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Abstract

This thesis is concerned with the effects of asymmetries in ability and social prefer-

ences in contests and conflict networks. Standard models find that asymmetries mono-

tonically decrease total and individual efforts. I demonstrate that this result does not

necessarily hold when players are embedded in complex networks, have preferences re-

garding the fairness of the contest or the outcomes of others, and when real subjects play

these games in the lab.

Chapter 1 formulates a network of bilateral contests in which locally unique equilib-

ria always exist, and global uniqueness is possible. I find that an increase of one player’s

ability can increase her effort and the effort of the entire network. If one player targets a

specific opponent, other players follow.

Chapter 2 imposes a budget constraint on this model. Most findings are robust to this

modelling choice. This allows an investigation of topics like the effects of heterogeneity

on team performance and the effect of asymmetries in the number of conflicts a player

and her rivals are involved in.

Chapter 3 documents that there exists no agreed way for implementing social pref-

erences in contests. I derive four possible versions and critically assess their properties.

When costs are considered, the magnitude of predicted overspreading and overbidding

is reduced. Mild asymmetry can result in higher effort from the high ability player.

In chapter 4, I present a pilot experiment in which social identities, with and without

a hierarchy, are induced. We find that identities with such a hierarchy can trigger more

aggressive play. To structure these findings, I suggest a foundational model of social

preferences that relates them to social identity, where ‘close’ players are treated with

altruism and ‘distant’ players are treated with spite.
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Introduction

In conflicts and competitions, it matters who is facing whom. This can affect how dear

winning and how existential losing is. In conflict, the strength of our opponents determines

how much damage they can bring about. In a competitive environment, their ability mat-

ters, as they might have higher chances to get a job, a promotion or the winning prize in a

sports competition. If rivals are of lower social status, losing against them is embarrassing

and harmful to our own social status. If a rival party has many fronts to fight on, we might

expect to be attacked less, as our opponent’s attention is focused on other battlefields. All

these aspects play a role in how much individuals and groups engage in direct conflict, com-

petition or more generally, situations of contest. These situations are defined by individuals

exerting costly efforts, which are sunk, irrespective of victory or defeat (Konrad, 2009).

What matters in all these examples, is not primarily the level of strength, ability, social

status and the number of opponents.1 It is the asymmetry between the individuals and their

opponents with respect to these characteristics. This is true on a macro-level, when countries

at war need to decide on the allocation of their resources to the various conflicts they are

involved in, while taking into account how many adversaries these other countries have.

On the micro-level, individuals compare themselves to each other. This affects the effort

exerted in competition or fights, depending on whether the opponent is perceived as strong

or advantaged, or as weak or disadvantaged. When fairness is valued by the contestants,

the weak increase their efforts to catch up with the strong, while the strong are more lenient

in their efforts to win. How much this is the case, depends on, among other things, whether

we feel empathy with others or not. This is in turn related to how socially close or distant we

feel to them. If we have a strong feeling about this distance, we consider them as members

of our own group or as part of a defined out-group. The latter is a question of social identity.

This thesis is concerned with how differences in strength, the number of adversaries and

social preferences and identity affect individuals’ behaviour in conflictive and competitive

interactions. It focusses on different forms of strength, how parties are embedded in a larger

system of contestants, and how they perceive each other in terms of relative material wealth

and social identity. It primarily contributes to the literature on contest theory and links it to

the literature on games on networks, social preference and social identity.

The first part of this thesis discusses the purely strategic interaction in bilateral conflicts,

when many parties are involved. We provide the foundational model, in which such inter-

actions can be studied under strength asymmetries. The first chapter in this part asserts that

this model is ‘well-behaved’ in terms of its game-theoretic properties. The second chapter in

this part of the thesis adds a budget constraint, to be able to study more specific problems.

1Throughout the thesis, the words adversary, enemy, opponent and rival are used interchangeably.

Paul M. Gorny 9 UEA - School of Economics



Introduction

Providing readers with a tool to calculate equilibria for large sets of parameters, it provides

testable hypotheses for the economic experimentation and happenstance data analysis.

The second part is focussed on how individuals’ concerns about others can be modelled

in the contest framework. We identify different ways to model these and list their common-

alities and differences, in order to find the best trade-off between versatility and tractability

of social preference models in contest. This has implications for competitive situations be-

tween individuals in the work environment, project procurement and promotions. While a

lot of studies certify that differences in ability/strength can induce sabotage, it is typically

the case that these differences reduce the intensity of efforts in the contest. What happens

under the above concerns, which have been widely documented in the field and the lab, is

unclear. Particularly when efforts are productive, this is of interest to the contest designer.

Our preferred model choice also gives rise to the last project, where we use a lab experiment

to induce social preferences through social identity. Whether we perceive an opponent to

be socially close (in the in-group) or socially distant (in the out-group), can explain how the

concerns for advantages and disadvantages arise, in more depth.

In order to outline the thesis in more detail, I want to acquaint the reader with the eco-

nomic concepts of conflict and competition and why this is frequently modelled through

contest. I further discuss the current state of the literature on asymmetries and conflict net-

works. This allows a more smooth transition to discussing systems of conflicting parties

with asymmetric strength. A short introduction into social preferences and social identity

prepares the reader for the second part of the thesis.

Conflict, Competition and Contest

In many classical settings in economics, resources are either distributed by a planner or an

allocation mechanism, or they are produced by an individual, a group of individuals or a

firm. Typically, in these settings, the total amount of resources is at least maintained if not

increased.

In settings of conflict, fierce competition and contest, the involved parties exert costly ef-

fort to appropriate land, a market share or a prize of given value. In doing so they waste

resources, because the costs are incurred, not only by the winner, but also by the loser (Hir-

shleifer, 2001). In conflict, this ‘waste’ of resources is directly visible through casualties and

physical damage. In competition, it is rather the opportunity costs of not utilising the re-

sources for productive means.

The contest framework of Tullock (1980) has been used across this array of applications. In

this version of contest, the probability of winning, or the share of the prize is given by the

Paul M. Gorny 10 UEA - School of Economics



Introduction

ratio of a player’s efforts relative to the total sum of efforts of all players. It naturally lends

itself to competition for market shares and market competition, as in Nti (2000), Konrad

(2000) and Kräkel and Sliwka (2006). The effort of a firm can be seen as their marketing

budget, the money allocated to lobbying or as an inverse measure of prices. Studies like

Szymanski (2003), Szymanski and Kesenne (2004) and Dietl et al. (2008) apply it to competi-

tion in sports. There, the term effort can be taken quite literally. The prize can either be the

progression to the next round of a tournament as well as the gold medal in the Olympics.

Finally, studies like Esteban and Ray (1999), Skaperdas (1998) and Abbink et al. (2010) ap-

ply theoretical contests to conflict analysis. Effort can represent physical effort in a direct

fight between individuals as well as the number of soldiers sent to battle by the leaders of

a country. Finally, contests are used for studies of incentives in the work environment, like

Lazear and Rosen (1981), Main et al. (1993) and Harbring and Irlenbusch (2003). Further

applications include rent seeking, R&D races and animal contests (Nitzan, 1994; Che and

Gale, 2003; Smith, 1974).

While competition and conflict share aspects that can be modelled with contest, the terms

should not be used synonymously. Competition can be fierce and a loss can be existential

for an individual competitor. For example, it can mean the end of a career for a politician

or a sportsman, or result in bankruptcy for a firm after an R&D race. Still, in all these cases

there is hardly ever a threat of physical extinction. This can be true for violent conflict along

the lines of ethnicity and religion. Examples are numerous, ranging from religious conflicts

like the Hindu/Muslim relations in India and Pakistan and the Tutsi and Hutu in Rwanda

to political, interstate conflicts like the two World Wars, Gulf Wars and Wars in the Middle

East. In interstate conflicts, when strategists are making the deliberations, the decisions on

war efforts might be representable through contest. There, the difference between contest

as competition and contest as conflict within a theoretical model, is mainly a question of

interpretation. When applying this to real individuals in the lab, one has to be careful. It is

primarily the sunk-cost aspect of conflict that is captured with this modelling approach and

the assumption that, in the lab, aggression in competition can be a proxy for aggression in

conflict. Thus, in this thesis, I am widely abstracting from historic dependence, grievances

or political ideology. I am concerned with the strategic aspects of contest, when applied to

competition and conflict under different forms of asymmetries and preferences.

Asymmetries in Contest

In every day situations, the immediate focus of assessing possible conflict or competition

outcomes is on relative strength. Football fans consider past statistics about wins and losses

Paul M. Gorny 11 UEA - School of Economics
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of their teams. In international relations, threats are made on the basis of military equipment

and infantry size. The appearance of individual physical strength can deter others from

picking a fight.

The absolute level of strength matters for the total damage caused or the total amount

of resources wasted, even when players are identical in strength. For the decision on how

much effort to exert against an opponent though, the key concept is asymmetry in strength.

To model this, there are typically three variables of interest in contest: efficiencies, costs

and valuations of the prize. Efficiencies modulate how efforts change the probability of

winning or the share of the prize obtained. High costs reduce the range of efforts, for which

a player receives a positive payoff. Valuations of the prize might differ due to the contest

design or because the prize of a given monetary value is valued differently by the players.

A low cost or high efficiency player can exert a higher effort for a given value of the prize.

A higher valuation of winning allows a player to exert more effort while still expecting a

positive net payoff. From that it should be apparent, that asymmetries in costs, efficiencies

and valuations should be equivalent. This is the case in standard models, but it does not

extend to network models and/or models in which preferences deviate from the standard,

selfish preferences.

Asymmetries in these common knowledge primitives are well studied for the standard

types of contests (Gradstein and Konrad, 1999; Nti, 1999; Baik, 1994, 2004, 2008; Epstein and

Nitzan, 2002; Franke et al., 2013; Choi et al., 2016).2

Another source of asymmetries can be constraints on the budget used for conflict. This

is realistic in military contexts when budgets are set from the government and cannot be

changed on short notice. When we think of budgets not in terms of money but soldiers

and equipment, that applies even more. These constraints, within the contest literature,

are most common in Colonel Blotto games and crowdsourcing contests (Friedman, 1958;

Feldman et al., 2005; Roberson, 2006; Kovenock and Roberson, 2012b,a; Vojnovic, 2016).

Networks and Identity Dependent Effects

Asymmetries have been studied to a great extent in two player models and the standard

grand contest where n players are competing for a prize, like in a lottery. When players have

a sense of who their opponents are and they are given a means of discriminating between

them in terms of their actions, these effects differ.
2Another interesting type of asymmetries that is beyond the scope of this thesis is asymmetric information

as studied in Hurley and Shogren (1998a), Wärneryd (2012) and Hurley and Shogren (1998b).

Paul M. Gorny 12 UEA - School of Economics



Introduction

The first study that attempts to study effects along these lines is Linster (1993). There,

every player has a valuation for the victory of each player in the game. It is assumed that

the valuation for winning the game herself is highest. Players then have a ranking of the

‘loosing outcomes’ depending on which opponent wins.

The literature on networks in contest can be broadly divided into two groups: underly-

ing networks where players share payoffs from a contest or make transfers prior or after a

contest and networks on which the very contest is carried out.

In network models like Bozbay and Vesperoni (2018) and Chowdhury et al. (2012) players’

gains from others are determined by an underlying network of friendships that give the

players a certain share of the payoff or revenues of all players they are linked with. In the

case of a combinatorial contest with k-nearest neighbours, everyone within k links from the

winner also wins, while in the case of a specified contest success function for networks, each

player can use the impact of other players to increase her probability of winning.

When the contest is played on the network, this can either happen in the spirit of a grand

contest, where every player has to choose a single effort for all her opponents she is linked

with (Rietzke and Matros, 2017; Rietzke and Roberson, 2013) or effort choices are link spe-

cific (Xu et al., 2019) and in most cases conflicts are strictly bilateral (Franke and Öztürk,

2015; Jiao et al., 2019). It is that last type of conflict networks that we consider and add to by

analysing asymmetries in the priors and interpret them as measures of relative strength.

Social Preferences and a Possible Cause

While a lot of the aforementioned research focusses on asymmetries in primitives, behaviour

in more general games has been shown to be affected by how asymmetric outcomes are. So-

cial preferences as modelled in Fehr and Schmidt (1999) and Bolton and Ockenfels (2000)

have been applied to a wide variety of games including contest (Rockenbach and Waligora,

2016; Chowdhury et al., 2018; Herrmann and Orzen, 2008; Fonseca, 2009). Broadly speaking

these models include a concern for disadvantageous inequality (DI), i.e., the player dislikes

having a lower payoff than her opponents, and advantageous inequality (AI), i.e., they dis-

like to be ahead of others.

We link this to the literature on identity in economics. This has started with Akerlof and

Kranton (2000) and became more prominent through Akerlof and Kranton (2010). This has

been picked up in settings other than contest experimentally (Güth et al., 2008; Chen and

Li, 2009; Benjamin et al., 2010) and theoretically (Bénabou and Tirole, 2011). For the contest
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setting Chowdhury et al. (2016) documents the result of a similar experiment as the one in

Chapter 4.

This analysis can be the foundation to analyse incentives in teams. When these behavioural

patterns are present in a team, increasing competitive incentives or rather forming a group

identity within the organisation can influence eventual productivity and well-being.
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Chapter 1

Strength Asymmetries in Conflict

Networks
1,2

1This paper used to be called Generalising Conflict Networks (Cortes-Corrales and Gorny, 2018).
2We would like to thank participants from the CBESS Contest Conference 2016 and 2018 held at the Univer-

sity of East Anglia in Norwich and the Conflict Workshop 2018 at the University of Bath for useful comments.
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Rojo Arjona and Mich Tvede for useful comments. All remaining errors are our own.
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When military entities are engaged in conflicts with many adversaries, they target

their attacks depending on their goals in war. Understanding the interactions between

these bilateral conflicts is important to assess ways to reduce conflict. We investigate

the behaviour of agents in bilateral conflicts within arbitrary network structures when

winning valuations and fighting technologies are asymmetric. These parameters are

interpreted as measures of strength. A finite number of locally unique, pure strategy

equilibria always exists. When parameters are symmetric, global uniqueness is possible.

When a player starts attacking one player more strongly, others join in on fighting the

victim. Different efficiencies in fighting make players fight those of similar strength. We

show that asymmetry is an accelerant to conflict in dense networks, with many conflicts

per player, and as a deterrent in sparse networks, with few conflicts per player.
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Chapter 1: Strength Asymmetries in Conflict Networks

1.1 Introduction

Competition takes the most vigorous form when the parties involved do not use resources

for production or consumption, but rather to disable, destroy or appropriate resources from

others (Hirshleifer, 1995; Sandler, 2000). The resources employed for these goals, in the form

of soldiers, military equipment and time spent are sunk, irrespective of the final outcome.

This form of competition can broadly be defined as conflict. It is this wasteful nature and

the strategic aspects of conflict that spurred the interest of economists and game theorists

alike.

The theoretical contributions in this domain typically model a single conflict with two or

more parties. Advancements in transportation and information technology though, allow

states and other international, and potentially militant interest groups to engage in multiple

conflicts around the globe. That has added more complexity in how such agents are related

to each other. In most of the existing models it is impossible to distinguish a fight for win-

ning a single prize from a fight against a specific enemy. The motivation of agents is not to

fight a particular opponent within the ‘aggregate others’, although in reality, individuals,

political groups and nation states have a sense of who their opponents are. Often that plays

a particular role as to why they enter the conflict in the first place.

The aim of this paper is to develop a framework with multiple interconnected opponents,

to understand how differences between rivals (in terms of efficiency in the conflict technol-

ogy and valuation of prizes within and across bilateral conflicts) shape the optimal strategies

in conflict.

Two considerations give rise to the type of model we suggest: The sunk-cost nature of

conflicts and the increased complexity of violent conflicts over time.

On the one hand, conflict is characterised by sunk resource investments aiming at increasing

the probability of winning a prize. This prize can be land, power or natural resources.3 This

trade-off is frequently modelled by a contest (e.g. Konrad, 2009; Vojnovic, 2016).

On the other hand, conflicts often have a structure of multiple, simultaneous conflicts be-

tween the different parties involved. Just as much as centrality, their military strength

mattered when Germany engaged in battles on multiple fronts in WWI and WWII. These

considerations give rise to a network of conflictual links between agents, where each link

represents a bilateral contest.

To illustrate this, take a look at the set of Militarised Interstate Disputes between states4

3For applications in competition, marketing and rent-seeking that could be market share and influence in the
case of marketing and lobbying, respectively

4A Militarised Interstate Dispute is a set of interactions involving the threat, display, or use of force between
or among states (Gochman and Maoz, 1984).
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(1878) (1962)

Figure 1.1: Militarised interstate disputes
Source: Networks of Nations: The Evolution, Structure, and Impact of International Networks, 1816-2001, (Maoz, 2010)

in 1878 – the year when the Congress of Berlin ended the Russo-Turkish War – and the type

of relations in 1962 – the height of the Cold War – depicted in Figure 1.1. In both periods

Figure 1.2: Number of Participants in Inter-State Wars
Source: Generated from the Correlates of War (COD) data set by Sarkees and Wayman (2010)

Note: We use the term ‘Multi-lateral’ for any conflict involving more than two parties (‘Bi-lateral’) here.

of time, the overall conflict structure within states is represented by networks of bilateral

conflicts. In 1878, the structure of disputes was characterised mainly by networks with line

components, in which a state had at most two different conflicts at the same time. In 1962

the picture is different. While there is a non-negligible number of isolated bilateral conflicts,

there is a less trivial cluster of nodes centred around military powerful and/or resource rich

states like the United States, Russia, China, or Iraq among others.

The left panel of the figure rather illustrates a time of peace, while 1962 was riddled with
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conflicts. Our claim is not that interstate wars in general became bigger and more complex

(1962 is still characterised by plenty of bilateral conflicts). But the ‘truly multilateral’ con-

flicts, involving more than two parties, did. Figure 1.2 illustrates that this seems to be the

case for the 19th to mid twentieth century.

It is conceptually hard to judge whether the strength of Russia made other countries engage

in conflict with the US, or whether these, relatively weaker, states did so in order to oppose

the threat of a potential US hegemony. In the literature on International Relations, the for-

mer is broadly comprised by the term Bandwagoning, while the latter is frequently referred

to as Balancing (Waltz, 1979). The paper at hand sheds light on this question in a stylised

setting.

Figure 1.3: Civil Wars Involve More Parties Over Time

While the number of Militarised Interstate Disputes have declined over the second half of

the twentieth century,5 there was a sharp increase in internal and internationalised internal

conflict. These types of conflict are often referred to as civil wars and include recent exam-

ples like the Syrian war, the civil war in Ukraine and the Colombian conflict. As Figure 1.3

suggests, the number of parties in military conflicts has increased on average over time. The

sharpest increase happened after 9/11. Since every additional agent can have conflicts with

multiple agents in the network, the increase in conflictual links is likely to be even more pro-

nounced, giving rise to the study at hand. Note, that while every nation can just generally

be more aggressive in the aggregate by sending more troops to all conflicts they are involved

they can also target specific opponents. When considering these settings as grand contests,

parties can only do the former. Targeting aggression towards a specific opponent rather than

‘the others’, is impossible. Thus, this setting calls for a model of bilateral conflicts.

We propose a setting in which there is an exogenous structure of these bilateral conflicts

5See Figure 1.B.1 in the appendix.
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across n opponents as in Franke and Öztürk (2015) (from heron FÖ). Each link between a

pair of players represents a bilateral conflict. While FÖ considers cases of symmetric char-

acteristics, we allow for heterogeneity between opponents in terms of their efficiency of

conflict investment and the valuations of winning, within and between different conflicts.

We model conflict using a contest success function based on the axiomatisation proposed by

Skaperdas (1996).

We show that a finite number of locally unique and interior Nash Equilibria exists, in-

dependently of the model parameters and under which conditions this extends to global

uniqueness. In line with FÖ, we show that a general algebraic solution for the equilibrium

strategies does not exist for most types of networks. We thus use implicit methods to in-

vestigate local effects of the asymmetries between the players’ characteristics. We find that

asymmetries in the prizes leads to Bandwagoning behaviour, mainly driven by the interac-

tion of local network externalities induced by the conflict structure.6 If there are players of

different strength, as indicated by their efficiency to transform resources into winning prob-

abilities, players tend to fight opponents more strongly that are similar to themselves with

respect to their strength. Finally, we investigate the effects of such asymmetries on the total

level of conflict intensity in the network. If one player becomes more aggressive or stronger

and the network is dense (many links between the player exist), it increases. If the network

is sparse, conflict reduces for an increase in one player’s conflict efficiency.

Related Literature: Modelling conflict on networks is a relatively recent stream of research

in economics (Dziubiński et al., 2016), starting with the model proposed by FÖ. The authors

define a model, where players are embedded in a network of bilateral conflicts and each

player chooses the amount of resources that they want to invest in each conflict. The conflict

is modelled using a lottery contest success function. The trade-off between different con-

flicts is induced through a convex cost function of the total amount of resources employed.

They relate the total conflict investment to the player’s number of conflicts. They focus on

aggregate behaviour, and thus abstract from individual characteristics by assuming symme-

try with respect to all model parameters.

Beside the seminal paper by FÖ and the subsequent studies looking at this type of envi-

ronment (e.g. König et al., 2017; Dziubiński et al., 2017; Matros and Rietzke, 2018)7, there

are different fields that are related to our paper. The key distinction to the afore-mentioned

contributions is that the players choose an effort level for each opponent with whom they

6Klose and Kovenock (2015) refer to these as identity-dependent externalities. The first formalisation in
contest to our knowledge can be found in Linster (1993).

7Huremovic (2016) studies as well conflicts on networks but with a different perspective. He is interested in
the endogenous network formation of a network of conflict.
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share a link, rather than choosing a single effort that they employ against all players.8 Set-

tings with link-specific actions, not necessarily conflict or contest though, are quite recent.

To the best of our knowledge, in addition to FÖ, the only models on games on networks

that introduce multidimensional strategies are Goyal et al. (2008), Bourlès et al. (2017) and

Xu et al. (2019). In analysing heterogeneity of players and their response with respect to

specific opponents, this characteristic is crucial. The paper that is closest to ours in nature is

Xu et al. (2019). They investigate more general conflict graphs and provide expressions for

comparative statics. While they are not investigating the concrete comparative statics for the

case of bilateral conflicts, their approach would also lead to the problem of vanishing second

order effects at symmetric equilibria.9 We address this by considering ‘discrete’, arbitrarily

small changes from the symmetric equilibrium to infer changes in equilibrium strategies.

Our paper is also related to the literature on multi-battle contests based on the canonical

Colonel Blotto game. The Colonel Blotto game has been studied extensively since its first

formulation by Borel (1921). In this game, two players simultaneously need to allocate a

finite number of resources over k different conflicts. The outcome over each conflict is mod-

elled as an all-pay-auction. This specification is well-researched with characterisations of

heterogeneity between players, complementarity of prizes and other modifications to the

standard formulation (Borel and Ville, 1938; Gross and Wagner, 1950; Laslier, 2002; Rober-

son, 2006; Hart, 2008; Hortala-Vallve and Llorente-Saguer, 2012; Weinstein, 2012; Kovenock

and Roberson, 2012; Kovenock et al., 2015; Macdonell and Mastronardi, 2015; Thomas, 2018).

Other studies model Colonel Blotto games, using a lottery to determine the outcome on each

conflict following the Tullock (1980) contest success function. There, the probability of win-

ning a specific conflict is a non-decreasing function of the own resource allocation and a

decreasing function of the enemy’s allocation. Based on this contest success function, Fried-

man (1958) is able to characterise the equilibrium in pure strategies of the two-player game

with symmetric and asymmetric budgets and conflict valuations. The main result of that

study is that the optimal allocation is proportional to the valuation of the prizes.10 This

result is a special case of our model. This strand of the literature relies on models with

only two players. Our paper is a contribution to the theory of contests, in which we extend

the current set of models by considering a multi-player environment with asymmetric effi-

ciency of resources toward the conflict outcome and conflict prizes. This variation allows

new insights into the effects of the interactions of local network externalities across different

conflicts.

We also add to a debate in the literature of International Relations. In a war and many other
8Even though Dziubiński et al. (2017) studies an environment of conflicts on network with a multidimen-

sional strategy space, this feature is due to the dynamic nature of the game.
9More particularly, in cases of what we will define to be a ‘strictly symmetric’ set of parameters.

10Robson (2005) generalises it by allowing the contest success function to include an effectiveness advantage
and idiosyncratic noise.
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conflictual settings, there is no (strong) institution that allows parties to come to a peaceful

agreement. This state can be referred to as Hobbesian anarchy, due to Hobbes (1998). It is the

law of the Jungle that should determine the winner(s) in such a state. Differences in the par-

ties’ strengths should thus be crucial to any analysis of conflict. Early on, Waltz (1979) and

Walt (1987) coined the terms Balancing and Bandwagoning. Balancing is a behaviour where

weaker parties ally to balance the power of a strong common opponent. Bandwagoning refers

to the case where weak parties rally behind the strategic goals of the hegemon. There has

been an ongoing discussion about which of these is more likely to occur in situations of

armed conflict.11 Our model allows to introduce a hegemon into the model, using different

measures of strength, in order to shed light on the behaviour of the remaining players.

The rest of the paper is structured as follows. In the next section, we set up the model.

In Section 1.3, we prove the local uniqueness and the conditions for global uniqueness of

an interior Nash Equilibrium, discuss some of its properties and show the impossibility

of finding a general explicit algebraic solution to the model. In Section 1.4, we study the

specific family of k-regular network structures that enables us to have sharper predictions

regarding the equilibrium, both in terms of individual behaviour and total conflict intensity.

In this section we also present some comparative statics. Section 1.5 concludes.

1.2 The Model

Let I = {1, . . . , n} be a finite set of players with n ≥ 2. All conflicts are contained in B ⊆ I2

where I2 is the set of unordered pairs of I with typical element (ij). The underlying conflict

network G is represented by the connected graph associated with the pair of sets (I, B).12

We say that any pair of players i and j is involved in a bilateral conflict (ij) if and only if

(ij) ∈ B. It appears to be natural that a conflict does not disappear if it is ignored. Also, no

player can be the enemy of herself. Thus, we assume the network G to be undirected (∀i, j ∈

I : (ij) ∈ B ⇔ (ji) ∈ B) and irreflexive (∀i ∈ I : (ii) 6∈ B). Let Ni = {j ∈ I|(ij) ∈ B} denote

the set of i’s rivals. The total number of i’s rivals is given by di = |Ni|. The total number

of conflicts is b = 1
2

∑
i di. We denote S ⊆ I a clique of G, if every pair of players i and j

in S has a conflict between them – i.e., (ij) ∈ B. In each bilateral conflict, (ij) ∈ B, players

i and j fight for a strictly positive, exogenous prize. Player i’s valuation of winning the

prize against player j is denoted vij > 0. This framework can accommodate constant-sum

bilateral conflicts, when vij = vji, or non constant-sum bilateral conflicts, when vij 6= vji.13

11See for example Schweller (1994), Waltz (1997) and Lieber and Alexander (2005).
12A graph G is connected if for every pair of players i and j in I we can find a sequence of adjacent conflicts to

‘travel’ from i to j. The results that we are presenting hold for any non-trivial component of any disconnected
network. Therefore, we do not consider such network structures in our analysis.

13The latter case can also capture the idea of identity externalities as mentioned in the introduction.
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Each player i can exert effort xij ∈ R+ to increase her probability of winning the conflict

against player j. We denote player i’s action by xi = (xij)j∈Ni , which is a di-dimensional

vector that contains all her effort choices.

The outcome of each bilateral conflict is determined by the total amount of efforts spent

on that specific conflict. Player i’s probability of winning is determined by a contest success

function (from hereon CSF) p(aixij , ajxji), where ai ≥ 1 captures how efficiently player i

can employ her resources to increase this probability.14 The CSF is increasing and concave

in xij and decreasing and convex in xji. Further, it does not depend on any xlk with (lk) 6=

(ij). The axiomatised class of CSFs by Skaperdas (1996) satisfies these properties. Thus, the

probability of i, winning the prize in the conflict against j, obtains as

pij = p(aixij , ajxji) =


f(aixij)

f(aixij)+f(ajxji)
if (xij + xji) 6= 0

1
2 if (xij + xji) = 0,

(CSF)

where a random draw with equal probabilities determines the winner if both players exert

zero effort. The impact function f(.) is a positive and strictly increasing function of its argu-

ment with f(0) = 0 and is at least twice differentiable. To meet the aforementioned concavity

of the CSF, we are consequently assuming f ′′(aixij)(f(aixij) + f(ajxji))− 2f ′(aixij)
2 < 0.

For ease of notation, throughout the rest of the paper, let ω = (vvv,aaa) be the combination of b

values collected in vvv and the n efficiencies collected in aaa. The space of all such combinations

is Ω ⊆ Rb+n++ . We distinguish between symmetric and strictly symmetric parameterisations. A

symmetric parametrisation is any ω ∈ Ω such that vij = vji, without a restriction on a. We

call an arbitrary case where all valuations across players and conflicts, and all efficiencies

across all players are the same, a strictly symmetric parameterisation and denote it ω ∈ Ω.15

All players face the same cost function. The costs of exerting effort are captured by C(Xi),

where Xi =
∑

j∈Ni xij denotes the total amount of effort spent by player i across all her

conflicts. We assume the cost function to be at least twice differentiable, strictly convex and

use C ′(0) = 0, making it strictly increasing for every Xi > 0.16 The slope and curvature

of C(Xi) determine the magnitude of opportunity costs for player i of exerting effort across

conflicts. If the function is strongly increasing, player i has to withdraw resources from other

conflicts, rather than increasing the total amount of efforts spent.

For each conflict (ij) ∈ B, agent i’s expected revenue is πij : R+×R+ → R+ such that πij =

pijvij . We assume that agents are expected payoff maximisers with risk-neutral preferences.

14Think of this as the ratio of efficiencies relative to the weakest player w, given by ai
aw
≥ 1. This assumption

avoids problems with typical cost functions later. For most of our results it is not essential.
15This is a slight abuse of notation. In fact ω is the whole set {(λ1111b, λ2111n)|(λ1, λ2) ∈ R2

++}, where 111k is a
k × 1 vector containing only ones. Our results hold for any element of this set.

16In fact our results also go through for sufficiently small C′(0) > 0.
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We consider an additively separable payoff function, given by

Πi(xi,x−i,G) =
∑
j∈Ni

πij − C(Xi).

The set of players, the network structure, the action spaces and the expected payoffs define a

simultaneous game under complete information Γ = (I,G,R2b
+ , (Πi)i∈I). Our objective is to

study the properties and changes in the Nash equilibria of this game, focussing on changes

in efficiencies and valuations of prizes. We thus first show the existence of such equilibria in

a more general setting, in order to analyse the effects of the afore-mentioned asymmetries

on individual and total efforts.

1.3 Equilibrium Analysis

Given the above structure, each player faces the following maximisation problem of dimen-

sion di determined by the network structure G for a given x−i,

max
xi∈R

di
+

Πi(xi,x−i,G). (1.1)

For every player i ∈ I, the equilibrium behaviour is described by the typical balance of

marginal benefits and marginal costs for each conflict (ij) ∈ B.

aif
′(aixij)f(ajxji)

(f(aixij) + f(ajxji))2
vij = C ′(Xi). (PCC)

The game is a continuous game17 with compact strategy spaces18 and a finite set of play-

ers. Thus, we can apply the theorems due to Debreu (1952), Glicksberg (1952) and Fan (1952)

in order to guarantee the existence of a pure-strategy Nash equilibrium.19 Due to the con-

tinuity of the cost function and the arbitrarily large marginal gains close to (0, 0) on each

conflict, equilibria are strictly interior. If that is given, the system of first order conditions

(from hereon referred to as F ) characterises these equilibria. We show that the determinant

of that system is always strictly larger than zero. Together with the uniqueness result akin

to FÖ, this provides us with the following result.
17Technically we are using the contest success function

p(aixij , ajxji) =
f(aixij) + δ

f(aixij) + f(ajxji) + 2δ

for some arbitrarily small δ > 0. This approach is essentially the one suggested in Myerson and Wärneryd
(2006) and has also been used by FÖ.

18We can define some arbitrarily large but finite Mi > 0 such that for each i ∈ I and each (ij) ∈ B we have
xij ∈ [0,Mi].

19All of these papers rely on Kakutani’s fixed point theorem. Since the structure of our game results in unique
best responses for any given set of parameters and admissible f(·) andC(·), a proof using Brouwer’s fixed point
theorem would be sufficient.
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Proposition 1.1 (Existence, (local) Uniqueness and Interiority of Pure Strategies).

