
Design and numerical validation of 
quasi-zero-stiffness metamaterials for very 

low-frequency band gaps 
 

Changqi Caia, b, Jiaxi Zhou∗a, b, Linchao Wua, Kai Wanga, b, Daolin Xua, b, Huajiang 
Ouyangc 

 
a State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan 

University, Changsha 410082, PR China, 
b College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, PR 

China, 
c School of Engineering, University of Liverpool, LiverpoolL69 3GH, UK 

 

Abstract 
A novel one-dimensional quasi-zero-stiffness (QZS) metamaterial is proposed to 
acquire very low-frequency band gaps. The representative unit cell (RUC) of the QZS 
metamaterials is constructed by combining positive-stiffness (PS) elements (two pairs 
of folded beams) and negative-stiffness (NS) elements (two pairs of buckled beams) 
in parallel. The negative stiffness of the buckled beams under large deformation is 
predicated theoretically by using the elliptic integral method. A parameter design on 
both the PS and NS elements is carried out, which indicates that the positive stiffness 
can be substantially neutralized by the NS elements, leading to a QZS RUC with 
ultra-low stiffness. Additionally, the one-dimensional QZS metamaterials are 
modelled as a lumped-mass-spring chain, which is solved theoretically by using the 
Harmonic Balance method, and then the dispersion relations and the band gaps are 
revealed. This chain model is also solved numerically and validated by finite element 
analysis. Both the theoretical and numerical predictions show very low-frequency 
band gaps (about 20Hz). Therefore, the proposed QZS metamaterials should be a 
promising solution for very low-frequency wave filtering or attenuation. 
Keywords: Quasi-zero stiffness; metamaterials; low frequency; band gaps; local 
resonance.  
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1. Introduction  

In the past three decades, the propagation of elastic or acoustic waves in periodic 

structure called phononic crystals (PCs) or metamaterials has received much attention 

[1–4], which exhibits exceptional material properties not observed in nature, i.e., 

negative mass density or negative Young’s modulus. Especially, waves can be 

attenuated by metamaterials in certain frequency ranges, called stop bands or band 

gaps [5], which can be applied in vibration isolation, wave attenuation, waveguides，

acoustic absorption and etc. [6–14]. 

 

There are two formation mechanisms of band gaps called Bragg scattering (BS) and 

local resonance (LR). The central frequency of BS band gaps is inversely proportional 

to geometric scale (lattice constant) of the PCs [15]. Hence, it is impractical to open 

low frequency BS band gaps unless the PCs have a large lattice constant. Fortunately, 

the work by Liu et al. [16] offered a novel route to generating low-frequency band 

gaps which is called local resonance (LR). 

 

Recently, several researchers tried to devise some novel local resonant metamaterials 

to open the band gap at a low frequency. Pai et al. [11] designed new metamaterial 

beam based on multi-frequency vibration absorbers for broad band vibration 

absorption. Qureshi et al. [17] fabricated a 3D-printed cantilever-in-mass structure for 

creating low-frequency band gaps. Ma et al. [18] proposed a periodic vibration 

suppressor with multiple secondary oscillators for reducing low-frequency vibration. 

Virgin et al. [19] achieved low-frequency band gaps by employing a highly deformed 

slender beam. Chen et al. [20], Wang et al. [21], Zhou et al. [15] and Yu et al. [22] 

also achieved low-frequency band gaps for flexural waves in beams by local 

resonators. In addition, Zhong et al. [23] proposed an underwater acoustic ultra-thin 

metamaterial plate embedded with spiral local resonators to obtain excellent 

underwater sound absorption performance and low-frequency band gaps. For 
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broadening the frequency range of local resonance band gaps, Wang et al. [24] 

proposed a tuneable digital metamaterial plate with embedded electromagnets. Liu et 

al. [7] also designed a broad band locally resonant metamaterial sandwich plate for 

noise insulation in the coincidence region.  

 

Moreover, nonlinear locally resonant metamaterials were also used to fulfil 

low-frequency band gaps or wave manipulation. Meaud et al. [25] achieved a 

low-frequency band gap by architected materials with bistable unit cells. Nadkarni et 

al. [26] proposed a periodic lattice with bistable unit cells connected by magnetic 

links, which enabled unidirectional transition wave propagation at constant wave 

velocity. Raney et al. [27] presented an architected soft system composed of 

elastomeric bistable beam elements connected by elastomeric linear springs, for 

propagation of stable, nonlinear solitary transition waves with constant, controllable 

velocity and pulse geometry over arbitrary distances. Goldsberrya et al. [28] designed 

a negative-stiffness honeycomb for transverse wave guide depending on static 

pre-strain levels. 

 

Usually, there are two ways to reduce the resonant frequency further, namely 

increasing the mass or decreasing the stiffness of the resonator [18, 19]. However, the 

above methods might be unworkable to open band gaps at very low frequencies, 

because it is unrealizable to make the stiffness of a resonator ultra-small, or the mass 

ultra-large. Therefore, it is still a challenge to realize wave attenuation at very low 

frequencies. Fortunately, the authors’ works [29–33] have shown that suitable local 

resonant structures with high-static-low-dynamic-stiffness (HSLDS) resonators can 

create a band gap at very low frequency. However, the HSLDS resonator was built by 

connecting a vertical spring with oblique springs (negative-stiffness mechanism) in 

parallel, which is not compact enough to implement local resonant metamaterials in 

small scale.  

