
1Scientific RepoRtS | (2020) 10:1150 | https://doi.org/10.1038/s41598-020-57674-8

www.nature.com/scientificreports

Mobile Real-time Grasshopper
Detection and Data Aggregation
framework
piotr chudzik1,5, Arthur Mitchell1, Mohammad Alkaseem 1, Yingie Wu4, Shibo fang4,
taghread Hudaib3, Simon pearson 2,5 & Bashir Al-Diri1,5*

insects of the family Orthoptera: Acrididae including grasshoppers and locust devastate crops and
eco-systems around the globe. The effective control of these insects requires large numbers of trained
extension agents who try to spot concentrations of the insects on the ground so that they can be
destroyed before they take flight. This is a challenging and difficult task. No automatic detection
system is yet available to increase scouting productivity, data scale and fidelity. Here we demonstrate
MAESTRO, a novel grasshopper detection framework that deploys deep learning within RBG images
to detect insects. MAeStRo uses a state-of-the-art two-stage training deep learning approach. the
framework can be deployed not only on desktop computers but also on edge devices without internet
connection such as smartphones. MAeStRo can gather data using cloud storge for further research and
in-depth analysis. In addition, we provide a challenging new open dataset (GHCID) of highly variable
grasshopper populations imaged in inner Mongolia. the detection performance of the stationary
method and the mobile App are 78 and 49 percent respectively; the stationary method requires around
1000 ms to analyze a single image, whereas the mobile app uses only around 400 ms per image. The
algorithms are purely data-driven and can be used for other detection tasks in agriculture (e.g. plant
disease detection) and beyond. This system can play a crucial role in the collection and analysis of data
to enable more effective control of this critical global pest.

Grasshoppers and related insects such as locusts (family Orthoptera: Acrididae) are pest insects and can damage
crops and eco-systems (see Figure 1). While grasshoppers are usually seen as individuals, they can gather in
large groups1 and devastate vegetation. Grasshopper swarming behaviour is uniquely found in both the nymph
and adult stages2, when they reach the adult stage, they can swarm in the air3. They are highly diverse, in Inner
Mongolia alone there are approximately 130 grasshopper species4, these vary within regional environmental
sub zones. Of the 130 species there are three common types: the early-season species Dasyhippus barbipes, the
mid-season species Oedaleus asiaticus, and the late-season species Chorthippus fallax5,6. This high diversity makes
recognition of individual species challenging. In addition grasshoppers show phenotypic plasticity or polyphen-
ism (multiple phenotypes arise from a single genotype), which is a density-dependent physiological phase that
depends on environmental conditions7. Grasshoppers are also known to change their appearance and colour in
response to changes in their social status and environmental stimuli and to adapt to environmental changes7.
Diversity and their response to the surrounding environment makes it challenging to discriminate insects within
typical environmental backgrounds (grasslands) and poses a significant challenge for the adoption of image anal-
ysis systems for pest detection.

Edelaar et al.8 investigated the colour change phenomenon in Azure Sand Grasshoppers and their ability
to match the colour of the surrounding environment as a response to the risk of predation. They have reared 2
populations of grasshopper third stage nymphs in dark and light coloured rearing boxes, painted with black or
white from inside and containing a layer of stones of the same colour. Images were taken for the last stage nymphs
using a Pentax K-r camera with fixed flash settings and constant ambient lighting. The results showed that the
grasshoppers adjusted their colours to match the surrounding environment, becoming paler or darker compared

1The University of Lincoln, School of Computer Science, Lincoln, LN6 7TS, UK. 2The University of Lincoln, Lincoln
Institute for Agri-Food Technology, Lincoln, LN6 7TS, UK. 3The University of Lincoln, School of Pharmacy, Lincoln,
LN6 7TS, UK. 4State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing,
100081, China. 5These authors contributed equally: Piotr Chudzik, Simon Pearson and Bashir Al-Diri. *email:
baldiri@lincoln.ac.uk

open

https://doi.org/10.1038/s41598-020-57674-8
http://orcid.org/0000-0001-5315-5805
http://orcid.org/0000-0002-4297-4837
mailto:baldiri@lincoln.ac.uk

2Scientific RepoRtS | (2020) 10:1150 | https://doi.org/10.1038/s41598-020-57674-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

to a control population. However, it was notable that colour changed grasshoppers, were never as pale or as dark
as the backgrounds in the boxes where they were reared; to conclude that, the plasticity response in grasshoppers
was never sufficient to prevent detection with the RGB images.