A finite number of locally unique, interior, pure-strategy Nash equilibria exist ∀ω ∈ Ω. The solution

function x(ω) : U ⊆ Ω 7→ X ⊆ R2b
++, mapping any parameter ω into a Nash equilibrium x(ω), is

at least C2 and its derivative is given by

Dx(ω) = − [DxF (x(ω);ω)]−1DωF (x(ω);ω) (1.2)

Further, there exists an open neighbourhood around any symmetric parametrisation, such that the

equilibrium is globally unique.

The convex cost function creates a trade-off between any two effort levels exerted by some

player i. The CSF creates a relationship between effort levels across connected players. Solv-

ing the set of first order conditions becomes a recursive problem. The following result for-

malises that observation.

Proposition 1.2.

There exists an indirect global dependence where for any pair of agents h and l who are not rivals (i.e.

h 6∈ Nl and l 6∈ Nh), the effort levels as characterised by the system of first order conditions F can

implicitly be expressed as xh
(
xl,x−{h,l}

)
and xl

(
xh,x−{l,h}

)
.

In that sense, the fact that we have a connected network creates indirect relations between

all players throughout the rivals of rivals along any path of the network. While this does not

mean that players incorporate distant rivals’ actions directly in their maximisation problem,

the equilibrium behaviour reflects this indirect connection. We use this to show that an

algebraic solution for the equilibria can be obtained for hardly any network structure. How

much any player’s actions affect another player’s effort levels in equilibrium depends on

how long the shortest possible path between them is. Consider for example a line network

with 6 players as in Figure 1.4. Based on Proposition 1.2, we can mathematically express any

of her best responses as x12 = x12(x23(x34(x45(x56)))).

1 2 3 4 5 6

Figure 1.4: Line Network with 6 Players

Notice, that through the use of equation (PCC), each of these nested functions applies a

square to a sum. To find the equilibrium strategies, we require to find the roots of at least

one general polynomial of degree 25.

Denoting the length of the longest path in a given network with L,20 solving the system of

first order conditions for all players, generally requires us to find the roots of at least one

general polynomial of degree no less than 2L. This is a mathematical impossibility for any

L greater than 2, according to the Abel-Ruffini Theorem (1779).
20Remember, that we are considering all shortest paths between players first. ‘Longest’ then refers to the

longest among these shortest paths.
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Corollary 1.1.

The equilibrium strategies of the game do not have a generic algebraic solution if the length of the

longest path between any two players is greater than or equal to 3.

By a generic algebraic solution we mean any formula which would express the roots of

the polynomial as functions of the model parameters by means of algebraic operations (i.e,

+,−,× or /) and roots of natural degrees. We can still gain further insights into equilibrium

behaviour by imposing some degree of symmetry on the network structure.

1.4 k-Regular Networks

Given any ω ∈ Ω, Proposition 1.1 provides the general form of the matrix of derivatives

for any equilibrium. If we focus on a subset of network structures, it is possible to obtain

closed forms of these matrices to assess comparative statics more precisely. As the following

expressions appear more often in the subsequent part of the paper, denote the derivative of

pij with respect to its first argument by p1
ij = p1(aixij , ajxji) and the derivative with respect

to the second argument by p2
ij = p2(aixij , ajxji).21 The second and cross-derivatives are

given by p11
ij = p11(aixij , ajxji) = −p22

ji and p12
ij = p12(aixij , ajxji) = −p21

ji , respectively. The

set of graphs we consider is defined as follows.

Definition.

A k-regular network is any graph, for which di = k for all i ∈ I and some k ∈ {1, ..., n− 1}.

This family of graphs includes the complete network (k = n− 1) and the ring (or minimal

connected) network (k = 2), as well as some networks in between these extreme cases.

Within these networks, it is possible to characterise the equilibrium strategies in case of a

strictly symmetric parametrisation as in FÖ.

The network structure in that class of graphs has a clear relationship with the equilibrium

efforts exerted. In this set of cases we are able to infer the exact network structure from the

strategies played by strictly symmetric players.

Proposition 1.3.

For any ω, the conflict network is k-regular if and only if the equilibrium for all (ij) ∈ B is

xij = xs =
1

k
C ′−1

(
f ′(axs)

4f(axs)
av

)
> 0. (1.3)

21Thus, the derivative of pij with respect to xij is given by p1ij
∂(aixij)

∂xij
= aip

1
ij .
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In real world conflicts, where effort levels are more measurable than other parameters of

the model, this result allows to infer the underlying network structure. From now on, we

denote x(ω) the Nash equilibrium at some ω ∈ Ω, with typical element xij(ω) for conflict

(ij) and player i. We use the shorthand xs = x(ω) for an arbitrary strictly symmetric equi-

librium in a k-regular network.

In such an equilibrium, the first order conditions are the same for every player since Xi =

X = kxs. We arrive at the same comparative statics as FÖ for the parameters they share

with our model.

∂xs

∂v
> 0,

∆xs

∆k
< 0

The effect of efficiencies on effort levels is not clear in general. There exists a trade-off be-

tween increasing the probabilities of winning, while keeping costs constant and reducing

costs while keeping probabilities constant. The overall effect depends on how sensitive the

probability of winning is to changes in the ratio of impacts.22 How the CSF behaves, de-

pends crucially on the properties of the impact function.

Canonical Case (FÖ).

In a canonical setting, with the widely used functional form of the impact function f(aixij) =

(aixij)
r for sensitivity parameter r ∈ (0, 2)23 and cost function C(Xi) = 1

ρX
ρ
i for ρ > 1, the

effects cancel out. The impact function used here, is such that the CSF becomes homogenous of degree

zero. Thus, multiplying both effort levels in a bilateral contest by the same factor, the probabilities

remain the same.24

In this setting, the equilibrium as defined in Proposition 1.3 is given by

xs =

(
1

k

) ρ−1
ρ
(
rv

4

) 1
ρ

.

The equilibrium corresponds to the one presented by FÖ for r = 1 and ρ = 2. It is clear that if we

increase the number of conflicts per players in that network (k), the equilibrium strategies are going

to decrease at the rate of
√
k. This is lower than the rate at which conflicts increase. This means that

total efforts increase.

Turning to changes in efficiencies, we see that ∂xs

∂a = 0. Due to homogenous impact functions

the marginal probabilities cannot change when moving from one symmetric equilibrium to another.

Thus, the level of marginal costs, and with it the level of total and individual efforts, remain constant.

Inspection of expression (1.3) shows that for non-homogenous impact functions, a change in total

efficiencies might have an effect on symmetric efforts.

22The CSF can, apart from (0, 0), alternatively be written as 1

1+
f(ajxji)

f(aixij)

.

23See e.g. Pérez-Castrillo and Verdier (1992) applied to bilateral contest for this restriction.
24FÖ obtains for r = 1 and ρ = 2.
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Note that for close to linear costs (ρ close to unity) and r = 1, every player is exerting the two player

Nash equilibrium effort 1
4v in each conflict. This is intuitive, as with a linear cost function, there are

no opportunity costs between conflicts.

We stop investigating symmetric changes of parameters here, as this paper is concerned

with asymmetries in conflict networks. In Proposition 1.1, we already gave an abstract char-

acterisation of the derivatives at any given equilibrium. For k-regular networks, we can

derive comparative statics for any strictly symmetric equilibrium, for which we can deter-

mine the signs and magnitudes.

Proposition 1.4.

In a k-regular network the partial derivatives around the equilibrium at an arbitrary strictly sym-

metric parametrisation ω ∈ Ω can be obtained analytically as

∂xij
∂vij

= −z − (k − 1)C ′′(X)

z − kC ′′(X)

ap1

z
> 0

∂xil
∂vij

= − C ′′(X)

z − kC ′′(X)

ap1

z
< 0 for all l 6= j

∂xij
∂ai

= − 1 + z

z − kC ′′(X)

(
p1v

z
+
xs

a

)
≶ 0, (1.4)

for all i ∈ I and (ij) ∈ B, where z = a2p11v. All other partial derivatives vanish.

We observe that for changes in valuations, the trade-off between conflicts is mediated

by the convexity of C(·). If C ′′(X) → 0, player i only increases her effort on (ij) without

reducing it anywhere else.25

It is interesting to note that the sign of the effect of an increase in ai is ambiguous. This is

different from our earlier result, as the change in efficiencies considered here is asymmetric.

Only player i’s efficiency increases, while keeping all other players’ efficiencies constant.

This way, i becomes a strong player relative to the remaining players in the network.

Remember that a change in efficiency creates a trade off for player i. She can increase her

probabilities of winning, while keeping costs constant. Alternatively, she can keep probabil-

ities of winning constant, while reducing her total costs. To see this more clearly, consider

her payoff when all her opponents play the symmetric effort choice.

kp(aixi(k), axs(k))v − C(kxi(k)) (1.5)

Since ai is player-specific, but does not vary across player i’s conflicts, we can write her

efforts as xi for all opponents j ∈ Ni. Also keep in mind that xi is an infinitesimal change

relative to xs which depends on k.

25We discuss C′′(X)→∞ in the next chapter.
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The number of conflicts (k) affects the number of prizes that player i can win, the amount

of symmetric equilibrium effort and the amount of total effort, given a choice of xi. The

individual efficiency increases player i’s impact for a given level of effort in all her conflicts.

The above mentioned trade off becomes apparent by comparing the potential marginal gains

and marginal costs of an increase in ai. For the canonical choice of functional forms these

always cancel out.

Proposition 1.5.

Let f(aixij) = (aixij)
r for r ∈ (0, 2) and C(Xi) = 1

ρX
ρ
i . At any strictly symmetric equilibrium we

have

∂xij
∂ai

= 0.

This result is mainly due to the fact that the impact function is homogenous (of degree r)

in its argument aixij . This results in the highest marginal utility to occur at aixij = ajxji.

Given that xij = xji = xs, this implies that the maximum occurs at ai = aj = a. For

an infinitesimal change of ai, the effect is thus zero.26 Non-homogenous functions can still

result in effects that are different from zero.27

The following result is immediate, but important for large parts of the remaining analysis.

Corollary 1.2.

For the canonical functional forms, at any strictly symmetric equilibrium we have

∂(aixij)

∂ai
> 0. (1.6)

While the amount of soldiers sent to a conflict does not change when given better technol-

ogy, one could say that the efficiency units of soldiers increases.

This allows to investigate novel interaction effects across the network, presented in the fol-

lowing sections.

1.4.1 Individual Efforts

Interestingly, the effect any change in efficiency has on the behaviour of the remaining play-

ers in the network, seems to be independent of the sign of ∆ai. This is due to the fact that

26If the marginal probability was given by a function g(aixij), its graph w.r.t. ai would have an inverted
U-shape. Thus, any discrete change would have a negative effect on xij .

27Note that this is not just a specific case of a homogenous CSF. Given the previous axioms, this is the only
functional form that additionally also allows for homogeneity (Skaperdas, 1996).
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the slope of the best-response function in each conflict, implicitly characterised by the FOC,

always has the same sign as the cross-derivative of the CSF. We have p12
ij = p21

ji whenever

aixij = ajxji, while p12
ij = −p21

ji always holds as probabilities of winning are exclusive. Thus,

we know that p12
ij = p21

ji = 0 for aixij = ajxji. Since one can show that this is a maximum

of xij(xji) with respect to xji, player i reduces her effort if j changes her effort in either

direction.

Proposition 1.6.

Fix a k-regular network and some i ∈ S. Let ω′ = (v, ..., v, a, ..., ai = a + ε, ..., a). Furthermore,

let ∆xlq = xlq(ω
′) − xs for any l, q ∈ S. There exists some ε∗ > 0 such that for ε ∈ (0, ε∗) the

equilibrium x(ω′) for all j,m ∈ S\{i} satisfies

∆ (aixij) > ∆xjm > ∆xij = 0 > ∆xji

Irrespective of whether player i increases or reduces her efforts following a change in ai,

the other players in the network reduce their efforts towards her.

H M1

L M2

(a) Symmetric Case

aH ↑, aL ↓

H M1

L M2

(b) One Aggressive, One De-
fensive Player

Figure 1.5: Diagrammatic Representation of Proposition 1.6 for k = 4
Note: The size of the arrows in the two panels refers to the relative amount of efforts exerted in each bilateral

conflict.

Figure 1.5 illustrates a case of four players (the nodes) in a complete network that repre-

sents a clique S. The magnitude of the arrows between nodes indicates the relative level of

efforts within each player’s conflicts.

Panel (a) represents the symmetric case, in which all efforts are the same (xs). Assume now

that player H’s efficiency increases, while player L’s efficiency reduces. We see in panel (b),

that players M1 and M2 concentrate their efforts against each other. Since their reduction

of effort is an effect of the efficiency change in H and L, it is smaller than the initial change

in aHxHj and aLxLj (j ∈ {L,H}). Thus, players H and L divert their efforts from their

common conflict towards players M1 and M2.28

28This change of two parameters at a time is a straightforward variation of Proposition 1.6.
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Given a specific level of costs that is prohibitive, efficiencies become a scaling factor of

effective budgets. Since, after applying the change, we have aH > aL, one can interpret the

above figure in terms of the fight between players with unequal endowment. The prediction

of the model at hand is that conflict intensity contracts towards the mediocrely endowed

individuals and away from the rich and the poor.

If efficiency is a measure of strength, and we either delete player L, we are in a situation

where a single player, H in this case, is stronger than the rest. The model suggests that the

weaker players rather fight each other. While Bandwagoning typically needs the weak to

rally behind the strong player, who in turn fights them less/ceases to fight them, Balancing

(i.e., the weak teaming up to oppose the strong) is not the strategically optimal behaviour.

Any change in efficiencies bears a certain degree of symmetry with it, since ∆ai affects

all conflicts of player i equally. A change in valuations induces more asymmetric strategic

responses.

Proposition 1.7.

Fix a k-regular network and some i, j ∈ S. Let ω′ = (v, ..., vij = v+ ε, ..., v, a, ..., a). Furthermore,

let ∆xlq = xlq(ω
′) − xs for any l, q ∈ S. There exists some ε > 0 such that the equilibrium x(ω′)

for all h,m ∈ S\{i, j} satisfies

∆xij > ∆xjh,∆xhj ,∆xhm > 0 > ∆xji,∆xhi > ∆xih (1.7)

Figure 1.6 exemplifies this statement for the case of four players. The increase in effort,

following an increase in player 1’s value v14, is intuitive. The effects on the other players’

efforts are less obvious. The effect of increasing v14 has a first-order effect only on player

1’s effort levels and a second-order effect on the remaining players. This is due to how the

values feed into the players’ payoffs. While each own valuation has a direct effect on her

payoff, it can only affect other players’ payoffs through the strategic channel. Addition-

ally, the symmetric equilibrium is characterised through p12(axs, axs) = 0, so the strategic

effects do not show up immediately. That is, the fact that even ‘impartial’ players change

their equilibrium effort in case of a change in some other player’s values is a result of the

interdependencies of conflicts.

The behaviour here is an even clearer prediction of Bandwagoning as opposed to Bal-

ancing. Player 1 attacks player 4 more aggressively and fights players 2 and 3 less. This

reduction in effort against them, leads players 2 and 3 to reduce their efforts against player

1 as the marginal revenue for these conflicts decreases. The same is true for player 4 due

to the increased effort against her. As in the earlier result, this increases infighting among
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1 4

2 3

(a) Symmetric Case

v14 ↑

1 4

2 3

(b) Asymmetric Case

Figure 1.6: Diagrammatic Representation of Proposition 1.7 for k = 4

players 2,3 and 4.

Interpreting a high valuation as strength is a common interpretation in the contest litera-

ture.29 This result could equally well be described as a form of bullying, where one individ-

ual decides to bully a peer and so-called bystanders follow the bully and become hacks. The

hacks are also fighting against each other, but they do not have to fear fierce attacks from the

bully. The fact that significant shares of adolescents are observed to behave in that matter

is well-established in social psychology (see for example Craig and Pepler (1998), O’connell

et al. (1999) and Salmivalli et al. (1996)).

1 4

2 3

(a) Symmetric Case

v14 = v41 ↑

1 4

2 3

(b) Asymmetric Case

Figure 1.7: A Conflict Becomes More Valuable

In the special case where two players increase their valuation of winning against each

other in the same way (vij = vji), is considered in Figure 1.7. In this case, players 1 and

4 fight each other more fiercely, due to an increase in v14 = v41. This is expected. Their

reduction in efforts against players 2 and 3 results in infighting among those players. The

figure thus suggests that whenever two parties quarrel, the third parties quarrel as well.

Arrows in the above graphs compared effort levels to the symmetric equilibrium and in

some cases to the other efforts of the same player. How changes in effort levels compare

across players depends on the size and density of the network, as well as on other parame-

ters of the model. We now turn to settings of these primitives, where such a comparison is

possible for asymmetric parameters, to analyse conflict intensity over the entire network.
29This interpretation as strength or ability comes from the fact that a shift in valuation is isomorphic to a

shift in costs, since a contestant with payoff p(xi, xj)vib − xi shows the same behaviour as one with payoff
p(xi, xj)vi − 1

b
xi.
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1.4.2 Total Efforts

With the insights into how individual efforts change when parameters are asymmetric, we

are ready to investigate an aggregate measure of conflict intensity. Let X =
∑

i∈I Xi denote

total effort spent by all players in the network, across all their conflicts. Let T (k) = k − 2 +

p11

C′′(X) with X = kxs. This term relates the concavity of the maximisation problem to the

density of the conflict network, in which players are embedded.

Proposition 1.8.

Fix a k-regular network and some i ∈ I and some small ∆ai = ai − a > 0.We have

∆X s

∆ai


> 0 if T (k) > 0

= 0 if T (k) = 0

< 0 if T (k) < 0

The effects of a change in vij are simpler, as the individual effect is clearly positive.

Proposition 1.9.

Fix a k-regular network and some i, j ∈ I and some small ∆vij = vij − v > 0. For T (k) > 0, we

have ∆X
∆vij

> 0.

It is not possible to clearly determine cases where total efforts decrease. When T (k) < 0

effects for player i and the remaining players go in opposite directions and their magnitude

depends again on ∆vij .

In conventional models of multiplayer contest, it has been shown that asymmetry in efficien-

cies decreases efforts. Consider a grand contest with n players and linear costs where n− 1

players have efficiency 1 and player i has efficiency ai. This setting is the closest standard

contest model to our setting.30 The equilibrium strategies are given by

xi =
ai(n− 1)2 − (n− 1)(n− 2)

a2
in

2
v and xj = x =

n− 1

ain2
v for all j 6= i.

The total effort with asymmetric efficiencies is thus given by

X = xi + (n− 1)x =
2ai(n− 1)2 − (n− 1)(n− 2)

a2
in

2
v

One can see that this expression tends to zero as asymmetry (
ai
1
> 1) becomes arbitrarily

large. In fact, the derivative at the symmetric equilibrium (ai = 1) is given by −2n−1
n2 . In the

canonical setting we see that players in conflict networks do not necessarily behave in that

30Since we consider a strictly convex cost function, this comparison only holds for arbitrarily low cost con-
vexity. For example ρ close to 1.
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way, when the network is dense, that is, when for a given number of players, the number of

links k is large.

Canonical Case (FÖ).

In this case we have T (k) > 0 whenever

k > k =
2(ρ− 1)av

(ρ− 1)av − 1

From Proposition 1.8 we know that in this case we have ∆X
∆ai

> 0. To compare this with the grand

contest with r = 1 and a = 1 from before, we choose ρ close to 1 to approximate linear costs. Thus, for

this case we have ∆X
∆ai

> 0 if k > 0, which is trivially fulfilled. In such a conflict network, asymmetry

has the opposite effect on total efforts as is thus far documented in the contest literature.

The intuition is as follows. As player i changes her efforts away from the symmetric equilibrium,

there is more infighting in the rest of the network. This can be seen again by looking at figure 1.5,

considering the cases where player L is excluded. Due to player H’s increased effective effort, players

M1 and M2 increase their efforts against each other. If a lot of these players M exist, this increase in

infighting will be more pronounced than the decrease of efforts against player H .

For ∆X
∆vij

> 0, the intuition is the same. A dense network allows a lot of opportunities to increase ef-

forts against all players other than i, and thus any other effect becomes relatively small as k increases.

We can characterise changes in total effort, conditional on restrictions on k, and are able

to investigate a specific canonical case that compares well with the grand contest.

Figure 1.8: Different Regions for k According to Proposition 1.8.
Note: This graph is obtained for a = 1, ρ = 1.2 and v = 8.
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First, note that the lowest integer for which T (k) > 0 is possible is 3. Above this level,

we have k < k and thus ∆X
∆ai

< 0, while for k > k, we have ∆X
∆ai

> 0. On the dashed line,

separating the plane into k < k and k > k, the joint effect of increasing ai on players −i is

zero.

Increasing the military strength of one agent can thus act as a deterrent to conflict in small

or sparse conflict networks. In large or dense conflict networks, raising one player’s conflict

technology increases infighting on the remaining conflicts, which are numerous and thus

increases total conflict intensity and resulting damage and casualties.

1.5 Conclusion

We presented a model of conflict networks, focussing on asymmetry of parameters and

changes in individual behaviour and how these affect total conflict intensity. Existence of a

finite number of locally unique, interior equilibria is guaranteed. Under symmetry of pa-

rameters this extends to global uniqueness. It is possible to obtain comparative statics with

respect to efficiencies and valuations. We interpret these results in terms of Bandwagoning

– following a strong player against her opponents – and Balancing – where many weak(er)

players join forces to oppose a strong(er) player. In the canonical case, conflict intensity be-

come greater with asymmetry in dense networks, while asymmetry can serve as a deterrent

to conflict in sparse networks.

The results regarding individual behaviour seem to advocate Bandwagoning over Bal-

ancing. Since part of these considerations also have to do with threats that are dynamic

in nature, a full discussion of the two phenomena needs a model with multiple periods of

interaction, although the channel we describe here should not cease to exist in any such

model.

Budget constraints have an intuitive interpretation in this setting, since military budgets

are likely to be fixed, at least in the short run. In a model with a strict budget constraint

it is possible to characterise ‘discrete comparative statics’ with respect to the concrete net-

work structures. The next chapter demonstrates a version of this model under an exogenous

budget constraint.

Irrespective of the setting of costs or budgets, a natural step will be to see with whom

players engage in conflict in the first place. Endogenous network formation conditional

on asymmetries in technology and preferences will thus be our future focus. Since for any

method akin to backward induction we require payoffs, this is technically challenging.
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Providing the players with a conflict technology only, makes it hard to talk about the po-

tential for peace in this framework. Multi-Graph theory allows for two separate networks,

one with conflict and one with cooperative links. The opportunity costs of conflict gener-

ated by the opportunity of cooperation can add a new perspective to this line of research.

There is a recent, special interest in this type of settings, following the work by Jackson and

Nei (2015), Hiller (2017), and König et al. (2017). However, due to the complexity of apply-

ing multiple networks simultaneously, these models either focus on endogenous network

formation without an explicit allocation stage, or on unidimensional action spaces over an

exogenous multi-layer network.

Finally, with sufficiently simple networks, it is possible to test how real entities behave

under certain parameter constellations. First steps have been made in that direction experi-

mentally, but the specific hypotheses emerging from this paper are yet to be tested.
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1.A Proofs

For ease of notation, throughout the appendix, let us state the first order conditions and the

corresponding Hessian as primitives to the proofs. For each i ∈ I we have

Fij =
∂p(aixij , ajxji)

∂(aixij)
aivij − C ′(Xi) = 0 ∀j ∈ Ni (1.8)

The Hessian H of F = (Fij |(ij) ∈ B) is then a block-symmetric matrix for which each

diagonal block associated with some player i’s first order condition is given by

Hi = [hi]lq =


∂2p(aixij ,ajxji)

(∂aixij)2
a2
i vij − C ′′(Xi) if l = q

−C ′′(Xi) else
(1.9)

Each off-diagonal block in row i and column j obtains as

Oij = [oij ]lq =


∂2p(aixij ,ajxji)
∂(aixij)∂(ajxji)

aiajvij if l = i ∧ q = j

0 else
(1.10)

Note that due to p12
ij = −p21

ji , we have OTij = −vij
vji
Oji.

Proof of Proposition 1.1

We first give a brief summary of the proof, which proceeds in five lemmas. First, we will

show that a pure strategy equilibrium exists for all ω ∈ Ω. Second, by means of contradic-

tion, we show that every such equilibrium must be strictly interior and is bounded. Third,

we show that the determinant of H is strictly positive at any equilibrium. Fourth, we use a

result due to Rosen (1965) according to which the equilibrium is unique if

σ(x, r) =
∑
i∈I

riπi, ri ≥ 0 (1.11)

is ‘strictly diagonally concave’. Goodman (1980) shows that a sufficient condition for this

within our setting is that πi is concave in xi and convex in x−i for all i ∈ I and that σ(x, r)

is concave in x. We show that this is true at any ω such that vij = vji for all (ij) ∈ B and

thus the uniqueness result of Franke and Öztürk (2015) carries over to our setting. Due to

the earlier application of the IFT at that point, it follows that there exists a neighbourhood

around any symmetric parametrisation. The resulting matrix of comparative statics in ex-

pression (1.2) holds for any equilibrium. We again apply the implicit function theorem to

show local uniqueness for all other equilibria.

Fifth, to show finiteness of these locally unique equilibria we demonstrate that the set of
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equilibria is compact. In this compact set there cannot be an (infinite) sequence of equilibria,

as this would lead to a contradiction with local uniqueness.

Lemma 1.1.

A pure strategy equilibrium exists for all ω ∈ Ω.

Proof. Applying the well-known theorems due to Debreu (1952), Fan (1952) and Glicksberg

(1952), the result follows from making the following assertions. The game with the CSF

defined in footnote 17 is a continuous game with a finite set of players.

The general formula for det(Hi) obtains as

det(Hi) =

∏
j∈Ni

a2
i p

11
ij vij

− C ′′(Xi)

∑
j∈Ni

∏
l 6=j

a2
i p

11
il vil

 . (1.12)

To see this, consider the 4× 4 case with aj = a2
i p

11
ij vij and b = C ′′(Xi):

det(Hi) = det


a1 − b −b −b −b

−b a2 − b −b −b

−b −b a3 − b −b

−b −b −b a4 − b


Multiplying each row j > 1 with

a1

aj
and adding the resulting rows to the first, we get

det(Hi) = det(H ′i)

= det


a1 − b

∑4
j=2

a1
aj

a1 − b
∑4

j=2
a1
aj

a1 − b
∑4

j=2
a1
aj

a1 − b
∑4

j=2
a1
aj

−b a2 − b −b −b

−b −b a3 − b −b

−b −b −b a4 − b



=

a1 − b

4∑
j=2

a1

aj

det


1 1 1 1

−b a2 − b −b −b

−b −b a3 − b −b

−b −b −b a4 − b



=

a1 − b

4∑
j=1

a1

aj

det


1 1 1 1

0 a2 0 0

0 0 a3 0

0 0 0 a4


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=

a1 − b

4∑
j=1

a1

aj

 4∏
l=2

(al)

=
4∏
q=1

aq − b

4∑
j=1

∏
l 6=j

al.

The first equality is due to determinants being invariant to row and column operations.

The second equality follows from netting out the common factor in the first row. The third

equality obtains from multiplying the first row with b and adding it to all other rows. The

resulting matrix only has one non-zero permutation for the diagonal product, which leads

to the next line. Simplifying this and plugging in the terms for a and b, results in the formula

for the determinant. It should be easy to see that this generalises to any size of the matrix,

providing formula (1.12).

Note that this general form also applies to any of Hi’s leading principal minors of order

k, denoted Hk
i from the way we derived it. Note also, that whatever the sign of det(Hi),

deleting one factor ah from each product changes the sign of the expression, as p11
ij < 0.

Thus, since the determinant of Hi is positive whenever di is even and negative whenever di

is odd and the signs of its principal minors are alternating, the claim follows as this shows

that Hi is negative definite.

Lemma 1.2.

In any equilibrium we have xij ∈ [ε∗i ,Mi] for some finite Mi > 0 and some small but positive εi for

all i, jI.

Proof. We need to verify three claims.

Claim 1.1.

In every equilibrium, there exists a bound Mi for all i ∈ I such that for every j ∈ Ni we have

xij < Mi.

Consider the highest possible revenue a player can get when winning all conflicts.

Vi :=
∑
j∈Ni

vij

Player i’s effort levels are thus bounded by Mi = C−1(Vi), for otherwise her payoff would

be negative and exerting zero efforts would result in a higher payoff.

Claim 1.2.

Any strategy profile with xij = xji = 0 for any (ij) ∈ B can never be an equilibrium.

Suppose it can. Player i’s marginal utility for these efforts under the CSF defined in foot-
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note 17, is given by

δ

δ2
=

1

δ
.

Since her effort levels are bounded above by Mi, her highest marginal costs are C ′(Mi). We

can thus always find a δ∗ such that for any δ < δ∗ we have

1

δ
> C ′(Mi).

Thus, there is a profitable deviation. A contradiction.

Claim 1.3.

Any strategy profile with xij > 0 and xji = 0 for any (ij) ∈ B can never be an equilibrium.

Suppose not and let player i’s strategy profile be given by xi = (xi1, ..., xij , ..., xini). Now

consider the alternative profile x′i which is such that x′ij = xij − ε > 0. The probability of

winning on (ij) is still 1 and costs have reduced, thus it constitutes a profitable deviation. A

contradiction.

We can thus find some εi for each player, such that xij > εi for all j ∈ Ni.

Lemma 1.3.

For every ω ∈ Ω we have det(H) > 0.

Proof. Besides the diagonal blocks, H is a sparse matrix with only one (potentially) non-zero

element in each Oij . The determinant can thus be expressed as the sum of the determinant

of the diagonal matrix and the additional possible permutations with the respective rows.

Each of these possible permutations that leaves a non-zero diagonal product is associated

with one or more conflicts.

As a minimal example, consider H associated with the line network with three players:


a2

1p
11
12v12 − C ′′(X1) a1a2p

12
12v12 0 0

−a1a2p
12
12v21 a2

2p
11
21v21 − C ′′(X2) −C ′′(X2) 0

0 −C ′′(X2) a2
2p

11
23v23 − C ′′(X2) a2a3p

12
23v23

0 0 −a2a3p
12
23v32 a2

3p
11
32v32 − C ′′(X3)


The diagonal blocks are H1, H2 and H3 respectively. We can see that the only way to swap

rows without moving a zero into the diagonal is choosing rows corresponding to the same

conflict. For example, rows 1 and 2 correspond to the battlefield between players 1 and 2
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and rows 3 and 4 correspond to the conflict between players 2 and 3.


−a1a2p

12
12v21 a2

2p
11
21v21 − C ′′(X2) −C ′′(X2) 0

a2
1p

11
12v12 − C ′′(X1) a1a2p

12
12v12 0 0

0 −C ′′(X2) a2
2p

11
23v23 − C ′′(X2) a2a3p

12
23v23

0 0 −a2a3p
12
23v32 a2

3p
11
32v32 − C ′′(X3)


When we do the first of these swaps, the diagonal product obtains as −

(
p12

12

)2
v12v21 times

the determinants of all blocks after deleting the corresponding cofactors, i.e., the first row

and column and the second row and column.

a2
1p

11
12v12 − C ′′(X1)/////////////////////// a1a2p

12
12v12///////////// 0/ 0/

−a1a2p
12
12v21/////////////// a2

2p
11
21v21 − C ′′(X2)/////////////////////// −C ′′(X2)/////////// 0/

0/ −C ′′(X2)/////////// a2
2p

11
23v23 − C ′′(X2) a2a3p

12
23v23

0/ 0/ −a2a3p
12
23v32 a2

3p
11
32v32 − C ′′(X3)


Let φ12 be the collection of all rows and columns (here 1 and 2) that have been deleted

and Hi(φ12) is the resulting block for matrix Hi (the bottom right 4 × 4 matrix). We see

that H1(φ12) is a 0 × 0 matrix with determinant 1, since the top left block has been crossed

out. The determinant of H2(φ12) is simply a2
2p

11
23v23 − C ′′(X2) and H3(φ12) = H3 still has

determinant a2
3p

11
32v32 − C ′′(X3). Thus, for φ12 the product of the diagonal element obtains

as

−a1a2

(
p12

12

)2
v12v21 det(H1(φ12)) det(H2(φ12)) det(H3(φ12)).

Since the number of permutations encoded in φ12 (which is one, as we only swapped rows

once) is odd, this product gets multiplied by (−1) when added to the sum that constitutes the

determinant. To get the full determinant we would have to also consider φ23 and {φ12, φ23}

and the diagonal product of all determinants of the individual blocks.

This logic applies more generally. Let the set of all permutations and their combinations

be denoted Sn with typical element φ. It contains all sets of additional row permutations

that correspond to some set of conflicts (ij) ∈ B.31 The signum function sgn(φ) is negative

when |φ| is odd and positive when |φ| is even, where |φ| is the number of permutations in φ.

