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A B S T R A C T   

Policy is an influential factor to the purchase and usage of Electric Vehicles (EVs). This paper is focused on the 
license plate lottery policy, a typical vehicle purchase restriction in Beijing, China. An agent-based spatial in-
tegrated urban model, SelfSim-EV, is employed to investigate how the policy may influence the uptake of EVs 
over time at the individual level. Two types of “what-if” scenario were set up to explore how the methods to 
allocate the vehicle purchase permits and the number of permits might influence the EV market expansion from 
2016 to 2020. The results suggested that 1) both the allocation methods and the number of purchase permits 
could heavily influence the uptake of EVs and further its impacts on vehicular emissions, energy consumption 
and urban infrastructures; 2) compared to the baseline, both scenarios got significantly different spatial distri-
butions of vehicle owners, transport facilities, vehicular emissions and charging demand at the multiple reso-
lutions; 3) SelfSim-EV was found as a useful tool to quantify the nonlinear relationships between the increase of 
EV purchasers and the demand for transport facilities and electricity, and also to capture some unexpected results 
coming out from the interactions in the complex dynamic urban system.   

1. Introduction 

Replacing Conventional Vehicles (CVs) with Electric Vehicles (EVs) 
through the initiatives of urban transportation electrification is 
increasingly recognized as a prominent approach in the transport sector 
to mitigating the pressing challenges of climate change, energy scarcity 
and urban air quality (Chen et al., 2018; Zhuge and Shao, 2018a, 2019). 
The electrification of transport could be driven by many factors, and 
policy appears to one of the most important factors associated with the 
diffusion of EVs. 

A variety of policies have been designed to promote the development 
of EVs from both the supply and demand sides: the supply-related pol-
icies generally target at EV-related stakeholders (Ma et al., 2017), such 
as vehicle manufacturers (Green et al., 2014; Gu et al., 2017; Jang et al., 
2018) and energy suppliers (Jang et al., 2018; Melton et al., 2017); while 

the demand-related policies are generally focused on the EV consumers, 
aimed at promoting the purchase and usage of EVs by providing them 
with extra benefits that could be either financial or non-financial (e.g., 
subsidies and access to bus lane) (Zhuge and Shao, 2019). This paper 
will be focused on a demand-related and non-financial policy, namely 
license plate lottery policy, which is a typical vehicle purchase 
restriction. 

The license plate lottery policy specifies a fixed number of vehicle 
purchase permits each year (or each month) and allocates them among 
applicants, who plan to purchase vehicles, at random or with a specific 
rule (Liu et al., 2018b; Zhuge and Shao, 2019). In order to promote the 
purchase and usage of EVs, some governments, such as the Beijing 
government, have split the number of vehicle purchase permits into two 
parts, which are for CV and EV applicants, respectively (Zhuge and Shao, 
2019). The Beijing government tends to favour Battery Electric Vehicle 
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(BEV) over Plug-in Hybrid Electric Vehicle (PHEV) and only allocates 
dedicated purchase permits to BEV purchasers, excluding PHEV pur-
chasers. As a result, PHEV and CV purchasers need to compete for a 
specific number of the so-called CV purchase permits. However, in 
theory, PHEV is one typical EV type, which is commonly accepted across 
the global. Therefore, this paper treats PHEV as one type of EV, rather 
than CV, though CV and PHEV share a fixed number of purchase per-
mits. The lottery policy has been found as influential to vehicle own-
erships, but it remains unclear how it may influence the uptake of EVs 
and further those EV-related urban elements over time and across space, 
including the urban environment (e.g., vehicular emissions), energy 
system (e.g., electricity consumption) and transport infrastructures (e.g., 
charging posts). 

To fill this research gap, this paper attempts to assess the potential 
implications of the license plate lottery policy on both the diffusion of EV 
and its associated urban systems at the micro scale, using an agent-based 
spatial integrated microsimulation approach, SelfSim-EV (Zhuge et al., 
2019d). SelfSim-EV is an EV version of SelfSim, which is an agent-based 
land use and transport model (Zhuge et al., 2016). The outcomes should 
be helpful 1) for local authorities to evaluate and optimize the lottery 
policy, 2) for vehicle manufacturers to make a profitable production 
plan, 3) for energy suppliers to respond wisely to the possible changes in 
the refuelling and charging demands 4) and for urban planners to locate 
and optimize transport infrastructures for both CVs and EVs. 

2. Literature review 

2.1. Policies for Electric Vehicles (EVs) 

Financial incentives, which essentially try to reduce the cost of 
purchasing and using EVs, tend to be one of the most-used EV policies 
(Zhuge et al., 2019e), including subsides for EV purchase (Hardman 
et al., 2017; Jenn et al., 2018; Mirhedayatian and Yan, 2018; Wang 
et al., 2018) and tax exemptions for both EV purchase and use (Jenn 
et al., 2018; Ma et al., 2017; Wang et al., 2017b). Incentives could take 
many different forms (e.g., sale tax waivers and income tax credits) 
which are closely associated with the effectiveness of policy. For 
example, it was found that the type of tax incentive offered could be as 
important as the amount of the incentive (Gallagher and Muehlegger, 
2011). In general, financial incentives have positive impacts on the 
uptake of EVs (Breetz and Salon, 2018; Fearnley et al., 2015; Liu and 
Xiao, 2018), because such incentives could make EVs price competitive 
(Figenbaum, 2017). For example, it was estimated that the Energy 
Policy Act of 2005 could increase EV sale by 0.0046% per dollar (Jenn 
et al., 2013); a similar finding in the USA suggested that on average, 
every 1000 dollar could increase EV sale by 2.6% (Jenn et al., 2018). 
However, the incentives could only become effective when they were 
sufficiently large, as evident from Jenn et al. (2013)’s empirical finding, 
which suggested the amount of subsidies should be above 1000 dollar in 
the USA. In some cases, the incentives could even not be effective to the 
uptake of EVs (Rudolph, 2016). 

Financial incentive could be a very effective policy that could make 
EVs price competitive in a relatively short time, especially in terms of 
vehicle price, but in general, the amount of subsidies would decrease 
over time as the number of EV adopters increases. Therefore, some other 
strategies should be used as alternatives (Hao et al., 2014; Wang et al., 
2017a). Increasing the benefits of using EVs instead of CVs (Ma et al., 
2017), which could increase the attractiveness of EVs, has been found as 
promising alternatives (Langbroek et al., 2016a, 2016b). These include 
free parking (Langbroek et al., 2016a, 2016b; Wolbertus et al., 2018), 
the reduction in refuelling/charging costs (Rudolph, 2016; Shafiei et al., 
2018; Wang et al., 2017b), access to specific lanes (e.g., bus lane and 
HOV lane) (Jenn et al., 2018; Langbroek et al., 2016b; Melton et al., 
2017; Mersky et al., 2016), toll road exemptions (Bjerkan et al., 2016; 
Fearnley et al., 2015; Mersky et al., 2016). For example, the HOV lane 
was identified as a significant factor to the adoption of EVs, with an 

increase of 4.7% (Jenn et al., 2018). However, in some cases, these 
alternative policies might not be effective. For example, neither tool 
road exemptions nor bus lane access had a statistically significant rela-
tionship with BEV sales in Norway (Mersky et al., 2016). Also, free 
parking was found not significantly influential in China, based on a 
web-based survey with 247 samples (Wang et al., 2017b). Furthermore, 
educating consumers and providing them with information on EVs were 
found as important in the adoption of EVs in some cases (Hardman et al., 
2017; Larson et al., 2014), as EVs were still quite new to many potential 
vehicle purchasers. 

Since several policies, such as financial incentives, need to invest 
money, cost-benefit analyses have been conducted to analyse their 
benefits and costs (DeShazo et al., 2017; Fearnley et al., 2015; Yan, 
2018). For example, Fearnley et al. (2015) found that several policies, 
including subsides and fiscal exemption, in German had a negative 
benefit-cost balance. Similarly, Yan (2018) found that it could be costly 
to reduce CO2 emissions through tax incentives. In addition, the policy 
implications to the uptake of EVs may vary across space, therefore 
several comparative studies have been carried out at city- and 
country-levels (Breetz and Salon, 2018; Melton et al., 2017; Zhang and 
Bai, 2017). 