 

Generally, the space-consuming negative-stiffness mechanism can be replaced by a 
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compact bistable elastic structure, which enables negative stiffness by utilizing 

snap-through buckling. The main contribution of this paper is to devise a new kind of 

one-dimensional QZS metamaterials by connecting a bistable structure with an elastic 

element in parallel. In the representative unit cell (RUC) of QZS metamaterials, two 

pairs of buckled beams provide the longitudinal negative stiffness, while the elastic 

element, two pairs of multi-segment folded beams, produces the positive stiffness. 

The positive stiffness can be substantially neutralized by the negative stiffness, which 

leads to quasi-zero stiffness.  

 

It should be noted that the stiffness of the QZS metamaterials are positive rather than 

negative for the bistable metamaterials. Therefore, the dynamic systems of the QZS 

metamaterials are absolutely stable, which can definitely enable a low-frequency band 

gap, even though the bistable metamaterials have fantastic properties in manipulating 

wave propagation.  

 

This paper is organized as follows: In section 2, the parameter design on the RUC of 

the metamaterials is carried out to realize the quasi-zero stiffness. In section 3, the 

QZS metamaterials are modelled as a damped nonlinear chain. The dispersion relation 

is derived by the Harmonic Balance method and the band gap is revealed, which is 

verified by numerical simulations and finite element analysis. The damping, mass 

ratio and excitation amplitude on the band gap are discussed in Section 4. Finally, 

some conclusions are drawn in Section 5. 

2. Design procedure of QZS metamaterials 

The one dimension (1D) QZS metamaterials and their representative unit cell (RUC) 

are illustrated in Fig. 1. The RUC is composed of four parts, namely supporting frame, 

positive-stiffness (PS) element, negative-stiffness (NS) element, and central mass, 

which can be made of the same material by additive manufacturing technology. The 
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positive-stiffness element contains two pairs of folded beams. One folded beam is 

made up of five segments of beams with lengths of d, c, a, c and d, as shown in Fig. 

1(b). Parameters r and h denote the fillet radii at the corner, and the thickness of the 

folded beam, respectively. Parameter b denotes the out-plane width of the RUC. The 

negative-stiffness element consists of two pairs of oblique beams. Buckling occurs 

when the oblique beams are subjected to compression, which can provide negative 

stiffness along the longitudinal direction of the 1D metamaterials. The length and 

thickness of the oblique beam are l and h, respectively. Since the positive-stiffness 

element is connected in parallel with the negative-stiffness one, the overall stiffness of 

the RUC can be assigned a desired low value. The central mass is connected with the 

supporting frame through both the PS and NS elements. In this section, the 

mechanical features on the RUC are made to fulfil the quasi-zero-stiffness feature. 

 

 

Fig. 1 Schematic diagrams of (a) the 1D QZS metamaterials and (b) the representative unit cell 

 

Due to the symmetrical configuration, a half of the RUC is taken to study the stiffness 

feature. Assuming that an external force hF  acts on the central lumped mass, which 

leads to a vertical displacement x, as shown in Fig. 2(a). The external force hF  is 

supported by both the positive- and negative-stiffness elements, as shown in Fig. 2(b) 

and 2c, respectively. The force-displacement relationship, hF  vs x, of the RUC can 

be obtained by combining those of the positive- and negative-stiffness elements, 

namely pF  vs x and nF  vs x. 

(a) (b)

r ac
dhh

lγ
xy

z

x

y

c
d

z
b

5 
 



 

Fig. 2 Schematic diagrams of (a) a half of the RUC, (b) the positive-stiffness element, and (c) the 

negative-stiffness element. 

 

2.1 Static analysis of the positive-stiffness element 

The positive-stiffness element in Fig. 2b is composed of a pairs of folded beams. The 

stiffness features, namely the relationship between pF  and x, is revealed by 

Castigliano’s theorem under the assumption of small deformation. Since two folded 

beams are symmetrically arranged, their deformations are assumed to be identical. 

 

The deformation of the folded beam is dominated by bending, and the deformations 

caused by shear forces and axial forces are neglected. The folded beam is divided into 

nine segments, and the bending-moment functions along the folded beam can be 

given by 

 ( , , , , ) ( 1 ~ 9)i i c c c i iM M M F T y iθ= =  (1) 

where cM , cF  and cT  are the unknown bending moment, axial force and shear 

force, respectively, as shown in Fig. 3(a). It is worth noting that the shear cT  is 0, 

which can be derived by static analysis. In addition, 2 1jy + (j=0~4) is the distance from 

the starting point of each straight segment, and 2 jθ (j=1~4) is angle between the 

tangent of the arc segment and the 2j-1th straight segment, as illustrated in Fig. 3(b), 

where the bending-moment diagram is also depicted. 

nF

x x
= +

(a) (b) (c)pFhF

x
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Fig. 3(a) Free-body diagram and (b) bending-moment diagram. 

