2i)}.

l

Our approach then is to use renumbering and rearrangement as before so
that these conditions are satisfied and compatibility is ensured. In the approach

87

we can exclude any 2/c-sequences that satisfy exceptional compatibility, and
focus on those that still need attention.

In the following discussion we refer to the 2-parallel of a braid generator;
similar statements can be made for the 2-parallel of an inverse.

As we need both s{2i + 1) and s(2i + 2) to be less than or equal to the
minimum of {s(2z — 1), s(2«)} it makes sense as a first step to perform initial
rearrangements and renumberings on values s(2i - 1), s(2i); the nature of
these operations is to perform two passes, the first of which acts to increase an
occurrence of a 1 to a 2, and then to increase an occurrence of a 2 to a 3 in
either of s(2i — 1) or s(2i). This guarantees that neither s(2i — 1) or s(2i) take
the minimum value.

We perform the usual cycle of renumbering and rearrangement on the value
of endpoint s(2i + 1). In this case we are performing these operations only to
the point that s(2i + 1) < min{s(2z - 1), s(2z)}.

Upon completion of this series of operations, we act on the endpoint s(2i+2),
and repeat the cycle of operations so that s(2i + 2) < min{s(2i - l) ,s (2 i)} .
When this is satisfied for all 2A;-sequences in the linear combination we have an
expression that is compatible with the 2-parallel of a single crossing, and we
perform multiplication in the usual way (at the 2&-sequence level, by moving
numbers in the sequence and multiplying by v if necessary).

For 2/c-sequences that have been involved in rearrangements and renum
berings to ensure compatibility for s(2i + 1) it can be seen that less work is
performed to then ensure compatibility for s(2i + 2) also. At most we perform
two full cycles of rearrangement and renumbering, and increase some values of
s(2i — 1) and s(2i). Considering the situation of Figure 4.4 in the usual manner
would involve performing four cycles of rearrangements and renumberings to
ensure compatibility, as well as intermediate multiplication steps.

Effectively we have halved the amount of work done in terms of the number
of operations performed than if we had simply considered this as a 2/c-plait
with 4c crossings. Given that the set of 2/c-sequences is much larger than the
set of /¿-sequences the bound on the number of operations that have to be

performed in order to ensure regular compatibility is much larger; but we still
have a saving in the amount of work that must be done in order to perform
multiplication. This equates to roughly the amount of work done in calculating
the polynomial for a 2c-crossing 2/c-plait with the normal closure, as opposed
to this 4c-crossing 2A;-plait that has a “doubled” closure.

If the initial sign sequence for the /¿-plait presentation is one of alternating
TIs and — Is then the sign sequence for the reverse parallel will also be alternat
ing + ls and —Is. As multiplication by the four generators from the doubling
up of a single crossing swaps two pairs of numbers, we can easily see that the
sign sequence will remain constant throughout the operation of the algorithm.
The sign sequence for the reverse parallel can be recovered by considering the
position of an endpoint in the sequence: endpoints in positions 2n, 1 < n < 2k
have sign +1, while endpoints in positions 2n — 1,1 < n < 2k have sign —1.

This example was motivated by an example for the Homfly polynomial, but
the principle of reducing the work of the main algorithm applies equally to
calculating the Kauffman polynomial of 2-parallels.

4.7.2 Band-generators

Another possible extension to the general principle is to consider the case of
band-generator style presentations ([8] and [23]).

A generator ats, in band-generator notation, reflects a potentially long word
in Artin braid presentations, with

ats = (^t—l^t-2 • • • C’ s+ ljc ’ sCo's-i-i . . . & t—l)

for 1 < s < t < 2k — 1 when taken from the braid group The feature
that we are interested in are the parts of the band-generator in standard braid
notation of the form oy<Tr_icrr_2 .. . oy_a, i.e., one string crossing over many
strings.

Rearrangements and renumberings could be performed to ensure that the
linear combination of /¿-sequences is compatible with the word ffyCTj' T — 2 ■ * * Qj J

rather than by considering each generator in turn. As with the reverse par
allel case, we perform rearrangements and renumberings so that s(r + 1) <
min{s(r), s(r — 1) , . . . , s(r — a)}; there will also be conditions for ^-sequences

with exceptional compatibility, in a similar manner to how it was considered
previously.

While I have not examined this idea in detail, I believe that there are
interesting questions that could be explored at a later date. The main question
that could be explored is whether band-generator presentations for knots can
be used in conjunction with the approach that I have outlined for calculating
polynomial invariants, in order to reduce the work performed by the algorithm.

A more technical question is whether an implementation (in some program
ming language) as we have previously described it could benefit from noticing
sequences of generators such as arcrr_icrr_2 . . . crr_a, and whether this would
then allow a saving in work performed and calculation time rather than con
sidering each of the generators in turn.

4.7.3 Subsets of Ar-sequences

The size of the set of /c-sequences grows drastically as k grows. As noted in
Chapter 1 it might often be easier to obtain a plait presentation with width
greater than the bridge index. However, any calculations using the algorithms
that we have outlined would be performing operations on a large set of objects;
for k — 6 there are over seven million 6-sequences to consider.

One strategy might be to begin with the starting sequence, (1122.. .kk), and
from that generate the /^-sequences that are in use, i.e., those with non-zero
coefficients. In this way we restrict ourselves to only having a subset of the
^-sequences (and any coefficients) in memory; for presentations that are wide
and short, i.e., with relatively large k and small number of crossings c, this
could be an asset in allowing computation when generation and management
of the entire set of ^-sequences in memory would be impractical.

Of course, this strategy would not be practical in general for large values
of c as the growth of the number of /^-sequences being stored might be too

rapid to allow calculation. Also, we would not be able to optimise the search
routines for the operations requiring us to move coefficients unless we added yet
more structure and procedures to an implementation to order the ^-sequences
in memory.

4.7.4 Morse link presentations

Consider the two diagrams in Figure 4.6. The diagram on the left is a 4-plait

presentation of the Kinoshita-Teresaka knot; the diagram on the right shows
the same presentation altered to show one important feature. The original plait
presentation given has width 4, but the right-hand diagram has width 3 for the
most part; we close off one cup (to the left-most strings) and introduce another
cap and strings on the opposite side of the presentation, and continue with the
rest of the presentation as width 3, then width 2.

While the presentation on the right of Figure 4.6 is not strictly a plait
presentation it does offer advantages for calculation if we consider our methods.

Figure 4.6: Presentations of the Kinoshita-Teresaka knot

Calculating a polynomial invariant of a 4-plait involves performing operations
on the set of 4-sequences, which has 2520 elements. The set of 3-sequences
has only 90 elements, and these are all that we would need to consider for the
first half of the braid word. We could then close off and pass coefficients to an
appropriate linear combination of 3-sequences as we introduce another cap.

While it is true that there is a fixed finite number of operations required to
calculate a polynomial invariant for a 4-plait with c crossings, the corresponding
number for a 3-plait with c crossings will be much smaller. The implementations
that we have outlined operate by performing cycles of operations on the set of
^-sequences, and must cycle through the entire set k — 1 times in order to
check conditions for compatibility. If instead we are able to act on the set of
(k — l)-sequences we are acting in a much smaller set of elements, and we also
have to perform fewer cycles.

A set of clear notation for the style of diagram to the left of Figure 4.6 would
be a valuable adaptation of the plait presentation format. If we were then able
to implement this in a programming language we could make drastic savings on
the amount of work done by a program, and hence reduce the time that it takes
to complete a calculation. One possibility is to use Morse link presentations
(similar notation can be seen in [59]); an instance of the information of this
presentation being used for computing purposes can be seen in [34], While
there is always going to be some work involved in first obtaining a diagrammatic
presentation for a knot as a plait or Morse link presentation, and in writing out
how the information of such a presentation may be encoded, it will always be
more simple to do so than to calculate a polynomial invariant of the diagram
by hand.

4.7.5 Implementation in a compiled language

We have considered algorithms for both the Kauffman polynomial and the
Homfly polynomial, and implemented both of them in Maple. While this is
useful to show that the algorithm can be implemented in a computing language,
Maple is not without its flaws for running the kinds of operations used in the

92

approach that I have shown.

While the code that has been written is designed to work for a plait of
width ¿, Maple’s own capabilities make it unlikely that it could cope with an
example beyond k = 4 for an implementation that considers operations on the
whole set of ¿-sequences. An implementation of the algorithm in a compiled
programming language like C + + could offer a lot.

Firstly, a better method for organising the storage of the set of ¿-sequences
could be found, so that locating a ¿-sequence in memory might be an easier
task than it currently is. More importantly, we could improve the management
and storage of the coefficients that are passed from one ¿-sequence to another
through the various operations that are performed. One reason why the calcu
lation slows down (in the Maple implementations) is that it is a difficult process
to store all of the coefficients, as well as organise the way that they are moved
around in memory. This leads to the program slowing down for larger values
of c, a situation which could be improved by implementing the algorithm in a
compiled language.

4.8 Examples

The calculations in this section were performed on a computer with an AMD
Duron 1.59GHz processor with 480MB of RAM, and using Maple 11 running

on the University of Liverpool Managed Windows Service.

4.8.1 Alternating 3-plait family

We calculate the Homfly polynomials of a family of alternating links based
around the presentation

0203 10r4a5 1(<7l 10203 10'40'5 1)2?V i 1020'3 10"4
for n G N. See Table 4.1 for results of the calculations. We list the number
of crossings in the presentation, the time taken by the program h _p la it to

93

calculate the Homfly polynomial and the bound on the braid index as given by
Theorem 1.8.

These calculations and the calculations for the next example are important
because of the bound on the braid index that we obtain (from Theorem 1.8).
Previous polynomial time algorithms for the calculation of the Homfly poly
nomial have been based around a braid presentation of the knot. The braid
index of the larger examples we calculate here are substantially greater than
previous programs could handle.

Other programs exist that are based on general diagrams of knots, but these
are limited in terms of the number of crossings that a diagram can have. Again,
examples in the family of links that we have generated and calculated invariants
for have substantially more crossings than previous programs could deal with.

4.8.2 Alternating 4-plait family

We calculate the Homfly polynomials of a family of alternating links based
around the presentation

o 2 ~ 1cr3cr4 ~ 1 cr5 a 6 ~ 1 a 7 (a 1 a 2 ~ 1cr3 a 4 ~ 1a 5 a 6 ~ 1 a 7) 2 m a i a 2 ~ 1 a 3 a 4 ~ 1 cr5 a 6 ~ 1

for n E N. See Table 4.2 for results of the calculations. We list the number
of crossings in the presentation, the time taken by the program h _p la it to
calculate the Homfly polynomial and the bound on the braid index.

94

n c Calculation time MFW
0 8 0.240 3
1 18 0.161 6
2 28 0.501 8
3 38 1.141 11
4 48 2.453 14
5 58 4.076 16
6 68 8.413 19
7 78 15.752 22
8 88 15.312 24
9 98 22.372 27
10 108 31.345 30
11 118 39.697 32
12 128 52.905 35
13 138 80.776 38
14 148 104.471 40
15 158 158.418 43

Table 4.1: Calculation times and braid index bounds for alternating 3-plaits

m c Calculation time MFW
0 12 1.272 4
1 26 3.405 7
2 40 11.467 11
3 54 30.113 15
4 68 66.616 18
5 82 105.022 21
6 96 172.437 25
7 110 277.690 29
8 124 502.713 32
9 138 539.627 35
10 152 780.252 39

Table 4.2: Calculation times and braid index bounds for alternating 4-plaits

Chapter 5

Genus 2 Mutation

5.1 Introduction

The work of this chapter appeared in a slightly different form in the paper
“Invariants of genus 2 mutants” [44], and was inspired by a talk that I attended
given by Alexander Shumakovitch, one of the authors of [15].

Genus 2 mutation of knots was introduced by Ruberman in a general 3-
manifold [53]. Cooper and Lickorish gave an account of an equivalent con
struction for knots in S3 using genus 2 handlebodies [13]; it is this construction
that we use here.

Genus 2 mutant knots allow us to compare knot invariants; it can be shown
• that they share a certain collection of invariants, and thus any invariant on

which some mutant pair differs must be completely independent of the shared
collection. This procedure can be refined by restricting further the class of
genus 2 mutants under consideration, so as to increase the shared collection,
and then looking for invariants which differ on some restricted mutants.

A survey of some of the known results about shared invariants for genus
2 mutants is given in [15]. The authors also give an example of a pair of
genus 2 mutants with 75 crossings with different Homfly polynomials. These
are smaller examples than the known satellites of the Conway and Kinoshita-
Teresaka knots [42],

97

The authors conjectured that their pair of knots did not share Kauffman
polynomials, but calculations for knots of this complexity are out of range of
current programs. In the absence of a calculation for their own knots they asked
for examples of genus 2 mutants which do not share the Kauffman polynomial.

In this chapter we describe a pair of 55-crossing genus 2 mutant knots with
different Homily polynomials, and show without performing a direct calculation
that they have different Kauffman polynomials. We show other interesting
results for these examples regarding their Vassiliev invariants and quantum
sl(3) invariants. We note also a distinction between general genus 2 mutants
and those arising as satellites of Conway mutant knots. Our 55-crossing pair
of genus 2 mutants differ on a degree 7 Vassiliev invariant, while the work
of [11] showed that satellites of Conway mutants share all Vassiliev invariants
of degree < 8. This was more recently extended by Jun Murakami [47], who
showed that satellites of Conway mutants share all Vassiliev invariants up to
degree 10.

We summarise the other examples of [44], giving some details of their Homfly
and Kauffman polynomials, as well as their Vassiliev invariants. Finally we refer
to a recent example of Stoimenow and Tanaka [57].

5.2 Genus 2 mutation

In Chapter 1 we defined mutation of knots and links in the standard sense. We
now give a construction for genus 2 mutation, due to Ruberman [53].
Definition

Take a framed oriented curve P in the standard genus 2 handlebody W (P
is framed as we use the framed Homfly relations).

Embed IV in E3 by h : W —>• R3, to get a curve h(P) C R3.
The 7r-rotation r : W —> W , illustrated in Figure 5.1, has 6 fixed points on

dW, where it restricts to the hyperelliptic involution with quotient S2. This lies
in the centre of the mapping class group of dW and is unique up to conjugation
by a homeomorphism isotopic to the identity.

98

Apply t to P to get another curve r (P) C W . The curves h (P) and h (r (P))

are called genus 2 mutants.

Figure 5.1: The rotation r

T heorem 5.1 ([44]) Satellites o f genus 2 m utants are th em selves genus 2 m u

tants.

T heorem 5.2 ([44]) G enus 2 m utants have the sa m e J on es polynom ial.

Theorem 5.2 then shows, by Theorem 5.1, that satellites of genus 2 mutants
cannot be distinguished by their Jones polynomials.

5.2.1 Genus 2 embeddings following a 2-tangle

In this section we establish the framework in which we consider many of the
examples in this chapter. We will consider diagrams of a certain type (see
Figure 5.7) in order to separate the curve P and the embedding for the knot,
and use these to study genus 2 mutation.

We distinguish two types of oriented 2-tangle:

1. A pure tangle, where the arcs join the two bottom points to the corre
sponding top points on the same side.

2. A transposing tangle, where the arcs join the two bottom points to the
top points on opposite sides.

99

We now show how to use a framed oriented 2-tangle F to define an embed
ding h : W —> M3 in such a way that we can readily compare the framed curves
h (P) and h (r (P)) .

Let W be the thickening, S x / , of a standard surface S, and define h by
thickening a map from S to Sp.

To specify h we assume that F has a framing, that is each arc has a specified
ribbon neighbourhood. Define a surface Sp in R3 consisting of a square plus
two ribbons following the framing of F . Figure 5.2 shows an example with the
tangle from the Conway/Kinoshita-Teresaka knots.

Figure 5.2: The surface following a framed tangle

Our choice of S , and hence the description of h, depends on the nature of
the tangle F. When F is a pure tangle the surface Sf is a disc with 2 holes.
Take S to be the square with two ribbons in Figure 5.3 and map S to Sp by
taking the square to the square, and the two ribbons to the ribbons around the
arcs of F .

Figure 5.3: The disc with 2 holes

When F is a transposing tangle the surface Sp is a torus with one hole.
Take S to be the square with two ribbons in Figure 5.4 and again map S to Sp
by mapping the square to the square, and the ribbons around the arcs of F.

100

Figure 5.4: The torus with one hole

We say that h has been constructed by following the tangle F. An embedded
handlebody in K3 always arises by following some tangle F, although the choice
of F is not unique.

Figure 5.5: The handlebody following a tangle F

We can get a good view of the pair of mutants constructed from a curve
P C W by following a tangle F. The map r : W W is a thickened map
from S to S, which maps the square and each ribbon to itself.

In the case of pure tangles, r is 7r-rotation about the horizontal z-axis,
which we write as ra when restricted to the square. For transposing tangles,
r is 7r-rotation about the z-axis orthogonal to the plane of the square, and we
write r2 for this rotation restricted to the square. These rotations are indicated
in Figure 5.6.

Draw P as a diagram on the surface S, so that its framing is the blackboard
framing from S. We can assume that P runs through each ribbon of S in a
number of parallel curves, possibly with different orientations.

Figure 5.6: Rotations of the square

Suppose that there are mi curves in one ribbon and m2 in the second,
numbered from the attachment to the top edge of the square. The rest of the
curve P determines a framed m-tangle T in the square, with m — mi + m2.

For a pure tangle F , the knot h (P) has a diagram as shown in Figure 5.7,
where F <̂mi’m2') is the (mi, m2) parallel of the framed tangle F with appropriate
orientations, and the tangle T lies in the square. For a transposing tangle F ,

the knot h (P) has a diagram as shown in Figure 5.8, where is the
(m i , m 2) parallel of the framed tangle F with appropriate orientations, and
the tangle T lies in the square.

Proposition 5.3 W h en h fo llow s a pure tangle, the genus 2 m utant knot

h (r (P)) , has t x(T) in place o f T , with all orientations in F^m 1,m2) reversed.

W hen h follow s a transposing tangle, the genus 2 m utant knot h (r (P)) has

t2(T) in place o f T .

P ro of

For a pure tangle, tx is the appropriate rotation applied to T . Reversing ori
entations does not effect the Homily polynomial, and ensures that orientations
are aligned correctly.

For a transposing tangle, r2 is the appropriate rotation applied to T . 1

5.2.2 Conway mutants

In section 1.6 we introduced the idea of mutation of knots, as first introduced
by Conway [12]. We give a slightly different definition here, formally defining
the rotations of the tangles.
Definition

For an oriented tangle T write t x(T) and r2(T) for the 7r-rotations of T

102

Figure 5.7: The diagram for a knot following a pure tangle F

Figure 5.8: The diagram for a knot following a transposing tangle F

103

about the a>axis and 2-axis respectively, as used above. Then t3(T) = t\t2(T)

is the 7r-rotation of T about the y-axis, so that

n (T)

Figure 5.9: Rotations for Conway mutation

A knot K can be decomposed into two oriented 2-tangles F and G as in
Figure 5.10. Any knot K ' formed by replacing the tangle F with the tangle
F' — T i(F),i = 1,2,3, reversing its string orientations if necessary is called a
mutant of K , or a Conway mutant of K.

Figure 5.10: A knot with mutants

The two 11-crossing knots in Figure 5.11 are the best-known example of a
pair of mutant knots; these knots were presented with different diagrams in
Figure 1.14..

5.2.3 Conway mutants as genus 2 mutants

Any knot K made up of two 2-tangles F and G as in Figure 5.10 lies in two
genus 2 handlebodies, one following F and the other following G. Each of
these handlebodies defines a genus 2 mutant of K . We call them K F and K G
respectively.

F ' = t 3 (F) .

Figure 5.11: The Conway and Kinoshita-Teresaka mutant pair, and their con
stituent tangles

Since K is a knot, specifically a link of one component, one of the tangles
of F and G is pure and the other is transposing. Suppose that F is pure. Then
K f and K g have diagrams as shown in Figure 5.12.

K F

Figure 5.12: Genus 2 mutants of K

We can repeat the construction on these knots. The knot K F lies in the
handlebody following Ti (G) . Since Ti (G) is transposing we get a genus 2 mutant
K Fti(g)- The same knot K Gt2{F) = ^Fn(G) arises as a genus 2 mutant of K G

from the handlebody following t2(F) , shown in Figure 5.13.

Proposition 5.4 Up to a choice o f string orien tation the three knots K f , K g

and K Fti(G) are the three C on w a y m utants o f K given by replacing F with

t i (F) , t2 (F) or 73 (F) respectively.

Figure 5.13: A further genus 2 mutant, completing the Conway mutants of K

Proof

By comparing the diagrams with those resulting from the rotations of F it is
clear that they are the Conway mutants. I

It follows that satellites of Conway mutants, with this orientation conven
tion, are related by genus 2 mutation.

5.3 Homfly polynomials of genus 2 mutants

We use the framed version of the Homfly polynomial based on the skein relations
given in subsection 1.5.2 with the substitution z = s - s-1 .

The Homfly polynomial of a link in R3 is unchanged if the orientations of
all its components are reversed (Lemma 1.6). The Homfly skein of the annulus
C is unchanged when the annulus is rotated by tt, reversing its core orientation,
and at the same time all string orientations are reversed [19].