Most of the studies above have been only focused on the implications 
of different policies on the adoption of EVs. Some attempts have been 
made to further assess the implications of the policies on the associated 
urban elements, such as the environment (Melton et al., 2017; Pu et al., 
2015; Yan, 2018) and energy systems (Liu, 2012). For example, it was 
found that the diffusion of EVs could significantly reduce both GHG 
emissions and energy demand in the road transport sector, but might 
have a negative impact at the national level (Liu, 2012). However, these 
studies have tended to pay little attention to the interactions between 
the EV market and those associated urban systems, such as transport, 
energy and environment systems. Specifically, in a complex and dy-
namic urban system, an EV-related policy might not only influence the 
purchase and usage of EVs, but also those urban elements associated 
with EVs, such as EV-related transport facilities (e.g., charging post) and 
urban environment (e.g., vehicular emissions) (Zhuge et al., 2019d). 
Therefore, an EV policy should be assessed in a more comprehensive and 
systematic way, so as to fully understand its potential implications. Such 
assessment outcomes would be more helpful for different stakeholders 
involved (e.g., urban/transport planners), as discussed before. 

2.2. Methods and models for assessing the implications of EV policies 

Agent-based model (McCoy and Lyons, 2014; Shafiei et al., 2012; 
Tran, 2012), system dynamics model (Ardilaa and Francob, 2013; Lin-
der, 2011) and discrete choice model (He et al., 2014; Lee et al., 2012; 
Nemry and Brons, 2010) have been widely used to investigate the up-
take of EV (Zhuge and Shao, 2019). Therefore, these three models, in 
theory, could also be used to evaluate the effectiveness of a policy to the 
diffusion of EV. Some attempts have been made to use system dynamics 
model (Fearnley et al., 2015; Liu and Xiao, 2018; Shafiei et al., 2018) 
and discrete choice model (including mixed logit model (Langbroek 
et al., 2016a; Rudolph, 2016; Wang et al., 2017b), binary logit model 
(Zhang et al., 2018) and multinomial logit model (Kwon et al., 2018)). 
However, agent-based model (Silvia and Krause, 2016), which is a 
typical approach to simulating complex urban systems, has received 
significantly less attention in the evaluation of an EV policy. While 
regression models (Jenn et al., 2018; Wang et al., 2017a; Wolbertus 
et al., 2018; Yan, 2018) tend to be one of the most-used approaches to 
evaluating such EV-related policies. Other methods also include prob-
abilistic model (DeShazo et al., 2017), multivariate co-integration model 
(Ma et al., 2017) and multi-Level Perspective (MLP) transition theory 
(Figenbaum, 2017). 

Compared with system dynamics model, discrete choice model and 
regression model, agent-based models have several advantages in eval-
uating the effectiveness of an EV policy (Heppenstall et al., 2011; Zhuge 
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et al., 2018a, 2018b): 1) agent-based modelling can be easily coupled 
with spatial modelling. Therefore, the resulting model can assess the 
policy implications from a spatial perspective; 2) Heterogeneity. In-
dividuals may respond differently to the same policy according to their 
own preferences and attributes (e.g. income and gender). Agent-based 
model is capable of simulating various heterogeneous behaviours, 
including purchase, travel and charging behaviours of EV. Therefore, 
agent-based modelling will be used in this paper to explore the role of 
the license plate lottery policy in the diffusion of EV. 

2.3. License plate lottery policy 

There are two typical vehicle purchase restrictions, namely license 
plate lottery and auction, which appear to be more widely used in 
Chinese cities, including Beijing, Shanghai and Guangzhou (Lai et al., 
2018; Wang and Zhao, 2017; Zhang et al., 2018). Both of them are ex-
pected to be useful for vehicle ownership control, so as to mitigate traffic 
congestion, improve local air quality and reduce GHG emissions. Some 
of the studies have tried to investigate people’s perception towards these 
two restrictions at the individual level, for example, using discrete 
choice models (Lai et al., 2018; Wang and Zhao, 2017). 

The review here will be focused on the license plate lottery policy, 
which could have several different implications on the urban system: 1) 
Impacts on Daily Travel: it was found that the lottery policy might have 
little influence on travel time or distance, but did influence travel mode 
(Yang et al., 2016); Furthermore, it appeared that the lottery policy 
could also somehow improved the traffic system in Beijing, as evident 
from the increase of average driving speed from 22.6 km/h in 2010 to 
25.3 km/h in 2011 (Yang et al., 2014); 2) Impacts on the Environment 
and Energy Systems. The work of Yang et al. (2014) suggested that the 
total number of vehicles in Beijing would decrease by 11% in 2020 
because of the lottery policy, but the amount of fuel consumption would 
only decrease by 1%. In another study by Li and Jones (2015), it was 
found that the policy could reduce CO2 emissions from 23.90 to 15.55 
million tons in 2020 in Beijing, given that the current policy continued; 
3) Unexpected Impacts. It was found that the lottery policy could have a 
negative net impact on female employment rates (Liu et al., 2017) and 
also could reduce the number of births in a household (Liu et al., 2018a). 

In order to promote the purchase of EVs at the same time, some 
lottery policies tried to allocate a specific number of purchase permits 
particularly to the potential EV purchasers, for example, in Beijing. As a 
result, EV purchasers could have much higher winning probability. 
Some attempts have been made to investigate the influence of license 
plate lottery policy on the adoption of EVs. For example, the work by 
(Zhang et al., 2018) found that the lottery policy could be more influ-
ential than EV subsides to the adoption of EVs in Beijing. However, these 
studies tended to pay almost no attention to the further influence of the 
EV adoption on the associated urban elements, such as the urban envi-
ronment, energy system and transport infrastructures, resulting in an 
inadequate assessment with limited useful information obtained for 
those EV-related stakeholders (e.g., the government). On the other hand, 
those unexpected implications of the lottery policy on female labour 
supply and birth rates suggest that an integrated approach is needed in 
order to fully understand the policy implications, so as to capture some 
unexpected results coming out form the interactions between the EV 
diffusion and those associated urban systems (e.g., population system). 

2.4. Research gaps 

As reviewed in Section 2.1, a variety of policies either monetary or 
non-monetary have been issued to promote the purchase and usage of 
EVs across the global. Some of them have been found as influential to the 
uptake of EVs and could further benefit the environment and energy 
systems. However, these studies have tended to only assess the impli-
cation of the EV policies (including the license plate lottery policy) on 
the market penetration, paying significantly less attention to the 

potential further influences on those associated urban elements, such as 
the urban environment (e.g., vehicular emissions), energy system (e.g., 
energy consumption) and transport infrastructures (e.g., parking and 
charging facilities). In response, this paper attempts to assess policy 
implications in a more comprehensive and systematic way, considering 
both the diffusion of EVs and its associated urban elements. 

As reviewed in Section 2.3, the license plate lottery policy, which is a 
typical vehicle purchase restriction, will be used as a specific example in 
this paper, as the role of the lottery policy in the diffusion of EVs still 
remains unclear. In addition, the lottery policy could also have some 
unexpected implications on those associated urban elements, such as 
population system (e.g., labour supply and birth rates). Therefore, an 
integrated approach, which can consider both the EV diffusion and its 
associated urban elements, would be useful for fully understanding the 
policy implications. 

As reviewed in Section 2.2, system dynamics model, discrete choice 
model and regression model have been widely used to assess the im-
plications of various EV-related policies. However, this paper will use 
agent-based modelling, which is a common approach to simulating the 
adoption of EV, but has received significantly less attention in evalu-
ating the EV policies. Specifically, this paper will use an agent-based 
spatial integrated simulation model, SelfSim-EV (Zhuge et al., 2019d). 
The reasons are twofold: 1) SelfSim-EV was developed particularly for 
investigating the diffusion and impacts of EV diffusion (Zhuge et al., 
2019d), and thus can be straightforwardly used here to assess the im-
plications of the license plate lottery policy on the uptake of EV and 
further its associated elements; 2) SelfSim-EV is spatially explicit, 
meaning that the policy can be evaluated from a spatial perspective. 