 

Furthermore, the strain energy of these two folded beams can be written as 

 ( ) ( )2 1
2 24 4

2 1 2 1 2 22
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2 d d
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 (2) 

 

From the free-body diagram, one can find that 2c pF F= . According to Castigliano’s 

theorem, and submitting 2c pF F=  into Eq. (2), the vertical displacement x can be 

calculated by differentiating the strain energy with respect to the force pF ,  
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Note that cM  cannot be obtained by only the equilibrium equation, and an additional 

equation is established, based on the boundary condition that the slope of the folded 
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beam at the beginning end is zero, i.e. 
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From Eq. (4), one can obtain the relationship between cM  and pF , and then, by 

substituting cM  into Eq. (3), the relationship between pF  and x can be given by 

 ( )6 2 2 2
p

EI a c
F x

d rp
=

+ +
Π
+  (5) 

where 
 4 4 2 2 2 3 3

3 3 3 3 2

2 2 2 2 2

2 2 2 2 2 2 2

6 24 2 4
9 30 4 18 6
18 6 24 36 12
3 24 6 3 12 6

c r c r ac c d
ar cr c r dr ac d
acr ac r adr cdr c dr

c r acdr acr ac r cdr c dr

π

π π π π

π π π π π

Π = + + + +

+ + + + +

+ + + + +

+ + + + + +

 (6) 

 

2.2 Static analysis of the negative-stiffness element 

The negative-stiffness element in Fig. 2(c) is composed of a pairs of fixed-guided 

oblique beams. Under the external compression force nF , the oblique beams should 

be designed to achieve the snap-through buckling behaviour, and to realize a bistable 

flexure mechanism with negative stiffness. The relationship between nF  and x is 

revealed by the elliptic integral method [34] under large deformation. Due to the 

symmetrical configuration, the fixed-guided oblique beams undergo the same 

deformation, as shown in Fig. 4(a). 
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Fig. 4 (a) Deformation of the fixed-guided oblique beams, (b) free-body diagram and (c) 

parameters of the deformed oblique beam. 

 

The bending deflection of the fixed-guided oblique beam is mainly caused by the 

resultant force R and the moments eM  in Fig. 4(b). Referring to the parameters 

shown in Fig. 4(c), the Euler-Bernoulli equation for the oblique beam from point O to 

point A can be given by  

 A A
d cos sin
d sEI M Rv Ru

s
θ ψ ψ= −+  (7) 

where Au  and Av  are the horizontal and vertical coordinates of point A in the 

coordinate system uov, EI  is the bending rigidity, ψ  is angle of the reaction force 

R with respect to u, and θ  is the slope angle at point A. 

 

By differentiating Eq. (7) with respect to s and using Acos d du sθ =  and 

Asin d dv sθ = , one can yield 
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 2

2

d sin cos cos sin
d

EI R R
s
θ θ ψ θ ψ= −

 (8) 

 

Integrating Eq. (8) with respect to θ  gives 

 2d cos cos sin sin
2 d

EI R R C
s
θ θ ψ θ ψ  = − − + 

 

 (9) 

where C is a unknown constant. Solving for ds  in Eq. (9) and then integrating from 

0 to L result in  

 0

0 0
d d d

2 cos( ) 2 2 cos( ) 2
m

m

L EI EIL s
R C R C

θ

θ
θ θ

θ ψ θ ψ
= = +

− − + − − − +∫ ∫ ∫
 (10) 

where mθ  is the maximum slope angle through the buckled beam. 

 

And the horizontal and vertical displacements of the guided end of the oblique beam 

can also be given by 

 0

0 0

0

0 0

sin sinsin d d d
2 cos( ) 2 2 cos( ) 2

cos coscos d d d
2 cos( ) 2 2 cos( ) 2

m

m

m

m

L

b

L

b

EI EIs
R C R C

EI EIs
R C R C

θ

θ

θ

θ

θ θη θ θ θ
θ ψ θ ψ

θ θξ θ θ θ
θ ψ θ ψ

= = +
− − + − − − +

= = +
− − + − − − +

∫ ∫ ∫

∫ ∫ ∫

 (11) 

 

To evaluate these integrals, a constant k  and a variable φ  are introduced 

 2(2 1)C R k= −  (12) 

 
cos( ) sin

2
kψ θ φ−

=
 (13) 

 

From Eq. (10), one can obtain the relationship between R  and k , φ . By 

substituting Eqs. (12) and (13) into Eq. (10), one can yield 
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2

1

2

2 2

d
1 sin

L R
EI k

φ

φ

φµ
φ

= =
−

∫
 (14) 

 

Note that the value of φ  changes continuously from 1φ  at the left end and 2φ  at 

the right end. For the fixed-guided boundary condition, 1φ   and 2φ  can be 

calculated by using 

 
1 2

1sin sin cos( )
2k
ψφ φ= =

 (15) 

 

Corresponding to the buckling mode, the relation between 1φ  and 2φ  can also be 

described as 

 2 1nφ π φ= −  if n is odd (16) 

 2 1nφ π φ= +  if n is even (17) 

 

For a given 1φ , the corresponding 2φ  can be determined. Here, only the first two 

lowest buckling modes are considered during static bending, namely, n=1 or 2. 

