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Abstract—In this correspondence, we investigate unmanned
aerial vehicle (UAV)-base stations (BSs) assisted and received
signal strength (RSS) based mobile station (MS) localization. A
practical air-to-ground path loss model is utilized, where the path
loss exponent (PLE) varies with the elevation angle and altitude
of UAYV, and the accurate PLE estimate is often difficult to obtain.
With unknown and unequal PLEs for different UAVs, the UAVs
assisted localization problem becomes nonlinear and non-convex,
which cannot be solved by the existing methods. We propose
a piecewise convex approximation aided localization (PCAL)
approach to convert the localization problem into linear and
convex, without requiring the knowledge of PLE. The proposed
PCAL approach with unknown and unequal PLEs achieves
much higher accuracy than the existing methods which require
perfectly known and equal PLE, due to its higher robustness
against shadowing. In addition, a grid search aided ambiguity
elimination (GSAE) method, which is more effective than the
state-of-the-art methods, is proposed to determine the final MS
localization estimate based on multiple tentative estimates derived
from PCAL. The effectiveness of PCAL is also verified by the
Cramer-Rao lower bound (CRLB) derived.

Index Terms—Unmanned aerial vehicle, localization, received
signal strength, path loss exponent, piecewise convex approxima-
tion.

I. INTRODUCTION

NMANNED aerial vehicle (UAV) mounted base station
(BS) is regarded as a promising complementary solution
for 5G in emergency cases like network damage and conges-
tion [1]. UAV-BS provides better location based services (LCS)
than ground BS due to higher probability of line of sight [2].

A. Related Work

Received signal strength (RSS) based localization of mobile
station (MS) [3] has been widely used due to its low cost and
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low complexity. The terrestrial localization approaches in [4]-
[11] utilized RSS based exponential-like ranging function, is
obtained by calculating the logarithm of RSS, to estimate mo-
bile station (MS) location. Localization of MS with unknown
transmit power was investigated in [4]. Noncooperative and
cooperative localization approaches with unknown transmit
power and unknown path loss exponent (PLE) were studied
in [5]. In [6], least-square absolute error of ranging was
minimized for localization. In [7], both RSS and differential
RSS based localization methods were proposed, with anchor
coordinates uncertainties and imperfect knowledge of PLE.
A multilateration method, referred to as bias-compensated
weighted least-square (bcWLS), was proposed in [8], where
the perturbations in both RSS measurement error and anchor
uncertainties are mitigated. In [9], geometric parameters were
proposed for anchor deployment in localization. A particle
filter based on data fusion was proposed in [10]. Multi-
dimensional scaling techniques were proposed in [11] to build
the connectivity map of deployed sensors.

The ranging function in RSS based localization is highly
dependent on path loss model. In [4]-[11], a two-dimensional
path loss model was utilized for terrestrial localization. In
[12] and [13], a three-dimensional terrestrial path loss model
was utilized for UAV assisted and RSS based localization.
However, the UAV air-to-ground path loss model has been
reported to be highly dependent on the elevation angle of the
path and UAV’s altitude [14]-[18], which was not considered
by most existing work. In [18], a localization approach for ele-
vation angle dependent path loss (EAPL) model was proposed.
However, perfectly known and equal PLEs were assumed for
all UAVs, which is unpractical. With unknown and unequal
PLEs, the RSS based localization problem becomes nonlinear
and non-convex, which cannot be solved by the existing
approaches. In [19], the Levenberg-Marquardt algorithm (L-
M) was proposed to solve the nonlinear problem with unknown
and unequal PLEs, whose accuracy is largely subject to mea-
surement errors, due to the potential inappropriate damping
factor employed by L-M and unreliable initialization of PLEs.

Moreover, the effect of airframe shadowing (AS) due to
fixed-wings UAV [2] could cause signal attenuation of up to
35 dB [17]. Therefore, it is necessary to consider the effect
of AS on localization when fixed-wings UAVs are employed,
which is absent in the existing work, e.g., [20].