31When rows i and j are swapped, this is counted as one permutation.
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Using the Leibniz formula for determinants, we get

det(H) =
∏
i∈I

det(Hi) +
∑
φ∈Sn

sgn(φ)
∏

(ij)∈φ

−aiaj
(
p12
ij

)2
vijvji

∏
i∈I

det(Hi(φ))

=
∏
i∈I

det(Hi) +
∑
φ∈Sn

sgn(φ)(−1)|φ|
∏

(ij)∈φ

aiaj
(
p12
ij

)2
vijvji

∏
i∈I

det(Hi(φ))

=
∏
i∈I

det(Hi) +
∑
φ∈Sn

∏
(ij)∈φ

aiaj
(
p12
ij

)2
vijvji

∏
i∈I

det(Hi(φ)).

We know that
∏
i∈I det(Hi) > 0 as all Hi associated with an even number of conflicts have

det(Hi) > 0 and all Hi associated with an odd number of conflicts have det(Hi) < 0, due

to negative definiteness. But since the total number of effort choices is 2b, there must be an

even number of the latter type of Hi, thus
∏
i∈I det(Hi) > 0 is true.32 As argued earlier,

whenever we delete a row and column j of any Hi, the sign changes. But since the consid-

ered permutations always affect exactly two such Hessians, the sign of
∏
i∈I det(Hi(φ)) for

any combination of permutations in φ cannot change. Since
∏

(ij)∈φ aiaj

(
p12
ij

)2
vijvji ≥ 0,

this shows that det(H) > 0 for all ω ∈ Ω.

Lemma 1.4.

Every equilibrium is locally unique and the comparative statics at any equilibrium are given by

expression (1.2). Furthermore, for an open neighbourhood around any symmetric parametrisation,

there exists a globally unique, interior, pure-strategy Nash Equilibrium.

Proof. The first sentence follows immediately from applying the Implicit Function Theorem

(IFT). Since det(H) > 0 and thus det(H) 6= 0, and F being continuously differentiable on

R4b+n, it implies that the solution at any equilibrium is locally continuous in its parameters

and that the derivatives are given by expression (1.2).

For the second part, we apply the result from Rosen (1965) and Goodman (1980) at an ar-

bitrary symmetric equilibrium. The individual payoff functions are strictly concave in own

strategies (Hi is negative definite for all x ∈ R2b
+ ) and strictly convex in the strategies of

others, as each payoff function for player i is the sum of convex CSFs in x−i. Function (1.11)

32Also see the handshaking lemma, which is a well-known and intuitive result in network economics.

Paul M. Gorny 51 UEA - School of Economics



Chapter 1: Strength Asymmetries in Conflict Networks

for ri = r for all i ∈ I can be rewritten as

σ(x, r) =
∑
i∈I

rpijvij −
∑
i∈I

rC(Xi) = r
∑
i∈I

pijvij − r
∑
i∈I

C(Xi)

= r
∑

(ij)∈B

(pijvij + (1− pij)vji)− r
∑
i∈I

C(Xi)

= r
∑

(ij)∈B

vji + r
∑

(ij)∈B

pij(vij − vji)− r
∑
i∈I

C(Xi)

= r
∑

(ij)∈B

vji − r
∑
i∈I

C(Xi),

where the last equality follows from symmetry of conflict valuations (vij = vji for all (ij) ∈

B). Since the cost functions are strictly concave for every x ∈ R2b
+ and the first term is a con-

stant, this function is strictly concave. Thus, any symmetric parameterisation has a globally

unique equilibrium. Applying the IFT to any such equilibrium, using the above arguments

about F and the determinant of its Jacobian H , it follows that there exists a neighbourhood

of parameters for which a globally unique equilibrium exists.

Lemma 1.5.

The number of equilibria is finite.

Proof. Finally, we want to argue that the number of equilibria is finite. First, remember that

efforts are bounded. Since this is true for every effort in every equilibrium, the set of equi-

libria is a compact set (closed and bounded in R2b). Now suppose the number of equilibria

is infinite. We could thus construct a (non-trivial) sequence of equilibria in this set. Due to

the boundedness of that sequence, there exists a convergent subsequence. Since the set is

compact, and thus closed, the limit of this sequence lies in the set. The contradiction occurs

from noting that convergence in a metric space is Cauchy, i.e. ∀ε > 0, ∃ N(ε) s.th. ∀m,n >

N(ε), d(xm, xn) < ε, and that the limit point is locally unique as it is part of the set for which

det(H) > 0. We would have found a locally unique equilibrium around which every open

ε-ball contains an infinite number of distinct equilibria (with that same property). A contra-

diction. Thus, there cannot exist an infinite number of equilibria.

�

Proof of Proposition 1.2

As the network of conflict G induced by the disjoint pair of sets (I, B) is a connected graph

we always can find a path P between any two nodes. Let us take any two nodes h and

l that are not rivals (i.e. h 6∈ Nl and l 6∈ Nh). We know that there exist a path Phl =
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{hi2, i2i3, . . . , ik−1ik, ikl} where ij ∈ I and all (ijik) ∈ B between them. As usual, the best-

response x∗h of player h depends on her rivals’ actions, thus x∗h = xh(x∗r1 , . . . ,x
∗
rj , . . . ,x

∗
rk

),

where all rj ∈ Nh. In particular, we know that (hi2) ∈ B which implies that i2 ∈ Nh, them

x∗h = xh(x∗r1 , . . . ,x
∗
i2
, . . . ,x∗rj , . . . ,x

∗
rk

). Notice that x∗i2 = xi2(x∗g1 , . . . ,x
∗
i3
, . . . ,x∗gj , . . . ,x

∗
gk

)

for all gi ∈ Ni2 , since i3 is an opponent of i2. Following the sequence of nodes describe path

the path Phl, we can rewrite the best-response of player h as a function of her direct rivals

and all the nodes in the path such that x∗h = xh(x∗r1 , . . . ,x
∗
rj , . . . ,x

∗
rk
,x∗i2,x

∗
i3, . . . ,x

∗
ik,x

∗
l ).

Thus, even though players are not direct rivals and they are pay-off irrelevant to each other

in the primitives of the game, the equilibrium effort choice of any player depends on the

action of any player that is connected with her through a path. As the graph is connected,

this it true for any pair of players. Therefore, we have x∗h = xh(X∗−{h,l},x
∗
l ) and analogously

x∗l = xl(X
∗
−{h,l},x

∗
h) where X∗−{h,l} = [x∗i ]i∈I\{h,l}. �

Proof of Corollary 1.1

Recall the first order conditions induced by the optimisation problem of player i in conflict

(ij),

aivijf
′(aixij)f(ajxji)

[f(aixij) + f(ajxji)]2
= C ′(Xi)

⇒f(aixij)
2 + 2f(aixij)f(ajxji) + f(ajxji)

2 − aivijf
′(aixij)f(ajxji)

C ′(Xi)
= 0

Based on the result presented in Proposition 1.2, we know that player i’s allocation in the

conflict against j depends also on the actions of j’s rivals. If k ∈ Nj , player j’s optimality

condition requires that

f(aixij) =
[f(aixij) + f(ajxji)]

2

[f(akxkj) + f(ajxjk)]2
f(akxkj)f

′(ajxjk)

f ′(ajxji)

vjk
vji

Using this expression in the optimality condition of player i for conflict (ij), we get

[
[f(aixij) + f(ajxji)]

2

[f(akxkj) + f(ajxjk)]2
f(akxkj)f

′(ajxjk)

f ′(ajxji)

vjk
vji

]2

+ 2

[
[f(aixij) + f(ajxji)]

2

[f(akxkj) + f(ajxjk)]2
f(akxkj)f

′(ajxjk)

f ′(ajxji)

vjk
vji

]
f(ajxji)+

f(ajxji)
2 − aivijf

′(aixij)f(ajxji)

C ′(Xi)
= 0
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We are interested to solve for f(aixij) and f(ajxji). To do that we need to find the roots of

the above polynomial. Notice that this expression is of the form

A f(aixij)
4 +B f(aixij)

3f(ajxji) + C f(aixij)
2(2f(ajxji) + 6f(ajxji)

2)+

D f(aixij)(4f(ajxji)
3 + 4f(ajxji)

2) + E 2f(ajxji)
3 + F f(ajxji)

4 + C = 0,

which independently of the forms of the scalar A, B, C, D, E and F is irreducible over

C and therefore irreducible over R+. We can continue the substitution process along any

path between player i and any other player l ∈ I. Each step further we are going to find a

new term in our polynomial. The exponent of this term is going to be squared due to the

non-linearity of the primitives of the contest success function. Thus, to solve the system

of equations induced by the maximisation problem of each individual, we need to solve at

least one polynomial of degree 2L where L is the largest path between a pair of player i and

j. Hence, to solve the system of equations we need to find the root of at least one polynomial

of the form

ax2L + bx2L−1 + . . .+ cx22−1 + dx21−1 + e = 0

Therefore, network structures in which we can find a path of length greater than or equal

to 3 require to find the roots of at least one general algebraic equation of degree higher or

equal to 8 in the best case scenario.

Theorem 1.1.

Abel-Ruffini Theorem (1779)

A general algebraic equation of degree ≥ 5 cannot be solved in radicals. This means that there does

not exist any formula which would express the roots of such equation as functions of the coefficients

by means of the algebraic operations and roots of natural degrees.

By looking at the functional form of the reaction functions and the result of the Abel-

Ruffini Theorem, we can say that this type of system does not have an algebraic solution

using radicals. Hence, in our setting the equilibrium of the game does not have a generic,

algebraic solution if the longest path between any two players is higher than 3. �

Proof of Proposition 1.3

⇒: Let ω = {12bv,1na} for some a, v ∈ R++ and di = k ∈ N+ for all i ∈ I.

Consider some FOC of the maximisation problem for some player i and some conflict (ij)

∂p(axij , axji)

∂(aixij)
av = C ′(Xi)
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Assuming symmetry xij = xji = xs gives

xs =
1

k
C ′−1(p1(axs, axs)av)

It is unique as per proposition 1.1.

⇐: Assume xlq = xs for all (lq) ∈ B some xs. Redoing the steps in the first part for any

two players i and j, we get

1

di
C ′−1(p1(axs, axs)av) =

1

dj
C ′−1(p1(axs, axs)av),

which implies di = dj . �

Proof of Proposition 1.4

In this case the Jacobian of the system of FOCs contains the following elements:

∂Fij
∂xij

= a2
i p

11
ij vij − C ′′(Xi) < 0

∂Fij
∂xji

= aiajp
12
ij vij ≶ 0

∂Fij
∂xiq

= −C ′′(Xi) < 0

∂Fij
∂xqi

= 0

Since at any strictly symmetric equilibrium in a k-regular network p12
ij = 0 for all (ij) ∈ B,

this results in Dx(F ) = diag(A1, A2, ..., An) with Ai = Bi + Ei and

Bi =



zi1 0 · · · · · · 0

0 zi2 0 · · · 0
...

. . .
...

. . .

0 ziN


with zij := a2

i p
11
ij vij and Ei = [e]ql = −C ′′(Xi) for all (ql). Note that at the strictly symmetric

equilibrium in a k-regular network we have zij = zql = z = a2p11
ij v.

The inverse of this matrix is given by applying the Sherman-Morrison formula.

A−1
i =

1

z
I −

1
z2
E

1− 1
zdiC

′′(X)
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In a more compact way,

A−1 = G = [g]l,q =


z−(k−1)C′′(X)
z−kC′′(X) z−1 if l = q

C′′(X)
z−kC′′(X)z

−1 else.

The partial effects are then given by

∂x

∂ω
= − [Dx(F )]−1Dω(F )

or more precisely:

∂xij
∂vij

= −z − (k − 1)C ′′(X)

z − kC ′′(X)

p1

ap11v
> 0

∂xiq
∂vij

= − C ′′(X)

z − kC ′′(X)

p1

ap11v
< 0 for q 6= j

∂xij
∂ai

= − 1 + z

z − kC ′′(X)

(
p1

a2p11
+
x

a

)

�

Proof of Proposition 1.5

Recall the expression in parenthesis in (1.4).

p1

p2

v

a2v
+
xs

a
(1.13)

Given the assumed functional forms, we have

p1(xs) =
r

4

1

axs

and

p2(xs) = −r
4

1

(axs)2
.

Thus, we have

p1

p2
= −axs,

which implies

p1

p2

v

a2v
+
xs

a
= 0, (1.14)
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which is the claim of the proposition. �

Proof of Proposition 1.6

From the derivatives obtained in the earlier result, we know already that xij(ω′) > xs as

well as xik(ω′) < xs for all k 6= j. Note that the change induced in a nested function f is less

than that induced in g, whenever

|Df(g(x))g′(x)| < |g′(x)|

|Df(g(x))||g′(x)| < |g′(x)|

|Df(g(x))| < 1.

The changes we consider are either ∂xij
∂xji

, which is zero at the symmetric parametrisation and

close to zero near it, and

∣∣∣∣∂xij∂xik

∣∣∣∣ =

∣∣∣∣− −C ′′(Xi)

a2
1p

11vij − C ′′(Xi)

∣∣∣∣ =

∣∣∣∣ C ′′(Xi)

C ′′(Xi)− a2
1p

11vij

∣∣∣∣ < 1.

This implies that any effect of a sufficiently small change in parameters from ω diminishes

over with increasing length of a path.

We denote each best response function as a nested function of the strategies that constitute

the shortest path through the graph to a nonzero derivative. In a slight abuse of notation, let

us denote player i’s best response function on conflict (ij) as xij(xji(ai)). Using a second-

order Taylor approximation, we get

xji(xij(ai)) =xji(xij(a)) +
∂xji
∂xij

∂xij
∂ai

(a)(ai − a)

+
1

2

(
∂2xji

(∂xij)2

(
∂xij
∂ai

)2

+
∂xji
∂xij

∂2xij
(∂ai)2

)
(a)(ai − a)2

| ∂xji
∂xij

(a)=0
=xs − 1

2

a3p122v

a2p11v − C ′′(Xi)

(
∂xij
∂ai

)2

(ai − a)2 < xs.

Note that this is irrespective of the sign of ∂xij∂ai
. Similarly, it follows that

xjk(xji(xij(ai))) = xs +
∂xjk
∂xji

∂2xji
(∂xij)2

(
∂xij
∂ai

)2

(ai − a)2 > xs.

�
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Proof for Proposition 1.7

Just as in the above proof the effects of the other players in S can be obtained via a Taylor

approximation as

xji(xij(vij))=̃x
s +

1

2

∂2xji
(∂xij)2

(
∂xij
∂vij

)2

(vij − v)2 < xs

xjk(xji(xij(vij)))=̃x
s +

1

2

∂xjk
∂xji

∂2xji
(∂xij)2

(
∂xij
∂vij

)2

(vij − v)2 > xs

xkj(xki(xik(vij)))=̃x
s +

1

2

∂xkj
∂xki

∂2xki
(∂xik)2

(
∂xik
∂vij

)2

(vij − v)2 > xs

xki(xik(vij))=̃x
s +

1

2

∂2xki
(∂xik)2

(
∂xik
∂vij

)2

(vij − v)2 < xs

xkl(xik(vij))=̃x
s +

1

2

∂xkl
∂xki

∂2xki
(∂xik)2

(
∂xik
∂vij

)2

(vij − v)2 > xs

Since the |∂xijvij
|, |∂xikvij

| > ∂xlq
vij

= 0 for any (lq) such that l 6= i, there exists some ε = vij − v

such that for any A 6= 0 any |Aε2| is strictly between the absolute value of these partial

derivatives and 0. �

Proof of Proposition 1.8

First, note that at ω we have

∂2xij
(∂xji)2

=
∂2xlq

(∂xql)2
∀l, q ∈ I

∂xij
∂xih

=
∂xql
∂xqr

∀h, l, q, r ∈ I
(1.15)

From Proposition 1.6 we know that for all m 6= i with m ∈ S

∆xmi = xmi(ai)− xmi(a) =
1

2

∂2xmi
(∂xim)2

(
∂xim
∂ai

)2

(ai − a)2
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Using the equalities in 1.15, this change occurs k times. Similarly, all k players m 6= i, m ∈ S

change their behaviour towards their k − 1 opponents q 6= i,m, q ∈ S

∆xmq = xmq(ai)− xmq(a) =
1

2

∂xmq
∂xmi

∂2xmi
(∂xim)2

(
∂xim
∂ai

)2

(ai − a)2

Finally, player i’s change towards her k opponents m 6= i in S is

∆xim =
∂xim
∂ai

(ai − a)

Thus, denoting ∆ai = ai − a, we have

∆Xs =k
∂xim
∂ai

∆ai +
k

2

∂2xmi
(∂xim)2

(
∂xim
∂ai

)2

∆a2
i

+
k(k − 1)

2

∂xmq
∂xmi

∂2xmi
(∂xim)2

(
∂xim
∂ai

)2

∆a2
i

which ultimately gives us

∆Xs

∆ai
=k

∂xim
∂ai

+
k

2

∂2xmi
(∂xim)2

(
∂xim
∂ai

)2

∆ai

+
k(k − 1)

2

∂xmq
∂xmi

∂2xmi
(∂xim)2

(
∂xim
∂ai

)2

∆ai

If ∂xij∂ai
> 0 we have

∆Xs

∆ai
> 0⇔ 1 +

1

2

∂2xmi
(∂xim)2

∂xim
∂ai

∆ai

(
1 + (k − 1)

∂xmq
∂xmi

)
> 0

Since ∂2xmi
(∂xim)2

< 0, negativity of the term in parentheses guarantees that the above inequality

holds. That is

1 + (k − 1)
∂xmq
∂xmi

< 0

⇔1 + (k − 1)
C ′′(Xs)

p11 − C(Xs)
|p11 − C ′′(Xs) < 0

⇔p11 + (k − 2)C ′′(Xs) > 0

⇔k > 2− p11

C ′′(Xs)

If ∂xij∂ai
< 0 we still have

∆Xs

∆ai
> 0⇔ 1 +

1

2

∂2xmi
(∂xim)2

∂xim
∂ai

∆ai

(
1 + (k − 1)

∂xmq
∂xmi

)
< 0

In this case ∂2xmi
(∂xim)2

∂xim
∂ai

> 0, thus for the inequality to be true, the term in parentheses must

be positive, leading to k < 2− p11

C′′(Xs) .
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This is independent of the magnitude of ∆ai. �

Proof of Proposition 1.9

We see that the total effect on the efforts of all players m ∈ S such that m 6= i, j against each

other is negative as (for q 6= i, j,m)

∑
m 6=i,j

∑
l 6=m,i,j

∆xml =
(k − 1)(k − 2)

2

∂xmq
∂xmi

∂2xmi
(∂xim)2

(
∂xim
∂vij

)2

∆v2
ij > 0 (1.16)

The total effect of an increase in vij on total effort is thus given by

(
∂xij
∂vij

+ (k − 1)
∂xim
∂vij

)
∆vij

+
1

2

∂2xji
(∂xij)2

(
∂xij
∂vij

)2

∆v2
ij +

(k − 1)

2

∂2xji
(∂xij)2

(
∂xij
∂vij

)2 ∂xjm
∂xji

∆v2
ij

+
k − 1

2

∂2xji
(∂xij)2

(
∂xim
∂vij

)2

∆v2
ij +

(k − 1)2

2

∂xmq
∂xmi

∂2xmi
(∂xim)2

(
∂xim
∂vij

)2

∆v2
ij

(1.17)

We see that the third row is k−1 times the second row. The second row is positive whenever

1 + (k − 1)
∂xjm
∂xji

< 0

which is true whenever T (k) > 0. �

1.B Data and Graphs

The data we used for figure 1.3 stems from the Uppsala Conflict Data Program (UCDP).

The dataset is [a] dyad-year version of the UCDP/PRIO Armed Conflict Dataset. A dyad consists

of two opposing actors in an armed conflict where at least one party is the government of a state.

(UCDP, 2018). For a more detailed description of the dataset also see Harbom et al. (2018)

or Pettersson and Eck (2018).

Extrasystemic armed conflict is defined as a conflict between a state and a non-state group

outside its own territory. Interstate armed conflicts are between two or more states. Internal

armed conflicts are between the government of a state and one or more internal opposi-

tion groups, without intervention from other states. For Internationalised Internal conflict,

intervention from other states on one or both sides is added to the definition.
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Figure 1.B.1 : Frequency of Conflict Types over Time
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Abstract

We introduce strict budget constraints into a model of conflict networks. We provide

a sufficient condition for the existence of a finite number of locally unique, interior, pure

strategy Nash equilibria and characterise the best response functions. Using an algo-

rithm that seems to converge under the above sufficient condition, we investigate the

robustness of earlier results and provide two examples that could not be studied in this

class of models before. Heterogenous teams can outperform homogenous teams and the

number of links can harm a player. we show that centrality can also hurt more distant
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Chapter 2: Budget Constraints in Conflict Networks

2.1 Introduction

In conflict of any type, resources employed to win the conflict are limited. Countries have

military budgets agreed by the government or parliaments. Paramilitary groups are subject

to resource limitations depending on how much support they get from political supporters

and even in interpersonal conflict, the amount of effort is limited by physical traits. These

budgets are thus central in the determination of conflict outcomes.

In hardly any conflict, there are only two parties involved. Whenever there are more than

two parties, the complex constellation of their bilateral conflicts can give rise to a conflict

network (Cortes-Corrales and Gorny, 2018; Franke and Öztürk, 2015). As shown previously,

asymmetries can have complex effects that spread through the network. To determine their

sign and magnitude is technically demanding. Introducing a budget constraint can thus

help to put more structure onto the model, while allowing for (and in fact strengthening)

opportunity costs between conflicts.

In settings where resources are divided into productive and defensive/appropriative re-

sources (see e.g. Skaperdas and Syropoulos (2001) and Neary (1997)) the exact size of the

split is crucial to the success of the parties’ enterprise to maximise their payoffs. To allow

for any such analysis with conflict networks, the second stage strategies and payoffs need

to be determined, which is the aim of this chapter.

We show that the result of existence and local uniqueness of interior strategies around

any symmetric parametrisation, established in the previous chapter, can be qualified with a

sufficient algebraic condition.

In a canonical case, we show that best response functions can be characterised in closed

form. We provide an algorithm that seems to converge to the equilibrium under the above-

mentioned condition. MatLab code is provided that can calculate the equilibrium for any

network structure and choice of parameters. Using it, we discuss earlier results on conflict

networks and provide insights into some further interesting examples that cannot be studied

as easily in the original framework.

Related Literature: We will relate to the literature on conflict networks. In the broader

area our study relates to games on networks that received a lot of attention recently, both

theoretically (Goeree et al., 2009; Galeotti et al., 2010; Goyal, 2012) and experimentally (Char-

ness and Jackson, 2007; Charness et al., 2014; Kittel and Luhan, 2013). More specifically, it

relates to the study of conflict games and contests on networks (Franke and Öztürk, 2015;
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Herbst et al., 2015; König et al., 2015; Huremovic, 2016; Goyal et al., 2016; Cortes-Corrales

and Gorny, 2018). The studies closest to this are Cortes-Corrales and Gorny (2018) and

Franke and Öztürk (2015) as we are essentially taking their model and imposing a budget

constraint instead of a convex cost structure.

We also relate to the study on Colonel Blotto games and crowdsourcing literature, where

the use of strict budget constraints is more common. The best response functions are sim-

ilar to Feldman et al. (2005), Friedman (1958) and Kovenock and Rojo-Arjona (2019). In-

terestingly, Feldman et al. (2005) has a model where conflicts are not necessarily bilateral

and players can stay away from a conflict, while Friedman (1958) and Kovenock and Rojo-

Arjona (2019) discuss a Colonel Blotto game with bilateral conflicts but only two players.

The similarity of the best responses is striking and we refer to the subtleties that distinguish

the models.

The rest of the chapter is structured as follows. Section 2.2 introduces the model. The

sufficient condition for existence and uniqueness of interior, pure strategy equilibria is given

in Section 2.3. Section 2.4 provides the best response functions and an algorithm that can

solve the model. In Sections 2.5 and 2.6 we discuss the robustness of some earlier results

and provide some further interesting examples. Section 2.7 concludes.

2.2 The Model

The notation is largely identical to the previous chapter. We still introduce it here again

for completeness. The reader might want to skip to the bottom of page 66, where the new

elements are introduced.

Let I = {1, . . . , n} be a finite set of players with n ≥ 2. All conflicts are contained in

B ⊆ I2 where I2 is the set of unordered pairs of I with typical element (ij). The underlying

conflict network G is represented by the connected graph associated with the pair of sets

(I, B).3 We say that any pair of players i and j is involved in a bilateral conflict (ij) if and

only if (ij) ∈ B. Again, a conflict does not disappear if it is ignored and no player can be

enemy of herself. Thus, we assume the network G to be undirected (∀i, j ∈ I : (ij) ∈ B ⇔

(ji) ∈ B) and irreflexive (∀i ∈ I : (ii) 6∈ B). Let Ni = {j ∈ I|(ij) ∈ B} denote the set of i’s

rivals. The total number of i’s rivals is given by di = |Ni|. The total number of conflicts is

b = 1
2

∑
i di. We denote S ⊆ I a clique of G, if every pair of players i and j in S has a conflict

between them – i.e. (ij) ∈ B. In each bilateral conflict, (ij) ∈ B, players i and j fight for a

3A graph G is connected if for every pair of players i and j in I we can find a sequence of adjacent conflicts
to travel from i to j. The results that we are presenting hold for any non-trivial component of any disconnected
network. Therefore, we do not consider such network structures in our analysis.
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strictly positive exogenous prize. Player i’s valuation of winning the prize against player j

is denoted vij > 0. As in Chapter 1, we allow valuations to differ across conflicts and players

(even within a conflict).

Each player i can exert effort xij ∈ R+ to increase her probability of winning the conflict

against player j. We denote player i’s action by xi = (xij)j∈Ni which is a di-dimensional

vector that contains all her effort choices.

The outcome of each bilateral conflict is determined by the total amount of efforts spent

on that specific conflict. Player i’s probability of winning is determined by a contest success

function (from hereon CSF) p(aixij , ajxji), where ai ≥ 1 captures how efficiently player i can

employ her resources to increase this probability.4 We use the same CSF as in the previous

chapter as axiomatised by Skaperdas (1996).

pij = p(aixij , ajxji) =


f(aixij)

f(aixij)+f(ajxji)
if (xij + xji) 6= 0

1
2 if (xij + xji) = 0

(CSF)

Remember that this function is assumed to be increasing and concave in xij and decreas-

ing and convex in xji. For this to hold, the impact function f(.) is a positive and strictly

increasing function of its argument with f(0) = 0 and is at least twice differentiable.5

Again, let ω = (vvv,aaa) be the combination of b values collected in vvv and the n efficiencies

collected in aaa. The space of all such combinations is Ω ⊆ Rb+n++ . A parametrisation in which

vij = vji is called symmetric. This is independent of the ais. A set of parameters where all

valuations across players and conflicts, and all efficiencies across all players are the same, a

strictly symmetric parameterisation and denote it ω ∈ Ω.6

The difference to the previous chapter is that there are no direct costs of effort and players

face a strict budget constraint over all the conflicts they are involved in.7 This budget is

denoted Ri = R > 0 and assumed to be symmetric across players.8

The payoff function is thus simply the sum of values of all conflicts weighted by their

4Think of this as the ratio of efficiencies relative to the weakest player w, given by ai
aw
≥ 1. This assumption

avoids problems with typical cost functions later. For most of our results it is not essential.
5The requirement of concavity for the CSF translates into the following condition on f(.):

f ′′(aixij)(f(aixij) + f(ajxji))− 2f ′(aixij) < 0.
6This is a slight abuse of notation. In fact ω is the whole set {(λ1111b, λ2111n)|(λ1, λ2) ∈ R2

++}, where 111k is a
k × 1 vector containing only ones. Our results hold for any element of this set.

7Since the marginal returns on each conflict are strictly increasing in own allocated resources, each player
exerts the total amount Xi = R across all conflicts even when constraint is not strict. We assume this here in the
setup of the model to avoid the full characterisation of the best response function for the strategically irrelevant
case when opponents choose Xi < R. See Kovenock and Rojo-Arjona (2019) for a discussion.

8Introducing asymmetry in this parameter is conceptually straightforward but does not change the model
strategically. Defining all strategies as x̃ij = aixij , the budgets in our model become R̃i = R

ai
. Thus, different

budgets are one interpretation of differences in efficiencies in this model.
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respective probabilities of winning.

Πi(xi,x−i,G) =
∑
j∈Ni

πij =
∑
j∈Ni

pijvij

2.3 Equilibrium Analysis

The maximisation problem in this model is given by

max
{xij}j∈Ni

Πi(xi,x−i,G) s.th.
∑
j∈Ni

xij = R.

There are no direct costs. Thus, increasing the effort level on one conflict only induces oppor-

tunity costs from reducing effort in another conflict. These opportunity costs across conflicts

are mediated solely through the curvature of the CSF. The optimal amount of effort for each

player i ∈ I for every pair of conflicts (ij) and (ik) is characterised by

vik
vij

=
f ′(aixij)f(ajxji)

f ′(aixik)f(akxki)

(f(aixik) + f(akxki))
2

(f(aixij) + f(ajxji))2
.

We see that the level of valuations a player holds for different conflicts, say, a common

factor c, would cancel. Only relative valuations matter when deciding how to distribute the

fixed amount of total effort across conflicts. As in the previous chapter, players’ marginal

benefits are shaped by the effort exerted by their direct rivals but also their rivals’ rivals and

so on. This interdependency, induced by the cost function, determines how an individual

reacts to changes in some of the parameters of the environment. Some of the behavioural

implications thus occur even though a player’s preferences (here meaning valuations) are

not directly altered. Our result of impossibility to derive the equilibrium in closed form

stated in the previous chapter and Cortes-Corrales and Gorny (2018), is valid in this setting.

As players cannot increase or decrease their total effortsXi to any other level thanR, play-

ers might have a problem equalising marginal revenues across conflicts. To see what that

implies about interiority, consider Figure 2.3.1 . Let MΠi denote player i’s marginal payoff.

A player i, for whom di = 2, can pin down her decision on both conflicts by choosing only

xi1 since xi2 = R − xi1. The figure shows her marginal payoffs on both conflicts. Since they

are both decreasing in the respective effort, the marginal payoff on conflict 2 is increasing

in xi1. With MΠi1 (solid downward-sloping line), player i has enough endowment to bal-

ance her marginal payoffs. She can reach the intersection of the two functions within her

budget constraint. Suppose we increase the conflict value from vi1 to v′i1 > vi1. This results

in the dotted line MΠ′i1. Now, it would be optimal to spend all resources on the conflict

with the higher marginal revenue. That would seemingly result in a corner solution. But
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R

MΠi1

MΠ′i1

MΠi2

xi1 = R− xi2

MΠ

Figure 2.3.1 : Marginal Payoffs for a Player with 2 Conflicts
Note: The solid line at xi1 = R represents the budget constraint. The solid curves represent the marginal
payoffs before increasing vi2. The dotted line shows the marginal payoff of conflict 2 after the change.

since an effort of 0 on the other conflict cannot be an equilibrium (we use the same CSF as

in the previous chapter), an equilibrium, if it exists, can only be in mixed strategies.9 We

want to avoid running into this problem to analyse pure strategies and apply similar tech-

niques as in Chapter 1. Note that this is not only a restriction on R alone. The marginal

payoffs increase in the valuations and efficiencies, this also restricts the relative values vi1
vi2

and efficiency parameters (i.e., ai and aj). This mutual restraint can be characterised more

precisely.

Essentially, we want to make sure that any pair of two marginal payoffs intersects for any

effort choice on the interval [0, R]. Take some player i ∈ I, and denote the highest valuation

she holds with vih = max{vij |j ∈ Ni}. The highest marginal payoff that player i can get in

the conflict against h when xih = R is

max
xhi≤R

∂Πi(xi,x−i,G)

∂xih

∣∣∣∣
xih=R

=

1
4
aif
′(aiR)

f(aiR) vih if ai
ah
≤ 1

aif
′(aiR)f(ahR)

(f(aiR)+f(ahR))2
vih if ai

ah
> 1

.

Since the first order condition of this problem is given by

∂Πi(xi,x−i,G)

∂xih∂xhi
=
aiahf

′(aixih)f ′(ahxhi)(f(aixih)− f(ahxhi))

(f(aixih) + f(ahxhi))3

!
= 0,

the argument that solves it is xhi = ai
ah
xih, meaning that the highest marginal payoff for a

specific conflict is achieved when winning probabilities are the same for both players.