For effective control, the insects need to be detected on the ground before they start to develop air borne
swarms. Detection systems need to determine pest density and location with high speed and accuracy. Location
of the swarms on the ground then enables their control by the application of pesticides9 and bio-pesticides.
However, there are some drawbacks to these measures, such as the need to find the pest at a young age for max-
imum effectiveness and potential adverse environmental and social impacts from the pesticides. Currently, the
detection of grasshoppers is a manual operation conducted by extension agents or farmers. This is an expensive
and frustrating task since the pest can be located across vast areas of remote land and requires highly trained staff
who need to enumerate large numbers of mobile grasshoppers occluded by vegetation.

The development of locust image recognition systems is in its infancy but previously Xiong et al.10 proposed
a grasshopper segmentation algorithm using pulse-coupled neural network (PCNN); although the algorithm
was tested using only two images which makes the fair comparison and evaluation impossible. In addition, this
algorithm does not provide any bounding boxes annotations, hence it cannot be treated as a detection system. As
noted by the paper’s authors: “the PCNN algorithm should be viewed as a preprocessor” that needs to be com-
bined with other image processing transforms to be a complete system. Other notable attempts to using computer
vision to detect and classify pests include Ziyi et al.11 employing a saliency map and deep convolutional neural
network (DCNN) learning for localization and classification of insects on internet images. While achieving good
results, their data set was mined from the internet and all example images given were of high-quality images with
a large contrast of colour between the insect and background. This is a very different set of circumstances to the
detection of insects in the natural environment where the background image layer can be highly diverse. Images
of insects in the natural environment usually includes diverse image qualities and well-camouflaged/occluded
grasshoppers. In addition their11 method was conducted on a computer with a powerful graphics card and CPU
that may not be easily available to a wide diversity of human operators. Liu et al.12 used a novel detection network
to detect a number of pests in laboratory settings. Their algorithm achieves 75% mean accuracy precision for their
bounding boxes. While having impressive results the photos were taken in laboratory conditions once again have
low background noise, making it easier to detect the insects. The only other insect detection using region-based
convolutional neural networks (RCNN) was13 who use Fast RCNN to detect various insects in images. They
achieved 89% accuracy on their detection challenge using a fixed image size of 450 × 750 pixels from a non ref-
erenced data-set mined from the internet rather than collected from the wild. The proposed work uses one stage
for both region proposal and classification, which is more efficient than two-stage approach used in Fast RCNN.
An experiment with a similar premise to Xia13 is Ding et al.14 approach to detect moths. They deployed a neural
network detection algorithm using a sliding window over the entire image to identify potential objects. The pro-
posed approach uses anchor boxes to process the whole image in a single iteration. Moreover, Ding et al. used
images with artificial white background and high contrast with minimal interference that made the detection
process easier.

This work proposes a mobile real-time grasshopper detection framework called MAESTRO (Mobile
reAl-timE graSshopper deTection fRamewOrk). Compared with existing remote sensing systems (e.g. satellite
and aerial) that rely on expensive hardware and require wireless network communication, the proposed system
is able to detect grasshoppers locally using a mobile device. The detection step is performed by the deep learning
model executed on a smartphone without an internet connection. Furthermore, the mobile application provides
data aggregation functionality and collects other crucial data such as temperature, soil moisture, wind speed, or
solar radiation. As a result, as soon the internet data becomes available, the collected data will be gathered on a
cloud database. This data can then forecast the grasshoppers movements and respond efficiently to prevent, or
contain, a grasshopper outbreak. To the best of the authors’ knowledge this is the first fully automated mobile
grasshopper detection framework. Moreover, we present this powerful stationary framework that can be used
when computational resources are not limited. The main contributions of this study are as follows. First, we

Figure 1. An adult grasshopper Oedaleus asiaticus.

https://doi.org/10.1038/s41598-020-57674-8

3Scientific RepoRtS | (2020) 10:1150 | https://doi.org/10.1038/s41598-020-57674-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

propose a mobile real-time grasshopper detection framework called MAESTRO that can be used on a stand-
ard smartphone. Second, we present a novel stationary grasshopper detection framework which is the first fully
automated grasshopper detection framework which includes a novel two-stage training approach for detection
tasks. Finally, we present a new dataset for detection of grasshoppers called the GHCID (GrassHopper deteCtIon
Dataset) that will facilitate the development of new algorithms for further study and changes to this field.