B. Main Contributions

Motivated by the above open issues, we propose a fixed-
wings UAV-BSs aided and RSS based localization technique
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with unknown and unequal PLEs. Our work is different in the
following aspects:

1) The nonlinear and non-convex RSS based localization
problem with unknown and unequal PLEs is solved
by a piecewise convex approximation aided localization
(PCAL) scheme, with two-step approximations: (a) con-
vert the problem to a nonlinear convex problem through
piecewise convex approximation and curve fitting; (b)
convert the resulting nonlinear convex problem to a linear
convex problem through Taylor’s series expansion (TSE)
approximation. Unlike the TSE only based methods in
[4]-[8], PCAL does not require the PLEs associated with
different UAVs to be perfectly known and equal to each
other, and therefore it is more practical.

2) Thanks to its robustness against shadowing, especially
AS, the proposed PCAL approach with unknown and
unequal PLEs achieves higher accuracy than the ap-
proaches [6]-[8] with equal and perfectly known PLEs, as
well as the approach in [19] with unknown and unequal
PLEs. This is because the power-form ranging function
via piecewise convex approximation and TSE has much
lower variance than the exponential-form ranging func-
tions in [6]-[19]. To the best of our knowledge, this is
also the first work to investigate the impact of AS on
UAV assisted and RSS based localization. The Cramer-
Rao lower bound (CRLB) on localization error is derived
to verify the effectiveness of PCAL.

3) With N UAV-BSs to locate one MS, PCAL produces
2N objective functions and tentative estimates. A grid
search assisted ambiguity elimination (GSAE) approach
is proposed to obtain the final estimate of MS location by
taking an average of the tentative estimates selected via
grid search. GSAE is more effective than the piecewise-
linear minimization (PLM) method [21] that selects just
the tentative estimate with the minimum error between
the estimated distance and the measured distance. The
performance of PCAL-GSAE approaches the CRLB de-
rived.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the localization of an MS assisted by N
UAV-BSs. Assume that the MS with the coordinate vector
v = [z,y, 2|7, is detected and located by N UAV-BSs at a time
instant (Fig. 1). Each UAV-BS supported cell is of horizontal
radius R, and the accurate coordinates of the i-th UAV-BS
is w; = [, y:,2]%,i = 1,2,...,N. The elevation angle of
the i-th UAV-BS is 6;, and the UAV roll angle is ;. ¢; and
UAV’s altitude h; are available at the UAV control system and
barometer/GPS. The localization problem is

(P1)  min Zj,v_l(PALi — PL;)? (1)

where ISZZ and PNLZ are the estimated and measured path loss
at the i-th UAV-BS, respectively.

Considering the effect of AS [17] on path loss, the sum
of log-normal random term of AS and the elevation angle
dependent terrestrial shadowing (TS) [18] between MS and the
i-th UAV-BS is denoted by X ;, where Xg; ~ N(0, J%SSJ),
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Fig. 1. Diagram of one MS located by multiple fixed-wing UAV-BSs

and 0%, = 075, + 04s.;» Where o7s; and o4s,; are standard
deviation of TS and AS, respectively. With fading smoothed
out, the combined path loss and shadowing is expressed as

PL; = Pt[dBm] — Pr; [dBm] + Sy ; + Xs,; 2)

where Sy ,; is a constant pre-determined by the roll angle ;.

Evidently, PL; = Pt[dBm]—Pr;[dBm]|, where Pt is the transmit

power, and Pr; is the receive signal power at the i-th UAV.
The EAPL of the i-th UAV is calculated as [18]

PL; = 10; 1og,0(d;) (3)
ai
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where ag, a1, bg, by are the environmental related parameters,
and 6; = arcsin(h;/d;) is the elevation angle of the i-th UAV,
with h; being altitude of the i-th UAV, and d; = ||v — w;]| is
given as the distance from the i-th UAV-BS to MS. Assume
that the perfect knowledge of UAV’s altitude h; is known, the
EAPL in (3) is a function of single variable d;.

III. UAV ASSISTED AND PIECEWISE CONVEX
APPROXIMATION AIDED LOCALIZATION

It is obvious that (P1) is a nonlinear and non-convex
optimization problem. In Subsection III-A, we convert (P1)
into a convex problem via piecewise convex approximation
and curve fitting, and then into a linear problem via TSE.
The approximation processes yield 2V tentative estimates. The
estimation ambiguity is eliminated by the GSAE approach in
Subsection III-B. The CRLB of PCAL is derived in Subsection
1I-C.