 

Furthermore, two incomplete elliptic integral functions ( , )G k φ  and ( , )H k φ  are 

introduced to solve the integrals, as listed below 

 
2 20

d( , )
1 sin

G k
k

φ dφ
d

=
−

∫
 (18) 

 2 2
0

( , ) 1 sin dH k k
φ

φ d d= −∫  (19) 

 

Therefore, Eq. (10) and Eq. (11) can be rewritten as 

 
2 1( , ) ( , )G k G kµ φ φ= −  (20) 
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( ) ( ) ( ) ( ){
( )}

2 1 2 1

1 2

1 sin 2 , 2 , , ,

2 cos cos cos

b H k H k G k G k
L

k

η ψ φ φ φ φ
µ

ψ φ φ

= − − − +  

+ −

 (21) 

 
( ) ( ) ( ) ( ){
( )}

2 1 2 1

2 1

1 cos 2 , 2 , , ,

2 sin cos cos

b E k E k F k F k
L

k

ξ ψ φ φ φ φ
µ

ψ φ φ

= − − − +  

+ −

 (22) 

 

Next, the axial deflection of the oblique beam is calculated. According to Hooke’s law, 

the axial strain of the oblique beam can be given by 

 ( )cosR
EA
ψ θ

ε
−

=
 (23) 

 

Therefore, the vertical and horizontal displacements caused by the axial force at the 

right end of the beam can be yielded as 

 
2

1
2 2 20

1 cos( )sinsin d d
1 sin

La s
L L k

φ

φ

µη θ ψ θε θ φ
λ φ

−
= =

−
∫ ∫

 (24) 

 
2

1
2 2 20

1 cos( ) coscos d d
1 sin

La s
L L k

φ

φ

µξ θ ψ θε θ φ
λ φ

−
= =

−
∫ ∫

 (25) 

where the slenderness ratio λ  is defined as 

 2
2 AL

I
λ =

 (26) 

 

By adding the axial and the bending displacements, the total vertical and horizontal 

displacements of the beam in the coordinate system uov are obtained 

 

( ) ( ) ( ) ( ){

( )} 2

1

2 1 2 1

1 2 2 2 2

sin 2 , 2 , , ,

cos( )sin2 cos cos cos d
1 sin

b a

L H k H k G k G k

Lk
k

φ

φ

η η η

ψ φ φ φ φ
µ

µ θ ψ θψ φ φ φ
λ φ

= +

= − − − +  

−
+ − +

−
∫

 (27) 
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2 1 2 1

2 1 2 2 2

cos 2 , 2 , , ,

cos( ) cos2 sin cos cos d
1 sin

b a

L E k E k F k F k
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ψ φ φ φ φ
µ

µ θ ψ θψ φ φ φ
λ φ

= +
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−
+ − +

−
∫

 (28) 

 

Eq. (27) and Eq. (28) are two nonlinear algebra equations with respect to four 

variables η , ξ , k  and ψ . For a set of given displacements ξ  and η , the 

variables k  and ψ  are solved from the nonlinear algebra equations (27) and (28) 

with MATLAB codes developed by Howell et al. [35]. Once k  and ψ  are 

determined, the reaction force R  can be calculated by substituting k  and ψ  into 

Eq. (14) and Eq. (15). Then, from the free-body diagram in Fig. 4(a), one can derive 

the relation between nF  and R  

 2 sin( )nF R ψ γ= − −  (29) 

 

In addition, from the geometrical relation in Fig. 4(c), the displacement x can be given 

by 

 ( )2 2x L x η= − +  (30) 

 

As a result, the relationship between the force nF  and the displacement x is 

determined. 

2.3 Stiffness features of the QZS RUC 

From Fig. 2, it can be seen that the positive-stiffness element is connected in parallel 

with the negative-stiffness element. Therefore, one can obtain the relationship 

between hF  and x,  
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 ( ) ( ) ( )h p nF x F x F x= +  (31) 

 

Also, the stiffness of a half of the RUC hk  can be given by 

 
( ) ( ) ( ) ( ) ( )d d

d d
p n

h p n

F x F x
k x k x k x

x x
= + = +

 (32) 

 

To acquire a desired low stiffness, the parameters of the negative-stiffness element is 

kept unchanged, while the geometrical parameter c (Fig. 1(b)) is designed to adjust 

the positive stiffness, and thus to tune the overall stiffness of the RUC.  

 

The parameters of the RUC are listed in Table 1. Among of these parameters, a, c and 

d are the lengths of the segments of the folded beam in the positive-stiffness element; 

r is the radius of the arc segment in the positive-stiffness element; b is the out-plane 

width of the RUC and h is the in-plane height of all folded and buckled beams; l is the 

origin length of the buckled beam; and γ  is the initial oblique angle of the buckled 

beam. The restoring force and stiffness are illustrated in Fig. 5. Obviously, the 

restoring force pF  of the PS element increases monotonically and proportionally 

with respect to the displacement x, while the restoring force of the NS element firstly 

rises steeply and then decreases suddenly against x due to the snap-through buckling 

of the oblique beams. Correspondingly, the stiffness of the PS element is a constant, 

but that of the NS element reduces dramatically until it suddenly falls towards a 

negative value, and then nearly remains unchanged as constant. Since the RUC is 

composed of the PS element connected in parallel with the NS element, the restoring 

force hF  and stiffness hk  can be achieved by combining those of the PS element 

and NS element, as represented as solid lines in Fig. 5. It can be seen that the overall 

restoring force hF  firstly increases steeply and then very slightly in a large 

displacement range, which implies that a quasi-zero stiffness is realized in such a 

displacement range.  
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Table 1 Parameters of the RUC 

