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Terminology of carbapenem resistance 14 

 15 

40-Word summary 16 

The term ‘CRE’ has become inadequate with the advent of new therapies.  These make it essential for 17 

authors and licensing agencies to specify the particular carbapenemase(s) meant.  The future may 18 

demand greater precision, for mutations modulate activity, within carbapenemase families. 19 
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Abstract.  Carbapenem resistance in Gram-negative bacteria is a public health concern.  Numerous 24 

government and agency reports consequently discuss ‘CRE’ and ‘CROs’, meaning ‘Carbapenem-25 

Resistant Enterobacterales’ or ‘Carbapenem-resistant organisms’.  Unfortunately these terms are 26 

fuzzy.  Do they include (i) Proteeae with inherent imipenem resistance, (ii) porin-deficient 27 

Enterobacterales resistant to ertapenem but not other carbapenems, (iii) Enterobacterales with OXA-28 

48-like enzymes that remain ‘carbapenem susceptible’ at breakpoint, and (iv) Pseudomonas 29 

aeruginosa that merely lack OprD? Counting carbapenemase-producing Enterobacterales/organisms 30 

(‘CPE’ or ‘CPOs’) is better but still insufficient, because different carbapenemases have differing 31 

treatment implications, particularly for new b-lactam/b-lactamase inhibitor combinations.   At the 32 

least it is essential for authors, journals, and regulatory agencies to specify the carbapenemases 33 

meant.  The future may demand even greater precision, for mutations can alter activity, and the ability 34 

to confer resistance, within carbapenemase families. 35 

 36 
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  40 



For 25 years after imipenem’s launch in 1985, carbapenems were the ‘go to’ antibiotics for infections 41 

involving multiresistant Gram-negative bacteria. The recent accumulation of carbapenem resistance 42 

among Enterobacterales consequently is concerning, and these organisms top the WHO’s priority list 43 

of resistant pathogens, along with ‘carbapenem-resistant Acinetobacter baumannii’ and 44 

‘carbapenem-resistant ‘Pseudomonas aeruginosa’[1]   Carbapenem-resistant Enterobacterales also 45 

achieve the top tier of the CDC’s ‘Urgent Resistance Threats’ [2] and are prioritised in the UK’s 5-Year 46 

antimicrobial resistance national action plan [3]. 47 

 48 

‘Carbapenem-resistant’: What is included? 49 

If we are to prioritise carbapenem resistance we need a clear definition. Unfortunately the moniker is 50 

elastic, meaning that prevalence rates of ‘carbapenem resistance’ can be misleading.  51 

 It is easy to miss this lack of clarity, especially once ‘Carbapenem-Resistant Enterobacterales’ 52 

and ‘Carbapenem-Resistant Organisms’ are shortened to acronyms – CREs and CROs.  In reality, these 53 

encompass multiple species and mechanisms, differing greatly in significance.  This is unlike, say, 54 

‘MRSA’, which denotes a single species almost always with one mechanism, or even ‘ESBL producers’ 55 

where – although ESBLs belong to multiple families – they almost all are Class A b-lactamases attacking 56 

oxyimino-aminothiazolyl cephalosporins, not cephamycins nor carbapenems, and inhibited by 57 

clavulanate and penicillanic acid sulfones [4]. 58 

Examples illustrate the problem.  First, consider a Proteus mirabilis, Morganella morganii or 59 

Providencia spp. with an imipenem MIC of 8 mg/L.  Is this a ‘CRE’, despite meropenem and ertapenem, 60 

of (say) MICs 0.03 mg/L?  Imipenem MIC90s of 8 mg/L were reported for Proteeae when imipenem 61 

was launched [5], but there is no evidence that such Proteeae have since proliferated, or are a source 62 

of failures with imipenem.  Secondly, what about a Klebsiella or Enterobacter spp. with (resistant) 63 

ertapenem MICs of 2 or 4 mg/L but retained – albeit reduced – susceptibility to imipenem and 64 



meropenem (MICs, 0.25-0.5 mg/L)?  This profile commonly arises via combinations of AmpC or ESBL 65 

activity together with porin loss [6].  Does resistance to ertapenem qualify the isolate as a ‘CRE’?    On 66 

the other hand, how about a Klebsiella with weakly-expressed OXA-48 enzyme, susceptible to all 67 

carbapenems at clinical breakpoints, but meeting EUCAST’s ‘screening threshold’ of a meropenem 68 