In summary, this paper attempts to explore the role of the license 
plate lottery policy in the diffusion of EV with an agent-based spatial 
integrated simulation model, SelfSim-EV, considering both the EV 
market penetration and its further influences on those associated ele-
ments (e.g., urban infrastructures). It is expected that the evaluation 
could help to fully understand the influence of the lottery policy on the 
diffusion of EVs over time and across space. 

3. Methodology 

3.1. An agent-based integrated urban model for Electric Vehicles (EVs): 
SelfSim- EV 

As aforementioned, SelfSim-EV will be used here as a tool to explore 
the role of license plate lottery policy in the adoption of EV. The model 
was introduced in detail in our previous work of (Zhuge et al., 2019d), 
presenting its ability to investigate the diffusion and impacts of EVs. 
Therefore, the following introduction to SelfSim-EV will be focused on 
the interactions among its sub-models, as well as model dynamics and 
assumptions, which would help to better understand the model outputs, 
especially those unexpected or nonlinear results (Zhuge et al., 2019d). 

As shown in Fig. 1, the EV market model is the core module of 
SelfSim-EV and simulates the interactions between the three core agent 
types in the vehicle market, namely Consumer, Manufacturer and 
Government Agents. Here, the decision-making of a consumer agent on 
vehicle purchase is simulated with a utility function considering four 
typical influence factors, namely environmental awareness, vehicle 
usage, vehicle price and social influence, based on the empirical findings 
in Beijing (Zhuge and Shao, 2019). It is worth noting that the vehicle 
choice of a consumer agent is also constrained by a fixed number of 
vehicle purchase permits specified in the license plate lottery policy. The 
four influential factors change over time, which are simulated and 
quantified as follows (see Fig. 1):  

� Vehicle Usage: is used to describe the extent to which drivers are 
satisfied with their vehicles that can be either CV or EV, considering 
driving experience (e.g., range anxiety), travel time, fuel cost, etc. It 
is quantified based on the Activity-based Travel Demand Model, 
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which simulates how a person agent (e.g., driver) performs its daily 
activities (e.g., work and leisure) and travels from one activity 
location (e.g., workplace) to another (e.g., home). Each driver in 
SelfSim-EV has a daily plan which contains information on their 
travel and daily activities. Here, the utility of a daily plan is used to 
quantify vehicle usage. As shown in Fig. 1, the Activity-based Travel 
Demand Model is connected to both the Transport Facility Devel-
opment Model and Demographic Evolution Model, as transport in-
frastructures and socio-demographic attributes (e.g., income) of a 
driver agent are influential to travel behaviour/demand of both CV 
and EV. For example, the availability of charging and parking facil-
ities can influence individual travel behaviour or demand and further 
whether or not to purchase EVs; Also, socio-demographic attributes 
are associated with various decision-makings in the parking and 
charging events of CV and EV, and thus can also influence vehicle 
purchase of consumer agents through vehicle usage. Furthermore, 
the Activity-based Travel Demand Model is also connected to the 
Housing Market Model (specifically, a joint model of residential 
location choice and real estate price model: see (Zhuge and Shao, 
2018b)), as the model simulates the residential relocation of 
household agent, which influences activity patterns of a driver agent. 
For example, residential relocation would change commuting time 
and thus the preferences of household agent towards EVs again 
through vehicle usage.  
� Environmental Awareness: is quantified using the total amount of 

vehicular emissions (e.g., CO and HC), which is calculated also based 
on the Activity-based Travel Demand Model. Specifically, the model 
is updated from the MATSim-Beijing model (Zhuge et al., 2019c) by 
incorporating EV components (e.g., charging behaviour module). 
The simulation can obtain the moving trajectories of each driver 

(with either CV or EV), as well as the associated energy consumption 
and vehicular emissions at the link level, which can be further 
aggregated at the city level.  
� Vehicle price: is the difference between vehicle sale price and 

possible EV subsidy, which are set by the manufacturer and gov-
ernment agents, respectively, according to the numbers of EV pur-
chasers and owners.  
� Social Influence: is composed of three typical types, namely global 

influence, neighbour effects and social network (or those influences 
through friendships). For neighbour effects, it is assumed that those 
people living around EV owners within a specific radius may be more 
likely to purchase EVs. Therefore, the quantification of neighbour 
effects is associated with residential location (or the Housing Market 
Model). In terms of social network, EV owners may have a positive 
influence on the EV adoption of their friends, and thus EV may 
diffuse through individual social networks. It is worth noting that 
spatial closeness of a pair of agents could influence whether and how 
they build and dissolve their friendships. Thus, social network is 
associated with residential location as well. 

Among the above influential factors to the diffusion of EV, vehicle 
usage (including type of fuel used and electric driving range), environ-
mental awareness (i.e., vehicular emissions) and vehicle price (including 
vehicle sale price and EV subsidies) are related to vehicle characteristics. 
It is worth noting that all these vehicle characteristics may vary across 
scenarios and over time, primarily due to the interactions and dynamics 
found in the system. Take vehicle sale price as example, the price is set 
by a vehicle manufacturer agent in the vehicle market according to 
vehicle penetration rates. In return, it can also influence the consumers’ 
vehicle choice through the utility function and further vehicle 

Fig. 1. Dynamics and interactions within a SelfSim-EV simulation (source: Adapted from (Zhuge et al., 2019d)).  
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penetration rates. 
From a dynamic perspective, all the four influential factors above 

change over time, due to the evolution of those connected elements, 
including social networks, residential locations, transport in-
frastructures, socio-demographic attributes and daily plans. Take resi-
dential location as example, residential relocation of a household would 
change daily plans of each of its household member and also the so- 
called neighbour effects. Both could influence whether the household 
would purchase a vehicle or not and if yes, which vehicle type to choose. 

In addition, several assumptions have been made in SelfSim-EV, 
especially on behavioural rules of agents. Specifically, utility maximi-
zation theory (Aleskerov et al., 2007) is a typical approach to simulating 
individual decision-makings in agent-based models, with the assump-
tion that agents always choose the alternative which can maximize their 
utilities. The theory is used to define behavioural rules of several agent 
types (e.g., consumer and driver agents) through utility functions or 
discrete choice models. For example, utility functions are used to 
simulate vehicle purchase and residential location of household agents 
in the dynamic vehicle and housing markets, respectively. Several 
different Multinomial Logit Models (one type of discrete choice model) 
are used to simulate parking and charging behaviours of CVs and EVs in 
the Activity-based Travel Demand Model (Zhuge et al., 2019a, 2019b, 
2019c). 

3.2. Evaluating license plate lottery policies within “what-if” scenarios 

3.2.1. Developing “what-if” scenarios through semi-structured interviews 
“What-If” scenario analysis is a typical approach to evaluating a 

policy with different settings. However, it remains a challenge to set up 
reasonable scenarios that can exactly predict futures, due to huge un-
certainty around policy making and urban dynamics. In order to un-
derstand the uncertainties in shaping EV-related policies (including the 
license plate lottery policy) and develop reasonable “what-if” scenarios, 
we conducted semi-structed interviews with 11 EV-related stakeholders 
in Beijing from September 2015 to March 2016, including 3 staff from 
EV manufacturers and 8 from local authorities. Since the license plate 
lottery policy is more relevant to the work of local authorities, only the 
personal viewpoints from the 8 staff are used here. Note that the view-
points are personal and thus should not be linked to any local author-
ities. Based on the semi-structured interviews and also recent EV policies 
in China, this work sets up two types of “what-if” scenario below to 
explore the role of license plate lottery policy in the diffusion of EVs.  