 Geometrical dimensions (mm) Material 

Parameter a c d b l r h γ  E ρ  

Value 5.4 4.75 3.5 25 18.716 0.65 0.7 11.308°  2.3465GPa 1.13kg/m3 

 

 

Fig. 5 Stiffness characteristics of half a RUC: (a) relationship between restoring force hF  and 

displacement x; (b) relationship between stiffness hk  and displacement x. 

 

Next, the stiffness feature of the whole RUC is presented. To achieve the quasi-zero 

stiffness, the snap-through buckling of the oblique beam should occur. It is, therefore, 

necessary to apply a preload on the RUC, as shown in Fig. 6(a). Obviously, under the 

pre-compression 2∆ , the upper and lower half of the RUC deform in mirror 

symmetry, and all oblique beams undergo buckling. After preloading, both the upper 

and lower ends of the RUC are fixed relatively, which means that there is no relative 

displacement between the upper end of the RUC and the lower one. More importantly, 

the central mass can move along the vertical direction X freely.  
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Fig. 6 (a) Preloading process of the RUC and (b) free-body diagram of the central mass 

 

The free-body diagram of the central mass is shown in Fig. 6(b). When the mass 

moves down by X, the restoring forces by the upper half and the lower half of the 

RUC are represented by ( )uF X  and ( )lF X , respectively. Therefore, the restoring 

force of the RUC F can be given by 

 ( ) ( ) ( )l uF X F X F X= −  (33) 

 

The restoring forces of the upper and lower halves can be obtained by carrying out 

coordinate transformations on the restoring force of the lower half in the coordinate 

system hF  vs x, as given by 

 ( ) ( ), ( ) ( ) ( )l h u l hF X F x F X F X F x= ∆ + = − = ∆ −  (34) 

 

Substituting Eq. (34) into (33) yields  

 ( ) ( ) ( ) ( ) ( )l u h hF X F X F X F x F x= − = ∆ + − ∆ −  (35) 

 

By differentiating Eq. (35) with respect to X, the stiffness of the RUC can be yielded 

 d ( ) d ( )( ) ( ) ( )
d d
l u

h h
F X F Xk X k x k x

X X
= − = ∆ + + ∆ −

 (36) 
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When the pre-compression is selected as 2mm∆ = , the restoring forces and stiffness 

are depicted with respect to the displacement X in Fig. 7, where the curves of the 

lower and upper halves of the RUC are denoted by dotted and dashed lines, 

respectively, and that of the whole RUC is represented by solid lines. Note that the 

static characteristics of the RUC are also studied by the finite element method (FEM), 

which are denoted by circular dots in Fig. 7.  

 

 

Fig. 7 (a) Restoring force and (b) Stiffness vs displacement X. Dotted line: lower half RUC, 

dashed lines: upper half RUC, solid lines: whole RUC, and circular dots: whole RUC by FEM. 

 

Obviously, there is a displacement range where the curve of the restoring force of the 

RUC is flat, which corresponds to near-zero stiffness; however, the restoring force 

increases steeply when the displacement is out of such a range, which implies 

relatively large positive stiffness. This is an ideal stiffness feature for low-frequency 

vibration attenuation. Ultra-low stiffness is essential to realize low resonant frequency 

and thus to create low-frequency band gap. However, when the central mass escapes 

from the displacement rage of quasi-zero stiffness, the increasing stiffness prevents it 

from undergoing large deflection to avoid structural failure. 

 

More importantly, from Fig. 7, one can also observe good agreement between the 

analytical restoring forces and stiffness and the numerical ones obtained by FEM, 

especially in the displacement range of quasi-zero stiffness. Outside of such a range, 
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the theoretical stiffness is somewhat larger than the numerical one, which can be 

attributed to the assumption of small deformation in theoretical analysis. Overall, the 

good agreement validates the above design procedure of the QZS RUC. 

 

In summary, the outline of the design procedure can be listed as follows: 

 Design the NS element and determine its stiffness feature. 

 Design the PS element and adjust its geometrical parameters to tune the overall 

stiffness of the RUC. 

 Apply preloading onto the RUC and the distance between the upper and lower 

end of the RUC is kept unchanged. 

3. Wave attenuation 

The quasi-zero-stiffness feature of the 1D metamaterials is realized by parameter 

design on the RUC composed of positive- and negative-stiffness elements in the 

above section. In this section, the wave propagation along the QZS 1D metamaterials 

is investigated and the wave attenuation performance is evaluated by both the 

lumped-mass chain model and FEM simulations.  