Results and Discussion
To validate our models we prepared two sets of experiments. During the first set of experiments we tested both
models capabilities to detect grasshoppers. In the second set, we present the mobile real-time detection frame-
work. The implementation was based on Keras deep learning framework15 and Tensorflow numerical computa-
tion library16. The experiments were conducted using a Huawei Mate 20 Pro smartphone and a PC with Intel Core
i7-6700K CPU, NVIDIA TitanX and 2080 Ti graphics cards, and 64 GB of RAM.

Grasshopper Detection. To validate our approach we used the GHCID dataset. During experiments 4-fold
cross-validation was performed, with each fold being treated as the testing set once. The 10% of the training set
was treated as a validation set. As a result, we performed 4 experiments for each type of model with following
split: 2414 images were used for training, 268 images were used for validation, and remaining 896 images consti-
tuted testing set. Early stopping criteria was used: training stopped when validation error did not improve for 10
epochs. Each training sample was subject to random artificial transformations (ATs) including rotation, shearing,
scaling, photometric distortions, horizontal and vertical reflections with 0.5 probability. The ATs were performed
to increase variety in the training set and combat overfitting; they were performed during models training so their
computational footprint is limited. Finally, the α parameter of the weighted loss function was set to 0.75 meaning
that the weighted loss function assigned 3 times more importance to the classification loss than the regression loss
in the second stage of the training process. As mentioned before, the stationary model used a ResNet architecture
as the backbone network. Compared with the original RetinaNet work17, that used ResNet with 101 layers, we
decided to use a more compact ResNet architecture with 50 layers. The input images were re-scaled proportion-
ally so that their dimensions are always between 800 and 1333 pixels. The model was trained using stochastic
gradient descent (SGD) training algorithm with a batch size of 1 (due to input size and GPU memory constraints)
and 0.0001 Adam optimization18. If learning error stops converging, the learning rate was reduced by 10% every
2 epochs. All training input-target pairs were shuffled between each epoch. To improve results, the values of the
initial weights were transferred from a model trained on the ImageNet dataset19. All remaining details can be
found in17. Figure 2 presents the example results generated by the stationary model.

The mobile model used Single Shot Detector (SSD) architecture with a weighted smooth L1 loss as the local-
ization loss and a weighted sigmoid loss as the classification loss20. The input images were uniformly re-scaled to
300 × 300 pixels and grouped in batches of 12 for training. The MobileNetV2 architecture was used for feature
extraction with 1.0 depth multiplier and RELU_6 activation functions used21. The network was trained using SGD
algorithm with a batch size of 12 and RMSprop optimizer20. If learning error stopped converging, the learning
rate was reduced by 10% every 2 epochs. All training input-target pairs were shuffled between each epoch. To
improve results, the values of the initial weights were transferred from a model trained on COCO dataset22. All
remaining details can be found in20.

Table 1 presents the performance of both methods at different intersection over union (IoU) thresholds. The
stationary method produces high mean average precision (mAP) for all major IoU thresholds. The main reasons
behind the majority of errors are poor lighting conditions, obstacles obstructing grasshopper body and images being
captured too far from grasshoppers. Figure 3 shows a grasshopper instance that is undetectable for a human expert.

As expected, the stationary method significantly outperforms the mobile method. The performance difference
between the stationary and mobile models is caused mainly by the backbone network choice. The mobile frame-
work uses a lightweight MobileNetV2 whereas the stationary model uses a Resnet-50 backbone which is more
accurate thanks to more learning parameters. As such, Resnet-50 is not feasible to be used on a mobile device.

Figure 2. An adult grasshopper detected by the stationary framework. The green bounding box corresponds to
the ground truth, whereas the red bounding box represents the detection generated by the stationary model.

https://doi.org/10.1038/s41598-020-57674-8

4Scientific RepoRtS | (2020) 10:1150 | https://doi.org/10.1038/s41598-020-57674-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

The stationary method requires around 1000 ms to analyze a single image, whereas the mobile approach uses
only around 400 ms per image using a PC. When evaluated using a mobile device, the quantized mobile approach
requires 80 ms on average per image which results in 12.5 frames per second (FPS) that allows real-time detection.
Unfortunately, the stationary model is too large to operate in any smartphone device. Table 2 presents the max-
imum recall values achieved by the proposed methods. Since in our particular case, we only care about finding
all possible grasshoppers and we are not concerned with the misalignment of bounding boxes, the recall values
were calculated for 0.01 IoU. As such, the presented values can be treated as the percentage of all grasshoppers
that were successfully detected.

