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Abstract 

Salt marshes contribute to climate change mitigation because of their great capacity to store organic 

matter (OM) in soils. Most of the research regarding OM turnover in salt marshes in times of global 

change focuses on effects of rising temperature and accelerated sea-level rise, while effects of land-use 

change have gained little attention. The present work investigates the mechanisms by which livestock 

grazing can affect OM decomposition in salt marsh soils. In a grazing exclusion experiment at the mouth 

of the Yangtze estuary, China, we assessed soil microbial exo-enzyme activity (EEA), to gain insight into 

the microbial carbon (C) and nitrogen (N) demand. Additionally, we studied the decomposition of plant 

litter in soil using the Tea Bag Index (TBI), a widely used standardized litter bag assay to fingerprint soil 
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decomposition dynamics. Based on EEAs, grazing markedly reduced microbial C acquisition, whereas 

microbial N acquisition was strongly increased. These opposing grazing effects were also evident in the 

decomposition of standardized plant litter: The decomposition rate constant (k) and the stabilization (S) 

of litter were not inversely related, as would be expected, but instead both were reduced by livestock 

grazing. Our data suggest that gazing effects on EEAs and litter decomposition can just partly be 

explained by grazing-driven soil compaction and resulting lower oxygen availability, which has previously 

been hypothesized as a main pathway by which grazing can reduce microbial activity in wetland soils. 

Instead, grazing effects on microbial nutrient demand occurs to be an at least equally important control 

on soil decomposition processes.  

Keywords: livestock, carbon sequestration, land-use change, blue carbon, enzyme stoichiometry, Tea 

Bag Index 

1 Introduction 

As “blue carbon” ecosystems, salt marshes store large amounts of carbon (C) in form of organic matter 

(OM) in their soils (Chmura, 2013) and are considered one of the most important long-term C sinks of 

the biosphere (Duarte et al., 2013; Mcleod et al., 2011). Salt marshes not only play an important role in 

coastal C sequestration, and thus contribute to climate change mitigation, they also provide other highly 

valued ecosystem services, like coastline protection and biodiversity support (Barbier et al., 2011; Möller 

et al., 2014). However, these ecosystem services of salt marshes are affected by global change (i.e. 

climate and land-use change), and therefore, there is a growing interest to understand how global 

change factors alter the potential for ecosystem-service delivery (Kirwan and Megonigal, 2013).  

Several studies evaluated how C sequestration in salt marshes is affected by climate change factors, 

such rising temperatures and  accelerated sea-level rise (Kirwan et al., 2013; Mueller et al., 2016; 
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Mueller et al., 2018; Rogers et al., 2019), whereas land-use change, such as the introduction or 

abandonment of livestock grazing, received much less attention. The use of salt marshes for livestock 

grazing has a long history especially in Europe, where it dates back to pre-historic times (Barr and Bell, 

2016; Nolte et al., 2015; Tessier et al., 2003), but livestock grazing in salt marshes can also be found in 

South America (Di Bella et al., 2015; Sica et al., 2016) and East-Asia (He et al., 2015; Ning et al., 2019; 

Suzuki and Suzuki, 2010). Yet, the effect of this common land-use practice on C sequestration is unclear. 

Recent studies, mostly from Europe, provide equivocal results concerning grazing effects on soil C stocks 

and sequestration rates in salt marshes (Elschot et al., 2015; Ford et al., 2019; Harvey et al., 2019; Morris 

and Jensen, 1998). C sequestration in salt marshes is controlled by two primary processes, namely OM 

input via plant primary production and OM output via decomposition (Kirwan et al., 2013). Both of these 

processes are strongly affected by livestock grazing (Mueller et al., 2017), with a large number of studies 

outlining that livestock grazing reduces biomass (reviewed by Davidson et al. 2017). Yet, most of these 

studies quantified only effects on aboveground biomass, while those also quantifying belowground 

biomass are scarce (Davidson et al., 2017). Among these, Elschot et al. (2015) demonstrated that 

livestock grazing could in fact promote higher belowground biomass and thereby increase OM input to 

the soil.  