3.1 Theoretical prediction of band gaps 

3.1.1 Damped nonlinear lumped mass-spring chains system 

The one-dimensional QZS metamaterials can be modelled as a spring-mass chain [36], 

as shown in Fig. 8. In the chain, the supporting frame and central mass are simplified 

as the lumped masses M and m，respectively, the elastic folded beam between each 

RUC is represented by spring K, and the PS and NS elements connecting the central 

mass and the frame is modelled as a nonlinear spring qk 1( ( ))j jk f u v= −  with QZS 

feature. The parameters of the chain can be determined by the parameters in Table 1 

and the stiffness in Fig. 7(b), as shown in Table 2. 
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Fig. 8 Simplified spring-mass chains model 

 

Table 2 Parameters of spring-mass chains model 

Parameter M(kg) m(kg) K(N/m) k1(N/m) α  β  κ  ζ  
1χ  

2χ   

Value 0.0344 0.01 6700 261.7 0.039 0.29 0.37 0.01 -0.04 0.002 

 

 

When the number of RUCs is large or even infinite, the periodicity of the chain is 

formed, and any RUC in the chain stays in the same situation. The investigation for 

any RUC is alike and can reveal all the dynamic characteristics of the whole model. 

For the jth RUC, the equations of motions can be given by 

 1 1 1 12 ( ) ( ) 0j j j j j j j jMu Ku Ku Ku c u v k f u v− ++ − − + − + − =    (37) 

 1 1( ) ( ) 0j j j j jmv c u k f v uν+ − + − =   (38) 

where 1c  is the damping coefficient, 1 ( )j jk f v u−  is the nonlinear restoring force, 

which is shown in Fig. 7(a). To derive the dispersion relationship analytically, the 

restoring force without explicit expression is fitted by a five-order polynomial  

 3 5
1 2( ) ( ) ( ) ( )j j j j j j j jf v u v u v u v uγ γ− = − + − + −  (39) 

where 1γ  and 2γ  are the parameters representing the degree of nonlinearity. 

 

By introducing the relative displacement j j jq v u= − , 
0 /K Mω = and 

non-dimensional parameters 

ccc

qk

M
1k 1k 1k1k

1thj − thj 1 thj+
ju

jv

M M

m

K K K K

qk
m

qk
m
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 1 1
0

1

ˆ ˆ, , , , ,
2s s

c ku q mt u q
u u K Mk m

t ω ζ α β= = = = = =
 (40) 

where 2mmsu =  is displacement of mass M when the stiffness of RUC starts 

increasing steeply. Then, Eq.(37), (38) and (39) can be rewritten as 

 1 1ˆ ˆ ˆ ˆ ˆ ˆ2 2 ( ) 0j j j j j ju'' u u u q' f qζβκ α− ++ − − − − =  (41) 

 2ˆ ˆ ˆ ˆ2 ( ) 0j j j jq'' q' f q u''ζκ κ+ + + =  (42) 

 3 5
1 2ˆ ˆ ˆ ˆ( )j j j jf q q q qχ χ= + +  (43) 

where 1

0

/k m αk
ω β

= = , is the non-dimensional natural frequency of the linearized 

local resonator, ()'  or ()"  denote the first- and second-order derivatives with 

respect to non-dimensional time τ  , respectively, 2
1 1= suχ γ  and 4

2 2= suχ γ . 

 

The equations of motion of the damped nonlinear mass-spring chain are solved by the 

Harmonic balance method, and the solution of the jth local resonator is assumed to be 

 ( ) ( )
1 1ˆ e ei j i j

jq B Bτ µ τ µΩ − − Ω −= +  (44) 

where 1B  is conjugate complex number of 1B . 

 

By substituting Eq. (44) into Eq. (42) and integrating twice with respect to time τ , 

one can obtain the displacement response of the jth mass M, which is given by 

 2
2 2 3 3

1 1 1 1 2 1 1 12

2ˆ [ 1 (1 3 10 )]e . . ( e )i i
j

iu B B B B B c c O Bφ φζκ κ c c= − + + + + + +
Ω Ω

 (45) 

where jφ τ µ= Ω − , c.c. is the conjugated term about the first term in Eq. (45) and 

3 3
1( e )iO B φ  is the term that makes little contribution to the response. Therefore, only 

the terms about eiφ  and e iφ−  are preserved in the above expression. 

 

By substituting Eqs. (44) and (45) into Eq. (41) and setting the coefficients of eiφ  to 
20 

 



zero, one can obtain the amplitude-frequency equation 

 2
2 2 2

1 1 1 2 1 12

2 2
1 1 1 2 1 1

2[ 1 (1 3 10 )]( 2 e e )

[2i (1 3 10 )] 0

i ii B B B B

B B B B

µ µζκ κ χ χ

χ χζβκ α

−− + + + + −Ω + − −
Ω Ω
− Ω+ + + =

 (46) 

 

And then, the dispersion relationship can be derived from Eq. (46) 

 2 2 2
1 1 1 2 1 1

2 2 2 2
1 1 1 2 1 1

[2i (1 3 10 )]1cos( ) 1
2 2 [ 2 (1 3 10 )]

B B B B
i B B B B

c cζβκ αµ c cζκ κ
Ω Ω+ + +Ω

= − −
−Ω + Ω+ + +

 (47) 

 