Thus in order to compare the Homfly polynomials of two genus 2 mutants
h(P) and h (r(P)), or indeed any satellite of them, it is enough to consider
h (r (P)) with orientation reversed.

Given a framed oriented curve P in W we may regard W as the thickened
surface S which is the disc with 2 holes in Figure 5.3, and compare P with t (P)

after reversing the orientation of r (P) . If we can present P as an (mi -1- m2)-
tangle in the square with mi and m2 curves following the two ribbons then we
can write P in the skein of the twice-punctured disc S' as a linear combination

of simpler curves, each presented by a tangle with at most this number of curves
in the ribbons.

Even if our curve P has originally been drawn in a picture following a
transposing tangle, with mi and m2 curves around the ribbons there, it can be
redrawn as a curve following a pure tangle with the same numbers m\ and m2.

If mi — m2 = 1 then the genus 2 mutants are Conway mutants, and by
Theorem 1.9 their Homily polynomials agree.

In the case m\, m2 < 2 the curve P reduces in the skein of S to a combination
of curves in the skein of S which are unchanged by the rotation r with reversal
of string orientation. This is essentially the result of Lickorish and Lipson [30].
There are a couple of cases depending on the relative orientation of the curves
in the two ribbons. This argument covers the case of any 2-string satellite of
a pair of Conway mutants, as these can be presented as genus 2 mutants with
m i = m 2 = 2 .

The existence of 3-string satellite knots around the Conway and Kinoshita-
Teresaka mutant pair with different Homily polynomials [42] (following earlier
calculations by Morton and Traczyk) shows that there are genus 2 mutants with
mi = m2 = 3, constructed by following the constituent tangle G in Figure 5.10,
which have different Homfly polynomials.

Take, for example, the tangle T to be the 3-parallel F (3’3) of the tangle F
in Figure 5.10 composed with the braid cricr2 and follow the tangle G to give a
knot with 101 crossings. This is in fact a satellite of the Conway knot, whose
genus 2 mutant has t2(T) in place of T.

5.4 Kauffman polynomials of genus 2 mutants

The pair of 75 crossing genus 2 mutants given in [15] were shown to have
different Homfly polynomials, and the coefficients were given explicitly in the
paper. The authors of [15] were unable to calculate the Kauffman polynomials
for their 75 crossing examples, constructed following the pure 7-crossing tangle
DG shown in Figure 5.14.

DG =

Figure 5.14: The 7-crossing tangle DG

As noted previously, it is a computationally difficult task to calculate knot
polynomials; the Kauffman polynomial is more difficult to calculate in general
than the Homily polynomial.

However, given the Homily polynomials of two knots, there is an indirect
method that we can potentially use to show that their Kauffman polynomials
differ, and in particular we can use this method in the case of genus 2 mutation.

Denote the constant part of the Homfly polynomial of a knot by P0(u) (he.,
the coefficient in v of z°). Similarly denote the constant part of the Kauffman
polynomial of a knot by D0(v). The following result will be very useful for the
examples we give in the rest of this chapter.

Lem m a 5.5 ([28]) For any knot, P0(w) — D0(v).

If Pq(v) differs for a pair of knots then Dq[v) differs also and hence the Kauffman
polynomials differ. Hence if P0(w) differs for a pair of genus 2 mutants then
Dq{v) differs also and hence the Kauffman polynomials of the genus 2 mutants
differ. This argument could not be used for the pair of knots in [15], as the
Homfly polynomials of their knots had the same Pq(v) term.

The remainder of the work of this chapter is given to examples of pairs
of genus 2 mutants with differing Kauffman polynomials; in all of these cases
we have shown indirectly that the Kauffman polynomials of the pairs differ
because their P0(u) terms differ.

We also give some details of the Vassiliev invariants of our examples, and
some information on their quantum sl(3) invariants.

5.5 Main Result

Inspired by the combinatorial interpretations of the v = s 3 substitution in
Homfly leading to the Kuperberg skein of the twice-punctured disc [43], we have
found a pair of examples following D G with mi = 3, m2 = 2 and orientations
+ 4— and -|— . The curve P is shown in Figure 5.15 as a diagram in the disc
with two holes, S , along with the resulting 5-tangle T .

Figure 5.15: The curve P in the standard handlebody, and related tangle T

We construct two 55-crossing genus 2 mutants from P by following the
tangle D G , to give the knot S55, shown in Figure 5.16. Its mutant partner S'55

is given by a rotation of the tangle T .

Figure 5.16: Two 55-crossing genus 2 mutants with different Homfly and Kauff
man polynomials

T heorem 5.6 The genus 2 m utant knots S 55 and S'55 have different H om fly

and K a u ffm a n polynom ials.

109

Proof

The coefficients for the Homfly polynomials of S55 and Sk are shown in Ta
bles 5.1 and 5.2. They were calculated using the program of Imafuji and
Ochiai [20], since the knots are not readily expressed as closed braids.

S55 V 4 v - 2 1 V2 V4 V6 u8 V10 V12
1 -3 6 122 -143 67 -2 3 32 -2 3 5

z2 -276 986 -1199 550 -148 223 -172 34 3
z4 -757 3003 -3884 1811 -345 567 -478 75 20
z6 -1048 4688 -6531 3158 -400 718 -690 76 45

-827 4243 -6360 3217 -253 499 -585 39 34
^10 -388 2355 -3774 1985 -8 7 192 -302 10 10
^12 -107 814 -1386 746 -1 5 38 -9 2 1 1
^14 -1 6 171 -308 166 -1 3 -1 5
*1® -1 20 -3 8 20 1
z18 1 - 2 1

Table 5.1: Coefficients of the Homfly polynomial of S55

Immediately we can see that they have different Homfly polynomials. The
first row of coefficients in each table gives the value Po(v) , and so Lemma 5.5
shows that S55 and have different Kauffman polynomials. 1

Corollary 5.7 The H o m fly polynom ials o f S55 and S'55 still differ after the

substitution v = s3, and their Vassiliev invariants differ at degree 7.

P ro of

We can look at s l (3) invariant information as a Laurent polynomial in s by
making the substitutions z — s — s_ 1, v — s3. The difference is:

s-24 (s4_s2 + ;Q (s4 + s3 + s2 + s + 1) (fl4 _ s3 + g2 _ , + ̂ (g8 + ̂
(s6 + s5 + s4 + s3 + s2 + s + l) (s6 — s 5 + s4 — s3 + s2 — s + l)

(s2 + 5 + I) 2 (s2 - a + I) 2 (s4 + l) 2 (s 2 + I) 3 (a - l) 8 (5 + l) 8

110

S'« V 4 v~2 1 V2 vi V6 v8 V10 V12
1 -3 8 -135 -178 -116 -5 8 -3 9 -1 6 1

257 924 1171 662 288 209 60 -3 4 -1 6
z4 -687 -2591 -3205 -1587 -562 -448 -7 2 142 54
z6 964 3913 4779 2080 566 509 24 -226 -7 3
z8 -782 -3530 -4260 -1623 -319 -334 10 172 43
z10 377 1991 2356 766 100 126 - 7 -6 7 -11
z12 -106 -709 -814 -213 -1 6 -2 5 1 13 1
z14 16 155 171 32 1 2 -1
z16 -1 -1 9 -2 0 - 2
z18 1 1

Table 5.2: Coefficients of the Homily polynomial of S'55

The factor (s — l) 8 shows that they differ in a Vassiliev invariant of degree
8 invariant arising from s/(3). However, we can obtain Vassiliev invariants for
S 55 and 555 directly as the coefficients of powers of h in the power series given
by substituting z = ez — e~^, v = e ^ . The lowest term in the difference of
the power series for S 55 and S ‘55 is

3N (N - 1) (N - 2) (N - 3) (N + 3) (N + 2) (N + 1)h7,

so these differ in a Vassiliev invariant of degree at most 7. i

The 75 crossing examples from [15] have Vassiliev invariants that differ at
degree 11; we calculated the difference at that degree to be

N (N - 1) (N - 2) (N + 2) (N + 1) (13 N 2 + 5l) h n

using the same substitutions and method as previously.
Their examples use a 6-tangle with mi = m2 = 3, where the orientations of

the three strands around one of the ribbons are + + — while around the other
they are + T + . As with the example of our 55 crossing knots, the Homily
polynomials of their 75 crossing knots remain different when v = s3, however

111

this was not shown in [15]. The difference, as a Laurent polynomial in s, is:

s -2 8 ^ 4 _ s 2 _j_ l) (s4 + s3 + s2 + S + l) (s4 — s3 + s2 — S + l)

(s8 + l) (s6 + 55 + s4 + s 3 + s2 + s + l) (s6 — s5 + s4 — s3 + s2 — s + l)

(s2 - s + l) 2 (s2 + s + l) 2 (s4 + l) 2 (s2 + l) 3 (s - l) 1* (s + l) 11

In the preparation of [44] we had originally tried to make use of the dif
ference from the v = s 3 substitution of the 75-crossing examples to show that
the Kauffman polynomials were different. We planned to argue through the
comparison of the Homfly polynomials of a certain 2-string satellite at v = s4,

without actually calculating this Homfly polynomial, which would be well out
of range. Our aim was to make use of a comparison in [37] between this eval
uation of the satellite invariant and a different evaluation of the Kauffman
polynomial of the original knots, knowing something of the evaluations of the
satellite invariant at v = s 3.

Unfortunately the difference in the invariants at v = s3 contains a factor
(s6 + s5 + s4 + s3 + s2 + s + 1) which means that the agreement of the evalu
ations of the satellite at v = s4 can not be excluded. This has also proved to
be the case in any other examples that we have found where the evaluations at
v = s 3 are different, so there may be some underlying reason for this.

5.6 Other Results

5.6.1 A 72 crossing example

Theorem 5.8 The genus 2 m utant pair o f knots constructed by follow in g the

tangle D G , with = m 2 = 3, using the 6 -strin g positive perm u tation braid

/3 = <jia2a x<73 0 2(74<73cr5cr4 or its reverse t x(P) as the tangle T , have different

K auffm an polynom ials.

P ro o f

The two knots are presented as closed 9-braids with 72 crossings, so it is quite
easy to calculate their Homfly polynomials using the Morton-Short program

based on the Hecke algebras [45]. When these are compared they can be seen
to differ in their constant term P q(v). By Lemma 5.5 the constant terms of their
Kauffman polynomials differ, and hence their Kauffman polynomials differ. I

In the 72 crossing examples the string orientations around each ribbon are
all in the same sense + + + , and as a result the knots have the same Homfly
invariant after the substitution v = s3. This is a general consequence of the
analysis of the Kuperberg skein of the surface S in [43] for the case m\ — m2 = 3
in which all the orientations around the ribbons are +.

The Vassiliev invariants for our 72 crossing examples differ at degree 7:

3N {N - 1)(N - 2)(N - 3) (N + 3)(JV + 2) (N + 1)h7.

Consequently satellites of Conway mutants share more Vassiliev invariants
than general genus 2 mutants, since they have all Vassiliev invariants of degree
< 10 in common, using the result from [42] that Vassiliev invariants of degree
< k of a satellite K * Q are Vassiliev invariants of K of the same degree, and
Jun Murakami’s result [47] about Vassiliev invariants of Conway mutants.

5.6.2 A 56 crossing example

The pair of 56-crossing genus 2 mutants following the transposing Conway
tangle G with 6 crossings, using the 6-braid a2o3 and its rotation T2(a 1a 2) =
a3a4 with mi = m2 = 3, are shown in Figure 5.17. These are closed 9-braids
related to Conway and Kinoshita-Teresaka satellites.

Like our 72-crossing examples in Theorem 5.8 it can be shown indirectly
that this pair have different Kauffman polynomials, by calculating their Homfly
polynomials and then taking advantage of Lemma 5.5. They also differ in a
degree 7 Vassiliev invariant, but share the same value when v = s3.

5.6.3 Further examples

Various examples using the Conway tangle G as in Figure 5.17 with values
mi = 2 and m2 = 3 were tried in order to generate pairs of genus 2 mutants.

Figure 5.17: Two closed 9-braid genus 2 mutants with different Homfly poly
nomial

Some of these examples had fewer than 50 crossings, but none of the examples
that were tried had differing Homfly polynomials. It remains to be seen if
examples of genus 2 mutants with differing Homfly and Kauffman polynomials
can be found that have fewer than 55 crossings.

We have been unable to compute Kauffman directly for any of the examples
that we have shown, and have always relied on Lemma 5.5 and a differing P q(v)
value in the calculated Homfly polynomials.

The starting point for this investigation was the example of [15], and our
initial approach was to attempt to indirectly calculate the difference of the
Kauffman polynomials of the mutant pair. Using the theory of manipulating
stacked tangles in the Kauffman skein (as in Chapter 3) we were able to show
a non-zero difference at the level of tangles by expressing T - r2(T) as a linear
combination of stacked 6-tangles. While we were able to use this to express
the difference of the original pair of knots as a sum of simpler diagrams, some
of which had fewer than twenty crossings, it was still not possible to directly
calculate the values of the larger diagrams in this linear combination.

Thus while we have been able to show that the Kauffman polynomials of
genus 2 mutants can differ, we were unable to answer the first question posed
in [15], and it is unknown whether the Kauffman polynomials of the 75-crossing
examples differ.

114

5.7 A recent result

A recent paper of Stoimenow and Tanaka gives a pair of 56-crossing knots re
lated by genus 2 mutation with differing Homfly and Kauffman polynomials,
although the authors do not refer to them as genus 2 mutants [57]. The ex
amples are Whitehead doubles of the 14-crossing genus 2 mutants H 41721 and
1442i25- The 14-crossing knots have presentations in a genus 2 handlebody with
mi = 2 and m2 = 1, and so have identical Homfly and Kauffman polynomials.

The authors of [15] also use the same pair of 14-crossing knots to show a
result in Khovanov homology, and they are referenced in [44]. The knots follow
the pure tangle AB in Figure 5.18 and use the curve P, shown in Figure 5.19
as a diagram in the disc with two holes along with the resulting 3-tangle T.

Figure 5.18: The tangle AB used in [15]

By Theorem 5.1 any of their satellites will be related by genus 2 mutation
also, and so the pair of knots that Stoimenow and Tanaka calculated knot
polynomials for give another example of genus 2 mutants with differing Homfly
and Kauffman polynomials.

115

The P0 (v) term is identical for the two 14-crossing knots so we cannot
deduce indirectly that they have different Kauffman polynomials: it can be
shown from a skein theoretic argument that if P0 (v) coincides for two knots
then it will coincide for any satellites of those knots.

The authors of [57] were able to calculate the Kauffman polynomials of
the Whitehead doubles of 144i721 and 1442125 almost directly. They showed
that the Kauffman polynomials of the 2-cables of the 14-crossing knots were
different, and then by a skein theoretic argument they were able to show that
the Kauffman polynomials of the Whitehead doubles of the knots would differ.

As with all of our examples save for S55 and S'55, there is no difference in
the Homfly polynomials of these examples with substitution v = s3, although
they do differ with the substitution v — s4. The Vassiliev invariants differ at
degree 11 as follows:

4N3 (N - 1) {N _ 2) (N - 3) (N + 3) (N + 2) (N + 1) h11.

5.8 Discussion

There are several areas of interest arising from the work of this chapter, and
from the area of polynomial invariants of genus 2 mutation. The examples
of Theorem 5.6 provide 55-crossing genus 2 mutants with differing Homfly
and Kauffman polynomials. These appear to be the smallest examples in the
literature in terms of crossing number.

In searching for smaller examples we know that such pairs of genus 2 mu
tants must have a certain degree of complexity. As stated earlier, genus 2
mutants with m i,m 2 < 2 are guaranteed to have identical Homfly and Kauff
man polynomials. When m\ = 3, m2 = 2 we have the first instance that we
can hope to see differing polynomials; this naturally leads to a reasonably high
lower bound on the number of crossings that a knot must have for it to be one
of a pair of genus 2 mutants with differing Homfly and Kauffman polynomi
als. In the preparation of [44] examples of genus 2 mutants with as few as 40
crossings were examined, but they did not differ on their Homfly polynomials.

As the P q(v) values of these smaller examples were identical an assessment
as to whether or not their Kauffman polynomials differed could not be made.
An interesting question that I believe is open is whether genus 2 mutants with
differing Homfly polynomials are guaranteed to have differing Kauffman polyno
mials. Similarly, if a pair of genus 2 mutants have identical Homfly polynomials
does that mean that they will have identical Kauffman polynomials?

Our 55-crossing knots and the 75-crossing knots of [15] both have differing
Homfly polynomials after the substitution v = s3, but our other examples and
the example of [57] do not; both our example and the example of [15] have the
feature that they follow the tangle DG. Further investigation into the pure and
transposing tangles that one uses in constructing these examples might lead to
an answer.

Finally, we note that our three examples differ at degree 7 for Vassiliev
invariants. This is in contrast both to the examples of [15] and [57], which
differed at degree 11, and to the general theory for Conway mutants, where it
is known that Vassiliev invariants must agree up to degree 10 [47]. Firstly, what
is different about our examples compared to the examples of [15] and [57] that
allows an earlier difference in Vassiliev invariants? Secondly, how do Vassiliev
invariants behave in general for genus 2 mutants? The result of [47] guarantees
that genus 2 mutants that result from satellites of Conway mutants must have
Vassiliev invariants agreeing up to degree 10, but we know very little about the
Vassiliev invariants of genus 2 mutants in general.

118

Chapter 6

Kauffman Polynomials of
Pretzel Links

6.1 Introduction

Pretzel links are an interesting class of links for study. They have a regular
structure, and it is easy to give notation for describing them.

Reidemeister first considered them [51], and pretzels have been used many
times to show certain properties of knots or links. Trotter used them to show
that non-invertible knots exist [58]; Landvoy gave an easily implemented al
gorithm for calculating the Jones polynomial [27], and more recently Morton
used the construction to show some interesting results in mutation [40],

In this chapter, we take advantage of the regular structure of pretzels to
construct an algorithm for calculating the Kauffman polynomial of pretzel links.
Theorem 6.2 starts by showing that we can express the Kauffman polynomial of
a pretzel diagram as a linear combination of the Kauffman polynomials of much
simpler diagrams; later in the chapter we use the term “elementary pretzel”
to denote these diagrams and show that by placing some restrictions on these
diagrams we obtain a good algorithm for calculating the Kauffman polynomial.

This algorithm is easily implemented in Maple, and in principle it is more
efficient than an algorithm that works on a naive approach on the number of

119

crossings in a diagram. The algorithm operates by calculating certain coeffi
cients from recurrence relations; while we are able to obtain generating func
tions from these recurrence relations we note at the end of the chapter that the
generating functions pose problems when implemented in Maple.

6.2 Pretzel Links

Definition

A pretzel link is given by a sequence of half twists connected in a certain
way, as in the example of Figure 6.1. General pretzels can be represented by
a A;-tuple (p\,P2, ■ ■ ■ ,Pk), k > 3, pi G Z, 1 < i < k. \pi\ is the number of half
twists, and the sign of pi denotes whether the \pi\ half twists are right-handed
or left-handed (L+ or L_ respectively). Figure 6.2 gives this more general form

of (pi,p2, • • • ,Pk)-

Figure 6.1: The pretzel (3,3, —2)

We take k > 2, as k = 1 would give a diagram which is a twisted unknot, and
k = 2 would give a diagram which is a closed 2-braid.

#

120
m

Theorem 6.1 I f k is odd and all o f the Pi are odd then a knot is produced. I f

k is even and all o f the pi are odd then a two com p on ent link is produced. E lse

the nu m ber o f even pi gives the num ber o f com pon ents fo r k both even or odd.

P ro o f

The first two cases can be realised by considering how one travels around the
diagram starting from a point. The third case can be shown simply by observing
that two even p̂ in a £;-tuple have a link component between them; we can draw
a circle between each of the even pi to represent a link component, and if the
number of even pi is m it is not difficult to see that there will be m circles and
hence m components. I

Hence, a k -tuple denotes a knot if and only if k is odd and all of the pi are odd,
or if there is exactly one even p̂ . In all other cases the /c-tuple gives a link.

In general, permutation of the pt coding for a knot results in knots related
by mutation, and hence these will have identical Kauffman polynomials. Per
muting the pi of a 3-pretzel always results in an isotopic link. This can be
observed simply from the structure of 3-pretzels.

6.3 Twists in the Kauffman skein

The regular structure of pretzels suggests that there might be some shortcut
that we can take over the general approach that the skein relations give us
for calculating the Kauffman polynomial. The approach of this chapter is to
express \pi\ half-twists as a linear combination of single half-twists and the
two smoothings, with coefficients from the Kauffman skein. We can construct
recursive formulae for the coefficients of these linear combinations, and these
give a method of easily expressing n half-twists as a linear combination of three
elements.

Using these formulae on the sequences of half-twists within a pretzel struc
ture we get a linear combination of much simpler diagrams: we trade one
diagram with a large number of crossings for many diagrams with far fewer
crossings.

In the following discussion we borrow the language of braid groups (with
only a few small abuses) to express the crossings in the half twists; we take a

to be a single right-handed crossing, a ~ l to be a single left-handed crossing,
e to be the identity represented by Lo and h to be the L 00 smoothing. We
consider the following actions to be taking place in the Kauffman skein algebra
of (2, 2)-tangles.