Mobile Application. Figure 4 presents a working MAESTRO application. It was developed for Android
devices, which are the most commonly used mobile devices around the world23. We used Tensorflow Lite (TL)
framework which provides a set of libraries to execute deep learning (DL) models on mobile and embedded sys-
tems. The TL includes a number of hardware acceleration for DL models (e.g. Android Neural Network API) and
automatically optimizes the model’s implementation for a specific device. Since the training procedure requires
substantial computational resources that are unavailable on mobile devices, the model is trained on a PC and only
the inference is performed using a mobile device.

Inference efficiency is the biggest challenge when deploying DL models to mobile devices. We decided to quan-
tize our models to improve their latency and reduce the model’s size and computational footprint. The post-training
quantization reduces the precision requirements for weights and activations from 32-bit to 8-bit which consid-
erably speeds up the execution. This optimization provides very low latencies at the cost of tolerable accuracy
degradation. The user can save any image together with other information locally on a device. Subsequently, the
data can be sent to globally available GIS servers for further analysis of grasshopper movement and development.
Most importantly, since location information is encoded directly into images, the user can use their own preferred
map software to display and analyze the data. The collected data will be used for model re-training and continuous
improvement of detection performance. The improved model will be send to all users as an application update.

Method name IoU0.1 IoU0.25 IoU0.50

Stationary Model (RetinaNet + ResNet-50) 0.758 ± 0.012 0.755 ± 0.011 0.701 ± 0.014

Mobile Model (SSD+MobileNetV2) 0.478 ± 0.013 0.454 ± 0.011 0.402 ± 0.011

Table 1. Performance comparison using mAP metric.

Figure 3. A grasshopper that was undetected due to poor lighting conditions (shadows) and far distance from
the camera.

Method name RecallIoU = 0.1

Stationary Model (RetinaNet + ResNet-50) 0.783 ± 0.016

Mobile Model (SSD + MobileNetV2) 0.494 ± 0.014

Table 2. Maximum recall values at 0.01 IoU.

https://doi.org/10.1038/s41598-020-57674-8

5Scientific RepoRtS | (2020) 10:1150 | https://doi.org/10.1038/s41598-020-57674-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

conclusion
This paper presents a novel mobile real-time grasshopper detection framework called MAESTRO. The framework
can be used on a standard mobile phone without an internet connection to detect and localize grasshoppers.
Furthermore, it collects various crucial information about grasshoppers to facilitate an in-depth analysis of grass-
hoppers’ movement and development. The framework could be extended to consider other swarming insects
such as the desert locust. Moreover, this work describes a stationary grasshopper detection framework that can
be used for more accurate results when computational resources are not limited. This framework proposes a novel
two-stage training approach for detection tasks that prioritizes the classification performance over bounding
boxes accuracy. To the best of authors’ knowledge, these are the first fully automated grasshopper detection sys-
tems. Finally, we present a new and challenging dataset for grasshopper detection called GHCID to promote the
development of new grasshopper detection algorithms by the community.

It is important to note, that although we designed the proposed methodology for grasshopper detection,
the frameworks are purely data-driven and therefore can be used for other detection tasks in agriculture (e.g.
plant disease detection) and beyond. In the future we plan to develop the system used for analyzing the collected
data and include other data types such as satellite images. Additionally, we will combine the Feature Pyramid
Network with the SSD architecture to increase the detection of grasshoppers at various scales. Finally, we are
going to incorporate Online Hard Examples Mining technique24 to reduce the number of false positives generated
by detection frameworks. Due to the modular design of both mobile and stationary frameworks it is relatively
straightforward to change the backbone network responsible for feature extraction and improve detection perfor-
mance. We strongly believe that the rapid development of mobile devices will facilitate the usage of more robust
backbones and lead to improved performance.