A. Piecewise Convex Approximation Aided Localization

1) Transformation to a Convex Problem via Piecewise
Convex Approximation and Curve Fitting: As EAPL is close
to a sigmoid curve [18], it is partitioned into two sub-functions
within the propagation distance of interest through piecewise
convex approximation [22]. The transition point on EAPL of
the i-th UAV is at distance d; = d;;, which is selected as
either a global maxima of the first derivative of EAPL (suitable
for model in [18]) or a global minima of the EAPL function
(suitable for model in [16]). Assume that the EAPL of the i-th
UAV is partitioned into a piecewise convex function of two
sub-functions in the intervals of [diower,i, d¢,;] and [dy ;, dupper,i ],
respectively, where djower,; and dypper,; are the lower and upper
bounds of the propagation distance of interest. Assisted by



curve fitting, all the sub-functions are approximated to power
functions as

Dr Bi,g,

PLi g4, ~ Aiﬂidi T+ Ci,gi (&)
where A; 4., B; 4,, and C; 4, are the fitted parameters of each
sub-function, and g; = 0 or 1 indicates the first or second sub-
function, respectively. The approximated path loss is converted
to an explicit power-like ranging function as

di = (1 —gi)dio + gidin (6)

where d; 4, = ((ﬁlg — Cig.)/Aig,)/Bioi. Round PL;
to the interval [PL(diower,i), PL(dupper,i)], in case of complex
distance estimation caused by significant shadowing. Since
PL corresponds to two sub-functions shown by (5), and two
distances, d; o and d; ;. If one MS is detected by N UAV-
BSs, there are total 2%V combinations of (5), and 2%V tentative
estimates of MS localization, v;,j =12, ..., N, Substituting
(5) into (1) yields (P1) for one of the 2%V estimates as

. N Bi.g. ~
(P2) IIvndn Zi:1 (Aiﬁgidi Tt ﬂl}gi - PLi)2 (7

where Bi,gi = SO,i + Ci,gi~

2) Transformation to a Linear Problem via Taylor’s Series
Expansion: The above nonlinear convex problem can be solved
by maximum likelihood (ML) estimator. However, it usually
requires an accurate initial guess to achieve the global optimal
point rather than the local optimal point. To overcome the
shortcoming of ML estimator, (7) can be rewritten as a linear
convex optimization problem. If Sy ; is known, the distance
estimation of either interval in (6) can be further approximated
to linear ranging function through the first-order TSE

A

,9i

PL;— Big 4 Xg;\
di,gi _ < i ﬁz,gl S,Z> R Qg + Mg, (8)

Taking the square of both left-hand and right-hand
sides of (8) yieldsﬂ/df)gl — 200,9,d5,g, + a?}gi = nf’gi,
where «; 5, = [(PL; — Big,)/Aig,)"/Pioi, and n?, =
Xg',z/(Ai%Blsz)((ﬁ; - Bi,gi)/Ai,gi)2/Bi’gi_2 is the mean
square error (MSE) of ranging, and variance of n; is 01»27 9 =
J]%SS,Z’[(PZ’JZ' — Bi.g.)[Ai g )*/ P97 |(Ai g, Big,)*. The MSE
is smaller than those in [6]-[8] due to the two-step approx-
imations. For the scenario with MS in the cell of radius R
= 2000 m, h; = 1000 m, and environmental data for urban
area is ag = 45, a1 = —1.5, by = 10, by = 3.5, the minimum
standard deviation in (8) 0; 4, = 300Rrss,, is smaller than that
in [6]-[8] (about 115 ocrgs,;). Thus, (P3) is further converted

to a semi-definite programming (SDP) problem:

. N
(P3) v,lﬂ)l}z Zizlpi,gi(Di,gi — 20 g,dig,) €))
s.L. T
w; Is v w;
D; = (10)
-1 vi Z -1
Dig, > d3,, (11)
dlower,i § di,g, § dt,i or dt,i § di,g, § dupper,i (12)

Algorithm 1 PCAL-GSAE Algorithm

1: Find the transition point of EAPL of each UAV, d; ;, i =
1,2, ..., N, in a certain range of [diower,i, Qupper,i]-

2: Obtain the 2N fitted functions (5) through piecewise
convex approximation and curve fitting.