� Scenario A: aims to examine whether exclusive PHEV permits would 
promote the uptake of PHEVs, as currently PHEV purchasers does not 
receive any incentives in the license plate lottery policy in Beijing. 
However, in some other Chinese cities, such as Shanghai, PHEV 
purchasers receive the same benefits as BEV purchasers in the EV 
purchase policies (e.g., car license auction policy). As per the auction 
policy in Shanghai, both PHEV and BEV purchasers can get a license 
for free. Therefore, the outcomes of Scenario A would be useful for 
local authorities to adjust the license plate lottery policy to promote 
the development of PHEVs as well.  
� Scenario B: is used to quantify the potential influence of more 

vehicle purchase permits on the uptake of both PHEVs and BEVs. 
Although the total number of vehicle permits was decreasing and is 
likely to decrease in a short term, the license plate lottery policy may 
be adjusted from time by time (and even be completely removed). 
For example, a recent EV policy by the central government of China 
suggested that local governments should not put restrictions on the 
purchase of new energy vehicles, including EVs. Furthermore, the 
semi-structured interviews also suggested that the license plate lot-
tery policy was mainly used for mitigating traffic congestion and thus 
might be adjusted by adding more permits or even be totally 
removed when traffic condition is heavily improved, for example, 
due to a dramatic increase in the modal share to public transport. 

3.2.2. Simulating “what-if” scenarios with SelfSim-EV 
SelfSim-EV has been applied to simulate the evolution of EV market 

in Beijing, as detailed in (Zhuge et al., 2019d): it was firstly calibrated 
from 2011 to 2014 and then further validated in 2015. Then a Reference 
Scenario (RefSc) or baseline was set up with the calibrated and validated 
model to explore the future of EVs in Beijing from 2016 to 2020, 
assuming that the urban system, including the EV market and its asso-
ciated elements (e.g., infrastructures), would evolve as before. 

In this paper, we will again use the calibrated and validated Beijing 
SelfSim-EV model to explore the role of license plate lottery policy 
within several different “what-if” scenarios (namely Scenarios A and B: 
see Section 3.2.1). In order to quantify the influence of the lottery policy 
on the diffusion of EVs, these “what-if” scenarios will be compared to 
each other, and also against the baseline (or RefSc) in our previous work. 
From a technical perspective, the calibrated and validated Beijing 
SelfSim-EV model needs to be modified in order to simulate different 
lottery policies. Specifically, the government agent in the EV market 
model (see Fig. 1) is responsible for the allocation of vehicle permits, and 
thus its behavioural rules of allocating permits will be modified in 
Scenarios A and B accordingly prior to a SelfSim-EV simulation. Once 
the number of permits by vehicle type is changed, the behaviours of the 
three core agents (i.e., consumer, vehicle manufacturer and govern-
ment) in the EV market model may change according to their own 
behavioural rules. This would further lead to the changes in all the 
connected elements, such as the urban environment, population, land 
use and transport systems. 

4. Case study of Beijing, China 

The capital of China, Beijing was used a case study, as the license 
plate lottery policy has been in place in Beijing for around eight years. 
The lottery policy was issued in 2011. Ever since, the policy has changed 
over time, especially in terms of the number of vehicle purchase permits 
and the dedicated permits for EVs (see Fig. 2). Specifically, the total 
number of vehicle purchase permits levelled off from 2011 to 2013 and 
then went down in 2013. It again levelled off from 2014 to 2016. Since 
2014, a specific number of permits have been exclusively allocated to 
BEV applicants, in order to promote the purchase of BEVs. The number 
of BEV purchasers was almost the same as the number of BEV permits 
after 2014. The remaining so-called CV permits are for both CV and 
PHEV purchasers. As aforementioned, PHEV in theoretical is one type of 
EV, but the PHEV and CV purchasers in Beijing share a fixed number of 
so-called CV permits, which had a decreasing trend from 2014 to 2016. 

As aforementioned, a Beijing SelfSim-EV model, which was cali-
brated and validated from 2011 to 2015 (see (Zhuge et al., 2019d) for 
more details), will be used here to explore how the license plate lottery 
policy may influence the diffusion of EV from 2016 to 2020, within two 
different “what-if” scenarios: Scenario A will be used to investigate how 
vehicle allocation methods may influence the uptake of EVs (see Section 
4.1 below); Scenario B will be used to quantify the influence of different 
vehicle permit numbers on the EV diffusion (see Section 4.2 below). In 
order to quantify their influences, these two “what-if” scenarios will be 
compared to a so-called Reference Scenario (RefSc) assuming that the 
EV market in Beijing and also its connected systems would evolve as 
before during the period: see (Zhuge et al., 2019d) for a detailed 
introduce to RefSc. We will cite some RefSc results in the following 
scenario analyses where relevant for comparison purpose. In order to 
mitigate stochastic effects, we run each scenario 10 times and used the 
average as the final outcome for subsequent analyses (Zhuge et al., 
2019d). 

4.1. Scenario A: Vehicle permit allocation methods 

In the RefSc scenario, potential PHEV and CV purchasers share a 
fixed number of the so-called CV permits in the lottery policy, because 
PHEV also uses petrol and releases emissions in some cases. By contrast, 
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the “what-if” scenarios here will explore the influence of different 
vehicle allocation methods (i.e., exclusive PHEV permits) with the total 
number of vehicle permits fixed. These scenarios are described as fol-
lows (see Table 1):  

� Scenario 1 (PermitCVSc1): splits the number of the so-called CV 
permits into two equal parts for CV and PHEV, respectively. 
Currently, PHEVs are not competitive with CVs in the Beijing market. 
This scenario is therefore to test whether exclusive PHEV purchase 
permits could increase the competitiveness of PHEVs.  
� Scenario 2 (PermitBEVSc2): splits the number of BEV permits into 

equal parts for BEV and PHEV, respectively. Due to the range anxiety 
and lack of charging facilities, BEVs are not very favoured currently. 
This scenario is to examine if PHEVs may help to ease the transition. 

4.1.1. EV market expansion in scenario A 
A comparison among the RefSc, PermitCVSc1 and PermitBEVSc2 

scenarios is first carried out in terms of the EV market from 2016 to 
2020. As shown by Fig. 3-(c), the numbers of PHEV purchasers in both 
PermitCVSc1 and PermitBEVSc2 go up because some PHEV purchase 
permits are particularly allocated. Accordingly, the numbers of CV 
purchasers in PermitCVSc1 and BEV purchasers in PermitBEVSc2 
decrease due to the decrease of purchase permits allocated. In terms of 
vehicle prices, PermitCVSc1 has higher CV and BEV prices than RefSc 
and PermitBEVSc2, respectively, because the CV penetration rates in 
2018 in the latter two scenarios decrease much more heavily than that in 
PermitCVSc1, which results in relatively higher CV price in Per-
mitCVSc1, though the CV prices in all scenarios go down in 2018. 
Similarly, the BEV prices in all scenarios rise in 2018 because of the 
increase of BEV penetration rates. However, the BEV prices in Per-
mitCVSc1 and RefSc go up more heavily due to the bigger increase in the 
BEV penetration rates. For the PHEV prices shown in Fig. 3-(f), the PHEV 
price in RefSc almost remains the same over the period, while the PHEV 
prices in PermitCVSc1 and PermitBEVSc2 go down and up, respectively, 

because of the decrease and increase in the PHEV penetration rates. In 
terms of EV subsidies, the BEV subsidies in all scenarios decrease 
because of the increasing BEV adoption rates. However, the BEV subsidy 
in PermitBEVSc2 is higher than those in the other two scenarios because 
the BEV adoption rates are relatively lower in PermitBEVSc2 due to the 
smaller number of BEV permits allocated. The PHEV subsidies in both 
PermitCVSc1 and PermitBEVSc2 decrease owing to their increasing 
PHEV adoption rates. PermitCVSc1 has lower subsidy because of its 
relatively higher adoption rate. 

As a simulation model, SelfSim-EV also contains several behavioural 
rules of agents that are involved in randomness. For instance, the utility 
function for the decision-making of consumer agents on vehicle choice 
contains a random term following a Gumbel distribution (see (Zhuge 
et al., 2019d) for the utility function). Such randomness may influence 
the model outcomes. In order to reduce the potential stochastic effects, 
the average of the 10-run simulation results was used as the final out-
comes, as aforementioned. Here, we use Standard Deviation (SD) to 
quantify the stochastic effects. The SD results about the EV market (see 
Figure A- 1 in Supplementary Material) suggest that the stochastic ef-
fects tend to be relatively slight. 