MIC >0.12 mg/L? It fails the literal definition of ‘CRE’ but has a carbapenemase.  Lastly, most 69 

‘carbapenem-resistant Pseudomonas aeruginosa’ have simply lost OprD and this, of itself, 70 

compromises only carbapenems.  Such isolates are ‘CROs’, but present little problem unless they have 71 

other resistances. In the UK twice as many P. aeruginosa are ‘CROs’ as are ceftazidime resistant [7]. 72 

These points are more than pedantic.   A rate of 20% carbapenem resistance in P. aeruginosa 73 

is undesirable, but not catastrophic if most are OprD mutants. The situation is more troubling if 40% 74 

of carbapenem-resistant P. aeruginosa have carbapenemases, as in parts of the Middle East [8].  The 75 

WHO’s generic inclusion of ‘carbapenem-resistant P. aeruginosa’ among its priorities is unhelpful.   76 

And, whilst ertapenem-resistant Enterobacterales with ESBLs and impermeability cause problems in 77 

individual patients, and can be selected during carbapenem therapy, their resistance is often unstable, 78 

limiting impact. They rarely cause outbreaks.  OXA-48-like enzymes, by contrast, are plasmid-79 

mediated, allowing horizontal transfer; moreover, producers with low MICs are easily overlooked, 80 

permitting ‘stealth spread’ [9].  81 

The fact that specialist readers know these nuances does not alter the fact that the loosely 82 

used ‘CRE’ and ‘CRO’ confuse as they percolate wider clinical and public health communities.  83 

 84 

‘Carbapenemase-producing’... Better than ‘carbapenem-resistant’ 85 

 ‘Carbapenemase-Producing Enterobacterales’ (CPE) and ‘Carbapenemase-Producing Organism’ (CPO) 86 

are more precise than ‘carbapenem-resistant’.  The only medically-important bacteria with strongly-87 

expressed, endogenous carbapenemases are Stenotrophomonas maltophilia and some 88 



Chryseobacterium and Aeromonas spp. [10]. Consequently all CPEs and almost all CPOs are 89 

exceptional, meriting concern. The counterpoint applies too: if a ‘CRE’ is resistant to only ertapenem 90 

and is not a CPE then imipenem and meropenem remain valid treatments at high dose.  Moreover, 91 

given the rarity of outbreaks involving such strains, infection control need not be enhanced above 92 

normal good practice.     93 

Asides from treatment issues, CPE/CPOs are important because (excepting SME and some 94 

IMI/NMC types) their enzymes typically are plasmid-mediated, facilitating horizontal spread. Some, 95 

notably K. pneumoniae ST258 with KPC enzymes, belong to globally successful strains (11-13) that, 96 

unlike porin mutants, unequivocally are biologically fit and able to cause outbreaks.   97 

 98 

Carbapenemase type is crucial 99 

A further step is needed, though, for it is unhelpful to lump different carbapenemases together.  The 100 

predominant KPC, OXA-48-like, Acinetobacter OXA (i.e. OXA-23, 24, 51 and -58) and metallo (i.e. IMP, 101 

VIM and NDM) enzymes differ greatly, leading to differing treatment implications [14]. Occasional 102 

isolates with FRI, GES, IMI and SME types add complexity, but are rare.  103 

If all carbapenemase types were evenly distributed authors would craft their language to 104 

specify the enzyme(s) meant.  But, in reality, carbapenemase distributions are regional or national, 105 

and the common CPE of an author may differ radically from those troubling his reader elsewhere.  KPC 106 

enzymes dominate in the Americas (except maybe Canada), Italy, Israel, Greece and Portugal, NDM in 107 

South Asia, and OXA-48-like in the Middle East (except Israel), North Africa, and much of Europe except 108 

for Italy, Greece and Portugal [15].   IMP and VIM MBLs dominate in carbapenemase-producing P. 109 

aeruginosa [16] except that SPM enzymes are prevalent in Brazil and that KPC types have spread in 110 