In comparison to grazing effects on biomass production in salt marshes, its effects on OM 

decomposition is far less understood (Elschot et al., 2015; Mueller et al., 2017). To understand how 

livestock grazing regulates OM decomposition in salt marshes, particularly two mechanisms need 

consideration, namely grazing effects on the microbial substrate supply (i.e. changes in OM quality and 

quantity) and grazing effects on soil oxygen availability (Elschot et al., 2015). Grazing can affect the 

microbial substrate supply via several mechanisms including changes in plant primary production and 

species composition, which regulate the quality and amount of plant litter, root exudates, and 

allochthonous OM entering the soil OM pool of salt marshes (Ford et al., 2013; Mueller et al., 2019a; 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

4 
 

Olsen et al., 2011). These changes in microbial substrate supply are potentially important controls of the 

microbial C and nutrient demand and thus affect OM decomposition (Sinsabaugh et al., 2008).  

The probably most frequently hypothesized mechanism by which grazing affects decomposition in 

wetland soils is trampling-driven soil compaction (i.e. reduction of pore space) and the resulting 

reduction of soil oxygen availability (Elschot et al., 2015; Kauffman et al., 2004; Mueller et al., 2017; 

Schrama et al., 2013). This, in turn, can inhibit microbial exo-enzyme activity (EEA), metabolism, and 

ultimately OM decomposition (Davidson and Janssens, 2006; Freeman et al., 2001; Megonigal et al., 

2004). Indeed, recent insights from salt marsh ecosystems could provide some evidence of trampling-

driven soil compaction and resulting reductions in oxygen availability (Elschot et al., 2015). Yet, the link 

between trampling-driven soil compaction and decomposition has never been demonstrated. 

The aim of this study is to improve the mechanistic understanding of how livestock grazing affects 

decomposition processes in salt marsh soils. The study was conducted in a grazing-exclusion experiment 

in a Chinese salt marsh ecosystem of the Yangtze estuary. Estimates of the total Chinese salt marsh area 

highly variable and range between 1.2 x 106 and 3.5 x 106 ha (Meng et al., 2019; Meng et al., 2017). 

Livestock grazing is a relatively common land-use in Chinese salt marshes (Davidson et al., 2017); 

however, data on grazing frequency and intensity is not available. We assessed the mechanisms by 

which grazing affects OM decomposition by quantifying the activity of microbial exo-enzymes and litter 

decomposition parameters. EEAs are regarded as the rate-limiting step of the decomposition processes 

and reveal insight into microbial C and nutrient demands (Sinsabaugh et al., 2008). However, EEA 

dynamics have yet poorly been studied in salt marsh ecosystems. We hypothesize (1) that grazing 

reduces EEAs by increasing soil bulk density and thereby lowering soil oxygen availability. We 

hypothesize (2) that grazing induced reductions in EEAs will translate into a higher degree of litter 

stabilization in soil and, inversely, lower rates of litter decomposition. 
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2 Methods 

2.1 Site description and experimental design 

This study was carried out in the Dongtan salt marsh on Chongming island, China (31°28’N, 121°56’E), 

close to the city of Shanghai (Fig. 1a, b). The Dongtan salt marsh covers an area of 4000 ha and is one of 

the largest tidal wetlands of the Yangtze estuary. It is a minerogenic salt marsh with high rates of 

sediment deposition and a typical feature of the Chinese salt-marsh landscape (Yang et al., 2001; Yang 

et al., 2008). The study area is exposed to subtropical humid monsoon climate, and the annual 

temperature and precipitation are 15.3°C and 1022 mm, respectively. The average spring tide range is 

approximately 2.5 - 3.5 m. The mean elevation of high marsh is 380 cm above sea level, resulting in an 

average monthly inundation frequency of 17. The mean elevation of the low marsh is 330 cm above sea 

level, resulting in an average monthly inundation frequency of 39. The salt marsh is grazed by cattle 

from early April to late October at a stocking density of approximately one cattle per ha (Yang et al., 

2017). Dominant plant species in the high marsh are Phragmites australis and Carex scabrifolia, while 

Scirpus mariqueter and C. scabrifolia are dominant in the low marsh. Both marsh zones have similar 

grazing levels (Yang et al., 2017). 