Theorem 6.2 The K a u ffm an polyn om ial o f a pretzel link (p i ,P 2 , ■ ■ ■ ,Pk) can

be expressed as a linear com bination o f the K a uffm an polynom ials o f at m ost 3 k

diagrams, each with at m o st k crossings, with coefficients from the K auffm an

skein.

P ro of

We first show that we can express n half twists as a linear combination of single
half twists and smoothings. We write the main Kauffman skein relation as

a — a ~ l = z (e — h),

and by the Kauffman skein relation for framing we see

a h — ha = v a

a ~ xh — h a ~ l — v ~ l h

Now consider the following rearrangement:

z (e — h)

a - 1 + ze — zh

a ~ l a + z e a — zh a

e + z a — v z h

z a + e — v zh .

Thus we have a relation for expressing a 2 in terms of a , e and h with coefficients
in v and z from the Kauffman skein.

122

Lem m a 6.3 n right-handed crossings, written an, can be expressed as a linear
combination of a single right-handed crossing a and smoothings e and h in the
following way

° n = f\{n)a + f i (n - l)e + f 3 (n)h

where f\ and / 3 are recurrence relations defined by

f i (n) — zf\{n — 1) + fi (n — 2) /i(0) = 0,/x(l) = l
h(n) = v (f3(n - 1) - z f i (n - 1)) / 3(1) = 0

Proof

0 From our result for a 2 there is no doubt that we can construct a recursive
method for calculating an expression for an in terms of cr, e and h, so we need
only show what form this relation takes. Initially define

° n = fi(n)<r + / 2(n)e + f 3 (n)h

where / i , f 2 and f 3 are recurrence relations for polynomials in v and z.

Take the expression for the case of an~l and multiply both sides of the ex
pression by a. We then use the result for a 2 in order to evaluate the expression
further.

^ n_1 = f i (n - l)cr + f 2(n - l)e + / 3(n - l) h

a n = f i (n - l) a 2 + f 2(n - l) e a + f 3(n - l) h c r

= f i (n ~ 1)(za + e - vzh) + f 2(n - 1)a + v f3(n - 1)h

= (z f i (n - 1) + / 2(n - l))o- + / 1(n - l)e

+ v (f 3 (n - 1) - fi_(n - 1))h.

We compare the two expressions for o n and evaluate the recurrence relations
as

/ i W = « / i (n - l) + / 2(n - l)

fi(n) = f\(n — 1)

fain) = v (f3(n - 1) - z f x{n - 1)).

123

The relation / 2(n) is in terms of fi(n), and hence the recurrence relation for
/i(n) is more helpfully written as

h(n) = zfi in - 1) + f i (n - 2).

Consequently, our expression for an can be written as

o'" = M n) a + f i (n - 1)e + f 3 (n)h,

and from results already known we can state the initial conditions for these
recurrence relations:

/i(n) = z f x{n - 1) + fx(n - 2) A (0) = 0, / i (l) = 1
f M = z f x i n - l)) / 3(1) = 0

From the Kauffman skein relation we obtain

a ~ 2 = —zo~x + e + v~lzh.

As before we will be able to find an expression for o~n in terms of the expression
for cr_ n̂_1\ and so on, back to the expression we have for a~2. As with the
case for an we work by comparing the general case for a~n with the expression
for a multiplied by a ” 1. This leads us to the following result which we
state without proof.

Lem m a 6.4 n left-handed crossings, written o~n, can be expressed as a linear
combination of a single left-handed crossing <j _1 and smoothings e and h in the
following way

v~n = 9 i{n)o~l + g i (n - l)e + g3 (n)h

where and g3 are recurrence relations defined by

9i(n) = gi(n - 2) - zgx(n - 1) ^ (0) = 0, ^ (1) = 1
& (n) = v - ^ z g i i n - l) + g3 (n - l)) ^3(1) = 0

124

t

With Lemma 6.3 and Lemma 6.4 we are in a position to prove Theorem 6.2.
Consider the diagram of a pretzel given by (pi, . . . ,pk). By Lemma 6.3

and Lemma 6.4, for each piy we can express the |p*| half-twists as a linear
combination of three different diagrams. These are a single crossing (right-
handed or lefthanded), and the two possible smoothings from the Kauffman
skein.

Applying these results to each pi gives a linear combination of at most three
terms. Taken over the k twists this then gives a total of at most 3* different
diagrams in the sum. One diagram in the sum will have a single crossing in
each of the places, resulting in a diagram with k crossings. The other 3fc — 1
diagrams will have fewer crossings. I

The upper bound on the number of diagrams, 3fc, is sharp if and only if |pj| > 1
for all 1 < i < k.

It is worth noting that unless all of the pi are of the same sign, the diagram
with k crossings mentioned in the proof of Theorem 6.2 can be simplified further
using Type II Reidemeister moves.

The recurrence relations are simple to mechanise in a computing language.
It is relatively straight forward to realise some code that will calculate the
coefficients for the terms in the expressions of an and a~n. In general recurrence
relations can be quite intensive procedures to run, but in Maple we can add the
code “option remember” which generates a table of values as the procedure
runs. We gain the illusion of speed at the expense of storing values in memory.

We give some code for calculating these coefficients later in the chapter.

6.4 Cubic Relation

There is a cubic relation that we can show for the right-handed crossing a. We
have to rearrange to remove h from the expressions that we build up (using the
rearrangement h = e — ~zo -f 1<t_1).

<7 = cr_1 + ze — zh

a 2 = za + e — vzh

125

#

We replace h with the terms in e, o and o x, and then take e (as an identity
element) to have value 1. Then

o 2 = zo + e — vzh

a2 - zo + 1 — vz(l — - o + - o -1)
z z

o 2 = zo + 1 — vz + vo — vo~l

and by multiplying through by o and collecting terms

o 3 = zo2 + o — vzo + vo2 — v

o 3 = (z + v)o2 + (1 — vz)o — v.

We take the specialisation z = s — s-1 , and then rearrange to give a cubic
equation in o with coefficients in v and z:

o 3 — (s — s-1 + v)o2 — (1 — v(s — s_1))cr + v — 0.

This factorises to give

— - (o s + 1)(—s + o) (—o + v) = 0
s

which has roots o = — s-1 , o = s, o — v.

The roots of this equation give us a way of defining generating functions for
the coefficients. However, in the method that we will outline this will not be
helpful due to the elimination of the term in h. Later in the chapter we will
consider generating functions obtained from the recurrence relations.

6.5 Elementary Pretzels

We now turn our attention to the simpler diagrams that result from the appli
cation of Theorem 6.2.
Definition

An elem entary pretzel is given by a sequence r = [r1; r2, . . . , r*], where
the ri are elements from the set {+1, — 1, 0, oo} and represent respectively a

126

righthanded crossing, a left-handed crossing, the smoothing L0 and the smooth
ing Loo. The sequence r defines a diagram in a similar way to the k-tuples that
give pretzel diagrams. The ri are thought of diagrammatically as being in the
same location as the p* in the definition of pretzels.
Consider the diagram of the elementary pretzel [+1, +1, — 1, oo, 0] as in Fig

ure 6.3. The value of this diagram in the Kauffman skein is w_1, but in general
we could have a more difficult knotted structure.

Figure 6.3: Diagram for elementary pretzel [+1, +1, —1, oo, 0]

Consider the rotation of Figure 6.3 through 90 degrees. If we had diagrams
that did not contain the smoothing Lq then by rotating an elementary pretzel
through 90 degrees we could see easily the number of crossings that the diagram
actually contained. Due to the simple structure that such diagrams have, the
Kauffman polynomial of this diagram could be realised as a simple sum of
twisted or disjoint unknots with coefficients provided by the recurrence relations
we have already evaluated.

Proposition 6.5 n half twists, whether right-handed or left-handed, can be
represented as a linear combination of right-handed and left-handed crossings,
and the smoothing Loo represented by the element h. The coefficients of these
three terms can be obtained from the recurrence relations established in Lem
mas 6.3 and 6 .f.

Proof

The main Kauffman skein relations have four terms, and so we can always ex
press any linear combination of these four elements in terms of at most three of
them. Thus in expressing an and a~n in terms of single crossings and smooth
ings we can eliminate terms in e.

127

Then

o n = /i(n)o- + / i (n - l) e + / 3(n)/i

= f \ { n) o + f i (n - 1) (z ~ 1a - z ~ l cr~l + h) + f 3{n)h

= (/i W + 2_1/i (n - l))a - z_1/i (n - 1)(7_1
+ (/s(n) + / i (n - 1))*

and

cr-n = ^i(n)cr_1 + <7i(n — l)e + g3(n)h

= ^i(«)o-_1 + 9i{n - l)(^_1o- - £-1<7_1 + h) + g3{n)h

- z~lgx{n - 1)a + (gffn) - z~lgx(n -

+ (0s(n) +Pi(n- l))h,

taking the same values for the recurrence relations as defined previously in
Lemmas 6.3 and 6.4. I

Corollary 6.6 T he K a uffm an polynom ial o f a pretzel p = (jpx, . . . , p k) can be

expressed as a linear com bination o f the K auffm an polynom ials o f 3 k elem entary

pretzels o f the fo r m [r1;. . . , rk] where the are elem ents o f the set { + 1 , —1 , oo}.

P roof

Applying Proposition 6.5 to the proof of Theorem 6.2 shows this result. I

Definition

Let r+ be the number of right-handed crossings in an elementary pretzel
r, and r_ be the number of left-handed crossings.

Definition

For an elementary pretzel, r, without the smoothing L0 we obtain a diagram
rN by rotating r through 90 degrees and viewing it as in Figure 6.4. This allows
us to see the number of crossings and the handedness of these crossings, which
we can obtain from r as N = r_ — r + .

128

t

Figure 6.4: Diagram

è

Lem m a 6.7 The Kauffman polynomial of a diagram r^ is

{ 6 N = 0
f i (N)v + f i (N — 1)5 + f f fN) N > 0

+ gffN - 1)5 + g3(N) N < 0

with relations / j , / 3; gi and g3 defined as previously.

Proof

The diagram r0 is a pair of disjoint unknots, and so has value 5 as defined in
Section 1.5.3. The Kauffman polynomial of rN for N ^ 0 is easy to calculate
using the recurrence relations of Lemmas 6.3 and 6.4. Applying these formulae
to a diagram r# will result in a linear combination of at most three diagrams,
these being the unknot, a twisted unknot, and two disjoint unknots. 1

We restate Theorem 6.2 as Theorem 6.8.

Theorem 6.8 The Kauffman polynomial of a pretzel p = (pi,P2, ■ ■ ■ ,Pk) can
be expressed as a linear combination of the Kauffman polynomials of diagrams
of the form rN, where N varies between —k and k.

Proof

By Corollary 6.6 we express p as a linear combination of 3* elementary pretzels
in the Kauffman skein. Each of these elementary pretzels can be expressed as
some diagram of the form r^. The values for N are derived from the possible
elementary pretzels of length k: we express the sum of 3fc elementary pretzels
as a linear combination of the 2k + 1 possible diagrams of the form ru where
N varies between —k and k. ■

129

t

6.6 Algorithm

We combine the various results that we have shown in this chapter to give an
algorithm for calculating the Kauffman polynomial of pretzel links.

For each p{ in a sequence for a pretzel p = (pi,. .. ,Pk) we calculate the
coefficients from representing those |pj| half twists as a linear combination of
the elements a, cr-1 and h.

Effectively we are obtaining the information that we need to express the
diagram given by the A;-tuple p as a linear combination of 3* elementary pretzels
r = [ri,. . . ,r k\ and which have coefficients from the Kauffman skein given by •
certain products of the coefficients obtained by evaluating the p^

Expressing the pi as a linear combination of the elements cr, cr-1 and h
means that the 3k elementary pretzels of Corollary 6.6 will be given by all
of the possible elementary pretzels of length k where the terms r-j are from
elements in the set {+1 , — 1, oo}.

The Kauffman polynomial of each of these 3fc diagrams is now easily calcu
lable if we consider them to be in the format of Figure 6.4. By calculating the
Kauffman polynomials of these rN we complete the calculation of the Kauffman
polynomial of the pretzel link p = (pi,

This is a simple algorithm to consider on paper, but the coefficients will
be much too unwieldy to calculate invariants of any non-trivial examples by
hand. The algorithm is readily implemented in a programming language. In £
the next section we give an example of a series of Maple procedures that lead
to an implementation for calculating the Kauffman polynomial of a pretzel.

6.7 Implementation

The most straight forward way to implement this algorithm, I believe, is to
start with the recurrence relations that we defined earlier, and then build up
the program piece by piece. We use these relations in other procedures, which
do more and more complicated things but continue to look relatively simple.
Eventually we are able to give the main routine which performs the algorithm,

130

#

calling in the relative sub-procedures as necessary.

The benefit of this approach is that the main routine is relatively clear, and
is not cluttered with overly complicated expressions and lines of code.

6.7.1 Recurrence Relations

We begin by giving the procedures for the four recurrence relations (from Lem
mas 6.3 and 6.4). These are the foundation of the algorithm, and so are of
great importance in the implementation. The line of code “option remember”
in each routine improves the speed of the procedures by creating a table of
previously calculated values. We gain the illusion of speed in calculation by
increasing memory use to store these values.

f l := p ro c (n : :nonnegint)
option remember:
i f n=l then return 1: end i f :
i f n=0 then return 0: end i f :
return expand(z * f l (n - l) + f l (n - 2)) ;

end p ro c :

f3 := proc(n ::nonnegint)
option remember:
i f n=l then return 0: end i f :
return expand(v * (f3 (n - l) - z * f l (n - l))) ;

end p r o c :

g l := proc(n ::nonnegint)
option remember:
i f n=l then return 1: end i f :
i f n=0 then return 0: end i f :
return expand(gl(n-2) - z * g l (n - l)) ;

end p ro c :

131

t

g3 := proc(n::nonnegint)
i f n=l then return 0: end i f :
return expand((1/v) * (z * g l (n - l) + g 3 (n - l))) ;

end proc:

With these procedures we have the foundations of an implementation of the
algorithm.

6.7.2 Building Up Procedures

We create procedures which return triples of coefficients for an and a~n, when
they are expressed as linear combinations of a, cr_1 and h.

SIGMAn := proc(n::posint)
local output:

output := [0 ,0 ,0] :
#output[l] is the coeff of {sigma}
output[1] := expandí (1/z) * f l (n+ l)) :
#output[2] is the coeff of {sigma}“ (-1)
output[2] := expandí - i l / z) * f l (n - l)) :
#output[3] is the coeff of h
output[3] := expandí f3in) + f l in -1)) :
output; f

end proc:

SIGMA_n := procin::posint)
local output:

output := [0 ,0 ,0] :
#output[l] is the coeff of {sigma}
output[1] := expandí i l / z) * glin-1)) :
#output[2] is the coeff of {sigma}"(-1)
output[2] := expandí - (1/z) * gl(n+l)):
#output[3] is the coeff of h

132

t

output[3] := expand(g3(n) + g l (n - l)) :
output;

end p r o c :

Note that in both SIGMAn and SIGMA_n we could set the values directly as we
define the triple output; however, by writing the code in the manner that I
have given it is clear how we are arriving at these coefficients.

The entries for output [1] in SIGMAn and output [2] in SIGMA_n have been
slightly simplified by considering the recurrence relations.

The Pi in a /c-tuple for a pretzel can be positive or negative. Rather than
use SIGMAn and SIGMA_n directly in the main routine it is simpler if we have a
smaller routine that will call the appropriate procedure to deliver the output.
One way that we can implement this is as follows.

K coeff := p ro c (n : : in teger)
lo c a l out:

i f n = 0 then
out :: = 1—

1
\ N 1 h-

*-

N

e l i f n > 0 then
out := SIGMAn(n):

e l i f n < 0 then
out := SIGMA_n(-n):

end i f :
ou t;
end p ro c :

As we will use K coeff in the calculation of the Kauffman polynomial of dia
grams of the form rN we include the possibility of an input of 0.

One final subroutine that we require is something that gives the value of N
for a reduced diagram r in the format rN.

Recall that N = r_ — r+ . In this implementation we denote right-handed
crossings with +1, lefthanded crossings by - 1 and the smoothing by 0, as it
does not contribute to the sum of crossings. Hence N is the sum of the entries

133

in r multiplied by —1, and we can implement this function with the following
routine.

r2N := procO
local t , i :
t := 0:
for i from 1 to nargs do t := t + args[i] end do:
- t ;
end proc:

6.7.3 The Main Routine

With the procedures that we have built up, we are now in a position to imple
ment the complete algorithm.

I have tried to give the implementation in as simple a manner as possible,
and give a short outline after the listing of the program.

with(combinat, permute):
##permute required to generate the desired
##possible elementary pretzels of length k
pretzel := procO
local A,L,Ml,M,N,i , j ,k,C,store,total:
k := nargs:
L := [s e q (l , i = l . . k) , s e q (- l , i = l . . k) , s e q (0 , i = l . . k)] :
Ml := permute(L,k): M := Array(1 . .nops(Ml)):
for i from 1 to nops(Ml) do M[i] := Ml[i] end do:
##M represents the set of elementary pretzels
##of length k where each r_i is a crossing or h
Ml := ’ Ml’ : C := [args] :
for i from 1 to k do C[i] := Kcoeff(C[i]) end do:
total := 0:
for i from 1 to ArrayNumElems(M) do

##for each elementary pretzel

134

store := 0: N := r2N (op(M [i])) : A := K coeff(N):
store := expandC(1/v)*A[1]+v*A[2]+A[3]) :
##in the loop the in i t ia l assignment fo r store is a
##ca lcu lation o f the Kauffman polynomial fo r some
##diagram r_N
fo r j from 1 to k do

i f M[i] [j] = 1 then
store := expan d (store*C [j][1]) :

e l i f M[i] [j] = -1 then
store := expan d (store*C [j][2]) :

e l i f M[i] [j] = 0 then
store := expan d (store*C [j][3]) :

end i f :
end do :
##the previous loop ca lcu la tes the contribu tion
##to the c o e f f ic ie n t o f each o f the r _ i , passed from
##the lin ear combination o f the p_i
to ta l := exp an d (tota l+ store):

end do :
c o l le c t (e x p a n d (t o t a l) ,z) ;
end p r o c :

The procedure works by first producing a list of all of the possible sequences
r = [r i , ... ,r *] , where the r{ are elements of the set { + 1 , - 1 , oo}. These
sequences are the elementary pretzels we will consider. Then the coefficients of
expressing each of the pi as a linear combination of a, er-1 and h are calculated.
We sum over the set of the r we have established; we multiply by the appropriate
coefficients resulting from the calculations of the expressions of the and
calculate the Kauffman polynomials of the reduced diagrams r by considering
them in the format rjy.

As we have developed the procedure K coeff it is simpler to use this to
calculate the coefficients of the linear combination of twisted unknots that

135

result from calculating the Kauffman polynomial of a diagram rn , rather than
use the function we defined previously in Lemma 6.7.

6.7.4 Remark

Permuting the Pi for a pretzel link does not change the Kauffman polynomial,
as permuting the pi is the same as performing mutations on the link. Thus we
can consider performing calculations with the set of twists: the order is not
important.

One way that we might improve our calculations is to reorder the sequence
(Pi > P‘2> ■ • •> Pk) so that we first consider the positive Pi ordered to be strictly non
decreasing, and then the negative Pi so that they are strictly non-increasing.
In this manner we can build up a table of results (option remember in Maple)
in an organised way to minimise the number of calculations performed.

6.8 Generating Functions

While the algorithm that we have developed certainly has its advantages over
a naive approach to calculating a knot polynomial, the use of recurrence re
lations to calculate coefficients is inefficient. Their use in the implementation
only gives the illusion of fast calculation, and without the “option remember”
lines of code in each of the recurrence relations the implementation would take
much longer to compute the Kauffman polynomial of even a relatively simple
example.

Generating functions should allow for a much faster calculation time. We
can derive these from the recurrence relations that we have already realised,
but must use the specialisation of variables z — s — s~l .

136

T heorem 6.9 For n E N we can obtain the following generating functions for
coefficients from the recurrence relations of Lemmas 6.3 and 6 . 4

h H =

h (n) =

i - s - ' r
s + s-1
u(s — s_1) v(s — s 1) / sn (—s 1)n

+(s 1 + v)(s — v) s + s-1 \s — v

and the roles of functions g\ and g3 are filled since

/ i (~ w) = / i W | ^ - ‘

h(~n) = / 3(n) 1̂ , - 1.
\v—tv 1

Proof

We derive these generating functions from the recurrence relations by using
some relatively simple theory, and using the specialisation z = s — s-1 . We get
the generating functions for /1 and gx first, as these are involved in the expres
sions for gi and g3 respectively. We then solve non-homogeneous recurrence
relations to obtain the generating functions for / 3 and g3. Initially, we obtain
the following functions for the recurrence relations:

h (n) =

M n) =

9i(ji) =

93(n) -

(s - 1)1 \n

S + S'

v(s S ^ (1 :(vn - (- .s - 1)") + - sn)s + s -1

(s -1)" - (- *) ?
s + s~l

v~l {s — s_1)

+ V

1

s — V

zr-^ î((S-ir - (^n + - (^ns + S“ 1 V s'

We perform some rearrangements and collect terms for / 3 and g3 that make
them simpler.