The dispersion relation of the chain is depicted in Fig. 9, where the real and imaginary 

parts of the solution are shown in the right and left planes, respectively. Therefore, the 

relationship between the wave amplitudes of adjacent masses jM  and 1jM +  can be 

demonstrated as 

 Im( ) Re( )
1ˆ ˆe e i

j ju umm −
+ =   (48) 

 

Fig. 9 Nonlinear dispersion relation between frequency and µ  

 

The wave attenuation in the chains occurs in the highlighted grey area (band gap), 

where attenuation rate Im( )e m  is less than 1. The waves at other frequencies outside 

band gap propagate with little energy loss in the chain and transmission rate Im( )e m  is 

nearly equal to 1. In addition, the phase difference Re( )µ  of wave propagation 
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through two neighbour mass jM  and 1jM +  varies with µ . Inside the band gap, the 

attenuation rate Im( )e m  would be a minimum when κΩ = . In other words, the 

frequency is equal to the natural frequency of the attached resonator ( 1 /k mω = ). 

3.1.2 Finite chain 

In this section, a finite-length chain with n RUCs is considered, as shown in Fig. 10. 

The primary spring at the head of the chain connects to the fixed base, while the 

boundary condition of the tail RUC is free. A harmonic force is applied onto the 

primary mass M of the first RUC. The equations of motion of the full chain are 

established, and solved numerically by using Runge-Kutta method. The wave 

attenuation performance is evaluated in terms of transmittance, which is defined as 

the horizontal displacement of the first RUC to that of the last one. 

 

Fig. 10 Schematic diagram of the finite chain 

 

By using the Newton's second law of motion, the equation of motion in matrix form is 

yielded as 

 ( )k+ + =x x x M C F F  (49) 

where [ ]T

1 1 2 2 ··· n nu q u q u q=x  is the displacement vector, which contains 

the displacement iu (i=1~n) of primary masses and the relative displacements 

i i iq u v= − (i=1~n) between the primary mass and the attached oscillator. M  and C  

are given by 

······
K

cc cc
1k 1k1k

1 st nd2 3th
2u

2v

M M
K K K

M

nth

M
sin( )f tω

qk
m

qk
m

qk
m

qk
m
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0 0 0 0
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0 0 0 0
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m m
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C

 (51) 

T[ sin( ) 0 0]f tω= F  is the force vector. There is only one harmonic 

excitation force acting on the first primary mass M. And ( )k xF  is given by 

 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

( )
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

q

q

q

q

k

q

q

q

q

K k K
k

K K k K
k

K K k K
k

K K k
k

− − 
 
 
 − − −
 
 
 =
 

− − − 
 
 

− − 
 
 

x x









           









F

 (52) 

where K  and qk  is the stiffness of primary and attached spring. It is worthily 

noting that the stiffness qk , the forth-order polynomial about displacement x, is 

piecewise nonlinear, but the coefficients of the odd order polynomial about 

displacement x are zero, namely 

 8 2 14 4

4 10 2 14 4

261.7 2.483 10 3.308 10 , 0.0014m
3.878 10 2.194 10 6.781 10 , 0.0014mq

x x x
k

x x x
 − × + × <= − × + × − × ≥

  (53) 

where the stiffness of attached spring is various when the amplitude of relative 
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displacement ( 1, 2, , n)iq i =   exceeds critical value, 1.4mm. 

 

Then, the Runge-Kutta method is utilized to solve Eq. (49) when the chain is 

composed of nine primary masses, and the displacement transmittance is obtained, as 

shown in Fig. 11. It can be seen that wave attenuation happens in the frequency range 

from 19Hz to 34Hz, as highlighted by the grey area, which can be regarded as a 

low-frequency band gap. It can also be found that the numerical band gap of the finite 

chain matches well with theoretical prediction presented in Fig. 9 for the infinite 

chain. 
 

Fig. 11 Displacement transmittance rate of the finite chain 

3.2 Band gaps by finite element analysis 

To verify the theoretical prediction of the band gap, a finite element (FE) analysis on 

the finite-length 1D metamaterial is carried out by employing ABAQUS. The FE 

model of the 1D metamaterial is shown in Fig. 12, which is composed of ten QZS 

RUCs and nine elastic connecting elements. The boundary conditions of the FE model 

are similar to the finite chain in Section 3.1.2. The left end of the 1D metamaterial is 

fixed, while the right end is free. A random excitation acts at the second RUC along 

the horizontal direction. Each RUC should be pre-compressed to fulfil the quasi-zero 

stiffness. 
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Fig. 12 flow-process diagram of FEA 

 

The displacement responses of the starting and ending points are obtained to calculate 

the displacement transmittance, as demonstrated in Fig. 13. Obviously, in the 

frequency range from 16Hz to 22Hz, the transmittance (in dB) is below zero, which 

implies a band gap. Comparing Fig. 13 with Fig. 9 and Fig. 11, one can see that the 

band gap revealed by the finite element analysis is in good agreement with those 

predicted both theoretically by using the infinite chain model and numerically by the 

finite chain model. More importantly, the low-frequency band gap is realized by 

employing the proposed conceptual design of the QZS metamaterial.  

