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ABSTRACT 
 

Osteoporotic vertebral fractures represent an important health burden in the Western 

world, in particular given the aging population demographics of most Western countries. At 

present, the treatment options for osteoporotic vertebral fractures are limited, and often 

conservative, relying on medical pain management. Transpedicular spinal interventional 

techniques such as vertebroplasty and kyphoplasty offer a minimally invasive treatment 

option for osteoporotic vertebral fractures. However, there has been recent controversy 

regarding the efficacy of vertebroplasty for pain relief.  Although these percutaneous 

techniques continue to be used and developed, there is no consensus on the pre-clinical 

testing of new instruments and cements. Human cadaveric vertebrae are expensive and of 

limited availability, and animal vertebrae offer a more easily accessible alternative, but 

there is no agreement within the literature as to which species best approximates the 

human.  

 

This thesis explores the currently available evidence comparing human and animal 

vertebrae, and performs comparison studies assessing basic morphometric measurements, 

bone texture, and statistical shape analysis, to decide upon the best animal model for the 

use in assessing novel transpedicular instruments and vertebral bone cements. The findings 

would also apply to developments in surgical transpedicular screws. 

 

The morphometry showed that sheep are generally closer to humans in the thoracic spine, 

whereas pigs are closer in the lumbar spine. Bone texture analysis demonstrated no 

significant differences in trabecular thickness between humans and either sheep or pigs. 

Statistical shape analysis corroborated the findings of basic morphometry. Taking the 

findings in combination, I would suggest that for the purposes of transpedicular techniques, 

the sheep is a closer model to the human in the thoracic spine, and the pig is closer in the 

lumbar spine.  
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THESIS OUTLINE 
 

The main aim of this thesis is to decide upon the best animal model for assessing 

transpedicular vertebral instruments and cement. The thesis comprises an introductory 

chapter, a systematic review, three studies, and a summary chapter. 

 

Chapter 1 

Introduction to the background topics of osteoporosis, vertebroplasty, bone texture and 

statistical shape analysis. 

Chapter 2  

Systematic review of the available evidence comparing animal and human vertebrae 

Chapter 3 

A study comparing basic morphometrics of pig, sheep, and human thoracolumbar vertebrae 

Chapter 4 

A study comparing bone texture analyses of pig, sheep, and human L1 vertebrae 

Chapter 5 

A study using statistical shape analysis to compare statistical shape models of pig, sheep, 

and human L1 vertebrae 

Chapter 6 

A summary of the findings and conclusions drawn from the studies within the thesis, putting 

these into the context of the background literature 
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CHAPTER 1: 
INTRODUCTION 
 

 

1.1 SPINAL OSTEOPOROSIS 

 

1.1.1 HISTORY 

 

The term osteoporosis is derived from the Greek “osteon” relating to bone, and “poros” 

meaning passage or pore. It was first used by Jean Georges Chretien Frederic Martin Lobstein 

(1777–1835), a French pathologist and surgeon, who noted that the bones of some patients 

appeared more porous than others (1). Earlier work in the mid-18th Century by the Scottish 

surgeon John Hunter (1728-1793) had already demonstrated that the process of bone growth 

and repair involved a remodelling process (2), and this was later expounded upon by German 

orthopaedic surgeon Julius Wolff (3).  

 

However, initially no connection was made between these two processes and osteoporosis 

was considered to be of idiopathic aetiology until the early 20th Century. After reading 

research on the connection between ovarian function and calcium metabolism in pigeons, US 

endocrinologist Fuller Albright (1900-1969) noted that many of his osteoporosis patients were 

post-menopausal, and that treating them with oestrogen therapy resulted in improved bone 

mineralisation (4, 5). Newer research suggests that the causes and contributory mechanisms 

are probably even more complex than simply being due to an oestrogen deficient state (6). 

 

The modern definition of osteoporosis stems from that proposed by Albright himself: 

decreased bone mass due to insufficient bone matrix production by osteoblasts (4, 7, 8). This 

results in increased bone fragility. Bone mineral density (BMD) is assessed using Dual Energy 

X-ray Absorptiometry (DEXA). The standard reference site is the neck of the femur. 
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Osteoporosis may be diagnosed when bone density is more than 2.5 standard deviations 

below the mean value for young adult, which is known as the T-score (9). 

 

1.1.2 EPIDEMIOLOGY 

 

Osteoporosis represents a significant health burden in the Western world, with grave 

consequences for morbidity and mortality. The incidence of osteoporosis in 2010 in the 27 

European Union countries (EU27) was estimated as 5,500,000 men and 22,100,000 women. 

There was an estimated incidence of osteoporotic vertebral fractures of 273 per 100,000 in 

the UK in 2010. 42,809 deaths in the EU27 were considered directly attributable to an 

osteoporotic fracture (i.e. other co-morbidities and contributory factors had been excluded). 

In 2010 the total cost of osteoporosis to the UK (including fracture costs and pharmacological 

interventions) was estimated at €5,408,000,000 (10).  

 

1.1.3 BONE ANATOMY AND PHYSIOLOGY 

 

To understand the pathophysiology of osteoporosis, it is useful to consider the normal 

physiological process of bone mineralisation. 

 

Bones are divided into four main categories based on their shape and size: long bones, short 

bones, flat bones, and irregular bones (in which category vertebrae are considered). The 

different categories of bone have different ratios of cortical vs cancellous/trabecular bone, 

and vertebrae tend to have a ratio of 25:75 cortical to cancellous bone (11).  

 

Cortical bone is the dense, hard bony tissue that forms bone cortex. Cancellous (also known 

as trabecular) bone is the bone tissue of the medulla, consisting of a network of trabeculae 

which run through the marrow tissue. 
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The basic histological units of bone are osteons. These are cylindrical structures of peripheral 

lamellar bone which is itself calcium hydroxyapatite reinforced by a type I collagen matrix, 

with a central fluid-filled lumen containing blood vessels. In cortical bone, these are called 

Haversian systems, and are in general laid parallel to the long axis of the bone (12, 13). In 

cancellous bone, these are known as trabeculae or trabecular packets, and align according to 

mechanical stress (13, 14). The mechanical properties of cortical and cancellous bone suggest 

that they respond to stress as though they are different materials (15). Their mechanical 

response also varies to differing degrees depending on the particular bone being analysed, 

with less heterogeneity seen in cortical bone (13). 

 

The two principle cells of bone are osteoblasts and osteoclasts. Osteocytes are derived from 

mature osteoblasts within bone lacunae. 

 

Osteoblasts are the cells of bone formation, arising from pluripotent mesenchymal progenitor 

cells. Mature osteoblasts produce much of the extracellular matrix proteins and also regulate 

the deposition of calcium hydroxyapatite crystals (16). Osteoblasts also play a regulatory role 

in the differentiation of osteoclasts via Wnt5a-Ror2 signalling thus increasing RANK 

expression and osteoclastogenesis (17). 

 

The bone matrix is predominantly mineralised; bone is approximately 50-70% mineral 

content. Calcium hydroxyapatite [Ca10(PO4)6(OH)2] is the main inorganic component, 

crystallising under cellular control (18). 

 

Osteoclasts are the cells of bone resorption. They arise from mononuclear precursor cells of 

the monocyte-macrophage lineage. Their differentiation, maturation and activation are 

primarily under the control of osteoblastic and marrow stromal cell cytokine production (19).  

Once activated, osteoclasts secrete hydrogen ions to dissolve the mineralised calcium 
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hydroxyapatite component of bone (11). Osteoclasts in long, short and irregular bones also 

secrete the cathepsin K enzyme which breaks down the collagenous component of bone 

matrix (11, 20). Osteoclasts found in flat bones secrete the matrix metalloprotease (MMP) 

enzyme (21). 

 

Osteocytes develop from mature osteoblasts, and play a mechanosensory role in regulating 

bone remodelling via foot processes within bone canaliculi which detect fluid flow in response 

to mechanical stress (22). Osteocyte apoptosis has been shown to be associated with 

osteoclastic activity (23).  It is interesting to note that osteocyte apoptosis is inhibited by 

oestrogen, bisphosphonates and calcitonin (24, 25). 

 

1.1.4 BONE GROWTH 

 

Bone growth encompasses several processes: longitudinal growth, radial growth, modelling 

and remodelling. Longitudinal growth occurs at the physes where there is chondral 

proliferation with subsequent mineralisation. Modelling results in changes to bone shape in 

response to stresses such as mechanical force. Remodelling is the process of constant bone 

renewal, which removes old, damaged bone tissue to help maintain strength (11). This also 

plays a role in calcium and phosphate homeostasis. 

 

Remodelling is considered to consist of four phases: activation, resorption, reversal, and 

formation (11).  Much remodelling occurs in a random manner, but there is also evidence to 

suggest that it may be targeted to areas that require repair, perhaps related to disruption of 

osteocyte systems or osteocyte apoptosis (23). Remodelling is performed by a temporary 

arrangement of osteoclasts and osteoblasts known as the “basic multicellular unit”. 

 

Activation involves the recruitment, activation and differentiation of osteoclastic precursor 

cells (26).  
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Resorption occurs as described earlier, with acid secretion by mature osteoclasts increased 

by parathyroid hormone (PTH) and prostaglandin E2 (PGE2), and decreased by calcitonin (26). 

The lytic enzymes and acids are secreted into a sealed area, and form a cavity known as 

Howship’s resorption lacune (27).  

 

Once resorption is complete and before bone formation can be initiated, the residual 

proteinaceous matrix is removed by a phagocytic cell of probable osteoblastic origin, also 

known as the “reversal cell” (27). 

 

Finally, osteoblast precursors migrate into the lacune and mature, and form new bone. The 

biochemical or biomechanical controls over the transition between resorption and formation 

are not well understood. Proposed mechanisms include osteoclast derived coupling factors 

such as sphingosine 1-phosphate, mechanical strain and PTH, or possibly a combination of 

these. The termination of bone formation is also poorly understood (27). 

 

1.1.5 PATHOPHYSIOLOGY OF OSTEOPOROSIS 

 

The pathophysiology of osteoporosis is complex and multifactorial, with many contributory 

factors: endocrine, age-related, genetic, immunological, mineral homeostasis, and 

iatrogenic, to name a few.   

 

The underlying process by which osteoporosis develops is the inadequate production of 

bone matrix by osteoblasts, and is therefore related to bone remodelling. Osteoclastic 

activity plays a role in the development of bone fragility but it is the insufficiency of 

osteoblastic activity which is key to osteoporosis; there are physiological states of increased 

osteoclastic activity which do not result in bone fragility, such as the pubertal growth spurt, 
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fracture repair, and the remodelling of bone in response to the application of increased 

forces (28, 29). 

 

1.1.6 THE ROLE OF SEX HORMONES 

 

Oestrogen deficiency has long been held to be a key contributing factor to the development 

of osteoporosis, ever since Albright’s observations in the 1930s. Subsequent studies have  

supported his assertions that oestrogen therapy may reverse the effects of osteoporosis 

(30-32), and that cessation of oestrogen therapy results in BMD loss at the same rate as un-

treated control groups (33). Additional supportive evidence comes from the fact that 

women experience two phases of BMD loss. The initial rapid loss phase immediately post-

menopause/oophorectomy and lasts for about a decade (34). After a certain level of 

cancellous bone loss, biomechanical bone homeostasis acts to limit the rate of 

demineralisation (35), and there is a slower, steady BMD decline.  

 

Men, who generally do not undergo a relatively abrupt loss of sex hormones, experience a 

single steady phase of BMD loss, which is essentially the same as the slower phase seen in 

women (34). In men, both testosterone and oestradiol are thought to have a BMD 

protective effect (36, 37); the role of testosterone is not as clearly defined as oestrogen in 

women, and is complicated by the fact that the testes produce oestradiol, that circulating 

testosterone may be converted to oestrogen in peripheral tissues, and that osteoblasts and 

osteoclasts in men display oestrogen receptors (38, 39).  

 

It is also unclear if the age-related decline in testosterone levels is of significance, with some 

evidence showing correlation between BMD and testosterone levels (40), but other studies 

have not demonstrated this (41). Furthermore, there is some evidence that there is a 

stronger association between low oestrogen levels than low testosterone levels, in men 

with primary osteoporosis (42, 43). 
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On a cellular level, osteoclast and osteoblast apoptosis is inhibited by oestrogen (24, 25). 

Oestrogen also decreases RANKL expression by osteoblasts, which in turn decreases the 

activation of osteoclasts (19).  

 

The weight of evidence is therefore strongly suggestive of a key role of sex hormone 

deficiency, in particular oestrogen, in the development of osteoporosis.  

1.1.7 THE ROLE OF AGING 

 

Although sex hormones are clearly of importance, there is much evidence that other factors 

must also contribute to the disease state. Some studies demonstrate that BMD loss begins 

as early as the third decade of life, well before the menopause (44, 45). Age may affect BMD 

through a variety of mechanisms, including decreased bone cell responsiveness to external 

influences, decreased numbers of osteoblast and osteoclast precursors, and through 

decreased muscle strength causing a relative “disuse” of bones resulting in remodelling to 

decrease mass (46).  

 

Aging is also related to cumulative oxidative stress from a lifetime of generating reactive 

oxygen species (ROS). Oxidative stress has been shown to decrease BMD (47), and a possible 

mechanism for this is via osteoclastogenesis (48).   

 

Aside from its contribution to loss of BMD, aging also has other effects on bone fragility. 

These include the deterioration of type I collagen (49). Aging can of course also be said to 

contribute to other factors such as hormonal deficiency, as the menopause is a 

consequence of aging. 
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1.1.8 THE ROLE OF MINERAL HOMEOSTASIS 

 

Disorders of calcium and phosphate homeostasis are more associated with osteomalacia 

than osteoporosis. Theoretically PTH and 1,25-dihydroxyvitamin D [1,25(OH)2D] may have a 

role in bone remodelling. With aging and/or renal failure, there is decreased hydroxylation 

of 25-hydroxyvitamin D to 1,25-dihydroxyvitamin D. There may also be contribution to this 

by the loss of extra-skeletal effects of oestrogen on calcium metabolism (50). This results in 

decreased calcium absorption from the gastrointestinal tract. The resultant increase in PTH, 

secondary hyperparathyroidism, increases bone remodelling by stimulating acid secretion 

by osteoclasts (26, 51).  

Trace minerals such as copper, manganese, magnesium and zinc are involved in bone 

metabolism, and their deficiency may play a role in the development of osteoporosis (52). 

Magnesium, copper and zinc levels have been shown to be decreased in osteoporotic 

patients (53, 54). However, there is also some conflicting evidence that other than zinc, 

levels of these trace minerals does not correlate with BMD (55). 

 

1.1.9 THE GENETICS OF OSTEOPOROSIS 

 

There is an established evidence base suggesting a degree of heritability of BMD, from 

family and twin studies, with segregation analysis strongly suggesting a polygenic 

component (56-58). Regarding BMD loss, studies have demonstrated heritability at the wrist 

and spine, but interestingly not at the femoral neck (59-61). 

 

Several genes have been shown to have a significant association with osteoporosis. A full 

discussion of these is beyond the scope of this introductory segment. Some examples with 

particular relevance to the spine or other contributory factors already discussed, include: 

- DCDC5 and DCDC1 (62), which may be associated with lumbar spine BMD, though 

their role in bone metabolism is uncertain. 

- ESR1 (62, 63). 
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- FOXC2 and FOXL1 (62); both play a part in bone metabolism, and have an association 

with spinal BMD. 

 

Other genes with less established evidence have also been investigated. Of note, COL1A1 

which encodes the collagen type I alpha chain, has contradictory evidence, though a series 

of meta-analyses evaluating the Sp1 polymorphism suggest that there is a link with fracture 

risk and BMD (64, 65). 

 

1.1.10 GLUCOCORTICOID INDUCED OSTEOPOROSIS 

 

Glucocorticoids are widely used medications in a variety of inflammatory conditions, often 

as a last resort in difficult to manage cases. They are known to have a broad range of side 

effects, one of which is osteoporosis. 

 

The pathogenesis of glucocorticoid-induced osteoporosis is multifactorial. Glucocorticoids 

have an inhibitory effect on osteoblast function (66), and induce osteoblast and osteocyte 

apoptosis (67, 68). They may also have an anti-apoptotic effect on osteoclasts, as suggested 

by a study on mice (68). However, a human study using serum and urinary indices of 

osteoclast activity showed no significant difference between a low-dose glucocorticoid 

group and a placebo group for two of the three osteoclast activity markers (69). 

 

In addition to direct effects on bone cells, glucocorticoids suppress endogenous sex 

hormone synthesis, and also inhibit calcium absorption in the gut. Although no secondary 

elevated PTH levels are seen in patients on low to moderate dose oral glucocorticoids, there 

may be an increased sensitivity of bone tissue to PTH (70). 
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1.1.11  OSTEOPOROTIC VERTEBRAL COMPRESSION FRACTURES 

 

As described above, osteoporotic bones have impaired bone mineralisation, which results in 

increased bone fragility. This results in an increased susceptibility to fractures, which are 

termed either osteoporotic fractures, or fragility fractures. These fractures differ from those 

which occur in normal, healthy bones, and occur following either minimal or indiscernible 

trauma, such as a fracture of the neck of the femur after falling from standing height (71). 

 

Osteoporotic fractures most commonly occur in the femoral neck, and the thoracolumbar 

spine. The socioeconomic cost of osteoporotic fractures is discussed in Section 1.1.2.  

 

Osteoporotic vertebral fractures result in the collapse of the anterior vertebral body. 

According to the AO (Arbeitsgemeinschaft für Osteosynthesefragen) Spine foundation 

international classification of spinal fracture morphologies, this pattern is termed a 

compression fracture, due to the presumed direction of the forces that result in pathological 

loss of vertebral height (72). 