Figure 4. Grasshoppers found by the MAESTRO system. The numbers represent the framework’s confidence in
detected objects being grasshoppers.

https://doi.org/10.1038/s41598-020-57674-8

6Scientific RepoRtS | (2020) 10:1150 | https://doi.org/10.1038/s41598-020-57674-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

Methods
During this study, we created two separate grasshopper detection models each designed for different purposes: sta-
tionary and mobile. To produce these detection frameworks we decided to use deep learning algorithms, which are
state-of-the-art machine learning techniques used for various computer vision and image processing tasks, includ-
ing; detection25, segmentation26, classification, and localization of objects in pictures and videos27. The stationary
model was designed to validate our methodological approach and provide baseline performance for the mobile
model. It was created to achieve maximum performance when the computational environment is not restricted.
The mobile model represents a compromise between speed and accuracy considerations. It was designed for
mobile execution, optimized to perform continuous real-time detection and minimize application’s latency.

Stationary Model. The dominant paradigm in the majority of object detection methods is a two-stage
approach. The first stage generates all possible objects present in a scene, whereas the latter classifies them.
Unfortunately, due to multiple levels of transformations that cannot be parallelized, this approach is slow to train
and execute. Consequently, we decided to base our model on the RetinaNet architecture which is an example of
a so-called Single-Shot detector17. As shown in Figure 5, the RetinaNet performs both tasks (region proposal and
classification) at the same time, thus drastically reducing the computations needed.

RetinaNet is composed of 4 dedicated deep convolutional neural networks (CNNs). The backbone network
is responsible for extracting convolutional features from the input image. The final two CNNs are tasked with
classifying the backbone network output and regressing it to a bounding box. Most importantly, they perform
these tasks simultaneously. Furthermore, RetinaNet combines the Feature Pyramid Network (FPN) with the
backbone network28. The FPN enhances the network’s architecture with lateral connections and the top-down
pathway to construct multi-scale feature pyramids from a single input image. As a result, the RetinaNet is able to
detect objects of different scales even though they might not have been seen during training procedure. Finally,
RetinaNet introduces dedicated loss function called Focal Loss which is a variant of a cross entropy function.
The Focal Loss forces the CNN to focus on training instances that it finds most difficult to classify. We decided
to use the ResNet architecture as the backbone network due to it’s powerful representational ability and robust
performance29. The core idea behind ResNet success is the introduction of so-called identity shortcut connection
that bypasses one or more layers. A key advantage of this type of connection is that they allow direct training
signal propagation between otherwise distant layers. As a result, they counteract the deterioration of a training
signal and allow to build much deeper architectures. Figure 6 presents a residual block which is the fundamental
building element of the ResNet architecture.

Mobile Model. The mobile model is based on the Multibox SSD. Similarly to the RetinaNet, the SSD network
uses a base CNN to extract convolutional features. However, the bounding box regression and input classification
are performed by another relatively small CNN (RetinaNet uses two dedicated CNNs). Figure 7 presents the SSD
network, which uses multi-scale feature maps produced by intermediate layers of the base model to detect objects
at various scales. This architecture is one of the fastest DL solutions for object detection that makes the real-time
operation possible.

The MobileNetV2 was used as the base feature extractor30. This network architecture was specifically designed
to work with computationally constrained environments. Compared with standard CNN, the MobileNetV2 uses
depthwise separable convolutions which are much more efficient than standard convolutions but provide similar
results. The MobileNetV2 introduced residual connections that allow training signals (gradients) to flow directly
between indirectly connected layers.

training procedure. In standard detection tasks, the accuracy of bounding boxes is as important as the
accuracy of the classification process. In grasshopper detection (especially mobile), the classification performance
has much more importance than bounding boxes’ accuracy. We focused more about finding grasshoppers, rather
than ensuring the alignment of generated bounding boxes with ground truth boxes is correct. As a result, we
propose a two-stage training procedure with a weighted loss function. In the first stage, we train the model until
the early-stopping criteria is used. At this stage, the total loss function is calculated as the sum of the classification
loss and the regression (bounding box related) loss. In the second stage, we fine-tuned the model using Stochastic

+

+

Box Classification
Box Regression

Box Classification
Box Regression

Box Classification
Box Regression

Box
Classification

Box
Regression

(a) ResNet-50 backbone (b) Feature Pyramid Network (c) Box Classification Network
(top)

(d) Box Regression Network
(bottom)

Figure 5. The RetinaNet architecture: The ResNet backbone network (a) together with the FPN (b) serve as the
feature extractor, whereas two other CNNs are tasked with classification (c) and regression (d).

https://doi.org/10.1038/s41598-020-57674-8

7Scientific RepoRtS | (2020) 10:1150 | https://doi.org/10.1038/s41598-020-57674-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