Equally well, on the conflict where i holds the lowest valuation vil = min{vij |j ∈ Ni}, we

9Whether it would be a strict mix of strategies for all players or only for a set of players is not clear though.
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can find the minimal marginal payoff under any profile where xih = R as

min
xli≤R

∂Πi(xi,x−i,G)

∂xil

∣∣∣∣
xil=0

=
aif
′(0)

f(alR)
vil

When this marginal payoff (denote it MΠij for some conflict (ij)) is larger than the one on

(ih) when xhi = min{ aiahxih, R} = min{ aiahR,R}, then player i has an incentive to divert

resources to other conflicts, since MΠiq ≥MΠil under this profile for q 6= h. Thus, we want

to assert that

min
xli≤R

∂Πi(xi,x−i,G)

∂xil

∣∣∣∣
xil=0

> max
xhi≤R

∂Πi(xi,x−i,G)

∂xih

∣∣∣∣
xih=R

To complete this argument, one has to notice that for xih = 0 and xhi = R, we have

MΠih ≥ MΠiq for all k 6= h. This implies that each player can achieve MΠij = MΠiq

for all {j, k} ∈ Ni. If that holds, we can use the same techniques as in the former proof to

obtain the following result.

Proposition 2.1.

A set of locally unique, interior, pure-strategy Nash equilibrium exists for any ω ∈ Ω, which is such

that for all i ∈ I we have

vil
vih

>
1

4

f(alR)

f(aiR)

f ′(aiR)

f ′(0)
. (2.1)

The solution function x(ω) : Ω 7→ R2b
++, mapping any parameter ω into a Nash equilibrium x(ω),

is at least C2 and its derivative is given by

Dx(ω) = − [DxF (x(ω);ω)]−1DωF (x(ω);ω). (2.2)

There exists an open neighbourhood around any strictly symmetric ω ∈ Ω, such that the correspond-

ing equilibrium is globally unique.

Therefore, the interplay of conflict values, the initial endowment and properties of the

impact function f(.) determine whether the game has equilibria with the stated properties.

This condition is also interesting in light of a result by Friedman (1958) and its critical

appraisal in Kovenock and Rojo-Arjona (2019). The latter provides an example in which

the best response functions obtained in Friedman (1958) result in negative efforts and give

a full characterisation of the best responses with zero efforts for certain distributions of the

opponent’s efforts. The difference to our model is, that the total amount of all effort against

player i (across all her conflicts), can be as large as diR, while in a Colonel Blotto game it

is limited to R, since all conflicts are shared with the same opponent. For a pure strategy
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equilibrium, this cannot be relevant. A conflict with zero efforts either, in case of exactly one

player exerting zero effort, requires a ‘smallest effort’ which does not exist, or both players

have a profitable deviation, when both of them exert zero effort. Our condition is essentially

ruling out, that a best response of zero is strategically relevant.10

Two extreme cases for the assumptions on f(x) come to mind. If we assume that the

impact of the first marginal unit of effort is arbitrarily large, that is limx→0 f
′(x) =∞, there is

no bound on budgets and valuations anymore. The canonical case of f(x) = xr for r ∈ (0, 1)

has this property.

This immediately also points at a limitation of the proposition as it provides an empty set

of parameters for existence and uniqueness whenever f ′(0) is arbitrarily small or even 0.

The case f(x) = xr for r ∈ (0, 2) satisfies this and we cannot provide an insight in models

that use this functional assumption. To restate this more clearly, the above result provides a

sufficient condition for the existence of this type of equilibria, but examples where it is not

necessary do exist.

For the rest of the chapter we shall assume that f ′(0) is sufficiently bounded away from 0

such that it provides a possible choice of budgets, valuations and efficiencies that guarantee

that the model is well-behaved.11

The qualitative implications for k-regular networks – a network in which every player i ∈ I

has di = k > 0 – found in the previous chapter and Cortes-Corrales and Gorny (2018), all go

through in this setting as long as the above condition is met. More specifically we have the

following.12

Proposition 2.2.

In a k-regular network the partial derivatives around the equilibrium at an arbitrary strictly sym-

metric parametrisation ω ∈ Ω can be obtained analytically as

∂xij
∂vij

= −(k − 1)

k

ap1

z
> 0

∂xil
∂vij

=
1

k

ap1

z
< 0 for all l 6= j

∂xij
∂ai

= 0 (2.3)

for all i ∈ I and (ij) ∈ B where z = a2p11v. All other partial derivatives vanish.

Note that this result also obtains from taking the derivatives in Proposition 2 of Cortes-

Corrales and Gorny (2018) for C ′′(X) → ∞. This gives rise to a cost function that allows to

10Applying the same reasoning as above to the Blotto Game, in fact results in vil
vih

> di−1
4

.
11In fact from vil

vih
≤ 1 due to the definition of those valuations, we know that we need to require f ′(0) >

1
4
f(alR)
f(aiR)

f ′(aiR) for all i.
12We omit the proof here as it is almost identical to the one of Proposition 1.1.
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account for both cases without assuming a discontinuous setting as in Kovenock and Rober-

son (2012). The following is an example of a cost function with ρ > 1 that can accommodate

both cases by allowing c′′(Xi) to approach infinity as Xi approaches R.

c(Xi) =
1

ρ

(
Xi

R

)ρ
(2.4)

Consider Figure 2.3.2 . For any Xi < R, the level of costs and the marginal costs get closer

to 0, while large Xi > R lead to large c(Xi) and c′(Xi). As ρ → ∞ we arrive at the budget

constrained setting discussed in this chapter. While for arbitrarily large levels of convexity

R
Xi

c(Xi)

Figure 2.3.2 : Different Degrees of Cost Convexity

we have the same results as in the previous chapter and Cortes-Corrales and Gorny (2018).

Some of these results change qualitatively when approaching infinity. The main benefit of

this model becomes apparent when we turn to the classical case of a lottery contest success

function with f(x) = x, as it allows us to describe each individual’s behaviour given a set of

opponents’ effort levels.

2.4 Best Response Functions

The technical reason for a budget constraint is, that it provides one more degree of freedom

when solving the first order conditions of each player. While this is slightly at odds with

the finding that existence of finitely many, locally unique equilibria can fail as opposed to a

setting with convex costs, it does hold for deriving individual best response functions.

The standard lottery CSF (Tullock, 1980), that obtains for f(x) = x with equal splits to

resolve ties, is given as

pij = p(aixij , ajxji) =


aixij

aixij+ajxji
if (xij + xji) 6= 0

1
2 if(xij + xji) = 0.
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We can now derive the best response functions that depend only on the characteristics of

player i and her direct opponents j ∈ Ni.

Proposition 2.3.

With the CSF as defined in 2.5, the best response functions are given by

xBRij ({xli ∀l ∈ Ni}) =
Ri +

∑
m 6=i,j xli

1 +Aij
− xji

1 +A−1
ij

(2.5)

for all (ij) ∈ B, where Aij :=
∑

l 6=i,j

√
vil
vij

√
xli
xji

.

We suggest the following algorithm to solve the system of equations (for shorter notation

we call this system xBR here) given by Proposition 2.3.

Algorithm 1.

Choose some small δ > 0 as your convergence criterion and proceed through the following steps.

1. Initialise vector x0 ∈ R2b
++

2. Obtain xτ+1 = xBR(xτ )

3. Compute δ = |xτ+1 − xτ |

4. If δ > δ, continue with step 2.

5. If δ ≤ δ, stop and return xτ+1 as the solution.

We test this algorithm under the condition stated in proposition 2.1 for a canonical set of

functional assumptions.13

Numerical Observation 1.

We fix R
∑

i∈I ai = 1000,
∑

(ij)∈B vij + vji = 8000 and allow for vij ∈ [0.5v, 1.5v] with v = 8000
2b

and n ∈ {3, ..., 50}. Using 10,000 random draws of parameters (ai’s, vij ’s, n and G’s)14 that fulfil

the above properties and condition (2.1), as well as 10,000 random draws for the initial vector x0,

Algorithm 1 never failed to converge.15

13This exercise was done with MATLAB (2018) and code is available from the authors upon request.
14The latter was done by rounding uniform random matrices on [0, 1] to the nearest integer and setting the

diagonal elements to 0’s, which provides us with an adjacency matrix.
15As an example what happens outside of condition (2.1), consider a complete network with n = 3, R = 1,

ai = 1 for all i and choose v13 = 8 and vij = 1 for all (ij) 6= (13). We get the following cycle of iterations for any
x0 >> 0.

 0.07 0.93
0 1

0.467 0.533

  0 1
0.356 0.644
0.508 0.492


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One can speed this algorithm up by also considering the value of the normalised first

order conditions at each xN .

2.5 Revisiting Earlier Results

In Chapter 1 we conducted comparative statics around the symmetric parametrisation. With

the algorithm at hand we can test some of these Propositions that are stated in terms of open

neighbourhoods. A natural question that emerges is how large these neighbourhoods are

and whether results carry over to stronger forms of asymmetry.

Let us restate Proposition 1.7 here before we investigate its robustness numerically.

Proposition 2.4 (Proposition 1.7).

Fix a k-regular network and some i, j ∈ S. Let ω′ = (v, ..., vij = v+ ε, ..., v, a, ..., a). Furthermore,

let ∆xlq = xlq(ω
′) − xs for any l, q ∈ S. There exists some ε > 0 such that the equilibrium x(ω′)

for all h,m ∈ S\{i, j} satisfies

∆xij > ∆xjh,∆xhj ,∆xhm > 0 > ∆xji,∆xhi > ∆xih (2.6)

Consider Figure 2.5.3 . On the y-axis we see the ratio of player i’s valuation versus the

symmetric valuations of all players −i. The lowest value shown here is 1, i.e., the strictly

symmetric case, and the highest value is 4, which is the threshold according to Proposition

2.1. The dark grey area are the combinations of valuations and numbers of players n in

the model, that result in equilibrium effort levels that are consistent with the inequalities

in Proposition 1.7. The light grey are represents the area where at least one of them is not

fulfilled.

For low numbers of players, the numerical investigation suggests that Proposition 1.7 can

apply to the entire range of parameters for which an equilibrium is guaranteed to exist. As

the number of players increases, higher levels of asymmetry cause the result to fail.

For efficiencies the previous chapter provided the result that if there is a stronger player

(ai > a−i = a), around the symmetric equilibrium, the remaining players decrease their

efforts against the strong player and fight each other more fiercely. Again, we restate the

proposition here for expositional purposes.

Proposition 2.5 (Budget Constraint Version of Proposition 1.6).

Fix a k-regular network and some i ∈ S. Let ω′ = (v, ..., v, a, ..., ai = a+ ε, ..., a). Furthermore, let

∆xlq = xlq(ω
′) − xs for any l, q ∈ S. There exists some ε > 0 such that the equilibrium x(ω′) for
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Figure 2.5.3 : Areas in which Proposition 1.7 Holds or Fails
Note: For each n we computed the equilibrium for 5000 evenly spaced values for vi

v
in the segment [0, 4].

all j,m ∈ S\{i} satisfies

∆xjm > 0 > ∆xji

Due to expression (2.3), we have ∆xij = 0.

Note that the change in efforts for players −i is solely induced by the change of effective

efforts (aixij) of player i, since with the budget constraint xs = 1
di
R for all j ∈ Ni cannot

change.

The corresponding graph to Figure 2.5.3 is omitted since it shows a plain dark grey area

for all parameters we tested.16 It seems thus to be fairly easy to find a wider range of pa-

rameters for which Proposition 1.6 holds that are further away from the strictly symmetric

parameterisation.

2.6 A Few Further Interesting Examples

Two types of results are yet hard to be established in general. One concerns the effect that the

degree di has on the players’ strategies, particularly when these are asymmetric. Another

question is how asymmetry can affect payoffs compared to players that are symmetric to

one another. The following sections shed light on this by employing the above algorithm to

two interesting examples.

16Again, we increased only player i’s efficiency starting from 1
4
awhile holding a constant for all−i. According

to Proposition 2.1 the upper boundary for ai is 4 in this case as well.
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2.6.1 The Enemy of My Enemy Is My Friend: Centrality as a Determinant of

Strength

Suppose all valuations, efficiencies and budgets are equal to 1. To have a benchmark case

consider the two disjoint networks in Figure 2.6.4 . The number next to each player indicates

1

2

3

4

5

67

8

1

1

1

1

1

1
1

1

Figure 2.6.4 : Two Disjoint 4-Player Ring Networks
Note: The graph shows payoffs in equilibrium for v = 1, a = 1 and R = 1 outside of the nodes.

the level of payoff she is receiving in equilibrium. The payoffs are equal to 1 here since every

player receives the prize of value 1 with probability 1
2 on two conflicts.

Now suppose we link the two players from both networks whose nodes are closest to each

other, i.e., players 4 and 7. The increase in payoffs for the connected players is mainly due to

1

2

3

4

5

67

8

0.99

1.10

1.10

1.30
1.10

0.99
1.30

1.10

Figure 2.6.5 : Ring-Player 4 versus Ring-Player 7

the additional prize that they can win. If we adjust this payoff with the number of conflicts,

we see that on average, these players have a lower expected payoff per conflict.

1

2

3

4

5

67

8

1.57

1.57

1.57

1.79
1.57

1.57
1.79

1.57

Figure 2.6.6 : Complete-Player 4 versus Complete-Player 7 Network

More interestingly, the payoffs of the two players on the outside (1 and 6) have reduced.

Since the increase in player 4’s and 7’s opponents has made them weaker, our earlier intu-

ition applies and players 2,3 and 5,8 attack the outside players 1 and 6 more fiercely, respec-

tively. One could say that ‘the enemies of my enemies’ enemies’ are also my enemies’.

The main reason for the outside players to lose from that change in the network is due

to the fact that they cannot attack the relatively weak central players. If we change that by
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1.57

1.57

1.57

1.72
1.10

0.99
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1.10

Figure 2.6.7 : Complete Player 4 versus Ring-Player 7 Network Player

making both sides of the network complete, we see that now players 4 and 7 are the only

ones that loose on average (1.79
4 < 1.57

3 ).

2.6.2 Asymmetric versus Symmetric Teams

Consider a bipartite network with three players on each side as illustrated in figure 2.6.8 .

Let all valuations be v = 1 and let budgets be R = 3.17 Team A has efficiencies ai = 4 for

i ∈ {1, 2, 3} and team B has efficiencies (a4, a5, a6) = (6.5, 4, 1.5). Note that the condition

in Proposition 2.1 is satisfied for these values. Each of the players from team B is facing

1

2

3

4

5

6

Team A Team B

Figure 2.6.8 : Bipartite Network Structure: Team A vs. Team B

a set of homogenous players and thus their strategies are simply given by (1, 1, 1), which

is the equal split of their budget (R = 3) over their three conflicts. The behaviour for the

homogenous players can be seen in Figure 2.6.9 . We use player 2 to exemplify the strategies

of all players in team A, since they all face the same problem. As in our earlier results, we

see that the efforts are higher, the more similar an opponent is with respect to efficiencies,

since a
a6

= 64
24 >

a4
a = 39

24 >
a5
a = 1.18

Calculating the payoffs from the these effort levels we find

ΠA =
3∑
i=1

Πi <
6∑
i=4

Πi = ΠB

17Since the symmetric equilibrium is 1
di
R, these numbers provide better numbers in terms of presentation.

Any other parametrisation that is qualitatively the same has produced the same results in our experimentation
with the algorithm.

18We compare max{ai
a
, a
ai
} for all i ∈ {4, 5, 6} here, as only the factor of the ratio matters.
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1
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Team A Team B

Figure 2.6.9 : Homogenous Team A vs. Heterogenous Team B

Thus, if there are two teams in which each player individually decides on the amount of

effort to spend, asymmetries can help the team to perform better in total. Individually, the

strong (i = 4) and the weak (i = 6) player have higher payoffs than all other players in

the game. The payoffs of player 1 to 3 are naturally identical and greater than the medium

strength player (i = 5) in the heterogenous team.

2.7 Conclusion

We have introduced budget constraints into a model of conflict networks. Whenever strate-

gies are guaranteed to be interior, earlier results about existence and uniqueness apply. A

sufficient condition is presented for when interiority holds. When the CSF rewards very

small efforts sufficiently it is always satisfied. For a canonical case we provide an algorithm

that seems to converge to the Nash equilibrium, whenever the initial vector of efforts is

strictly positive and below each player’s budget. This algorithm allowed us to investigate

‘how large’ the neighbourhoods around symmetric parameterisations are in which former

results were obtained. We show that there exist a large number of cases were they do and

provide further examples that could not yet be solved for theoretically. Two examples were

considered numerically, using the algorithm, that could not be studied before theoretically

within this class of models.

This chapter can give a foundation for two-stage models, in which the military budget is

decided in stage one and the military interaction takes place in stage two. This can extend

papers like Neary (1997), who have analysed such dynamic questions in a simpler frame-

work that does not account for network effects of more distant conflicts. Since techniques

like backward induction rely on stage payoffs, the algorithm provided allows to conduct

such an analysis.

More generally, as the baseline model with convex costs is technically more intractable,

any results based on the analysis provided here can provide the field with intuition about

the general class of models to then be theoretically investigated.
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2.A Proofs

Proof of Proposition 2.1

The steps in the main text have established that for any choice of ω that fulfils the condi-

tion provided in the proposition, the solution is described by the FOCs of the maximisation

problem.

Existence follows from the assertions. The game has a finite set of player and continu-

ous payoff functions, when employing the given CSF. These payoff functions are strictly

concave. Thus, it is given by the system of first order conditions of the Lagrangian given by

L ({xij}j 6=i, λi,G) = πi({xij}j 6=i, {xji}j 6=i) + λi

Ri −∑
j 6=i

xij

 ,

which obtain as

Fij = aip
1
ijvij − λ

!
= 0 ∀j 6= i (di ×MΠij)

Fii = Ri −
∑
j 6=i

xij
!

= 0, (Budget)

for all i ∈ I.19

The entire system of equations is denoted by F = (Fij |(ij) ∈ B). To complete the proof

we want to verify that the determinant of the Jacobian H = DxF of this system is positive,

with altering signs for its leading principal minors, irrespective of the choice of ω. This

establishes negative definiteness of H and thus concavity of payoffs.

det(H) > 0 ∀ω ∈ Ω.

The determinant of the Hessian of player i is given by

Hi =



a2
i p

11
i1 vi1 −1

. . . −1

a2
i p

11
ij vij −1

. . . −1

a2
i p

11
idi
vidi −1

−1 −1 −1 −1 −1 0


19Denoting the budget constraint as Fii is a slight abuse of notation, as this does not refer to the conflict of

player i against herself. We merely use it as it is consistent with the other notation and ‘available’ as a shorthand.
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All the entries not shown here are zero. Due to this and the zero entry in the bottom right

corner (the derivative of the budget constraint w.r.t. λi) there is no permutation greater than

one that leaves a nonzero diagonal product. Thus the determinant of this matrix is given by

det(Hi) = −
∑
j∈Ni

∏
q∈Ni\{j}

a2
i p

11
iq viq

which is negative whenever di is even and positive whenever di is odd. Deleting the last

row and column, the determinant of that new matrix is simply given by

∏
j∈Ni

a2
i p

11
ij vij ,

which is positive whenever di is even, and negative whenever di is odd. All the remaining

leading principal minors obtain from removing one a2
i p

11
ij vij from the product. Thus the

sign alternates and we conclude that Hi is negative definite and thus the payoff functions

are strictly concave.

The matrix H than obtains as a block matrix that has all Hi on the diagonal and all off-

diagonal blocks are identical to expression (1.10) from the previous chapter. Since there is

no negative summand coming from a second derivative of a cost function, the same logic as

there applies and we can conclude that det(H) > 0 for all ω ∈ Ω.

Finally, note that the function given by Rosen (1965), obtains as

σ(x, r) = r
∑
i∈I

πi = r
∑
i∈I

pijvij , (2.7)

which is concave, by the concavity of the individual payoff functions.

All the remaining steps are identical to the proof of Proposition 1.1.

Proof of Proposition 2.3

Equating any two of the di first order conditions derived in the preceding proof, say q and

m yields

xqi
xmi

=

(
xqi + xiq
xmi + xim

)2 vim
viq

⇔xim =

√
vim
viq

√
xmi
xqi

(xqi + xiq)− xmi
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Now we sum up over all m 6= i, q to arrive at the following expression, using the budget

constraint.

Ri − xiq =

 ∑
m6=i,q

√
vim
viq

√
xmi
xqi

 (xqi + xiq)−
∑
m 6=i,q

xmi

⇔

1 +
∑
m6=i,q

√
vim
viq

√
xmi
xqi

xiq = Ri +
∑
m 6=i,q

xmi −

 ∑
m 6=i,q

√
vim
viq

√
xmi
xqi

xqi

Dividing by the factor in parenthesis that precedes xiq and noticing that all maximisation

problems are symmetric (though not identical) we arrive at the 2b best response functions

for each player against each opponent.

xiq =
Ri +

∑
m 6=i,q xmi

1 +
∑

m 6=i,q

√
vim
viq

√
xmi
xqi

−

∑
m 6=i,q

√
vim
viq

√
xmi
xqi

1 +
∑

m 6=i,q

√
vim
viq

√
xmi
xqi

xqi

=
Ri +

∑
m 6=i,q xmi

1 +
∑

m 6=i,q

√
vim
viq

√
xmi
xqi

− xqi

1 +

(∑
m6=i,q

√
vim
viq

√
xmi
xqi

)−1

More precisely, defining A :=
∑

m 6=i,j

√
vim
vij

√
xmi
xji

, we have the desired result.

2.B MatLab Code

MatLab Code 2.1: Script for Best Response Functions

1 func t ion [ fx ]= bes t responses ( x , v , R , n , a )

2

3 %In t h i s funct ion x i s the matrix of e f f o r t s , i t must be a nxn

matrix with

4 %zero diagonal , v i s the matrix of e f f o r t s ( think of t h i s as a

weighted

5 %adjacency matrix , thus v _ i j = v _ j i =0 means t h a t p layers do not have

a c o n f l i c t )

6 %must be a nxn matrix with zero diagonal , R i s the budget , i t must

be a

7 %p o s i t i v e s c a l a r , n i s the Number of Players , a i s the vec tor of

the n

8 %e f f i c i e n c i e s . The output fx i s the ( nxn ) matrix of bes t responses

f o r the

9 %( nxn ) input of e f f o r t s in x .
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10

11 fx=zeros ( n , n−1) ;

12

13 f o r i =1:n

14 f o r j =1 :n

15 i f j == i

16 fx ( i , j ) =0 ;

17 e l s e

18 fx ( i , j ) =(R( i , 1 ) +1/a ( i ) ∗ (sum( a . ∗ x ( : , i ) )−a ( j ) ∗x ( j , i ) ) )

/(1+(1/( s q r t ( a ( j ) ∗v ( i , j ) ) ∗ s q r t ( x ( j , i ) ) ) ) ∗ ( s q r t ( a ’ . ∗ v ( i

, : ) ) ∗ s q r t ( x ( : , i ) )−s q r t ( a ( j ) ∗v ( i , j ) ) ∗ s q r t ( x ( j , i ) ) ) ) − . . .

19 ( ( a ( j ) /a ( i ) ∗x ( j , i ) ) / (1+( (1/( s q r t ( a ( j ) ∗v ( i , j ) ) ∗ s q r t ( x ( j ,

i ) ) ) ) ∗ ( s q r t ( a ’ . ∗ v ( i , : ) ) ∗ s q r t ( x ( : , i ) )−s q r t ( a ( j ) ∗v ( i , j

) ) ∗ s q r t ( x ( j , i ) ) ) ) ^(−1) ) ) ;

20 end

21 end

22 end

23

24 f o r i 1 =1:n %This part i s only r e l e v a n t i f parameters are outs ide

condi t ion ( 2 . 1 )

25 f o r j 1 =1:n

26 i f fx ( i1 , j 1 ) <0

27 fx ( i1 , j 1 ) =10^(−14) ;

28 e l s e i f fx ( i1 , j 1 ) >R( i1 , 1 )

29 fx ( i1 , j 1 ) =R( i1 , 1 ) ;

30 end

31 end

32 end

33

34

35 end

MatLab Code 2.1: Script for Best Response Functions

MatLab Code 2.2: Script for Algorithm 1 (for budget constrained networks)

1 func t ion [ x , e f ]= bcnalgorithm ( v , R , n , a , varargin )

2

3 %In t h i s funct ion x i s the matrix of e f f o r t s , i t must be a nxn
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matrix with

4 %zero diagonal , v i s the matrix of e f f o r t s ( think of t h i s as a

weighted

5 %adjacency matrix , thus v _ i j = v _ j i =0 means t h a t p layers do not have

a c o n f l i c t )

6 %must be a nxn matrix with zero diagonal , R i s the budget , i t must

be a

7 %p o s i t i v e s c a l a r , n i s the Number of Players , a i s the vec tor of

the n

8 %e f f i c i e n c i e s . The e x i t f l a g e f i s 1 in case of convergence and 0

9 %otherwise . I n i t i a l vec tor f o r x_0 can be provided in varargin ,

d e f a u l t i s a matrix of ones .

10

11

12 i f isempty ( varargin ) ==1

13 x_in=ones ( n , n ) ;

14 x_in ( 1 : n+1: end ) = 0 ;

15 e l s e

16 x_in=varargin { 1 } ;

17 end

18

19 i t e r s t e p =0;

20 d=10;

21 e f =0;

22

23 while d>=10^(−13) && i t e r s t e p <1000

24

25 i t e r s t e p = i t e r s t e p +1;

26 x_out=n3nbudgeteff ( x_in , v , R , n , a ) ;

27 d=max(max( abs ( x_in−x_out ) ) ) ;

28 x_in=x_out ;

29

30 end

31

32 i f i t e r s t e p <1000

33 e f =1;

34 end
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35

36 x=x_in ;

37

38 end

MatLab Code 2.2: Script for Algorithm 1 (for budget constrained networks)
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Chapter 3: Social Preferences in Contests with Heterogenous Players

Paul M. Gorny‡

Abstract

We analyse models of social preferences in lottery contests. Players can either com-

pare ex-ante expected payoffs/shares of total payoff or ex-post (consequentialist) pay-

offs conditional on winning or losing. Also, they might or might not take costs into

consideration. We derive the best response functions for all four resulting models and

the equilibria, whenever possible. We find that the ex-ante setting with cost comparison

predicts lower total efforts than the setting without costs, when players are ‘spiteful’.

Both models can have continua of equilibria. We show that those are not robust to het-

erogenous perceptions of fairness. We present numerical evidence that overspreading

of bids is less pronounced under the ex-ante formulation. Incorporating costs in the

ex-post model increases total efforts, but excluding them makes the model the most

tractable presented here. The strong player might exert the highest effort when costs are

asymmetric, which is at odds with the standard model. This can have implications for

the design of contests when effort is desirable. We critically assess previous attempts to

implement the models with experimental data.

JEL: C72, D84

‡University of East Anglia, P.Gorny@uea.ac.uk
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3.1 Introduction

When fighting or competing with others, we have a sense of how deserving our opponents

are. If they tried hard it is easier to accept to have lost, while a win of someone who, at

least subjectively, did not deserve to win, is seen as unfair. This applies when sportspeople

indicate that their opponents, or even themselves, did not deserve to win (see e.g. Dominic

Thiem’s assessment of not deserving ending up in the ATP semi-finals last year). If a co-

worker is receiving the promotion one was after, this is particularly bitter, if a lot of work

was put in.

While this post-competition behaviour is observable, the question remains, whether these

considerations are already made when deciding on how much effort to exert in the com-

petition in the first place. Do we typically internalise the costs our opponents have when

determining what a fair outcome is? Or are we solely focussed on the distribution of the

price? Since costs differ with the level of ability, this might affect efforts in different ways

depending on whether we have these concerns or not.

Think of a two competing workers A and B in a company who seek to get promoted.

Suppose A has a higher likelihood of getting the promotion but is also staying in the office

a lot longer than B. Depending on how much longer A stays, B might consider the eventual

promotion of A as unfair, as fair or even feel guilty for being considered in that competition

at all, given her relatively low effort.

Another question is how much individuals acknowledge their position as favourite or un-

derdog in the competition. Do they assume straightaway to win against a weaker opponent

and base their considerations on the expectation to face advantageous inequality? Or do

they weigh the possibilities of winning and losing? The former is a comparison based on an

ex-ante expectation of the outcome and thus, once formed, easy to compare. Technically, if

A expects to win £10 in a lottery and expects B to win £5, there is no scope for disadvanta-

geous inequality concerns for A. In contrast, in the ex-post view, if A sees a certain chance of

winning the lottery while B loses, and a certain chance that the opposite happens, A weighs

the concerns for advantageous inequality (from hereon AI) and disadvantageous inequal-

ity (from hereon DI) with the respective probabilities. There are two sources for where this

distinction can come from.

For probabilistic contests, the ex-post view is clearly the more conventional application of

standard expected utility. The argument for an ex-ante formulation in such a game can come

from the results under strong forms of cost asymmetry. While the ex-post setting allows for

concerns for AI and DI to be present in both players, even if the strong player is clearly
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much more likely to experience AI rather than DI, the ex-ante models suggest that only the

AI concern matters for the strong player. Consider another example. A professional chess

player P playing against an amateur A. Both players are well aware of the P’s advantage.

The eventual behaviour under social preferences should exhibit concerns for AI for P and

concerns for DI for A. The game they are playing is an ‘unfair procedure’ to determine a

winner. Even though A is still most likely to lose the match, P might give A a chance. Thus,

the players do not care about the outcome, which is the same (P wins and A loses). Rather,

they care about how badly A loses against P and try to reduce this difference. There is

evidence for this preference for procedural fairness, i.e., whether the procedure leading to a

certain distribution of resources is fair (Konow, 2003).

A much clearer case can be made for share contests. In this type of contests, instead of

winning the prize with a certain probability, players receive a share of the prize. This share

is proportional to their effort. It is not possible that both players exert positive effort and

one of them receives the full prize. Thus, the consequentialist payoffs from a probabilis-

tic contest are meaningless in this framework. With standard preferences, the distinction

between probabilistic and share contests is made in their interpretation. They are mathe-

matically the same. When social preferences are invoked, this is no longer true (Fudenberg

and Levine, 2012). This type of contest can be observed frequently in reality, e.g., in rent

seeking, competition for market shares and litigation.

This paper contrasts the resulting four different model specifications of comparing rev-

enues vs. net-payoffs and making ex-ante vs. ex-post comparisons, respectively. We discuss

the standard theoretical properties of existence, equilibrium characteristics and compara-

tive statics with respect to cost asymmetry. Further, we discuss a few implications some of

these properties have for using social preferences in the analysis of experimental data. Typ-

ical phenomena in the lab are overspending, overdissipation and overspreading. Overspending

refers to substantially higher bids than the the Nash equilibrium prediction of the stan-

dard model. These also do not converge to the Nash prediction over repeated interaction

(Sheremeta, 2013). If it is very pronounced, subjects exert more total effort than the value

of the prize, also known as overdissipation. Overspreading refers to bids varying widely

across the strategy space, which cannot easily be explained by small decision errors (Chowd-

hury et al., 2014). The models presented here can shed light on some of this behaviour. We

intend to highlight, which models fail to account for (parts of) them. As such, we also dis-

cuss the practical use of the models. A procedure that has been used in the literature, is

found to be problematic when considering cost asymmetries. Consider Table 3.1. Two of

the specifications we just sketched have already been studied in the literature. Comparing

them in terms of the different notions of expectations and cost considerations, reveals that
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Specification Ex-Ante Ex-Post

Revenues
Model AR

Model PR
(Hoffmann and Kolmar, 2017)

Net Payoffs
Model AC

Model PC
(Revenues - Costs) (Herrmann and Orzen, 2008)

Table 3.1: Different Models
Note: Names indicate whether model is ex-Ante or ex-Post and whether Revenues are considered without or

with Costs

moving between them alters two modelling choices at a time. When using a model of rev-

enue comparison, only an ex-ante/share model is available. When choosing net-payoffs as

the basis of social comparison, this is so far only modelled with ex-post comparison. For a

proper discussion on how these aspects contribute to the analysis of behaviour in contest,

theoretically and experimentally, Models AC and PR are needed.

In the seminal paper of Fehr and Schmidt (1999), an agent’s utility is given by:

Ui(πi, π−i) = πi − αi max {π−i − πi, 0} − βi max {πi − π−i, 0} (3.1)

where πi is the material payoff to player i, the preference parameters for disadvantageous

and advantageous inequality are respectively given by αi > 0 and βi ≤ αi. The term π−i rep-

resents some summary measure of the payoff of the other player(s), typically the arithmetic

mean.

In research with environments where cooperative elements are present, it is often assumed

that βi is non-negative (Anderson et al., 2002, See e.g.). This amounts to assuming that indi-

viduals have, at least to some extent, altruistic motives. An individual can have a detrimen-

tal contribution to her utility if she overreaches others in her surrounding. The behaviour

of individuals in conflict differs systematically from these settings. Spite is the enjoyment

deriving from advantageous inequality. Herrmann and Orzen (2008) suggest that it is present

in contest settings in the lab. Formally, this amounts to assuming αi ≥ |βi| while allowing

for βi < 0. We use the terms by Hoffmann and Kolmar (2017) and refer to an individual

with

• ...αi > 0 and βi > 0 as inequality averse,

• ...with αi > 0 and βi < 0 as inequality prone or spiteful and

• ...with α = 0 and β = 0 as selfish.