, / v v(s - s x) „ v (s - S X) / S''
fs(n) = , , " w ■ svn - - A- ------(-----------+

(s_1 + v)(s — v) s + s_1 \s — V a — 1+ V
r \ v 1(s 1 - s) _u V *(s 1 - s) f {s~1)n (- s)

93(n) = i _ 1 __i\/__~i - ! >) + ----- L----- T- 1 I \ ' , + v ’(S + ü_1)(s_1 — v~1) s -I- s-1 S_1 — V ~ X ' S + V 1

137

Comparing f x and gx, and / 3 and g3, we can easily observe that we obtain gx
and g3 by making a substitution in the expressions for f x and / 3. Hence

9 i{n) = / i (n)M s-i

Qsin) = /3(n)|a_ „- i
lu —>u-1

and thus we only need to use one set of functions and make substitutions to
obtain the output of the others, since the recurrence relations gx and g3 are
calculating coefficients for left-handed twisting we state

= / i W î s- i

/a (-n) = /3 (n) i ,^ - i ,
lu —>u 1

as required. I

6.8.1 Remark

These substitutions also allow us to give a statement for the recurrence relations
for the coefficients. Since s —» s_1 and z = s — s-1 we note that for polynomials
in v and z

f i (- n) = /i(n)|z_>_2

/ 3(-n) = / 3(n)i
lu —>u 1

6.8.2 Implementation

The same approach is taken to the algorithm as before, the only difference
being that we now have a different method for calculating coefficients. Rather
than have four separate relations that we rely on, we have two functions. These
calculate coefficients for the case that we have right-handed twists and we make
a simple substitution by Theorem 6.9 in order to calculate coefficients for the
case that we have left-handed twists (pi < 0).

Thus the procedures for f x and / 3 are updated, and the routines SIGMAn,
SIGMA_n and Kcoeff all have slight modifications. The main routine given
previously is only altered to give terms in s and not z.

138

f l := procCn::nonnegint)
(s “n - (- s ~ (- l)) “n) / (s + s“ (-1)) ;

end p roc :

f3 := proc(n::nonnegint)
v*(s - s “ (- l)) / ((s “ (- l) + v)*(s - v)) *v“n
- v*(s - s “ (- l)) / (s + s “ (- l))

* ((s “n / (s - v)) + (((- s) " (- l)) “n / (s “ (- l) + v))) ;
end proc :

SIGMAn := proc(n::posint)
loca l output :

output := [0 ,0 ,0] :
#output[l] is the coeff of {sigma}
outputCl] := expand((l / (s -s “ (- l))) * f l (n + l)) :
#output[2] is the coeff of {sigma}“ (-1)
output[2] := e x p a n d (- (l / (s - s ~ (- l))) * f l (n - l)) :
#output[3] is the coeff of h
output[3] := expand(f3(n) + f l (n - l)) :
output ;

end proc :

SIGMA_n := proc(n::posint)
^ loca i output :

output : = [0 ,0 ,0] :
#output[l] is the coeff of {sigma}
output [1] := expand((l / (s - s “ (- l)))*subs(s=s~(- 1) , f 1(n-1))) :
#output[2] is the coeff of {sigma}“ (-1)
output[2] := expand(subs(s=s“ (- l) , (l / (s - s “ (- l))) * f 1(n+1))) :
#output[3] is the coeff of h
output[3] := expandCsubs(s=s“ (- 1) ,v = v " (- l) , f3 (n) + f l (n - l)))
output ;

end proc:

139

Kcoeff := proc(n::integer)
local out:

i f n = 0 then
out := [1 / (s—s ~ (—1)) , - l / (s - s ~ (- l)) ,

e l i f n > 0 then
out := SIGMAn(n):

e l i f n < 0 then
out := SIGMA_n(-n):

end i f :
out;
end proc:

The coefficients previously calculated by g\ and g3 are now calculated by
making the substitution realised in Theorem 6.9 in to the expressions calculated
by / i and / 3.

As noted previously we can use a substitution to reduce the number of
recurrence relations that we use in an implementation of the algorithm. Were
we to do this the only additional changes we would need to make would be in
the routine SIGMA_n, in order to put the necessary substitutions in place.

6.8.3 Speed of calculation

In principle, using generating functions should give a quicker approach to calcu
lating the invariant than by using an implementation that relies on recurrence
relations. As noted previously, the recurrence relations that we have imple
mented only have the illusion of fast calculation because we create a table of
values that calculations draw on in order to short circuit later calculations.
Having to only perform one operation should then give generating functions an
advantage over the recurrence relations in an implementation.

Based on calculations that I have performed, the opposite seems to be true:
when comparing calculation times between two implementations, one based on
recurrence relations and the other based on generating functions, we actually

140

see the implementation based on recurrence relations greatly outperforming
the implementation based on generating functions. This happens even when
computing the Kauffman polynomial of simple pretzels with very few crossings.

I believe that the reason for this is that we are now calculating a polynomial
in s and v, where z — s — s-1 . By doing so we are creating much larger polyno
mials that must be stored in memory, and this is slowing down the operation
of Maple in what would otherwise be a simple enough calculation thanks to the
theory that we have developed for calculating polynomial invariants for this
family of knots.

6.8.4 Note

While I was writing up this chapter I became aware of a recently published
paper on the Kauffman polynomials of pretzel links by Lu and Zhong [32].
Their method is different from mine, and does not approach the calculation
through recurrence relations based on the twists in the pretzel links.

«
142

Chapter 7

The Skein of the Annulus

7.1 Introduction

In this chapter I present some preliminary calculations in the Kauffman skein
of the annulus. While I was able to achieve some success in finding explicit
values, I was unable to progress to a point where I could state a general result.
We are able to make some reasonable conjectures on what might be true in a
more general setting.

The work in this chapter follows work of [19] and [38] in investigating the
0 skein of the annulus with two boundary points. In both of these papers the

authors were considering the Homfly skein of the annulus and the skein of the
annulus with two boundary points. In this chapter we see preliminary results
that we have obtained through explicit manipulation and calculation of braid
words with respect to the main Kauffman skein relations, and relations that
we can derive from the interaction of elements in the annulus.

We look at linear combinations of closed braids on n strings in the skein
of the annulus with an arc connecting points on the boundary. We show that
certain linear combinations of braids in this setting can be expressed as linear
combinations of identity braids on n strings and fewer than n strings.

143

ë

7.2 Notation

7.2.1 The annulus

We consider elements in the annulus as in Figure 7.1. We take linear combina
tions of braid words X from Bn and close them. We take linear combinations
with respect to the Kauffman skein relations, and we take these skein relations
as defined in Section 1.5.3.

Figure 7.1: X , linear combination of words from B„

7.2.2 The annulus with two boundary points

Following the notation of [19] and [38] we give some initial constructions and
definitions for the Kauffman skein of the annulus.

Denote by /C the Kauffman skein of the annulus with two boundary points,
one on each boundary component, as indicated in Figure 7.2.

The skein /C becomes an algebra under the product induced by placing one
annulus outside the other; for this, of course, we require that there is one curve
connecting the two points on the boundary. The identity element in the skein,
which we denote a0 € /C to avoid confusion with the identity element of a
braid, can be thought of as a single arc connecting the boundary points as in
Figure 7.3.

Further elements are given by single arcs which wind around the central
excluded point; the element a1 is given by an arc that winds around the central

144

Figure 7.2: /C, the Kauffman skein of the annulus with two boundary points

Figure 7.4: a1 and a 1

145

#

excluded point once in a counter-clockwise direction as we travel along it from
the centre of the annulus to the outer boundary. This element can be seen in
Figure 7.4 along with its inverse a-1 .

Powers of the element a1, am for m € Z are given by a single arc connect
ing the inner boundary point to the outer by winding in a counter-clockwise
direction m times without crossing itself. We compose two elements by placing
one annulus outside another, connecting arcs and boundary points; this action
is commutative.

7.2.3 1{X) and r(X)

The calculations that we wish to perform take place in the skein of the annulus
with two boundary points. We consider two settings, and in both of these cases
we have a linear combination, X , of words from Bn and an arc from the inner
boundary to the outer boundary.

Define the settings l (X) and r (X) as in Figure 7.5.

Figure 7.5: Settings l (X) and r(X)

The notation introduced here mirrors some of the constructions in [38]. The
theory of that paper was more developed in showing results for the Homily skein
of the annulus than the results for Kauffman in this chapter; however, I believe
that the results in this chapter point the way to showing that similar results
could be obtained for Kauffman.

We give a definition now that will make our later calculations easier to
order.

146

Definition

For a linear combination, X , of braid words from Bn, and for 0 < k < n
we have the family of settings r*(X) in the annulus, where k gives the number
of braid strings that the arc crosses under from the interior boundary point to
the exterior; the arc passes under k consecutive braid strings, and then passes
over the remaining n — k strings.

We see how the arc connects the boundary points for r*,(W) in Figure 7.6.

■k
■k + 1

------ ------n

Figure 7.6: The arc connecting boundary points in the setting rk(X)

• Thus r0(X) = l(x) and rn(X) = r(X).

The object of this work is to consider expressing the elements l(X) — r(X),
for some X , as a sum of elements am with m e Z , — n < m < n. We are going
to examine several cases of a specific family of examples for each n, which will
give rise to some conjectures on the behaviour in general.

7.2.4 Pn(X) and Nn(X)

Two other settings that we will need to consider in the annulus are Pn(X) and
Nn(X), as seen in Figure 7.7.

147

Nn(X)

Figure 7.7: Settings Pn(X) and Nn{X)

These settings are closer to the format of the elements that we wish to
express our starting linear combinations as, i.e., they more closely resemble
elements of the form am, m 6 Z.

7.2.5 Yn

Definition

We define Yn to be the linear combination of n words from the braid group
Bn expressed as

°n-1 • • • 0201 + °n-\ ■ ■ ■ a2&l + • • • + ° n - l . . . CT̂ 10\ + CT~\ . . .

Thus Yi is simply the identity (and only) 1-braid, while Y2 is ax T o -f1, and
Y3 = o2o\ + a2 1o'i + These are the examples that we shall consider
explicitly in this chapter; we will make some reference to calculations for Y4
and for Yn in general, but we will not consider explicit calculations for n > 3.
These examples follow on from work of Morton [38].

7.3 Calculations for Y\ and Y2

Calculations for Y\ are almost trivial. Consider 1{Y\) and r(Yx) as shown in
Figure 7.8.

As Y] is the identity 1-braid the only difference between the two diagrams
is from the crossing resulting from the arc connecting the boundary points.

148

Figure 7.8: l(Yi) and r(Yi)

L em m a 7.1 /(Fi) - r(Fi) = z(a} - a-1).

0 P r o o f

This follows by applying the Kauffman skein relation to l(Yi) — r(Yi). I

A valid intermediate point in the calculation for Y\ would be to write the
expression as z(P\{Yi) — N\(Y\)) after applying the skein relation, and then
noting that this is the same as z(ax — a-1).

The calculations for F2 are not completely trivial, and they require us to
consider the diagrams that result from expressing 1{Y2) — r(F2) as a series of
diagrams.

L em m a 7 .2 l(Y2) - r(F2) = z(z2 + 4)(a2 - a-2).

P r o o f

To begin with note

l (Y ,) - r { Y 2) = r„(K2) - r2(r 2)

= M i y - n (i y) + (n (y2) - r2(y2)).

We consider ri(F2) as in Figure 7.9.
The diagram of ri(F2) differs from both r0(F2) and r2(F2) in exactly one

place each, and we use the main Kauffman skein relation on each of the expres
sions r0(F2) — n (F 2) and ri(F2) — r2(F2). By considering the resulting diagrams
we see the following,

ro(Y2) - n (F 2) = z i P ^ Y j - N2(Y2a f 1))

149

and
ri(Y2) - r2(Y2) = z(P2(Y2a f 1) - N2(oxY2)).

Then we develop our previous expression as

l(Y2) - r (Y 2) = r0(Y2) - r 2(Y2)

= (r0(Y2) - r i(Y2)) + (r i(Y2) - r2(Y2))

= z{P2{ ° xY2) - N2(Y2a ^)) + z(P2(Y2a f 1) - N2(gxY2))

= z(P2{a{Y2 + Y2a ^) - N2{axY2 + Y2g^)) .

Now

(TiY2 + Y2a f 1 = cr i (cr i + erf1) + (ax + erf1J)crf1

= cr2 + e + e + erf 2

= cr2 + cxj 2 + 2e.

In Chapter 6 we noted a2 = zer — wz/i + e and cr-2 = — zer-1 + vlzh + e and we
can adapt those results in this context to give

cr2 + erf2 + 2e = zg\ — vzhi + e — zo f 1 + vlzh\ + e + 2e

= z (gi — erf1) + z(u_1 — v)h\ + 4e

= z2 (e — h\) + z{y~l — v)h\ + Ae

= (z2 + 4)e + z2(S — 2)h\

where 5 = - - f - + 1 as defined in Chapter 1.

150

We substitute these expressions into each of the settings to obtain the fol
lowing:

P2(<?iY2 + Y2a î 1)

N2(alY2 + Y2a^1)

-P2((,22 + 4)e + z2(ö — 2)hi)

(z2 -f 4)P2(e) + z2(0 — 2)P2(hx)

(z2 -f- 4)a2 + z2(S — 2)a°

(z2 + 4)lV2(e) + z2(â — 2)N2(hi)

(z2 + 4)a~2 + z2(ô — 2)a°

Finally, we combine these results with those previously noted to give:

1{Y2) - r{Y2) M ^) - n (y 2)) + M y ,) - r2(y2))

z(P2(<7lF2 + *) — N2(<JiY2 + F2C7i *))

z ((z2 -I- 4)a2 + z2(0 - 2)a°) - z((z2 + 4)a-2 + z2(0 - 2)a°)

M 2 + 4)(a2 - a“ 2),

as required. I

We will consider how we can use the main skein relations on expressions of
the form rk(X) — rk+ i(X) in the next section, as this will be the approach that
we take in general to begin these calculations.

7.4 A general approach for Yn

Before beginning the actual calculations for Y3 it is important that we make
explicit an approach that we can take in general for these kinds of calculations,
as well as list general relations that are useful now that we are moving to a
setting with more than two braid strings.

For the calculations involving Y2 we took the step of rewriting the expression
that we started with as

l(Y2)- r (j y = (r0(y2) - r ,(y 2)) + (r,(y2) - r2(y2)),

which we then applied the main Kauffman skein relation to in order to ulti
mately allow us to express the diagrams as a sum of elements am, m G Z.

151

A more general statement can be made along these lines, but in order to do
that we must first introduce several more pieces of notation and show how they
are equivalent to other objects in the skein of the annulus with two connected
boundary points.
Definition

For X , a linear combination of braid words from B„, we define the settings
rk,o(X) and rkt00(X) to be similar to the closure of rk(X) with the difference
in the arrangement of the arc connecting the interior boundary point to the
exterior boundary point as shown in Figure 7.10.

1

T’kfi Tk,oo
Figure 7.10: Arrangement of arcs near boundary points for rkj0(X) and rkt00(X)

Lem m a 7.3 F o r X , a linear combination o f braid words fro m Bn;

rk(X) - rk+ i (X) = z P n(an_ i . . .a k + i X c r f 1 . . . a f 1)

- zNn(ax . . . a kX a f ^ . . .

fo r 0 < k < n — 1.

P ro of

By the main Kauffman skein relations, we state that

rk{ X) - rk+1(X) = z (r kfi(X) - rki0O(X)).

152

t

From considering the diagrams in the annulus it is not difficult to see that

rk,o{X) = Pn(on- i . . . (Jk+iXa^1. . . o f 1)

rk,oo(X) = Nn(a1. . . a kX a ^ l1. . .a ~ i1),

which gives the required result. i

We obtain an extension to Lemma 7.3, which gives us a good foundation
for the problem that we wish to tackle.

Lem m a 7.4 For X , a linear combination of braid words from Bn;

l(X) — i~(X) = zPn(an- 1. . . o\X + crn_ i . . . o2X o x 1 + . . . + X a n\ . . . o f 1)

- zN n((Ji. . . on^ X + <7i.. . o n^ X o - \ + . . . + X o f 1 . . . a~fx)

Proof

To begin with state

l (X) - r (X) = r0(X) - r n(X)

= (r0(X) - n (X)) + (n (X) - r2(X)) + . . . + (rn .^ X) - rn(X)).

By Lemma 7.3 we can express every r^ X) - ri+1(X) as an expression in terms
of diagrams in the settings Pn and Nn multiplied by 2. We work over all i from
0 to n — 1, and so

/ (X) - r p O = 5 > , (X) - rM (X))
i=0

71—1
= z ^ 2 (ri,o(x) ~ ri}00(X))

1=0
71—1

= z y^(-Pn(o~n-i • • • oi+1X o ~ 1. . . o f 1) - Nn{ox . . .
¿=o

giving the required result. I

Lemma 7.4 is the starting point for showing the desired result for Y3, I
believe it is a good starting point for this type of calculation in general.

153

t

7.4.1 Summary of relations

Before we proceed with the calculations for Y3 we summarise relations that can
be observed in the contexts we have discussed. Some of these are derived from
purely algebraic considerations, while others are obtained directly from how we

manipulate the geometric objects in the annulus settings.

(K l) <Ji ~ = z(e - hi)
(K2) o f 1 hi = v±xhi
(R l) ° 2 = zoi — vzhi + e
(R2) * f 2 = —z a f1 + v~lzhi + e
(R3) = (.z2 + 2)e + z2{5 - 2)K
(R4) o f lhi+1a f l = af+\hia7+\
(R5) hi =
(R6a) .̂±1 „Tl =

(R6b) _±1 _±1 =Fl :fl
°i ai+lai ai+1 = ° 8 i

(Hla) K+lhihi+i = hi+1
(Hlb) hihi -̂\hî = hi

In the result of Lemma 7.3 we implicitly used the following result, whose
proof can be observed simply from considering diagrams in the relevant setting.

Lem m a 7.5 Take a linear combination of braid words X from ®n for n > 3.
Then in Pn{X) we can remove cr* 1 or hk for 1 < k < n — 2 at the start of a
word at the expense of adding, respectively, or hk+i to the end of a word.
Similarly in Nn(X) we can remove a o r hk for 1 < k < n — 2 at the end of
a word and in its place add a o r hk+i to the start of the word.

Effectively we are sliding these crossings or turnbacks around the annulus as
the setting allows; in the calculations that follow we will refer to applications
of Lemma 7.5 as using slide moves.

7.5 Calculations for Y3

Theorem 7.6 l(Y3) - r(F3) = z(z2 + 3)2(a3 - a~3) + z3(5 - 2)(a - a“ 1).

154

*

We take a first step and state by Lemma 7.4

¿(^3) ~ r (X'i) — zP${p2CFiY$ + <T2l3<Ti 1 + I 3CT2 *)

~‘ZN${p\(J2Yz + (J\Yz02 1 + L3CT1 10r2 *).

For ease of calculation we will calculate these two terms separately, and
then bring them together afterwards.

7 .5 .1 P3(cr2cri>3 + a2Y3a i~1 + Yza2~ lv i~ l)

Denote 0 2 0 \Y3 + <72Y30i -1 4- Y30 2 ~lcri~l as the following for ease of reference:

I3"*" :== I3 + (T2Y3O' 1 1 + Y3CT2 10'i 1.

Lem m a 7.7 P3 (Y3+) = (z4 + 6z2 4- 9)a3 + 2z2{5 - 3)a1 + z2(2<5 - 6 - z2)a~l 4-
z2(v~1r(Yi) 4- n/(Fi)).

Proof

In the first instance we perform skein relations not specific to the setting P3,
i.e., we do not perform slide moves as described by Lemma 7.5.

We begin the evaluation by expanding the expression for F3+ in terms of
a sum of braid words, and use relations to simplify any expressions which can
obviously be simplified. Hence

l3 + = 0 2 G1 Y3 -\-(J2 Y3 O1 1 + Y3 (T2 1cr1 1

= Ô CTlÔ CTl + (J20\(J2 lCT\ + cr2aicr2 1(Ji 1

+ 02<J20\0\ 1 4* 0’2<J2 1 + (T2&2 *01 1

+ O2G1O2 *01 1 + Cr2 *0102 1O'i 1+a 2 l<7\ *02 *0 j 1
= (J-Y - \ - 0 1 2 4~ e + 2<Ti <72 1 + 02010201

+ (72 01 <72 *0i 1 4" 020102 *01 4“ <72 *0102 *0i 1

Our initial method is to take words of length four and use skein relations to
express them as linear combinations of words of length three or smaller. We
may have to express them as words of length four involving hi as an intermediate

155

step. We tackle words in terms of generators and inverses only first, and then
consider any words of length four with elements hi.

We first find expressions for g 2g 1g 2 ~ 1g 1 and cr2~ 1a 1a 2'~1o 'i~ 1, as we can then
combine these with other words in our expression.

o2o\o2

„ - w ^ - w - i02 G\G 2 01

= g 2G i (g 2 - z e 4- z h 2)G\

— G2G\G2G\ — Z020\‘ + ZG2 G\h2G\

= G2G\G2G\ - ZG2G\ + zh\G2~l

= g-2~ 1(g 1~ 1 + z e - zh1)G2~1G1~1

= G2~1Gi ~1G2~1G1~1 + ZG2~2Gi_1 — ZG2~1h1G2~1Gi

= G2~1Gi~1a2~1Gi~1 + zg2~2Gi _1 — ZGih2

Substituting these in to our expression for Y3+ gives

— G22 ~hGi 2 + e + 2g\G2 1 + 2g2G\G2Gi + 2cr2 V i V 2 1G\ 1

+ z(g2~2Gi ~1 - G2Gi2) + z{hiG^1 - G\h2).