Gradient Descent with Warm Restarts and cosine annealing learning rate (SGDR)31 and weighted loss function.
A learning rate is the crucial hyper-parameter of the fine-tuning process. It determines the magnitude of weights
updates during the training process. Since every problem domain is unique, there is no universal optimal learning
rate. To train a robust model, the learning rate needs to be annealed to avoid fluctuations around the local min-
imum. However, the learning rate that is too small can almost stop the learning process. The SGDR proposes a
new learning rate annealing procedure that is based on the cosine curve. It uses periodic changes to the learning
rate, encouraging the model to transition from local minimums and navigate out of the troublesome parts of the
weight space. We combine the SGDR with the weighted loss function (FL) that assigns more weight to the classi-
fication loss (CL) rather than regression loss (RL)

α α= + −ˆ ˆ ˆFL y y CL y y RL y y(,) (,) (1) (,) (1)

Convolutional
Layer

Convolutional
Layer

Convolutional
Layer

+

x

H(x)

ReLU

ReLU

G(x)=H(x) +x

Figure 6. The residual block showing the identity shortcut connection (x identity) bypassing 2 transformation
layers.

19

19

19

19

10

10

5

5

3

3
138

38

512
MobileNetV2

1024
conv1

1024
conv2

512
conv3

256
conv4

256
conv5

256
conv6

Detections
Input
Image

Figure 7. The SSD architecture.

https://doi.org/10.1038/s41598-020-57674-8

8Scientific RepoRtS | (2020) 10:1150 | https://doi.org/10.1038/s41598-020-57674-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

where ŷ y, correspond to the actual and expected outputs respectively, and α is greater than zero and less or equal
one. determines the contribution of the classification loss to the final loss function. As a result, the model is forced
to focus more on finding class instances rather than generating accurate bounding boxes.

Materials and evaluation
Dataset. To acquire necessary data for our experiments, two members of our team visited various sites near
Xilinhot, Inner Mongolia, China. They spent 7 days in early August 2018 collecting RGB images of adult grass-
hoppers using Huawei P20 Pro and Nubia Z11 mini smartphones. Since grasshoppers are very lively insects, some
of them were frozen before a photo was taken, although a significant portion of the data set is collected from the
wild. The image acquisition process was designed to mirror the expected usage of the mobile application:

 1. The majority of images were captured less than 50 centimetres from grasshoppers.
 2. Researchers took special care to capture grasshoppers at different angles, poses and living environments of

the insects (in grass/on soil).
 3. Images were taken in various lighting conditions (shades, different parts of the day).
 4. Various foreign objects are present in photo scenes: fingers, boots, gloves etc.

All images were collected between the 11 and 17 August 2018 between the hours of 08:00 to 18:00 every day.
Table 3 shows the breakdown of the days and the number of collected images.

Roughly 35% of the dataset was collected by shooting frozen grasshopers at CAAS research post near Xilinhot.
Grasshoppers are vigilant and lively insects which makes them expert at avoiding focused shots, hence the need
for freezing procedure. The frozen grasshoppers are easier to manipulate and facilitate staged shots including
multiple insects, obstructions, debris, and shadows.

Subsequently, all images were annotated by our grasshopper expert in the UK and were annotated with rectan-
gular bounding boxes in PASCAL VOC format using Labeling tool32. To assure high-quality ground truth dataset,
the manual approach was adopted where individual images were scrutinised for grasshoppers with approximately
160 hours of total time spent on entire data labelling. All images have been inspected at least twice. The boundary
boxes were readjusted where necessary to exclude unwanted foreign objects from the environment and to have

Date Number of images

11/8/2018 152

12/8/2018 382

13/8/2018 910

14/8/2018 879

15/8/2018 536

16/8/2018 517

17/8/2018 202

Table 3. Captured images per day.

Figure 8. Example image of an adult grasshopper with bounding box annotation from GHCID dataset.

https://doi.org/10.1038/s41598-020-57674-8

9Scientific RepoRtS | (2020) 10:1150 | https://doi.org/10.1038/s41598-020-57674-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

minimum box size which includes all the desired details of the insects (the whole body, abdomen, legs, head,
antenna, wings). Low-quality images (out of focus, captured more than 50cm from the object, objects obscur-
ing almost whole grasshopper body) were filtered out. Overall, the GHCID dataset consists of 3578 images of
2976 × 3968 resolution with 4406 instances of labelled adult grasshoppers. Figure 8 shows an example grasshop-
per from GHCID dataset with accompanying annotation. The dataset can be downloaded from the following link:
https://lcas.lincoln.ac.uk/owncloud/index.php/s/gGiGUxhYTmPV1vKGHCID.