 

1.1.12  MANAGEMENT OF OSTEOPOROTIC VERTEBRAL COMPRESSION 

FRACTURES 

 

Given the morbidity, mortality risk and cost of osteoporotic vertebral fractures, it is perhaps 

surprising that the treatment options are currently poorly defined with no consistency 

between guidelines from different medical bodies (73).  

 

In clinical practice, the first line management is often with conservative medical 

management with pharmaceutical analgesia and with or without bed rest, spinal 

immobilisation, or physiotherapy (74).  
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The principle of surgical management of osteoporotic vertebral fractures is foremost to 

preserve biomechanical stability (75). Techniques include long segment posterior 

stabilisation or anterior reconstruction. Surgical management involves both intraoperative 

risk such as direct nerve damage and blood loss, and anaesthetic risk which is higher in the 

elderly population due to higher incidence of comorbidities and decreased physiological 

reserve. Post-operative complications include risk of venous thrombosis and pulmonary 

embolism, iatrogenic spinal canal narrowing and neural compromise, infection, and failure 

of the procedure due to poor osteoporotic bone quality.  

 

Due to these increased risks, surgical management is usually reserved for those cases with 

compromised spinal stability who require urgent stabilisation to prevent nerve damage (75). 

 

Minimally invasive percutaneous cement augmentation techniques are an alternative to 

optimised conservative management, and often an adjunct to surgical treatment. These 

techniques include vertebroplasty which involves the injection of bone cement into the 

fractured vertebral body via transpedicular needles, and kyphoplasty which involves first 

using an inflatable balloon to create a cavity before injecting cement. Vertebroplasty is the 

main technique considered in this thesis and discussed in further detail below, but many of 

the same principles apply to kyphoplasty, and indeed, the evidence in section 1.2 of this 

chapter suggests that both techniques have similar efficacy, though may differ in ideal 

patient selection. 

 

1.1.13 SUMMARY 

 

Osteoporosis is a complex contributor to bone fragility in the older population, with an 

increased risk of fractures. The significant morbidity/mortality and economic burden have 

made it an important topic of research. A great many factors participate in the development 
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of osteoporosis, but the two most important are perhaps age-related changes and 

oestrogen deficiency. 

 

Given that oestrogen therapy/hormone replacement therapy has its own not insignificant 

risks (including breast cancer (76), ovarian cancer (77), endometrial cancer (78), deep 

venous thrombosis (79)), the “golden bullet” for osteoporosis prevention may lie at the 

cellular or genetic level.  

 

Until then, we must consider osteoporosis as an inevitable consequence of longer modern 

lifespans, and look to effective treatments, which may include vertebroplasty as discussed in 

section 1.2 of this chapter. 
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1.2 VERTEBROPLASTY 

 

1.2.1 DEFINITION 

 

Percutaneous vertebroplasty (PVP) is the minimally invasive percutaneous cement 

augmentation of vertebrae under fluoroscopic or CT guidance.  

 

1.2.2  HISTORY 

 

Fluoroscopically guided vertebroplasty was first performed in France in 1984, by Deramond 

and Galibert (80), a French radiologist and neurosurgeon. The authors rather boldly and 

successfully pioneered this technique for the treatment of an aggressive cervical spine 

haemangioma. This, and the subsequent procedures by the same team, were reported in an 

initial series published in 1987. One year after this, Bascoulergue et al. published the use of 

vertebroplasty in the treatment of osteoporotic vertebral compression fractures (VCF) (81) .  

 

The technique was popularised in Europe, and it was not until almost a decade later that it 

was introduced in the USA (82). It is currently a widely used procedure, though controversy 

exists regarding its efficacy, which is discussed below.  

 

1.2.3 TECHNIQUE 

 

1.2.3.1 INDICATIONS AND CONTRAINDICATIONS 

 

The main indications for PVP are osteoporotic vertebral compression fracture   (82-84) or 

metastatic vertebral compression fracture,(85) which are refractory to optimal medical 

therapy and either unsuitable for or not necessitating open surgical repair. There is also 
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evidence to support prophylactic vertebroplasty in adjacent vertebral levels to prevent 

subsequent fractures (86, 87). 

 

Absolute contraindications are active infection or an unstable fracture/posterior element 

involvement. Relative contraindications are coagulopathy, epidural metastatic extension, 

osteoblastic metastases, spinal cord or nerve root compromise. 

 

1.2.3.2 PATIENT SELECTION 

 

There have been several recent studies which call into question the efficacy of 

vertebroplasty (88-91), suggesting that it is no more effective than a sham procedure 

involving the insertion of needles without any cement injection. The conflicting evidence is 

discussed in more detail in Section 1.2.4. Given this controversy, it is important to select 

appropriate patients given that vertebroplasty is not without risk. The complications are 

outlined in Section 1.2.3.5.. It is crucial to establish that the VCF is in fact the source of the 

patient’s pain, and that the injury is acute (ideally within 6 weeks from onset) (92, 93). 

 

The first stage in patient selection is careful clinical evaluation. At our centre, this is usually 

performed in a joint clinic between musculoskeletal interventional radiologist and 

orthopaedic spinal surgeon. A detailed history can help to date the fracture with onset of 

pain, though this is not always straightforward. Clinical examination should demonstrate 

point tenderness at the level of, or one level below (which would represent the spinous 

process of the involved vertebra), the fracture. In patients with multilevel fractures, clinical 

examination can be complicated. 

 

Pre-procedure imaging also plays a key role in patient selection. Plain radiographs are often 

the first line imaging modality. While they are useful in identifying patients with fractures, it 

is not possible to reliably age a fracture based on plain radiographic findings, unless a 
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previous radiograph pre-dating the fracture is available. Therefore, patient selection usually 

includes spinal MRI with a fat-saturated fluid sensitive sequence. This can demonstrate 

marrow oedema or granulation tissue, which is associated with acute injuries.  CT may also 

be performed to assess cortical breaches where these are not well demonstrated on MRI.  

 

1.2.3.3 RADIOLOGICAL GUIDANCE 

 

Vertebroplasty is usually performed under fluoroscopic guidance, which is required for 

needle placement and for continuous screening during cement injection to assess for 

cement leak.  

 

Gangi et al. have described the use of a combination of CT and fluoroscopy (94, 95). 

However, to my knowledge, the use of combined CT and fluoroscopic guidance has not been 

shown to be superior to fluoroscopy alone.  

 

Others have described the use of CT-guidance alone (96, 97). There have not been any 

studies directly comparing the cement leakage rates of continuous fluoroscopic screening vs 

CT. Comparison using leakage rates in the established literature based on fluoroscopy is 

difficult, especially as this may in fact underestimate cement leakage due to greater 

difficulty visualising smaller volumes of leaking cement under fluoroscopic examination (98). 

 

However, the usefulness of fluoroscopic screening during cement injection is the provision 

of real-time feedback, which allows the termination of cement injection as soon as leakage 

is identified. Until there is robust evidence to suggest the superiority of either fluoroscopy, 

CT, or a combination of the two, it is likely that selection of imaging modality will depend on 

a balance between operator preference, availability and time-dependence.  
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1.2.3.4 PROCEDURE: 

 

Informed consent should be obtained where possible. 

 

The procedure is performed under sterile conditions. The patient is ideally positioned prone, 

with arms either flexed to 180 or abducted to shoulder height. Initial screening is 

performed to confirm the appropriate levels for intervention, and to mark skin entry sites.  

 

At our treatment centre, we administer local anaesthesia (bupivacaine 0.25%, up to 10mL) 

with 21G spinal needles, to the subcutaneous soft tissues down to the periosteum of the 

pedicles. This is performed under fluoroscopic guidance. The spinal needles may be 

removed at this point or left in to help guide the angulation of the bone cannula. 

 

Small skin incisions are made at the desired skin entry sites, and a bone cannula and trocar 

are inserted to the pedicle. This is advanced through the pedicle under continuous AP 

screening using an orthopaedic mallet. Care is taken to avoid breaching the medial pedicle 

wall which could result in dural sac injury and cement leakage into the spinal canal.  

 

Alternative approaches may be used. In the thoracic spine, a parapedicular approach can be 

taken between the lateral pedicle wall and the rib head. In the lumbar spine, a 

posterolateral approach may be used (99). 

 

Once past the posterior vertebral wall, the bone cannula and trocar are advanced to 

approximately halfway along the AP length of the vertebra under lateral fluoroscopic 

guidance. They are ideally positioned such that once the cement delivery device is 

introduced, it may be positioned at the anteroinferior aspect of the vertebral body. 
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At this stage, it is our usual practice to take a bone marrow biopsy to exclude occult 

malignancy.  After this, we ream the marrow beyond the bone cannula to allow ease of 

cement deliver device placement. The delivery device is advanced to the anteroinferior 

aspect of the vertebral body under lateral fluoroscopic guidance. Cement delivery may be 

performed either via unipedicular or bipedicular approach..  

 

There are a variety of cements available for vertebroplasty. We currently use either 

polymethylmethacrylate cement (PMMA) or Cortoss™. Cement is injected under constant 

fluoroscopic screening to assess for leakage. There is limited evidence to suggest an optimal 

volume of cement to be injected. One study suggests that there is no association between 

injected PMMA volume and subsequent fracture, and therefore the authors recommend 

that as much cement as possible be injected (100). A subsequent study suggests that 

cementing 24% volume of the vertebral would provide optimum pain relief (101).  

 

Once cement injection is completed, time is allowed for the cement to set to avoid tracking 

posteriorly as the bone cannulae are withdrawn. For this reason, the bone cannulae are 

withdrawn under lateral fluoroscopic screening to assess for posterior cement tracking.  

 

Figure 1.1 shows selected images from a fluoroscopically guided vertebroplasty 

demonstrating needle placement and cement injection. 
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Figure 1.1 – Selected fluoroscopy images from a fluoroscopy guided percutaneous vertebroplasty on a L1 
osteoporotic wedge fracture. A and B show anteroposterior (AP) and lateral views of the fracture at the L1 level, 
indicated by narrow black arrows. C and D show the introduction of the transpedicular needles in AP and lateral 
views indicated by broad black arrows. D shows the transpedicular cannulae within the pedicles, and E shows the 
cannulae having been advanced into the vertebral body. F shows injection of radiopaque bone cement indicated by 
white arrowheads. 

The patient may be moved into a supine position for anaesthetic recovery. They will remain 

flat for at least one hour, in order to allow the cement to fully set. The patient is admitted to 
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a surgical ward for overnight observation and reviewed the following day with a view to 

early discharge.  

 

Clinical follow-up is useful, providing feedback to the operator and the referring clinicians. It 

is also an opportunity for the patient to discuss any ongoing concerns, and to assess for any 

subsequent VCFs in adjacent vertebral levels. At my centre, follow-up is undertaken by the 

referring spinal surgeon in outpatient clinic.  

 

1.2.3.5 COMPLICATIONS 

 

The most important complications that may occur following PVP relate to leakage of 

cement. If there is cement leakage into paraspinal veins, this can result in cement 

pulmonary embolism (102). Hodler et al. found that small to moderate volumes of cement 

leakage (defined by the authors to be cement leakage of a length up to the height of the 

vertebral body) were not associated with significant effect on clinical outcome (103). 

 

Cement leak into intervertebral foramina or the spinal canal can result in neurological deficit 

(104). Other complications are rare, and include infection, rib or pedicle fractures, and soft 

tissue haematomata. The literature suggests that there is an overall complication rate of 1% 

– 2% in PVP performed for osteoporotic VCFs (99).  

  



36 
 

1.2.4 EVIDENCE FOR VERTEBROPLASTY 

 

Since the introduction of vertebroplasty, there have been several studies assessing the 

efficacy of the procedure. However, there remains a dearth of large, prospective, 

randomised controlled trials. The few that have been performed focus on pain relief, and 

there is little in the way of strong evidence for functional improvement following 

vertebroplasty. The situation is further complicated by the fact that most of the available 

literature is based on the use of a single cement (PMMA). Table 1.1 shows the 

demographics of selected studies.  
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Table 1.1 – Demographics of selected studies assessing the efficacy of vertebroplasty. VAS = visual analogue scale. NRS = numeric 
rating scale. QUALEFFO = quality of life questionnaire of the European Foundation for Osteoporosis. RMDQ = Roland Morris 
disability questionnaire 

Study Study Type Number Fracture type Cement 
Primary 

Endpoint 
Measure 

Final Follow-up 
Length 

Jensen et al. 
1997 (105) 

Prospective case 
series 

47 Osteoporotic PMMA VAS 
Immediate post-

operative 

Cortet et al. 
1999 (106) 

Prospective case 
series 

20 Osteoporotic PMMA 
VAS, McGill-

Melzack score 
6 months 

Cyteval et al. 
1999 (107) 

Prospective case 
series 

23 Osteoporotic PMMA 
Huskisson pain 

scale 
6 months 

Barr et al. 2000 
(108) 

Retrospective 84 

Osteoporotic 
(70)  Malignant 

(13) 
Haemangioma 

(1) 

PMMA VAS  

Grados et al. 
2000 (109) 

Retrospective 34 Osteoporotic PMMA VAS 
12 - 84 months 

(mean 48 months) 

McGraw et al. 
2002 (110) 

Prospective case 
series 

156 Osteoporotic PMMA VAS 
6 - 44 months 

(mean 21.5 
months) 

Perez-Higueras 
et al. 2002 
(111) 

Prospective case 
series 

12 initial levels 
+ 4 new VCFs 

Osteoporotic PMMA VAS, McGill 
60 - 71 months 

(mean 65 months) 

McKiernan et 
al. 2004 (112) 

Prospective case 
series 

66 Osteoporotic  
Osteoporosis 

QoL 
Questionnaire 

6 months 

Kobayashi et al. 
2005 (113) 

Prospective case 
series 

250 Osteoporotic PMMA 

VAS, 
mobilisation of 

previously 
immobile 
patients 

4 - 25 months 
(mean 15.3 

months) 

Voormolen et 
al. 2007 (114)  

Prospective open-
label case-control 

18 PVP / 16 
OMT 

Osteoporotic PMMA 
VAS, QUALEFFO, 

RMDQ 
14 days 

Buchbinder et 
al. 2009 (89) 

Prospective 
double-blinded 

RCT 

38 PVP / 36 
Sham 

Osteoporotic PMMA 
Pain score, 
QUALEFFO, 

RMDQ 
6 months 

Kallmes et al. 
2009 (91)   

Prospective 
double-blinded 

RCT 

68 PVP / 63 
Sham 

Osteoporotic PMMA 
RMDQ, Pain 

score 
3 months 

Klazen et al. 
2010 (92) 

Prospective open-
label case-control 

101 PVP / 101 
OMT 

Osteoporotic PMMA VAS 1 year 

Clark et al. 
2017 (115) 

Prospective 
double-blinded 

RCT 

61 PVP / 59 
Sham 

Osteoporotic PMMA NRS pain score 6 months 

Firanescu et al. 
2018 (90) 

Prospective 
double-blinded 

RCT 

91 PVP/ 89 
Sham 

Osteoporotic PMMA VAS 
1 month & 12 

months 

Buchbinder et 
al. 2017 (88) 

Cochrane Review 
1020 across 7 

studies 
Osteoporotic PMMA VAS, NRS 

1 month - 12 
months 
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In 1997, a prospective study by Jensen et al. showed significant improvement in pain scores 

in the immediate post-operative period (82). A prospective study in 1999 by Cortet et al. 

showed significant improvement in pain scores over 6 month post-operative follow-up 

(106).  

Another prospective study in 1999 by Cyteval et al. also showed significant improvement in 

pain scores at the immediate and 6-month post-operative periods (116). Barr et al. 

performed a retrospective review of 84 levels over a 3-year period, looking at both 

osteoporotic and malignant VCFs (117). They showed significant improvement in pain relief 

in 95% of the osteoporotic VCF group, but only 50% of the malignant VCF group. It should be 

noted that the malignant VCF group suffered from low numbers, with only 8 vertebral levels 

performed. Grados et al. carried out a retrospective review of patients with varying length 

of follow-up, up to 84 months (mean 48 months), and showed significant improvement in 

pain scores (109). In 2002, McGraw et al. performed a prospective case series with a larger 

number of vertebral levels performed (n = 156), and similarly showed immediate and 

continued pain relief (110). That same year, Perez-Higuera et al. published a prospective 

case series with long-term follow-up of at least 5 years; the results indicated that PVP could 

provide sustained pain relief (111). McKiernan et al. showed significant improvement in 

quality of life following PVP, immediately and up to 6 months (112). As already 

demonstrated by these studies, Kobayashi et al. demonstrated significant pain relief 

following PVP, but importantly showed that 81.7% of immobilised patients were mobile at 

24 hour follow-up (118). 

 

These studies showed early promise for the efficacy of vertebroplasty as a therapeutic 

option for both osteoporotic and metastatic VCFs but suffered from a lack of control groups. 

The 2007 VERTOS study attempted to address this particular limitation, by comparing 18 

PVP patients with 16 treated with optimal medical therapy (114). The authors looked at 

osteoporotic VCFs between 6 weeks and 6 months old, and found that at day 1 and day 14 

post-operatively, the PVP cohort had better Visual Analogue Score (VAS) and used less 

analgesia. However, the study was limited by low numbers. The follow-up period was also 

short as, after 14 days, 14 of the optimal medical therapy cohort requested PVP.  



39 
 

 

In August 2009 two double-blinded RCTs comparing PVP with a sham procedure were 

published in the New England Journal of Medicine. In contrast with the available evidence, 

both of these studies showed no significant difference between PVP and placebo in terms of 

pain relief of QoL scores (119, 120). 

The sham procedures for these studies were well designed, and these two trials represented 

the highest level of evidence available for the evaluation of PVP.  

 

Buchbinder et al. (89) performed the same steps as for the PVP cohort, including the same 

local anaesthesia and skin incisions, and inserted a 13G needle “to rest on the lamina”. At 

this point, the sharp stylet was replaced with a blunt one which was tapped. PMMA was 

prepared in the operating room. This was done to create the sounds and smells as if PVP 

was being performed.  