In addition, the spatial differences between the RefSc and Scenario A 
in the number of vehicle owners (or the number per unit area) in 2020 
were first quantified with the indicator of Relative Difference Ratio 
(RDR) and were then mapped at facility-, traffic zone- and district 
–levels, based on the residential locations of vehicle owners (see 
Figure A- 2, Figure A- 3 and Figure A- 4 in Supplementary Material for 
more details, respectively). The maps suggest that the ways to allocate 
the vehicle purchase permits could heavily influence the spatial distri-
butions of vehicle owners at multiple resolutions (note that the number 
of vehicle owners per unit area was used in those maps at the zone- and 
district-levels). Taking the spatial difference in PHEV owners for 
example (see Fig. 4), with the increase in the number of PHEVs owners 
in both PermitCVSc1 and PermitBEVSc2, most of the traffic zones tend 
to have more PHEV owners, with few exceptional cases where the 
numbers of PHEV owners decrease (see those zones in red). The 

Fig. 2. Numbers of purchase permits and vehicle sales in Beijing from 2010 to 2016.  

Table 1 
Scenarios for different vehicle permit allocation methods (Zhuge et al., 2019d).  

Year Reference Scenario (RefSc) Scenario 1 (PermitCVSc1) Scenario 2 (PermitBEVSc2) 

CV BEV CV PHEV BEV CV PHEV BEV 

2016 81,000 51,000 40,500 40,500 51,000 81,000 25,500 25,500 
2017 82,800 51,000 41,400 41,400 51,000 82,800 25,500 25,500 
2018 45,000 45,000 22,500 22,500 45,000 45,000 22,500 22,500 
2019 45,000 45,000 22,500 22,500 45,000 45,000 22,500 22,500 
2020 45,000 45,000 22,500 22,500 45,000 45,000 22,500 22,500  
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Fig. 3. The EV Market from 2016 to 2020 in Scenario A and RefSc (Note that RefSc Results are from (Zhuge et al., 2019d)).  
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exceptional cases could be caused by several different factors. Two 
possible factors are discussed as follows: First, the allocation methods 
could change the decision-making of potential PHEV purchasers through 
the internal interactions among CV, PHEV and BEV purchasers in the 
vehicle market. For instance, some of those PHEV purchasers in RefSc 
might change their vehicle choices in Scenario A (i.e., PermitCVSc1 and 
PermitBEVSc2) and choose CV or BEV instead; 2) From a dynamic 
perspective, the decrease in the number of PHEV owners in some specific 
zones might be attributed to the residential relocation of PHEV owners. 
In other words, a PHEV owner might move to another zone, which re-
sults in the decrease. In addition, it can also be found from the maps that 
those zones in the central districts and the centre of the outer districts 
tend to have more PHEV owners. One possible reason might be that 
people living in these areas tend to have higher income and may be more 
likely to afford PHEVs, which have higher sale prices, due to no extra 
subsides from the Beijing government. 

4.1.2. Impacts on the EV-related infrastructures in scenario A 
The diffusion of EVs is closely associated with the EV-related in-

frastructures, including refuelling stations, parking lots, charging posts 
and charging stations, in terms of quantity, layout and usage. Per-
mitCVSc1, which increases the number of PHEV purchasers with the 
number of BEV purchasers fixed, can significantly increase the demand 
for public charging posts, as shown by Fig. 5-(b). Compared to RefSc, 
PermitBEVSc2, which transfers the BEV permits into PHEV permits, 
decreases a little bit the demand for the public charging posts, as the 
PHEV drivers can also use petrol and rely less on electricity. This further 
decreases the total demand for charging posts. For the public parking 
spaces, the PermitCVSc1 scenario gets more parking spaces after 2018, 
which is likely to be associated with the travel patterns of vehicle 
drivers, rather than the number of vehicle purchasers, because the total 
numbers of vehicle purchasers are the same across the scenarios due to 
the constraint on the total number of vehicle permits. For instance, the 
vehicle purchasers in PermitCVSc1 might have more car-based trips and 
thus higher parking demand, which results in the higher number of 
public parking spaces. 

In addition, the vehicle allocation methods could also influence the 
layouts of both public parking lots and charging posts at the zone- and 

district-levels, as shown by Figure A- 5-Figure A- 8 in Supplementary 
Material. The development of public parking lots and charging posts (see 
Fig. 1) is simulated within the Transport Facility Development Model 
according to parking and charging demands, respectively, which are 
obtained from the activity-based travel behaviour simulation within 
MATSim-EV, as described in detail in the work of (Zhuge and Shao, 
2018a). Therefore, both the quantity and layout of the EV-related 
transport facilities could be influenced by EV penetration rates 
through travel patterns and behaviours. Specifically, the vehicle allo-
cation methods can influence both the number and spatial distribution 
of vehicle owners, as shown by Figs. 3 and 4, respectively. Different 
vehicle owners could have completely different socio-demographic 
characteristics (e.g., employment status, income and marriage status) 
and travel demands (i.e. daily plans), which could heavily influence 
travel patterns and behaviours (e.g., commuting patterns) and further 
the number and layout of EV-related transport facilities, including 
public parking spaces and charging posts. More importantly, all these 
connected elements (e.g., vehicle ownership, travel demand and 
socio-demographic characteristics) evolve over time, making the system 
rather dynamic and complicated. 

Taking public charging posts as example (see Fig. 6), both Per-
mitCVSc1 and PermitBEVSc2 have significantly different layouts of 
charging posts at the district level: 1) all of the 16 districts in Per-
mitCVSc1 have more charging posts in 2020 than RefSc, because the 
total number of public charging posts added increases heavily, as shown 
by Fig. 5-(b). Those central districts tend to have higher number of 
charging posts per unit area, as probably these districts tend to have 
relatively higher number of activity facilities (e.g., shops and work-
places) and thus higher travel demand, which could give rise to the 
higher charging demand from EVs; 2) Due to the slight decrease in the 
total number of public charging posts in 2020 in PermitBEVSc2 (see 
Fig. 5-(b)), the majority of the districts (especially those outer districts) 
get less public charging posts. However, the three central districts get 
more public charging posts, which is not generally expected. This could 
be directly and indirectly caused by several different factors. Two spe-
cific possible factors are discussed as follows: First, it might be attributed 
to the specific travel patterns of PHEV owners which tend to have higher 
number of daily activities (e.g., shopping) performed at these central 

Fig. 4. Spatial differences between scenario A and RefSc in the number of PHEV owners per unit area in 2020 (Zhuge et al., 2019d).  
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districts. This could lead to higher travel and charging demands and thus 
more public charging posts; Second, PermitBEVSc2 has significantly 
different geographical distributions of BEV and PHEV owners (see 
Figure A- 2, Figure A- 3 and Figure A- 4 in Supplementary Material) 
according to their residential locations. The changes in residential 
location could also influence travel patterns of EV owners. These three 
central districts might get more EV owners (especially PHEV owners, see 
Fig. 4), and thus higher travel and charging demands, which could give 
rise to more public charging posts. 

4.2. Impacts on the environment in scenario A 

Essentially, it can be found from Fig. 7 that PermitBEVSc2 consumes 
more petrol and produces more vehicular emissions because it transfers 
half of the BEV purchaser permits into PHEV permits, which eventually 
gives rise to more petrol consumed and more emissions released by 
PHEV drivers. In the PermietCVSc1 scenario, since half of the CV permits 
are transferred into PHEV permits, the PHEV drivers can use electricity 
in some cases, and thus less petrol might be consumed and less vehicular 
emissions are released. Another possible reason why the amount of 
petrol consumed decreases in PermietCVSc1 is because the travel 

pattern of CV owners changed due to the internal interaction among CV, 
PHEV and BEV purchasers in the vehicle market and also the external 
interaction between CV travel demand and the connected urban ele-
ments, such as residential location and demographic evolution (e.g., 
employment status). For instance, the CV owners in PermietCVSc1 could 
have different residential locations, compared to RefSc (see Figure A- 2- 
(c) in Supplementary Material). This could give rise to the changes in 
travel patterns of CV (e.g., commuting pattern) in PermietCVSc1 and 
further the decrease in the amount of petrol consumed. 