3: Calculate the 2N ranging functions through (8). Substitute
them into (9)~(13) and obtain 2V tentative estimates of
the MS location, v;, j =1, 2, ..., N,

4: Obtain the solution vgg to (7) through grid search.

5. Select the M = 2V — N tentative estimates closest to the
location of point vgg, and calculate the average of their
coordinates as in (14).

13 \4
>0

(13)
v 7

where p; 4, =1/ O’i g: 1s the weight of objective function, and
I3 is 3 x 3 identity matrix, and Z > vTv is the auxiliary
variable. (P3) can be solved by interior-point method.

B. Elimination of Estimation Ambiguity

The proposed PCAL approach benefits from the low MSE of
ranging. However, estimation ambiguity introduced by piece-
wise functions brings extra estimation error. It is eliminated by
the GSAE approach: first finding a reference point vy through
solving (7) by grid search, and then taking an average of the
coordinates of the M = 2 — N tentative estimates closest to
vgs, which forms the set A.

1
Ve MZ jer’?

The overall algorithm of PCAL alongside GSAE is summa-
rized in Algorithm 1. The proposed single time localization
approach can be easily extended to continuous localization by
utilizing a filter such as particle filter [10].

The proposed scheme can be extended to a multi-MS
scenario. The number of simultaneously located MSs is limited
by the number of resolvable resource blocks (RBs) within a
cell at each transmission time interval, and the number of
MSs requesting the same quality of LCS [24]. For example,
within a cell where a total bandwidth of 10 MHz (50 RBs)
[24] is uniformly allocated to 50 MSs, the number of MSs to
be located simultaneously is less than or equal to 50, due to
different LCS qualities requested.

(14)

C. Cramer-Rao Lower Bound

The CRLB on localization error is derived to evaluate the
effectiveness of the proposed PCAL approach. In case of
small curve fitting errors, the CRLB of localization, o2 p»
is approximately an unbiased CRLB. The probability density
function (PDF) of (5) distorted by shadowing is given by

L= (A i 18:))>

1
frrija, = —F=—=—e€
vV 27T(7RSS

The Fisher information matrix (FIM), F, for location esti-
mate is computed as the expectation conditioned on v, i.e., F =

2
29Rss,i

15)



TABLE I
COMPUTATIONAL COMPLEXITY ANALYSIS. K — NUMBER OF EQUATIONS,
P — NUMBER OF VARIABLES, € — REQUIRED ACCURACY.

Algorithm Complexity per Itera- | Maximum Number of
tion Iterations
PCAL-GSAE | O(P?K?) O(VPlogo(e™ 1))
"LSRE[6] |
"RSDPE [7] |
LSO-PLEc [19] | O(P?K) O(logi(c=%))

T
E [(?9?) (5v) } where G = [In(fpr,ja,), - - In(frry|an)]-
Thus, it can be derived that

F= ZN %(AiBz‘)Qd?Bi%(V —wi)(v—w)" (16
=10kss, i
Denoting J = F~! as the inverse of F, and the CRLB is
computed as the trace of J, i.e., 02g;ppcar > tr[J]-

The unbiased CRLB is dependent on both fitted pa-
rameters and propagation distance, while the FIM and
CRLB are independent of Sy; and f;. Define the ra-
tio of the CRLB of d; of the approaches in [6]-[8]
to that of PCAL as & = OPpipiogd,/OCRLB-PCAL, =
(A2 B2d?P'1n®10)/(100%?), where the CRLBs of [6]-[8] are
same since they both apply the same path loss model. When
UAV is at h; = 500 m high, e; > 38.46 is achieved at any
location within a cell, implying higher localization accuracy
of PCAL compared to [6]-[8].

IV. COMPLEXITY ANALYSIS

Table I presents the complexity analysis following the
approach in [23]. The proposed PCAL-GSAE scheme requires
the same order of complexity as LSRE [6] and RSDPE [7],
and a higher overall complexity than LSO-PLEc [19], while
achieving a significant performance gain over all of them, as
shown in Section V. The complexity of GSAE is negligible
compared to that of PCAL. The complexity of PCAL-GSAE
is same as that of PCAL without ambiguity, since the 2V
tentative estimates are independent of each other.