Kallmes et al. (91) similarly gave local anaesthesia to both cohorts but did not place the PVP 

needle in their sham procedure. Instead, they applied pressure to the patient’s back to 

simulate the sensation of PVP. They also prepared PMMA to recreate the smell of PVP. 

 

The results of these studies garnered much controversy, perhaps not least because they 

flew in the face of not only the weight of lower tier evidence already available, but also the 

anecdotal experience of clinicians around the world. There followed several editorial articles 

attempting to rebut these studies (121, 122). As the authors pointed out in a follow-up 

response article, uncontrolled and open studies are at risk of over-estimating treatment 

benefit for a variety of reasons, including the “favourable natural history of vertebral 

fractures” (i.e. the pain tends to improve over time regardless of treatment), placebo effect, 

and volunteer bias, to name a few (123).  

 

Although both studies were robustly designed, there are several limitations in their 

execution which are not simply “spurious reasons to dismiss our results”, as Buchbinder and 
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Kallmes claimed in the above response. The key limitations to both studies relate to their 

patient selection. Both studies suffered from low patient numbers, as enrolment into an 

operative RCT is a difficult process.  

 

Both selected patients with back pain due to fractures of no more than 1 year duration. 

However, 1 year is a long duration given the natural history of vertebral fracture pain. This is 

well beyond the length of time that most clinicians would describe as an acute fracture, 

which would extend up to 6 weeks (124). The average duration of pain in the Buchbinder 

trial was 9.5 weeks, and in the Kallmes trial was 18 weeks.  

 

Only 25 patients included by Buchbinder et al. (89) had fractures of less than 6 weeks 

duration. Kallmes et al. (91) did not specify how many had fractures less than 6 weeks 

duration in their initial study, but in the previously mentioned response article they noted 

that 20% of their patients had fractures of less than 6 weeks duration (they do not specify 

whether this is 20% of their total population, or 20% of their PVP cohort; the difference 

could be of importance when considering possible subgroup analyses). Subgroup analysis by 

Buchbinder et al. did not find any significant difference in outcome between those with 

fractures less than 6 weeks and greater than 6 weeks of age, though the authors admit in 

their subsequent response article that these subgroup analyses were underpowered. 

However, they also state that since the overall effect of vertebroplasty in both studies was 

close to zero, it is unlikely that any particular subgroup would show significant benefit (123).   

 

Buchbinder et al. used the presence of marrow oedema as proof of the acute nature of a 

fracture (125). Kallmes et al. (91) only performed MRI in cases where they felt that fracture 

age was uncertain (itself raising possible questions regarding their patient selection), and 

again used marrow oedema as a defining characteristic. In the context of fractures, bone 

marrow oedema is generally held to represent a combination of trabecular microfractures 

with associated haemorrhage and oedema (126, 127). However, as far as I am aware, there 

is no evidence available to suggest that the persistence of marrow oedema without the 
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presence of a fracture cleft is due to an unhealed fracture. In fact, clinical experience would 

suggest that the appearance of marrow oedema may persist beyond the presence of an 

unhealed fracture. Previous work on post-traumatic bone marrow oedema without 

fractures in the knee suggests that the appearances of marrow oedema can take 2 – 4 

months to resolve (128). 

 

This is an area in which further study is clearly warranted, but certainly Buchbinder and 

Kallmes’ claims that the mere presence of high T2 marrow signal is diagnostic of an acute 

injury cannot be validated at present.  

 

Following these two RCTs, the open-label RCT VERTOS II study was published, again 

comparing PVP and OMT (92). The inclusion criteria specified only patients with back pain of 

less than 6 weeks duration. The authors showed significantly improved reduction in VAS in 

the PVP cohort compared with the OMT cohort. However, the study was unblinded, and 

therefore at greater susceptibility to bias than the prior double-blinded RCTs.  

 

In 2017, a third double-blinded placebo-controlled RCT was performed by Clark et al (93). 

The sham procedure performed by the authors was similar to that used by Kallmes et al. 

(91). The authors specified strict inclusion criteria, in particular only accepting patients with 

pain of less than 6 weeks duration. They demonstrated that PVP was significantly better 

than placebo for pain reduction.  

 

Kallmes and Buchbinder responded with an editorial article in the British Medical Journal 

(BMJ) highlighting limitations with this study (129). In particular, they raise concerns about 

the sham procedure. The fact that Clark et al. (115) used an odourless cement is a 

reasonable point of contention. However, their claims regarding the lack of deep needle 

placement meaning the sham procedure was not as effective as their own previous studies, 

is not valid; certainly, the fact that Clark et al. (115) inserted needles at all made their sham 

procedure perhaps more robust than Kallmes et al. (91).  
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Another potential limitation of the VAPOUR trial is the conflicting results between numeric 

rating scale (NRS) pain score and visual analogue scale (VAS). Additionally, there was no 

significant difference between the two groups in terms of analgesic use. These findings raise 

questions about whether the authors have overstated the benefits of vertebroplasty. 

 

In 2018, VERTOS IV trial (130) was published. This was the largest sham-procedure 

controlled trial to date, with 91 patients in the vertebroplasty group and 89 in the sham 

group. The authors found that no significant differences in pain reduction between the 

groups at either 1 month or 12 months post-procedure. Initially, to address some of the 

criticisms of earlier trials regarding the inclusion of patients with older fractures, the authors 

excluded patients with a history of >6 weeks of focal pain at the level of the fracture. 

However, due to difficulty with recruitment, they relaxed this criterion to include patients 

with up to 9 weeks of pain, 6 months after starting recruitment.  

 

In 2017, Buchbinder et al. published a comprehensive Cochrane systematic review, which 

has been updated in 2018 (131). This initially included preliminary results from the VERTOS 

IV trial, and was updated to account for the full published results. The review concluded 

that overall, the weight of the evidence suggested that there was no benefit to 

vertebroplasty compared to sham procedure. The authors noted that although many of the 

studies comparing vertebroplasty with optimal medical therapy did show benefits, these 

studies were considered as high risk of bias due to a lack of any blinding of either authors or 

participants.  

 

However, the limitations of the individual sham-controlled trials once again applies to this 

review, in that patient selection may have been inappropriate. The review is of great use to 

clinicians in that it consolidates and evaluates the evidence suggesting that for fractures 

older than 6 weeks, vertebroplasty provides no significant improvement in pain relief over a 

sham procedure.  
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The benefits of the sham procedure are considered unlikely to be due to the injection of 

local anaesthetic, which would not continue to be efficacious after several months. It is 

more likely that it provided some short term relief, and that the pain relief in both groups 

was predominantly due to the natural history of fracture healing. 

 

The results of the review were indeed contentious. Indeed, the authors of the VERTOS IV 

trial themselves noted that they continue to offer vertebroplasty to a select group of 

patients. Based on results from Clarke et al. (93), it is possible that vertebroplasty may still 

be an effective treatment for hospital inpatients with osteoporotic fractures less than 6 

weeks old, with severe pain (VAS >7). 

 

The limitations of available evidence and the conflicting results have generated much 

heated argument, with apparent partisan battle-lines drawn. Undoubtedly authors and 

clinicians on both sides of the debate have much at stake, and with each new trial, there 

follows a flurry of editorials attempting to discredit any findings contrary to a particular 

group’s beliefs. Selecting patients for these studies remains difficult, not only in terms of 

recruiting adequate numbers of patients, but also on determining fracture age. Patients may 

have multiple fracture events at the same vertebra, and this can make aging fractures 

particularly challenging. This same issue would apply to clinicians selecting patients for a 

vertebroplasty procedure. 

 

 

In the UK, vertebroplasty continues to be used in carefully selected clinical scenarios at 

certain spinal centres, albeit without NICE guidance since 2009. Although most operators 

have good anecdotal experience (93, 130), the conflicting literature is a cause for concern, 

especially given the potential for harm with an operative procedure. It is this author’s belief 

that the only claim that can be made with any certainty is that it is of great importance that 

more studies be performed, in order to ensure that patients receive the best care.  



44 
 

1.3 CADAVERIC MODELS FOR SPINAL INTERVENTIONS 

 

1.3.1 BACKGROUND 

 

Spinal procedures such as vertebroplasty are continuously evolving, with new cements and 

techniques such as Cortoss™ cement (132), or unipedicular injection which involves placing 

one needle via one pedicle rather than two needles through both pedicles (133). One of the 

difficulties in developing tools in this area is pre-clinical phase testing.  

 

Human or animal cadaveric models represent a potential method for testing new devices 

and cements. Animal models would seem particularly useful given their wide availability and 

low cost. However, there is little consensus in the literature about which animal model 

should be used for transpedicular techniques such as vertebroplasty, if indeed any are 

appropriate. 

 

1.3.2 HUMAN CADAVERIC MODELS 

 

The role of human cadavers in the medical sciences dates back to ancient history, with 

records suggesting that ancient Greek physicians performed cadaveric dissection, for several 

centuries, to further their understanding of human anatomy and disease processes. 

 

Following a period of history during which cadaveric dissection was considered 

blasphemous by the Church in Europe, there was a revival of the practice in 14th century 

Italy. Since then, human cadavers have been widely used primarily in an educational role in 

medical schools, but also for teaching purposes such as for surgical skills training (134). 

 

Human cadavers have also played a role in research by providing biomechanical information 
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regarding various tissues, as well as models for certain diseases. Early work on using 

cadavers to model response to injury was performed in Germany in the mid-19th century. 

Further cadaveric work on injuries led to improved safety developments in the motor and 

aviation industries (135). 

 

There are advantages to cadaveric models compared to animal models or computer 

simulations, in particular the fact that they exactly represent human anatomy. There are 

also limitations to the use of cadavers. Of particular relevance is the fact that cadavers lack 

muscle tone and pre-injury voluntary muscle contraction, which play an important role in 

the biomechanics of an injury (136, 137). Attempts to simulate muscle tone with external 

hardware or cadaveric preparation have not been successful. Additionally, there are 

physiological responses to injury such as haemorrhage and inflammatory responses that will 

also be lacking in a cadaveric model (135). 

 

The forces applied to a cadaveric spinal block will also differ from those seen within live 

humans with what have been termed “follower loads” in vivo which depend on muscular 

and ligamentous attachments and result in almost pure axial compression of each spinal 

segment (138).  

 

1.3.3 ANIMAL CADAVERIC MODELS 

 

Animal models represent a cheaper and more widely available alternative to human 

cadaveric vertebrae. However, there is little consensus as to which animal species is most 

appropriate for use as a model of the human vertebra when considering percutaneous 

transpedicular spinal procedures. This is discussed in more detail in Chapter 2, a systematic 

review of the evidence for various animal models.  

 

Animal models of disease, both live and cadaveric, are well established in the literature 
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throughout medical sciences. There is such vast variation in the animal kingdom, even 

between relatively closely related species, that it is not sufficient to simply test one’s 

hypothesis on any animal and hope that results are applicable to humans. In 1929, the 

Danish physiologist August Krogh suggested that for any particular problem, there may be a 

particular animal or group of animals that will be appropriate for testing (139).  

In the field of musculoskeletal research, a set of guidelines has been suggested following a 

2007 forum discussion between musculoskeletal researchers, veterinarians, ethicists and 

legal experts. Much of the guidance discusses the ethical considerations when performing 

experiments on animals, but their guidelines include consideration of “Potentially 

confounding variables (genetic background, seasonal, hormonal, size, histological, and 

biomechanical differences)” (140).   

 

The first issue is the selection of an appropriate non-primate species. Pigs, sheep and calves 

are often considered as reasonable analogues for human spines, due to size and anatomical 

similarity. Of these animals, pigs are generally held to be the closest approximation to 

humans in terms of vertebral dimensions (141, 142). The comparisons available the 

literature have focused on basic morphological measurements, such as vertebral body 

height, width and length, and pedicle height and width. These measures are discussed in 

more detail in Chapter 3, which describes a study comparing the morphometry of human, 

pig and sheep vertebrae. 

 

Although the physiology and anatomy of quadrupeds must differ from humans, the 

literature suggests that in fact axial loading forces are predominant in quadrupeds, just as in 

humans (141). There are also similarities in the paraspinal musculature. Figure 1.2 shows 

the paraspinal muscles of the lumbar spine in humans, pigs and sheep. 
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There are inevitably differences in physiological loading and anatomical variation between 

pigs and humans. Quadrupeds in general have higher axial loading and therefore greater 

bone mineral density, which must be taken into consideration.  

 

Furthermore, the selection of species may depend upon the specific tests required, as 

discussed in the narrative systematic review of the relevant literature.  

 

Additionally, the age of the specimen will be of relevance. Slaughtered sheep and pigs tend 

to be younger than the relevant human population, and therefore differences in bone 

mineral density and presumably also cement spread characteristics, will also be 

compounded. 

 

1.4 BONE TEXTURE 

 

The external morphometry of the vertebrae is one factor to consider when contemplating a 

model for examining percutaneous transpedicular techniques. The internal 

microarchitecture may also be of importance, particularly in the context of bone cement 

injection. The pattern of cement spread and loading mechanics could be expected to vary 

depending on the internal trabecular arrangement, as discussed below. Using texture 

analysis on vertebrae offers a non-destructive method to compare the trabecular 

microarchitecture between species. 

 

1.4.1 BONE ANATOMY 

 

In clinical, radiological, and anatomical terms, a “bone” is conventionally defined as an 

organ of the skeletal system. As discussed earlier, bones are divided into four main 
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categories based on their shape and size: long bones, short bones, flat bones, and irregular 

bones (in which category vertebrae are considered) (11).  

 

Somewhat confusingly, “bone” as a term is also used to describe several components found 

within the “bone” as an organ. The usage of “bone” as a term may refer to either bone 

matrix excluding osteoid tissue, bone matrix including osteoid tissue, or bone matrix 

including marrow and other soft tissues (143) . In order to conform to the convention of 

terminology for bone histomorphometry proposed by Parfitt et al. in 1987 (143), I will use 

the term bone to refer to bone matrix including osteoid tissue.  

 

This bone matrix includes cortical bone, and cancellous (trabecular) bone. Medullary tissue 

contains a network of trabecular bone which runs through the soft tissues of the marrow. This 

is of relevance to intramedullary cement injections as the spread of cement and resulting 

cement-trabecula interface is likely related to load transfer, as the interface is the site of the 

majority of microarchitectural cracks on stressing (144). 

 

Computerised modelling suggests that the partially interdigitated interface of cement and 

trabeculae is the predominant site of loading. The partially interdigitated interface refers to 

the areas where the cement has not fully spread through the gaps in the trabecular 

architecture, i.e. there is some interdigitation but there also remains a broad bone to cement 

interface. This differs from the fully interdigitated interface, where the cement has spread 

through the inter-trabecular spaces to form a branching pattern of spread. As most load 

transfer occurs at the partially interdigitated interface and relatively little load transfer occurs 

at the fully interdigitated interface, it is suggested that the partially interdigitated interface is 

more important for mechanical strength (145). Other computerised modelling studies suggest 

that the majority of stress shielding may occur in this fully interdigitated region (146).  

 

When considering an animal model for use in testing vertebral cements, the trabecular 

architecture may therefore be of relevance.  
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1.4.2 BONE TEXTURE ANALYSIS 

 

Texture Analysis (TA) is a method by which the internal microarchitecture of the bone may 

be assessed. The first use of imaging to analyse trabecular architecture documented in the 

literature was described in 1971 (147). The authors developed a system for assessment of 

trabecular architecture using plain radiographs.  

 

In 1973, Haralick (148) developed computable greyscale textural features using photo-

micrographs of sandstone, and panchromatic aerial photographs and satellite imagery of 

land-use categories (148). With the subsequent development of Computerised Tomography 

(CT) as a clinical imaging modality, these methods began to be used for the CT analysis of 

trabecular architecture (149). 

 

CT texture analysis assesses the same structures as conventional histomorphometry and 

therefore terminology follows the histomorphometric convention established by Parfitt et al. 

in 1987 (143).   

 

BV Bone Volume 

TV Tissue/Total Volume 

BV/TV Apparent bone fraction 

Tb.Th Apparent Trabecular Thickness 

Tb.Sp Apparent Trabecular Separation 

Tb.N Trabecular Number 

Table 1.2 – Texture Analysis terminology and abbreviations 

 

The statistical model analysis of textural features is divided into first-order and second-order 

statistics based on the work of Haralick (148, 150). First-order statistics refer to pixel grey 
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level intensity, with no information on spatial arrangement, and include mean intensity, 

thresholds, entropy, and skewness and kurtosis of pixel density histogram. The features 

included in Table 1.2 are all derived from first-order statistics. The BV/TV represents the 

proportion of the volume that is bone matrix by taking the number of bone pixels divided by 

the total number of pixels. Tb.Th gives a measure of the thickness of trabeculae as defined by 

the greatest diameter of any given trabecula, and Tb.Sp the thickness of marrow spaces 

between trabeculae as the greatest diameter of any given space. 

 

These are useful information when considering cement injection and spread, given the 

properties of the cement/bone interface and loading as discussed above. 

 

Second-order statistics contain spatial information. These include run-length matrix, second-

order entropy, homogeneity, dissimilarity, and correlation. For example, a run-length matrix 

p(i,j) is defined as the number of runs with pixels of a grey level i and run length j (151) and 

is of particular use when assessing coarseness. 

 

Although micro-CT is the preferred method of image acquisition (152), it is only viable for 

cadaveric specimens due to the extremely long acquisition times which can take up to 

several hours. Faster scan times are possible, but even these scans can take several minutes 

for a small volume acquisition, though this may vary depending on the scanner. Scan times 

in the order of 5 - 15 minutes can be achieved by using larger voxel sizes with lower 

resolution as a trade-off (153). However these scans may not provide any significant benefit 

over clinical high resolution CT when assessing smaller structures. To my knowledge, no 

work has been performed to assess this.  Standard high resolution CT images have proven 

sufficient for performing TA (154).  
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1.5 STATISTICAL SHAPE ANALYSIS  

 

Basic morphometric measurements are not the only method of comparing the external 

shape of vertebrae. Statistical Shape Analysis (SSA) is a field which provides methods of 

comparing the morphologies of objects. Of specific interest to this study are the use of 

similarity transformations, thin plate spline (TPS) deformations, full generalised Procrustes 

analysis (GPA) and principal component analysis (PCA) to create a statistical shape model 

(SSM). A statistical shape model is a deformable object which represents the shape variation 

of an object around a mean object shape. 