Furthermore, the impacts on the environment in Scenario A and 
RefSc can be compared at the street- zone- and district levels (see 
Figure A- 9 and Figure A- 10 in Supplementary Material for more de-
tails). Fig. 8 compares the spatial differences between the RefSc and 
Scenario A in the amount of vehicular emissions per unit area in 2020, 
suggesting that PermitBEVSc2, which allocates half of the BEV permits 
to PHEV purchasers, could to some extent increase the total amounts of 
vehicular emissions in all of the 16 districts, with an increasing rate 
ranging from 0% to 10% in 2020. For PermitCVSc1, it could also to some 
extent change (either increase or decrease) the amount of vehicular 
emissions of each district. 

Fig. 5. Impacts of EV Market on Transport Infrastructures from 2016 to 2020 in Scenario A and RefSc (Note that RefSc Results are from (Zhuge et al., 2019d)).  

Fig. 6. Spatial differences between scenario A and RefSc in the number of public charging posts per unit area in 2020 (Zhuge et al., 2019d).  
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4.2.1. Impacts on the power grid system in scenario A 
Fig. 9 compares the electricity consumed through charging posts at 

both public and private parking lots in Scenario A and RefSc. For Per-
mitBEVSc2, it consumes less electricity provided by both public and 
private charging posts, because the scenario has less BEVs than the other 
two scenarios, though some PHEVs are added. However, the total 
amount of electricity consumed in PermitCVSc1is less than that in RefSc 
in 2020 (see Figure A- 11 in Supplementary Material), though more 
PHEVs are added to PermitCVSc1. The difference is around 175,000 
kW⋅h. This unexpected result could be directly and indirectly caused by 
many factors. We discuss three possible causes or factors as follows:  

(1) Residential Location of Vehicle Owners: could be a likely factor. 
As shown in Figure A- 3 in Supplementary Material, PermitCVSc1 
has a significant different geographical distributions of CV, PHEV 
and EV owners, compared to RefSc. Since residential location is 
generally the origin and destination of the first and last trips of 
each vehicle owner, respectively, the changes in the residential 

locations of vehicle owners could result in different travel and 
charging behaviours of EVs. For instance, the changes in resi-
dential location of BEV owners (see Figure A- 3-(a)) could result 
in different travel patterns of BEV owners, such as commuting 
patterns, and further the decrease in amount of electricity 
consumed through charging posts. It is commonly recognized 
that the residential location and workplace is highly correlated 
(Waddell, 1993).  

(2) Traffic Pattern: might be another possible cause. Specifically, the 
amount of electricity consumed is closely associated with travel 
speed (or traffic condition). As shown by Figure A- 12, Per-
mitCVSc1 differs significantly from RefSc in traffic pattern 
(described with the ratio of traffic volume to link capacity), 
which could give rise to the change (i.e. decrease) in the elec-
tricity consumption of EVs and further the decrease in the amount 
of electricity consumed through charging posts.  

(3) EV-Related Transport Facilities. PermitCVSc1 has more PHEVs 
which may compete against BEVs for limited charging facilities at 

Fig. 7. Total Amounts of Petrol Consumed and Vehicular Emissions in One Particular Weekday in PermitCVSc1(more PHEVs but less CVs), PermitBEVSc2 (more 
PHEVs but less BEVs) and RefSc from 2016 to 2020 (Note that RefSc Results are from (Zhuge et al., 2019d)). 
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trip destinations, though more charging facilities were added to 
PermitCVSc1 (but might not be enough). This competition may 
lead to the decrease in the amount of electricity consumed by 
BEVs through public charging facilities. Furthermore, the layout 
of public charging facilities in PermitCVSc1 is completely 
different, compared to RefSc (see Fig. 6-(a)), which could influ-
ence charging behaviours of EVs and further the amount of 
electricity consumed through charging facilities. In addition, 
parking lots, which are the base of charging facilities, were also 
heavily influenced in terms of the layout, as shown in Figure A- 5- 
(a). The spatial changes in parking space could also give rise to 
the changes in parking and charging behaviours of EVs and 
further the amount of electricity consumed through charging 
facilities. 

More importantly, all of these factors also interact with each other 
and change over time (see Fig. 1), which makes it more difficult to 
exactly point out the causes. For example, the changes in the number 
and layout of charging facilities would influence the utility of owning an 

EV (through the utility for vehicle usage), as charging facilities might 
become more accessible to some potential EV purchasers. This could 
lead to changes in the geographical distribution of EV owners and 
further their travel patterns, which could result in different charging 
demands. In return, the changes in charging demand would influence 
the quantity and layout of charging facilities. 

In addition, the spatial differences between Scenario A and RefSc in 
the charging demand (see Figure A- 13, Figure A- 14 and Figure A- 15 in 
Supplementary Material for more details) suggest that both the alloca-
tion methods could heavily change the charging demand at the facility-, 
zone- and district-levels. 

4.3. Scenario B: Vehicle permit numbers 

Another five scenarios were set up to explore the influence of the 
number of vehicle permits on the EV diffusion. In general, it is hoped 
that the lottery policy can eventually reduce traffic congestion. Mean-
while, in order to promote the purchase of BEVs and improve air quality, 
a specific number of permits are exclusively allocated to BEVs. However, 

Fig. 8. Spatial Differences between Scenario A and RefSc in the Amount of Vehicular Emissions per Unit Area in one Particular Weekday in 2020 (Zhuge 
et al., 2019d). 

Fig. 9. Total Amounts of Electricity Consumed through Charging Posts in One Particular Weekday in PermitCVSc1(more PHEVs but less CVs), PermitBEVSc2 (more 
PHEVs but less BEVs) and RefSc from 2016 to 2020 (kW⋅h) (Note that RefSc Results are from (Zhuge et al., 2019d)). 
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the number of vehicle purchase permits is far less than the demand and 
the policy has upset many potential purchasers. Therefore, the scenarios 
here are used to test what may happen when car ownership is increased. 
Compared with the RefSc scenario, these scenarios increase both CV and 
BEV permit numbers by different specific percentages of 10%, 30%, 
50%, 70% and 100%. Table 2 summarizes the resulting numbers of CV 
and BEV permits for each scenario from 2016 to 2020. Note that CV and 
PHEV purchasers share a fixed number of the so-called CV permits. 

4.3.1. EV market expansion in scenario B 
First, the potential stochastic effects on the EV market expansion are 

examined, suggesting that the effects tend to be relatively low and may 
influence the results slightly (see Figure A- 16 in Supplementary Mate-
rial for more details). Then, Scenario B and RefSc are further compared 
in terms of the number of vehicle purchasers, vehicle prices and EV 
subsidies (see Fig. 10): (1) Number of Vehicle Purchasers. For the 
number of BEV purchasers, it goes up with the increase of BEV permit 
number, and the number of purchasers is exactly equal to the number of 
permits. Similarly, the number of CV purchasers also goes up, as the 
number of CV permits rises, but the number of CV purchasers is slightly 
smaller than the number of CV permits, because PHEV purchasers also 
compete for the limited number of so-called CV permits and finally get a 
small fraction in the period from 2018 to 2020. Essentially, more CV 
permits could give rise to more PHEV purchasers. For example, the total 
number of PHEV purchasers in 2020 reaches above 4,000, when the 
number of CV permits doubles in PermitR100Sc7. (2) Vehicle Prices. The 
BEV prices are almost the same across all of the scenarios and they go up 
to around 224, 000RMB in 2018, which is the maximum price allowed to 
be set in the scenarios, and then level off. For the CV and PHEV prices, 
they behave oppositely because their penetration rates change oppo-
sitely. Specifically, the CV penetration rates become lower when more 
CV permits are added to the scenarios, but the PHEV penetration rates 
become higher, which further gives rise to the decrease of CV price, but 
the increase of PHEV price, as more CV permits are added. (3) EV 
Subsidies. As shown by Fig. 10-(g) and -(h), both BEV and PHEV sub-
sidies go down when their adoption rates rise. Therefore, the more 
permits that are allocated, the lower subsidies they will be. 