Two terms that we need to evaluate now are g2g\g2G\ and o ^ V i -1©̂ -1«?!-1 .
We use a combination of skein relations and relations equivalent to the Type
III Reidemeister move to simplify these expressions.

G2G\G2G\

g2 V i V 2 V i 1

= (C72 1 + £ - zh2)GiG2Gi

— G2 Ĝ2G\G2 + ZG\G2G\ — z h 2G2G\G2

= G\G2 + ZG\G2G\ — V z h 2G iG 2

= (a2 - 2: + 2:/i2)cri_V 2~ V i_1

= Cr2<72_1CrV V 2“ 1 — ZGi~1G2~1G1~1 + z h 2G 2~ l <7i_1 g2

= Cri_ V 2_1 — ZGi ~1G2~1G1~1 + V ~ 1z h 2G 1~ 1G 2~ 1

156

t

Substituting this in to the expression for F3+ we see the following:

Y3+ = cr22 + (Ti~2 + e + 2<7i<72~1 + 2(aicr2 + zcri<72(7i ~ vzh2(Jicr2)

+2(ai~1a2~1 — zai~1a2~1ai~1 + v~l zh2a\~l a2~l)

+ z(a2~2a1~1 - o2o 2) + z[hxo^ x - axh2)

= 022 cri + e -t- 2(<7i<72 1 -T Ci (t2 T 0"i *<r2 *)

+2z(aia2<Ji - + 2(a2_2(Ji_1 - a2ai2)

+2z(v~1h2ax~1a2~1 — vh2axa2) + z^hia^1 — o xh2)

0 We have reduced all words of length four to an expression of words of length
three or less. Before we repeat the process, eliminating all words of length three
and expressing them in terms of words of length two or less, we will consider
what we can say so far about P3(Y^).

We begin by considering several of the terms in our expression for F3+, and
use slide moves to simplify them in the P3 setting.

P3(<J\cr2~l + <Ji(?2 +cri~lo2~l) = P3(e + o f + erf2)

P3(v~1h2oi~1cr2~1 - vh2oia2) = P3(v~1ai~1h2ai~1 - vaxh2ai)

P3(W ~ ^1^2) = -P3 ((w-1 - v) h i)

Then

* P3(Kj+) = 3P3(e + o\ + <7f 2) + z2(S - l)P 3(hi) + 2zP3(a1a2a1 - err 1̂ -1^ -1)

+zP3(cr2_2(7i _1 - G2ax2) + 2zP3(v~lai~lh2ax~l - vaxh2a{)

By one of our earlier results we can express o\ + a f 2 as a linear combination of
e and hx, and in turn we can evaluate these as linear combinations of elements
of the form am,m E Z; however we postpone doing that for now as we will find
other elements to add to these.

We turn our attention to the words of length three that we have in our
expression for P3(F3+). We stay in the setting P3 to take advantage of slide
moves.

157

We begin by examining the expression P3(gig2gi - g\~1g2~1Gi~1). We use
the skein relations in a manner that mirrors our earlier proof for Lemma 7.4.

P3(C71 (72(71 - <71 1cr2 V i *) = -P3(cri(J2ai - g1~1g2g1)

+ P3(cr1~ 1a 2cr1 - cr1-1 <J2_1<71)

+ -F>3(o'l-1cr2~1C7i -
= ^3((cri - CTi_ 1)a2(Ti) + P3(cri_ 1(cr2 - cr2_1)a1)

+ - «ri-1))

= zP3(g2gx + a-i ^ i + a i 1)

— zP3(hi<720\ + CTi lh2G\ +(7i 1<t2 ^ i)

= zP3(e + <Ji 2 + <t2(Ji)

— zP3{Jl\G2G\ + G\h2G\ + (T i 1/i20'i).

We evaluate P3{g\ 1h2Gi) separately as it suits our purposes to have all the
signs of elements in these words to be of the same type.

P3((Ti- 1/i2<7i) = P3((oi - ze + zhi)h2Gi)

= Pz{o\h2Gx - zh2Gi + zh\h2Gi).

Then for P3(cricr2cr1 — g ï ~ 1g 2~ 1g i ~ 1) we obtain the following expression:

P3{gig2gi - Gi~1a2~1Gi~1) = zP3(e + gx~2 + g2gx + zh2Gi)

— 2P3(2<Ti/l2C7i + h\G2G i + zh\h2G\).

Substituting this in to the expression for P3(Y3+) gives

= 3P3(e + g\ + erf2) + z2(5 — l)P 3(hi) + 2z2P3(e + Gi~2 + g2gi + zh2Gi)

— 2z2P3{2G\h2Gi + h\G2G\ + zh\h2G\)

+ z P 3 (g 2~ 2g 1~ 1 - g 2g 2) + 22P3(n_1cri_1/i2cr1_1 - V G ih 2G i)

We will evaluate g 2~ 2g \ ~ x — g 2g i 2 shortly; using quadratic relations previously
derived we know that we will obtain words of length two or one. Thus it suits

us to now eliminate the remaining words of length three which contain hx. By
considering these words in the setting P3 we obtain the following values:

P3(cti xh2ax *) = a 1
P3{hxh2a i) = v~xP3(hx)

P3(crih2<Ji) = a 1
P^{h\a2ai) = Sa1

Then

P3(Y3+) = 3P3(a2 + ax2) + (2z2 + 3)P3(e) + z2(5 - l) P 3(hx) - 2 v - 1z3P3(h1)

-\- 2z2 P3{<7\ 2 + (J2&X + zh2Gx) + zP3((J2 2(71 1 — 0 20 \)

— 2z25a1 + 2z2(Æ — 3)a_1

We reduce the expression P3(a2 2o x 1 — <j2<Ji2) using quadratic relations. We
present single crossings as products of diagrams in the annulus.

Pz{pi~2ox~x - o 2o 2) = P3((zv~lh2 - zo2~x + e) ^ -1)

- P^{pi{zo\ - zvhi + e))

= zP3{v~lh2ax~l + va2hx)

- zP3(a2~1ax~1 + a2ax)

+ (r(yx) - l (Y x)) • a2.

Making this substitution we have an expression for P3(Y3+) that contains words
of at most length two.

P3(Y+) = 3P3(a2 + ax 2) + (2z2 + 3)P3{ e) + z 2(6 - l) P 3(h1) - 2 v - 1z3P3(hl)

We use skein relations again to remove all words of length two. For now we
leave the term of P3(<r2 + erf2).

+ 2z2P3(ax 2 + zh2ax) + z2P3(a2ax - a2 lax x)

+ z2P3(v~lh2<Jx l + va2hx)

+ z(r(Yx) - l(Yx)) ■ a2 - 2z2ôal + 2z2(6 - 3)a~1

We see the following expression for P3(a2ax — cr2 1ax *) following a similar
method to before:

Pz{cr2o i - a2~1ai ~1) = P3(a2cr1 - cr2_ 1t7i) + P3{a2~lax - cr2~1<Ji~1)

= zP3((e — h2)ai) + zP3(a2~1(e — hi)))

= zP3(ax + (Ti_1 - h2ax - cr2_ 1/i1)

= z{l{Yi) + r(Yi)) • a2 - zP3(h2ax + cr2_1hi)

Applying this with the quadratic relation for u p 2, and collecting terms, we
obtain the following expression for P3(Y3+):

PsiY^) = SPai&l + 2) + (4z2 + 3)P3(e) + z2(S — l)P 3(hx)

+ z2P3(v~1h2&i1 + va2hi + zh2ai - za ^ h i)

+ (23 — z)(l(Yi) — r(Yi)) • a2 — 2z26a1 + 2z2(d — 3)a_1

By considering their diagrams we can evaluate the following words of length
two as follows:

P afaai) = l(Yx) = P3(a2hx)
Pz(h2o p l) = r{Yi) = P a ^ - 1̂)

We make these substitutions, along with the quadratic relation for cr\2 + cq-2 ,
and recall from Lemma 7.1 that /(Yi) — r(Yi) = z(a - a“ 1). Finally, in the
setting of P3 we observe that e evaluates to a3 and a single hi evaluates to o1.

P3 (Y3+) — 3 P3((z2 + 2)e + z2(6 — 2)hx) + (4z2 + 3)P3(e) + z2(S — l)P 3(hx)

+ ¿ {v - 'r iY t) + vl{Y\) + zl(Yx) - zr{Yx))

+ (z3 — z)(l(Yx) — r(Yi)) ■ cl2 ~ 2z2Sa1 + 2z2(S — 3)a_1

= (7z2 + 9)P3(e) + z2(4 6 -7)P 3(h1)

+ z2(v~1r(Y1) + vl{Yx)) + z4(a4 — a-1)

+ (z4 — z2)(a1 — a-1) • a2 — 2z25a1 + 2z2(6 — 3)a_1

= (2:4 + 62:2 + 9)a3 + 2z2(<5 — 3)ax

+ z2(2S — 6 — ¿:2)a_1 + ,z2(v- 1r(Yi) + vl(Yx)).

7.5.2 N2,̂ (7iU^Y ̂-f- <Ji Ŷ (T2 1 + /̂3Crl_1Cr2_1)

Denote cria2Y3 + aiY3a2~x + Y3ci~ lo2~l as the following:

Y3 := <ji(j2Y3 + <J\Y3o2 1 + Y3cri xo2 l .

Lem m a 7.8 N3(Y f) = (z4 + 6z2 + 9)a~3 + z2(3 S - 8 - z2)a~x + z2(S - 4)o1 +
z2(v~1r(Y1) + vl(Yi)).

Proof

Omitted for brevity. By a similar method of manipulations to the P3(Yf*~) case
we obtain the result. Due to the initial form that the expression takes the
rearrangement in this case is easier than in the previous case. I

7.5.3 Proof of Theorem 7.6

Proof

In Lemmas 7.7 and 7.8 we calculated

P3(r 3+) = (z4 + 6z2 + 9)a3 + 2z2{ 6 - 3) a 1

+ z2(25 — 6 — z2)a~l + z2{v~xr(Y]) + vl{Yi))

N3(Y3~) = (z4 + 6z2 + 9)a~3 + z2(3 5 - 8 - z 2)a -1

+ z2(5 — 4)ax + z2(v~1r(Yi) + vl(Yi)).

By Lemma 7.4 we know l(Y3) - r(Y3) = z(P3(Y3+) - N3(Y3~)). Then

P3(Y3+) - N3(Y3~) = (z4 + 6z2 + 9)(a3 — a~3) + z2(2S — 6 — S -h 4)ax

+ z2(25 — 6 — z2 — 35 + 8 + z2)a~l

= (z4 + 6z2 + 9)(a3 - a-3) + z2(6 - 2)«1 + z2(2 - <5)a~1

= (z2 + 3)2(a3 - a-3) + z2(6 - 2)(aJ - a-"1).

Thus

l(Y3) - r (Y 3) = z{P3(Y3+) - N3(Y f))

— z(z2 + 3)2(a3 - a-3) + z3(8 - 2)(a - a-1),

as required.

t

7.6 Yn, n > 3

Following calculations for Y3 a variety of methods were used to calculate the
linear combination of diagrams expressing l(Y4) — r(Y4), but all of them were ul
timately unsuccessful. The problems in resolving these calculations was largely
due to human error. For Y4 and Y4- we begin with sixteen braid words on
four strings, with each word initially being of length six. Some of these can
be simplified immediately, but especially for the calculation of P4(F4+) we find
that we have a large number of words and a large number of intermediate steps
when using skein relations to reduce the length of braid words.

It seems that for n > 3, the number of intermediate terms and steps in
the calculation of Pn(Fn+) — Nn(Y ~) is too great to realistically be achieved by
hand. There are too many terms that can occur, and too many steps that must
be taken - both of which contribute to the possibility of human error.

A Maple routine adapted from the algorithms of Chapter 3 gave mixed
results. Coefficients of equivalent diagrams were collected, and we can be con
fident that no errors were made to this point. This left the task of having to
manually evaluate a large number of terms with the added complication that
some terms that we had previously resolved with skein relations (e.g., reducing
of cr2cri — now had only one term remaining in the expression.

It is possible that an alternate form of notation might be used to simplify
things, although we have not been able to use any so far to great effect.

By performing calculations modulo the turnback relation in the main Kauff
man skein relation we were able to eliminate elements containing hi for calcula
tions of ¿(y4) - r (y 4); while this did not allow us to make a complete calculation
for F4, it did allow us to confirm the following coefficient of (a4 — a-4):

1{Y4) — r(F4) = (z6 + 8z4 + 20z2 + 16)(a4 — a“ 4) modulo elements of hi.

We have performed explicit calculations for only a few cases, but there are
some indications as to what might occur in general for l(Yn) — r(Yn). To close
this chapter let us state a few conjectures that we believe to be true, but have
not been able to show.

162

P rop osition 7.9 We can express l(Yn) — r(Yn) as a linear combination of
annulus diagrams am, m G Z, — n < m < n, with coefficients c„iTO from the
Kauffman skein of the annulus. I.e.,

l(Yn) r(Yn) — c„ina + cn>n—\a -(■... -t- cn^ na

This is clear from the fact that use of the skein relations will not introduce
extra arcs in the annulus: action of skein relations gives a linear combination
of diagrams with the same or fewer arcs.

In [31], using different notation, it was shown that an element in the Kauff
man skein of the annulus on n strings can be written as a linear combination
of elements with n strings and elements with n — 2k strings (for 1 < k <
k e If). This coincides with our results for F3 (Theorem 7.6).

Also, from observations in the Homfly skein of the annulus, and our calcula
tions for 1{Y3) —r(Y3) and l(Yf) — r(T4), we would conjecture that cn _n = —cn>„
for l(Yn) —r(Yn) in general. We expect this because the calculations that showed
the result in the Y4 case were modulo the turnback relation, which is diagram-
matically the same as the Homfly relation (although without orientation). It
is reasonable to expect that the coefficient of a0 would be 0 for cases of even n.

From all of these observations and expectations, and coupled with the re
sult of Theorem 7.6 showing c3j_i = —c3)i we thus make the following final
conjecture.

C on jecture 7.10 We can express l(Yn) — r(Yn) as a linear combination of
annulus diagrams am, m e Z, with coefficients cn>m from the Kauffman skein
of the annulus such that

l(Yn) —r(Yn) = Cn,n(an- a - n)+ cn,n_2(an- 2- a ^ n- ^) + . . .+cn^ 2t(an- 2t- a - ^)

where t is the largest integer less than or equal to |.

Appendix A

Program Code

In this appendix we give annotated code for the Maple programs Seqlndex,
k _p la it and h_p la it that are mentioned in Chapters 3 and 4 and are devel
oped from the material of those chapters.

A .l Seqlndex

There are points in the programs k _p la it and h _p la it where the program
searches through the array of ¿-sequences in order to find a particular sequence
to pass coefficients to; these are for the actions of renumbering, rearrangement
and multiplication. Without any other considerations this could be a lengthy
task as we have to search through a list of elements to find the element
that we require.

The program Seqlndex is designed to look through the set of ¿-sequences
for a specific ¿-sequence and then return the index of that sequence to the main
program. It does this efficiently firstly by taking advantage of the way that the
permute command works in Maple in order to create the array of ¿-sequences,
and secondly by exploiting the combinatorics of how Maple orders the list of
¿-sequences.

We divide the ordered list of ¿-sequences into ¿ sections of equal size (size
and the first digit of the ¿-sequence, T, that we wish to locate is enough

to tell us which section it is located in. Already we restrict our search to a
subset one kth the size of the set of /^-sequences.

We know this due to the regularity with which elements are permuted in
Maple; because of that regularity we can narrow the portion of the list that we
will have to search through even further by comparing the second digit of T
with the first. Then, depending on whether or not it is smaller, larger or the
same, we can subdivide the list into even smaller sections. When we search in
this way we are effectively searching through all of the sequences which have
the same two first digits as T.

This is a massive reduction on having to search through the entire list in
order to find an element, and also a great reduction on searching through a kth
of the set of ^-sequences based on the first digit of T alone.

Input for this routine is the the array to be searched through, and the
number sequence to be found. Output is the index for the sequence in the
array.

###SeqIndex###
##A procedure used to boost e ff ic iency in the main
##H0MFLY and Kauffman procedures that I ’ ve created
##Works fo r both HOMFLY and Kauffman with
##no extra modifications fo r either needed
Seqlndex := proc(Ay,T)
local k, m, a, p, lx:
##In an e ffo r t to make i t as f lex ib le as possible,
##the procedure finds the index of the number
##sequence that is required
##The index is then returned to the main program
##where i t is used in rearrangement routines
##or for multiplication
##The input is the array of number sequences
##that is being searched, Ay,
##and the desired number sequence, T

166

t

k:=nops(T)/2: m:=ArrayNumElems(Ay):
##m is obtained from the array that is brought in
##I decided to obtain the value of k by halving
##the number of operands in the number sequence
##that we wish to find, in order to reduce the number
##of arguments the procedure has to take in
lx:=0: p:=0:
##Ix w il l be the index of the element we wish to find
##p is a marker that halts the search once the
##sequence is found
##We have three situations, T[1]=T[2], T[1]<T[2] or T[1]>T[2]
##When the correct index is found lx is set to
##that value, and the search ends
i f T[1]=T[2] then

while p=0 do
fo r a from 1+((T[1]- 1) *m/k)

+ (T [l] - l) * 2 * (2 * (k - l)) ! / (2 “ (k - l))
to (CT[1]-1)*m/k)

+ (2 * T [l] - l) * (2 * (k - l)) ! / (2 “ (k-l)) do
i f Ay[a]=T then

Ix:=a: p :=1:
f i :

od:
od:

e l i f T[1]<T[2] then
while p=0 do

fo r a from l+ ((T [l] -l)*m /k)
+ (2 * T [2] -3)* (2 * (k - l)) ! / (2 ~ (k - l))

to ((T[1]-1)*m/k)
+ (2 * T [2] - l)* (2 * (k - l)) ! / (2~(k—1)) do

i f Ay[a]=T then

167

t

Ix:=a: p:=l:
fi:

od:
od:

elif T [1]> T [2] then
while p=0 do

for a from l+((T[l]-1)*m/k)
+ (T[2]-l)*2*(2*(k-l))!/(2~(k-l))

to ((T[l]-l)*m/k)
+2*T[2]*(2*(k-l))!/(2~(k-l)) do •

if Ay[a]=T then
Ix:=a: p:=l:

fi:
od:

od:
fi:
##The procedure ends by returning lx
return Ix;
end;

168

t

A . 2 k_plait

The comments for the program are contained within the listing for the program
itself.

Input for the program is the width of the plait k, followed by a string of c
non-zero integers between —(k — 1) and (k — 1) indicating the braid word of
length c of the plait presentation. Output is the Kauffman polynomial of the
plait presentation in variables v and z, collecting coefficients of v against z.