The design of the experiment has previously been described by Yang et al. (2017). Briefly, it includes two 

marsh zones (low vs. high) and land-use (grazed vs. ungrazed) as factors. In 2014, six replicate plots were 

established in each of the marsh zones. Each plot contains two sub-plots of 15 x 15 m, a grazed (control) 

and an ungrazed (exclusion) sub-plot. The total number of sub-plots is N = 24 (6 replicates x 2 marsh 

zones x 2 grazing treatments), and distance between plots within a marsh zone was 50-100 m.  

2.2 Biomass and soil bulk density 
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Belowground biomass was sampled to understand potential differences in belowground OM input, and 

thus microbial substrate supply, between grazed and ungrazed sub-plots. Samples were collected in May 

of 2016 within three randomly positioned 25 cm x 25 cm quadrats using a PVC corer of 15 cm diameter 

into 20 cm depth in each sub-plot. Samples were washed to remove all soil with 0.5 mm sieve, dried at 

70°C for 72 h, and weighed. This work is focused on belowground C dynamics. For aboveground biomass 

data, we refer the reader to previous work of our group (Yang et al., 2017). Soil bulk density (BD 

(g/cm3)= soil dry weight (g) / soil volume (cm3) was determined as a proxy for soil compaction and thus 

oxygen availability (Schrama et al., 2013). One soil sample was collected in each sub-plot with three 

different soil depths (0-5 cm, 5-10 cm and 10-15 cm) using a 3.2-cm diameter soil corer. Samples were 

dried at 70 °C for 72 h and weighed. 

2.3 Exo-enzyme assays 

Following Sinsabaugh et al. (2009), we measured soil ß-glucosidase activity for the assessment of 

microbial C acquisition. Leucine-aminopeptidase and chitinase activity were measured for the 

assessment of microbial N acquisition. Soil samples were collected in May 2016 using a 3.2-cm diameter 

corer to sample the topsoil (0-5 cm). EEAs were determined in fluorometric assays following Mueller et 

al. (2017). In brief, a 20-g subsample of fresh topsoil in each sub-plot was mixed in 20 mL deionized 

water, and the homogeneous slurry was stored at -20 °C until further analysis. Well-plate assays were 

conducted to measure potential enzyme activity. Plates were incubated in the dark at 20 °C for 16 h and 

read on a Multi-Detection Microplate Reader (Bio-tek Synergy™ HT, Winooski, USA). Activities reported 

refer to normalized EEAs per unit soil OM (i.e. specific EEA), in order to obtain a measure for organic 

matter decomposition rate (Morrissey et al., 2014; Mueller et al., 2017). OM contents of subsamples 

were assessed using loss on ignition following the protocol of Wang et al. (2011) for marine sediments 

(550 ℃ for 5 h). 
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2.4 Decomposition of standardized plant litter 

We studied the decomposition of standardized litter to control for potential differences in native plant-

litter quality (i.e. microbial substrate quality) between grazed and ungrazed treatments of our field 

experiment. Specifically, decomposition rate constant (k) and stabilization factor (S) were assessed 

following the Tea Bag Index (TBI) protocol (Keuskamp et al., 2013). The decomposition rate constant (k) 

describes the decomposition rate constant – i.e. the rate at which mass is lost over time – a parameter 

typically presented in litter-bag studies. However, in the TBI approach, k only refers to the labile (i.e. 

hydrolyzable) fraction of the deployed material. S describes the part of the labile, hydrolyzable fraction 

that did not decompose due to soil environmental factors leading to its stabilization (Keuskamp et al., 