In addition, the spatial differences between Scenario B and RefSc in 
vehicle owners (see Figure A- 17, Figure A- 18 and Figure A- 19 in 
Supplementary Material for more details) suggest that the increase in 
the number of permits could essentially increase the vehicle owners to 
the majority of zones and districts, but some of them get less vehicle 
owners, likely due to both the internal interactions among potential 
purchasers in the vehicle market and also the external interactions be-
tween the vehicle market and those associated elements, such as pop-
ulation system and the dynamic housing market. Take the population 
system as an example, all person agents in the population need to update 
their socio-demographic characteristics. The changes in some of the 
socio-demographic attributes, such as income, employment status, 
marriage status and deaths, would give rise to household relocation and 
further the spatial distribution of vehicle owners. As a result, some zones 
and districts might get less vehicle owners. 

4.3.2. Impacts on the EV-related infrastructures in scenario B 
Compared with the RefSc scenario, it can be found from Fig. 11 that 

allocating more vehicle permits in Scenario B can significantly impact 
the numbers of public parking spaces and public charging posts. Further, 
the numbers of extra added public parking spaces and charging posts 
appear to be directly associated with the numbers of extra added vehicle 
purchase permits. This is because the development of transport facilities 
(either adding or removing facilities) is closely associated with the de-
mand. In addition, the spatial differences between Scenario B and RefSc 
in the numbers of parking lots and charging posts suggest that the in-
crease in the number of permits could essentially increase the transport 
facilities to the majority of traffic zones and districts with few excep-
tions, as shown by Figure A- 20 - Figure A- 23 in Supplementary Mate-
rial. As discussed above, these exceptions could be attributed to many 
factors, such as the residential relocation, population evolution, and 
interactions among vehicle purchasers. Take residential relocation as an 
example, the changes in residential location of household would influ-
ence travel patterns of vehicle owners (e.g., commuting patterns), which 
could give rise to the changes in travel, parking and charging demands 
and further the layout of EV-related transport facilities. As a result, some 
traffic zones and districts might get less transport facilities due to the 
changes in demand (or essentially the residential relocation). 

4.3.3. Impacts on the environment in scenario B 
It is not surprising to find that adding more PHEVs and CVs can in-

crease the total amount of petrol consumed, which further gives rise to 
the increase of vehicular emissions, including HC, CO, CO2 and NOx, as 
shown by Fig. 12. Furthermore, most of the traffic zones and districts in 
Scenario B tend to have higher amount of vehicular emission, as evident 
from the spatial differences between Scenario B and RefSc shown by 
Figure A- 24-Figure A- 26 in Supplementary Material. 

4.3.4. Impacts on the power grid system in scenario B 
As shown by Fig. 13, the amount of electricity provided through 

either private or public charging posts increases when more vehicle 
purchase permits are added. However, it can also be found that charging 
demand does not increase linearly. For example, in 2020, the total 
amounts of electricity provided by private charging posts in Per-
mitR100Sc7 and RefSc are around 1,900,000 kW⋅h and 1,300,000 kW⋅h 
higher than that in 2016, respectively. It can be estimated that the pri-
vate charging demand only increases by around 46% when the EV 
numbers are doubled in PermitR100Sc7. Again, this could be attributed 
to many factors, such as changes in travel patterns and traffic states, 
population evolution and residential relocation, as well as the in-
teractions between these factors, as discussed above (see Section 4.1.4). 
Take travel pattern as an example, potential EV purchasers could save 
energy cost by using EVs. This could increase the utility of vehicle usage, 
which is one term in the utility function for decision-making on vehicle 
purchase. In RefSc, those EV purchasers tend to be those people with a 
longer car-based trip distance or higher car-based trip frequency, as they 
could save more energy cost and thus have a higher purchase utility with 
EVs. While in PermitR100Sc7 which doubles vehicle permits, those 
people with a shorter car-based trip distance or lower car-based trip 
frequency might also purchase EVs. As a result, the amount of electricity 

Table 2 
Scenarios for different numbers of vehicle permits from 2016 to 2020 (Zhuge et al., 2019d).  

Year Reference 
Scenario (RefSc) 

Scenario 3 (10%, PermitR10Sc3) Scenario 4 (30%, 
PermitR30Sc4) 

Scenario 5 (50%, 
PermitR50Sc5) 

Scenario 6 (70%, 
PermitR70Sc6) 

Scenario 7 (100%, 
PermitR100Sc7) 

CV BEV CV BEV CV BEV CV BEV CV BEV CV BEV 

2016 81000 51000 89100 51000 105300 66300 121500 76500 137700 86700 162000 102000 
2017 82800 51000 91080 51000 107640 66300 124200 76500 140760 86700 165600 102000 
2018 45000 45000 49500 45000 58500 58500 67500 67500 76500 76500 90000 90000 
2019 45000 45000 49500 45000 58500 58500 67500 67500 76500 76500 90000 90000 
2020 45000 45000 49500 45000 58500 58500 67500 67500 76500 76500 90000 90000  
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consumed through charging posts does not increase linearly. In addition, 
the increase in the charging demand tends not to be distributed evenly 
across space, with most of the zones and districts having higher charging 
demand and few of them getting lower demand. This could be caused by 
both the internal and external interactions discussed above (see Section 

4.2.2). 

Fig. 10. The EV Market from 2016 to 2020 in Scenario B and RefSc (Note that RefSc Results are from (Zhuge et al., 2019d)).  
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Fig. 11. Impacts of EV Market on Transport Infrastructures from 2016 to 2020 in Scenario B and RefSc (Note that RefSc Results are from (Zhuge et al., 2019d)).  

Fig. 12. Total Amounts of Petrol Consumed and Vehicular Emissions in One Particular Weekday from 2016 to 2020 in Scenario B and RefSc (Note that RefSc Results 
are from (Zhuge et al., 2019d)). 

C. Zhuge et al.                                                                                                                                                                                                                                   



Energy Policy 139 (2020) 111328

15

5. Conclusion and policy implications 

5.1. Policy implications 

5.1.1. Suggestions to EV-related stakeholders 
According to the “what-if” scenario analyses above (see Sections 4.1 

and 4.2), both allocation methods and the number of vehicle permits in 
the license plate lottery policy are influential to uptake of EVs and also 
its associated elements, such as the urban environment, energy system 
and urban infrastructures, at both the micro- and macro-levels. The re-
sults from these “what-if” scenario analyses would be useful for different 
EV-related stakeholders involved (Zhuge et al., 2019e): 

1) The Government: is suggested to carefully design or adjust the 
license plate lottery policy, and special attention needs to be paid to both 
the vehicle permit allocation method and the number of vehicle permits 
allocated, as these two factors are found as significantly influential to the 
uptake of EVs; Also, the policy is associated with both the total amount 
and spatial distribution of vehicular emissions; Therefore the potential 
local and global environmental impacts should be also be borne in mind. 
For example, the spatial distributions of different vehicular emissions at 
the multiple resolutions suggest the potential human health effects due 
to the exposure to the emissions; 

2) Urban Planners: are suggested to take into account the potential 
implications of the policy on the quantity, layout and usage of the EV- 
related transport facilities, including slow charging posts at parking 
lots and refuelling stations, when they develop master plans for urban 
transportation system or the whole city; 

3) Fuel Suppliers: are suggested to bear in mind the potential changes 
in the petrol demand from both CVs and PHEVs due to the changes in the 
allocation method or number of vehicle permits allocated, and then to 
distribute petrol efficiently to different refuelling stations, so as to 
accommodate the varying refuelling demand; 

4) Grid Companies: should also take into account the potential in-
fluence on the charging demand from EVs at both public and private 
charging facilities. They may need to pay special attention to the 
changes in private charging demand at home. The reasons are twofold: 
first, private charging demand tends to much higher than public 
charging demand in all of the tested and RefSc scenarios (see subfigures 
(a) in Figs. 9 and 13); second, private charging demand in general occurs 
at nights when the domestic electricity demand is also relatively higher. 
The additional electricity demand from EVs may put pressure on the 
power grid system, and therefore grid companies need to take proper 
measures (e.g., time-of-use tariff policy and investment in power 
equipment). In addition, grid companies should also take into consid-
eration the nonlinear relationship between the number of EVs added and 
the amount of electricity consumed through (see Fig. 13), and are sug-
gested not to invest in power equipment simply according to the number 

of EV purchasers. 
5) Vehicle Manufacturers: tend to more care about the policy im-

plications, as their production strategy is closely associated with the 
number of vehicle permits. The historical data has suggested that the 
sales of both CV and EV were heavily influenced by the license plate 
lottery policy. Take CV sale for example, the number of CVs sold 
decreased heavily from around 748,000 in 2010 to 221,610 after the 
policy was issued, as shown in Fig. 2. Therefore, vehicle manufacturers 
may need to adjust their production plans according to the numbers of 
potential CV, PHEV and BEV purchasers. 