Colombia [11].  OXA-23 and -40 dominate everywhere in A. baumannii, with MBLs occasionally seen 111 

[17]. 112 



Again, examples illustrate how confusion spreads.  Lecturing internationally on carbapenem 113 

resistance one regularly took questions along the lines of “What do you think of double carbapenem 114 

combinations?”  Such combinations work on the principle that a high-affinity carbapenem acts as a 115 

competitive substrate/inhibitor, allowing the second carbapenem to exert its antibacterial activity. 116 

There is evidence of their efficacy against Enterobacterales with KPC enzymes [18] and the approach 117 

originated in the US [19] where these dominate [11].   Elsewhere in the world it is easy – reading 118 

(predominantly) US publications that used ‘carbapenemase’ and ‘KPC enzyme’ interchangeably – to 119 

miss the point that such combinations have little logic (or synergy) in countries where other 120 

carbapenemase types dominate.  121 

Knowing the carbapenemase family supports treatment choices.  Among older agents, (i) 122 

temocillin may be active against CPE with KPC enzymes, though MICs are often around a tentative 8 123 

mg/L breakpoint and clinical data are scanty [20], whilst (ii) ceftazidime typically retains activity 124 

against CPE with OXA-48-like enzymes if these lack ESBL or AmpC activity [21] and (iii) aztreonam 125 

remains active against those with either OXA-48 or MBLs if they lack ESBL or AmpC activity [22].    126 

More critically, knowledge of the carbapenemase type is vital to predicting the utility of 127 

recently licensed b-lactamase inhibitor combinations (Table 1). Ceftazidime/avibactam, 128 

meropenem/vaborbactam and imipenem/relebactam cover Enterobacterales with KPC 129 

carbapenemases in vitro. For meropenem/vaborbactam and ceftazidime/avibactam, there is trial or 130 

case-series evidence of superiority over colistin combinations [23,24]. Ceftazidime/avibactam 131 

additionally covers CPE with OXA-48-like carbapenemases (primarily because avibactam inhibits co-132 

produced ESBLs; OXA-48 lacks activity against ceftazidime) and, again, case series point to better 133 

outcomes than for colistin or carbapenem-based regimens [25].  Aztreonam/avibactam should 134 

additionally cover Enterobacterales with MBLs, again because avibactam should inactivate co-135 

produced ESBLs [22].    136 



None of these combinations has reliable activity against carbapenemase-producing P. 137 

aeruginosa, which mostly have MBLs and sufficient efflux to compromise aztreonam, or against OXA-138 

carbapenemase-producing A. baumannii.  Cefiderocol, (assuming a 4 mg/L breakpoint), potentially 139 

achieves wider activity, encompassing carbapenemase-producing P. aeruginosa and A. baumannii as 140 

well as most CPE.  Caveats are that its MICs show wide scatter, probably reflecting factors besides 141 

carbapenemase type and that, irrespective of species, MICs for isolates with NDM carbapenemases 142 

exceed those for isolates possessing other carbapenemase types.  (Public Health England, in 143 

preparation).  144 

Knowing the carbapenemase type is also pertinent for plazomicin. Most Enterobacterales with 145 

NDM enzymes co-produce ArmA or Rmt methyltransferases [26], altering the rRNA to prevent the 146 

binding of 3-ring aminoglycosides, including plazomicin.  Co-carriage of methyltransferases with other 147 

carbapenemases is rarer, but may be emerging for OXA-48-like enzymes [27]. K. pneumoniae ST258 148 

typically has an AAC(6’)-Ib acetyltransferase along with its KPC carbapenemase, thus compromising 149 

tobramycin and amikacin but not plazomicin or gentamicin [11]. 150 

 151 

Carbapenems against carbapenemase producers: again, type matters 152 

If newer agents are unavailable or inappropriate carbapenems are often added to regimens against 153 

CPE, particularly if their MICs remain low.  Justification comes e.g. from Vatopoulos et al., who found 154 

that carbapenems remained useful against bloodstream Klebsiella with VIM carbapenemases up to an 155 