 

The full description of the mathematics involved in these processes as well as SSA in 

general, is beyond the scope of this thesis. For a more detailed discussion, the reader is 

referred to Statistical Shape Analysis 2nd Edition (155). A simple description is provided 

below. 

 

1.5.1 TERMINOLOGY IN SHAPE ANALYSIS 

 

When considering shape analysis, I will use several definitions proposed by Kendall (156). 

Shape is therein defined as “all the geometric information that remains when location, scale, 

and rotational effects are removed from an object”. Shape is therefore invariant to 

Euclidean transformations.  

 

Landmarks are points that are assigned to the surface of an object. Kendall defined them as 

“a point of correspondence on each object that matches between and within populations”. 

They are valuable when attempting to align complex shapes, as they provide fixed, 

corresponding points to assist in the alignment process. Landmarks may be subdivided into 

three groups (155). A scientific landmark (also termed an anatomical landmark) is “a point 

assigned by an expert that corresponds between objects in some scientifically meaningful 
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way”.  Mathematical landmarks are “points located on an object according to some 

mathematical or geometrical property of the figure”. Pseudo-landmarks are “constructed 

points on an object, located either around the outline or in between scientific or 

mathematical landmarks”.  

 

Semilandmarks are defined by Gunz et al. (157) as a set of points used to represent curved 

surfaces that cannot be quantified with landmarks. These are of use in complex shapes with 

curved surfaces, such as vertebrae. 

 

I will also use Dryden and Mardia’s definitions of labels, configuration, configuration space, 

configuration matrix, and centroid size (155). 

 

A label is defined as “a name or number associated with a landmark, and identifies which 

pairs of landmarks correspond when comparing two objects.” Thus when a landmark is 

associated with a label, it is called a labelled landmark.  

 

A configuration is the full set of landmarks of an object.  

 

Centroid size is the definition used for the size of an object by many authors, including 

Kendall (156), Bookstein (158), and Dryden & Mardia (155). The centroid size S(X) is “the 

square root of the sum of squared Euclidean distances from each landmark to the centroid”, 

and the centroid (𝑋) is the mean of the coordinate values.  

 

The centroid allowed me to use a computable equivalent of the centre of gravity around 

which to calculate vector deviations, and to align shape models.  
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1.5.2 HISTORY OF SHAPE ANALYSIS 

  

Shape analysis has been performed by a variety of methods in biological fields throughout 

history. Galileo first noted that bones in larger animals are not simply just larger than the 

equivalent bones in smaller animals but differed in shape due to the different mechanical 

strains they would undergo (159). Formal shape analysis has traditionally been performed by 

a method which has come to be termed multivariate morphometrics (160, 161). It involves 

the placement of landmarks on the shape, and then performing multivariate analyses on the 

distances and angles between these landmarks on the shapes being compared. Early 

examples of such work include comparisons of skull shape between racial groups (162). These 

techniques are non-geometric, and the datum used is distance or angle between coordinates, 

rather than the coordinates themselves. This is similar in principle to the basic morphometry 

measurements used in much of the background literature comparing animal and human 

vertebrae – these studies use isolated distance measurements. 

 

Geometrical shape analysis offers an alternative approach to shape analysis. This differs from 

multivariate morphometrics in that it considers the entirety of the shapes themselves, rather 

than using derived quantities such as distances or angles between landmarks. An early 

example of this technique was used by Thompson (163). He placed Cartesian grids on a shape 

such as a hand-drawn human skull. This grid was then deformed to fit a hand-drawn animal 

skull such as a chimpanzee, with each segment of the grid corresponding to the same part of 

the animal skull as the human. Figure 1.3 provides an example from Thompson’s work of grids 

being used to deform crab carapaces from one species to another. 
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Figure 1.3 – Cartesian grids deformed between the carapaces of different crab species, taken from Thompson’s On 
Growth and Form (1917). (a) shows the Geyron species with a Cartesian grid overlaid. (b) - (f) show various 
deformations of the Cartesian grid changing the shape of the Geyron species to the shape of Corystes, Scrymathia, 
Parolomis, Lup, and Chorinus species.   

 

Thompson’s technique was highly subjective, and his early hand-drawn images were not 

particularly accurate (164), however the concept was established. The field of geometric 

shape analysis was furthered in the late ‘70s with work by Kendall (156) and Bookstein (158). 
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With the advent and rapid development of computer hardware and software, methods of 

transformation were explored further. Kass et al. (165) developed an active contour model 

which they named a “snake”. The snake allowed accurate identification of edges, lines and 

contours. Cootes et al. subsequently developed “smart snakes” (166, 167). These active shape 

models were similar to the snakes of Kass et al., but provided more robustness as they allowed 

for greater control of the possible deformations using training sets, such that deformations 

were only possible if characteristic to the objects being represented.  

 

1.5.3 AFFINE AND SIMILARITY TRANSFORMATIONS 

 

Affine transformations are linear functions that preserve parallel lines and planes between 

shapes, and are the simplest possible size and shape change to match two objects. Figure 

1.4 shows an example of an affine deformation from Thompson’s 1917 On Growth and Form 

(163), where a square grid placed over the outline of a fish species is transformed into a 

parallelogram grid over a second fish species. 

 

 

Figure 1.4 – From Thompson’s On Growth and Form (1917), deformation of the shape of one the Argyopelecus 
olfersi  fish to the Sternoptyx diaphana, by using an affine transformation, from a square grid to a parallelogram 
grid. 
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A similarity transformation is a function that manipulates a Euclidean shape while 

preserving all the angles and ratios of distances, by translating, rotating, isotropic scaling, 

and reflecting. We can therefore see that this will preserve shape, as shape is independent 

of these parameters. From Dryden and Mardia (155), the Euclidean similarity 

transformations of a matrix of coordinates X are a set including scale, rotation matrix, and a 

translation factor.  

 

Using the centroid coordinates to perform initial alignment removes translation. A similarity 

transformation can then be applied to match one shape to another, removing rotation and 

scaling.  

 

1.5.4 THIN PLATE SPLINES 

 

A thin plate spline (TPS) is an interpolation function that may be used as a method of 

deformation to fit a shape onto another while minimising bending energy. It is essentially a 

mathematical model application of Thompson’s transformation grids. The initial application 

of TPS was limited to two-dimensional shapes but has subsequently been described for 

three dimensional shapes (168). 

 

The TPS deformation relies on the use of homologous landmarks between two objects. The 

function interpolates the space between landmarks in a manner that minimises the bending 

energy. In more technical terms, it minimises the integral of the squared second derivatives 

of the interpolation.  

 

The name “thin-plate spline” comes from the analogy of mechanical bending and is apt; the 

basis function is related to the equation of a uniformly thin metal plate being deformed 

from flat to bent (169). 
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TPS deformations may be used with semilandmarks, which is of relevance to the study in 

Chapter 5. As vertebrae are complex objects with multiple curved surfaces, semilandmarks 

are of use in creating shape models in this study.   

 

1.5.5 PROCRUSTES ANALYSIS 

 

The general Procrustes analysis (GPA) provides a method for aligning objects and generating 

a mean shape. It is a sum-of-least-squares technique which matches shape configurations 

with similarity transformations. A least-squares matching procedure was used in the 

literature at least as far back as by Boas (170), when describing a technique for skull 

morphology assessment. However, the term “Procrustes analysis” was first used by Hurley 

and Cattell (171) while defining a technique to test hypotheses by assessing the matches 

between factor patterns from a given set of data and from a hypothesis.  

 

Procrustes was a mythological Greek blacksmith and bandit, also known as Damastes. He 

was a son of Poseidon who would invite travellers to spend the night in an iron bed, into 

which no-one ever fit exactly. He would stretch those who were too small by hitting them 

with his hammer and would amputate the “excess” from those who were too tall. He died 

when the hero Theseus captured him and fitted him to his own bed. The concept of 

“deforming” a shape to fit another shape is central to Procrustes analyses. 

 

There are several variants of Procrustes analysis. I consider here the full general Procrustes 

analysis (Full GPA), as this is most relevant to the study in Chapter 5. The term “full” here 

refers to translation, rotation and scale transformations, compared to the partial GPA which 

only requires translation and rotation (172). 
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From Statistical Shape Analysis 2nd Edition (155), the full GPA method is defined as 

“translating, rescaling and rotating the configurations relative to each other so as to 

minimize a total sum of squares”. 

 

In essence, the full GPA performs a similarity transformation between objects to minimise 

the sum of squared differences between the vertex points of each object.  

 

The Procrustes analysis thus provides a set of points of minimised sum of squared distances 

between the points of each sample object and the object to which they are being compared. 

The full proofs for this method may be found in detail in Chapter 7 of Statistical Shape 

Analysis 2nd Edition (155). 

 

Once GPA has been performed, principal component analysis may be used to create a mean 

shape and statistical shape model which describes variation from the mean shape.  

 

1.5.6 PRINCIPAL COMPONENT ANALYSIS 

 

Principal component analysis (PCA) may be used to describe the variability of shape of the 

examined objects. It is a useful tool for reducing the number of dimensions of multi-

dimensional data; although up to three dimensions may be represented with a 

straightforward plot, this is difficult with higher dimensionality. As the name suggests, PCA 

allows the user to identify the “principal component”, or the component with the most 

significant relationship between data. Other components may also be assessed or ignored if 

not significant. 

 

PCA was first described by Karl Pearson in 1901 (173), then subsequently further developed 

and so named by Harold Hotelling in 1933 and 1936 (174, 175). Cootes et al. (166) and Kent 

et al. (176) developed PCA for data from Procrustes analysis.  
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PCA is performed by subtracting the mean of each dataset from each datum point and 

creating a covariance matrix for the mean-adjusted data. Whereas standard deviation can 

only be applied to each dimension of multidimensional data independently, covariance is a 

measure of how two dimensions vary from the mean with respect to eachother. With 

datasets containing more than one dimension, multiple covariance calculations can be 

performed. The covariance matrix contains all possible covariance values between all the 

dimensions of a dataset.  

 

The eigenvectors and their corresponding eigenvalues are then calculated. An eigenvector is 

a vector that upon the application of linear transformation, changes only by a scalar factor, 

i.e. if the transformed vector is a scalar multiple of the original vector, then it is an 

eigenvector. Each eigenvector has a corresponding eigenvalue, which is the scalar 

multiplication factor of that eigenvector upon linear transformation.   

 

The direction of the eigenvectors shows patterns in the data, and all eigenvectors are 

orthogonal to each other. An example of this might be to consider 2-dimensional data on a 

data plot. One eigenvector might form line of best fit along the plotted data points, and a 

second orthogonal eigenvector might show variance of that data around the line of best fit.  

 

The eigenvector with the largest corresponding eigenvalue is the “principal component”. In 

the example above, this would be the eigenvector describing the line of best fit. The 

principal component is the most significant relationship between the data dimensions. For 

multidimensional data, there may be several components, aside from the principal 

component, that describe significant variation. Using this method, only components with 

sufficiently large eigenvalues as to be of interest can be assessed, while others with smaller 

values can be ignored with relatively little loss in information value.  
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The components with sufficiently large eigenvalues to be included will therefore show the 

most important deviations from the mean shape. These component deviations from the 

mean shape can be combined with the mean shape generated by GPA to produce shape 

modes, which are models demonstrating the variation produced by each component. 
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1.6 AIM OF THE THESIS 

 

The primary aim of this thesis is to address the current shortage of evidence around 

selecting an animal species to model human vertebrae for use in early phase testing of new 

vertebroplasty cements and instruments, as well as for the purposes of training operators. 

 

As discussed in the thesis outline, this will first involve a systematic review of the currently 

available literature comparing animal and human vertebrae. The following chapters will 

describe studies comparing pig, sheep and human vertebrae in terms of morphometrics, 

bone texture analysis, and statistical shape analysis. 

 

The purpose of these studies will be to decide on which species, pig or sheep, is a closer 

approximation of human vertebrae in evaluating new vertebral cement materials, 

transpedicular needles, and for training new operators in vertebroplasty techniques.  
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CHAPTER 2: 
SYSTEMATIC REVIEW OF ANIMAL MODELS 
FOR SPINAL PROCEDURES 
 

 

2.1 INTRODUCTION 

 

Percutaneous transpedicular cement augmentation techniques aim to treat vertebral 

fractures with the injection of bone cement via needles, avoiding the need for open spinal 

surgery. These techniques, such as vertebroplasty and kyphoplasty, offer therapies for 

patients with osteoporotic spinal fractures. Three sham-controlled trials have suggested 

limited efficacy of vertebroplasty compared to placebo (119, 120, 130), which conflicted 

with anecdotal clinical experience and other trials including another sham-controlled trial 

(93). 

 

Given the inconsistencies in the literature, further research into this area is important to 

ensure optimal treatment for patients. As well as clinical trials, there continues to be 

development and refinement of the techniques. These include investigations into a variety 

of bone cement options (117, 132, 177, 178). 

 

Since early phase testing often cannot be performed on live humans, researchers require 

alternatives. Human cadaveric studies have a long history of use in medical research. Human 

cadaveric spines are not without their drawbacks, such as the effects of death and cadaveric 

preparation and preservation on the elasticity of tissues, the lack of active circulation or an 
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inflammatory response, to name but a few. Because they are similar in dimensions and 

morphology to the intended target of clinical research, they are in many ways the ideal 

substitute for live human subjects.  Unfortunately, they represent a high cost and 

constrained resource, which often results in low sample sizes in cadaveric studies. 

 

Animal models have therefore been used as alternatives. An animal model must be 

developed to mimic the particular aspects of the human pathology or anatomy that is to be 

tested. This could mean that different animals are preferred for different procedures. 

 

In spinal surgical research, various animals, both live and cadaveric, have been used. Work 

has been done using nonhuman primates, which might seem a logical choice given 

superficial anatomical similarities to humans, in particular when bearing in mind size and 

gait (179). The cadaveric spines of large quadrupeds have also been used, in particular cows, 

sheep and pigs (180-182). These have previously been used on the basis of superficial 

similarity in size and shape. While studies have been done comparing various anatomical 

aspects of animal and human vertebrae, the evidence base has several important 

limitations. For example, most studies compare only a single animal with humans, and the 

lack of uniformity of certain measurements or even method of measurement, means that 

while a particular study may provide valuable information about the similarities and 

differences between one species and humans, it is difficult to compare the results with 

another study.  
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A systematic review of the literature by Sheng et al. in 2010 (183) identified 7 articles 

comparing human and animal vertebrae, including pigs, cows, sheep, deer and baboons. 

Since this review, new studies have been performed.  

 

This narrative systematic review aims to collate the available studies looking at comparison 

between pig, sheep, cow and human spines, to assess whether any conclusions may be 

drawn in particular regarding the most appropriate animal model for use in testing 

percutaneous transpedicular cement augmentation techniques. I also aim to discuss the 

limitations of the available evidence and propose a framework for further studies. 

 

2.2 METHODS 

 

The OVID engine was used to search Embase and Medline databases. Search terms used 

were: human, animal, spine, verteb*, sheep, ovine, pig, porcine, cow, bovine. The search 

was limited to English language studies between 1974 and 2018.  

 

Studies were included if they looked at sheep, pigs, cows, deer, goats and contained 

anatomical comparisons of the thoracic or lumbar spine between the animal and humans.  

I did not include nonhuman primates or dogs as these are less commonly used in research 

and are less widely available in the UK for research purposes. Studies only assessing 

intervertebral discs or biomechanical properties such as range of motion were also 

excluded, since these parameters were not relevant to my current aim. 
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47 search results were returned. After excluding duplicates, the remaining results were 

reviewed by two authors for their relevance according to the criteria detailed above, and 30 

studies were excluded, giving a final total of 9 studies selected for review (142, 184-191). 

(Figure 2.1) 
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Figure 2.1 – Systematic review flow diagram showing the identification, screening, eligibility assessment of OVID search results 
from the Medline and Embase databases. Record screening and eligibility assessment was performed by two authors.  
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The results were taken from the included studies and combined for assessment. I also 

assessed the methodological rigour and validity of the conclusions of the studies.  

 

I include within the results comparative human data from Panjabi et al., the most commonly 

cited human measurement study within the reviewed literature (192, 193).  

 

2.3 RESULTS 

 

Of the ten papers selected for review, three compared more than one species with humans. 

There was a total of one paper on cows, four on pigs, three on sheep, one on goats and one 

on deer. Commonly assessed parameters throughout most of these studies include: total 

length (TL), intertransverse length (IL) vertebral body width (VBW), vertebral body length 

(VBL), vertebral body height (VBH), spinal canal height (SCH), spinal canal depth (SCD), 

pedicle width (PW), pedicle height (PH), and pedicle angle (PA) (Figure 2.2). Where relevant, 

I include additional measurements that are not contained in all studies. 

  



68 
 

 

 

The demographics of the included studies is shown in Table 2.1. Figures 2.3 – 2.9 compare 

the most commonly measured features relevant to vertebroplasty, wherever raw data were 

provided. 

 

Table 2.2 shows selected comparison data from Yingling et al (185). These data are 

presented separately as the authors compared pig cervical vertebrae with human lumbar 

vertebrae. 