Since the license plate lottery policy has been increasingly issued, 
especially in Chinese cities (e.g., Beijing, Tianjin, Hangzhou, Chengdu 
and Changsha), the results from this paper could also be useful for those 
cities using or potentially adopting the policy. In particular, for those 
cities adjusting or designing the policy, they are suggested to take into 
the two influential factors identified in this paper, namely the vehicle 
permit allocation methods and the number of vehicle permits allocated 
each time. 

5.1.2. Policy marking considering assumptions, interactions, dynamics and 
uncertainties 

In addition to the suggestions above to particular EV-related stake-
holders, policy makers are also suggested to pay attention to model as-
sumptions, interactions, dynamics and uncertainties when shaping 
license plate lottery policies, as they are closely associated with the 
diffusion of EV and also its connected elements (e.g., infrastructures and 
power grid system). 

� Model Assumptions: as aforementioned, utility maximization the-
ory has been used a primary approach to simulating various decision- 
makings of agents (e.g., purchase, parking and charging behaviours 
of EVs) in the SelfSim-EV simulation. In reality, agents might not be 
able to always choose the alternative which can maximize their own 
utilities, for example, due to the limited access to full information for 
their decision-makings. As a result, the assumptions might lead to 
biases about the diffusion of EV and its connected systems, which 
should be borne in mind when the outcomes are used in practise.  
� Model Interactions: As shown in Fig. 1, the diffusion of EV interacts 

heavily with those connected urban elements, including travel de-
mand, residential location, socio-demographic evolution, social in-
fluence and EV-related transport facilities. Specifically, the 
expansion of EV market would potentially influence these connected 
elements. Therefore, policy makers should not only look at the 
implication of the lottery policy on the uptake of EVs, but also take 
into consideration the further influences on these connected ele-
ments; In return, these connected elements would also influence the 
vehicle purchase behaviour at the individual level, through the four 

Fig. 13. Total Amounts of Electricity Consumed though Charging Posts in One Particular Weekday from 2016 to 2020 in Scenario B and RefSc (Note that RefSc 
Results are from (Zhuge et al., 2019d)). 
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typical factors, namely vehicle usage, vehicle price, environmental 
awareness and social influences. Therefore, policy makers should 
take these connected elements into account when adjusting the lot-
tery policies. For example, residential location could influence the 
purchase behaviour of EV through both travel patterns (e.g., 
commuting patterns) and the so-called neighbour effects. Further-
more, residential location is also associated with spatial distributions 
of vehicular emissions and charging demand of EV. Therefore, resi-
dential location of potential vehicle purchasers should be considered 
in policy making.  
� Model Dynamics: Urban system is a typical complex and dynamic 

system. Due to the evolution of urban system, including the EV 
market and its connected urban sub-systems (e.g., transportation and 
land use), the purchase, travel, and charging behaviours of EV would 
change over time. Dynamics could make the interactions above 
become more complicated, as all the interactions would also evolve 
over time and across space. As a result, the diffusion of EV and its 
connected elements, such as the urban environment (e.g., vehicular 
emissions), power grid system (e.g., electricity consumption) and EV- 
related transport facilities could be heavily influenced. Therefore, 
policy makers are suggested to shape or adjust the lottery polices 
from a dynamic perspective, considering the interactions over time. 
� Model Uncertainties: There are several different types of uncer-

tainty around policy making, which could be attributed to model 
parameters, model structure, future events and also acknowledged 
and unknown inadequacies (Spiegelhalter and Riesch, 2011). Two 
typical types of uncertainty in this paper are discussed as follows: 
First, this paper conducted semi-structured interviews with 
EV-related stakeholders in order to set up reasonable “what-if” sce-
narios considering likely lottery policies in the future. However, 
future is not predictable and thus policy makers are suggested to 
examine as many scenarios (or lottery policies) as possible, so as to 
mitigate uncertainty in future events; Second, stochastic effects (e.g., 
random term) could also heavily influence model outcomes. 
Although each scenario in this paper was run in ten times and the 
average was used as the final outcome, stochastic effects could not be 
completely removed. Therefore, policy makers need to take the un-
certainties into account. 

SelfSim-EV has been found as a useful tool in this study, as it is 
capable of simulating both model interactions and dynamics in the 
system (comprising EV and its connected elements), so that it can cap-
ture some unexcepted results coming out from the interactions and dy-
namics. Here are some specific examples: 1) PermitCVSc1 got more 
PHEVs, but less electricity consumed through charging posts (see Sec-
tion 4.1.4); 2) PermitBEVSc2 replaced BEVs with PHEVs, but still got 
more public charging posts in some central districts (see Section 4.1.2); 
3) the amount of electricity consumed through public charging posts had 
a nonlinear relationship with the number of EVs added. These unex-
pected results would be particularly useful for policy makers, but have 
not been well captured in previous studies with traditional models (e.g., 
regression models and discrete choice models). However, ignoring these 
unexpected results in policy making would lead to, for example, 
improper investments in EV-related infrastructures (e.g., charging fa-
cilities) in both transport and power sectors. As results of the improper 
investments, 1) the usage rate of some infrastructures might be quite 
low, and 2) charging demand of EV drivers might not be well accom-
modated in some cases. These could further give rise to the low adoption 
and usage rate of EVs. 

6. Conclusions 

An agent-based spatial integrated urban model, SelfSim-EV, was 
used to assess the potential influence of the license plate lottery policy 
on the uptake of Electric Vehicles (EVs) and further its impacts on the 
urban environment, energy system and urban infrastructures at the 

micro scale. Specifically, two types of “what-if” scenario were developed 
to test how the methods to allocate the fixed number of vehicle purchase 
permits and the increase in the total number of permits could influence 
the EV adoption and further its connected elements. The results sug-
gested that both of them could heavily influence the number of EV 
purchasers, especially Plug-in Hybrid Electric Vehicle (PHEV) pur-
chasers: PHEVs were not attractive at all in the Reference Scenario 
(RefSc), but started receiving attention when the number of permits 
increased by 30%; furthermore, PHEVs could become more attractive if 
more permits were added. 

Apart from the macro-level policy implications above, the EV-related 
stakeholders are suggested to pay more attention to those spatially 
explicit results and also those results coming out from the interactions 
and dynamics found in the system, which have not been well understood 
or captured in previous studies with traditional methods. From a spatial 
perspective, different allocation methods and permit numbers could 
heavily change the spatial distributions of both CV and EV owners and 
further the distributions of the demand for EV-related transport facilities 
and electricity, as well as the resulting vehicular emissions. Further-
more, SelfSim-EV simulates the EV market expansion in the context of 
urban evolution and thus is able to capture some unexpected results 
coming out from the internal interactions among consumer, manufac-
turer, and government agents in the vehicle market and also the external 
interactions between the EV market and those associated urban sub- 
systems, including transportation, energy, environment, land use, pop-
ulation systems (Zhuge et al., 2019d). For instance, it was found in the 
PermitCVSc1 scenario that replacing CVs with PHEVs could decrease the 
electricity demand. Such unexpected results should be paid special 
attention in design or adjustment of the license plate lottery policy. 

This paper evaluated two different types of license plate lottery 
policy within several “what-if” scenarios set up based on semi-structured 
interviews with EV-related stakeholders. However, due to huge uncer-
tainty around policy making, it would be rather difficult to exactly 
predict the futures of EVs with few scenarios. For example, the central 
government of China has recently suggested that purchase restriction on 
EVs should be removed, which could heavily influence the license plate 
lottery policy. In order to deal with uncertainty in future events, policy 
makers are suggested to set up as many scenarios as possible, so as to 
better understand the possible futures of EVs and further their impacts 
on the connected elements. 
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