MIC of 4 mg/L [28], whilst Tumbarello et al. found colistin combination regimens also including 156 

carbapenems were more efficacious than colistin monotherapy for bacteraemias due to K. 157 

pneumoniae with KPC carbapenemases [29], although a later trial suggest that this is the case only for 158 

severe infections [30]. 159 



However, a growing body of evidence, from animal models, small trials and case series 160 

suggests that the type of carbapenemase may be as important as the carbapenem MIC.  Fig. 1 depicts 161 

meropenem MICs for 906 CPE submitted to Public Health England (PHE) in 2015/16 [using data from 162 

ref 21], showing that values typically were lowest for isolates with OXA-48-like enzymes and highest 163 

for those with NDM types: 72.5% of isolates with OXA-48-like enzymes counted as ‘meropenem 164 

susceptible’ at EUCAST’s 2 mg/L clinical breakpoint and 56.7% at CLSI’s 1 mg/L value whereas 94.6% 165 

with NDM enzymes were resistant at EUCAST’s high breakpoint, with MICs >8 mg/L.   166 

Pharmacodynamics would therefore predict that carbapenems might remain widely useful against 167 

bacteria with OXA-48-like carbapenemases but not against those with NDM carbapenemases.  168 

Experience however suggests the opposite.  Wiskirchen et al. [31] found that acquisition of a blaOXA-48 169 

plasmid, conferring a doripenem MIC of 0.38 mg/L (versus 0.03 mg/L for the recipient and 170 

CLSI/EUCAST breakpoints of <1/>4 mg/L), dramatically reduced the efficacy of doripenem in a mouse 171 

thigh infection treated with a human-simulated regimen.  There was no such reduction of efficacy for 172 

ceftazidime, which had MICs of 0.25 mg/L irrespective of the plasmid.  Moreover, clinical outcomes 173 

with carbapenems against pathogens with OXA-48 enzymes are poor, even when MICs remain low:  174 

Cuzon et al. [32] recorded 3 deaths among 5 such cases, all with MICs of the therapeutically-used 175 

carbapenem within the EUCAST susceptible or (one case) intermediate/’susceptible increased dosage’ 176 

range.  Four patients, including two fatalities, also received colistin, to which all the bacteria were 177 

susceptible.   Larger studies reported 1-month mortality rates around 50% in bacteraemias due to CPE 178 

with OXA-48 carbapenemases, with many patients receiving carbapenems as well as colistin [33,34].  179 

Much better outcomes, with low mortality were reported when ceftazidime/avibactam was used in 180 

severely-ill patients infected by pathogens with OXA-48 enzymes [25]. In contrast to these poor 181 

outcomes against bacteria with the ‘weak’ OXA-48-like carbapenemases, Chibabhai et al. [35] noted 182 

good outcomes for carbapenems, alone or combined, in 18/26 cases infected by Enterobacterales 183 

with NDM enzymes, despite MICs mostly >8 mg/L.  This observation agrees with Wiskirchen et al. [36] 184 

who found humanised regimens of doripenem and ertapenem as effective against transconjugant K. 185 



pneumoniae with NDM-1 carbapenemase (MICs 4 and 16 mg/L, respectively) as against the plasmid-186 

free recipient (MICs 0.03 and 0.12 mg/L).  Neither carbapenem was effective against the 187 

corresponding transconjugant with a KPC carbapenemase despite a ‘doripenem-susceptible’ MIC of 1 188 

mg/L.    189 

Clearly the clinical studies are small and one cannot be certain that the animal studies will 190 

predict behaviour in humans; nonetheless, and taking these data collectively, there is a growing body 191 

of evidence to suggest that  OXA-48 enzymes cause more-problematic resistance in vivo than in vitro, 192 

whilst NDM types are less problematic in vivo than in vitro. Reasons remain uncertain, but a plausible 193 

contributory factor is that, in vivo, NDM-1 MBLs may struggle to acquire the zinc essential for their 194 

catalytic activity.  195 

 196 

Variation within carbapenemase families  197 

Identification of the carbapenemase family is as much as can be reasonably expected of diagnostic 198 

laboratories at present, given the PCR and immunochromatography methods available (see below).  199 