2013). The TBI is a standardized litter-decomposition assay using commercially available tea materials as 

standardized plant litter, which has been widely applied to characterize and compare decomposition 

dynamics within and across ecosystems (Keuskamp et al., 2013; Mueller et al., 2018). In each sub-plot, 

two polypropylene tea bags (55 mm x 50 mm) were buried from early June to late August 2015, one 

containing green tea and one containing rooibos tea. Tea bags were deployed at 5 cm soil depth. The 

initial weight of the contents was determined by subtracting the weight of empty bags. Bags were 

retrieved after an incubation period of 90 days, carefully separated from roots and soil, dried for 48 h at 

70 °C, and weighed. The TBI parameters k and S were calculated following the tidal-wetland-adapted TBI 

protocol by Mueller et al. (2018): 

(1) Wr(t) = are
-kt + (1-ar), 

(2) S = 1-ag/Hg, 

(3) ar = Hr(1-S). 
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Wr(t) the weight of the rooibos substrate after the incubation time (t in days); ar is the labile; 1-ar is the 

recalcitrant part of the rooibos substrate; k is the decomposition rate constant; S is the stabilization 

factor; ag is the decomposable part of green tea substrate, and Hg is the hydrolyzable fraction of the 

green tea substrate. The decomposable part of the rooibos substrate is calculated in Eq. (3) based on 

the hydrolyzable fraction (Hr) and the stabilization factor S. We used the Hg and Hr values published in 

Mueller et al. (2018), because the tea materials used for the present study are from the same batches. 

2.5 Statistical analyses 

Two-way ANOVAs were conducted to test for effects of land-use (grazed vs. ungrazed) and marsh zone 

(high marsh vs. low marsh) on belowground biomass, soil bulk density, EEAs (ß-glucosidase, leucine-

aminopeptidase, chitinase and the ratio of ß-glucosidase activity / (leucine-aminopeptidase activity + 

chitinase), and TBI parameters (k and S). Tukey HSD tests were conducted for pairwise comparisons. 

Normal distribution of residuals was assessed visually and equal sample sizes across groups assured 

robustness for parametric testing (McGuinness, 2002). Linear regression was used to test for the 

hypothesized relationships between bulk density, EEAs, and TBI parameters. All analyses were 

conducted using the statistical software OriginPro 2018 (OriginLab Corp. NorthamptonCity, USA).  

3 Results 

3.1 Plant biomass and soil bulk density 

Belowground plant biomass was significantly decreased by grazing, but neither affected by marsh zone 

nor the interaction of grazing and marsh zone (Tab. 1). Grazing decreased belowground plant biomass 

by 31% in the high marsh and by 54% in the low marsh (Tab. 2). Bulk density was significantly higher in 

low-marsh vs. high-marsh sub-plots (Tab. 2). Grazing increased bulk density, whereas this effect was 
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only marginally significant in the topsoil (p = 0.051) and more pronounced with soil depth (Tab. 1). 

Grazing increased the bulk density at 5-10 cm depth by 10% in the low marsh and by 14% in the high 

marsh. Similarly, grazing increased bulk density at 10-15 cm soil depth by 16% in the low marsh grazing 

and 7% in the high marsh (Tab. 2) 

3.2 Exo-enzyme activities  

The activity of ß-glucosidase was decreased by grazing (Tab. 1). Rates ranged from 2851-3300 nmol·g 

OM-1·h-1 in grazed sub-plots and 3665-3820 nmol·g OM-1·h-1 in ungrazed sub-plots. ß-glucosidase activity 

was negatively related to bulk density (Tab. 3). There was also a significant and positive relationship 

between ß-glucosidase activity and belowground biomass (r = 0.70; p ≤ 0.001). Grazing strongly 

increased leucine-aminopeptidase activity in both the low and high marsh (Fig. 2b). Rates ranged from 

4768-4943 nmol·g OM-1·h-1 in grazed sub-plots and 3707-3719 nmol·g OM-1·h-1 in ungrazed sub-plots. 