 

Fig. 13 the displacement transmission rate of FEA model 
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4. Discussions 

From Eq. (47), one can see that the dispersion relation is dependent on the damping 

ratio ζ , mass ratio β  and nonlinearity 1 1 1B Bχ . In this section, the influences of 

these two parameters on the band gap are discussed by using the finite chain model. 

The effect of the damping ratio ζ  on the band gap is shown in Fig. 14. The band 

gap is broadened to a wider frequency range with increasing damping, but the depth 

of the band gap is reduced, which implies that the performance of vibration absorption 

is degraded. Meanwhile, the center frequency of the band gap is kept unchanged.  

 

Fig. 14 The relationship of transmittance and frequency for different damping 

( 0.05,0.08,0.1,0.2; 0.039; 0.29ζ α β= = =  ) 

The influence of the mass ratio β  on the transmittance is shown in Fig. 15. The 

center frequency is equal to the resonant frequency of the local resonator κ  ( α β ), 

0 20 40 60 80 100
Frequency(Hz)

-20

-10

0

10

20

30

40

Tr
an

sm
itt

an
ce

(d
B

)

=0.1

0 20 40 60 80 100
Frequency(Hz)

-20

-10

0

10

20

30

40

Tr
an

sm
itt

an
ce

(d
B

)

=0.2

0 20 40 60 80 100
Frequency(Hz)

-20

-10

0

10

20

30

40

Tr
an

sm
itt

an
ce

(d
B

)

=0.08

0 20 40 60 80 100
Frequency(Hz)

-20

-10

0

10

20

30

40

Tr
an

sm
itt

an
ce

(d
B

)

=0.05

(a)

(c)

(b)

(d)

26 
 



which is inversely proportional to β , and thus the center frequency increases as the 

mass ratio β  decreases.  

 

Fig. 15 Influence of mass ratio on the transmittance and band gap 

( 0.1,0.5,0.8,1.0; 0.039; 0.08β α ζ= = = ) 

 

In order to demonstrate the change of the center frequency against the mass ratio more 

clearly, both the numerical and theoretical center frequencies of these 4 cases are 

listed in Table 3. The numerical center frequency is defined as the frequency at the 

minimum value of the wave transmittance, and the theoretical one is calculated by 
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2
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π

. Obviously, when β  decreases to 0.5 (from 1 to 0.5), the mass of the 

resonator is reduced by a half, and thus the center frequency is increased to 2  

times theoretically. Similarly, when β  decreases to 0.1 (from 1 to 0.1), the center 
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frequency is notably shifted from 15.1Hz to 41.4Hz. Note that there is a difference 

between the numerical and theoretical center frequencies. For example, the ratio of 

the numerical center frequency for 0.5β =  to that for 1β =  is about 1.35, which is 

different from but very close to the theoretical value 2 . 

 

Table 3 Center frequencies of the band gaps in 4 cases 

β  0.1 0.5 0.8 1 

Numerical center frequency (Hz) 41.40 20.35 16.45 15.10 

Theoretical center frequency (Hz) 43.86 19.62 15.51 13.87 

 

All the above cases are under the small displacement. The effect of the excitation 

amplitude on the transmittance is shown in Fig. 16. Obviously, the band gap is 

narrowed with the load increasing. This can be attributed to the increasing 

nonlinearity against the displacement. The stiffness of the QZS metamaterial is 

nonlinear, which has a stiffness-hardening feature, and the nonlinearity would be 

enhanced as the displacement is increased. The strong nonlinearity would induce 

complicated responses, such as sub-harmonic, quasi-periodic and even chaotic 

motions. The responses at the frequencies in the band gap would be increased 

substantially, and thus the band gap narrows, and even disappears, as shown in Fig. 

16(d). It can also be seen that the beginning frequency of the band gap slightly moves 

toward a higher frequency and the jump-down phenomenon occurs, due to the 

increasing stiffness and nonlinearity as the excitation is increased. 
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Fig. 16 Influence of excitation amplitude on the transmittance and band gap 

( 0.2; 0.039; 0.08 1.2,1.4,1.6,2fβ α ζ= = = =； ) 

Conclusions 

This paper focuses on the design of quasi-zero-stiffness (QZS) metamaterials and the 

formation mechanism of ultra-low frequency band gap. The representative unit cell 

(RUC) of the QZS metamaterial is engineered by combining two pairs of buckled 

beams and two pairs of folded beams in parallel. The parameters design of the RUC is 

made to fulfil quasi-zero stiffness. Furthermore, the one-dimensional metamaterial is 

modelled as a lumped-mass chain to theoretically study its dispersion characteristics 

and reveal band gaps, which are validated by using the finite element analysis. The 

effects of damping, mass ratio and excitation amplitude on the band gap are also 

discussed. 
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The results show that the negative-stiffness structure (buckled beams) can 

substantially neutralize the positive stiffness of the folded beams, leading to a desired 

QZS feature, which enables ultra-low locally resonant band gaps. Damping can 

broaden the band gap but reduce wave attenuation in the band gap, and the central 

frequency can be lowered further as the mass ratio is increased. The stiffness 

nonlinearity is enhanced and thus the dynamic behaviour of the QZS metamaterials 

becomes complicated, which would degrade wave attenuation, when the excitation is 

enlarged. 
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