But the future may demand identification within families.   200 

Over 53 IMP, 46 VIM, 24 KPC 14 NDM, and 12 OXA-48-like carbapenemases are described.  201 

Much of the variation within families matters only insofar as it complicates the design of 202 

comprehensive PCR and immunochromatographic detection methods, necessitating repeated 203 

‘tweaking’ as new variants are added to the detection repertoire.   In a few cases, however, there is 204 

consequential variation.  The clearest example is that changes to KPC carbapenemase – most often an 205 

Asp179Tyr substitution in the omega loop – increase ceftazidimase activity, thereby conferring 206 

ceftazidime/avibactam resistance whilst impairing activity against carbapenems [37] Such changes – 207 

which do not compromise meropenem/vaborbactam or imipenem/relebactam – may be selected 208 

during ceftazidime/avibactam therapy, perhaps particularly when the dosage has been reduced to 209 



(over)-compensate for renal insufficiency [38].   Another possible example concerns the NDM family, 210 

where higher-numbered variants, which perhaps evolved more recently, have higher affinity for zinc 211 

than NDM-1, and a greater ability to confer resistance on zinc-deficient media [39].  If, as speculated 212 

above, NDM-1 is less effective in vivo because it struggles to acquire zinc, then this variation may be 213 

significant, though the necessary animal studies with different NDM variants remain to be done.   214 

In the near future it may become necessary to split ‘carbapenemase’ families into sub-groups, 215 

in the same way as we do e.g. for TEM b-lactamases.  Asides from adding another layer of complexity 216 

for microbiologists and infectious disease physicians this will present a challenge to rapid detection 217 

methods – a clinician will reasonably wish to know if the blaKPC gene (say) found by diagnostic PCR 218 

encodes a classical variant or one that evades ceftazidime/avibactam. 219 

 220 

Clarity needed in Prescribing Information 221 

Throughout this article we had underscored the need for clarity in writing of carbapenem resistance 222 

and carbapenemases.  Unfortunately this is not evident in package inserts.  For meropenem-223 

vaborbactam the FDA insert (accurately) states ‘… not active against bacteria that produce metallo-b-224 

lactamases or oxacillinases with carbapenemase activity’ [40] but then indicates general breakpoints 225 

of S <4, R >8 mg/L. These will lead to many isolates with OXA-48-like enzymes being categorised as 226 

susceptible (see fig. 1) despite the lack of clinical evidence and even though vaborbactam does not 227 

inhibit OXA-48-like enzymes.  For ceftazidime-avibactam the insert reads: “In a subset of Gram-228 

negative pathogens … genotypic testing identified certain ESBL groups (e.g., TEM-1, SHV-12, CTX-M-229 

15, OXA-48) and AmpC that were expected to be inhibited by avibactam ….”[41].    This is unfortunate 230 

wording, to say the least: neither OXA-48 nor TEM-1 is an ‘ESBL,’ and the activity of 231 

ceftazidime/avibactam against isolates with OXA-48 is due to ceftazidime being stable to this enzyme 232 

rather than to its inhibition by avibactam.  The EMA is clearer than the FDA on carbapenemase types 233 

but, for meropenem/vaborbactam, its Specification of Product Characteristics reads “Vaborbactam’s 234 



inhibitory spectrum includes class A carbapenemases (such as KPC) and Class C carbapenemases… not 235 

class D carbapenemases … or class B metallo-β-lactamases….”[42]. To the best of our knowledge no 236 