Chitinase activity was eight-times lower than leucine-aminopeptidase activity. In addition, chitinase 

activity was unaffected by grazing, marsh zone, and their interaction (Fig. 2c). In contrast to ß-

glucosidase activity, leucine-aminopeptidase activity was positively related to bulk density and not 

related to belowground biomass (Tab. 3). The ratio of C- vs. N-acquiring enzymes (activity of ß-

glucosidase / activity of leucine-aminopeptidase plus chitinase) was strongly decreased by grazing (Tab. 

1). Grazing strongly reduced the ratio of C- vs. N-acquiring enzymes by 38% in the low marsh and by 21% 

in the high marsh (Fig. 2d). The ratio of C- vs. N-acquiring enzymes was negatively related to soil bulk 

density (5-10 cm and 10-15 cm) (Tab. 3) and positively related to belowground biomass (r = 0.66; p ≤ 

0.001). 

3.3 Standardized litter decay based on TBI and its relation to EEAs 
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Both S and k were significantly decreased by livestock grazing (Tab. 1). S ranged from 0.018-0.031 in 

grazed sub-plots and 0.071-0.073 in ungrazed sub-plots. k ranged from 0.0105-0.0106 in grazed sub-

plots and 0.0107-0.0110 in ungrazed sub-plots. Grazing significantly decreased S by 75 % in the low 

marsh and by 57 % in the high marsh (Fig. 3). Grazing deceased k slightly, but significantly, by 3% in the 

low marsh and by 2% in the high marsh. S was negatively related to leucine-aminopeptidase activity, but 

was positively related to ß-glucosidase activity and the ratio of C- vs. N-acquiring enzymes, whereas k 

was negatively related to leucine-aminopeptidase activity and positively to chitinase activity (Tab. 3). 

4 Discussion 

4.1 Grazing effects on microbial exo-enzyme activity 

In line with our first hypothesis, the activity of ß-glucosidase was lower in grazed than ungrazed sub-

plots. Generally, ß-glucosidase activity is considered the key enzyme of microbial C acquisition and 

therefore controls the soil C turnover of ecosystems (Sinsabaugh et al., 2008). Previous studies 

suggested that grazing in salt marshes affects the activity of EEAs involved in C cycling via two  

mechanisms, i.e. reducing soil oxygen availability as terminal electron acceptor for microbial respiration 

and changing the supply or quality of OM as microbial substrate (Mueller et al., 2017). Grazing-driven 

soil compaction and resulting lower oxygen availability has previously been hypothesized as a main 

pathway by which grazing can reduce microbial activity in wetland soils (Elschot et al., 2015; Mueller et 

al., 2017).  Our data can support this mechanism as grazed sub-plots showed significantly higher bulk 

density, providing evidence of trampling-driven soil compaction (Tab. 3), and more importantly, bulk 

density was negatively related to ß-glucosidase activity (Tab. 3). It needs to be noted here, however, 

that grazing also led to lower belowground biomass. This unexpected effect is not commonly observed 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

11 
 

in salt marshes (Davidson et al., 2017), but it would lead to higher bulk density independent of 

trampling-driven compaction. 

Our data also provide evidence for a second, alternative pathway by which grazing can reduce soil ß-

glucosidase activity. Livestock grazing can lead to large changes in plant productivity and diversity 

affecting both the quantity and quality of microbial substrates. For instance, grazing effects on 

belowground biomass have been argued to affect the input of labile organic C compounds in form of 

root exudates, thereby controlling the microbial C turnover (Olsen et al., 2011). This effect of grazing on 

decomposition via changes in belowground biomass production is supported by our results, which show 

a reduction of belowground biomass with grazing and a positive relation between ß-glucosidase activity 

and belowground biomass. Consequently, grazing induced reduction in belowground biomass could be 

an alternative explanation for the observed reduction in microbial C acquisition.   

Leucine-aminopeptidase and chitinase mediate the microbial N acquisition from OM and therefore 

reflect the microbial N demand (Moorhead and Sinsabaugh, 2006; Sinsabaugh et al., 2008). In contrast 

to ß-glucosidase activity, the activity of leucine-aminopeptidase was increased by livestock grazing. This 

result thus controverts our hypothesis that lower oxygen availability in grazed soils decreases EEA 

generally. The activity of chitinase was negligibly low and therefore considered unimportant for 

understanding microbial N demand. Both microbial N acquisition based on leucine-aminopeptidase 

activity and microbial C vs. N demand based on the ratio of C- vs. N-acquiring enzymes clearly point to 

higher microbial N demand in grazed soils.  