Conflict and competition are often formally modelled as contests, where players spend

costly resources to improve their winning probabilities for a prize of given value. The net

Paul M. Gorny 91 UEA - School of Economics



Chapter 3: Social Preferences in Contests with Heterogenous Players

expected payoff to a contestant is the probability-weighted sum of his or her net payoffs

in the mutually exclusive events of a win and a loss. While there are studies on how social

preferences can be implemented on probabilistic games or decision problems (see Levitt and

List (2007) for a survey of these), contests differ in an important aspect from other choice sit-

uations. The afore-mentioned studies focus on random events with fixed probabilities, that

are exogenously given or determined by nature. In a probabilistic contests, both, the ex-post

payoffs as well as the ex-ante probabilities of winning, are affected by both players’ actions.

Paired with the continuum of strategies, this aspect makes theoretical contests considerably

more complex, when imposing social preferences.

Our study relates to the existing literature on models of and experiments on distribu-

tional preferences in contests. A number of studies (Grund and Sliwka, 2005; Herrmann

and Orzen, 2008; Fonseca, 2009; Lim, 2010; Rockenbach and Waligora, 2016; Chowdhury

et al., 2018) have shown that contest behaviour in the lab can be structured more precisely

within the framework developed by Fehr and Schmidt (1999). Such distributional prefer-

ences have also been offered as one of the several explanations behind the widely reported

phenomena of overspending, overspreading and overdissipation in contests. The majority

of these studies assume that individuals maximise the probability-weighted sum of their

ex-post utilities. That is, the expected total utility of a contestant with non-degenerate social

preferences is the sum of the ex-post utilities she would obtain in case of a victory and a

defeat, weighted by the respective probabilities.

This differs from fairness concerns as argued by Rabin (1993) or as implemented by Falk

et al. (2008). Since our models are all in a setting of complete information there is no scope

for beliefs, and thus for intentions that differ from actions.2 Nonetheless, one can make a

distinction of different types of justice. The ex-post specifications models individuals con-

cerned with distributive justice. In the ex-ante individuals are concerned with procedural

justice (Krawczyk, 2011). The study at hand should be understood as a first step in discrim-

inating between the different approaches by characterising each of them in terms of their

theoretical properties.

We find that in all models the equilibrium efforts strongly depend on the DI and AI param-

eters and their interplay with cost asymmetry. Including costs in the ex-ante specification

results in similar qualitative implications to Hoffmann and Kolmar (2017) but overspreading

is more pronounced for disadvantaged than for advantaged players. For these two models

to exhibit continua of equilibria, players need to fully agree on what is fair. If players differ

2While the authors of the baseline model state that “[...] preference parameters are compatible with the
interpretation of intentions-driven reciprocity.” (Fehr and Schmidt, 1999, p.852), an argument also used by
Hoffmann and Kolmar (2017), the fact that famous models capturing intentions have been developed by the
same researchers leads us to believe that this model is rather about actions than intentions.
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in the split they regard as fair, this result breaks down. While incorporating costs decreases

total efforts in the unique equilibria of the ex-ante specifications, it can increase them in

the ex-post specifications. In general, there is numerical evidence that the prediction for

overspreading in Model AC is less pronounced than in Model AR. When comparing the

different models we see that in all cases the stronger player might exert the highest effort for

an unequal cost ratio. In the standard model, individual efforts are highest when players are

identical with respect to the model parameters. This implies that some level of inequality in

terms of costs can be increase the effort of the high-skilled player. This is particularly rele-

vant for contests where effort is desirable, either because it is productive or because it serves

as a signal of skill as in R&D contests (Che and Gale, 2003), public procurement contests

(Dimitri et al., 2006) and contests for promotion (O’Keeffe et al., 1984).

The general study of social preferences in frameworks of competition is important for

many applications in workplace competition, the design of sports contests and litigation.

Whenever in such a setting a coworker, contestant or litigator faces a relatively high chance

of winning, this might trigger behaviour reducing further efforts, in case of guilt, or even

increasing it further in case of spite. The underdog in such a situation, might not stand a

chance of winning. If she is prone to jealousy though, she might still increase efforts to lower

her opponents chances or share of the pie.

The paper proceeds as follows. Section 3.2 discusses the models in the above table. Sec-

tion 3.2.1 briefly summarises the key result of Hoffmann and Kolmar (2017). We spend more

time elaborating the ex-ante model with net-payoff comparison in Section 3.2.2. We briefly

digress on the continua of equilibria in these models in Section 3.2.3. There, we investi-

gate the key underlying assumption of this result in the ex-ante models. In Section 3.2.2

we discuss Model PC, which is a variant for heterogenous costs of the model described in

Herrmann and Orzen (2008). We contrast it with Model PR in Section 3.2.4 and investigate

its properties. We summarise the differences and similarities between the models in Section

3.3 and discuss the effects of increased asymmetry between players on total efforts across

the models in Section 3.3.1. Section 3.4 concludes.

3.2 The Models

Let there be two players i ∈ {1, 2}. They are simultaneously exerting effort xi ≥ 0, in order

to win a prize of commonly known value v > 0. Without loss of generality, we assume

player 1 to be the stronger player or the favourite, i.e., she has lower costs c2 > c1. This

makes player 2 the weaker player or the underdog in this contest. We normalise the cost of
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player 1 to unity c1 = 1. Thus, c2 can be interpreted as the ratio of costs between the players

and as the degree of asymmetry.

We use the contest success function for a simple lottery between two players (Tullock,

1980).

p1(x1, x2) =
x1

x1 + x2
= 1− p2(x2, x1) (3.2)

In case of a tie, the prize is split equally among the players.3 The difference between the

four specifications lies in the interpretation of how players could form expectations about

the final payoffs and whether players compare revenues or payoffs net of costs.

A couple of definitions are in order to keep the mathematical representation legible. For all

i ∈ {1, 2} and i 6= j, for the ex-ante models we define

ui = piv

wi = piv − cixi

∆ui = ui − uj

∆wi = wi − wj

(3.3)

while for the ex-post models, we define

yWi = v yLi = 0

zWi = v − cixi zLi = −cixi

∆yi = yWi − yLj = v

∆zi = zWi − zLj

(3.4)

Thus, ∆ui and ∆wi represent the comparison of the ex-ante expected payoffs, while ∆yi and

∆zi are comparing final payoffs conditional on winning, in each case either with or without

incorporating the costs of effort.4

3.2.1 Model AR: Ex-Ante & Revenues (Hoffmann and Kolmar, 2017)

In this model, the utility function of player i ∈ {1, 2} and j 6= i is given by

UARi (xi, xj) = wi − αi max{−∆ui, 0} − βi max{∆ui, 0} (3.5)

3This assumption is merely for completeness. All results go through as long as no player receives the prize
with certainty at (0, 0).

4In case of losing, the difference for player i is simply −∆yj .
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Focussing on the game with simultaneous moves and two players, the respective results of

Hoffmann and Kolmar (2017) can be summarised by the following graphs and propositions.

For ease of notation we define ai = 1 + 2αi and bi = 1− 2βi.

x2

x1 45◦

BRAR1

BRAR2

(a) Two inequality averse players

x2

x1 45◦

BRAR1

BRAR2

(b) Two inequality averse players

x2

x1 45◦

BRAR1

BRAR2

(c) Inequality Prone Player 2

Figure 3.2.1 : Possible Equilibria
Note: All panels show the best response functions of both players as solid lines that have two concave parts
(the one closer to the origin is the β-type’s best response, the outer one is the α-types best response) and one
linear part in between.In Panel (a) the best response functions overlap on their linear part. The resulting set of
equilibria is indicated as the thick grey line. This is what we refer to as ‘continuum of equilibria’ in this model.
Panel (b) shows a case where in equilibrium the underdog is jealous (she is her α-type) and the favourite feels
guilty (she is her β-type). Panel (c) shows the reverse case, where, in equilibrium, the favourite is jealous (α-
type) and the underdog is spiteful (β-type).
Source: Reproduced from Hoffmann and Kolmar (2017), Figures 1-3.
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Lemma 3.1 (Hoffmann and Kolmar (2017)).

Player i’s best response function is given by

BRARi (xj) =



√
bi
xj
ci
v − xj for xj < xβj

xj for xj ∈
[
xβj , x

α
j

]
√
ai
xj
ci
v − xj for xj ∈

(
xαj , x̂j

)
0 for xj ≥ x̂j

(3.6)

with xβj = biv
4ci

, xαj = aiv
4ci

and x̂j = aiv
ci

.

Proof. See proof of Lemma 1 in Hoffmann and Kolmar (2017).

Two of the three parts of these best response functions (abstracting from zero for xj ≥ x̂j)

correspond to αi and βi respectively. We use the notion of virtual types here. We say that for

AI, i.e., when player i’s payoff is higher than player j’s payoff, player i receives the utility of

her β-type. The part of the best response function that maximises this utility is
√
bi
xj
ci
v−xj .

For DI, when player i’s payoff is lower than that of player j, she receives the utility of her

α-type. This utility is maximised along
√
ai
xj
ci
v − xj .

The equilibria for this model are described in the following way.

Proposition 3.1 (Hoffmann and Kolmar (2017)).

There exists a unique and interior Nash equilibrium if and only if one of the cross-player inequality

aversion ratios
(
ψij = bi

aj

)
is at least as high as the corresponding marginal cost ratio. More precisely,

(ψji )
−1 ≥ ψij ≥

ci
cj
⇔ x∗i =

ajb
2
i cjv

(ajci + bicj)2
, x∗j =

a2
jbiciv

(ajci + bicj)2

ψij <
ci
cj
<
(
ψji

)−1
⇔ x∗i = x∗j ∈ [x∗, x∗]

with x∗AR = max
{
xβi , x

β
j

}
and x∗AR = min

{
xαi , x

α
j

}
.

Proof. See proof of Proposition 1 in Hoffmann and Kolmar (2017).

When cost asymmetry between the players is relatively strong, each player has a strong

perception of whether to expect to experience AI or DI. Thus, they act upon this inequality.

Since the asymmetry is sufficient, the resulting equilibrium supports these expectations.

If asymmetry is low, players enact the ‘equal split’ norm. If they act upon their concern

for AI, the resulting payoffs would lead to DI and vice versa. Thus, there is no incentive

for deviation along the equal split. Which final payoff players realise is not clear though,

since between xN and xN , every effort pair xi = xj constitutes an equilibrium. Each player
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receives half of the prize in any such equilibrium. The lower the effort level along this line,

the less resources are wasted.

The above proposition relies to large extents on the equivalence of ∆ui = 0 and xi =

xj since only revenues are considered. As we will see in the next section, including costs

complicates this analysis.

3.2.2 Model AC: Ex-Ante & Net-Payoffs

In this model the utility function of player i ∈ {1, 2} and j 6= i is given by

UACi (xi, xj) = wi − αi max{−∆wi, 0} − βi max{∆wi, 0} (3.7)

We define the important terms Bi = 1−2βi
1−βi and Ai = 1+2αi

1+αi
. For low effort levels, difference

in total costs are low. There, the main driver for the net payoff comparison is the winning

probability. When cost differences are multiplied with higher efforts, the CSF becomes less

sensitive to increased effort and the total level of costs has a higher influence on the net

payoff comparison. Thus, the α-parts and β-parts of player 1’s best response functions can

have disjoint regions of x2 in which they are a part of the actual best response function of

player 1.

Lemma 3.2.

The best response function for player i is given by

BRACi (xj) =



√
Bi

xj
ci
v − xj if xj ∈ [0, xβj ] ∪ [x̂βj ,

Bi
ci
v]

min
{
±v−(ci−cj)xj−σ′

2ci

}
if xj ∈ (xβj , x

α
j ) ∪ (x̂αj ,min{x̂βj , v})√

Ai
xj
ci
v − xj if xj ∈ [xαj ,min{x̂αj ,

Ai
ci
v}]

0 else

(3.8)

with

σ′ =
√
v2 − 2v(3ci − cj)xj + (ci + cj)2x2

j

xαj =

(
(Ai + 2)−

√
(A2

i + 4)− 4Aici

)2

4Ai(ci + cj)2
civ x̂αj =

(
(Ai + 2) +

√
(A2

i + 4)− 4Aici

)2

4Ai(ci + cj)2
civ

xβj =

(
(Bi + 2)−

√
(B2

i + 4)− 4Bici

)2

4Bi(ci + cj)2
civ x̂βj =

(
(Bi + 2) +

√
(B2

i + 4)− 4Bici

)2

4Bi(ci + cj)2
civ.

Before we discuss the different possible graphs for the best response functions, we want

to introduce the general structure of the diagrams. Consider Figure 3.2.2 . Along the solid

line, both players receive equal payoffs (∆w1 = ∆w2 = 0). We refer to this as the equal net

Paul M. Gorny 97 UEA - School of Economics



Chapter 3: Social Preferences in Contests with Heterogenous Players

payoff line. It is below the 45◦-line because player 2 has higher costs than player 1 (c2 > 1).

In the grey shaded area, below the equal net payoff line, player 1 has a lower net payoff

x2

x1 45◦

w1 < w2 → α

w1 > w2 → β

α-type BR
β-type BR

w1 = w2

Figure 3.2.2 : Coordinate System
Note: The α-type BR refers to the part of BRAC1 (x2) that is described by

√
A1x2v − x2, the β-type BR refers to

the part described by
√
B1x2v − x2.

than player 2 and thus player 1 receives the utility of her α-type. Above the equal net

payoff line, in the white area, her net payoff is higher than that of player 2. There, her best

response function maximises the utility of her β-type. We use this pattern of shading of the

graphs throughout the subsequent discussion. The dashed lines (beside the 45◦-line) are

the best response functions under the two types’ utilities. The upper curve is the α-type’s

best response and the lower curve is the β-type’s best response. Our assumptions on α and

β ensure that the α-type’s best response always lies above the β-type’s best response. We

use these two functions, together with the regions where player 1 receives the respective

type’s utility, to determine her actual best response graph. We are now ready to discuss the

different cases of player 1’s complete best response functions.

Figure 3.2.3 (a) depicts a case with very high cost asymmetry. In this case, every best

response of the β-type is consistent with player 1 receiving a higher payoff than player 2

(i.e. we are still in the β-region). For any x2 greater than a, player 2’s effort is so high that

any positive effort from player 1 would result in UAC1 (x1, x2) < 0. This violation of the

‘participation constraint’ renders an effort 0 her best reply for x2 > a.

In panel (b), cost asymmetry is still high, but in the range from b to c the β-type’s best

response would take us into the (shaded) α-region where player 1’s net payoff is lower than

that of player 2. This would be a contradiction, because then player 1 would not receive

her β-type’s utility but her α-type’s utility. Conversely, the α-type’s best response would

be in the β-region – again a contradiction. Therefore it must be true that player 1 chooses

the effort that equalises payoffs (along the thin solid line). When x2 becomes larger than c,
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x2

x1 45◦

a

(a) BRAC
1 (x2) with Very High Cost-

Asymmetry

x2

x1 45◦

b c d

(b) BRAC
1 (x2) with High Cost-Asymmetry

Figure 3.2.3 : Player 1’s Best Response Function for High Cost Asymmetry
Note: The thick solid line represents player 1’s best response (BRAC1 (x2)). The light grey area represents the
area where player 1 receives the β-type’s utility and the white area represents the area where she receives the

α-types utility. Along the solid line, player 1’s and player 2’s net payoffs are equal.

player 2’s cost increase further and there is another range (c to d) in which the effort that

maximises the β-type’s utility is indeed in the β-type’s utility region (white area). If x2 > d,

player 1’s ‘participation constraint’ UAC1 (x1, x2) ≥ 0 is violated for every x1 > 0 (and thus

BRAC1 (x2) = 0).

In Figure 3.2.4 we see two possible cases for medium cost asymmetry. Since the costs of

player 2 are now lower than in the previous graph, the curve is less strongly bent away from

the 45◦-line. Panel (a) shows that for low x2, player 1 is maximising her β-type’s utility. In

this range (0 to e) she receives a higher payoff than player 2. For the range between e and

f, she responds with efforts that result in equal payoff. The reasoning is as before: in that

range of efforts each type’s best response would lead into the region of the other type. Thus,

there is no profitable deviation from exerting efforts on the thin solid line where net payoffs

are equal. For efforts between f and g, the effort levels that maximise player 1’s α-type utility

are consistent with that type (i.e. they result in higher net payoffs for player 2 than for player

1). Again, there is another range (between h and i) in which the β-type can be supported.

Eventually for x2 > i, player 2’s efforts become prohibitive for player 1 (BRAC1 (x2) = 0).

In panel (b), the equal payoff line lies strictly between the two types’s best response func-

tions for any x2 > j. Thus, between j and k, the corresponding segment of the equal payoff

line is part of the best response function of player 1, as per the earlier argument. For x2 > k,

player 1 exerts no effort since for any positive effort her utility would be negative.5

Figure 3.2.5 completes the picture for low cost asymmetries. Panel (a) shows that the β-
5In fact we have UAC2 (k) = UAC1 (0) = 0.
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x2

x1 45◦

e f g h i

(a) Medium Cost-Asymmetry 1

x2

x1 45◦

j k

(b) Medium Cost-Asymmetry 2

Figure 3.2.4 : Player 1’s Best Response Function for Medium Cost Asymmetry
Thick solid line: player 1’s best response (BRAC1 (x2)), light grey area: player 1 receives β-type utility, white
area: player 1 receives α-type utility, thin solid line: player 1’s and player 2’s net payoffs are equal.

type’s optimal effort for x2 < l is consistent with player 1’s utility being higher than that of

player 2. Between l and m there is no profitable deviation from the equal payoff line again.

Between m and n, the α-type’s optimal effort is consistent with w1 < w2. In the range from n

to o, the equal payoff line lies strictly between the two types’ best response function again,

thus there is no profitable deviation. For x2 > o, player 1 exerts no effort.

Finally, in panel (b) the β-type is relevant for 0 < x2 < p and player 1 exerts efforts that

lead to equal net payoffs if x2 ∈ (p, q). The optimal effort according to the α-type is in this

case consistent with w1 < w2 for the entire range q to r, above which player 1’s participation

constraint binds and she plays BRAC1 (x2) = 0. In summary we see that the best response

dynamics for the favourite are more complex across different levels of cost asymmetry, once

these costs are accounted for in the payoff comparison. With an opponent of equal strength

a player only needs to consider whether he is expecting to win or lose. The incorporation of

costs allows for multiple cases in which payoffs are expected to differ either way. This can

either be predominantly through discrepancies in expected revenue for low effort ranges,

where the CSF reacts strongly to changes in efforts, or through differences in effort costs

for higher effort ranges, where the marginal probabilities hardly change, but costs are still

linearly increasing.

In order to discuss player 2’s best response function, we display x2 on the y-axis and x1

on the x-axis. For consistency, in the following graphs, the grey shaded area still represents

the effort combination for which player 1’s net payoff is lower than player 2’s net payoff. It

represents player 1’s α-region and thus, in these graphs, player 2’s β-region.
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x2

x1 45◦

l m n o

(a) Low Cost-Asymmetry

x2

x1 45◦

p q r

(b) Very Low Cost-Asymmetry

Figure 3.2.5 : Player 1’s Best Response Function for Low Cost Asymmetry
Thick solid line: player 1’s best response (BRAC1 (x2)), light grey area: player 1 receives β-type utility, white
area: player 1 receives α-type utility, thin solid line: player 1’s and player 2’s net payoffs are equal.

Player 2’s best response function is considerably simpler to discuss and is structurally

always identical to those in Hoffmann and Kolmar (2017).6

In panel (a) of Figure 3.2.6 , for 0 < x1 < s, player 2’s net payoff is higher than player 1’s

net payoff. Consequently, maximising player 2’s β-utility is optimal. In the range between

s and t, there is no profitable deviation for player 2 from exerting the effort that equalises

net payoffs. Higher efforts are in the region where she receives the β-type’s utility, which is

maximised at an effort level below the equal net payoff line. Lower efforts lie in the region

where the α-type’s best response is maximising her utility, but these effort lie in the β-region.

For efforts x1 > t, all of the remaining part of the α-type result in maximal utility for

player 2, while being in the white region with w1 > w2. The participation constraint binds

for x1 > u and thus player 2 exerts zero effort beyond this point.

The left half of panel (b) is identical to panel (a). The right half points to an issue where

player 1 exerts enough effort to (almost) fully dissipate the prize. In the most extreme case,

with x1 = v and x2 = 0, the favourite receives the prize for sure and has costs equal to v.

Thus, her net payoff is p(v, 0)v − v = 1v − v = 0. Player 2 loses for sure but also does not

exert any effort resulting in zero costs. Her net payoff is (1 − p(v, 0))v − 0 = 0v − 0 = 0 as

well. Varying the efforts from this point in the right way, this produces a second equal net

payoff line. It lies in the higher range of x1 in Figures 3.2.3 to 3.2.5 . We omitted it there

though, as it is strategically irrelevant for the equilibrium analysis. To see this consider the

following. The lowest level of x1 on this second equal net payoff line is
1

2
v when c2 = 1.

6In the sense that each type’s utility function is only relevant in one range of the opponent’s effort. These
ranges again are separated by effort combinations where there are no deviation incentives to efforts on the equal
payoff line.
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x1

x2 45◦

s
t

u

(a) Higher Cost Asymmetry

x1

x2 45◦

s
t

v w

(b) Lower Cost-Asymmetry

Figure 3.2.6 : Best Response Functions for Player 2
Note: The thick solid line shows player 2’s best response function. The grey areas represent the regions where

player 2 receives the β-type’s utility. The white area represents the region where she receives the α-type’s
utility. Along the thin solid lines both players receive the same payoff.

But the highest possible level of player 1’s best response is the maximum of her α-type’s

best response, which is
A1

4
v <

1

2
v. Thus, it always lies below the smallest possible x1 on the

second equal net payoff line. An intersection with the β-type’s best response function is only

possible for an inequality prone player, but the same argument as for the α-type ensures that

this is irrelevant in equilibrium.

Consider the possible types of equilibria in this model, shown in Figure 3.2.7 . Qualita-

tively, the equilibrium dynamics are similar to the ones in Hoffmann and Kolmar (2017). In

panel (a), the two best response functions overlap on their segments that lie on the equal

net payoff line. The equilibria are thus given by all efforts of player 2 in the range from x to

y and the corresponding best responses of player 1. In panel (b), the segment of player 1’s

best response function that corresponds to her β-type intersects with the segment of player

2’s best response function that corresponds to her α-type. Panel (c) shows the reverse case.

While in Hoffmann and Kolmar (2017), for c2 < c, the favourite can never end up with

less than half the prize, this is indeed possible when costs are considered. This is illustrated

by panel (b) of Figure 3.2.7 . Thus, if the favourite is inequality averse, she willingly forgoes

a part of her prize to ‘make up’ for the high costs her opponent is facing. For this to happen,

the underdog needs to be sufficiently DI averse in order for this equilibrium to lie below

the 45◦-line. The case for an equilibrium where player 1’s α-type and player 2’s β-type are

active is more extreme in this model, as for stronger forms of cost asymmetry, the equal

payoff curve is below that intersection and thus the two types are not relevant. The formal

description of these equilibria is given in the following proposition.
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x2

x1 45◦

BRAC1 (x2)

BRAC2 (x1)

x y

(a) Continuum of Equilibria

x2

x1 45◦

BRAC1 (x2)

BRAC2 (x1)

(b) Player 1 Maximises β-Type Utility, Player
2 Maximises α-Type Utility

x2

x1 45◦

BRAC1 (x2)

BRAC2 (x1)

(c) Player 1 Maximises α-Type Utility, Player 2 Maximises β-Type Utility

Figure 3.2.7 : Possible Equilibria in Model AC

Proposition 3.2.

Let c = B2
A1

(
1
2(B2 −A1) +

√
1
4(B2 −A1)2 + 1

)
and c = A2

B1

(√
1
4(A2 −B1)2 + 1− 1

2(A2 −B1)
)

.

If c2 < c with c > 1, there exists a unique and interior Nash equilibrium given by

(x∗1, x
∗
2) =

(
c2A

2
1B2

(c2A1 +B2)2
v,

A1B
2
2

(c2A1 +B2)2
v

)
. (3.9)

If c2 > c with c > 1, there exists a unique and interior Nash equilibrium given by

(x∗1, x
∗
2) =

(
c2A2B

2
1

(A2 + c2B1)2
v,

A2
2B1

(A2 + c2B1)2
v

)
. (3.10)

This is only possible if −β2 > α1 and thus β2 < 0 and B2 > A1.

If c2 ∈ (c, c), there exists a continuum of Nash equilibria given by

(x∗1, x
∗
2) =

{
(x1 = BRAC1 (x2), x2)|x2 ∈ [max(xβ2 , BR

AC
2 (xβ1 )),min(xα2 , BR

AC
2 (xα1 ))]

}
(3.11)
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As we have seen from the discussion of the best response graphs, the best response func-

tions can fail to have a segment on the equal payoff line in this model (see, e.g., Figure 3.2.3

(a)). We can give a sufficient condition for when this is not the case for both players. This

guarantees that the set of possible choices for c2 > 1 that result in a continuum of equilibria

is not empty.

Lemma 3.3.

The set (c, c) is nonempty if

(
1− A2

B1

)
A2 +

(
1− B2

A1

)
B2 ≥ 0 (3.12)

The model is algebraically more demanding and thus does not allow to pin down the exact

closed form for the respective combinations of cost and inequality aversion ratios. It should

be apparent from Figure 3.2.7 (a) though, that through the curvature of the equality-curve,

the range and level of total efforts for the stronger player is reduced relative to Model AR.

We will see that this implies a difference in the effect that cost asymmetry has on total efforts.

Just as in the previous model, the continuity of equilibria can account for overspreading of

bids, but the compression of bids for player 1 also implies a different extent of this predic-

tion.

3.2.3 Digression: A Robustness Check for Multiplicity

Applying the model of Fehr and Schmidt (1999) with ex-ante comparisons to contest leads

to multiplicity of uncountably many equilibria. This is irrespective of wether agents incor-

porate each other’s costs or not. The key underlying assumption though is that they agree

on what is fair and that they both either consider the costs or not. The only heterogeneity

we allow for is how much they suffer under unfairness relative to the 50-50 norm of either

revenues or net-payoffs. There are two ways (and their combinations) that make these con-

tinua of equilibria disappear.

First, consider an alternative way to model social preferences could be

UAi = wi − 2 (αi max{λiuj − (1− λi)ui, 0} − βi max{(1− λi)ui − λiuj , 0}) (3.13)

with λi ∈ (0, 1).7 It represents how much player i thinks she should obtain as a share of the

prize. If, say, player 1 has the 50-50 norm (λ1 = 0.5), but player 2 thinks she should receive

7We chose a comparison on revenues for this example rather than net-payoffs, but the argument carries over
to the other ex-ante setting. Also, we could have chosen λ ∈ (0, 2) straight away, but here the middle of the
interval has the nice interpretation of a 50− 50 split.
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more to compensate her higher costs (λj > 0.5), the resulting equilibrium is unique.8

For λi = 1
2 for both i, we are in Model AR. Whenever λi 6= λj , the situation is qualitatively as

illustrated in Figure 3.2.8 . Alternatively, player 1 might consider a 50-50 split of revenues as

x2

x1 45◦

slope= 1
2λ2

BRA1

BRA2

x2

x1 45◦

slope= 1
2λ2

BRA1

BRA2

Figure 3.2.8 : Equilibria with Different Fairness Norms
(
λ2 >

1
2

)
= λ1

fair, while player 2, who incurs higher costs, considers equal net-payoffs as fair. Again, the

resulting equilibrium is unique and it fails to offer an explanation of overspreading of bids

in contest. Since the aim of this paper is to discriminate between social preference models

x2

x1 45◦

∆wi = 0

BRAC1

BRAR2

x2

x1 45◦

∆wi = 0

BRAC1

BRAR2

Figure 3.2.9 : Ex-ante vs. Ex-post Player

in contest in order to decide which one is preferable in theory and/or practice, this section

is not meant to introduce yet another model. It illustrates that the multiplicity of equilibria,

which is the main advantage of the ex-ante models in terms of describing phenomena in

actual contest data, is not robust to heterogeneity in terms of fairness norms and consider-

ations of costs. Although the 50-50 norm is relatively focal, it is not the only possible fair
8We omit the proof here, but the argument mainly follow from the fact that the ‘fair’ lines do not intersect

and separate the R2
+-plane into two regions for the α and β type respectively. Since any intersection between

any two of those curves is unique in R2
++ and (0, 0) cannot be an equilibrium through variational arguments,

the result follows.
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allocation of the prize. More importantly, whether real individuals consider costs in social

comparisons or not, is not generally clear.

3.2.4 Model PC: Ex-Post & Net-Payoffs (Herrmann and Orzen, 2008)

The utility function is given by

UPCi = wi − pjαi∆zj − piβi∆zi

= (1 + αi − βi)piv − αiv − cixi + (piβi − (1− pi)αi)(cixi − cjxj)

= UPRi + (piβi − (1− pi)αi)(cixi − cjxj)

(3.14)

where the last line is given as a means of comparison with the next and final Model PR.

The best response functions for this model can be characterised completely, also for ci 6= cj ,

which is not covered in Herrmann and Orzen (2008).

Lemma 3.4.

The best response functions for Model PC for each i ∈ {1, 2} are given by

BRPCi (xj) =


√

(1+αi−βi)v−(αi+βi)(ci+cj)xj√
1−βi

√
xj
ci
− xj if xj <

=
x

0 if xj ≥
=
x

(3.15)

with

=
x =

(1 + αi − βi)v
ci + βicj + αi(ci + cj)

.

The solution of this system of best response functions is technically intractable for any

other case than ci = cj , αi = αj and βi = βj . We provide two graphs from numerical

investigations to illustrate possible equilibria in this model.9 Herrmann and Orzen (2008)

suggest that, for a simple modification of this expression, it is possible to estimate the pa-

rameters from observed efforts and parameters of an experiment. In their procedure, they

first use the selfish model to estimate the ‘virtual valuations’ V of each player. It measures

how much subjects value the prize, which is possible different from the monetary incen-

tive.10 This is done to net out ‘joy of winning’ as an alternative explanation for overbidding.

The best response functions in that case are xi =

√
V

ci
xj − xj , which can be rewritten as

xi + xj =

√
V

ci
xj . Using the strategy method, asking each subject to state their desired

9The equilibrium for the symmetric case mentioned here is given in Herrmann and Orzen (2008) as
1 + α− β
2 + α− β

v

2
.

10For a prize of 16 tokens, their estimate for the two waves of subjects are 23.05 and 24.40.
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x2

x1

Player 1
Player 2

(a) α = 0.6, β = 0.3

x2

Player 1
Player 2

(b) α = 0.7, β = −0.3

Figure 3.2.10 : Potential Equilibria in Model PC
Note: Marginal costs of player 2 are set to c2 = 2.

response rs to each strategy s ∈ {1, 2, ..., S}, they estimate

ts = θ1os + εs (3.16)

with ts = rs + s, os =
√
s and θ1 =

√
V

ci
, where rs is the mean response of all subjects in the

respective wave.11 They then use the resulting value V in a regression after taking the best

response functions in (3.15) and transforming them to

(xi + xj)
2 =

(1 + αi − βi)V
1− βi

xj
ci
− (αi + βi)(ci + cj)

1− βi
x2
j

ci
. (3.17)

The final regression then is given by

t2s = θ2os + θ3o
2
s + ηs (3.18)

with θ2 =
(1 + αi − βi)V

(1− βi)ci
and θ3 =

(αi+βi)(ci+cj)
(1−βi)ci . From the estimates of this equation, one

can back out the social preference parameters.12

Herrmann and Orzen (2008) use symmetric costs in there experiments. The analysis of

asymmetric costs reveals a problem with this procedure. It should be apparent from these

expressions that the estimated social preference parameters depend on the level of costs and

the cost asymmetry. For example, for the values of θ̂2 and θ̂3 provided by Hoffmann and

11In their experiment, subjects had to choose a best reply to all integer efforts from 1 to 16.
12In Herrmann and Orzen (2008) those are α̂one = 1.551 and β̂one = −1.403 for the first part of their experi-

ment and α̂two = 0.589 and β̂two = −0.287 for their second part.
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Kolmar (2017), the following comparative statics obtain at c1 = c2 = 1.

∂α̂i
∂ci

< 0,
∂α̂i
∂cj

< 0

and

∂β̂i
∂ci

< 0,
∂β̂i
∂cj

> 0

These seem to suggest the following: If own costs increase and βi > 0, the player becomes

less sensitive to AI, as her concern for her own costs increases. If βi < 0 she becomes even

more spiteful the higher her own costs. An individual with higher costs is more likely to

be spiteful in the first place. For αi, an increase in cj reduces player i’s concern for DI. The

same is true for an increase in ci.

The problem with this approach is, that it starts out with the assumption of exogenous

preferences. This is in contradiction with the estimated parameters, as they suggest social

preferences are endogenous and depend on the level of costs. This problem is hidden for

equal costs, but that does not mean that the estimated parameters are exogenous of costs.