###k_plait###
##

#Input fo r program is k followed by a string of positive
#and negative numbers indicating crossings in the
#plait presentation

#In itia lisa tion Part 1

#Introduce the permute command outside of
#the main program lis t in g
###
#"permute" allows us to generate the set of
#k-sequences

with(combinat.permute):

In it ia lisa tion Part 2
##
#We in it ia l is e the program and define
#the variables that we w ill use

k_plait := proc()
loca l a .b . c .d . f . i . j .k . l .m .n .p . r . t .w .x .y ,

169

t

A,Anow,Anext,B,Bnow,Bnext,C,Y,Ynext,
depth,posn, switch, sm.plus, sm_minus,
mult_temp, close_temp, close_mult,
delta,output :
##

#With the exception of k, the p lait number,
#lower case variables are looping variables
#or flags, and occasionally temporary variables
###
#Upper case variables are arrays/lists ^
#generated by the program
###
#Variables with "names" w ill be explained
#in commenting in the f i r s t instance of their use
##

#Initia lisation Part 3
##

#In the fin a l in it ia l isa t io n section we
#create the set of k-sequences and
#the array that stores coe ffic ien ts
##
k:=args[l]: •
Y : = [s e q (x [i] , i= l . .2 * k)] :
for a from 1 to 2*k do

i f type(a/2,integer) then
Y [a]:=a/2:

else
Y[a] : = (a+l)/2 :

f i :
od:
##Preceding lines generate the in it ia l

170 9

##sequence that we then permute in
##the following lines in order to give
##the set of k-sequences, which we
##store in arrays, along with an array
##for the coe ffic ien ts attached to the
##sequences
C:=permute(Y,2*k):
A:=Array(1 . .nops(C)) :
B:=Array(1 . .nops(C)) :
m:=ArrayNumElems(A):
fo r a from 1 to m do A [a] :=C[a] : B[a]:=0: od:
B[1] : = 1 :
C:=’ C’ :

#In itia lisa tion complete

#Start of the real mechanisms of the program

fo r n from 2 to nargs do #START OF MAIN LOOP
i:=args[n]: #Crossing from the p la it

#START OF REARRANGEMENT/RENUMBERING LOOP

fo r r from k to 2 by -1 do
fo r j from 1 to m do #Looping through a l l A,B

i f i>0 then #Case for positive crossings
i f B[j] <>0 and A[j] [i+ l]=r and A [j] [i]< r then

depth:= [0 ,0 ,0 ,0] : posn := [0 ,0 ,0 ,0] : w:=l:
##If rearrangement is needed for a
##particular k-sequence then these
##lines obtain the information

t

##that allow us to determine the
##k-sequence that coe ffic ien ts
##will be passed to.
####
##depth and posn store the
##information for the adjacent
##arcs that we are performing
##skein relations on
####
##If rearrangement is needed for a
##k-sequence to be compatible
##then we always need the
##following lines to get key
##information

while w<5 do
for c from 1 to 2*k do

i f A [j] [c]= r-1 or A [j] [c]= r then
depth[w] :=A[j] [c] : posn[w]:=c: w:=w+l:

f i :
od :

od:
##For rearrangement or renumbering
##we always pass coe ffic ien ts to a
##k-sequence represented by the
##object ’ switch’

switch:=A[j] :
for f from 1 to 2*k do

i f A [j] [f] =r—1 then
sw itch[f] :=r :

e l i f A [j] [f]= r then
sw itch [f] : = r - l :

172

t

f i :
od:

##If we need more than the action
##of a renumbering operation we need
##the following series of steps to
##determine the other k-sequences
##that coe ffic ien ts are passed to
####
##sm_plus and sm_minus are

##are the two k-sequences that
##represent the smoothings in
##the main skein relations
####
##sm_plus and sm_minus are
##determined by the value of
##depth[l], along with various
##posn values

i f depth[l]=depth[3] then
sm_plus:=A[j] : sm_minus:=A
i f depth[l]=r then

i f posn[l]= i+l then
sm_plus[posn[l]]:=r-l:
sm_plus[posn [3]] := r :
sm.minus[posn[l]]:=r-l
sm_minus[posn[3]] : =r :

else
sm_plus[posn[1]] := r :
sm_plus[posn[3]] := r - l :
sm_minus[posn[1]] : =r:
sm_minus[posn[3]] := r -l :

[j] :

sm_plus[posn[2]] := r -l :
sm_plus[posn[4]] :=r :

: sm_minus[posn[2]] := r :
sm_minus[posn[4]] :=r-l

sm.plus[posn[2]] :=r :
sm_plus[posn[4]] := r -1 :
sm_minus[posn[2]] :=r-l

: sm_minus[posn[4]] := r :
f i :

173

t

e l i f depth [l]= r - l then
i f posn[2]=i+l then

sm_plus[posn[l]]:=r:
sm_plus[posn[3]] := r - l :
sm_minus[posn[1]] := r - l :
sm_minus[posn[3]] :=r:

else
sm_plus[posn[l]]:=r-1:
sm.plus[posn[3]] :=r:
sm_minus[posn[l]]:=r:
sm_minus[posn[3]] := r -l :

f i :
f i :

f i :

sm_plus[posn[2]]:=r-l:
sm_plus[posn[4]] : = r :
sm_minus[posn[2]] : = r -1 :
sm_minus[posn[4]] : = r :

sm_plus[posn[2]] : = r :
sm_plus[posn[4]] : = r -1 :
sm_minus[posn[2]] : = r :
sm_minus[posn[4]] : = r - l :

##Having determined the k-sequences that
##we have to pass coe ffic ien ts to , we now
##have the routines that move the coe ffic ien ts
####
##SeqIndex is a called program that finds
##the index of a required k-sequence

y:=SeqIndex(A,switch):
B[y] :=simplify(B[y]+B[j]) : •
i f depth[l]=depth[3] then

y :=SeqIndex(A, sm_plus):
B[y] :=simplify(B[y]+z*B[j]) :
y :=SeqIndex(A, sm_minus):
B[y] :=simplify(B[y]-z*B[j]) :

f i :
B [j] : =0 :

##Delete coe ff ic ien t after rearrangement
f i :

174

t

e l i f i<0 then #Case for negative crossings
i f B[j] <>0 and A [j] [a b s (i)]= r

and A[j] [abs(i) + l]<r then
depth:= [0 ,0 ,0 ,0] : posn:= [0 ,0 ,0 ,0] : w:=1:
while w<5 do

for c from 1 to 2*k do
i f A [j] [c]= r -1 or A [j] [c]=r then

depth[w] :=A[j] [c] : posn[w]:=c: w:=w+l:
f i :

• od:
od:

##In this section we have similar
##pieces of code to previously; these
##deal with the case when we need
##to ensure compatibility for an
##inverse

switch:=A[j] :
for f from 1 to 2*k do

i f A [j] [f]= r - l then
sw itch [f] :=r :

e l i f A [j] [f]= r then
^ s w it c h [f] := r - l :

f i :
od:
i f depth[l]=depth[3] then
sm_plus:=A[j]: sm_minus:=A[j]:
if depth[l]=r-l then
if posn[4]=abs(i) then
sm_plus[posn[l]]:=r-l: sm_plus[posn[2]]:=r:
sm_plus[posn[3]]:=r: sm_plus [posn[4]]:=r-l
sm_minus[posn[1]]:=r: sm_minus [posn[2]]:=r:

175

t

sm_minus [posn[3]] := r - l :
else

sm_plus[posn[l]]:=r:
sm_plus [posn [3]] := r - l :
sm_minus[posn[l]]:=r-1:
sm_minus[posn[3]] :=r:

f i :
e l i f depth[l]=r then

i f posn[l]=abs(i) then
sm_plus[posn[l]]:=r-l:
sm_plus[posn[3]] :=r:
sm_minus[posn[1]] :=r-1:
sm_minus[posn[3]] :=r:

else
sm.plus[posn[l]]:=r:
sm_plus[posn[3]] := r - l :
sm_minus[posn[1]] :=r:
sm_minus[posn[3]] := r -l :

f i :
f i :

f i :
y :=SeqIndex(A, switch):
B [y] :=simplify(B[y]+B[j]) :
i f depth[l]=depth[3] then

y:=SeqIndex(A,sm_plus):
B[y] :=simplify(B[y]+z*B[j]) :
y :=SeqIndex(A, sm_minus):
B [y] :=sim plify(B[y]-z*B[j]) :

f i :
B[j] :=0:

f i :

sm_minus[posn[4]] : = r - l :

sm_plus[posn[2]] := r - l :
sm_plus[posn[4]] : = r :
sm.minus[posn[2]] : = r - l :
sm_minus[posn[4]] : = r :

sm_plus[posn[2]] : = r - 1 :
sm_plus[posn[4]] : = r :
sm_rainus[posn[2]] :=r:
sm_minus[posn[4]] := r - l :

sm.plus[posn[2]] : = r :
sm_plus[posn[4]] : = r - l :
sm_minus[posn[2]] := r - l :
sm_minus[posn[4]] : = r :

176

f i : #End of routine for negative crossings
od: #End of loop through A,B

od:

#END OF REARRANGEMENT/RENUMBERING LOOP
##

#By this point in the algorithm, the array
#of coe ffic ien ts has been rearranged so
#that the only k-sequences which can
#have non-zero coe ff ic ien ts are those
#which are compatible with the generator
#or inverse
###
#This is achieved after k-1 passes of the
#set of k-sequences

#MULTIPLICATION PROCEDURE
##

#This is a much shorter procedure, there
#is much less work to do in terms
#of searching through the arrays; we have
#two s lightly d ifferent routines depending
#on whether or not we have a positive or
#negative crossing

i f i>0 then
##Generator

for t from 1 to m do
i f B[t]<>0 and (A [tU [abs(i)]>=A[t][abs(i) + l]) then

mult_temp:=A[t]:
mult_temp[abs(i)]:=A[t] [abs(i) + l] :

t

m ult_tem p[abs(i)+ l]:=A[t][abs(i)]:
i f mult_temp=A[t] then

B[t] :=v*B[t] :
else

y:=SeqIndex(A,mult_temp):
B [y] : =B [t] :
B [t] :=0:

f i :
f i :

od:
e l i f i<0 then
##Inverse

for t from 1 to m do
i f B[t]<>0 and (A [t][abs(i)]<= A [t][abs(i) + l]) then

mult_temp:=A[t]:
m ult_tem p[abs(i)]:=A[t][abs(i)+ l]:
m ult_tem p[abs(i)+ l]:=A [t][abs(i)]:
i f mult_temp=A[t] then

B[t] :=v~(- l)*B[t] :
else

y:=SeqIndex(A,mult_temp):
B [y] : =B [t] :
B [t] :=0:

f i :
f i :

od:
f i :

od:

#END OF MAIN REARRANGEMENT AND MULTIPLICATION LOOP
##

178

t

«CLOSURE ROUTINE

«After a l l of the multiplications are complete
«we must close o f f each k-sequence because of
«the ’ cups’
###

«We perform the closure one ’ cup’ at a time.

«k is passed in, but i t is only used to give a
«value to the f i r s t loop which controls the

«overa ll process and how many times
« i t is repeated

«INITIALISING CLOSURE PROCEDURE

Anow:=A: Bnow:=B:
A: = >A> : B:=’ B' : m^'m ’ :
m:=ArrayNumElems(Anow):
d e lta := l+ (v ~ (- l) -v) /z :
««Define delta, value of d is jo in t unknot

^ «START CLOSURE LOOP

for 1 from k to 2 by -1 do
i f (nops(Y)/2)>2 then

««Don't need rearrangement fo r closure
« «o f 2-sequence
####
««Start closure rearrangement/renumbering

for r from (nops(Y)/2) to 3 by -1 do
fo r j from 1 to m do

179

i f (Bnow[j]<>0) and
((Anow[j] [l]=r and Anow[j] [2]<(r—1))

or (Anow[j] [2]=r and Anow[j] [l] < (r - l))) then
depth:= [0 ,0 ,0 ,0] : posn:= [0 ,0 ,0 ,0] : w:=1:
while w<5 do

for c from 1 to nops(Y) do
i f Anow[j] [c]=r or Anow[j] [c]=r-l then

depth[w]:=Anow[j][c]: posn[w]:=c: w:=w+l:
f i :

od:
od:

##As before i f renumbering or
##rearrangement is required
##we always need a k-sequence
##where the numbers r and r-1
##are interchanged

switch:=Anow[j]:
for i from 1 to nops(Y) do

i f Anow[j][i]=r then
sw itch [i] := r - l :

e l i f Anow[j] [i]= r - l then
s w itch [i] :=r:

f i :
od:
i f depth[l]=depth[3] then

##0nly one set of rearrangements
##required.
##Neighbouring arcs w ill always be
##of the form [r , r - l , r , r - l] i f we
##need to rearrange

sm_plus:=Anow [j] : sm_minus:=Anow [j] :

t

sm_plus[posn[l]]:=r-l:
sm_plus[posn[3]]:=r:
sm_minus[posn[l]]:=r-l:
sm_minus[posn[3]]:=r:

sm_plus[posn[2]] := r - l :
sm_plus[posn[4]] : =r:
sm_minus[posn[2]] :=r :
sm_minus[posn[4]] :=r-l

y:=SeqIndex(Anow,switch):
Bnow[y] :=simplify(Bnow[y]+Bnow[j]) :
i f depth[l]=depth[3] then

y :=SeqIndex(Anow,sm_plus):
Bnow[y]:=simplify(Bnow[y]+z*Bnow [j]) :
y:=SeqIndex(Anow,sm_minus):
Bnow[y]:=simplify(Bnow[y]-z*Bnow[j]) :

f i :
Bnow[j] :=0:

f i :

f i :
##Now a l l sequences are closure-compatible
####
##Need to in it ia l is e variables that w ill be used
##for the next level of closure, i . e . , to pass

##to sequences with one less arc
Ynext:=Y[l. . (n ops(Y)-2)]:
##Ynext is the base generator string
C:=permute(Ynext,nops(Ynext)) :
Anext:=Array(1 . .nops(C)) :
Bnext:=Array(1 . .nops(C)) :
##Anext is the set of sequences that
##coeffic ients w ill be passed to
####

181

t

##Bnext stores corresponding
##coefficients for Anext
for a from 1 to nops(C) do

Anext [a] : =C [a] :
Bnext[a]:=0:

od:
C: = ’ C> :

##Perform closure
for j from 1 to m do

i f Bnow[j]<>0 then
close_temp:=Anow[j][3 . .nops(Y)]:
##close_temp is the sequence
##that w ill result from the action
##of closure
close_mult:=0:
i f Anow[j] [l]=Anow[j] [2] then

close.m ult:=delta*Bnow[j]:
else

##The following determines the
##multiplier that is carried through

depth: = [Anow[j] [1] ,Anow[j] [2] ,0,0] : w:=3:
while w<5 do

for b from 3 to nops(Y) do
i f (Anow[j] [b]=Anow[j] [1])

or (Anow[j] [b]=Anow[j] [2]) then
depth[w]:=Anow[j] [b] : w:=w+1:

f i :
od:

od:
i f depth[2]=depth[3] then

close_mult:=l*Bnow[j]:

182

t

e l i f depth[2]<depth[3] then
close_mult:=(l/v)*Bnow[j]:

e l i f depth[2]>depth[3] then
close_mult:=v*Bnow[j]:

f i :
f i :
##close_mult, by this point
##is the co e ff ic ie n t that is
##passed to the next stage

##accounting for any multiplier
for i from 1 to nops(Ynext) do

i f close_temp[i]>min(Anow[j] [1] ,Anow[j] [2]) then
close_tem p[i]:=close_temp[i]-1:

f i :
od:
y:=SeqIndex(Anext,close_temp):
Bnext[y]:=simplify(Bnext[y]+close_mult):

f i :
od:

#END CLOSURE

^ ##
##We have to in it ia l is e Anow, Bnow,
##Y and m for the next loop

Anow:= ’ Anow’ : Bnow:= ’ Bnow’ :
Anow:=Anext: Bnow:=Bnext:
m:=ArrayNumElems(Anow):
Anext:= ,Anext' : Bnext:=; Bnext’ :
Y:=Ynext:

#END CLOSURE

183

t

#END MAIN PROGRAM
##

od :

#FINAL OUTPUT STAGE
##

output:=Bnow[l]:
##The polynomial of the k -p la it presentation
##has been calculated, and we output this
##with coe ff ic ien ts of v on z
output :=collect(expand(output),z):
end;

184

t

A . 3 h_plait

The comments for the program are contained within the listing for the program
itself.

Input for the program is the width of the plait k, followed by a string of
c non-zero integers between —(k — 1) and (k — 1) indicating the braid word
of length c of the plait presentation. Output is the Homfly polynomial of the
plait presentation in variables v and z, collecting coefficients of v against z.

As stated in Chapter 4 and the program listing, this implementation re
quires that the braid word given respect an initial orientation sequence of
(—1,1, —1,1, —1,1)- If this is not the case then there will most likely be
serious error in any calculations; an implementation could be written so that
the initial orientation sequence is a value that is taken from input.

###h_plait###

#IMPORTANT NOTE:
#Input for program is k followed by a
#string of positive and negative numbers
#indicating crossings in an undirected
#braid presentation (ie , monotonic
#but with no or ien tation).
###

#Orientation is done so that the in it ia l
#tangle with coe ff ic ien t 1 has
#orientation (-1 ,1 , -1 ,1 , . . . , - 1 ,1) .
###
#If the presentation is not arranged as such,
#then the program w ill not run correctly -
#essentially the orientation w ill not be
#consistent throughout - and errors w ill most
#certainly occur.

185

t

#Initia lisation Part 1

#Introduce the permute command outside of
#the main program lis t in g
###
#"permute" allows us to generate the set of
#k-sequences
##

with(combinat.permute):

#In itia lisation Part 2

#We in it ia l is e the program and define
#the variables that we w ill use
##

with(combinat.permute):
h_plait := procO
local a .b .c . f . i . j .k .m .n .p .r .t .w .y ,m u 2 ,
A,Anow,Anext,B,Bnow,Bnext,C,Y,Ynext,
S, S1,output.delta, close.temp,
close_mult,mult_temp,switch,
smooth,depth,posn, s ign :

#With the exception of k, the plait number,
#lower case variables are looping variables
#or flags, and occasionally temporary variables
###
#Upper case variables are arrays/lists
#generated by the program
###

186

#Variables with "names" w ill be explained
#in commenting in the f i r s t instance of their use

#In itia lisa tion Part 3

#In the fina l in it ia l isa t io n section we
#create the set of k-sequences and
#the array that stores coe ffic ien ts
###
#We also have to create the
#sequence which stores the
#orientation information for
#the k-sequences
##

k:=args[1]:
Y : = [s e q (x [i] , i= l . ,2 * k)] :
S := [s e q (x [i] , i= l . ,2 * k)] :
for a from 1 to 2*k do

i f type(a /2 ,integer) then
Y [a] :=a/2: S [a] := l:

else
Y [a] : = (a+ l)/2 : S [a]:=-1 :

f i :
od:
#The preceding lines generate the
in it ia l sequence whose entries are
#permuted to give the set of k-sequences.
###

#We also create the l i s t which holds
#the orientation information of the
#non-zero coe ff ic ien t k-sequences

187

C:=permute(Y,2*k):
A:=Array(l..nops(C)):
B:=Array(1 . .nops(C)) :
m:=ArrayNuraElems(A):
for a from 1 to m do

A [a] : =C [a] : B [a] : =0:
od:
B [1] := 1 :

C:=’ C’ :
#The preceding lines complete the ^
in it ia l isa t io n .
###
#The set of k-sequences is created
#from the permutation, and arrays
#are set up to hold these and the
coe ff ic ien ts .
###
#We devalue C, so that memory
#is not being taken up by this
#during the program’ s operation.
##

#Initia lisation complete %

##

#Start of the main mechanisms of the program

for n from 2 to nargs do #START OF MAIN LOOP
i : =args[n]: #Crossing from the p la it

##

#START OF REARRANGEMENT/RENUMBERING LOOP

for r from k to 2 by -1 do

188

t

fo r j from 1 to m do #Looping through a l l A,B
i f i>0 then #Case for positive crossings

i f B[j]<>0 and A [j] [i+ l]= r and A[j] [i]<r then
depth : = [0 ,0 ,0 ,0] : posn: = [0 ,0 ,0 ,0] :
w:=l: mu2:=0:

##If rearrangement is needed for a
##particular k-sequence then these lines
##obtain the information that allow us to
##determine the k-sequence(s) that
##coeffic ients w ill be passed to.

while w<5 do
for c from 1 to 2*k do

i f A [j][c]= r-1 or A[j] [c]=r then
depth[w]:= A [j] [c] : posn[w]: = c : w:=w+l:

f i :
od:

od:
##If rearrangement or renumbering
##is needed we always pass coe ff ic ien ts
##to a k-sequence represented by
##the variable ’ switch’

switch :=A[j] :
for f from 1 to 2*k do

i f A [j] [f]= r -1 then
sw itch[f] :=r :

e l i f A [j] [f]= r then
s w it c h [f] := r - l :

f i :
od:

##If rearrangement for a sequence is
##more than the action of a renumbering

189

t

##operation then we need the following
##long series of lines to determine the
##other sequence that coeffic ients
##are passed to.

i f depth[l]=depth[3] then
smooth:=A[j] :
s ign : = [S[posn[l]] ,S[posn[2]]] :
i f depth[1]=r—1 then

##smooth is determined by several factors:
##the value of depth[1], the sequence ’ sign’
##which is constructed from the orientation
##information stored in S, and various posn
##values which give the final places of the
##arcs r and r-1 in the new sequence,

i f sign[l]=sign[2] then
i f posn[2]=i+l then

smooth [posn [1]] :=r: smooth[posn[2]] :=r-l
smooth[posn[3]] := r -l : smooth[posn[4]] : =r :

else
smooth[posn[1]] :=r-l : smooth[posn[2]] :=r:
smooth[posn[3]] :=r: smooth[posn[4]] :=r-l

f i :
mu2:=z:

e l i f sign[l]<>sign[2] then
i f posn[2]=i+l then

smooth[posn[1]] :=r-l : smooth[posn[2]] :=r-l
smooth[posn[3]] :=r: smooth[posn[4]] :=r:

else
smooth[posn[1]] :=r: smooth[posn[2]] :=r:
smooth[posn [3]] := r - l : smooth[posn[4]] :=r-l

f i :

190

t

mu2:= -z :
f i :

##mu2 stores the value of the multiplier
##for the rearrangement, which in
##this program is always z or -z

e l i f depth[l]=r then
i f sign[l]=sign[2] then

i f posn[l]= i+l then
sm ooth[posn[l]]:=r-l:
smooth[posn[3]] :=r:

else
smooth[posn[1]] :=r:
smooth[posn[3]] := r - l :

f i :

smooth[posn[2]] :=r:
smooth[posn[4]] :=r-l

smooth[posn[2]] :=r-l
smooth[posn[4]] :=r:

mu2:= -z :
e l i f sign[l]<>sign[2] then

i f posn[l]= i+l then
smooth[posn[1]] := r -l :
smooth[posn[3]] :=r:

else
smooth[posn[1]] :=r:
smooth[posn[3]] := r -l :

smooth[posn[2]] :=r-l
smooth[posn[4]] :=r:

smooth[posn[2]] :=r:
smooth[posn[4]] :=r-l

mu2:=z:
f i :

f i :
f i :