Microbial N demand based on EEAs is often explained by the elemental stoichiometry of C and N in soils 

(Sinsabaugh et al., 2009; Sinsabaugh et al., 2008). However, in our study system soil C:N-stoichiometry 

cannot explain a higher microbial N demand under grazing, because soil C:N ratios are in fact markedly 

lower in grazed vs. ungrazed sub-plots of our field site (Yang et al., 2017).  
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Increased microbial N demand under grazing could also be induced by the input of labile C compounds 

to the soil that would not necessarily be reflected in soil C:N ratios because of their fast turnover. Plants 

can increase the input of C substrates to the soil via root exudation to increase microbial nutrient 

acquisition and plant nutrient uptake; a mechanism previously discussed in the context of rhizosphere 

priming effects (Jones et al., 2004; Kuzyakov et al., 2000). Indeed, higher rates of root exudation in 

grazed vs. ungrazed salt marsh soils have been evoked as an important control of microbial activity 

(Olsen et al., 2011). However, our data cannot support this mechanism because belowground biomass 

was decreased by grazing. 

Lastly, the mixing of autochthonous vs. allochthonous OM is another major control of microbial C- vs. N-

acquisition activities in salt marshes, irrespective of the soil C:N stoichiometry (Mueller et al., 2020).  

More importantly it is also strongly affected by grazing (Mueller et al., 2017; Mueller et al., 2019b). 

Allochthonous OM inputs can represent a major fraction of the soil OM pool in minerogenic, sediment-

rich salt marshes (Mueller et al., 2019a; Van de Broek et al., 2018). Considering the extreme rates of 

sediment-driven accretion of several centimeters per year in our study site (Yang et al., 2008), 

allochthonous OM input likely exerts important control over microbial C vs. nutrient acquisition. 

Furthermore, grazing has been shown to reduce annual sediment deposition and accretion drastically 

by >30 kg dry weight m-2 and 2 cm, respectively (Yang, 2017). It is therefore possible that lower inputs of 

allochthonous OM input under grazing – a mechanisms previously demonstrated by Mueller et al. (2017) 

for European salt marshes – is also driving the stimulated microbial N demand in the grazed plots of the 

present study.  However, additional research is needed to assess quality and mixing of allochthonous 

OM in the marshes of Yangtze estuary before any conclusions can be drawn on its implications on soil 

microbial ecology and biogeochemistry.  

4.2 Litter decomposition  
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In line with our second hypothesis, we found a grazing-induced reduction of k, the decomposition rate 

constant of the deployed plant litter. Lower k in grazed sub-plots could be ascribed to lower soil oxygen 

availability, as we also demonstrate a negative relationship between k and soil bulk density (Tab. 3), a 

proxy for trampling-driven soil compaction and oxygen availability in grazed wetland soils (Elschot et al., 

2015; Schrama et al., 2013). Contrary to our hypothesis, however, S, describing the stabilization of plant 

litter in soil, was also decreased in grazed sub-plots and not inversely related to k. Even though the TBI 

parameters k and S do not necessarily show a strong inverse correlation (Keuskamp et al., 2013; Mueller 

et al., 2018), the unidirectional decrease of both parameters in response to our grazing treatment was 

unexpected. Yet, this finding clearly highlights the importance to distinguish litter decomposition rate 

from litter stabilization in the litter decomposition process. The factors controlling litter decomposition 

rate and stabilization, as well as the ecological implications of the two parameters, can be quite different 

(Althuizen et al., 2018; Petraglia et al., 2018). While there is a wealth of studies providing insight into the 

controls of litter decomposition rate, far less is known about the controls of litter stabilization (review 

provided by Prescott (2010)). From a C-sequestration perspective, litter stabilization is the more relevant 

parameter, as it describes the fraction of litter that gets ultimately transformed to stable soil OM 

(Córdova et al., 2018; Paul, 2016).  