TL SCL 

VL 

VW 

ITL 

VH 

PW 

PH 

Figure 2.2 Diagram of a human lumbar vertebra showing the measurements of vertebral 
structures performed in the studies included in the systematic review A- superior view of the 
human lumbar vertebra. B – lateral view of the human vertebra.  VH = vertebral body height; VW 
= vertebral body width; VL = vertebral body length; TL = total anteroposterior length, SCL = spinal 
canal length, PW = pedicle width, PH = pedicle height 

A 

B 



69 
 

  

 A
u

th
o

rs
 

Ye
ar

 
Sp

ec
ie

s 
A

n
at

o
m

ic
al

 S
eg

m
en

t 
A

n
im

al
 S

p
ec

im
en

 
N

u
m

b
er

 o
f 

an
im

al
 s

pi
n

es
 

H
u

m
an

 S
p

ec
im

en
 

N
u

m
b

er
 o

f 
h

u
m

an
 

sp
in

es
 

M
e

as
u

re
m

en
t 

to
ol

s 

C
o

tt
er

ill
 e

t 
al

 
(1

84
) 

 
19

86
 

C
o

w
 

Th
o

ra
ci

c 
- 

T6
&

T1
2,

 
Lu

m
b

ar
 -

 L
3 

Fr
es

h
 c

ad
av

er
ic

 6
-8

 w
ee

ks
 o

ld
 

ca
lv

es
 

10
 

Em
ba

lm
ed

 c
ad

av
er

s 
10

 
H

an
d

-h
el

d 
m

ic
ro

m
et

er
 

Yi
ng

lin
g 

et
 a

l 
(1

85
) 

19
99

 
P

ig
 

C
er

vi
ca

l -
 C

2
-C

7,
 

co
m

p
ar

ed
 w

it
h

 
h

u
m

an
 lu

m
b

ar
 

P
ig

 c
ad

av
er

ic
, o

th
er

w
is

e 
u

n
sp

ec
if

ie
d

. 
3 

M
ea

su
re

m
en

ts
 f

ro
m

 
es

ta
b

lis
h

ed
 li

te
ra

tu
re

 
n

/a
 

H
an

d
-h

el
d 

ca
lli

p
er

 

B
o

zk
u

s 
et

 a
l 

(1
86

) 
20

05
 

P
ig

 
Th

o
ra

ci
c 

Sp
in

e 
(T

1
 -

 
T1

6
) 

fr
es

h
 c

ad
av

er
ic

 6
-m

o
n

th
-o

ld
 

sw
in

e,
 m

ea
n 

w
ei

gh
t 

30
 k

g 
10

 
Em

ba
lm

ed
 c

ad
av

er
s 

10
 

H
an

d
-h

el
d 

m
ic

ro
m

et
er

, 
R

ad
io

lo
gi

ca
l -

 p
la

in
 

ra
d

io
gr

ap
h

 

D
at

h
 e

t 
al

 
(1

87
) 

20
07

 
P

ig
 

Lu
m

b
ar

 S
p

in
e 

(L
1

-L
6)

 
fr

es
h

 c
ad

av
er

ic
 1

8 
- 

24
-

m
o

n
th

-o
ld

 s
w

in
e,

 w
ei

gh
t 

60
 -

 
80

 k
g 

6 
M

e
as

u
re

m
en

ts
 f

ro
m

 
es

ta
b

lis
h

ed
 li

te
ra

tu
re

 
n

/a
 

H
an

d
-h

el
d 

di
gi

ta
l 

ca
lli

p
er

 

B
u

ss
ch

er
 e

t 
al

 
(1

42
) 

20
10

 
P

ig
 

W
h

o
le

 S
pi

n
e 

(C
3

 -
 L

6
) 

fr
es

h
 c

ad
av

er
ic

 4
-m

o
n

th
-o

ld
 

sw
in

e,
 m

ea
n 

w
ei

gh
t 

40
 k

g 
6 

Em
ba

lm
ed

 c
ad

av
er

s 
6 

R
ad

io
lo

gi
ca

l -
 C

T 

W
ilk

e 
et

 a
l 

(1
88

) 
19

97
 

Sh
ee

p
 

W
h

o
le

 S
pi

n
e 

 
fr

es
h

 c
ad

av
er

ic
 3

 -
 4

-y
ea

r-
o

ld
 

sh
ee

p
, m

ea
n

 w
ei

gh
t 

72
 k

g 
5 

M
e

as
u

re
m

en
ts

 f
ro

m
 

es
ta

b
lis

h
ed

 li
te

ra
tu

re
 

n
/a

 
H

an
d

-h
el

d 
m

ic
ro

m
et

er
 

M
ag

ee
d 

et
 a

l 
(1

89
) 

20
13

 
Sh

ee
p

 
Th

o
ra

co
lu

m
b

ar
 (

T2
-

L6
) 

Li
ve

 2
-y

ea
r-

ol
d

 s
he

e
p,

 m
ea

n 
w

ei
gh

t 
62

 k
g 

5 
M

e
as

u
re

m
en

ts
 f

ro
m

 
es

ta
b

lis
h

ed
 li

te
ra

tu
re

 
n

/a
 

R
ad

io
lo

gi
ca

l -
 C

T 

K
u

m
ar

 e
t 

al
 

(1
90

) 
20

00
 

D
ee

r 
W

h
o

le
 s

pi
n

e 
Fr

es
h

 c
ad

av
er

ic
 a

ge
 2

0 
- 

27
-

m
o

n
th

 d
ee

r,
 w

ei
gh

t 
46

 -
 5

2 
kg

 
6 

M
e

as
u

re
m

en
ts

 f
ro

m
 

es
ta

b
lis

h
ed

 li
te

ra
tu

re
 

n
/a

 
H

an
d

-h
el

d 
m

ic
ro

m
et

er
 

M
cL

ai
n

 e
t 

al
 

(1
91

) 
20

04
 

Fa
rm

 P
ig

 
L4

 
Fr

es
h

 c
ad

av
er

ic
, 5

5 
- 

65
 k

g 
10

 
Em

ba
lm

ed
 c

ad
av

er
s 

7 
H

an
d

-h
el

d 
di

gi
ta

l 
ca

lli
p

er
 

 
 

M
at

u
re

 Y
u

ca
ta

n 
M

ic
ro

p
ig

 
L4

 
Fr

es
h

 c
ad

av
er

ic
 

5 
 

 
 

 
 

D
ai

ry
 G

o
at

 
L4

 
Fr

es
h

 c
ad

av
er

ic
, 3

5 
- 

40
 k

g 
10

 
 

 
 

  
  

Sh
ee

p
  

L4
 

Fr
es

h
 c

ad
av

er
ic

, 4
5 

- 
50

 k
g 

  
  

  
  

Ta
b

le
 2

.1
 –

 D
em

o
gr

ap
h

ic
s 

of
 s

tu
d

ie
s 

in
cl

u
d

ed
 in

 t
he

 s
ys

te
m

at
ic

 r
ev

ie
w

, f
o

r 
co

w
, s

he
e

p,
 h

u
m

an
s,

 d
ee

r 
an

d
 p

ig
 v

er
te

b
ra

e
 

 



70 
 

  

Figure 2.3 – Scatter plot of mean intertransverse process widths (mm) and standard error bars, 
taken from the studies included from the database search for cow, sheep, humans, deer and pig 
vertebrae. A – Thoracic spine intertransverse width. B – Lumbar spine intertransverse width.  
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Figure 2.4 – Scatter plot of mean anterior vertebral body height (mm) and standard error bars, 
taken from the studies included from the database search for cow, sheep, humans, deer and pig 
vertebrae. A – Thoracic spine vertebral body height. B – Lumbar spine vertebral body height. 
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Figure 2.5 – Scatter plot of mean posterior vertebral body height (mm) and standard error bars, taken from the 
studies included from the database search for cow, sheep, humans, deer and pig vertebrae. A – Thoracic spine 
vertebral body height. B – Lumbar spine vertebral body height. 
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pig vertebrae. A – Thoracic spine vertebral body length. B – Lumbar spine vertebral body length. 
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Figure 2.9 – Scatter plot of mean pedicle width (mm) and standard error bars, taken from the studies included 
from the database search for cow, sheep, humans, deer and pig vertebrae. A – Thoracic spine pedicle width. B – 
Lumbar spine pedicle width. 
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Yingling et al. (Pig C3 - 

C7) 

Nissan and 
Gilad 

(Human L1-
5) 

White and 
Panjabi (Human 

T12) 

Cotterill et 
al. (Human 

L3)  
Berry et al. (Human L1 - L5) 

Upper 
Vertebral 
Body Length 

22.28 (2.54) 

L1: 33.5 (2.9) 

32.8 32.7 (6.1) N/A 

L2: 34.4 (2.9) 

L3: 34.7 (2.7) 

L4 34.4 (2.7) 

L5: 34.2 (2.7) 

Lower 
Vertebral 
Body Length 

22.53 (2.67) 

L1: 34.1 (2.9) 

33.4 N/A N/A 

L2: 34.7 (3.0) 

L3: 34.6 (2.8) 

L4: 34.9 (2.8) 

L5: 33.9 (2.7) 

 Right: Left:    Right: Left: 

Pedicle Width 8.67 (1.21)  8.91 (0.95) N/A 8.8 8.4 (2.0) 

L1: 7.0 (1.9) L1: 6.9 (1.7) 

L2: 7.4 (1.6) L2: 7.5 (1.5) 

L3: 9.2 (1.3) L3: 9.1 (1.6) 

L4: 10.3 (1.6) L4: 10.4 (1.6) 

L5: 10.9 (3.4) L5: 10.5 (2.9) 

Table 2.2 – Comparison of mean pig C3-C7 vertebral measurements from Yingling et al. (185) with human vertebral 
measurements from other studies referenced by Yingling et al.: Nissan and Gilad (194), White (195) and Panjabi 
(193), Cotterill et al (184), Berry et al (196). Selected measures based upon availability of data for comparison 
across studies, in mm with standard deviations in parentheses where available. 

 

2.3.1 COW 

 

There is only one study comparing cow and human thoracolumbar vertebrae (184). The 

authors selected three vertebral levels: T6, T12 and L3. They found that there were 

significant differences in measurements for several areas. For example, at T6 the spinous 

process length was greater in the cow, but at L3 it was longer in humans. Of the 

measurements of particular relevance to vertebroplasty, there was no significant difference 

in VBL or VBW at T6, but at T12 and L3 the human VBL and VBW were significantly greater.  

At T6, the VBH was greater in cow vertebrae, but at T12 and L3 there were no significant 
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differences. Cow pedicles were significantly wider at T6, but there was no significant 

difference at T12 or L3. 

 

2.3.2 PIG 

 

Of the four studies assessing pigs, one looked at the cervical spine, one at the thoracic spine, 

one at the lumbar spine, and one at the whole spine. A fifth study compared the L4 level 

across several species including humans. 

 

Bozkus et al (186) showed that T3-6, T8 and T12 had significant differences in posterior 

vertebral body height. They also showed significant differences in body width and length at 

all thoracic levels, with human vertebrae being larger in these dimensions. The width and 

length also remained relatively similar throughout the pig thoracic spine, whereas these 

increased in size in human spines. 

 

Pedicle heights were greater in pig spines from T2 – T9, and in human spines at T11 and T12 

(when compared with T11 – T15 in the pig spine). The left and right pedicle widths from T1 – 

T9 mostly did not show any significant differences. From T10 – T12, the human pedicles 

were significantly wider.  

 

Dath et al (187) found the pig lumbar vertebrae to have larger body height than humans, 

but smaller body width and length. They also found that pedicle height and width were 

greater in pig vertebrae at all levels except L4 and L5 where human pedicles were wider.  
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Busscher et al (142) used CT measurements to compare whole pig and human cadaveric 

spines. They divided the spines into regions: cervical, high thoracic, low thoracic, and lumbar 

(though high or low thoracic are not defined). They considered absolute measurements of a 

region “comparable” if at least half the vertebrae did not show significant differences 

between species. Additionally, they calculated the ratios of the human and pig 

measurements, which they considered comparable if the variance of these ratios was less 

than 20% for each region. These criteria are arbitrary, with “comparable” being difficult to 

define consistently in the literature. 

 

They state that anterior and central body height is comparable between species in all 

regions, but posterior height is only comparable in the cervical and high thoracic regions. 

Pedicle width is said to be comparable in the lower thoracic and lumbar regions, and pedicle 

height in the lumbar region. They also calculated the pedicle angle, which is comparable in 

the thoracic but not lumbar spine.  

 

Yingling et al (185) compared the pig cervical spine from C3 – C7 with human L1 – L5. They 

found similar biomechanics in vertebral motion segments and loading failure mechanisms, 

albeit the pig forces requiring scaling up to match the human values. They also noted that 

vertebral body dimensions in human lumbar vertebrae were mostly larger than in pig 

cervical vertebrae. This would suggest that pig cervical spines would represent a useful 

alternative to human cadaveric spines when modelling injury patterns in young, healthy 

humans. However, for the purposes of testing spinal interventional equipment and 

techniques, the pig cervical spine is less suitable than the lumbar spine of the pig, or other 

large quadrupeds.  
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McLain et al (191) looked specifically at the L4 level, and showed no significant difference in 

VBH between immature standard farm pigs and mature Yucatan micropigs, and humans, but 

significantly greater VBW and VBL in humans. There was no significant difference between 

standard pig or human PW. The micropig PW was smaller than in humans. The pedicle angle 

was significantly greater in micropigs and standard farm pigs when compared to humans 

(i.e. more lateral distal to the vertebral body, and with a steeper medial approach to the 

vertebral body). 

 

2.3.3 SHEEP 

 

There were two studies included on sheep. One of these compared human and sheep 

thoracolumbar spines, and one compared whole spines. A third study compared sheep and 

human L4 vertebrae.  

 

Wilke et al (188) found sheep vertebral body height to be greater than human, but length 

and width to be smaller. Pedicle height is suggested to be greater in sheep than humans, 

particularly in the lumbar spine. Thoracic pedicle width is also greater in sheep but is 

comparable from T12 and below.  

 

Mageed et al (189) calculated several spinal indices using ratios of various measurements in 

order to overcome the heterogeneity of measurement techniques in the literature from 

which they obtained their human data. These included concavity index (ratio of anterior and 

posterior vertebral body height), endplate index (ratio of superior endplate length and 
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width), and the pedicle index (ratio of width and height). They did not include formal 

statistical comparison of the absolute values, but their data suggested that sheep vertebrae 

have greater vertebral body height but smaller width and length than human vertebrae. 

They also state that sheep pedicles are narrower, taller and more laterally angled than in 

humans.  

 

At the L4 level, McLain et al. (191) showed no significant difference in vertebral body height, 

but the width and length were greater in humans. They found no difference in the pedicle 

width but agreed with Mageed et al. (197) that sheep pedicles show greater lateral 

angulation. 

 

2.3.4 DEER 

 

To date, there has been a single study comparing the measurements of the deer and human 

spines.  

 

Kumar et al (190) compared whole spines between species. They found that deer vertebral 

body height was greater at all spinal levels. Vertebral body height and width were greater in 

deer at T1-T4, but below T5 that trend reversed, and the dimensions were greater in human 

vertebrae. The authors state that deer pedicles were taller than human pedicles at all levels, 

though they have not included formal statistical comparison.  Similarly, although they 

conclude that pedicle width is comparable at the lower thoracic and lumbar spines, their 

presented data suggest that lower lumbar pedicles are rather wider in humans than deer, 

but it is unknown whether these differences are statistically significant or not. 
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2.4 DISCUSSION 

 

Cows, pigs, sheep, deer and goats are the most commonly used animal models in spinal 

research. The available evidence demonstrates various areas of similarity and difference 

between humans and these species, though there are limitations to the published studies. 

In particular, the small number of studies, which themselves have low sample sizes, and the 

heterogeneity of the methodology in the available literature makes comparison difficult.  

 

General methodology varied in terms of measurement. In particular, to the best of my 

knowledge, no method comparison between measurements using analogue callipers, digital 

callipers, hand-held micrometers, plain radiography with digitised rulers, and CT, has been 

performed.  

 

Some studies examined human cadaveric vertebrae, while others used data from the 

established literature. This raises the possibility of errors being introduced via differing 

methodology within the same study.  

 

Other than Dath et al (187), none of the included studies mentioned how many repetitions 

were performed for each measurement, which is a useful method for increasing reliability. 

Dath et al. used 3 repetitions at each measurement. 

 

Regarding any attempted comparisons between various species, this is limited by the fact 

that in several studies, raw data are not provided for certain measurements. As a result, 
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when combined with the incomplete data for some species, it is not possible to perform a 

meta-analysis to reach any meaningful conclusion. 

 

The general trends that can be seen from the included studies are that quadruped vertebral 

bodies tend to be taller, narrower and shorter in AP dimension than human vertebrae. Pig 

and cow lumbar and thoracic vertebrae are perhaps the closest to human in terms of 

vertebral body height, width and length, though deer may be closer when specifically 

considering upper thoracic vertebral body length (Figure 2.7).  

The existing data suggest that in the mid-thoracic region, cows have greater vertebral body 

height than humans, but with comparable vertebral body width and length. In the lower 

thoracic or lumbar regions, humans have greater vertebral body width and length but there 

is comparable VBH. 

 

Animal pedicles are generally narrower and taller than human pedicles. Once again, the 

literature suggests that pig pedicles are closest to humans regarding pedicle height (Figure 

2.8). The data for pedicle width indicate much more overlap between species (Figure 2.9). 

Where available, the data suggest that animal pedicles are also more laterally angulated.  

 

In contrast to the general trend of quadrupedal pedicles being narrower than in humans, 

cows appear to have wider pedicles at T6 region, but show no significant difference at T12 

or L3. 

 

Further inter-species comparison using data obtained by such varying methodology is 

unlikely to be helpful. There are also several important limitations to the available studies. 
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It must be noted that the data comparing cow and human spines are limited to a single 

study which only looked at three vertebral levels. It is difficult to know whether the selected 

vertebrae are representative of the remainder of the spine. Furthermore, pedicle height and 

angle are not included in this study.  