V. SIMULATION RESULTS

The performance of the proposed PCAL-GSAE scheme is
evaluated by Monte-Carlo simulation with N = 4 UAV-BSs
supported hexagon cells. The AS standard deviation is set
to o4s; = 4.4 dB [17] in Figs. 4 and 5. Assume perfect
knowledge of the EAPL parameters ag,a1,by and b; given
in Subsection III-A.

Fig. 2 depicts the approximated path loss in (5), compared
with the original EAPL, when all UAVs’ altitude is h; =
500 m (i=1,...,4) and the cell radius is R = 1000 m. The
approximated path loss by piecewise convex approximation
and curve fitting are expressed as

P~ 5.772e-9 d3-15 + 52.31 iower,i < d; < dy
") —6.772e4 d700T2 41446 dy < di < dupper.s
where diower,i = N, and dupper,i = 2R, and d; ; = 1098 m. The

approximation results without the PLE knowledge match the
EAPL model perfectly within d; € [diower,i, Qupper,i)-
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Fig. 2. Curve fitted path loss model in comparison to EAPL [18] with UAV
altitudes h; = 500 m (i=1,...,4) and cell radius R = 1000 m.
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Fig. 3. CDFs of estimation error of PCAL-GASE, LSRE [6], RSDPE [7],
bcWLS [8] and LSO-PLEc [19] with N = 4 UAV-BSs and TS only.

Fig. 3 shows the cumulative density function (CDF) of
PCAL-GSAE, with the same simulation setup as Fig. 2,
in comparison to those of the approaches in [6]-[8] with
perfectly known and equal PLEs and the LSO-PLEc approach
in [19]. For fair comparison, the distance d; estimated by the
approaches in [6]-[8] and [19] is capped at dypper,i. PCAL-
GSAE significantly outperforms the other approaches when
the estimation error is larger than 50 m, due to its higher
robustness against TS, while an error of less than 50 m
indicates an occasional case where ambiguity error plays a
dominant role. Fig. 4 shows that with AS, the proposed PCAL-
GSAE scheme maintains a performance comparable to the
case without AS, while the other approaches suffer significant
performance degradation compared to Fig. 3.

Fig. 5 shows the average localization error versus cell ra-
dius, which varies from 500 m to 1000 m, with UAV altitude h;
=200 m (i=1,...,4). When combined with PCAL, the proposed
GSAE approach is more effective to eliminate ambiguity than
the PLM approach in [21]. The performance of PCAL-GSAE
is close to the CRLB derived. Also, PCAL-GSAE achieves
higher accuracy than PCAL without ambiguity, because taking
average of the selected tentative estimates is effective in
mitigating errors caused by shadowing. PCAL with real PLE
values demonstrates a much worse performance than PCAL
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bcWLS [8] and LSO-PLEc [19] with N = 4 UAV-BSs, TS and AS of standard
deviation o 45 = 4.4 dB.
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PCAL without ambiguity, PCAL-GSAE, and average CRLB with N = 4 UAV-
BSs, UAV altitudes h; = 200 m (i=1,...,4), and AS of standard deviation
oas = 4.4 dB.

with unknown PLEs, since the approximations in (5) and (6)
and GSAE are disabled under perfect knowledge of PLEs,
which makes the algorithm more vulnerable to shadowing.

VI. CONCLUSION

We have proposed a PCAL scheme for multiple UAV-BSs
assisted and RSS based MS localization without requiring
PLEs to be equal and perfectly known. The two-step ap-
proximations by piecewise convex approximation and curve
fitting yield a convex localization problem that matches the
EAPL model [18] very well. The localization problem is
then converted to linear via TSE which can be solved by
SDP with equivalent complexity as [6] and [7]. The proposed
PCAL approach with unknown and unequal PLEs significantly
outperforms the approaches in [6]-[8] with perfectly known
and equal PLEs, and [19] with unknown and unequal PLEs,
demonstrating higher robustness against shadowing especially
AS in the scenario of UAV. The proposed GSAE method can
eliminate ambiguity more effectively than the PLM method in
[21]. The effect of UAV trajectory design on localization will
be considered in our future work.
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