In the present study, a lower degree of plant-litter stabilization cannot be explained by lower soil oxygen 

availability under grazing. We therefore argue that grazing effects on other factors controlling microbial 

activity are responsible for the observed effect. Specifically, S was negatively related with leucine-

aminopeptidase activity and positively related with microbial C vs. N acquisition (based on EEA 

stoichiometry), suggesting a negative effect of microbial N demand on litter stabilization. In support of 

this notion, low stabilization potential for organic material in soils with high microbial N demand is in 

line with several observations on soil OM cycling in terrestrial ecosystems (Doetterl et al., 2018; Wild et 
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al., 2017). Similarly, N additions have previously been hypothesized to increase plant litter stabilization 

to soil OM (Prescott, 2010).  

It is possible that the TBI stabilization factor, S, is particularly sensitive to the N demand of the soil 

microbial community , given that the green-tea substrate used to assess S is relatively N-rich (C:N 

=12)(Keuskamp et al., 2013). Yet, S has proven useful to explain variability in the soil C-sequestration 

capacity across ecosystems, suggesting that it can be used as a proxy for plant litter stabilization in soils 

(Keuskamp et al., 2013; Mueller et al., 2018). Our study provides further support for this, because 

grazing-induced reductions of S are in accordance with lower soil OC contents and densities in grazed vs. 

ungrazed plots (Yang et al., 2017).  

4.3 Summary and implications 

The present work demonstrates marked effects of livestock grazing on decomposition processes in salt 

marsh soils with potentially important implications for C sequestration. Negative effects of livestock 

grazing on soil C stocks and sequestration rates in salt marshes have previously been ascribed to 

reductions in plant biomass (Davidson et al., 2017). Here we suggest that livestock grazing can stimulate 

the early OM decomposition processes in salt marsh soils by reducing litter stabilization via increased 

microbial N demand, and therefore provide an alternative explanation for negative grazing effects on C 

stocks and sequestration. Our data show that gazing effects on EEAs and litter decomposition can just 

partly be explained by grazing-driven soil compaction and resulting lower oxygen availability, which has 

previously been hypothesized as a main pathway by which grazing can reduce microbial activity in 

wetland soils (Elschot et al., 2015; Mueller et al., 2017). Instead, grazing effects on microbial nutrient 

demand appears to be an equally important control on soil decomposition processes. In addition, the 

present study is the first to provide insight into the relations between soil enzymic processes and TBI, an 

increasingly recognized, standardized belowground litter assay used to understand soil OC formation 
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and compare decomposition dynamics across ecosystems at a global scale (Djukic et al., 2018; Keuskamp 

et al., 2013). The identified interactions between microbial EEAs and TBI parameters warrant further 

investigation to improve the mechanistic understanding that can be derived from TBI with respect to soil 

OC formation. Particularly, if the observed negative effect of microbial N demand on S applies more 

generally, it yields important implications for linking and modeling nutrient, litter, and soil OC dynamics 

based on TBI. 
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Fig. 1 Location of experimental site (a, b) and sub-plots distribution in low- and high-marsh zones (c, d). 
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Fig. 2 The enzyme activity of ß-glucosidase (GLU), leucine-aminopeptidase (LAP), chitinase (CHI) and the ratio of C- vs. N-

acquiring enzymes (GLU/(CHI+LAP)) in grazed and ungrazed sub-plots of low and high marsh zone. Values are means and SE 

(n=6), bars not connected by the same letter are significantly different at p ≤ 0.05 based on Tukey’s HSD. 
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Fig. 3 Stabilization factor (S) and decomposition rate constant (k) in grazed and ungrazed sub-plots of the low and the high 

marsh zone. Values are means and SE (n=6), bars not connected by the same letter are significantly different at p ≤ 0.05 based 

on Tukey’s HSD. 
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Table 1 ANOVA table for two-way (marsh zone and grazing treatment) analysis. Response variables are belowground biomass 