 

The authors have not specified whether they assessed the left or right pedicle or took the 

mean of both sides. Nor have they specified where on the vertebral body they measured 

VBW, VBL or VBH; subsequent studies such as Yingling et al (185) appear to have assumed 

VBL was measured at the upper endplate; they may have contacted the authors for 

clarification, but this has not been stated. These are of relevance when making comparisons 

with other studies. 

 

The pig data are the most abundant, and also the most conflicting. This is likely to be at least 

in part due to the use of specimens of different breeds, weights and ages. For example, as 

noted by Busscher et al (142), their data show smaller pedicles in the pig lumbar vertebrae 

than Dath et al (187). They suggest that this is likely because Dath et al. used older, heavier 

specimens.  

 

Dath et al (187) did not perform any formal statistical comparison, stating that the 

differences between their pig measurements and selected human measurements from the 

available literature were self-evident. This is borne out in part by their data. Additionally, 

they did not specify whether they measured the left or right pedicle.   
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Busscher et al (142) do not provide any raw data beyond their measurements for pig and 

human VBH and intervertebral disc height. The authors have provided data on whether they 

felt that a spinal region was comparable between species, however they have not defined 

their subdivision of thoracic into high and low thoracic. They also have not provided any 

justification for their calculation of comparability, setting a seemingly arbitrary limit of 50% 

of the vertebrae of a region. This may not adequately take into account intra-regional 

variation.  

 

Yingling et al (185) had a small sample size of only 3 spines. They provided only mean 

dimensions from all the vertebrae combined. They state that their small standard deviations 

suggest that a larger sample size was not required. However, it is interesting to note that 

other studies show significant differences in vertebral dimensions within the same segment; 

for example, Panjabi et al. (193) demonstrated significant differences in human VBL 

between L1 and L4 or L5.  

 

Given the smaller dimensions of the pig cervical vertebrae, these are less suitable for testing 

transpedicular needles designed for use in humans. Although pedicle widths were similar 

between the species, the shorter vertebral body length could affect anterior needle 

placement and cement filling. In addition, the authors have not included data on vertebral 

body or pedicle height.  

 

The sheep data are in agreement that sheep tend to have taller, but narrower vertebrae. 

They also have taller pedicles than humans. However, there is some disagreement regarding 

pedicle width. Mageed et al (189) state that sheep pedicles are narrower at all levels. Wilke 
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et al (188) in contrast showed that sheep thoracic vertebral pedicles are wider than humans 

from T1 – T12, below which level they are comparable. This is corroborated in part by 

McLain et al (191) who found no significant difference in pedicle width at L4.  

 

Once again, these differences could be partly related to the use of different size animals, 

though interestingly McLain et al (191) used the smallest specimens and Wilke et al (188) 

the largest. Both Wilke et al (188) and Mageed et al (189) used female merino sheep. 

McLain et al. did not specify the breed.  

 

Mageed et al (189) do not provide raw data for comparison. Though they state that sheep 

pedicles are narrower and taller than human pedicles, there are no numerical data. They 

also mention in their discussion that pedicle screws may encounter issues, but other 

transpedicular techniques such as vertebroplasty, kyphoplasty or percutaneous discectomy 

do not use pedicle screws. This makes it hard to assess whether sheep pedicles would be 

appropriate for use in these techniques. 

 

The results from Kumar et al (190) suggest that deer follow the general trend of having 

narrower vertebrae from T5 and below, and that their pedicles are also narrower than 

humans. They also found that lower thoracic vertebral pedicle width may be comparable 

between the species. However, as mentioned earlier in the results, they do not include any 

formal analysis to suggest whether these differences are statistically significant. 

 

The human data they used for comparison was taken from Panjabi et al (192, 193). It should 

be noted that the methods used to make vertebral measurements in these studies was 
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quite different. Kumar et al used a hand-held micrometer, whereas Panjabi et al used a 

specially designed 3-dimensional morphometer.   

 

The question remains, which species is the “best” fit for modelling a human spine? The 

heterogeneity of methods of measurement, selected breed of animal species, and 

differences in sample group ages and weights in the available literature means that this is a 

difficult question to answer. The findings of the 9 papers I have reviewed would suggest that 

the best species would depend on the particular qualities required for the specific test being 

performed. For example, in the case of transpedicular percutaneous cement augmentation, 

the most important gross morphological features would include pedicle height, width, angle 

and coronal plane shape, and the length of the vertebral body. 

 

However, other characteristics beyond gross topology will clearly also play a role; in the 

example of cement augmentation procedures, a similar trabecular structure would be 

important if assessing cement spread. This is discussed in greater detail in Chapter 4. Other 

procedures may warrant an evaluation of biomechanical factors. 

 

It is clear that while no single animal model will be able to provide a perfect analogue of a 

live human spine, this is also not required for most early phase research. A reproducible 

model with wide availability and similarity in the requisite aspects, should suffice for the 

majority of investigations.  

 

Future exploration in the area of animal models for spinal research should be tailored to 

specific purposes. Additionally, if evaluating a single species, attempts should be made to 
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maintain methodological consistency where possible. This will allow for future comparisons 

and meta-analyses between species. This has already been achieved to an extent, since 

certain measurements are widely performed throughout all the studies reviewed.  

 

More studies may be required on deer, and cows in particular, due to the limited data 

currently available. Cows may not represent a particularly useful model in the UK due to 

restrictions on the use of cow spinal materials, and of the two deer may therefore represent 

the more practical choice. 

 

pig and sheep data are a little more abundant, but given the contradictory nature of the 

evidence, further study is warranted. In particular, methodological rigour will help provide a 

more robust comparison and help in the selection of an animal model. 
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2.5 SUMMARY 

 

• The available evidence suggests that pigs may provide the closest approximation for 

the human lumbar spine, in particular when considering transpedicular techniques 

• In the thoracic spine, sheep, pigs and deer might all be appropriate candidates  

• There is little consistency in the literature regarding methods of measurement or age 

of animal or human samples for comparison. This makes direct comparison between 

studies difficult. 

• Further work into this area could consider a comparison between humans and 

multiple other species, using the same techniques for measurement, and thus 

directly comparing the differences between more than one animal and the human. 

This would allow the selection of a closest animal model for a variety of procedures, 

including percutaneous surgical techniques and open surgical techniques, depending 

on the specific features requiring assessment.  
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CHAPTER 3: 
COMPARATIVE VERTEBRAL MORPHOMETRICS 
 

 

3.1 INTRODUCTION 

 

Human cadavers have an established role in research as a model for live human pathology, 

as discussed in Chapters 1 and 2; in the spine, several studies have used human cadaveric 

vertebrae to model fractures (198-201). However, human cadavers are not without 

drawbacks as models for in vivo processes and procedures, and they are an expensive and 

limited resource. As such it can be difficult to obtain the required numbers for a sufficiently 

powered study. 

 

It is therefore unsurprising that animal models are often used as an alternative. 

Quadrupedal mammalian spines are known to undergo axial loading, as suggested by their 

endplate to endplate configuration, and in vivo axial compressive forces demonstrated by 

intradiscal pressure sensors (141, 202, 203). Pig, cow, and sheep spines are already used as 

models in the literature (180-182). 

 

Pigs have historically been favoured, due to similarities in vertebral size and shape (141), but 

there is limited literature available providing a robust comparison between species. There 

have been some morphometric studies performed on a variety of quadrupeds, but there is 

no consensus as to whether there are any practically meaningful differences between these 

animal species, or whether any one species is closest to the human, for the purposes of 

modelling human vertebrae in the testing of surgical techniques. 

 

 

The established literature shows certain trends in measurement sizes that might suggest the 

use of different species may be more appropriate in the thoracic spine compared to the 

lumbar spine.  However, these studies are not without limitations, as detailed in Chapter 2. 
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In particular, small sample sizes, especially for humans, and the use of different methods of 

measurement, for example, direct visualisation measurements using electronic callipers, or 

Computed Tomography (CT) measurements.  

 

The currently available literature also shows significant differences between male and 

female human vertebral size in terms of morphometry (204). To the best of our knowledge, 

no comparison has been performed to assess whether there are any significant age-related 

differences, other than vertebral height - in 1987, Twomey and Taylor (205) showed 

increased vertebral endplate concavity with increased age. If statistically significant 

differences are returned, it would also be useful to know whether these are practically 

meaningful when performing a transpedicular procedure with currently available 

equipment. 

 

This chapter describes a study to address these issues in the literature. Firstly, a 

methodological comparison will be performed of measurements under direct visualisation, 

with measurement of CT images. The morphometries of male and female human vertebrae 

will be compared to reproduce the findings of the existing evidence, and analysis will also be 

performed to compare young and old vertebrae to assess whether there are any significant 

morphometric differences based on age. The morphologies of quadrupedal spines will then 

be compared with a human sample, with a view to selecting the most appropriate model for 

percutaneous transpedicular procedures. 
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3.1.1 RESEARCH QUESTIONS 

1. Is radiological measurement as reproducible as measurement under direct 

visualisation, and do the results correlate? - Method comparison study between 

measurements obtained using direct visualisation and radiology to compare 

standard errors between the two techniques 

2. Are there statistically significant differences between male and female, and young 

and old, human vertebral morphometries? 

3. Which animal vertebrae provide the closest approximation with respect to vertebral 

cement augmentation, bearing in mind the transpedicular approach. 

 

3.2 MATERIALS AND METHODS 

 

3.2.1 ANIMAL SAMPLE SELECTION 

 

For the animal samples, I selected species which were widely available and easily obtained. I 

selected pigs and sheep as they fit these criteria in the UK. Whole cow spines were not 

obtainable locally due to spinal material restrictions in the UK, and I therefore elected to 

exclude them. 

 

Two animal species and breeds were selected for harvesting as discussed in the introduction 

to this chapter. I selected charolais sheep breeds, as these were the most easily obtained 

from my local abattoir. Most available pig specimens in the UK are Large White hybrids, 

which were also the breed provided by my local abattoir.  

 

Pig specimens were male, between 3 – 6 months, and 55-60kg in weight. Sheep specimens 

were male, between 3 – 6 months old, and 35 – 45  kg in weight.  

 

Specimens were excluded if there was any existing spinal fracture or malignancy 

demonstrated on the subsequent CT scans. 
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3.2.2 HUMAN SAMPLE SELECTION 

 

A sample size of 44 was determined by a power calculation based on the available literature 

(see Statistics). Vertebral dimension measurements were performed on retrospectively 

selected studies of adult patients who underwent spinal CT imaging including the thoracic 

and lumbar spine. 

 

Inclusion criteria: 

• CT studies including the thoracic spine and lumbar spine from T1 – L5 with bone 

reconstructions 

• Adult patients age >18 

 

 

Exclusion criteria: 

• Known malignancy 

• Evidence of metastatic bone disease 

• Spinal fractures 

• Metabolic bone disease 

• Spinal osteoarthritis resulting in deformity (as defined by the presence of any of the 

established features as follows: subchondral cyst formation, subchondral sclerosis, 

joint space loss, osteophyte formation, intervertebral disc height loss) 

• Previous spinal surgery or cement augmentation 

• Congenital segmentation anomalies  

 

The human sample consisted of 29 male and 15 female patients, with a mean age of 59.7 

years. The sample was divided into two groups based on the median age of 57. There were 

21 specimens <57 years old, and 23 specimens ≥57 years old. 
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3.2.3 TECHNIQUE 

 

3.2.3.1 ANIMAL SPINE HARVESTING 

 

Animals were locally sourced from an abattoir in Norwich, Norfolk. Freshly harvested 

thoracolumbar spines were received from animals slaughtered the same morning with the 

adjacent soft tissues intact in a long, combined sirloin/loin and rib cut. This included 

paraspinal muscles and back muscles (sirloin and loin cuts) and ribs (rib cut). The skin, 

subcutaneous fat, fascial layers and paraspinal muscles were manually dissected. Paraspinal 

ligaments and intervertebral discs were also removed.  

Pigs have 13-15 thoracic and 5-7 lumbar vertebrae. Sheep have 13-14 thoracic and 6-7 

lumbar vertebrae. 

Where extra vertebrae exist, I considered the junctional vertebrae to be equivalent to the 

respective junctional level in humans (for example, pig L6 compared with human L5 as both, 

on average, represent lumbosacral junctional vertebrae), and counted up or down from 

these.  

Four spines of each species were harvested.  
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3.2.3.2 ANIMAL IMAGE ACQUISITION 

 

CT was performed with a Siemens Somatom Definition AS plus 128 slice Computed 

Tomography machine. Images were acquired with the following parameters: Field of View 

(FOV), pixel matrix 512 x 512, Siemens B70 ultrasharp bone kernel + soft tissue kernel, 0.6 

mm slice thickness. Multiplanar reconstruction (MPR) was performed at a diagnostic 

workstation for measurements (4MP Barco™ monitor).  

 

3.2.3.3 HUMAN IMAGE ACQUISITION 

 

Retrospective human CT images were selected sequentially from my hospital trust PACS 

(Picture Archiving and Communication System) database of clinical studies between 2010 

and 2018, until I achieved a sample size of 44. The studies were performed with a Siemens 

Somatom Definition AS plus 128 slice scanner or a Siemens Somatom Definition AS 64 slice 

scanner using a 512 x 512 pixel matrix. The field of view was variable depending on patient 

habitus. Siemens B70 ultrasharp bone kernel, 2 mm slice thickness. 

 

 

3.2.3.4 DATA EXTRACTION 

Following dissection, animal vertebrae were first measured under direct visualisation using a 

vernier caliper and afterwards using digital calipers on CT images. Newly acquired animal 

spinal images and retrospectively acquired human spinal images were reviewed on a 3-

megapixel imaging workstation, where measurements were taken using the Fuji SYNAPSE 

PACS.  

Measurements were taken of each level from T1 – L5 using Fuji SYNAPSE PACS 

measurement tools, by a single operator. 
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The linear vertebral measurements were: maximal total craniocaudal height, axial length 

(anteroposterior dimension) and axial width (transverse dimension), vertebral body height, 

length and width, pedicle height, length and width, lamina height, length and width, and 

spinal canal axial length and width (Figure 2.2). Four repeat measurements were performed 

at each vertebral dimension. The rationale for the number of repetitions is discussed below 

in the statistics section.  

 

3.2.4 STATISTICS 

 

3.2.4.1 ANIMAL SAMPLE SIZE 

The animal spine sample sizes were sample sizes of convenience, limited by my ability to 

acquire freshly harvested, whole spines from my local abattoir. Usual butchery practise is to 

bisect the spine, and therefore I was required to purchase whole spine cuts, and these were 

relatively limited in their availability. 

 

3.2.4.2 HUMAN SAMPLE SIZE 

My sample size for the retrospective study of vertebral dimensions was based on a power 

calculation using the data from the existing literature (192). Using their measurements for 

transverse process width gave a range of confidence intervals from 1.76 mm to 7.39 mm. 

I used the mean confidence interval range for my power calculation as follows: 

𝑁 =  
4𝜎2(𝑍𝑐𝑟𝑖𝑡)2

𝐷2
 (3.1) 

Where N = sample size,  = Standard Deviation, Zcrit = standard normal deviate, D = total 

width of the expected confidence interval. Statistical significance was set at 5%, therefore 

Zcrit = 1.96 (206). The required sample size is 44.  My sample consisted of 29 male and 15 

female patients, with a mean age of 59.7 years.  
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3.2.4.3 MEASUREMENTS 

The mean, standard deviation and standard error of the mean were calculated for each 

morphological measure under direct visualisation and CT. 

Measurements under direct visualisation were made by a single operator. The number of 

repetitions required was calculated from a desired standard error of the within-subject 

standard deviation. This is often set as 10% ( 95%CI  10%) (207).  

 

To clarify an acceptable degree of standard error of the within-subject standard deviation, a 

single operator (TA) performed initial measurements to allow for 95%CI  5%, 10% and 20%. 

These initial measurements were performed on a pig spine at the left and right transverse 

processes from T3 – T10. The transverse processes of T3 – T10 were selected on the basis of 

similarity in length between the levels in the existing literature, to allow a preliminary 

calculation of the number of repetitions per measurement required by the single operator.  

 

The number of repetitions for each of these degrees of standard error was calculated with 

the following formula (207): 

First, I take the width of the confidence interval to be: 

 

𝑍𝑐𝑟𝑖𝑡

𝑆𝑤

√2𝑛(𝑚 − 1)
 (3.2) 

Where Zcrit = 1.96 for 95% CI, Sw = standard error of the within subject standard deviation, n 

= total sample size, m = number of repetitions per measurement. 

The number of measurements to give a particular percentage of Sw is calculated as follows: 

1.96
𝑆𝑤

√2𝑛(𝑚 − 1)
= 𝑥𝑆𝑤  (3.3) 
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Where x = percentage of Sw. Since n = 4, the following measurement repetitions were 

calculated. 

To assess 5% standard error required 49 measurements at each level, 10% standard error 

required 13 measurements, and 20% standard error required 4 measurements. 

I selected a standard error which allowed for a combination of practicality and accuracy with 

n=4; although the thoracic vertebral transverse process lengths are comparable, the existing 

literature suggests that most other dimensions are more variable, and therefore I did not 

combine results between levels. 

Direct and CT measurements were performed by a single operator. Intra-class correlation 

(ICC) was performed for single fixed raters for consistency of both direct and CT pig 

measurements, and sheep CT measurements. ICC was calculated using R software (208). 

 

The mean, standard deviation, and standard error of the mean were calculated for all 

measures. Normality of these measures was assessed using both the Shapiro-Wilk test, and 

visual inspection of histograms and Q-Q plots.  Method comparison data between direct 

visualisation and CT was analysed by assessing the mean differences and using scatter plots. 

 

The interspecies comparison was performed via mean differences and visual assessment of 

scatter plots. Significance was assessed using a two-tailed T-test. In cases where a normal 

distribution could not be assumed, the Mann-Whitney U-test was applied. 
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3.3 RESULTS 

 

3.3.1 METHOD COMPARISON 

 

The intraclass correlation coefficient (ICC) for a single observer performing 4 repeat 

observations, for both direct and CT measurements on the pig, was close to 1, and reported 

as 1 by the software due to rounding. 