evaluation Metrics. Following other detection works, we use mAP to validate our results17. The mAP meas-
ures the average of the maximum precisions at different recall values and evaluates the quality of both classifi-
cation and localization tasks. Precision measures the percentage of correct positive predictions. It is the ratio of
correctly predicted positive values to the total predicted positive values. High precision indicates a low false posi-
tive rate. Recall, which is also known as sensitivity, measures how good the model is in finding all positive predic-
tions. It is the ratio of correctly predicted positive values to the actual positive values. Both metrics are defined as

=
+

Precision TP
TP FP

,
(2)

=
+

Recall TP
TP FN (3)

where TP, FP, FN correspond to true positives (grasshopper detection that are actually grasshoppers), false posi-
tives (grasshopper detection that are not grasshoppers) and false negatives (grasshoppers that were not detected)
respectively. Apart from precision and recall values, the IoU is required to calculate the mAP. The IoU measures
how well the detected region matches the ground truth region (the correctness of the produced bounding box)
and is given by

=IoU area of overlap
area of union (4)

The average precision (AP) is calculated as the area under the precision-recall graph at 11 recall points [0, 0.1,
…, 1] for a specific IoU threshold. The mAP is calculated as the mean AP for all classes (in this case only one class:
grasshopper).

Received: 9 July 2019; Accepted: 6 December 2019;
Published: xx xx xxxx

References
 1. Simpson, S. J., McCaffery, A. R. & HaeGele, B. F. A behavioural analysis of phase change in the desert locust. Biological reviews 74,

461–480 (1999).
 2. Rogers, S. M. et al. Mechanosensory-induced behavioural gregarization in the desert locust schistocerca gregaria. Journal of

Experimental Biology 206, 3991–4002 (2003).
 3. Saremi, S., Mirjalili, S. & Lewis, A. Grasshopper optimisation algorithm: theory and application. Advances in Engineering Software

105, 30–47 (2017).
 4. Guo, Z.-W., Li, H.-C. & Gan, Y.-L. Grasshopper (orthoptera: Acrididae) biodiversity and grassland ecosystems. Insect Science 13,

221–227 (2006).
 5. Guo, K., HAO, S.-G., Sun, O. J. & Kang, L. Differential responses to warming and increased precipitation among three contrasting

grasshopper species. Global Change Biology 15, 2539–2548 (2009).
 6. Wu, T., Hao, S., Sun, O. J. & Kang, L. Specificity responses of grasshoppers in temperate grasslands to diel asymmetric warming. PloS

one 7, e41764 (2012).
 7. Whitman, D. W. et al. What is phenotypic plasticity and why is it important. Phenotypic plasticity of insects: Mechanisms and

Consequences 1–63 (2009).
 8. Edelaar, P., Baños-Villalba, A., Escudero, G. & Rodrguez-Bernal, C. Background colour matching increases with risk of predation in

a colour-changing grasshopper. Behavioral Ecology 28, 698–705 (2017).
 9. Yates, C. How can we control locust swarms?://www.weforum.org/agenda/2015/11/how-can-we-control-locust-swarms/ (2015).
 10. Xiong, X., Wang, Y. & Zhang, X. Color image segmentation using pulse-coupled neural network for locusts detection. Conference on

Data Mining| DMIN 6, 411 (2006).
 11. Liu, Z., Gao, J., Yang, G., Zhang, H. & He, Y. Localization and classification of paddy field pests using a saliency map and deep

convolutional neural network. Scientific Reports 6, 20410 (2016).
 12. Liu, L. et al. Pestnet: An end-to-end deep learning approach for large-scale multi-class pest detection and classification. IEEE Access

7 (2019).
 13. Xia, D., Chen, P., Wang, B., Zhang, J. & Xie, C. Insect detection and classification based on an improved convolutional neural

network. Sensors 18, 4169 (2018).
 14. Ding, W. & Taylor, G. Automatic moth detection from trap images for pest management. Computers and Electronics in Agriculture

123, 17–28 (2016).
 15. Chollet, F. Keras, https://github.com/fchollet/keras (2018).
 16. Abadi, M. et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467

(2016).
 17. Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal loss for dense object detection. IEEE transactions on pattern analysis and

machine intelligence (2018).
 18. Kingma, D. & Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).
 19. Deng, J. et al. Imagenet: A large-scale hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.