(BB), bulk density (BD), ß-glucosidase activity (GLU), leucine-aminopeptidase activity (LAP), Chitinase (CHI), the ratio of C- vs. N-

acquiring enzymes (GLU/(CHI+LAP)), Stabilization factor (S), and decomposition rate constant (k). n = 6, degrees of freedom for 

main- and interaction-effect tests = 1 

 
Marsh zone Grazing Interaction 

F p-value F p-value F p-value 

BB 1.45 ns 5.10 <0.05 0.22 ns 

BD (0-5 cm) 7.94 <0.05 4.31 <0.1 2.02 ns 

BD (5-10 cm) 6.56 <0.05 22.63 <0.001 0.02 ns 

BD (10-15 cm) 3.21 <0.1 18.13 <0.001 2.35 ns 

GLU 0.28 ns 5.79 <0.05 1.18 ns 

LAP 0.06 ns 11.88 <0.05 0.08 ns 

CHI 0.00 ns 1.18 ns 0.43 ns 

GLU/(CHI+LAP) 0.16 ns 15.45 <0.001 1.78 ns 

S 4.22 <0.1 167.89 <0.001 2.57 ns 

k 3.84 ns 6.38 <0.05 0.32 ns 
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Table 2 Belowground biomass and bulk density of different soil depths in grazed and ungrazed sub-plots of low and high marsh 

zones. belowground biomass (BB); bulk density (BD). Values are means ± SE (n=6). Letters indicate significant differences at p ≤ 

0.05 within rows based on Tukey’s HSD. 

Section 
Low marsh High marsh 

Grazed Ungrazed Grazed Ungrazed 

BB (g) 5.74±0.99 b 12.50±1.35 a 9.89±2.72 a 14.32±3.79 a 

BD (0-5 cm) (g·cm
-3
) 1.29±0.01 a 1.27±0.02 a 1.25±0.05 a 1.13±0.05 a 

BD (5-10 cm) (g·cm
-3
) 1.36±0.03 a 1.22±0.02 b 1.29±0.04 a 1.13±0.02 b 

BD (10-15 cm) (g·cm
-3
) 1.56±0.03 a 1.35±0.05 b 1.44±0.04 a 1.34±0.02 a 
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Table 3 Linear regression results for relationships between (A) bulk density (BD) at different soil depths and enzyme activities; 

and (B) enzyme activities in the topsoil and the TBI parameters S and k. R
2
-values are bold-typed at p ≤ 0.05. 

 GLU LAP CHI GLU/(LAP+CHI) 

 R2 Slope Intercept R2 Slope Intercept R2 Slope Intercept R2 Slope Intercept 

(A) bulk density vs. enzyme activities 

BD (0-5 cm) 0.08 -2093 5994 0.10 3006 573 0.08 -1096 1912 0.12 -0.68 1.56 

BD (5-10 cm) 0.23 -3170 7379 0.41 5530 -2642 0.17 -1480 2413 0.44 -1.20 2.23 

BD (10-15 cm) 0.35 -3624 8559 0.27 4094 -1534 0.09 -996 1974 0.50 -1.17 2.39 

(B) enzyme activities vs. S and k 

S 0.19 2 x 10-5 -0.01 0.29 -1 x 10-5 0.11 0.00 3 x 10-6 0.05 0.47 0.09 -0.02 

k 0.02 6 x 10-8 0.01 0.44 -2 x 10-7 0.01 0.26 4 x 10-7 0.01 0.20 1 x 10-3 0.01 

Notes: ß-glucosidase (GLU), leucine-aminopeptidase (LAP), chitinase (CHI), the ratio of C- vs. N-acquiring enzymes 

(GLU/(CHI+LAP)) 
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Highlights 

1. Grazing exerted opposing effects on soil microbial C- and N-acquisition activity 

 

2. Litter stabilization was strongly negatively correlated with soil microbial N demand 

 

3. TBI parameters S and k were both reduced by grazing and not inversely related 
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