 

 

  VBH VBW VBL 

 

Mean 
(mm) (SD) 

Mean 
(mm) (SD) 

Mean 
(mm) (SD) 

Mean Difference 1.71 (0.95) 1.37 (0.77) 2.44 (0.44) 

Table 3.1 – Results of the method comparison between direct and CT measurements. Mean values and standard 
deviations of the absolute mean differences between direct and CT measurements of pig vertebrae. VBW = 
vertebral body height, VBW = vertebral body width, VBL = vertebral body length 

  
 

 

  TPW SCW SCL TL 

 

Mean 
(mm) (SD) 

Mean 
(mm) (SD) 

Mean 
(mm) (SD) 

Mean 
(mm) (SD) 

Mean Difference 2.22 (1.29) 1.95 (0.83) 1.23 (0.65) 1.14 (0.56) 

Table 3.2 – Results of the method comparison between direct and CT measurements. Mean values and standard 
deviations of the absolute mean differences between direct and CT measurements of pig vertebrae. TPW = 
transverse process width, SCW = spinal canal width, SCL = spinal canal length, TL = total length 

 
 

 

The greatest mean differences were noted in vertebral body length (Table 3.1), transverse 

process width, and spinal canal width. Figures 3.1 and 3.2 show the mean direct and CT 

measurements, and demonstrate that both measurement techniques follow the same 

trends with comparable sizes. The Bland Altman plot in Figure 3.3 shows that the largest 

differences tended to be observed in the measurements with the largest dimensions. 
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Figure 3.1 - Scatter plot of vertebral body dimensions (mm) and standard error 
bars, with measurements performed directly and on CT. A – Vertebral body 
height. B – Vertebral body width. C – Vertebral body length 
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Figure 3.2 - Scatter plot of vertebral posterior element dimensions (mm) and standard error bars, with 
measurements performed directly and on CT. A – Transverse process width. B – Spinal canal width. C – Spinal 
canal length. D – Total anteroposterior length 
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Figure 3.3 – Bland Altman plot of the differences between all the morphometric direct and CT measurements in pig 
vertebrae.  

 

 

 

 

The human data mostly conform to normal distributions. The sample size of the animal data 

make assessment of distribution difficult. Histograms visually representing the human and 

animal data distribution are provided in Appendix B. Q-Q plots and Shapiro Wilk tests of the 

human and animal data are provided in Appendix C and Appendix D respectively. 
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3.3.2 HUMAN VERTEBRAL SIZE GENDER COMPARISON 

 

Figures 3.4 – 3.8 show the human male and female mean vertebral morphometric 

measurements in scatter plots. Tables are included in Appendix F with the mean 

measurements, standard deviations, 95% confidence intervals, and mean differences with 

statistical differences. The male mean measurements are larger than female mean 

measurements at all vertebral levels. These differences are statistically significant. 
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Figure 3.4 – Scatter plot of human male and female vertebral body dimensions (mm) measured on CT. A – 
Vertebral body height. B – Vertebral body width. C – Vertebral body length 
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Figure 3.5 – Scatter plot of human male and female transverse process width (mm) measured on CT 
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Figure 3.6 - Scatter plot of human male and female spinal canal dimensions (mm) measured on CT. A – 
Spinal canal width. B – Spinal canal length. 
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Figure 3.7 – Scatter plot of human male and female total anteroposterior length 
(mm) measured on CT. 
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Figure 3.8 – Scatter plot of human male and female pedicle dimensions (mm) measured on CT. A – Right pedicle height. B – 
Left pedicle height. C – Right pedicle width. D – Left pedicle width. 
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3.3.3 HUMAN VERTEBRAL SIZE AGE COMPARISON 

 

Figures 3.9 – 3.13 show human vertebral morphometric measurements for the two age 

groups, <57 years old and ≤57 years old, in scatter plots. Tables are included in Appendix G 

with the mean measurements, standard deviations, 95% confidence intervals, and mean 

differences with statistical differences. 

 

The data do not show any statistically significant differences in any of the vertebral 

measurements between the older and younger groups, at any of the vertebral levels. 
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Figure 3.9 – Scatter plot of human older and younger vertebral body dimensions (mm) measured on CT. A – 
Vertebral body height. B – Vertebral body width. C – Vertebral body length 
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Figure 3.10 – Scatter plot of human older and younger transverse process width (mm) measured on CT 
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Figure 3.11 - Scatter plot of human older and younger spinal canal dimensions (mm) measured on CT. A – 
Spinal canal width. B – Spinal canal length. 
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Figure 3.12 – Scatter plot of human older and younger total anteroposterior length (mm) measured 
on CT. 
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Figure 3.13 – Scatter plot of human older and younger pedicle dimensions (mm) measured on CT. A – Right pedicle height. B – 
Left pedicle height. C – Right pedicle width. D – Left pedicle width. 
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3.3.4 INTERSPECIES COMPARISON 

 
Figures 3.14 – 3.18 provide a visual representation of the species mean measurements in 

scatter plots. Tables E.1 – E.11 in Appendix E show the species mean measurements, 

standard deviation, 95% confidence intervals, and the mean differences with statistical 

significance calculated via a two tailed t-test. 
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Figure 3.14 – Scatter plot of human, pig and sheep vertebral body dimensions (mm) 
measured on CT. A – Vertebral body height. B – Vertebral body width. C – Vertebral body 
length 
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Figure 3.15 – Scatter plot of human, pig and sheep transverse process width (mm) measured on CT. 
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Figure 3.16 - Scatter plot of human, pig and sheep spinal canal dimensions (mm) 
measured on CT. A – Spinal canal width. B – Spinal canal length.  
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Figure 3.17 – Scatter plot of human, pig and sheep total anteroposterior length (mm) measured on 
CT. 
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3.3.4.1 VERTEBRAL BODY DIMENSIONS 

 

The overall trend for vertebral body dimensions in all three species is of increasing height 

and width from cranial to caudal.   

 

Pig and sheep vertebral bodies are taller in the thoracic spine, with statistically significant 

differences. The difference between pigs and humans lessens at lower thoracic vertebrae, 

and at T12 is no longer statistically significant. Sheep vertebrae remain taller than human 

vertebrae throughout.  

  

All three species have similar vertebral body width in the upper thoracic spine, with no 

significant difference between human and pig vertebral width from T1 – T8. Below this level, 

human vertebrae increase markedly in width, whereas pig vertebrae do not increase to the 

same degree, and are significantly narrower. Sheep vertebrae are significantly narrower 

than humans throughout the spine. 

 

Human vertebrae show marked increase in body length from cranial to caudal, and are 

significantly longer than pig vertebrae throughout. Sheep vertebral bodies are longer than 

humans at T1, with no significant difference at T2, and below this level, are significantly 

shorter. This difference is most marked in the lower thoracic and lumbar spine. 

 

3.3.4.2 TRANSVERSE PROCESS WIDTH 

 

Intertransverse process dimension follows a similar trend in all three species, with a gradual 

decrease in size along the thoracic spine from T1 -T12/T14, followed by a marked increase in 

size from the final thoracic vertebra to the first lumbar vertebrae. Human thoracic vertebrae 

are significantly larger in intertransverse dimension than pigs, and also sheep until the T12 

level, where there is no significant difference between humans and sheep. In the lumbar 

spine, sheep vertebrae are significantly larger than humans in intertransverse process 

length. Human and pig vertebrae are similar in lumbar intertransverse dimension, with no 
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significant differences except at L2 where pig verterbrae were slightly larger, and between 

human L5 and pig L6, where the pig L6 vertebra is significantly smaller than the human L5. 

 

3.3.4.3 SPINAL CANAL DIMENSIONS 

  
The human spinal canal width and length are significantly larger than in pigs or sheep 

throughout the spine. 

 

 

3.3.4.4 TOTAL LENGTH 

 

Pig and sheep vertebrae demonstrate a different total anteroposterior length trend than 

human vertebrae. The quadrupedal vertebrae show an overall decrease in size from T1 to 

L6, whereas humans show a gradual increase from T1 to the mid lumbar spine.  

 

3.3.4.5 PEDICLE DIMENSIONS 

 

Human and pig vertebrae have similar pedicle widths at T1. However, throughout the 

remainder of the thoracic spine, human pedicles are significantly narrower than pigs. In the 

lumbar spine, pig pedicle width remains relatively constant, but human pedicle width shows 

a dramatic increase in size. At the L1 and L2 levels, human pedicles are again narrower than 

pigs, however at L3 there is no statistically significant difference, and the human L4 and L5 

vertebrae are significantly wider than in pigs. 

Sheep pedicles are wider than humans in the upper and mid thoracic spine, until the T9 

level where there is no statistically significant difference. From T10 – T12, human pedicles 

are significantly wider than sheep. 

 

All three species show a trend of increasing pedicle height in the thoracic spine. Pig pedicles 

are significantly taller throughout the spine except at the T10 level.  

Sheep pedicles are similar in height to human pedicles throughout the thoracic spine. 

However, whereas human pedicle height levels out in the lumbar spine, sheep pedicles 
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continue to increase in size, and are significantly taller than humans throughout the lumbar 

spine.  

 

Although both quadruped spines have greater pedicle heights than humans in the lumbar 

spine, the difference is less between humans and pigs than between humans and sheep. 

 

 

3.4 DISCUSSION 

 

My results show that CT measurements are at least as reliable as measurements under 

direct visualisation, and can therefore be used as an alternative method of measurement. 

The currently established literature uses a mixture of CT and direct measurements, but to 

my knowledge, no such methodological assessment has been performed before.  

 

The human vertebral gender comparison revealed statistically significant differences 

between male and female specimens. The male vertebral measurements were larger than 

females, which is consistent with the established literature. However, these differences are 

small relative to the sizes of existing transpedicular needles and screws. This is unlikely to be 

practically meaningful beyond confirming that the current range of equipment sizes is 

required, which is considered to be evident in clinical practice.  

 

The comparison between older and younger human vertebrae did not reveal any statistically 

significant differences in morphometry. In particular, there were no differences in vertebral 

body height. Given the known loss of stature with increasing age, this the morphometric 

variable that was considered most likely to show a difference with age. The findings are still 

consistent with those of Twomey and Taylor (1987), who showed increased concavity of the 

endplates with older age, whereas our measurements were specifically taken at the 

posterior vertebral body.  

 

The main limitations of the age and gender comparisons relate to the relatively small 

sample sizes. The gender sample sizes were also uneven, with more male than female 
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specimens. It should also be noted that the gender comparison was not controlled for age, 

and the age comparison was not controlled for gender. Neither comparison controlled for 

other potential confounding variables such as body mass index (BMI), ethnicity, or activity 

or growth hormone and insulin-like growth factor levels during the childhood and 

adolescent growth spurts.  

 

Simple visual inspection of the dissected animal vertebrae, and the imaged human and 

animal vertebrae, reveals many morphological similarities. Figure 3.19 shows a diagramatic 

representation of human, pig and sheep vertebrae with the major surface anatomical 

structures labelled. All three animals demonstrate a similar configuration, with several 

structures consistent between the species, including an ovoid vertebral body, pedicles, 

transverse processes, lamina, spinous processes, and articular facets. 

 

An important difference between the pig and other species in the thoracic is the presence of 

an intrapedicular transverse foramen. This had been noted in a previous comparative study 

by Bozkus et al (186). As a result, pig pedicles tend to be taller than sheep or human 

pedicles in the thoracic spine.  

 

My measurements show that human vertebrae tend to have longer and wider vertebral 

bodies than sheep or pigs. Vertebral body height is greater in animals than in humans in the 

thoracic spine. This trend is reversed for humans and pigs in the lumbar spine.  
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Figure 3.19: Diagram showing the main anatomical structures of human and animal vertebrae. A - Human vertebra 
anterior view, B – Pig vertebra anterior view, C – Sheep vertebra anterior view, D – Human vertebra superior view, 
E – Pig vertebra superior view, F – Sheep vertebra superior view, G – Human vertebra lateral view, H – Pig vertebra 
lateral view, I – Sheep vertebra lateral view 
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Human spinal canal dimensions are greater than in the sampled animals. It is possible that 

this is due to increased demands on the motor and proprioceptive spinal tracts in 

coordinating bipedal locomotion, which are known to be larger and more complex in 

humans than other mammals (209).  

 

Interestingly, both vertebral body and total anteroposterior length are greater in the human 

lower thoracic and lumbar spine. This may relate to the differences in muscular forces 

exerted on quadrupeds compared to bipeds.  

 

The pedicular dimensions are of particular interest when considering a model for 

percutaneous transpedicular procedures. In terms of height, sheep pedicles are closer to 

human in the thoracic spine, whereas pigs are more similar in the lumbar spine.  

 

The relationship between the species’ pedicle widths is more complex. Both sheep and pig 

pedicles are wider than humans in the upper and mid thoracic spine, though sheep are 

closer to humans than pigs. In the lower thoracic spine, sheep and human pedicle widths are 

comparable.  In the lumbar spine, both quadruped species’ pedicle widths remain fairly 

constant with a slight increase in sheep pedicle width at L6. However, human pedicle widths 

start off smaller than both animals at L1, but show a marked increase from L1 to L5, and at 

L4 and L5 are significantly larger than either animal. At L3, there is no significant difference 

between humans and pigs. 

 

Some of my data are consistent with the established literature in terms of dimensions (142, 

186-189, 191-193). As discussed in more detail in Chapter 2, the general trends shown in 

these studies are of quadruped vertebral bodies being taller, narrower and shorter in AP 

dimension than in humans.  

 

My data also show similarities in the relationships between pedicle dimensions, such as 

human lumbar pedicle height being smaller than in animals, but closer to pigs than sheep. 

The increase in human lumbar pedicle width from being narrower than the animal 

specimens at L1 to wider at L4 and L5, is also consistent with my data.  
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There are some differences between the literature and my data, however. For example, the 

thoracic pedicle height and width of sheep demonstrated by Wilke et al (188) are larger 

than both humans and sheep. This difference is likely due to the relatively advanced age and 

high weight of the sheep samples used by Wilke et al. Indeed, Mageed et al. (189) used 

sheep closer in age and weight to my sample, and the trends are much more closely 

recreated when looking at their data. 

 

This serves as an example of the importance of sample selection when assessing the role of 

my data in the wider literature.  

 

This study used a single observer performing 4 repetitions of each animal measurement, as 

described earlier in the materials and methods section. This allowed me to assess reliability 

with intra-class correlation statistics which showed an excellent intra-observer correlation 

with an ICC coefficient estimate close to 1. It should be noted that visual assessment of the 

data shows that despite the ICC coefficient estimate close to 1, the correlation is not 

perfect, and this is likely to represent an overestimate. However, representations of this 

data with scatter plots visually confirms the strong correlation.  

 

By using a sufficiently large human sample size, I also overcome two of the main limitations 

in the literature. Firstly, several studies did not perform human measurements themselves, 

and used previously available human data, however their animal measurements were 

performed using different methods than those older human studies. Secondly, those studies 

that did perform their own human measurements were often hampered by small sample 

sizes.  

 

In contrast, the animal sample size was limited due to a combination of difficulty in 

acquiring animal spines from the abattoir within a limited timeframe and storage space 

constraints which required me to perform vertebral harvesting and scanning for each 

specimen before obtaining a new one. In the established literature, animal sample sizes 

varied from 3 to 10, and the sample size of 4 lies at the lower end of this scale. Although I 

attempted to improve reliability by performing multiple repetitions of each measurement, I 

opted to compromise between optimising the standard error of the within-subject standard 
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deviation, and a reasonable number of repetitions. With 4 repetitions, the standard error of 

the within-subject standard deviation was relaxed to 20%. This is usually (albeit somewhat 

arbitrarily) set at 10%, however, this would have required 49 repetitions of each 

measurement. Due to time constraints with the lab, this would not have been feasible. 

 

The sheep samples were younger and of lower weight than the pig specimens. This 

limitation was due to spinal material restrictions in place in the UK for mature sheep. 

However, as demonstrated by the results, in spite of being lower in weight, the vertebral 

dimensions of the sheep sample were in general either similar to or larger than the pig 

sample.  

 

One of the limitations of this study was the lack of repeat observations on the human data. 

Without this, it is not possible to comment on the reliability of this data. This was simply an 

oversight and was not planned. To address this by applying Equation (3.3), the human 

sample would require 2 repetitions of each measurement to achieve 20% standard error, as 

with the animal samples. 

 

I did not to perform pedicle angle or pedicle length measurements on the CT data. However, 

they have been performed in the literature, for example Busscher et al (142) assessed 

pedicle angles. These dimensions would be of relevance when selecting a model for 

percutaneous transpedicular procedures. Given the difficulty of implementing them, I opted 

to leave these analyses to the statistical shape modelling study. 

 

Another weakness of the study lies in the human sample size lacking an upper age exclusion 

criterion. Although I excluded any cases with significant osteoarthritis (as discussed in the 

Materials and Methods section), the likelihood is that there may be subtle or early 

osteoarthritis changes which could affect certain measurements.  

 

I have also not performed any assessment of bone density in this study. Quadruped spines 

are known to have higher bone densities than human spines, due to their greater loads 

(141, 203). This will undoubtedly affect the placement and subsequent loosening of 

implements such as pedicle screws.  
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Historically, pig spines have been considered to be the closest analogy to the human spine 

as an in vivo model. Although other quadruped spines have been morphologically assessed, 

no consensus exists as to the closest model. The morphology results suggest that when 

considering percutaneous transpedicular procedures, the sheep spine is more appropriate 

in the thoracic spine, whereas the pig is more appropriate in the lumbar spine. 