Class C carbapenemase has been described, and there is no evidence that vaborbactam potentiates 237 

meropenem against AmpC hyperproducers in general. 238 

Prescribing information sheets for new drugs need to be clearer regarding the carbapenemase 239 

types covered, for example by incorporating a simple standard table of (i) which b-lactamases 240 

compromise the b-lactam partner, (ii) which of these are inactivated by the inhibitor, (iii) whether 241 

particular species with the particular enzyme are likely to be susceptible, and (iv) whether clinical trials 242 

support efficacy against producers of the particular enzyme.   243 

 244 

Practical aspects for diagnostic laboratories 245 

There remains the practical issue of identifying carbapenemases in routine practice, both to manage 246 

cross-infection risk – greater for CPE than other CRE – and to inform use of new-b-lactamase inhibitor 247 

combinations.   248 

For Enterobacterales, insight can be gleaned from relative resistance to ertapenem versus 249 

imipenem and meropenem, with single ertapenem resistance often pointing to AmpC or ESBL activity 250 

combined with impermeability, rather than to carbapenemases, particularly if 251 

cephalosporin/clavulanate or cephalosporin/cloxacillin synergy is also seen.  Hydrolytic tests (e.g. 252 

acidimetric/Carba-NP tests or carbapenem inactivation methods) distinguish CPE from other CRE [43] 253 

but do not sufficiently discern the particular carbapenemase type to support precision medicine; 254 

moreover OXA-48-like enzymes can be hard to detect by these methods which must either (i) be 255 

supplemented with additional phenotypic data (e.g. imipenem/EDTA synergy tests, which predict 256 

MBLs and  tests for high-level temocillin resistance, which predicts OXA-48-like) (Table 2) or (ii) be 257 

supplanted with PCR or immunochromatographic methods, which are reviewed separately [44].   258 



P. aeruginosa resistant only to carbapenems can be assumed to have lost OprD and not to 259 

have a carbapenemase. When P. aeruginosa isolates are broadly resistant, including to carbapenems, 260 

it is necessary to discriminate whether they have carbapenemases or – as is more frequent – 261 

combinations of OprD loss and upregulation of efflux and/or AmpC b-lactamase.   MBLs are the 262 

commonest carbapenemases here and can be sought by carbapenem/EDTA or 263 

carbapenem/dipicolinic acid tests, though the former are prone to give false positive results, probably 264 

because EDTA-extractable divalent cations ordinarily stabilise the P. aeruginosa outer membrane [45].   265 

A simpler approach is to test ceftolozane/tazobactam, where high-level resistance (MIC >16 mg/L or 266 

growth up to a 30 µg disc) is a good predictor that an isolate has either a carbapenemase or an ESBL 267 

[46]; the one caveat is that the few P. aeruginosa with OXA-48 or GES carbapenemases will be missed, 268 

being susceptible to ceftolozane/tazobactam. In the case of A. baumannii, most carbapenem-resistant 269 

isolates have OXA carbapenemases or (rarely) MBLs:  these can be distinguished by imipenem/EDTA 270 

synergy tests, though these often give weak false positive results (4- to 8-fold MIC reduction) for 271 

isolates with OXA enzymes; strong positives, with >16-fold synergy, are the preserve of MBL producers 272 

(PHE Data on file). 273 

 274 

Conclusions 275 

For as long as carbapenem resistance was exceptionally rare it was acceptable to term ‘carbapenem 276 

resistant’ and ‘carbapenemase-producing’ bacteria as single entities.   The proliferation of diverse 277 

carbapenemases and the advent of new therapies mean that this is no longer adequate.    New drugs 278 

or combinations may be an answer to CPE in one country where (say) KPC carbapenemases dominate, 279 

but not in another, where OXA-48 or MBL types are the ‘typical’ CPE.  Authors, referees and editors 280 

all have roles in ensuring clarity, as do licensing agencies and international agencies. 281 

Not only in the literature, but also in routine practice it is increasingly important to detect 282 

carbapenemase production rather than ‘carbapenem resistance’ and – wherever possible -  to identify 283 



the enzyme family present.    And, last, in the common vernacular ‘carbapenemase-producing’ or ‘non-284 

carbapenemase-producing’ should be encouraged.  ‘Carbapenem resistance’ is no longer sufficiently 285 

precise to aid therapeutic optimisation or to correctly alert infection control teams.   286 
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Table 1 Spectra of new and anticipated b-lactams and b-lactamase inhibitor combinations, in relation 441 