##Now we have the routines that move
##the coe ff ic ien ts
####
##SeqIndex is a called program that finds

191

##the index of a required number sequence,
y :=SeqIndex(A, switch):
B [y] :=simplify(B[y]+B [j]) :
i f mu2<>0 then

y :=SeqIndex(A, smooth):
B[y] :=simplify(B[y]+mu2*B[j]) :

f i :
B[j] :=0:

f i : #End of routine for positive crossings
e l i f i<0 then #Case for negative crossings ®

i f B[j]<>0 and A[j] [abs(i)]=r
and A [j] [a b s (i)+ l]< r then

depth:= [0 ,0 ,0 ,0] : posn:= [0 ,0 ,0 ,0] :
w:=l: mu2:=0:
while w<5 do

for c from 1 to 2*k do
i f A[j] [c]= r -l or A [j] [c]= r then

depth[w] :=A[j] [c] : posn[w] :=c: w:=w+l:
f i :

od:
od:

##In this section we have similar %

##pieces of code to previously; these
##deal with the case when we need
##to ensure compatibility for an
##inverse

sw itch :=A [j]:
for f from 1 to 2*k do

i f A [j] [f]= r -1 then
switch [f] := r :

e l i f A [j] [f]= r then

192

t

s w it c h [f] := r - l :
f i :

od:
i f depth[l]=depth[3] then

smooth:=A[j] :
sign:= [S[posn[1]] ,S[posn[2]]] :
i f depth[l]=r-l then

i f sign[l]=sign[2] then
i f posn[4]=abs(i) then

smooth[posn[1]] := r -1: smooth[posn[2]] :=r :
smooth[posn[3]] :=r: smooth[posn[4]] :=r-l

else
smooth[posn[1]] :=r: smooth[posn[2]] :=r-l
smooth[posn[3]] := r -1: smooth[posn[4]] :=r:

f i :
mu2:=z:

e l i f sign[l]<>sign[2] then
i f posn[4]=abs(i) then

smooth[posn[1]] :=r: smooth[posn[2]] := r :
smooth[posn[3]] := r - l : smooth[posn[4]] :=r-l

else
smooth[posn[1]] := r -1: smooth[posn[2]] :=r-l
smooth[posn[3]] :=r: smooth[posn[4]] := r :

f i :
mu2:= -z :

f i :
e l i f depth[l]=r then

i f sign[l]=sign[2] then
i f posn[l]=abs(i) then

smooth[posn[1]] := r - l : smooth[posn[2]] := r :
smooth[posn[3]] :=r: smooth[posn[4]] := r - l :

193

smooth[posn[1]]:=r: smooth[posn[2]]:=r-1
smooth[posn[3]]:=r-l: smooth[posn[4]]:=r:

fi:
mu2:= -z :

e l i f sign[l]<>sign[2] then
i f posn[l]=abs(i) then

smooth[posn[1]] := r -1 :

smooth[posn[3]] :=r:
else

smooth[posn[1]] : = r :

smooth[posn[3]] : = r - 1 :

smooth[posn[2]]:=r-l
smooth[posn[4]]:=r:

smooth[posn[2]]:=r:
smooth[posn[4]]:=r-l

mu2:=z:
f i :

f i :
f i :
y :=SeqIndex(A, switch):
B [y] :=simplify(B[y]+B[j]) :
i f mu2<>0 then

y :=SeqIndex(A, smooth):
B[y] :=simplify(B[y]+mu2*B[j]) :

f i :
B[j]:=0:

fi:
fi: #End of routine for negative crossing

od: #End of loop through A,B
od:

#END OF REARRANGEMENT/RENUMBERING LOOP
##

t

#By this point in the algorithm, the array
#of coefficients has been rearranged so
#that the only k-sequences which can
#have non-zero coefficients are those
#which are compatible with the generator
#or inverse
###
#This is achieved after k-1 passes of the
#set of k-sequences

»MULTIPLICATION PROCEDURE
»»»»»ft############»#####################################
»This is a much shorter procedure, there
»is much less work to do in terms
»of searching through the arrays; we have
»two slightly different routines depending
»on whether or not we have a positive or
»negative crossing

if i>0 then
»»Generator

for t from 1 to m do
if B[t]<>0 and (A[t][i]>=A[t][i+1]) then
mult_temp:=A[t]:
mult_temp[i] :=A[t] [i+1] :
mult_temp[i+l] :=A[t] [i] :
if mult_temp=A[t] then
B[t] :=simplify(v*B[t]) :

else
y:=SeqIndex(A,mult_temp):
B [y] :=B[t] :

195

t

B[t]:=0:
fi:

fi:
od:

elif i<0 then
##Inverse

for t from 1 to m do
if B[t]<>0
and (A[t][abs(i)]<=A[t][abs(i)+l]) then

mult_temp:=A[t]: ®
mult_temp[abs(i)] := A [t] [a b s (i)+ l] :
m ult_tem p[abs(i)+ l]:=A [t][abs(i)]:
i f mult_temp=A[t] then

B[t]:=simplify(v~(-l)*B[t]):
else

y :=SeqIndex(A,mult_temp):
B[y] :=B[t] :
B[t]:=0:

fi:
fi:

od:
fi: *
##The following lines updates
##orientations of the the linear
##combination of k-sequences
SI :=S:
SlCabs(i)]:=S[abs(i)+l]:
Sl[abs(i)+1]:=S[abs(i)]:

:
S :=S1:

S l ^ ' S l * :

196

t

##

od:

#END OF MAIN REARRANGEMENT AND MULTIPLICATION LOOP

#CLOSURE ROUTINE

#After all of the multiplications are complete
#we must close off each k-sequence because of
#the ’cups ’

###

#We perform the closure one ’cup’ at a time.

#k is passed in, but it is only used to give a
#value to the first loop which controls the
#overall process and how many times
#it is repeated

#INITIALISING CLOSURE PROCEDURE

Anow:=A: Bnow:=B:
A : = ’ A ’ : B:=;B>: mr^'m’ :
m:=ArrayNumElems(Anow):
d e l t a := ((l /v) - v) / z :
##Define delta, value of disjoint unknot

#START CLOSURE LOOP

for f from k to 2 by -1 do

if (nops(Y)/2)>2 then
##Don’t need rearrangement

197

##for closure of 2-sequences
for r from (nops(Y)/2) to 3 by -1 do

fo r j from 1 to m do
i f (Bnow[j]<>0) and

((Anow[j][1]=r and Anow[j][2]< (r - l))
or (Anow[j] [2]=r and Anow[j] [l] < (r - l))) then

depth: = [0 ,0 ,0 ,0] : posn: = [0 ,0,0 ,0] :
w:=l: mu2:=0:
while w<5 do

for c from 1 to nops(Y) do
i f Anow[j] [c]=r or Anow[j] [c]= r -l then

depth[w] : =Anow[j] [c] : posn[w]:=c: w:=w+l:
f i :

od:
od:
switch:=Anow[j]:
fo r i from 1 to nops(Y) do

i f Anow[j][i]=r then
sw itch [i] := r - l :

e l i f AnowEj]Ei]=r-l then
switchEi]:=r:

f i :
od:
##Then we have the routine that will
##decide if we need rearrangement
##rather than renumbering
if depth El]=depthE3] then
smooth:=AnowEj]:
sign: = ES Eposn El]],S[posn[2]]]:
if signEl]<>signE2] then

smooth[posn[1]] := r - l : smooth Eposn[2]] := r -l

t

smooth[posn[3]] :=r : smooth[posn[4]] :=r
mu2:=z:

e l i f sign[l]=sign[2] then
smooth[posn[1]] := r - l : smooth[posn[2]] :=r
smooth[posn[3]] :=r: smooth[posn[4]] :=r
mu2:= -z :

f i :
f i :
##Moving coe ffic ien ts
y :=SeqIndex(Anow, switch):
Bnow[y]:=simplify(Bnow[y]+Bnow[j]) :
i f mu2<>0 then

y :=SeqIndex(Anow, smooth):
Bnow[y]:=simplify(Bnow[y]+mu2*Bnow[j]) :

f i :
Bnow[j]:=0:

f i :
od:

od :
f i :

##A11 sequences are closure-compatible
####
##Need to in it ia l is e variables that w ill be used
##for the next leve l of closure, i . e . , to pass
##to sequences with one less arc

Ynext:=Y[1. . (n ops(Y)-2)]:
##Ynext is the base generator string
C:=permute(Ynext,nops(Ynext)) :
Anext:=Array(1 . .nops(C)) :
Bnext:=Array(1 . .nops(C)):
##Anext is the set of sequences that

199

f

##coefficients w ill be passed to
####
##Bnext stores corresponding
##coefficients for Anext
for a from 1 to nops(C) do

Anext[a]:=C[a]: Bnext[a]:=0:
od:
C : = ’ C ’ :
##Perform closure
for j from 1 to m do ®

i f Bnow[j]<>0 then
close_temp:=Anow[j][3 . .nops(Y)]:
close_mult:=0:
i f Anow[j] [1] =Anow[j] [2] then

close_mult:=delta*Bnow[j]:
else

depth: = [Anow[j][1] ,Anow[j] [2] ,0 ,0] : w:=3:
while w<5 do

for b from 3 to nops(Y) do
i f (Anow [j] [b] =Anow [j] [1]) or (Anow[j] [b]=Anow[j] [2]) then

depth[w]:=Anow[j] [b] : w:=w+l:
f i : ft

od:
od:

##The following determines the
##multiplier that is carried through

i f depth[2]=depth[3] then
close_mult:= l*Bnow[j]:

e l i f depth[2]<depth[3] then
close_mult:=v*Bnow[j]:

e l i f depth[2]>depth[3] then

200

t

close_mult: = (l/v)*Bnow [j] :
f i :

f i :
##close_mult, by this point
##is the coe ff ic ien t that is
##passed to the next stage
##accounting for any multiplier

fo r i from 1 to nops(Ynext) do
i f close_temp[i]>min(Anow[j] [1] ,Anow[j] [2]) then

close_tem p[i]:=close_temp[i]-1:
f i :

od:
y :=SeqIndex(Anext, close_temp):
Bnext[y]:=simplify(Bnext[y]+close_mult):

f i :
od:

#END CLOSURE

##Have to in it ia l is e Anow, Bnow,
##Y and m for next loop.
####
##We also need to remove the
##first two elements of S.
Anow:=’Anow’: Bnow:=’Bnow’: Y : = ’ Y ’ :

Anow:=Anext: Bnow:=Bnext: Y:=Ynext:
Anext := ’ Anext’ : Bnext : = ’ Bnext’ : Ynext : = ;,Ynext ’ :
m:=ArrayNumElems(Anow):
S1:=S[3..nops(S)] :
S:= ,S ' : S:=S1: S1:='S1’ :

##

201

f

#END MAIN PROGRAM
##

od:

#FINAL OUTPUT STAGE
##

output:=Bnow[l] :
##The polynomial of the p la it presentation
##has been calculated, and we output this
##with coe ffic ien ts of v on z
output :=collect(expand(output),z):
end;

202

Appendix B

Plait Presentations

In this chapter we give tables of representative words for plait presentations of
knots up to ten crossings.

Unless otherwise stated the diagrams that the presentations are based on
were taken from the Knot Atlas Rolfsen tables [52]. All presentations have
minimal plait width, but not necessarily minimal crossing number for that
width.

203

t

Knot k Presentation Notes

3i 2 2 -1 2
4i 2 -2 -2 3 -2

5i 2 2 -3 -3 -3 2

52 2 -2-2 13 -2
61 2 - 2 - 2 1 1 3 - 2

62 2 2 - 1 2 - 1 - 3 2

63 2 -2 -2 3 -2 1 -2
7i 2 2 -1 -1 -3 -3 -3 2

72 2 - 2 - 2 1 1 3 3 - 2

73 2 - 2 - 2 - 2 1 1 3 -2
74 2 2 -1 -3 2 -1 -3 2

75 2 2 - 1 2 2 - 1 - 3 2

76 2 2 2 -3 -3 2 -3 2

77 2 2 - 3 2 - 1 2 - 3 2

Table B.l: Plait presentations for knots of up to 7 crossings

204

%

Knot k Presentation Notes
81 2 -2 -2 1 1 3 3 3 -2
82 2 2 -1 2 -1 -3 -3 -3 2

83 2 -2 - 2 - 2 - 2 1 3 3 -2
84 2 -2 -2 -2 1 -2 -2 -2 -2
85 3 -2 -4 3 3 3 5 -2 -4
86 2 2 -1 2 2 2 -1 -3 2
87 2 - 2 - 2 3 - 2 1 1 3 - 2
88 2 2 2 - 1 - 1 - 1 2 - 3 2
89 2 - 2 1 3 - 2 1 - 2 -2 -2
810 3 2 1 -4 3 -2 1 3 5 -2 -4 10 crossing
811 2 2 -1 2 -3 -3 2 2 2
812 2 -2 -2 11 -2 -2 3 -2
813 2 2 -1 -3 2 -3 2 -1 2
814 2 -2 -2 3 -2 3 3 -2 -2
815 3 2 4 -5 4 -3 4 4 2
816 3 2 4 -3 -5 4 -3 2 4
817 3 2 4 -3 2 -5 4 -3 2 5 4 10 crossing
818 3 -2 -4 3 -2 -4 3 -2 -4
819 3 -2 -4 1-3 2 -3 -4 -2
820 3 2 4 3 2 -4 -3 -5 4 1 2 10 crossing
821 3 -2 4 3 4 -2 3 -5 4 1 2 10 crossing

Table B.2: Plait presentations for knots with 8 crossings

205

Knot k Presentation Notes
9i 2 2 -1 -1 -1 -3 -3 -3 -3 2

9 2 2 -2 -2 1 1 1 3 3 3 -2

93 2 - 2 - 2 - 2 1 1 1 1 3 - 2

9 4 2 - 2 - 2 - 2 - 2 1 1 3 3 -2
9 5 2 -2 -2 -2 1 -2 -2 -2 -2 -2
9e 2 2 -1 -3 -3 -3 2 2 -1 2

9 7 2 2 -1 2 2 2 2 -1 -3 2

9 8 2 2 2 -3 -3 -3 -3 2 -1 2

9g 2 2 -1 -1 -3 2 2 -1 -3 2

9io 2 2 -1 -3 2 2 2 -1 -3 2
9 n 2 -2 -2 3 3 -2 1 1 3 -2

9l2 2 2 -3 2 -1 -1 2 2 2 2

9l3 2 2 -3 -3 2 -1 -1 2 2 2

9l4 2 2 -1 -1 - 3 2 -1 2 - 3 2

9l5 2 -2-2 13 -2 -2 -2 1 -2
9l6 3 2 2 2 4 5 -1 -3 2 2 2 4 11 crossing

917 2 -2 -2 1 -2 -2 -2 1 -2 -2
9l8 2 2 2 2 -1 -1 2 2 -3 2
9l9 2 -2 -2 3 -2 3 3 3 -2 -2

9 2o 2 -2 -2 3 -2 -2 3 -2 -2 -2
9 2i 2 -2 -2 -2 3 -2 3 3 -2 -2
9 22 3 -2 1 -2 -4 3 3 3 -2 -4
9 23 2 -2 -2 1 1 -2 1 1 -2 -2
9 24 3 2 2 -3 4 5 -3 -3 2 2 2 4 11 crossing

9 25 3 2 2 4 -3 22 -1 24

Table B.3: Plait presentations for knots 9i to 925

206

t

Knot k Presentation Notes
Ö26 2 - 2 1 3 - 2 1 - 2 1 - 2 -2
927 2 2 -3 2 -1 2 2 -1 2 2
928 3 2 -3 2 4 5 -1 -3 2 -1 2 4 11 crossing
Ö29 3 -2 4 5 3 -2 -4 3 -2 -4 3 -4 1 2 13 crossing

OCOO

3 2 2 4 -3 2 -1 2 2 4
931 2 2 - 3 2 - 1 2 - 1 2 - 3 2
932 3 -2 -4 3 -2 3 3 -2 -4 -4
933 3 2 1 4 -3 2 4 -1 -3 2 2 4 11 crossing
934 3 -2 -4 3 -2 -4 3 3 -2 -4
935 3 -2 -4 1 3 3 3 5 -2 -4
936 3 -2 -4 -4 1 3 3 5 -2 -4
Ö37 3 2 4 -5 4 -3 2 4 4 4

Ö38 3 2 1 4 -3 2 -5 4 -3 2 4 4 11 crossing
Ö39 3 2 4 -3 -5 4 -3 2 4 4
Ö40 3 2 4 -3 4 -3 2 -3 2 4
Ö41 3 -2 -4 3 3 5 -4 3 -2 -4
Ö42 3 -2 -4 -4 1 -3 -3 5 -2 -4

943 3 -2 4 4 3 -5 4 3 -2 4

944 3 -2 4 3 -2 -3 2 -1 2 4

945 3 -2 -4 1 -2 3 3 -5 2 4

946 3 -2 -4 1 3 3 3 -5 -2 4
947 3 _2 -4 -3 -3 -2 -4 3 -2 -4

Ö48 3 2 4 -1 -3 -2 3 -2 -2 4

t*49 3 2 4 ~3 ~3 ”0 —4 3 2 -4

Table B.4: Plait presentations for knots 926 to 949

207

Knot k Presentation Notes
lOi 2 - 2 - 2 1 1 1 1 1 1 3 - 2
102 2 2 -1 -1 -1 -1 -1 -1 2 -1 2 Knot redrawn
103 2 - 2 - 2 - 2 - 2 1 1 1 1 3 - 2
104 2 2 -1 -1 -1 -1 -3 2 -1 -1 2 Knot redrawn
105 2 -2 -2 3 -2 1 3 3 3 3 -2
io6 2 2 -1 2 2 2 -1 -3 -3 -3 2
107 2 - 2 - 2 3 - 2 - 2 1 1 1 3 - 2
10s 2 -2 -2 -2 -2 1 -2 -2 -2 -2 -2
109 2 - 2 1 1 1 3 - 2 1 - 2 - 2 - 2
IO10 2 2 -1 -1 -1 -3 2 -3 2 -1 2
IO11 2 2 -1 -1 -3 2 2 2 -1 -3 2
1012 2 - 2 1 1 3 - 2 - 2 - 2 1 -2 -2
1 0l3 2 - 2 1 3 3 - 2 - 2 1 1 - 2 - 2

IO14 2 2 -1 -1 -3 2 2 -3 2 -1 2
1015 2 - 2 1 1 3 - 2 1 1 1 - 2 - 2

1016 2 - 2 1 3 3 - 2 1 1 - 2 - 2 - 2
IO17 2 - 2 1 3 3 - 2 1 - 2 - 2 -2 -2
10i8 2 2 -1 -1 -3 2 -3 2 2 -1 2
IO19 2 2 -1 -1 -3 2 -3 2 -1 -3 2
IO20 2 -2 -2 -2 3 3 3 3 3 -2 -2
IO21 2 2 2 2 -3 -3 -3 -3 2 -1 2
IO22 2 -2 1 3 -2 -2 -2 1 -2 -2 -2
IO23 2 -2 -2 3 -2 3 3 3 -2 -2 -2

h-1 O to 2 - 2 1 3 - 2 - 2 1 1 1 - 2 - 2
IO25 2 2 -1 -3 2 2 -3 -3 2 -1 2

Table B.5: Plait presentations for knots 10i to IO2 5

208

t

Knot k Presentation Notes

1026 2 2 -1 -3 2 -1 2 2 -1 -3 2
IO27 2 -2 -2 -2 1 1 -2 3 3 -2 -2 Knot redrawn
IO28 2 2 -3 2 -1 -1 -1 2 -1 -3 2
IO29 2 2 - 1 2 2 - 1 - 1 2 - 1 - 3 2
IO30 2 - 2 1 3 - 2 1 1 - 2 1 - 2 - 2
IO31 2 -2 -2 -2 3 -2 3 3 3 -2 -2
IO32 2 2 2 2 -3 2 -3 2 2 -1 2 Knot redrawn
IO33 2 -2 1 3 -2 -2 -3 -3 2 -1 -3 2 11 crossing; knot redrawn
IO34 2 2 -3 2 -1 -1 -1 -1 -1 2 2
IO35 2 2 -1 2 2 -1 -1 -1 - 1 2 2
IO36 2 -2 -2 1 1 1 1 - 2 1 -2 -2
IO37 2 2 -3 2 2 2 -1 -1 -1 2 2

IO38 2 2 2 -1 -3 2 -3 -3 -3 2 2 Knotlnfo diagram
IO39 2 -2 -2 1 -2 -2 -2 3 3 -2 -2
IO40 2 2 -3 2 2 -3 -3 2 -3 2 2 Knotlnfo diagram
104i 2 2 - 1 2 -1 -1 2 -1 - 1 2 2
IO42 2 -2 1 -2 3 -2 -2 -3 -3 -3 2 2 11 crossing; Knotlnfo diagram
IO43 2 2 2 -1 2 2 -3 -3 2 -1 2
IO44 2 2 - 1 2 - 1 2 - 1 -1 2 - 1 2
IO45 2 2 - 1 2 -1 2 -1 2 -1 2 2
IO46 3 -2 -4 3 3 3 5 5 5 -2 -4
IO47 3 2 1 -4 3 -2 1 3 5 5 5 -2 -4 12 crossing
IO48 3 4 5 -2 -2 -2 -2 3 3 3 5 -2 -4 12 crossing
IO49 3 4 5 -2 -2 -2 -2 3 -4 3 5 -2 -4 12 crossing
IO50 3 -2 -4 3 3 3 5 -2 -4 -4 -4