Model PC thus only seemingly has an advantage over the ex-ante formulations in terms

of being implementable in OLS. A new technique, that is beyond the scope of the paper

at hand, should implement a restriction that social preference parameters are independent

from cost structures.

We will see that the same conclusion arises in the next and final model.

3.2.5 Model PR: Ex-Post & Revenues

In this model, agents base their comparison on ex-post revenues. The problem, relative to

that of a selfish player, is scaled up or down, depending on parameters. We define di =

1 + αi − βi. The utility function is given by

UPRi = wi − pjαi(∆yj)− piβi∆yi

= dipiv − αiv − cixi
(3.19)

Since the non-linearities of the CSF only enter once, this problem is more tractable than the

ex-ante models and we can derive smooth and unique best response functions.
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Lemma 3.5.

The best response functions for Model PR for each i ∈ {1, 2} are given by

BRPRi (xj) =


√
di
xj
ci
v − xj if xj < di

ci
v

0 if xj ≥ di
ci
v

(3.20)

From there, we can use the fact that these functions are identical to the standard Tullock

model for ṽ = di
ci
v > 0 and conclude the uniqueness of equilibrium from the well-known

results in Nti (1999) and Nti (2004). We omit the proof here.

Corollary 3.1.

The unique equilibrium is given by

(x∗1, x
∗
2) =

(
d1d

2
2c2

(d1 + d2c2)2
v,

d2
1d2

(d1 + d2c2)2
v

)
(3.21)

The equilibrium is structurally similar to the selfish Nash equilibrium. This is due to the

fact that the best response functions are scaled versions of those in the selfish case. The

model can thus predict overbidding (and overdissipation) relative to the selfish Nash equi-

librium for the appropriate parameters. Within the bounds of our parameters, this model

is thus qualitatively similar to the previous model while being technically more tractable.

Model PR leads to the same conclusion of endogenous preferences as Model PC. Addition-

x2

x1

Player 1
Player 2

(a) α = 0.6, β = 0.3

x2

Player 1
Player 2

(b) α = 0.7, β = −0.3

Figure 3.2.11 : Potential Equilibria in Model PR
Note: Marginal costs of player 2 are set to c2 = 2.

ally, the virtual valuation V and the social preferences di cannot easily be disentangled as

V

di
=
v

ci
.

Under the assumption that v and V are constant across individuals in the lab, this equation

again provides a problematic statement on how social preferences vary with costs: The dis-
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like of DI or enjoyment of AI (dislike of AI) increases (decreases) in the level of costs. Thus,

a subject with higher costs would feel more deserving or feel her opponent is less deserv-

ing than a subject with lower costs. An approach that implements the restriction that social

preference parameters are independent from costs is needed here as well. But even if such

an approach was available, di only allows to identify a summary index of social preferences

that does not allow to disentangle the two concerns separately.

3.3 Model Comparison

Abstracting from cost considerations, it depends on whether the CSF is interpreted as a

probability of winning the contested prize or a share of it. For the probabilistic assignment

of prizes, the models differ in terms of their underlying assumptions on how individuals

form comparisons. Interpreting the CSF as a share in the ex-ante and as a probabilistic

allocation rule in the ex-post models, the difference in the allocation mechanism constitutes

the difference between the models.

They also differ in terms of whether pure revenues or net payoffs are considered. This

naturally results in differences in both technical tractability13 and implications of the results.

Table 3.2 summarises these differences for the four models presented in this article.

Model AR Model AC Model PR Model PC
Expectations Ex-Ante Ex-Ante Ex-Post Ex-Post
Comparison Revenues Net Payoffs Revenues Net Payoffs
Existence X X X X
Tractable X X X 7

Multiplicity X X 7 714

Overbidding X X X X
(Overdissipation) (X) (X) (X) (X)
Overspreading X X 7 7

Share vs.
Share (& Prob.) Share (& Prob.) Prob. Prob.

Prob. Contest
Expected Utility

Unconventional Unconventional Conventional Conventional
Formulation

Table 3.2: Model Comparison

All models allow for explaining overbidding and overdissipation, given the appropriate

parameters.15 Overspreading is relatively hard to explain within the ex-post models as they

result in unique equilibria. Without relying on factors outside the model, the ex-ante models

suggest that multiplicity of equilibria and failure to coordinate on the most efficient (or any
13The term tractable here refers to whether equilibria can be characterised in closed form.
14Multiplicity can occur for values of α and β that we have excluded in this analysis. Multiplicity occurs

in three possible equilibria that are qualitatively similar to the ones described in Chowdhury and Sheremeta
(2011).

15Overbidding occurs for the standard parameters found in the laboratory in other studies. Underbidding is
possible but needs higher βs and αs than typically found.
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other) equilibrium constitute a lasting spread around or above the Nash equilibrium in the

selfish model. Resorting to other explanations for this variation, like best responses played

to previous rounds as in Wärneryd (2018) (particularly in the presence of cost asymmetries)

and understanding difficulties of the implemented CSF as in Chowdhury et al. (2017) dra-

matically reduces the advantage of these types of models. Furthermore, and as mentioned

above, the ex-ante models are more applicable to the share interpretation of the CSF. Chowd-

hury et al. (2014) demonstrate that subjects in this type of contests actually seem to exhibit

considerably less overspreading than under the probabilistic allocation rule.

3.3.1 Level of Total Efforts Across Models and the Degree of Cost Asymmetry

The total effort in equilibrium, given the model m ∈ {AR,AC,PR,PC}, is given by

X∗m = x∗1,m + x∗2,m (3.22)

In the case of Model AR and AC and c2 < min{ψ2
1, (ψ

1
2)−1, c}we have

X∗AR =
a1b2

(a1c2 + b2)
v and X∗AC =

A1B2

(A1c2 +B2)
v

One can find that

β2

α1

1 + 2α1

1− 2β2
<

1

c2
⇔ X∗AR > X∗AC

Recall that this equilibrium can only occur in both models if player 1 is inequality prone

(β < 0). Thus, the left expression and consequently the comparison of X∗AR and X∗AC holds,

whenever we are in that equilibrium. At some level of effort for player 1, her opponent

is discouraged and reduces her effort. But that also reduces the costs for player 2, which

player 1 incorporates in her enjoyment of AI. Thus, she has no incentive to increase her

efforts further, as opposed to Model AR where this consideration is not made, since costs

are not included.

Turning to the unique equilibrium in which c2 > max{ψ1
2, (ψ

2
1)−1, c} and player 1 is nec-

essarily inequality prone we see that

X∗AR =
a2b1

a2 + b1c2
v and X∗AC =

A2B1

A2 +B1c2
v.

Solving the inequality between these, we find

c2 ≷
β1

α2

1 + 2α2

1− 2β1
⇔ X∗AR ≷ X

∗
AC .
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For the unique equilibria in these models it is thus apparent that β1 < 0 always results in

higher total effort in Model AR as compared to Model AC. The reason is in the consideration

of costs when enjoying AI. In Model AR, increases in player 1’s effort monotonically increase

her AI and only decrease her direct payoff through the costs she incurs. In Model AC, her

effort costs decrease both her payoff and her AI (all other things equal). For inequality averse

players, we see that for any given set of parameters there is some level of c2 such that Model

AR has higher total efforts than Model AC. This hints already at a more general connection

between total efforts and cost asymmetry.

The selfish model predicts that total (and individual) efforts decrease in cost asymmetry.16

Some articles have thus investigated this prediction as it is at odds with conventional wis-

dom where inequality is expected to increase conflict (Stewart, 2000; Nafziger and Auvinen,

2002; Østby, 2008).17 The experimental studies on this issue manipulated the ex-ante degree

of cost/impact asymmetry between players and unanimously find declining efforts with in-

creased cost asymmetry (see, e.g., Anderson and Stafford (2003), Fonseca (2009), Anderson

and Freeborn (2010) or Kimbrough et al. (2014)). From the above expressions, for all levels of

total efforts, we see that this holds true under social preferences as well, although the strong

player might increase her effort depending on parameters.

Corollary 3.2.

For models m ∈ {AR,AC,PR} and all i ∈ {1, 2} we have the following.

∂x∗1,AR
∂c2

≷ 0 if c2

≤
b2
a1
≤ a2

b1

≥ a2
b1
≥ b2

a1

∂x∗1,AC
∂c2

≷ 0 if c2 ≶
A2

B1
and c2 > c

∂x∗1,AC
∂c2

≷ 0 if c2 ≶
B2

A1
and c2 < c

∂x∗1,PR
∂c2

≷ 0 if c2 ≶
d1

d2

∂X∗m
∂c2

< 0 if c2 < c or c2 > c

Player 2’s equilibrium effort decreases in c2 in all Models m ∈ {AR,AC,PR} for unique equilibria.

Thus, social preferences applied to contest can explain higher levels of total effort but they

exhibit the same comparative statics with respect to cost asymmetry.18 For individual efforts

this is not necessarily the case.

Consider Figure 3.3.12 . In the selfish model any deviation from equal costs reduces indi-
16This seems to apply to most forms of asymmetries, like asymmetric impact in the CSF or valuations of the

prize.
17We are aware that these examples refer to much richer environments and encompass, e.g., grievances, his-

tory dependence and ideology. Still, the view of many early economists, that it asymmetry and/or (procedural)
inequality itself that generates more conflict, is strongly at odds with the robustness of the opposite result in
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c2

x∗1,AC

∆w1 < 0

∆w1 > 0

c2 = B2
A1

< c

c2 = A2
B1

> cc2 = c1 = 1

Figure 3.3.12 : Maximum of Player 1’s Equilibrium Effort Shifts with Social Preferences in
Model AC
Note: The dashed line illustrates how player 1’s equilibrium effort changes with c2 if she was selfish. The left
curve shows her efforts over c2 for equilibria in which she feels disadvantaged (Figure 3.2.7 , Panel (c)). The

right curve represents her equilibrium effort in equilibria where she feels advantaged (Figure 3.2.7 , Panel(b)).
The level of the maximum can differ across parameters, but we kept it the same as it is not the focus of the

subsequent discussion.

vidual efforts. When ∆w1 < 0 in equilibrium, player 1’s concern for DI increase her efforts

even though her opponent has higher costs. Since this equilibrium can only occur for β2 < 0,

B2 is large, shifting the maximum effort further to the right. If ∆w1 > 0, player 2 feels disad-

vantaged and thus fights harder to catch up with player 1. If player is fairly concerned about

AI, i.e., B1 is relatively low, this can shift the maximum effort considerably to the right. Re-

ferring back to Figure 3.2.7 panel (b) one can see that a downward shift of player 2’s best

response curve moves the intersection with BRAC1 (x2) further up along the x1-axis thus in-

creasing effort. This can have implication for the design of contests where high or at least

balanced effort is desirable, like sports competitions, procurement contests and job applica-

tions. It is particularly important there, as it is the high ability (low cost) player that might

underperform. With the selfish model, the prediction is that the individual effort is highest

when costs are the same. Considering social preferences this might not actually extract all

the possible effort from the contestants and a slight skew in terms of prizes or impact (e.g.,

by changing the application procedures) might actually result in more balanced efforts.

For Model PC and the regions of the continua of equilibria expressions become intractable.

This is why we partially have to resort to numerical investigations.

theoretical contest models.
18As cost asymmetry is isomorphic to asymmetry in valuations and impact, this applies more widely. To see

this consider c1 = 1 and c2 = f

x2
x1 + x2

v − fx =

(
x2

x1 + x2
ṽ − x

)
f =

x̃2
f

x1 + x̃2
f

v − x̃2 (3.23)

for ṽ = v
f

and x̃2 = fx2.
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3.3.2 Spread of Total Efforts and Degree of Cost Asymmetry

In the continua of equilibria in the ex-ante models, theoretical results are technically chal-

lenging, particular for Model AC. Using numerical explorations, we can show that, to a cer-

tain degree, the above results also seem to hold there as well. Let x∗AC = max xβ2 , BR
AC
2 (xβ1 )

and x∗AC = min xα2 , BR
AC
2 (xα1 ) . Figure 3.3.13 shows how total effort-ranges change with

increasing cost asymmetry across the two ex-ante models. In both panels we see that Model

(a) Inequality Averse Players (b) One Inequality Prone Player

Figure 3.3.13 : Total Effort for Increasing Cost Asymmetry in the Continua of Equilibria in
Models AR & AC
Note: The graph plots X∗AC = x∗AC + BRAC1 (x∗AC) and X

∗
AC = x∗AC + BRAC1 (x∗AC) versus X∗AR = 2x∗AR

and X
∗
AR = 2x∗AR. As a benchmark, the black solid line represents the Nash equilibrium in case of two selfish

players. The left graph is obtained for α1 = 0.6, β1 = 0.3, α2 = 0.5 and β2 = 0.45. The right graph is obtained
for α1 = 0.3, β1 = 0.2, α2 = 0.7 and β2 = −0.3. Both graphs use v = 100.

AC seems to predict considerably smaller ranges of equilibrium effort than Model AR. When

players are inequality averse, both continua of equilibria contain the selfish Nash equilib-

rium. When one player is inequality prone19 Model AR predicts higher total efforts in all

equilibria as compared to Model AC. Like in the unique equilibrium cases, the incorpora-

tion of costs seems to reduce the amount of total efforts. Note though, that in the latter case

both models predict overbidding relative to the selfish Nash prediction.

Given our analysis of the ex-post models in the previous sections, we have to conduct a

comparison using numerical methods. Figure 3.3.14 shows how total effort evolves as the

cost of player 2 increases. For all trials we ran, the qualitative implications are exactly as in

this figure. If social comparison is based on ex-post comparison, the incorporation of costs

increases total effort, as compared to the case where revenues are compared. This is, at least

for all different cases we computed, irrespective of whether players are inequality prone,

inequality averse or selfish. Also, the difference between the selfish total effort and the

social preference models reduces more quickly, the less (more) guilt (spite) is in the model

19This is only possible to a certain degree when one wants to generate cases in which a continuum occurs in
both models.
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(a) Inequality Averse Players (b) One Inequality Prone Player

Figure 3.3.14 : Total Effort in Models PR & PC for Increasing Cost Asymmetry
Note: Again, the black solid line represents the Nash equilibrium in case of two selfish players. The graphs
are obtained for the same parameters as in the respective panels of Figure 3.3.13 . Qualitatively, there is no
difference to allowing two inequality prone players.

(i.e., the less β1 + β2). The higher costs for player 2 have two effects on equilibrium play. On

the one hand if player 1 is spiteful, she can rely on the high costs of her opponent to induce

the AI that she enjoys and can focus on her own payoff, which she still enjoys more. On the

other hand, if player 2 is spiteful, the outcome where she can enjoy AI, i.e. when she wins,

becomes less and less likely. Again, reducing her effort becomes more attractive as a means

to reduce costs, which are particularly high for her.

The standard result that total effort decreases with asymmetry thus still holds true irre-

spective of the model.

3.4 Conclusion

We have seen four different specifications of social preferences in probabilistic or share con-

tests. While in probabilistic contests, the ex-post models seem to be more plausible, the ex-

ante models have some convenient properties and seem to be applicable in share contests

and probabilistic contests with strong cost asymmetries. As pointed out in the literature, the

ex-ante specification is closer to norms of procedural fairness, while ex-post models rather

model consequentialist fairness norms. It is not clear to us though, how this implies the

incorporation or exclusion of costs. Although the inclusion of costs might be more plausible

in some if not most contexts, we show that, concerning the qualitative implications, models

with revenue comparison are equivalent and tend to be more tractable than their net-payoff

counterparts. The ex-post models on the one hand invoke the more conventional use of

expected utility and also allow (at least partially) to estimate social preference parameters

from experimental data with standard techniques. Throughout the models cost asymmetry

reduces total effort, but the strong player might not exert the highest effort when cost asym-
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metry is low under social preferences. This has implications for contest design when the

high ability player is desired to exert high efforts.

A couple of further steps seem immediate. Hoffmann and Kolmar (2017) analyse a se-

quential contest game and consider the N-player game. Incorporating costs might introduce

a further (dis-)incentive for the Stackelberg leader to stop the follower from exerting signifi-

cant effort, depending on her social preferences. This might have implications for the order

in which applicants are invited to job interviews when information about performance in

these interviews is (at least partially) known to the other applicants.

We briefly discussed an existing empirical technique to estimate social preference param-

eters from experimental data and why it is problematic. From our own experiment, we

have datasets on contest games in the lab, for symmetric cases. We also obtained secondary

data from Fonseca (2009) and Kimbrough et al. (2014) that invoke different costs/impacts in

the CSF. Putting the models to the test to see which performs better might be the practical

equivalent of the exercise done here. In the absence of an empirical strategy, this might proof

complicated though. This of course leads immediately to conducting a new experiment in

case the data does not lend itself to test the above hypothesis appropriately.
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3.A Proofs

Proof of Lemma 3.2. By inspection of the utility function we see that the α part can only be

relevant when ∆wi < 0, while the β part can only be relevant when ∆wi > 0. The respective

parts of the best-response function are obtained by maximising the respective type’s utility.

The resulting best response function of the α type is

arg max
xi

UACi (xi|xj ∧∆wi < 0) =

√
Ai
xj
ci
v − xj

while for the β type we have

arg max
xi

UACi (xi|xj ∧∆wi > 0) =

√
Bi
xj
ci
v − xj ,

Before we can use a diagrammatic approach to prove the shape of the best replies, we need

the following lemma. Denote ∆0(c2) the function resulting from solving ∆w1 = 0 for x1.

This function depends on c2.

Lemma 3.6.

For any c′′2 > c′2, the we have ∆0(c′′2) < ∆0(c′2).

Proof.

I proceed in two steps. First, I show that at (0, 0), the slope of ∆0(c′′2) is lower than ∆(c′2).

Second, I verify that for any (x1, x2) >> (0, 0), the above claim in the lemma holds.

At (0, 0), both the prize is split according to the tie rule and each player’s payoff is 1
2v.

Suppose player 2 has costs c′2. If player 2 now increases her effort by some arbitrarily small

ε > 0, her payoff becomes v − c′2ε. Along ∆′0, Player 1 cannot increase her effort to ε as well

as in that case w1 = 1
2v− ε >

1
2v− c

′
2ε = w2. Thus, she increases it to some level ε′ < ε, where

player 2’s higher share of the prize, but also higher costs, balance, such that w1 = w2. The

continuity of all involved functions guarantees that such an ε′ exists. Repeating this for c′′2

we see that this increase must be even lower than ε′. Thus, the slope of ∆0 is positive, lower

than 1 and decreasing in c2.

The implicit derivative of ∆0 with respect to x2 is given by

∂∆0

∂x2
(c2) =

2x2v − c2(x1 + x2)2

2x2v − (x1 + x2)2

Case 1: 2x2v − (x1 + x2)2 > 0

Since the denominator is independent of c2, we have ∂∆0
∂x2

(c′2) > ∂∆0
∂x2

(c′′2) whenever

2x2v − c′2(x1 + x2)2 > 2x2v − c′′2(x1 + x2)2
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x2

x1 45◦

∆0

A

U

B

Ũ

C

Û

Figure 3.A.15 : No Profitable Deviations in the Best Response Function
Note: The thick solid line is player 1’s best response function. The thin solid lines are player 1’s indifference

curves for the α-type and the β-type respectively, in the regions where they are relevant. The closer they are to
the origin, the higher the level of utility. The grey shaded lines are their continuation in the region where the

type is not active.

which is true whenever c′′2 > c′2.

Case 2: 2x2v − (x1 + x2)2 < 0

We have ∂∆0
∂x2

(c′2) < ∂∆0
∂x2

(c′′2) whenever

2x2v − c′2(x1 + x2)2 > 2x2v − c′′2(x1 + x2)2

which is true whenever c′′2 > c′2.

Consider any of the Figures 3.2.3 to 3.2.6 . Whenever each type’s best response is in the

respective region, this part describes the best response. Whenever the best response of the

α type is in the β region and vice versa, one can show that choosing efforts on ∆0 has no

profitable deviation. Consider Figure 3.A.15 .

Each of the three dashed curves labelled U, Ũ and Û represents an indifference curve at

a given utility level. The closer the curve to the left, the higher the utility level.20 In the

region above ∆0, the indifference curve corresponds to the β-type’s utility function, below

it belongs to the α-type. The corresponding parts in each irrelevant region are shown in

dotted lines.

At point A, both types’ best response functions are above A. Thus, there exists a profitable

20Fixing the level of own effort, moving to the left just decreases the opponents effort and thus only increases
chances of winning while keeping costs constant.
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deviation by moving upwards. Since that leaves us in the region where player 1 receives

the β-type’s utility, this type’s best response function is the optimal effort choice at that

level of x2. The same argument holds for a downward movement at point C, leaving us in

the region where player 1 receives the α-type’s utility, making that type’s best response the

optimal choice at this level of x2. For point B, note that there is one type’s best response

above and below that point, respectively. An upward movement leaves us in the β region,

while β’s best response lies below B. A downward movement leaves us in the α region,

while α’s best response lies above B. Playing ∆0 is thus a best response, since there is no

profitable deviation. This exhausts all possible points on the best response functions for all

different parameters.

Plugging each type’s best response into ∆wi = 0 we get

xαj =

(
(Ai + 2)−

√
(A2

i + 4)− 4Aici

)2

4Ai(ci + cj)2
civ x̂αj =

(
(Ai + 2) +

√
(A2

i + 4)− 4Aici

)2

4Ai(ci + cj)2
civ

for the α type and

xβj =

(
(Bi + 2)−

√
(B2

i + 4)− 4Bici

)2

4Bi(ci + cj)2
civ x̂βj =

(
(Bi + 2) +

√
(B2

i + 4)− 4Bici

)2

4Bi(ci + cj)2
civ

for the β type. Note that x̂αj > xαj and x̂βj > xβj . Also, these numbers might not be real in

which case there is no intersection in the (x1, x2) plane.

The ‘equal payoff’ section of the best responses obtains from solving ∆w1 = 0 for x1. Since

this solution involves a quadratic it provides two equality curves. Fix some x2 = q that

lies the range where player i plays the equal payoff effort. Moving vertically up to the

upper equality curve, player 2’s payoff decreases. Once we reach the upper equal payoff

curve, there is still no deviation incentive regarding the two best response curves, but since

w1 = w2 and we just argued that w2 is lower at this point than on the lower equal payoff

curve, this means that w1 is lower there as well. This is not a deviation incentive and player

1 always chooses the minimum between the two curves.

Proof of Proposition 3.2. Consider the second unique equilibrium case first (c2 > c > 1). The

strategies are obtained by solving the system of equations given by player 1’s α-part of her

best response functions and player 2’s β-part. The important part is to verify that these two

parts are actually relevant in equilibrium. Thus we need to investigate

x∗1
x∗1 + x∗2

v − x∗1 −
x∗2

x∗1 + x∗2
v + c2x

∗
2 < 0
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This reduces to

(B2 −A1)(A1c2 +B2)2 > A1B2(A1 +B2)(B2c2 −A1)

This equilibrium lies under the 45◦-line, thus x∗2 > x∗1 which implies B2 > A1and thus

−β2 > α1.

The proof for the low asymmetry case (c2 > c > 1) is analogous.

If both intersections lie in the regions where the respective parts of the best response func-

tions are irrelevant, they must have overlapping sections on the equality curve. The segment

is between wherever the second β-curve intersects with, and the first intersection of one of

the α-curves with ∆wi = 0. Formally, from perspective of player 1, this is

[
max(x2, BR

AC
2 (xβ1 )),min(xα2 , BR

AC
2 (xα1 ))

]
Player 1’s strategies are the corresponding best responses, which for these values are guar-

anteed to lie on the ∆wi = 0-curve.

Proof of Lemma 3.3. The interval (c, c) is nonempty, if and only if

c =
A2

B1

(√
1

4
(A2 −B1)2 + 1− 1

2
(A2 −B1)

)
≥ B2

A1

(
1

2
(B2 −A1) +

√
1

4
(B2 −A1)2 + 1

)
= c.

This inequality can be rearranged as

(
1− A2

B1

)
A2 +

(
1− B2

A1

)
B2 +

A2

B1

√
1

4
(A2 −B1)2 + 1− B2

A1

√
1

4
(B2 −A1)2 + 1 > 0.

The difference between the two square root terms is lowest whenever the positive term

attains a minimum and the term after the negative sign attains a maximum. Optimising

both terms with respect to the two expressions A1 and B2 (A2 and B1 respectively) shows

that the first order conditions are linearly dependent. They are given by the one equation

(A2 −B1)2 + (A2 −B1)A2 = −4

The second term on the left hand side attains a minimum at −4 for which the first term is

strictly positive. Thus, there is no inner solution.

We need to investigate the corner solutions. For term one
(
A2
B1

√
1
4(A2 −B1)2 + 1

)
we have

A2 = 1 A2 = 2

B1 = 0 ∞ ∞

B1 = 2 1+
√

5
2 1
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while for the second term
(
B2
A1

√
1
4(B2 −A1)2 + 1

)
we have

A1 = 1 A1 = 2

B2 = 0 0 0

B2 = 2 1+
√

5
2 1

The minimum between those two terms thus attains for A1 = 1 = A2 = 1 and B1 = B2 = 2

or A1 = A2 = 2 and B1 = B2 = 2. In both cases, the difference becomes zero. Thus

(
1− A2

B1

)
A2 +

(
1− B2

A1

)
B2 +

A2

B1

√
1

4
(A2 −B1)2 + 1− B2

A1

√
1

4
(B2 −A1)2 + 1

≥
(

1− A2

B1

)
A2 +

(
1− B2

A1

)
B2

If the right hand side is non-negative, this is a sufficient condition for c ≥ c to hold. That is

the condition stated in the lemma.

Proof of Corollary 3.2. For any positive constants (k, q), the total equilibrium efforts in the

case of a unique equilibrium are given by

X∗m =
kq

k + qc2
v.

The derivative of that expression w.r.t. c2 is given by

∂X∗m
∂c2

= − kq

(k + qc2)2
qv < 0

for any (k, q) ∈ {(ai, bj), (Ai, Bj), (di, dj)} for i, j ∈ {1, 2} and i 6= j.

For player two, the general structure of her equilibrium effort is

x∗2,m =
k2q

(k + qc2)2
v.

The derivative w.r.t. c2 is given by

∂x∗2,m
∂c2

= −2
k2q

(k + qc2)3
vq < 0

for any (k, q) ∈ {(ai, bj), (Ai, Bj), (di, dj)} for i, j ∈ {1, 2} and i 6= j.

Player 1’s equilibrium effort in these equilibria is given by

x∗1,m =
kq2c2

(k + qc2)2
v.
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Taking the derivative, we get

∂x∗1,m
∂c2

=
k2q2 − kq3c2

(k + qc2)3
v,

which is positive if
k

q
> c2 and negative if

k

q
< c2 for any (k, q) ∈ {(ai, bj), (Ai, Bj), (di, dj)}

for i, j ∈ {1, 2} and i 6= j.

Together with the conditions for uniqueness of equilibria in the ex-ante models, this con-

cludes the proof.
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Chapter 4: Multidimensional Identities in Conflict
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Abstract

Social Identity has been shown to induce strong effects on anti- or pro-social be-

haviour. This is particularly true when it comes to (violent) conflict. The amount of

possible identities is too large to be tested individually in the lab. We propose a clas-

sification of identities into minimal (induced by the experimenter), horizontal (having

no objective hierarchy) and vertical identities (having an objective hierarchy). In a lab

experiment, we present information about the opponent’s identity on either none, one

or two of those identity dimensions. For the vertical identity, competition is more pro-

nounced among individuals of the same stratum than among those of different strata.

Other comparisons lack statistical significance but we list a series of qualitative find-

ings. We document session effects that attenuate our results. A model of social distance

structures most of the qualitative findings and points to design aspects for follow-up

sessions.

Keywords: Conflict; Identity; Social Distance; Contest
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4.1 Introduction

When we loosely speak about social identity, we typically mean a collection of personality

traits, beliefs, visual characteristics and potentially labels that define who we are as indi-

viduals or groups and how we compare to other individuals or groups. The degree of

(dis)similarity in those traits that are salient in a given situation, provides us with (some-

times flawed) information on how to interact with another person or group. This can be

due to individual experiences attributed to that trait, stereotypes existing in a social group

or society as a whole and social norms on how to treat individuals from within or outside

one’s own group.

Thinking about violent conflict of any scale, the conflicting parties must assign some iden-

tity to themselves that is different from the identity of their ‘enemies’ in terms of traits that

are relevant (salient) to the context of the conflict. If fans of rival football teams clash in

the streets, this might be club membership. In everyday conflicts between individuals in

Jerusalem, it is rather religion, ethnicity, language or all of them in at once. When individ-

ual combatants meet in interstate war, it is their nationality. The individuals’ social identity

allows for a categorisation into in-group and out-group by aggregating all the salient char-

acteristics. A particular aspect of conflict is, that such a distinction is typically sharp and

dichotomous, as others are divided into ‘friend’ or ‘foe’. These categories are also persis-

tent, as they can still be relevant to individuals, even in the absence of their own group. It is

important to understand how these categorisations occur. They can have an impact on peo-

ple’s social and economic welfare, for example, when in-group favouritism and out-group

hatred, extend to large-scale conflict like civil war and ethnic cleansing.

We want to investigate, whether a typology of these identities exists, which of them are

considered salient and how they affect behaviour in an experimental conflict game. We

present information on different amounts and types of identities to the contestants across

different treatment groups and compare the amount of effort they exert against each other.

We then structure our findings theoretically, by incorporating social distance and status con-

cerns in a model of social identity that is then applied to contest. The main questions we

want to pursue here are twofold. First, we want to see, whether there is a way to clas-

sify certain types of identities by their (common) effects on conflict behaviour. Second, we

investigate, whether making multiple identities salient can change conflict intensity in a

systematic way.

One part of the classification we attempt is based on Sen (2007) who points out that there

are different strengths of identity depending on how much they are based on experience and
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factors that the individual perceives as ‘real’. He thus distinguishes three types of identities.

Classifications simply assign individuals arbitrarily to groups. Minimal identities are assigned

according the minimal group paradigm (Tajfel, 1970) by, for example, grouping them ac-

cording to the colour of their clothes or their preference for abstract paintings. Real identities

are traits and attributes that individuals are aware of and carry with them in all-day life.

While classifications have shown to not have any effect in this type of experiments (Chowd-

hury et al., 2016), we suggest yet another distinction within the real identities. Ethnicity,

language and religion are examples of what we coin horizontal identities. They do not have

an obvious ranking for an impartial third-person observer. A member of a certain group,

based on these identities might feel superior to out-groups. But it is possible, and often

likely, that this is a mutual view and members of the other groups feel superior too. Social

strata, casts and job seniority are examples of vertical identities. They can clearly be ranked

by an impartial third-person observer and the members of the different groups likely agree,

at least to a certain extent, to that ranking. Even if they do not, they are at least aware of this

perception in society. We want to know, whether this difference in perception of the other

group triggers systematically different behaviour in conflict.

Concerning our investigation of multidimensional identity, the Bengal Language Move-

ment in the early 1950s is a prime example of how one identity dimension can counteract the

effects of another. After India was partitioned into the dominion of Pakistan and the Union

of India, East Pakistan belonged to the former. The population was roughly composed of

two thirds of Muslims and one third of Hindus and the relation between these groups was

notoriously tension-filled. At the same time the vast majority of the population belonged to

the ethnic group of the Bengalis which was most strongly pronounced through their com-

mon language Bengali. In 1947, the Dominion of Pakistan decided on a resolution to make

Urdu the official language in both Western and Eastern Pakistan. This led to demonstrations

and riots against this bill in which all religious groups where involved (Rahman, 2002).

This is most striking, as the above-mentioned tensions between Hindus and Muslims trig-

gered extreme acts of violence before. It seems, as if the commonality in ethnicity, and es-

pecially in language, outweighed the disparity in terms of religion. All of this happened

because of an attentional shift induced by the government in Karachi. With their bill they

made language a salient feature of the conflict and put religious aspects in the rear.1 We

investigate, whether a similar combination of identity dimensions can reproduce the core of

this phenomenon in the lab. This is particularly important if we view social identity (at least

partially) as a social construct that can be shaped by individual choices and corporate, soci-

etal or political values. We want to investigate, which type of dimensions should be made

1Many historians see this chain of events as the foundation for the liberation of Bangladesh in 1971.
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more salient to reduce conflict on one or more of these levels.

The terms ‘in-’ and ‘out-’group immediately convey an image of proximity/distance to

the members of either group. We typically care more for people that are ‘close’ to us, while

we are indifferent towards people we feel ‘detached’ from. We even ‘distance ourselves’

from those that hold values or have characteristics we oppose. The concept of social distance

is the most natural modelling tool to capture this. We use it, to formulate a model that bases

social preferences on social distance. Each individual’s social ‘location’ is determined by

her traits. Since social identity needs to be sufficiently strong to induce an in-group with

associated out-group, this concept works, both, when such a categorisation is present, and

when proximity between individuals does not lead to groups, based on social identity.