to bacterial group and carbapenemase type. 442 

Drug and statusa Enterobacterales P. aeruginosa A. baumannii 

 KPC OXA-

48-like 

MBL MBL MBL OXA 

Diazabicyclooctane-based inhibitor combinations 

Ceftazidime/avibactam (L) ++ ++ - - - - 

Imipenem/relebactam (L) ++ - - - - - 

Aztreonam/avibactam (PIII) ++ ++ ++ +b - - 

Boronate-based inhibitor combinations 

Meropenem/vaborbactam (L) ++ - - - - - 

Single agents 

Cefiderocol (L) ++ ++ +(+)c ++ +(+)c ++ 

 443 

++, broadly active; +, weak activity; - not generally active 444 

a L, licensed by either or both FDA and EMA; R, under review by FDA and/or EMA; PIII, in phase III 445 

trials.  Earlier-stage agents are excluded 446 

b Aztreonam only has weak activity in general vs. P. aeruginosa. 447 

c MIC are raised for isolates with NDM MBLs, which are the commonest MBLs in Enterobacterales and 448 

A. baumannii, (though not in P. aeruginosa) 449 

 450 

  451 



Table 2.  Predicting carbapenemase types from interpretive reading of phenotypes 452 

Group and mechanism Useful pointers from routine testing 

Enterobacterales  

Non-carbapenemase-

mediated type 

resistance 

Resistant only to ertapenem among carbapenems, with strong 

cephalosporin/cloxacillin or cephalosporin/clavulanate synergy, 

predicting AmpC or ESBL activity respectively 

KPC • Strong potentiation of meropenem by vaborbactam 

• Meropenem resistance combined with susceptibility to temocillin 

OXA-48-like • High-level resistance to temocillin and piperacillin/tazobactam, 

coupled with carbapenem resistance or reduced susceptibility 

Metallo types (IMP, 

VIM, NDM) 

• Synergy between carbapenems and EDTA or dipicolinic acid 

combined with a lack of cephalosporin/clavulanate synergy and 

clear resistance to ceftazidime avibactam 

P. aeruginosa  

OprD loss, alone Resistance to carbapenems combined with susceptibility to all other b-

lactams 

OprD loss, combined 

with efflux or 

derepressed AmpC 

• Resistance that includes carbapenems and some or all penicillins 

and cephalosporins but with ceftolozane/tazobactam 

susceptibility retained (Can also arise with OXA-48, but extremely 

rare in species)  

Metallo types (IMP, 

VIM, NDM) 

• Strong carbapenem/EDTA synergy (>8-fold reduction in MIC), 

combined with clear resistance (MIC 16 mg/L) to 

ceftolozane/tazobactam and if ceftazidime MIC > aztreonam MIC. 

(NB weak carbapenem/EDTA synergy does not reliably indicate 

MBL production) 

Acinetobacter spp.  

OXA carbapenemase Carbapenem resistance with weak <8-fold carbapenem/EDTA 

synergy coupled to broad resistance to all other b-lactams 

Metallo types (IMP, 

VIM, NDM) 

Carbapenem resistance with strong >8-fold carbapenem/EDTA 

synergy coupled to broad resistance to all other b-lactams 

  

 453 

 454 



Note to Table 2. None of these behaviors is definitive, and interpretive reading should always be based 455 

on review of all susceptibility results.  For example the combination of resistance to meropenem, 456 

ceftazidime and cefepime together with clear susceptibility to aztreonam strongly suggests presence 457 

of an MBL in Enterobacterales, however most MBL-producing Enterobacterales fail to show this 458 

phenotype because they co-produce aztreonam-hydrolysing ESBLs. 459 

The table omits combinations of organism and enzyme that are extremely rare (P. aeruginosa with 460 

OXA-48-like carbapenemase) or localized (P. aeruginosa with KPC enzymes). 461 

 Unequivocal confirmation of carbapenemase type is best achieved by PCR or 462 

immunochromatographic methods.  463 



Fig 1 464 
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Fig 1 legend. 467 

MIC distributions of meropenem for Enterobacterales submitted to PHE’s Antimicrobial Resistance 468 

and Healthcare Associated Infection Reference Unit from July 2015 to July 2016. Methodology and 469 

collection as in references [21]. 470 
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