IEEE Conference on, 248–255 (Ieee, 2009).
 20. Liu, W. et al. Ssd: Single shot multibox detector. In European conference on computer vision, 21–37 (Springer, 2016).
 21. Nair, V. & Hinton, G. E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th international

conference on machine learning (ICML-10), 807–814 (2010).

https://doi.org/10.1038/s41598-020-57674-8
https://lcas.lincoln.ac.uk/owncloud/index.php/s/gGiGUxhYTmPV1vKGHCID
https://github.com/fchollet/keras

1 0Scientific RepoRtS | (2020) 10:1150 | https://doi.org/10.1038/s41598-020-57674-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

 22. Lin, T.-Y. et al. Microsoft coco: Common objects in context. In European conference on computer vision, 740–755 (Springer, 2014).
 23. Statcounter. Mobile operating system market share worldwide, http://gs.statcounter.com/os-market-share/mobile/worldwide

(2019).
 24. Shrivastava, A., Gupta, A. & Girshick, R. Training region-based object detectors with online hard example mining. In Proceedings of

the IEEE conference on computer vision and pattern recognition, 761–769 (2016).
 25. Chudzik, P., Majumdar, S., Caliva, F., Al-Diri, B. & Hunter, A. Microaneurysm detection using fully convolutional neural networks.

Computer Methods and Programs in Biomedicine 158, 185–192 (2018).
 26. Chudzik, P., Al-Diri, B., Calivá, F. & Hunter, A. Discern: Generative framework for vessel segmentation using convolutional neural

network and visual codebook. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), 5934–5937 (IEEE, 2018).

 27. Guo, Y. et al. Deep learning for visual understanding: A review. Neurocomputing 187, 27–48 (2016).
 28. Lin, T.-Y. et al. Feature pyramid networks for object detection. CVPR 1, 4 (2017).
 29. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition, 770–778 (2016).
 30. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. & Chen, L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4510–4520 (2018).
 31. Loshchilov, I. & Hutter, F. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016).
 32. Tzutalin. Labelimg, https://github.com/tzutalin/labelImg (2019).

Acknowledgements
This research was made possible by the STFC Grant Ref CABI: ST/N006712/1, University of Lincoln: ST/
N006836/1 and Loughborough University: ST/N006852/1. The authors are most grateful to the Chinese Academy
of Agricultural Sciences (CAAS) for their hospitality and help in the acquisition process.

Author contributions
P.C. designed, implemented, and evaluated mobile and stationary detection frameworks and Android application;
A.M. conducted the methodology literature review, reviewed the data set and collected images in China; M.A.
annotated images; Y.W. collected images in China, S.F. is Chinese PI of the main grant in collaboration with S.P.;
T.H. conducted the biological literature review; S.P. is UK PI of the main grant and conceived the original idea
with B.A. who supervised the findings of this work. All authors reviewed the manuscript.

competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to B.A.-D.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020

https://doi.org/10.1038/s41598-020-57674-8
http://gs.statcounter.com/os-market-share/mobile/worldwide
https://github.com/tzutalin/labelImg
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Mobile Real-Time Grasshopper Detection and Data Aggregation Framework
	Results and Discussion
	Grasshopper Detection.
	Mobile Application.

	Conclusion
	Methods
	Stationary Model.
	Mobile Model.
	Training Procedure.

	Materials and Evaluation
	Dataset.
	Evaluation Metrics.

	Acknowledgements
	Figure 1 An adult grasshopper Oedaleus asiaticus.
	Figure 2 An adult grasshopper detected by the stationary framework.
	Figure 3 A grasshopper that was undetected due to poor lighting conditions (shadows) and far distance from the camera.
	Figure 4 Grasshoppers found by the MAESTRO system.
	Figure 5 The RetinaNet architecture: The ResNet backbone network (a) together with the FPN (b) serve as the feature extractor, whereas two other CNNs are tasked with classification (c) and regression (d).
	Figure 6 The residual block showing the identity shortcut connection (x identity) bypassing 2 transformation layers.
	Figure 7 The SSD architecture.
	Figure 8 Example image of an adult grasshopper with bounding box annotation from GHCID dataset.
	Table 1 Performance comparison using mAP metric.
	Table 2 Maximum recall values at 0.
	Table 3 Captured images per day.