We find that making the vertical identity salient alone, increases effort relative to the other

treatments and control. Being in the same level of the vertical identity seems to increase

efforts more strongly than being in different strata. While this is due to high and low-level

subjects, the high level subjects seem to have higher efforts on average across treatments.

French students and females also have significantly higher efforts in this experiment. Al-

though the design allowed us to run many interesting constellations of identities, the other

treatments, particularly the ones with multiple identities, remain insignificant due to a low

number of independent observations, relative to the high number of treatments.

Our model introduces social distance into the standard two-player Tullock (1980) contest.

Low social distance below a threshold triggers altruistic behaviour, while distance beyond

that threshold triggers spite. The vertical identity triggers a loss function that relates to

social status. It predicts some of the above findings and most of the qualitative implications

of the experiment and points at further questions to investigate.

Related Literature: The term social distance has been coined early in sociology (see e.g.

Park (1924), Bogardus (1928) and Bogardus (1933)), in social psychology (e.g. Trope et al.

(2007) and Brewer (1968)) and has been used since across the social sciences and in eco-

nomics in specific. Hoffman et al. (1996) state that different perceptions of social distance

to the experimenter changes the behaviour of subjects in the lab. They find that reduced

social distance increases the offers in a dictator game significantly and they explain this by

subjects conforming to norms they learned in their social environment outside the lab. A

famous formalisation can be found in Akerlof (1997). In his model, the position of players

on a line can be altered by the actions they choose. These actions directly affect utility but

there are also positive externalities from being close to others. The model accounts for status

seeking, i.e., going for the optimum behaviour in terms of the selfish utility. It also accounts

for conformist behaviour, i.e., behaviour where all players choose the same position. It is
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possible to have both in equilibrium. While this model allows for mutually beneficial and

selfish behaviour that does not explicitly aim at harming others, our model allows for spite.

Such agents enjoy hurting their opponent because of the great social distance they have.

Further experimental investigations in social distance in economics are due to Dufwenberg

and Muren (2006), Buchan et al. (2006) and Ahmed (2007). The latter two find more pro so-

cial behaviour when social distance is low. Dufwenberg and Muren (2006) in a giving game

find the opposite effect if social distance is equated with ‘anonymity’ (here: whether the

recipients received their money in private or not), which the authors strongly warn against.

We relate social distance to social identity, which was first researched in social psychology.

Muzafer Sherif is often referred to as the father of this discipline. In Sherif et al. (1961), the

authors report on a series of famous experiments conducted in 1949, 1953 and 1954, com-

monly known as the Robbers Cave Experiments. In these experiments young boys were

randomly divided into two groups (camps) that were physically isolated from each other

and competed in a series of contentions. After a short time the boys in each group started to

exhibit strong hostilities. These could, at least partially, be overcome by setting the groups a

problem that they are unable to solve without the other group.

These results led Tajfel and Turner (1979) to formulate what is now known as social iden-

tity theory, defining three main mechanisms of identity driving individual behaviour. These

are social identification, social categorisation and social comparison. In the context of so-

cial distance, these are components of the implicit measurement of social distance, which

incorporates knowing your own location, the other individuals’ location and how to form a

measure of distance.

Studies on the relationship between social identity and social preferences in social psychol-

ogy (e.g. Orbell et al. (1988) and Kinzler et al. (2009)) demonstrate that individuals behave

strongly in favour of their own group, a behaviour known as in-group favouritism.

In the recent years, economics has been influenced by the above and more recent findings

on the effects of social identity on behaviour. Akerlof and Kranton (2000) and Akerlof and

Kranton (2010) plead for the advent of Identity Economics and list and model a series of be-

havioural anomalies and real world phenomena that cannot be explained without invoking

identity in the analysis. In experimental economics, a recent seminal article by Chen and

Li (2009) has documented some of these effects for strategic behaviour in a standard set of

economic games (see Charness and Rabin (2000)) in the lab. This study documents signifi-

cant effects of group membership on social behaviour. Still, the aspects of reductionism with

respect to identity and its interplay with conflict have not yet been addressed in an experi-

mental study. We intend to add to the literature by specifically considering three additional

aspects in our project.
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First, the set of sequential games used by Chen and Li (2009) misses an important aspect

in situations of conflict and fierce competition. Efforts are exerted to increase the chance of

winning, but since the outcome of the conflict is still not fully deterministic, contestants can

end up incurring the costs for their effort, even when they lose. Therefore, we suggest to

shed light on the behavioural effects of social identity in a contest game in the lab and in a

stylised model. Second, as has been pointed out by Sen (2007), identities differ qualitatively

in terms of their effect size on conflict. We suggest different types of real identity to struc-

ture these differences. Finally, we explore how adding multiple salient identity dimensions

changes behaviour relative to only making a single identity dimension salient. The studies

that are closest to ours in terms of our experimental design are Chowdhury et al. (2016) and

Hong et al. (2016). While the former uses a contest game as well, its focus is on group contest

and one-dimensional identity without our classification of identity types, the latter makes

these distinctions and analyses multidimensional identity but on a different type of game.

The rest of the paper is organised as follows. Section 4.2 introduces the experimental de-

sign. The analysis of the experimental data can be found in section 4.3. Section 4.4 presents

our model and discusses how it explains some of the qualitative findings of the experiment.

Section 4.6 concludes.

4.2 Experimental Design

In our experiment, subjects receive a certain amount of information about their opponent’s

identity. This can either be no information, information on one identity or information on a

combination of two identities. We use three different types of identity. The first two of these

are real identities. A specific school degree that allows French students to enter university is

the CPGE (Classes Préparatoires aux Grandes écoles) that also allows entry into the prestigious

Grandes Écoles like the École Polytechnique or HEC Paris. It is a highly selective and ex-

pensive 2-3 year course. If students do not obtain this distinction, they are admitted with

their regular, typically public high school degree, which can be denoted with AST (Admis-

sion Sur Titre). Burgundy School of Business (from hereon BSB) Dijon, the site of the lab,

allows students with both degrees and the amount of students from both backgrounds is

relatively balanced with a slight skew towards CPGE students (a summary can be found in

Table 4.2). Students are extremely aware of this identity as it is relevant in a lot of everyday

situations and a common characteristic to ask for when getting to know new peers.2

As a candidate for a horizontal identity we use the fact that BSB offers two language tracks

2We are aware that the CPGE students in BSB are the ones that did not get into a Grand École and that this
might affect results. We are trying to mitigate the effect of negative feelings toward their own degree through
rejection by eliciting an implicit measure for subjects’ attitude towards the CPGE.

Paul M. Gorny 132 UEA - School of Economics



Chapter 4: Multidimensional Identities in Conflict

within each degree. Students in the parcours francophone are taught entirely in French, while

those in the parcours anglophone are taught entirely in English. Students only visit classes

within their language track and thus this identity is salient as well. Additionally, we dis-

play instructions to subjects in the language that corresponds to their language track. As

opposed to the school degree, the language track is not a group that existed before uni and

students in each track could just be friends rather than a group with a joint social identity.

Still, the concept of social distance would apply in that case and we argue that it should be

closer for individuals from within the track than for individuals from the other track.

Figure 4.2.1 : Screenshot of Stage I

Finally, we create a minimal identity in the lab. To induce it, there are 5 rounds of pre-

treatment (stage I) in which subjects each have to decide which painting of either Paul Klee

or Wassily Kandinsky they prefer.3 Based on their decisions, subjects in each session are di-

vided into a Klee and a Kandinsky group according to the count of Klee/Kandinsky paint-

ings relative to the median value of choices. The painting identity is borrowed from Chen

and Li (2009) and has, to our knowledge, first been used in Billig and Tajfel (1973) and sev-

eral other studies since then.4

In stage II we elicit a risk measure according to Eckel and Grossman (2008). Subjects are

given 6 gambles, which are clearly ranked in terms of their risk-neutral expected payoffs.

Subjects can choose a gamble and the corresponding payoff is added at the end of the session
3These are: A Gebirgsbildung, 1924, by Klee, IB Subdued Glow, 1928, by Kandinsky, 2A Dreamy Improvi-

sation, 1913, by Kandinsky, 2B Warning of the Ships, 1917, by Klee, 3A Dry-Cool Garden, 1921, by Klee, 3B
Landscape with Red Splashes I, 1913, by Kandinsky, 4 A Gentle Ascent, 1934, by Kandinsky, 4B A Hoffman-
nesque Tale, 1921, by Klee, 5A Development in Brown, 1933, by Kandinsky, 5B The Vase, 1938, by Klee.

4See for example Gaertner and Insko (2000), Platow et al. (1997) and Petersen and Blank (2003).
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Identity Language School
Dimension None Same Different Same Different

None Control SL DL SS DS
Same Painting SP – SPDL – SPDS
Different Painting DP DPSL – DPSS –

Table 4.1: A 3x5-4 Experimental Design

by using a random draw made by the computer. While it is technically possible to end up

with a negative payment due to the riskiest gamble, no subject actually ended up in this

situation.5

Figure 4.2.2 : Screenshot of Stage II

We have a total of 15 sessions. Except for two sessions, the session size was between 12

and 20 subjects.6 We use a partner matching protocol. Subjects are matched randomly at the

beginning of each session into pairs that are stable for all periods. In stage III, subjects play

25 rounds of individual contest, 5 of which are eventually payoff relevant for all subjects in

the session and these are chosen at random. A contest is a game in which costly efforts are

exerted to increase the chance of receiving a prize of fixed value. Subjects have an endow-

ment of 160 Experimental Currency Units (ECUs) each round to exert this effort and cannot

carry over ECUs to the next round. The probability of winning is given by

Own Bid
Own Bid + Opponent’s Bid

.

5The extreme values of final payments are 5.13e and 16.13e.
6Session 2 has 36 subjects while session 12 has only 4 subjects.

Paul M. Gorny 134 UEA - School of Economics



Chapter 4: Multidimensional Identities in Conflict

Assignment to PC Stage I

Klee/Kandinsky
Pretreatment

Stage II Stage III

Risk Task 25 Contest
Periods

Questionnaire &
Payment

Figure 4.2.3 : Timing of Experiment

In case of a tie a fair coin flip decides. The winner is determined by the computer according

to the above probability and is awarded a prize of another 160 ECUs. The full timing of the

experiment can be seen in Figure 4.2.3 . The exchange rate is 100 ECU to 1e. The average

final payoffs in the experiment are 10.46e.7

Figure 4.2.4 : Feedback on Previous Round

Subjects were given feedback about their own effort, their opponent’s effort, the winner

of the round and their own payoff in this round.

Since in real world situations it is unlikely that individuals in a conflict do not know their

opponents’ identity on the dimensions that are salient, we only consider matchings where

information is symmetric. From hereon we refer to language as the horizontal identity and

school as the vertical identity. The entries in each cell of Table 4.2 indicate the number of

subjects for each identity. In total we invited 224 subjects. Summary statistics can be found

in table 4.3. For each subject, we have their minimal, horizontal and vertical identity. The

7Assuming symmetry, risk neutrality and using the Tullock contest success function, the resulting expected
payoff is π (xi, xj) = vxi/(xi + xj)− xi +m where xi is player i’s effort, v is the value of the price and m is the
individual’s endowment. Thus, the expected payment for each subject in each session is 10e plus the expected
rational choice in the risk task (1.52e), totalling 11.52e.
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Figure 4.2.5 : Feedback on all Previous Rounds

Figure 4.2.6 : Screenshot of Stage II (Horizontal Treatment)
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Figure 4.2.7 : Screenshot of Stage II (Vertical + Minimal Treatment)

Minimal Horizontal Vertical

Kandinsky Klee English French AST CPGE

112 112 103 121 101 123

Table 4.2: Number of Subjects for Each Identity

Variable Mean Std. Dev. Min Max

Female 0.502 0.500 0 1
Effort 64.750 40.171 0 160
Language 0.543 0.498 0 1
School 0.443 0.497 0 1
Age 20.393 1.090 18 25
Risk Aversion 3.589 1.898 1 6
Final Earnings 10.459 2.465 5.13 16.13

Observations 219

Table 4.3: Summary Statistics
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identity/identities that is revealed to their opponent is/are randomly chosen at the begin-

ning of each session by the computer. Instructions are displayed according to the language

they are taught in, irrespective of the revealed identity.

Previous results in Chen and Li (2009) and Chowdhury et al. (2016) have shown that dif-

ferences in group identity increase effort/defection (decrease cooperation) relative to treat-

ments with in-group members. From this we derive two hypotheses concerning the single

identity treatments concerning the minimal and the horizontal identity.

Experimental Hypothesis 1.

• Effort in DP > Effort in SP (Chen and Li, 2009)

• Effort in DL > Effort in SL (Chowdhury et al., 2016)

Differences should spur effort contributions while commonalities should reduce them as

subjects are expected to fight harder with opponents from their out-group as compared to

their in-group.

For the remaining comparisons, our study remains explorative and the results are intended

to inform the model that attempts to structure the findings.

4.3 Results

In table 4.4 we see means of efforts across the different treatments. It is visible that, given

the high variances and low number of subjects in each treatment, many of the comparisons

are not significant.8 In general we can state though, that making (solely) the vertical identity

salient increases effort levels relative to treatments in which only the horizontal identity is

revealed. Similar findings can be made with respect to the comparison of the vertical and the

minimal identity, which is also horizontal. Beside the DPSS treatment, revealing multiple

Control SL DL SS DS SP DP

65.52 59.93 57.06 82.13 68.80 52.12 60.39
(37.14) (31.29) (34.27) (49.90) (39.24) (34.92) (32.85)

SPDL SPDS DPSL DPSS

67.78 68.85 67.54 57.16
(48.15) (47.19) (37.11) (39.23)

Table 4.4: Means of Effort Across Treatment
Note: Standard Deviation in Parenthesis

identity dimensions to the participants seemed to slightly increase efforts relative to the
8As we are testing multiple comparisons, we should run a correction procedure like Bonferroni or Sidak (see

Abdi (2007) for a summary and comparison). The naive tests we are running here should again be understood
as an indication for future studies in terms of interesting hypothesis and number of subjects.
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control. Relative to the level of efforts, the variance seems to be higher in the treatments

SPDL, SPDS and DPSS. In general, the summary statistics already suggest, that inferences

from the treatments where we induce multiple identity dimensions are hard to make.

We first present some non-parametric tests, then contrast them with regression results and

finally investigate session effects that seem to be present in the data.

4.3.1 Minimal vs. Real and Horizontal vs. Vertical Identity

Conventionally, it is assumed that minimal identities induce smaller effects than real identi-

ties as they are newly created in the lab. Subjects thus do not feel this identity as strongly as

the real identities that matter in every day life. This is in line with Chowdhury et al. (2016).

In terms of horizontal and vertical identities, there is neither much previous evidence, nor

an obvious conjecture of how they should compare.9 Consider Figure 4.3.8 . The overall

p = 0.0821 p = 0.8327

p = 0.7006

p = 0.1124

p = 0.0032

p = 0.0053

Figure 4.3.8 : Mean Efforts across Real and Minimal Identity Treatments
Note: p-values correspond to Mann-Whitney-U tests

difference between the minimal and horizontal identity is insignificant (p=0.7006).10 The

differences between minimal and vertical identity and horizontal and vertical identity re-

spectively, are significant (p = 0.0032 and p = 0.0053 respectively) as is also visible from the

graph. The comparison between the two treatments within each of the real identities is not

significant and is displayed in the graph. If anything, the vertical identity can be suspected

9As the minimal identity in our experiment does not have an obvious ranking, it is also a horizontal identity
in terms of the other classification.

10We are using sums of efforts across all periods, within each matching and for the painting and language
treatments respectively for the test (i.e., SP+DP vs SL+DL). The p-value corresponds to a Mann-Whitney-U test.
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to show a significant difference once more follow-up sessions are run.

The effort distributions for the minimal treatments differ significantly at the 10% level,

while they do not for the real identity treatments, it seems that real identity has less effect

on behaviour than minimal identity. In light of existing research this is unusual, particularly

given the strong salience the language identity should have.

Pooling all observations for the horizontal and the minimal identity respectively shows no

difference in efforts between them.

4.3.2 Multiple Identity Dimensions

We compare the single identity dimension treatment with those that display two dimensions

to the subjects (one real and one minimal). We see that moving from SP to any treatment

where we add a difference in a real identity, efforts increase independently of which identity

dimension we choose.11 These results lack statistical significance though. The case of adding

p = 0.1208

p = 0.2207

p = 0.8253

Figure 4.3.9 : Multiple Identity Dimensions relative to SP
Note: p-values correspond to Mann-Whitney-U tests

a similarity when facing a difference in the minimal identity is less clearly signed. While, in

terms of efforts, we have DP < DPSL, we also observe DP > DPSS. Particularly given

the earlier observation that efforts in the SS treatment are higher than in the other similarity

treatments, this is puzzling.

The variance in the SPDL and SPDS treatments is higher than the one in DPSL and Control,

while the means are fairly similar, but due to the small number of independent observations,

11We chose the comparison with SP and DP respectively as it allow for a more neat representation in two
graphs.

Paul M. Gorny 140 UEA - School of Economics



Chapter 4: Multidimensional Identities in Conflict

these comparisons are insignificant, particularly since efforts are not normally distributed

in most treatment groups. Still, an explanation for why this is the case could be the bigger

p = 0.5453

p = 0.4497

p = 0.3643

Figure 4.3.10 : Multiple Identity Dimensions relative to DP
Note: p-values correspond to Mann-Whitney-U tests

amount of information that is leading to confusion with the subjects. While an attentional

shift from religion to ethnicity/language in the Bengal language movement clearly pointed

towards one identity dimensions and drove out the other, subjects in this experiment might

find it hard to decide which dimension to act upon. The fact that variances in the multidi-

mensional treatments are slightly higher relative to their respective mean, could support this

and even if statistical power is insufficient, the data at hand cannot reject this explanation.

A summary of all relevant treatment comparisons can be found in table 4.5.12

SL DL SS DS SP SPDL SPDS DP DPSL
DL 0.8327
SS 0.0290 –
DS – 0.0963 0.1124
SP 0.1053 – 0.0082 –
SPDL – 0.3272 – – 0.1208
SPDS – – – 0.5676 0.2207 0.8253
DP – 0.7055 – 0.2568 0.0821 – –
DPSL 0.4386 – – – – 0.9349 – 0.5453
DPSS – – 0.0413 – – – 0.3691 0.4497 0.3643

Table 4.5: P-Values of Mann-Whitney-U Tests

12See footnote 8 on multiple comparisons again.
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4.3.3 Regression Analysis

Controlling for a number of demographics and answers to a questionnaire, the results do

not change too much qualitatively.

Whether an identity is important to the individual or not should change the size of the

effect that identity has on behaviour. Ideally, we would like to have subjects that strongly

identify with the group sharing their respective identities. Since this might not be the case

for all subjects and all identities we elicit and induce, we would like to control for the sub-

jects’ attitudes toward these identities. To get some proxies on these attitudes, we elicit

answers to indirect questions in the post-experimental questionnaire. We ask for whether

students think the CPGE is ‘too expensive’, ‘correctly priced’, ‘too cheap’ or whether they

‘do not know’13 with the variable WTPCPGE.14 We also asked students for whether they are

interested in arts (ARTS) and whether they watched TV predominantly in French (TVLang

- French), English (statistical baseline) or do not have a preference (TVLang - Neither).

Consider Table 4.6. The relative ranking of the ‘same’ and ‘difference’ treatments for both

real identities is unchanged for all specifications. In the vertical identity, both, similarities

and differences increase efforts relative to all other treatments, but only SS is significantly

different from the baseline. This vanishes as we control for WTPCPGE.15 Within the minimal

identities, both treatments have lower efforts than the baseline, but there is no statistically

significant difference. Their relative ranking is as expected as, in terms of effort, DP>SP. The

difference between SL and DL is statistically insignificant as well, and is also not large in

magnitude.

It is interesting to note that CPGE students seem to be significantly more competitive than

AST students throughout specifications.

Result 1.

The vertical identity induces higher effort contributions than the horizontal identity and the minimal

identity.16 Students from the CPGE exert more effort than AST graduates.

The most plausible explanation is one of selection in which more competitive students sort

into the CPGE and thus bring this competitiveness into the lab. A competing hypothesis is

that CPGE students might simply perform better than AST students. A better performance,

13The statistical baseline is ‘No Response’ as a technical issue in the first session with 10 subjects resulted in
the loss of their responses.

14We tagged this variable WTP as in willingness to pay as it is easy to remember. This is due to the how the
question was asked in the questionnaire. We are not assuming that it actually measures a willingness to pay or
falls within that framework.

15We included those controls separately to make sure which control attenuates the effect of SS.
16The p-values of an F-test for the linear hypothesis that βSS + βDS = βSL + βDL are 0.0034, 0.0039, 0.0059

and 0.068 for the four models respectively, and for βSS + βDS = βSP + βDP they are 0.0013, 0.0011, 0.0014 and
0.0044.
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under the assumption that subjects want to maximise their earnings, can be measured by

their success to increase these. We should thus find higher earnings among the CPGE sub-

jects than among the AST subjects. With the measures available, this cannot be supported.

We run the same models with final earnings as a dependant variable and AST is insignificant

(and positive, thus running counter to this explanation). This measure is not directly mea-

suring the subjects’ ability. It is only a hint that the selection story is more likely to explain

the higher bids made by CPGE students. Future studies might want to control for a measure

of cognitive ability like an IQ measure or the result of a raven’s matrix test. Students in the

French track exert significantly higher efforts than those in the English track. Controlling

for the subjects’ attitude towards language with TVLang slightly increases this effect.

Result 2.

French students exert higher efforts than English students.

Although we talk about language as a horizontal identity, we did not run the experiment

in a language-free context. The site of the lab is located in France and this might have

created some ranking that both English and French Track students implicitly agreed on.

Additionally, students in the English track also had their instructions displayed in English

and some of them struggled to understand certain words.17 This lack of understanding

could have led to a more cautious choice of efforts.

Partly consistent with Chowdhury et al. (2016), we find that females are bidding more ag-

gressively than males in this contest experiment, holding treatment constant. From the de-

scriptives on risk aversion we can already see, that females are more risk averse than males

in this subject sample. Thus, the significance and magnitude of Female attenuates drasti-

cally if we exclude Risk Aversion.18 Within one risk aversion level, females exert higher

efforts than males.

4.3.4 Session Effects

With the large number of treatments and the relatively low number of subject pairs within

each treatment, the experiment should be understood as an exploratory pilot that guides

the design of future studies and gives more clear-cut predictions (either via the results found

above or by the model that is generated from these first insights). The treatments are applied

on the matching level and every treatment can be conducted in each of the sessions on

one or more pairs of subjects. Since we wanted to obtain a balanced data set in terms of

17The vast majority of questions concerned the word ‘gamble’ in the risk task, but we cannot rule out that
despite students are not asking questions in the contest rounds, they have trouble to understand aspects of it.

18If we exclude Risk Aversion from model (3), for example, the coefficient of Female changes to 1.868383 with
a z-score of 1.57.
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Dep.Var.: Effort (1) (2) (3) (4)
SL -5.593 -6.229 -3.237 -6.287

(-0.66) (-0.75) (-0.39) (-0.76)
DL -8.462 -7.794 -8.373 -6.820

(-0.97) (-0.92) (-0.98) (-0.81)
SS 17.57∗ 15.70∗ 15.96∗ 12.45

(1.95) (1.79) (1.80) (1.42)
DS 8.127 8.363 9.092 9.804

(0.87) (0.92) (0.99) (1.09)
SP -13.40 -13.79 -12.49 -11.10

(-1.53) (-1.62) (-1.46) (-1.32)
SPDL 2.259 -0.378 1.674 2.877

(0.25) (-0.04) (0.19) (0.33)
SPDS 7.367 6.970 7.360 8.544

(0.79) (0.77) (0.80) (0.94)
DP -5.132 -5.677 -5.511 -4.633

(-0.59) (-0.67) (-0.64) (-0.55)
DPSL 2.024 0.975 0.157 2.332

(0.23) (0.11) (0.02) (0.28)
DPSS -8.285 -7.949 -6.954 -6.072

(-0.92) (-0.91) (-0.78) (-0.70)
French 5.066∗∗∗ 5.676∗∗∗ 6.005∗∗∗

(3.66) (3.88) (3.69)
AST -6.732∗∗∗ -7.733∗∗∗ -7.063∗∗∗

(-5.17) (-5.26) (-4.39)
Kandinsky 0.336 -0.103 0.143

(0.27) (-0.08) (0.11)
Period -1.429∗∗∗ -1.425∗∗∗ -1.425∗∗∗

(-23.74) (-23.42) (-23.44)
Age 1.778∗∗∗ 1.880∗∗∗

(2.87) (2.99)
Female 2.318∗ 2.488∗∗

(1.92) (1.98)
GameTheory -4.658∗∗∗ -5.107∗∗∗

(-3.25) (-3.51)
Semester -0.368 -0.309

(-0.79) (-0.65)
Experience -4.400∗∗∗ -5.121∗∗∗

(-2.78) (-2.98)
Risk Aversion -0.799∗∗ -0.769∗∗

(-2.23) (-2.13)
TVLang - Neither -2.929

(-1.38)
- French -1.431

(-0.93)
WTPCPGE - Don’t know -20.44∗∗

(-2.07)
- Low -17.03∗

(-1.70)
- Medium -22.15∗∗

(-2.23)
- High -22.81∗∗

(-2.30)

Table 4.6.a: Regression Results I (Multi-Level Model)
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Arts -1.900
(-1.20)

Constant 65.52∗∗∗ 84.80∗∗∗ 53.64∗∗∗ 72.90∗∗∗

(11.36) (14.65) (3.93) (4.38)
σM 3.008∗∗∗ 2.981∗∗∗ 2.986∗∗∗ 2.959∗∗∗

(41.72) (41.38) (41.18) (40.54)
σ 3.512∗∗∗ 3.458∗∗∗ 3.460∗∗∗ 3.459∗∗∗

(359.64) (354.11) (350.81) (350.68)
LogLike -26538.9 -26253.7 -25771.9 -25764.1
N 5350 5350 5250 5250
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 4.6.b: Regression Results I (Multi-Level Model)

treatments, the randomisation was conditional on the restriction that we eventually end up

with similar numbers across treatments. If, say, the SL treatment occurs more often in the

first sessions by chance, the probability of being in that treatment is lowered such that, in

expectation, we arrive at an equal split across the 10 treatments and control. Remember that,

Figure 4.3.11 : Session Effects in Control Treatment

since treatments occur on the matching level, each session contains multiple treatments, i.e.,

while two matched subjects are in the control, two other matched subjects can be in any of

the other treatments.

Figure 4.3.11 shows boxplots efforts in control treatments across sessions. Even accounting

for the way we balanced the number of subjects in each treatment, as described above, the

figure clearly shows, that sessions differ strongly in effort distributions. These session effects

might be robust to the distribution of treatments and the inclusion of further controls. A

simple multi-level model as presented earlier, might thus misrepresent the findings from

this experiment.
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To illustrate what these session effects do with the treatment dummies presented earlier,

we run a multi-level model, allowing for the intercepts to vary, not only for each matching,

but also for each session. As we see in Table 4.7 this has a strong effect on the treatment

coefficients. None of them is significantly different from the baseline and even the between

treatment comparisons are less significant. All the other results seem to be robust to these

effects, and qualitative implications (signs and order of effects) are largely the same.19

Result 3.

Session effects are present and they strongly attenuate treatment effects.

These results need to be seen with caution as the number of sessions is relatively low (15).

They are an indicator that treatment effects are not independent of factors that apparently

differed across sessions, like the experimenter and unforeseen difficulties prior to some ses-

sions.

Two particular reasons for the session effects come to mind. First, there is a long pause

between the four blocks of sessions.20 Within this period of time, there are changes of sea-

sons and it is inevitable that there might be slight changes to the modus operandi as well.

Second, the first six sessions are run by one of the authors, all the remaining sessions are run

by employees of BSB who are also teaching staff, which might induce experimenter demand

effect. Fréchette (2012) lists those reasons, among others, as culprits for why session effects

can occur in the lab.

In the following model analysis we do not intend to incorporate these session effects. We

take our results and the qualitative implications from the complete models in table 4.6 and

4.7 respectively, and suggest a model that offers an explanation for the observations and can

produce hypotheses for follow up experiments.

4.4 A Spatial Model of Identity and Altruism

First, we discuss how making an additional identity dimension salient might affect an in-

dividual’s perception of others in a stylised setting. Then we introduce our general model

in which identity – a coordinate in social space – moderates the degree of altruism or spite.

We apply it to the specific case of contest and relate it to the qualitative findings of our

experiment and future experimental design.

19The SPDL treatment is negative throughout here, while in table 4.6 it is only negative in model (2).
20Between sessions six and seven there is a break of two months, between sessions eight and nine, there is a

break of four months and between sessions 13 and 14 there is a break of 3 months.
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Dep.Var.: Effort (1) (2) (3) (4)
SL -5.941 -6.650 -3.775 -6.220

(-0.69) (-0.80) (-0.45) (-0.74)
DL -5.819 -5.048 -5.520 -5.373

(-0.70) (-0.63) (-0.69) (-0.67)
SS 9.006 7.133 7.234 6.499

(1.02) (0.83) (0.84) (0.76)
DS 3.249 3.354 4.029 5.047

(0.36) (0.38) (0.46) (0.58)
SP -11.39 -12.06 -11.04 -10.78

(-1.25) (-1.37) (-1.24) (-1.24)
SPDL -1.991 -4.604 -2.853 -1.512

(-0.23) (-0.55) (-0.34) (-0.18)
SPDS 0.383 0.0662 -0.0289 1.897

(0.04) (0.01) (-0.00) (0.21)
DP -5.916 -6.668 -6.443 -6.085

(-0.69) (-0.80) (-0.77) (-0.73)
DPSL 3.042 1.806 0.660 1.904

(0.36) (0.22) (0.08) (0.23)
DPSS -11.33 -10.99 -10.26 -9.351

(-1.31) (-1.31) (-1.21) (-1.11)
French 4.914∗∗∗ 5.464∗∗∗ 5.886∗∗∗

(3.57) (3.75) (3.62)
AST -6.875∗∗∗ -7.862∗∗∗ -7.183∗∗∗

(-5.30) (-5.37) (-4.47)
Kandinsky 0.291 -0.0671 0.110

(0.24) (-0.05) (0.08)
Period -1.429∗∗∗ -1.425∗∗∗ -1.425∗∗∗

(-23.74) (-23.42) (-23.44)
Age 1.727∗∗∗ 1.846∗∗∗

(2.80) (2.94)
Female 2.234∗ 2.352∗

(1.86) (1.88)
GameTheory -4.755∗∗∗ -5.184∗∗∗

(-3.33) (-3.57)
Semester -0.277 -0.266

(-0.59) (-0.55)
Experience -4.497∗∗∗ -5.157∗∗∗

(-2.84) (-3.00)
Risk Aversion -0.767∗∗ -0.737∗∗

(-2.15) (-2.04)
TVLang - Neither -2.484

(-1.17)
- French -1.414

(-0.92)
WTPCPGE - Don’t know -21.05∗

(-1.73)
- Low -17.66

(-1.44)
- Medium -22.87∗

(-1.87)
- High -23.41∗

(-1.92)

Table 4.7.a: Regression Results II (Multi-Level Model)
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Arts -1.912
(-1.21)

Constant 67.20∗∗∗ 86.81∗∗∗ 56.46∗∗∗ 75.92∗∗∗

(11.06) (14.28) (4.11) (4.23)
σM 2.215∗∗∗ 2.208∗∗∗ 2.231∗∗∗ 2.023∗∗∗

(6.28) (6.50) (6.68) (5.05)
σS 2.916∗∗∗ 2.883∗∗∗ 2.885∗∗∗ 2.887∗∗∗

(36.25) (35.90) (35.77) (35.69)
σ 3.512∗∗∗ 3.458∗∗∗ 3.460∗∗∗ 3.459∗∗∗

(359.64) (354.11) (350.81) (350.68)
LogLike -26536.7 -26251.2 -25769.2 -25762.5
N 5350 5350 5250 5250
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 4.7.b: Regression Results II (Multi-Level Model)

4.4.1 A Formal Concept of (Multidimensional) Identity

Let there be individuals i ∈ Ni = {1, 2, ..., n} who are described by a set of characteristics C

that contains contributions to their identity. Since the order of elements in C is arbitrary, we

say that the first c elements of C are salient in the given context.21 For each dimension there

exists a threshold value δk, where k is the index of the relevant characteristic.

Definition 1 (Social Group Radius).

For any c, the social group radius for the active identity dimensions is

δc =

√√√√ c∑
k=1

δ2
ik (4.1)

Let Ii be player i’s collection of these characteristics.

Definition 2 (Social Distance).