Table B.6: Plait presentations for knots 1026 to 1050

209

9

Knot k Presentation Notes
IO51 3 -2 -4 1 3 5 -2 3 -4 -4 -4 1 2 12 crossing
IO52 3 -2 -4 3 3 3 -4 5 5 -2 -4

IO53 3 -2 -4 1 3 -2 3 -4 5 5 -4 3 2 12 crossing
IO54 3 -2 -4 3 3 3 5 5 -2 -4 -4

IO55 3 -2 -4 1 3 5 5 -2 3 -4 -4 1 2 12 crossing
IO56 3 -2 -4 3 3 3 -4 -4 5 -2 -4
IO57 3 -2 -4 1 3 -2 3 -4 -4 5 -4 1 2 12 crossing
IO58 3 -2 -4 1 3 3 -2 3 5 -4 -4 1 2 12 crossing
IO59 3 2 1 -4 -4 3 3 5 -2 1 3 -2 -4 12 crossing
1060 3 22 -3 4 2 -3 2 2 4 4 Knotlnfo diagram
1061 3 -2 -4 1 3 3 3 5 5 -2 -4
1062 3 -2 -4 3 3 3 5 5 -2 -2 -4
1063 3 2 -4 -4 3 5 -4 3 5 5 -2 3 4 12 crossing
1064 3 -2 -2 -2 -4 3 3 3 5 -2 -4

1065 3 -2 -2 -4 3 3 3 -2 -4 -4 -4

1066 3 2 -4 -4 3 5 -4 3 5 -4 -4 -4 -2 12 crossing
1067 3 -2 -4 3 3 3 5 -2 -2 -4 -4

1068 3 -2 -4 1 3 3 3 -4 5 -2 -4
1069 3 2 -4 -4 3 5 -4 3 5 -4 -2 3 -4 12 crossing
IO7O 3 2 -1 4 5 3 4 -5 -2 -2 -2

-1 4 -5 2 3 1 2 4 4
19 crossing; Knotlnfo diagram

IO71 3 -2 -2 -4 13 -2 -2 1 -2 -4 Knotlnfo diagram
IO72 3 22 -3 4 -3 2 2 2 4 4

IO73 3 2 2 4 4 -1 -1 -3 -2 -2 -2 -4 11 crossing; Knotlnfo diagram
I O 7 4 3 -2 3 4 5 -2 1 3 -2 -2 -2 -4 -4 12 crossing; Knotlnfo diagram
IO75 3 - 2 3 - 4 - 2 1 3 - 2 1 -2 -4 Knotlnfo diagram

Table B.7: Plait presentations for knots IO5 1 to IO75

210

%

Knot k Presentation Notes
IO76 3 2 2 2 4 -1 -5 -4 -3 2 2 2 -4 12 crossing; Knotlnfo diagram
IO77 3 - 2 - 2 - 4 1 1 3 -2 -2 -2 -4 Knotlnfo diagram
IO78 3 2 -1 2 -1 -1 4 5 -3 2 -1 2 4 12 crossing
IO79 3 -2 -4 3 5 -4 -4 -4 2 3 2 4 -3 12 crossing

OO
O

0

3 -2 -2 -2 4 5 3 -4 3 -2 -2 5 -4 12 crossing
1081 3 -2 -4 -4 1 3 -2 3 -4 5 -4 1 2 12 crossing
10s2 3 2 4 -3 -5 -5 2 -1 2 -3 4 1 2 12 crossing
1083 3 2 -1 -3 4 2 -3 2 -1 2 -3 -4 2 12 crossing

X
0t-H 3 2 4 -3 4 -5 4 -3 -5 -5 -2 4 4 12 crossing

1085 3 2 4 -3 2 -3 -3 -5 -5 2 4
1086 3 2 4 -3 4 -3 -3 4 1 2 -3 -5 4 12 crossing
1087 3 2 4 4 -3 2 -3 -3 -5 2 4
1088 3 2 2 4 5 3 4 -5 4 -3 2 4 -3 24 14 crossing
1089 3 -2 4 5 3 -2 3 -4 -2 1 -2 5 -4 12 crossing
IO9O 3 -2 4 5 3 -2 -4 3 5 -2 -2 -2 -4 12 crossing
1091 3 2 1 4 -3 2 4 -1 -5 -5 2 -3 1 2 4 14 crossing
IO92 3 2 4 4 -3 -5 2 4 4 -3 4 1 2 12 crossing
IO93 3 2 1 4 -3 -3 4 -5 -5 -3 -3 2 4 12 crossing
IO94 3 4 5 2 2 2 -3 2 4 -3 -3 24 12 crossing
IO95 3 2 -3 4 5 2 -3 2 4 -3 -3 2 4 12 crossing
IO96 3 2 -3 -4 -5 -3 -3 2 4 -3 -3 2 4 12 crossing
IO97 3 2 2 4 -3 -5 4 -3 -3 2 4 Knotlnfo diagram
IO98 3 2 4 -3 -3 2 2 -1 -3 2 4
IO99 3 2 1 4 -3 2 -1 -5 4 2 -3 -5 1 2 4 14 crossing

OOi-HOt—
H 3 2 4 -1 -3 -5 2 -1 -3 2 4

Table B.8: Plait presentations for knots IO76 to IO100

211

f

Knot k Presentation Notes
I O 1 0 1 3 2 -4 -4 3 -4 5 -4 3 -2 -4 3 -4 12 crossing

I O 1 0 2 3 -2 -4 13 -2 -4 3 - 4 -4 - 4 1 2 12 crossing

I O 1 0 3 3 2 1 -4 -4 3 -2 -4 1 5 -4 5 4 3 -2 14 crossing

I O 1 0 4 3 2 -3 4 5 -4 -4 1 5 -2 3 -2 -4 12 crossing

I O 1 0 5 3 2 1 -4 3 3 5 -4 3 -2 1 -2 -4 12 crossing

I O 1 0 6 3 2 3 -4 3 -2 1 1 5 -4 3 -2 -4 12 crossing

I O 1 0 7 3 -2 -2 4 5 3 -4 5 5 -4 3 -2 -4 12 crossing

I O 1 0 8 3 -2 4 3 -2 1 3 3 5 -2 -4
I O 1 0 9 3 -2 -4 3 3 -2 -2 3 3 -2 -2 5 4 12 crossing
I O 1 1 0 3 -2 4 5 3 -2 -2 -4 3 3 -2 -2 -4 12 crossing
lOin 3 2 1 4 4 -3 2 4 4 -5 -5 -4 -3 -4 2 14 crossing; knot redrawn
I O 1 1 2 3 2 1 -4 3 -4 3 -2 3 -2 -2 -2 -4 12 crossing
I O 1 1 3 3 2 4 -3 2 -1 2 -3 2 4 4
IO114 3 -2 -4 3 3 3 -2 -4 3 -2 -4
IO115 3 2 1 -4 3 5 -2 -4 3 -4 3 -2 -4 12 crossing
I O 1 1 6 3 2 4 -3 -5 2 4 -3 -5 2 4
I O 1 1 7 3 -2 -4 3 -2 3 -4 3 3 1 2 -4 -4 12 crossing
10n8 3 -2 4 5 3 -2 3 3 5 -4 3 1 2 -4 -4 14 crossing
IO119 3 2 -4 3 4 -1 2 -5 4 -3 -3 2 4 12 crossing; knot redrawn
I O 1 2 0 3 -2 -4 3 3 -2 -4 3 3 -2 -4
I O 1 2 1 3 -2 4 5 3 -2 3 -4 -2 3 5 -2 -4 12 crossing
I O 1 2 2 3 2 4 -3 4 -3 -3 2 -3 2 4
I O 1 2 3 3 2 4 -3 2 4 -5 4 -3 2 4
10 1 9 1 3 2 -4 3 2 3 3 2 5 5 -4

1O125 3 -2 -4 -3 -3 -3 5 5 5 -2 -4

Table B.9: Plait presentations for knots IO101 to IO125

212

8

Knot k Presentation Notes
10126 3 -2 4 3 3 3 -5 -5 -5 -2 4

10i27 3 2 - 4 - 1 3 - 2 3 1 2 - 4 - 4 -4 -4 12 crossing
10l28 3 -2 -4 -1 -3 2 -3 -2 -2 -2 -4
10l29 3 -2 4 3 -5 -4 3 -4 -4 -4 -2
10l30 3 2 -4 3 3 3 4 2 3 5 -4
10l31 3 -2 -4 1 -3 -3 -3 -4 1 2 3 5 -4 12 crossing
10l32 3 -2 -4 -3 2 4 -3 5 -2 -4 -4
10l33 3 2 -4 3 2 -1 3 2 3 -4 -4
10l34 3 -2 4 1 3 -5 -2 -3 2 4 4

10l35 3 2 -4 -1 3 -2 3 -4 -4 5 1 2 -4 12 crossing
10l36 3 -2 4 3 -2 1 -2 3 -2 4 4

10l37 3 2 2 2 1 3 -4 5 -3 2 4 3 -2 -2 5 4 15 crossing; knot redrawn
10l38 3 -2 1 1 -4 -4 2 -3 4 1 2 -3 4 4 13 crossing; Knotlnfo diagram
IO139 3 2 1 -4 -3 5 2 2 4 1 -3 -2 -4 12 crossing
10l40 3 2 -4 -1 3 3 3 5 5 2 -4
10i4i 3 2 4 -3 -5 -4 5 2 3 2 -4
IO142 3 2 -4 -1 -1 3 3 3 5 2 -4
10l43 3 2 1 -4 3 -2 1 5 -4 -5 2 3 4 1 2 14 crossing
IO144 3 -2 -2 -4 -3 -3 -3 -3 -2 -4 -4
IO145 3 2 1 4 3 3 4 4 3 -2 3 2 4 12 crossing
10l46 3 4 -3 2 3 -5 -4 3 5 5 -4 -4 -2 12 crossing
IO147 3 2 4 -1 -3 -2 -1 3 -2 4 4
10l48 3 -2 4 3 -5 -2 -4 1 -4 3 -2 5 4 12 crossing
IO149 3 -2 4 5 1 3 -4 -4 -2 3 1 2 -3 -5 4 14 crossing
10l5O 3 -2 4 3 -2 4 3 5 -2 4 4

Table B.10: Plait presentations for knots 10i26 to 10i50

213

Knot k Presentation Notes
IO151 3 2 -1 -4 -4 3 -2 3 -4 5 -4 1 2 12 crossing
IO152 3 2 4 5 3 -1 -2 -4 -4 3 -5 -5 4 1 2 14 crossing
IO153 3 2 -4 -4 -1 -3 2 -3 -4 -4 -4 12 12 crossing
IO154 3 2 -4 -4 -1 -3 2 -3 -4 5 -4 1 2 12 crossing
IO155 3 -2 4 1 -3 -5 4 -3 -5 -2 4
10l56 3 2 1 -4 -3 -4 -5 -4 2 -1 -3 2 2 5 4 14 crossing
IO157 3 2 1 -4 5 -3 2 -1 -4 2 -3 5 -4 1 2 14 crossing
10i58 3 2 4 -1 -3 -3 -2 3 -2 -2 4
10159 3 2 4 -3 2 -4 -4 -4 -3 2 4
10160 3 -2 -4 3 -4 -3 -3 2 -3 -2 -4
10161 3 4 5 2 3 -1 -2 -4 -4 3 5 4 -2 12 crossing
10l62 3 -2 4 3 -2 -1 -3 -3 5 2 4
10l63 3 -2 -4 3 -2 -4 -3 -3 -3 -2 -4
10l64 3 2 -4 3 -4 -3 -3 2 -3 2 4
10l65 3 2 4 -3 -3 2 4 3 3 2 4

Table B .ll: Plait presentations for knots IO151 to 10i65

w

Bibliography

[1] J. W. Alexander “A lemma on a system of knotted curves” Proc. Nat.
Acad. Sci. USA. 9 (1923) 93-95

[2] J. W. Alexander “Topological invariants of knots and links” Trans. Amer.
Math. Soc. 30 (1928) 275-306

[3] E. Artin “Theorie der Zopfe” Abhandlungen Math. Seminar Univ. Ham
burg 4 (1925) 47-72

[4] E. Artin “Theory of braids” Annals o f Math. 48 (1947) 101-126

[5] A. Beliakova &; C. Blanchet “Skein construction of idempotents in Birma-
Murakami-Wenzl algebras” Mathematische Annalen 321 (2) (2001) 346-
374

[6] J. S. Birman “Braids, links and mapping class groups” Annals o f Math.
Studies 82 Princeton Univ. Press. N.J. (1976)

[7] J. S. Birman & T. Kanenobu “Jones’ braid-plat formula and a new surgery
triple” Proc. AMS 102 No. 3 (1988) 687-695

[8] J. S. Birman, K. H. Ko & S. J. Lee “A new approach to the word and
conjugacy problems in the braid groups” Advances Math. 139 (1998) 322-
353

[9] G. Burde & H. Zieschang “Knots” (2nd Edition) de Gruyter Studies in
Mathematics (2003)

215

w

[10] W. Y. C. Chen, E. Y. P. Deng, R. R. X. Du, R. P. Stanley, C. H. Yan
“Crossings and Nestings of Matchings and Partitions” Retrieved from the
arXiv at h ttp ://arxiv .org/abs/m ath /0501230

[11] S. V. Chmutov, S. V. Duzhin &; S. K. Lando “Vassiliev knot invariants”
Adv. Soviet Math. 21 (1994) 117-126

[12] J. H. Conway “An enumeration of knots and links, and some of their
algebraic properties” Computational Problems in Abstract Algebra (Proc.
Conference Oxford 1970), ed J. Leech, Pergamon Press (1967) 320-358

[13] D. Cooper & W. B. R. Lickorish “Mutations of links in genus 2 handle-
bodies” Proc. Amer. Math. Soc. 127 (1999) 309-314

[14] P. R. Cromwell “Knots and Links” Cambridge University Press (2004)

[15] N. M. Dunfield, S. Garoufalidis, A. Shumakovitch & M. Thistleth-
waite “Behaviour of knot invariants under genus 2 mutation” Preprint
h ttp : / / a rx iv . org/abs/math/0607258vl

[16] J. Franks & R. F. Williams “Braids and the Jones Polynomial” Trans.
Amer. Math. Soc. 303 (1987) 97-108

[17] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, A. Ocneau
“A new polynomial invariant of knots and links” Bull. Amer. Math. Soc.
12 (1985) 239-246

[18] R. J. Hadji “Homily Skein Theory of Reversed String Satellites” PhD
Thesis (2003)

[19] R. J. Hadji & H. R. Morton “A basis for the full Homfly skein of the
annulus.” Math. Proc. Camb. Philos. Soc. 141 (2006), 81-100

[20] N. Imafuji & M. Ochiai, Knot theory software.

h ttp : / / amadeus. i c s .nara-wu.a c . jp /~ o c h ia i / f r e e s o ft .html

216

http://arxiv.org/abs/math/0501230
http://arxiv.org/abs/math/0607258vl
http://amadeus.ics.nara-wu.ac.jp/~ochiai/freesoft.html

4

[21] I. M. Isaacs “Algebra: A Graduate Course.” Brooks/Cole Publishing Com
pany, California (1994)

[22] V. F. R. Jones “A polynomial invariant for knots via von Neumann alge
bras” Bull. American Math. Soc. (1985) 12 103-111

[23] E. S. Kang, K. H. Ko & S. J. Lee “Band-generator presentation for the
4-braid group” Topology and its Applications 78 (1997) 39-60

[24] L. H. Kauffman “On knots” Princeton University Press (1987)

[25] L. H. Kauffman “An invariant of regular isotopy” Trans. Amer. Math. Soc.
(1990) 318 417-471

[26] Knotlnfo h ttp ://w w w .indiana.edu /~knotin fo/

[27] R. A. Landvoy “The Jones polynomial of pretzel knots and links” Topology
and its Applications 83 (1998) 135-147

[28] W. B. R. Lickorish “Polynomials for links” Bull. London. Math. Soc. (1988)
20 558-588

[29] W. B. R. Lickorish “An Introduction to Knot Theory” Springer (1997)

[30] W. B. R. Lickorish & A. S. Lipson “Polynomials of 2-cable-like links” Proc.
Amer. Math. Soc. 100 (1987) 355-361

[31] B. Lu & J. K. Zhong “The Kauffman Polynomials of Generalized Hopf
Links” J. Knot Theory Ramif. 11 (2002) 1291-1306

[32] B. Lu & J. K. Zhong “The Kauffman Polynomials of Pretzel Knots” J.
Knot Theory Ramif. 17 (2) (2008) 157-169

[33] I. G. Macdonald “Symmetric functions and Hall polynomials” Clarendon
Press, Oxford, 2nd edition (1995)

[34] MorseLink Presentations: retrieved from

h ttp : //k a tla s .m a th .to ron to . edu/wiki/M orseLink_Presentations

217

http://www.indiana.edu/~knotinfo/
http://katlas.math.toronto.edu/wiki/MorseLink_Presentations

V

[35] H. R. Morton “Seifert Circles and Knot Polynomials” Math. Proc. Cam
bridge Philos. Soc. 99 (1986) 107-109

[36] H. R. Morton “Threading knot diagrams” Math. Proc. Camb. Phil. Soc.
99 (1986) 247-260

[37] H. R. Morton. “Quantum invariants given by evaluation of knot polyno
mials” J. Knot Theory Ramifications 2 (1993) 195-209

[38] H. R. Morton “Skein theory and the Murphy operators” J. Knot Theory
Ramifications 11 (2002) 475-492

[39] H. R. Morton “Integrality of Homily 1-tangle invariants.” To appear in
Algebraic & Geometric Topology

[40] H. R. Morton “Mutant knots with symmetry” Retrieved from the arXiv
at http : / / a rx iv . org /abs/0705 .1321

[41] H. R. Morton & E. Beltrami “Arc index and the Kauffman polynomial.”
Math. Proc. Camb. Philos. Soc. 123 (1998) 41-48

[42] H. R. Morton & P. R. Cromwell “Distinguishing mutants by knot polyno
mials” J. Knot Theory Ramifications 5 (1996) 225-238

[43] H. R. Morton & H. J. Ryder “Mutants and SU(3)q invariants” in “Ge
ometry and Topology Monographs” , Vol.l: The Epstein Birthday Schrift
(1998) 365-381

[44] H. R. Morton & N. Ryder “Invariants of genus 2 mutants” Preprint
http : / / a rx iv . org /abs/0708 .0514vl

[45] H. R. Morton & H. B. Short “Calculating the 2-variable polynomial for
knots presented as closed braids” J. Algorithms 11 (1990) 117-131

[46] H. R. Morton & P. Traczyk “The Jones polynomial of satellite links around
mutants” In ‘Braids’, ed. Joan S. Birman and Anatoly Libgober, Contem
porary Mathematics 78, Amer. Math. Soc. (1988) 587-592

218

[47] J. Murakami “Finite type invariants detecting the mutant knots” in “Knot
Theory,” a volume dedicated to Professor Kunio Murasugi for his 70th
birthday. Ed. M. Sakuma et ah, Osaka University (2000) 258-267

[48] J. H. Przytycki “Equivalence of cables of mutants of knots” Canad. J.
Math. 41 (2) (1989) 250-273

[49] J. H. Przytycki “Polynomial time complexity algorithm for computing co
efficients of the Jones-Conway (Homflypt) and Kauffman polynomials of
links” Abstracts AMS 23(1) (2002) 147

[50] J. H. Przytycki & P. Traczyk “Invariants of links of Conway type” Kobe
J^Math. 4 (1987) 115-139

[51] K| Reidemeister “Knotentheorie” Ergebn. Math. 1 (1932)

[52] RBlfsen Knot Table on Knot Atlas

h t tp : / /k a t la s .math.to ro n to .edu/wiki/The_Rolfsen_Knot_Table

[53] DlRuberman “Mutation and volume of knots in S3” Invent. Math. 90
(1187) 189-215

[54] L.Rudolph “A congruence between link polynomials.” Math. Proc. Camb.
Philos. Soc. 107 (1990) 319-327

[55] H. Schubert “Knoten und Vollringe” Acta Math. 90 (1953) 131-286

[56] H. Schubert “Uber eine numerische Knoteninvariante” Math. Z. 61 (1954)
245-288

[57] A. Stoimenow &, T. Tanaka “Mutation and the colored Jones polynomial”
Preprint h ttp : / /a r x iv . org/abs/math/0607794v2

[58] H. F. Trotter “Non-invertible Knots Exist” Topology 2 (1964), 275-280

[59] V. G. Turaev “Operator Invariants of Tangles, and R-Matrices” Math
USSR Izv 35 (2) (1990) 411-444

219

http://katlas.math.toronto.edu/wiki/The_Rolfsen_Knot_Table

[60] P. Vogel “Representation of links by braids: A new algorithm” Comment.
Math. Helvetia 65 (1990) 104-113

[61] S. Yamada “The minimal number of Seifert circles equals the braid index
of a link” Invent. Math. 89 (1987) 347-356

220