The social distance is the function

d : Ii × Ij 7→ R+ (4.2)

This distance measure captures social comparison.22 In Shayo (2009) this distance measure

is a weighted distance, where the so-called salience weights determine how much the respec-

tive dimension affects individual i’s behaviour. Although we do not directly model weights

that individuals attach to certain dimensions of identity we still model the fact that different

21Note that salience is not modelled in here. Just as in the experiment it is exogenously given which dimen-
sions are active.

22For the rest of the argument we are working with the Euclidean metric. This is assuming real inputs. The
argument goes through for metrics on other scales as well.
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characteristics of one’s own self and the opponent can influence behaviour to different de-

grees. This happens on the one hand through the discrete selection of each dimension into

the active sets, which can be interpreted as putting weight ωc = 0 or ωc = 1 on some dimen-

sion c ∈ {1, ..., C}. On the other hand, the group thresholds δic serve a similar purpose as

only the joint information on distances and thresholds determines how similar individual i

perceives j to be according to the salient dimensions of identity.

If an opponent is in the δc-ball centred at Ii with respect to the social distance, she is con-

sidered an in-group member. The formal definition of the in-group and the out-group is

thus pinned down by the interplay of the distances between two identities Ii and Ij and the

thresholds δc.

Definition 3 (In-Group and Out-Group).

From perspective of player i, we call the opponent j an in-group member if d(Ii, Ij) ≤ δc. The

opponent is in the out-group if d(Ii, Ij) > δc.

Depending on whether individual i categorises j to be either in the in-group or the out-

group, her behaviour in our model differs qualitatively compared to the standard equilib-

rium prediction.

Since our definition of in and out-group comparison is based on a spatial notion, we can

easily imagine the case where we add an identity dimension to a one-dimensional iden-

tity.23 Consider Figure 4.4.12 . Focus only on the abscissa first. Suppose some individual i’s

Iij Ii

D1

D2

Individual i
Individual j
Two-Dimensional In-Group Border
One-Dimensional In-Group Borders

Figure 4.4.12 : Increasing Dimensionality of Active Identities

identity is determined solely by the corresponding dimensionD1. The dashed lines indicate

23Since distances as well as threshold values add up as a Euclidean sum this argument is without loss of gener-

ality. Formally, for each
√∑N

i=1 x
2
i >

√∑N
i=1 b

2
i there exist z, c ∈ R such that

√
z2 +

∑N
i=1 x

2
i <

√
c2 +

∑N
i=1 b

2
i .
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the social group radius for this single dimension, pinned down by δiD1 . As individual j’s

position is beyond this border, she is considered to be in the out-group of i with respect to

D1.

Now focus on the ordinate only. We see that i considers j to be an in-group member with

respect to D2 by the same argument.

Adding up both dimensions as specified above, each individual’s position is determined by

the two-dimensional coordinate on D1 × D2. We see that individual j now belongs to i’s

in-group with respect to both identity dimensions, although she was in the out-group with

respect only to D1. We can easily construct the converse case. If we start out with D2 and

consider adding D1, we will see that individual j moves much closer to the out-group of

individual i.

This essentially illustrates what Gaertner et al. (1993) call a re-categorisation from the out-

group (in-group) to the in-group (out-group).

Besides the concept of re-categorisation, figure 4.4.12 also gives us a means of decomposing

the eventual categorisation into in-group and out-group. Think of someone who violates a

specific in-group criterion. She can still be considered as in-group member, as all her other

characteristics are perfectly in line with those of the group.24 Conversely, if on many dimen-

sions a person is seen as far away, one could still acknowledge her to have virtues without

seeing her as an in-group member.

4.4.2 Social Distance and Social Preferences

Let there be two individuals. Each individual i ∈ I = {1, 2} has an identity that is described

by a point Ii in the identity space as described above.25 With the above metric and a short-

hand on notation we have dij = d(Ii, Ij). Note that the distance from i to j is assumed to be

the same as the distance from j to i.

Denoting the action of player i by ai and the corresponding material payoff by πi, social

preferences are then induced by that distance in a way that is consistent with Figure 4.4.12 .

Definition 4.1 (Identity-Induced Social Preferences).

Social distance translates into other-regarding utility via

Ui (a, Ii, Ij) = πi (ai, a−i) +
∑
j 6=i

αijπj(aj , a−j)

24The argument in the graph would still go through if the border just widens close to the own coordinate on
the y-axis, thus creating a vertical ellipse. This would make the formal statement more tedious.

25We change Iij to Ij here as there are only two players and the experimental design is such that any salient
identity is known to both subjects.
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where

αij =
Aiδ

c − Sidij
δc + dij

with Ai, Si ∈ R+ for all i ∈ I.

Note that, assuming dij > 0, we have αij ∈ (−Si, Ai) for all j ∈ I. The maximum level

of altruism is reached when the distance is close to zero, corresponding to αij close to Ai,

while the maximum level of spite is reached for dij → ∞, for which αij → −S. The level

where αij = 0 corresponds to dij
δc = Ai

Si
, which measures the threshold where individuals

are neither acting altruistic or spiteful. Note that a very altruistic individual (Ai high and Si

low) would even act in an altruistic way towards out-group individuals as long as they are

not ‘too far away’. The opposite applies for a spiteful individual (Ai low and Si high) who

would even attack in-group members if they are closer to the out-group.

4.4.3 Application to Contest

We focus on a case with two players i ∈ {1, 2}. For the purpose of our experiment we

assume that players always care more about their own payoff than about the other player’s

payoff. Thus, to ensure αij ∈ (−1, 1), we assume Ai = Si = 1 for all i. This implies

αij = αji = α. This might well not be the case for real-world examples where the stakes are

high and ethnic or religious identities have contributed to fierce fights over long periods of

time. Also symmetry with respect to the α’s might not be justified in some cases, as conflict

between minorities and insurgents might well induce different levels of antagonism and

in-group love.

Assuming linear costs, the payoff in a contest model is given by

πi(xi, xj) = p (xi, xj) vi − xi

where xi ≥ 0 denotes player i’s effort level, vi > 0 is player i’s valuation of the prize each

player can obtain. The contest success function (CSF) is given by

p (xi, xj) =


xi

xi+xj
if xi + xj > 0

1
2 else

Within the framework developed before, utility obtains as

Ui (xi, xj , Ii, Ij) = πi (xi, xj) + α (Ii, Ij)πj (xj , xi)

=
xivi + αxjvj
xi + xj

− xi + αxj
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The best response functions obtain as

xBR
i (xj) =

√
xj(vi − αvj)− xj

The equilibrium is then given by

xi =
ṽij ṽji(

ṽij + ṽji
)2 ṽij

where ṽij = vi − αvj .

Our first assumption concerning differences and commonalities in an identity can be sum-

marised as follows.

Assumption 1 (Differences and Commonalities in Identity).

A salient identity induces dij > δc in case of a difference and dij < δc in case of a commonality.

Defining B =
ṽij ṽji

(ṽij+ṽji)
2 , we see that xi = Bṽij and xj = Bṽji.

For the special case of vi = vj = v, that is when the valuation of the prize is homogenous,

we have

x∗ =
1

4
(1 + α)v

We see that, depending on the players’ identities, equilibrium can range from peaceful divi-

sion of the prize (α = −1) to full dissipation (α = 1).

Figure 4.4.13 illustrates this result graphically. If social distance is great relative to the in-

group border, i.e., if they perceive each other to be in their respective out-groups, the players

end up in an equilibrium with higher efforts than in the purely selfish case (α = 0). If they

perceive each other to be sharing the same in-group, they reduce effort levels and dissipate

less of the monetary value of the prize.

This model so far can explain how greater social distance can aggravate conflict, and lower

social distance can reduce conflict. Our findings regarding higher efforts for the CPGE sub-

jects and even higher efforts when these are matched with opponents of the same identity

runs counter to the theoretical findings.

In the empirical section we argued that (a) more competitive students select into the CPGE

and (b) that competition typically takes place within a vertical strata. We can model this

through a greater losing loss (Lh) in the utility function when being matched with opponents

of the same vertical identity. They might still have a loss when they are matched with oppo-

nents of a different vertical identity (Ll), but that loss is lower in magnitude (Lh < Ll < 0).

This captures the idea that competition typically takes place within a certain level of ver-

tical identities. Jobs are contested by workers of similar skill level, sports competitions are

Paul M. Gorny 152 UEA - School of Economics



Chapter 4: Multidimensional Identities in Conflict

xj

xi α > 0

α = 0

α < 0

Figure 4.4.13 : Best Response Functions for Different Levels of α and homogenous L

organised in different divisions that show roughly the same performance and in the particu-

lar example of our experiment, students with similar grades and certificates tend to be more

likely to compete for the same university places, internships and later jobs. Furthermore, we

assume that the higher the level of the vertical identity in terms of its underlying hierarchy,

the higher that loss (LCPGE > LAST ).26

We add these to the utility function as the loss incurred when the opponent wins.

π′i(xi, xj) = πi(xi, xj) + p (xj , xi)Li (4.3)

=
xivi + αxjvj − Li

xi + xj
− xi + αxj (4.4)

The best response functions change to

xBR
i (xj) =

√
xj(vi − αvj − Li)− xj . (4.5)

This results in an equilibrium that is structurally identical to (4.3) for ṽ′ij = ṽij − Li = vi −

αvj − Li.

xi =
ṽ′ij ṽ

′
ji(

ṽ′ij + ṽ′ji

)2 ṽ
′
ij

The other extremal case we can then discuss obtains for α = 0 and some Li, Lj < 0. If

the two players have the same rank in the vertical identity, their loss function is increasing

equilibrium efforts in a symmetric way. If player 1 has a higher rank than her opponent, we

26These assumptions are more mechanical than the assumptions about purely horizontal identity, but they
correspond most naturally to our findings in the data.
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xj

xi Li = Lj = Lh < Ll < 0

Li = Lj = 0

Li = Lh < Lj = Ll < 0

Figure 4.4.14 : Best Response Functions for Different Levels of L and homogenous α
Note: The blue dashed and the red dot-dashed line are supposed to lie on top of each other and are shifted for

better legibility.

see that

x∗1 = S(v + α− L1) > S(v + α− L2) = x∗2

and since both loss values are strictly negative and thus increasing ṽij and ṽji,

x∗1 + x∗2 > 2x∗L=0.

In terms of the treatments in our design, we consider six potential realisations for the pa-

rameters, which are given by Li ∈
{
Lh, Ll, 0

}
for all i ∈ {1, 2} with Lh < Ll < 0 and

α ∈ {αl, 0, αh}with −1 < αl < 0 < αh < 1.

Identity Language School
Dimension None Same Different Same Different

None α = 0, L = 0 αl, L = 0 αh, L = 0 αl, Lh
αh,
Lh, Ll

Same Painting αl, L = 0 –
α ∈ (0, αh),

–
α ∈ (0, αh),

L = 0 Lh, Ll

Different Painting αh, L = 0
α ∈ (αl, 0),

–
α ∈ (αl, 0),

–
L = 0 Lh

Table 4.8: Model Parameters Corresponding to Experimental Design
Note: α is always assumed to be symmetric, L denotes symmetric parameters for Li

Paul M. Gorny 154 UEA - School of Economics



Chapter 4: Multidimensional Identities in Conflict

Some of the comparisons depend on the magnitude of either α or L and how they com-

pare. Other comparisons are relatively clear cut. According to the above model we have

• xαl,L=0 > xαh,L=0

• xα=0,Lh > xα=0,Ll > xα=0,L=0

• xα=0,Ll , xα=0,Lh Q xαh,L=0

Qualitatively, the second hypothesis is robust to allowing for a small, positive α. That would

mean, that individuals from the same strata feel socially close, but that feeling is exceeded

by the increase in competitiveness within strata.

4.5 The Model vs. the Data

The above model can easily reproduce behaviour observed in the pilot experiment when-

ever a single identity dimension is salient to the subjects. Differences in horizontal identities

increase conflict relative to commonalities in these identities. Qualitatively, this is what we

found for the minimal identity, which can also be categorised as horizontal.

Vertical identities trigger the loss function and thus increase efforts in general. If the two

players are from different levels of the vertical hierarchy, the higher rank player is more ag-

gressive than the lower rank player which is consistent with our finding that CPGE students

bid more aggressively than AST students. Also, within the DS treatment, the CPGE students

exerted more effort, but with the low number of independent observations, it needs to be

shown in future studies whether this is robust.

When more than one dimension is activated, particularly, as in our design, with one com-

monality and one difference, comparison of equilibrium efforts is indeterminate in general.

Only if α and Li are sufficiently bound away from 0, this comparison gives clear answers.

For the design of future experiments this means that identities should be strong enough, par-

ticularly when working with multiple identity dimensions. Pre-treatments in which subjects

work together on a task as a way of strengthening the in-group identity might alleviate these

problems as long as they are comparable across identity dimensions.

A few questions remain unanswered. The control group in the experiment exerts strik-

ingly high efforts when compared to previous baselines and the other treatment groups.

There are two candidate explanations we can come up with. As a first explanation, the ses-

sion effects might be particularly strong in that group. This is supported by a correlation of
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0.2246 between a dummy of being assigned to the control or not and the session number.

Control treatments thus occurred more often in the second half of sessions where the clus-

ters are stronger (consider Figure 4.3.11 again). As a second explanation, the information

‘you are matched with another participant’, which was displayed as a means of compara-

bility between the experimental groups, might have induced overthinking in subjects. We

do have data of a session where this message was not displayed for technical reasons, and

differences between these two ‘types’ of control group are almost zero, but as there were

other problems in this session, that comparison is not likely to be reliable.

4.6 Conclusion

We tested whether it is possible to classify identities into three different categories based on

their effects in a conflict game. Also, we explored, whether commonalities in one identity

dimension can mitigate conflict induced by another identity dimension where a difference

is salient. The categories we defined are minimal identities and real identities that can be

divided into horizontal and vertical identities, depending on whether the realisations of

the identity can be ordered by an impartial third person. We have mild evidence that the

effects of those different types of identity differ, but we lack statistical significance. Follow-

up sessions of the experiment and further investigation of the data at hand can hopefully

resolve these issues. To guide this future research we developed a model that suggests that

differences in minimal and horizontal identities should increase conflict, while similarities

should reduce it. For vertical identities we predicted that efforts generally increase. Also for

vertical identities, commonalities increase efforts more strongly than commonalities since

competition typically occurs within a social stratum.

Beside the follow ups for the experimental study, future directions point at a more com-

plete theoretical investigation of vertical and horizontal identities. First attempts of apply-

ing similarity theory (Tversky, 1977) to the social space we defined here have been made.

To structure our findings from the preliminary experiment carried out here and to generate

hypotheses for future experiments, we introduced vertical identities in a fairly mechani-

cal way. New models of identity may want to find a more endogenous way to create the

distinction to horizontal identity.
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4.A Instructions

Since the instructions were displayed to the subjects in the respective language that they

are taught in, we are first showing instructions in English and then in French. We keep

translations consistent throughout the instructions and they do not differ dramatically in

length, both in terms of words written and time needed to read through. Note though,

that the experimenter did not read these instruction out loud, as subjects with different

languages could have been present in each session.

They were first translated by one of the authors together with a native speaker from BSB

and then checked by a French researcher at UEA.

4.A.1 English

GENERAL INSTRUCTIONS

This is an experiment in decision-making. If you follow the instructions carefully, you can

earn more money depending both on your own decisions and on the decisions of others.

These instructions and your decisions in this experiment are solely your private informa-

tion. During the experiment you are not allowed to communicate with any of the other

participants or with anyone outside the laboratory. Please switch off your mobile phone

now. If you have any questions at any time during the course of this experiment, please

raise your hand. An experimenter will assist you privately.

This experiment has 3 parts. Your total earnings will be the sum of your earnings in all

three parts. Your earnings in each part will be measured in tokens. At the end of the experi-

ment you will be paid in Euro based on the exchange rate. In the end of the experiment your

payments from all parts of the experiment are added up and you will be paid accordingly.

The exchange rate between tokens and Euro is the following:

1 token = 0.01 e = 1 Cent

INSTRUCTIONS FOR PART I

In this task, you will be asked to chose from six different gambles (as shown below). Each

circle represents a different gamble from which you must choose the one that you prefer.

Each circle is divided in half, with the two possible alternative payoffs from the gamble in

the two halves of the respective circle.
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Your payment for this task will be determined at the end of today’s experiment. The

computer will perform a random coin toss. If the outcome is a head, you will receive an

amount of cents equal to the number in the light grey area of the circle. Alternatively, if the

outcome is a tail, you will receive the amount of cents equal to the number shown in the

dark grey area of the circle. Note that no matter which gamble you pick, each outcome has

a 50% chance of occurring.

PART I QUIZ

Please answer the following questions to test your understanding of the task. You will

proceed when you have answered both questions correctly. Please ask for help if you are

unable to answer the questions correctly.

Q1) Suppose you chose Gamble 3 and the outcome of the coin toss is heads. How many

cents would you receive from this task?

Q2) Suppose you chose Gamble 5 and the outcome of the coin toss is tails. How many

cents would you receive from this task?

Please select the gamble of your choice by entering the corresponding number.

Once you click the ’Confirm’ button, you cannot revise your choice anymore. So, please

be sure of your choice before clicking on the ’Confirm’ button.

INSTRUCTIONS FOR PART II

In Part II everyone will be shown 5 pairs of paintings by two artists (Paul Klee and Wass-

ily Kandinsky). You will be asked to choose which painting in each pair you prefer. You will

then be classified into one of two groups, based on which artist you prefer.

Paul M. Gorny 161 UEA - School of Economics



Chapter 4: Multidimensional Identities in Conflict

Now please choose which painting you prefer by ticking the box under the corresponding

painting from each pair. After everyone submits answers, you will be privately informed of

which group you are in.

INSTRUCTIONS FOR PART III

Part III consists of 25 decision-making periods. At the beginning of this stage, you will be

randomly and anonymously matched with another participant. This matching will remain

the same over all periods. Each period, you will be given an endowment of 160 tokens. You

may bid for a reward of 160 additional tokens. You may bid any whole number between 0

and 160. Irrespective of whether you get the reward or not, your bid is gone.

Your bid and the bid of the participant you are matched with will determine the proba-

bility of winning the reward for you and your opponent. This probability will be calculated

as

Probability=Your bid/(Your bid + Other’s bid)

A random draw according to this probability will then determine who won the reward.

Your earnings in each round you win will be

Reward+Endowment-Bid

Your earnings in each round you lose will be

Endowment-Bid

Your endowment does not carry over to future periods.

In the end, 5 periods will be randomly chosen to determine your total earnings and thus

your payment.

An Example (for illustrative purposes only)

Assume participant 1 bids 30 tokens and participant 2 bids 45 tokens.

Therefore, the computer assigns 30 lottery tickets to participant 1 and 45 lottery tickets to

participant 2. Then the computer randomly draws one lottery ticket out of 75 (30 + 45).

As you can see, participant 2 has the highest chance of receiving the reward: 0.60 = 45/75

and participant 1 has a 0.40 = 30/75 chance of receiving the reward.

Assume that the computer assigns the reward to participant 1, then the earnings of par-

ticipant 1 for the period are 290 = 160 + 160 – 30, since the reward is 160 tokens and the cost

of the bid is 30. Similarly, the earnings of participant 2 are 115 = 160 – 45.
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To demonstrate your understanding of the task in this stage, please answer the following

questions. You will proceed when you have answered both questions correctly. Please ask

for help if you are unable to answer the questions correctly.

4.A.2 French

CONSIGNES GENERALES

C’est une expérience basée sur la prise de décision. Si vous suivez attentivement les in-

structions, vous pouvez gagner plus d’argent en fonction de vos propres décisions et de

celles des autres. Ces instructions et les décisions que vous prenez dans le cadre de cette ex-

périence ne sont que des renseignements personnels vous concernant. Pendant l’expérience,

vous n’êtes pas autorisé à communiquer avec les autres participants ou avec quiconque en

dehors du laboratoire. Veuillez éteindre votre téléphone portable maintenant. Si vous avez

des questions au cours de cette expérience, veuillez lever la main. Un expérimentateur vous

assistera en privé.

Cette expérience comporte 3 parties. Le total de vos gains correspondra à la somme de

vos gains dans les trois parties. Vos gains dans chaque partie seront mesurés en jetons. À

la fin de l’expérience, vous serez payé en EUROS sur la base du taux de change. À la fin

de l’expérience, vos paiements de toutes les parties de l’expérience sont additionnés et vous

serez payés en conséquence.

Le taux de change entre les jetons et l’euro est le suivant:

1 jeton = 0.01e = 1 Centime

CONSIGNES POUR LA PARTIE I

Dans cette tâche, vous devrez choisir parmi six jeux différents (comme illustré ci-dessous).

Chaque cercle représente un pari diffèrent parmi lequel vous devez choisir celui que vous

préférez. Chaque cercle est divisé en deux, avec les deux variantes possibles de gains du

pari dans les deux moitiés du cercle respectif.

Paul M. Gorny 163 UEA - School of Economics



Chapter 4: Multidimensional Identities in Conflict

Votre paiement pour cette tâche sera déterminé à la fin de l’expérience d’aujourd’hui.

L’ordinateur effectuera un tirage au sort des pièces de monnaie. Si le résultat est face, vous

recevrez un montant de centimes égal au nombre dans la zone gris clair du cercle. Alter-

nativement, si le résultat tombe sur pile, vous recevrez une quantité de centimes égale au

nombre indiqué dans la zone gris foncé du cercle. Notez que peu importe le jeu que vous

choisissez, chaque résultat a 50% de chance de se produire.

PARTIE I QUIZ

Veuillez répondre aux questions suivantes pour tester votre compréhension de la tâche

à effectuer. Vous pourrez commencer une fois que vous aurez répondu correctement aux

deux questions. Veuillez demander de l’aide si vous ne pouvez pas répondre correctement

aux questions.

Une fois que vous avez cliqué sur "Confirmer", vous ne pouvez plus modifier votre choix.

Veuillez donc vous assurer de votre choix avant de cliquer sur "Confirmer".

CONSIGNES POUR LA PARTIE II

Dans la partie II, chacun pourra voir 5 paires de tableaux de deux artistes (Paul Klee et

Wassily Kandinsky) Il vous sera demandé de choisir quelle peinture de chaque paire vous

préférez. Vous serez ensuite classés dans l’un des deux groupes, en fonction de l’artiste que

vous préférez.

Veuillez maintenant choisir quel tableau vous préférez en cochant la case sous le tableau

correspondant de chaque paire. Une fois que tout le monde aura répondu, vous serez infor-

més en privé du groupe auquel vous appartenez.
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CONSIGNES POUR LA PARTIE III

La Partie III comprend 25 périodes de prise de décision. Au début de cette étape, vous

serez jumelés de façon aléatoire et anonyme avec un autre participant. Cette association

restera la même pour toutes les périodes. À chaque période, vous recevez une dotation de

160 jetons. Vous pouvez enchérir pour obtenir une récompense de 160 jetons supplémen-

taires. Vous pouvez enchérir sur n’importe quel nombre entier entre 0 et 160. Peu importe

que vous obteniez la récompense ou non, votre enchère a disparu.

Votre enchère et celle du participant avec lequel vous êtes associé déterminera la probabil-

ité de gagner la récompense pour vous et le participant avec lequel vous êtes associé. Cette

probabilité sera calculée comme suit :

Probabilité=Votre enchère/ (Votre enchère + L’enchère d’autre)

Un tirage au sort selon cette probabilité déterminera alors qui a gagné la récompense. Vos

gains à chaque tour que vous gagnerez seront les suivants :

Prime + dotation - enchère

Vos gains à chaque tour que vous perdez seront les suivants :

Dotation – Enchère

Votre dotation ne se reporte pas aux périodes futures.

En fin de compte, 5 périodes seront choisies au hasard pour déterminer le total de vos

gains et donc votre paiement.

Un exemple (À titre indicatif seulement)

Supposons que le participant 1 offre 30 jetons et le participant 2 offres 45 jetons.

Par conséquent, l’ordinateur attribue 30 billets de loterie au participant 1 et 45 billets de

loterie au participant 2. L’ordinateur tire au hasard un billet de loterie sur 75 (30 + 45).

Comme vous pouvez le voir, le participant 2 a la plus grande chance de recevoir la ré-

compense : 45 sur 75 et le participant 1 a 30 sur 75 de chance de recevoir la récompense.

Supposons que l’ordinateur attribue la récompense au participant 1, alors les gains du

participant 1 pour la période seront 290 = 160 + 160 – 30, puisque la récompense est de 160

jetons et que le coût de l’enchère est de 30. De même, les gains du participant 2 sont de 115

= 160 – 45.
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Afin de démontrer que vous comprenez le travail à effectuer, veuillez répondre aux ques-

tions suivantes. Vous procèderez une fois que vous aurez répondu correctement aux deux

questions. Veuillez demander de l’aide si vous ne pouvez pas répondre correctement aux

questions.

4.B Regression Tables

The first table checks for the individual inclusion of the attitude variables to see which has

the largest impact on the remaining coefficients. We see that the largest change occurs when

including WTPCPGE. Compared to model (1), this model sees the largest changes in magni-

tude in the treatment variables. The coefficients on French, AST, Female, GameTheory and

Experience attenuate, but they remain significant. The coefficients on Age and Risk Aver-

sion increase slightly, also remaining statistically significant.

Since the baseline category of WTPCPGE is ‘no response’, the interpretation is that subjects

in session 1 where technical difficulties occurred exerted more effort than those that actually

answered the questionnaire.

Table 4.10 investigates whether subjects with a CPGE degree did better in terms of period

payoffs than AST subjects. While in model (2) this seems to be very slightly the case, the

magnitude and statistical significance attenuate as we include the standard controls.

Table 4.11 finally check whether the winning probabilities are higher for CPGE students. In

case they do not care as much about payoff as they do about winning, this might still signal

a higher ability and then provide an alternative explanation to our interpretation, based on

selection.

The AST coefficient is close to zero and insignificant, so we can reject the hypothesis that

CPGE students are systematically better at winning than AST students.
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Dep.Var.: Effort (1) (2) (3) (4)
SL -3.775 -3.393 -6.954 -3.340

(-0.45) (-0.40) (-0.83) (-0.40)
DL -5.520 -5.309 -5.537 -5.493

(-0.69) (-0.66) (-0.69) (-0.68)
SS 7.234 7.369 6.847 6.601

(0.84) (0.85) (0.80) (0.77)
DS 4.029 3.727 5.459 3.934

(0.46) (0.42) (0.62) (0.45)
SP -11.04 -11.29 -10.62 -11.13

(-1.24) (-1.27) (-1.21) (-1.25)
SPDL -2.853 -2.780 -1.139 -3.339

(-0.34) (-0.33) (-0.14) (-0.40)
SPDS -0.0289 0.00119 2.598 -1.246

(-0.00) (0.00) (0.29) (-0.14)
DP -6.443 -6.832 -5.872 -6.523

(-0.77) (-0.81) (-0.71) (-0.78)
DPSL 0.660 0.851 1.567 0.809

(0.08) (0.10) (0.19) (0.10)
DPSS -10.26 -10.61 -8.835 -10.51

(-1.21) (-1.25) (-1.05) (-1.24)
French 5.464∗∗∗ 6.326∗∗∗ 4.919∗∗∗ 5.663∗∗∗

(3.75) (3.95) (3.35) (3.88)
AST -7.862∗∗∗ -7.975∗∗∗ -6.975∗∗∗ -8.015∗∗∗

(-5.37) (-5.41) (-4.37) (-5.46)
Kandinsky -0.0671 0.0961 0.0584 -0.178

(-0.05) (0.07) (0.05) (-0.14)
Period -1.425∗∗∗ -1.425∗∗∗ -1.425∗∗∗ -1.425∗∗∗

(-23.42) (-23.42) (-23.43) (-23.42)
Age 1.727∗∗∗ 1.784∗∗∗ 1.842∗∗∗ 1.639∗∗∗

(2.80) (2.88) (2.96) (2.64)
Female 2.234∗ 2.550∗∗ 2.326∗ 1.992

(1.86) (2.07) (1.93) (1.64)
GameTheory -4.755∗∗∗ -4.939∗∗∗ -4.775∗∗∗ -5.161∗∗∗

(-3.33) (-3.44) (-3.34) (-3.57)
Semester -0.277 -0.344 -0.161 -0.296

(-0.59) (-0.72) (-0.34) (-0.63)
Experience -4.497∗∗∗ -5.009∗∗∗ -4.134∗∗ -5.059∗∗∗

(-2.84) (-3.07) (-2.57) (-3.13)
Risk Aversion -0.767∗∗ -0.745∗∗ -0.771∗∗ -0.775∗∗

(-2.15) (-2.08) (-2.15) (-2.17)
Neither -3.013

(-1.45)
French -1.478

(-0.98)
Don’t know -22.08∗

(-1.78)
Low -18.07

(-1.45)
Medium -23.20∗

(-1.87)
High -24.46∗∗

(-1.97)

Table 4.9.a: Regression Results III: Individual Inclusion of Attitude Controls
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Arts -2.592∗

(-1.72)
Constant 56.46∗∗∗ 55.99∗∗∗ 74.38∗∗∗ 60.60∗∗∗

(4.11) (4.08) (4.14) (4.35)
σM 2.231∗∗∗ 2.196∗∗∗ 2.067∗∗∗ 2.210∗∗∗

(6.68) (6.30) (5.48) (6.49)
σS 2.885∗∗∗ 2.891∗∗∗ 2.883∗∗∗ 2.887∗∗∗

(35.77) (35.76) (35.74) (35.78)
σ 3.460∗∗∗ 3.459∗∗∗ 3.459∗∗∗ 3.459∗∗∗

(350.81) (350.78) (350.72) (350.78)
LogLike -25769.2 -25768.1 -25764.3 -25767.7
N 5350 5350 5250 5250
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 4.9.b: Regression Results III: Individual Inclusion of Attitude Controls
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Dep.Var.: Period Earnings (1) (2) (3) (4)
SL 5.941 5.988 4.539 5.171

(0.69) (0.71) (0.53) (0.60)
DL 5.819 5.866 4.429 4.607

(0.70) (0.72) (0.54) (0.57)
SS -9.006 -7.858 -9.072 -8.747

(-1.02) (-0.90) (-1.03) (-1.00)
DS -3.249 -3.880 -4.608 -5.993

(-0.36) (-0.44) (-0.51) (-0.68)
SP 11.39 13.37 11.73 10.57

(1.25) (1.49) (1.29) (1.19)
SPDL 1.991 3.878 -0.775 -1.033

(0.23) (0.46) (-0.09) (-0.12)
SPDS -0.383 -0.378 -1.459 -4.634

(-0.04) (-0.04) (-0.16) (-0.51)
DP 5.916 7.003 5.633 3.013

(0.69) (0.83) (0.66) (0.36)
DPSL -3.042 -2.135 -3.308 -5.078

(-0.36) (-0.26) (-0.40) (-0.62)
DPSS 11.33 11.23 9.008 8.199

(1.31) (1.32) (1.04) (0.96)
French -6.376∗∗ -5.392∗ -4.689

(-2.21) (-1.82) (-1.44)
AST 4.305 3.462 2.838

(1.51) (1.11) (0.84)
Kandinsky 2.461 2.043 2.217

(0.90) (0.73) (0.79)
Period 1.429∗∗∗ 1.437∗∗∗ 1.437∗∗∗

(9.37) (9.34) (9.34)
Age 0.562 0.249

(0.42) (0.18)
Female 1.873 2.327

(0.68) (0.82)
GameTheory 1.355 0.987

(0.42) (0.30)
Semester -0.654 -0.569

(-0.66) (-0.57)
Experience -1.541 0.00425

(-0.42) (0.00)
Risk Aversion 0.337 0.210

(0.43) (0.27)
TVLang - Neither -0.462

(-0.10)
- French -1.868

(-0.56)
WTPCPGE - Don’t know 19.38

(1.52)
- Low 24.89∗

(1.87)
- Medium 27.01∗∗

(2.10)
- High 20.64

(1.61)

Table 4.10.a: Regression Results IV: Final Earnings
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Arts 2.161
(0.63)

Constant 172.8∗∗∗ 153.8∗∗∗ 143.9∗∗∗ 129.3∗∗∗

(28.44) (22.57) (5.18) (4.21)
σM 2.215∗∗∗ 2.174∗∗∗ 2.227∗∗∗ 2.070∗∗∗

(6.28) (6.07) (6.30) (5.16)
σS 2.722∗∗∗ 2.698∗∗∗ 2.687∗∗∗ 2.661∗∗∗

(22.98) (21.94) (21.12) (20.42)
σ 4.396∗∗∗ 4.388∗∗∗ 4.387∗∗∗ 4.387∗∗∗

(450.17) (449.12) (444.59) (444.49)
LogLike -31172.0 -31125.1 -30542.1 -30538.2
N 5350 5350 5250 5250
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 4.10.b: Regression Results IV: Final Earnings
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