 

Although some there is some controversy regarding vertebroplasty, other transpedicular 

procedures such as kyphoplasty, transpedicular bone biopsies, vertebral body tumour 

ablation, remain relevant and continue to develop.  These findings should be of benefit in 

preclinical, early phase trials of surgical pedicle screws, transpedicular needles and cements, 

as well as in the selection of animals for physician and surgeon training courses.  
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3.5 SUMMARY 

 

• This chapter deals with the methodological comparison of direct and CT 

measurements, and the morphological assessment of human, pig, and sheep 

vertebrae 

• I show that when selecting a model for transpedicular procedures, sheep are closer 

to humans in the thoracic spine, and pigs are closer to humans in the lumbar spine 

• Currently, pig spines are generally used to model the human spine. I propose that 

sheep spines should be used if the area of consideration is the thoracic spine, with 

respect to transpedicular access. 

• The study was robust with a large human sample size, and excellent reliability 

• However, the animal sample size was limited, and I omitted pedicle angle and length 

measurements. Additionally, I have not addressed differences in bone density in this 

study. 
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CHAPTER 4: 
VERTEBRAL TEXTURE ANALYSIS  

 

 

 

4.1 INTRODUCTION 

 

As discussed in Chapter 1, CT texture analysis provides a non-invasive method for examining 

the internal architecture of bone. In short, a bone consists of a cortex of dense cortical 

bone, and an internal medulla. The medulla itself comprises marrow tissue, which is a 

mixture of haematopoietic cells, adipocytes and stromal cells, and trabecular bone. 

Trabecular bone is arranged in networks of channels which tend to run in parallel to the 

long axis of a bone, essentially in alignment with mechanical stresses upon the bone during 

development (12-14).  

 

The internal trabecular microarchitecture is of importance in the role of vertebral strength, 

and the loss of trabecular plates in osteoporosis is considered an additional factor for 

vertebral fragility (210).  

 

Of particular relevance to my thesis, however, is the impact of trabecular architecture on 

the loading forces on bone cement. Studies have shown that the bone-cement interface is 

the main site of loading, with computer modelling suggesting that it is specifically in the 

areas of partial interdigitation of cement through the inter-trabecular spaces (144, 146). 

 

CT texture analysis uses statistical analyses based on the work of Haralick (148, 150) to 

deduce information about the internal structure of an organ. As described in Chapter 1, the 

terminology used in the field of CT texture analysis evolved from traditional 

histomorphometry; to briefly reiterate, the most relevant terms to this study are those 

relating to first order statistics, namely bone volume (BV), total or tissue volume (TV), 

apparent bone fraction (BV/TV), apparent trabecular thickness (Tb.Th), apparent trabecular 
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separation (Tb.Sp), and apparent trabecular number (Tb.N). These terms are discussed in 

more detail in Chapter 1.  

 

 Although micro-CT is the preferred imaging technique for bone texture analysis, high 

resolution clinical CT has been shown to be adequate (152, 154).  

 

Given the importance of trabecular architecture in cement loading, I would propose that the 

internal structure of bone should be considered when selecting an animal vertebra to model 

the human for the purposes of bone cement injection.  

 

This chapter describes a study which compared the trabecular microarchitecture of human, 

pig and sheep L1 vertebrae, using images acquired for Chapter 3. 

 

4.1.1 RESEARCH QUESTION 

 

This study describes the mean apparent bone fraction, apparent trabecular thickness, 

apparent trabecular separation, and apparent trabecular number for human, pig, and sheep 

L1 vertebral bodies. It is designed to decide which animal has textural features that most 

closely resemble the human. 

 

 

4.2 MATERIALS AND METHODS 

 

4.2.1 SAMPLE SELECTION AND IMAGE ACQUISITION 

The image data used in this study is the same as used in Chapter 3.  

 

I examined 4 pig, 4 sheep, and 44 human spines. The rationale behind species selection and 

sample size is explained in further detail in the Materials and Methods section of Chapter 3. 

To summarise, the animal sample sizes were samples of convenience, based on the number 

of animal spines I was able to acquire. The human data were selected from a clinical imaging 
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database, and 44 studies were chosen based on a power size calculation using data from 

human vertebral measurements performed under direct visualisation (192).  

 

4.2.2 TEXTURE ANALYSIS 

 

Texture analysis was performed using the BoneJ plugin for Fiji software (211, 212). 

Rectangular regions of interest (ROI) of 10 x 5 mm were created centrally within the 

vertebral bodies. This ROI size was chosen after a pilot testing on pig and sheep vertebrae, 

and a random sample of human vertebrae, to ensure that an adequate volume of medullary 

bone was sampled, and to avoid including any cortical bone (Figure 4.1). 

 

 

Figure 4.1 – Computed Tomography axial slice through the mid-section of a human L1 vertebra, with an example of 
ROI placement (indicated by the narrow black arrow) within medullary bone (indicated by the narrow white arrow), 
avoiding the outer cortical bone (indicated by the black arrow heads). 

 

Trabecular segmentation was performed by creating binarized images using adaptive 

thresholding (Figure 4.2). Human thresholds were between 180 – 200 Hounsfield Units (HU). 

Pig thresholds were 350 HU. Sheep thresholds were 400 HU. The BoneJ plugin was used to 

calculate the bone volume, tissue volume, apparent trabecular apparent bone fraction, 

apparent trabecular thickness, and apparent trabecular separation for human, pig, and 

sheep L1 vertebral bodies, using three-dimensional image thickness calculations (213, 214).  
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Figure 4.2 – Images from the FIJI software with examples of single slice binarised images produced using adaptive 
thresholding as described above. A - human, B - pig, C- sheep vertebrae. 

 

 

ROIs were drawn by a single operator. Two repetitions were performed on each vertebra to 

allow assessment of intra-observer correlation. 

 

4.2.3 STATISTICS 

 

Basic statistical analysis was performed on the measurements, with calculation of the mean, 

standard deviation, and standard error for BV/TV, Tb.Th, Tb.Sp, and Tb.N. The distribution of 

these measures was assessed using both the Shapiro-Wilk test, and visual inspection of 

histograms and Q-Q plots.  

Intra-class correlation coefficients were estimated for all measurements for single fixed 

raters for consistency.  

Due to difficulties relating to assumption of normal distribution for the smaller animal 

sample sizes as detailed in Chapter 3, statistical significance was assessed using both a two-

tailed T-test and the Mann-Whitney U-test. 

Statistics were performed on R software (208).   

 

 



129 
 

4.3 RESULTS 

 

4.3.1 DATA DISTRIBUTION 

 

The human data showed parametric distribution with visual assessment of histograms and 

Q-Q plots. The pig and sheep data could not be well assessed due to the sample sizes 

(Figures 4.2 – 4.7). 

 

 

Figure 4.3 – Human data - Histograms demonstrating the distribution of human data for apparent bone fraction 
(BV/TV), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), and trabecular number (Tb.N) 

mm mm 

mm mm 
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Figure 4.4 –Histograms demonstrating the distribution of pig data for apparent bone fraction (BV/TV), trabecular 
thickness (Tb.Th), trabecular separation (Tb.Sp), and trabecular number (Tb.N) 

mm mm 

mm mm 
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Figure 4.5 – Sheep data - Histograms demonstrating the distribution of sheep data for apparent bone fraction 
(BV/TV), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), and trabecular number (Tb.N) 

 

 

mm mm 

mm mm 
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Figure 4.6 – Human Q-Q plots for apparent bone fraction (BV/TV), trabecular thickness (Tb.Th), trabecular 
separation (Tb.Sp), and trabecular number (Tb.N) 
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Figure 4.7 – Pig Q-Q plots for apparent bone fraction (BV/TV), trabecular thickness (Tb.Th), trabecular separation 
(Tb.Sp), and trabecular number (Tb.N) 

 



134 
 

 

Figure 4.8 – Sheep Q-Q plots for apparent bone fraction (BV/TV), trabecular thickness (Tb.Th), trabecular 
separation (Tb.Sp), and trabecular number (Tb.N) 
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4.3.2 INTRAOBSERVER CORRELATION 

 

The intraclass correlation coefficient for single fixed rater for consistency, for a single 

observer performing two repetitions was at least 0.93 (Table 4.1). 

 

  ICC CI p 

Human 0.93 0.91 - 0.95 <0.01 

Pig 0.99 0.98 - 1.00 <0.01 

Sheep 0.96 0.90 - 0.99 <0.01 

Table 4.1 – Intraclass Correlation Coefficient and 95% confidence intervals for a single fixed rater for consistency, 
for human, pig, and sheep data for two repetitions performed by a single observer 

 

4.3.3 INTERSPECIES COMPARISON 

 

Human apparent bone fraction and trabecular thickness were significantly lower than either 

sheep or pigs. No statistically significant difference in trabecular separation or trabecular 

number was demonstrated between humans and either animal species (Table 4.2).  
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4.4 DISCUSSION 
4.4 

 

The results demonstrate that at the L1 level, human vertebrae have lower apparent bone 

fraction than pigs or sheep. This suggests a lower proportion of bone matrix relative to total 

volume. Human trabecular thickness is also significantly lower than that of pigs or sheep. 

Interestingly, human trabecular separation and number were not significantly different from 

either quadruped.  

 

This implies that all three species have comparable numbers of trabeculae which are 

similarly spaced, but that quadruped trabeculae are generally thicker. However, while these 

differences in trabecular thickness and apparent bone fraction are statistically significant, it 

is questionable whether these differences are truly meaningful. In absolute terms, the 

differences are small, and it is unclear whether they would have any meaningful effect on 

cement spread and interdigitation. 

 

These findings corroborate previous studies which show higher trabecular thickness and 

bone volumes in sheep and pigs than humans.  

 

Inui et al (215) performed CT texture analysis on micropigs of various ages to assess changes 

in trabecular microarchitecture with aging. Although they did not perform a direct 

comparison to human vertebrae, their results at 3 months were comparable to ours, 

allowing for differences in breed and age. Their two male 3 month old pigs had a mean 

apparent bone fraction of 44% (SD = 0.01), mean trabecular thickness of 0.20mm (SD =  

0.03), mean trabecular separation 0.13mm (SD = 0.02), and mean trabecular number 4.43 

(SD = 0.72). This is compared to the pig sample mean apparent bone fraction of 50% (SD = 

0.05), mean trabecular thickness of 0.26mm (SD = 0.01 mm), mean trabecular separation 

0.26 mm (SD = 0.01 mm), and mean trabecular number 2.03 (SD = 0.13).  

 

A previous study using two-dimension high resolution stereo microscopy images compared 

5 adult human lumbar spines with 5 mature sheep spines, combining results from all 

vertebral levels. They showed a mean human trabecular thickness of 0.27 mm (SE = 0.008 
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mm) and mean sheep trabecular thickness of 0.29 mm (SD = 0.005 mm0 (216), which they 

found to be statistically significant. These findings are comparable to ours, and show a 

similar trend. 

 

A vertebral histomorphometric study of humans, pigs, rhesus monkeys and beagles using a 

scanning microscope to assess radiographs of bone tissue samples (217) included a 

comparison of human and pig bone volumes. They found a human bone volume of 15.3% 

compared to micropig bone volume of  52.7%. Bone volume is analogous to apparent bone 

fraction. Although their absolute values for human bone volume are lower than the 

apparent bone fraction, the trend remains the same, with a lower value in humans. The 

differences in values may be explained in part by the differences in methodology. 

 

Although CT bone texture analysis comparison of humans and non-human primates, 

rodents, and dogs have been performed, to the best of my knowledge no such comparison 

of humans with sheep or pig vertebrae has been made. These results provide additional 

data to the established literature: that human trabecular thickness is lower than either 

quadruped, but trabecular separation is not statistically different. 

 

These findings correlate with the established literature that quadrupeds have higher 

vertebral bone mineral density than humans (218). As discussed in Chapter 1, bones 

undergo remodelling depending upon applied forces (11) (Clarke 2008). It could therefore 

be assumed that quadrupedal vertebrae may in fact undergo higher axial loads than human 

vertebrae, but no comparative studies have been performed to confirm this. 

 

The main strengths of this study are the large human sample size compared to the studies in 

the established literature, and the high intra-observer correlation.  

 

There are a number of limitations to this  study. My analyses were performed using clinical 

CT machines, rather than micro-CT. As such, the results were affected by partial volume 

artefact since the pixel resolution was low, and there would therefore be inevitable blurring 

of boundaries between tissues of differing densities. 
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The human sample, although larger than most similar comparison studies, was 

heterogeneous in terms of age and gender, with no upper age limit. Although osteoarthritis 

was an exclusion criterion, osteopaenia and osteoporosis were not readily assessed on 

clinical CT, and therefore these were not necessarily excluded. However, this may not have 

a large an impact on the trabecular architecture analyses, as I used adaptive thresholding to 

account for variance in density, and as discussed in Chapter 1 regarding osteoporosis, this 

affects bone mineral density more than trabecular architecture.  

 

As discussed in Chapter 3, the animal sample sizes were limited. This not only affected the 

statistical power of the findings, but also made assessment of data distribution difficult. I 

was not able to assume a normal distribution, and therefore statistical significance was 

assessed on the assumption that data were not Normally distributed.  

 

Additionally, the analyses were performed at a single vertebral level. It is uncertain whether 

these findings can necessarily be applied to other spinal levels. 

 

The findings corroborate and build upon the established literature in this field. The fact that 

there is no statistically significant difference in trabecular separation between humans and 

pigs or sheep is potentially of relevance when considering vertebral cement spread and 

interdigitation. As the cement-trabecula interface appears to be the most important site for 

loading, cement fracturing, and stress shielding (144-146), it is possible that the similarity 

between these species in terms of trabecular separation means that either sheep or pigs 

would represent a suitable animal model for testing vertebral cement spread. However, this 

requires additional testing with direct comparison of cement injection and quantitative 

analysis of the subsequent cement patterns. Indeed, it is not clear whether even the 

statistically different findings would result in any meaningful differences in practice, and 

further assessment with cement injection studies is needed.  

 

Additionally, the lower trabecular thickness and lower bone mineral density of human 

vertebrae may impact the pattern of fracturing/cracking of cement, and additional studies 

are needed to assess this. Specifically, studies comparing cement fracturing/cracking and 

cement failure between human, pig, and sheep vertebrae are required. 
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I have not performed any higher order statistical analysis, such as run length matrices. This 

could be addressed by performing second order statistical analyses on the data. 

 

In combination with the results from Chapter 3, I propose that sheep vertebrae be used to 

model the human thoracic spine, and pig vertebrae be used to model the human lumbar 

spine. The evaluation of cement spread may be similar, but assessment of fracturing 

following cementation should be viewed with caution as this study has not directly 

examined this.   

 

 

4.5 SUMMARY 

 

• This chapter deals with bone texture analysis of human, pig, and sheep vertebrae  

• I show that when selecting a model for vertebral cement procedures, the trabecular 

separation shows no statistically significant difference between humans and either 

quadruped which suggests that both pigs and sheep may demonstrate similar 

cement spread  

• The study was robust with a large human sample size, and excellent reliability. 

• The animal sample size was limited, and the images were obtained using a high-

resolution clinical scanner, rather than micro CT 

• Further work is required to assess whether vertebral cement spread and 

interdigitation is similar between species in practice 
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CHAPTER 5: 
STATISTICAL SHAPE ANALYSIS 
 

 

5.1 INTRODUCTION 

 

Statistical Shape Analysis (SSA) provides a different method for comparing shape than 

manual morphometric measurements. As discussed in Chapter 1, rather than taking 

individual measurements in isolation, SSA considers all the geometric information of the 

objects being compared.  

 

This study uses similarity and affine transformations, thin plate spline (TPS) deformations, 

full generalised Procrustes analysis (GPA) and principal component analysis (PCA). These 

techniques are applied to create a statistical shape model, which provides a visual 

representation of the shape variation between the objects being compared. 

 

These concepts are discussed in more detail in Chapter 1, and a full description of the 

mathematics involved can be found in Statistical Shape Analysis 2nd Edition (155). A brief 

summary is provided below as a reminder for the reader. 

 

5.1.1 DEFINITIONS 

 

The definition of shape used by Kendall (156) has subsequently become widely used in 

statistical shape analysis. Kendall defined shape as “all the geometric information that 

remains when location, scale, and rotational effects are removed from an object”.  
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Landmarks are points placed on the surface of an object, that corresponds between objects 

being compared. I used scientific, or anatomical landmarks, which are points assigned based 

on an anatomically meaningful way, such as the apex of an anatomical structure. 

 

Semilandmarks are a set of points used to conform to a curved surface that cannot be 

described with a single point landmark (157). I have used semilandmarks, as vertebrae are 

complex objects with many curved surfaces. 

 

I have used Dryden and Mardia’s definitions of centroid and centroid size. The centroid 

coordinate simply the mean of all the object coordinate values and is a computable 

equivalent to the centre of gravity of the object. Centroid size defined as “the square root of 

the sum of squared Euclidean distances from each landmark to the centroid”.  

 

5.1.2 AFFINE AND SIMILARITY TRANSFORMATIONS, AND THIN PLATE SPLINES 

 

Affine transformations are the simplest method of changing shape, and work by preserving 

parallel lines and planes between objects. 

 

Similarity transformations change a shape by rotation, scaling, translating and reflecting. 

They therefore do not affect “shape” as defined by Kendall. I used similarity transformations 

during multiple steps within the methodology, to remove non-shape related information.  

 

A thin plate spline (TPS) is a function that allows one shape to be deformed to another while 

minimising the bending energy. TPS functions are used with landmarks and sliding 

semilandmarks to interpolate the space between landmarks. TPS allows matching between 

objects that affine transformations would not be able to. The average objects of each 

species were too dissimilar in morphology for affine transformation but had consistent 
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topology. I was therefore able to use TPS to register the average human shape to the 

average animal shapes.  

 

5.1.3 PROCRUSTES ANALYSIS AND PRINCIPAL COMPONENT ANALYSIS 

 

The general Procrustes analysis matches shapes using a sum-of-least-squares technique. It 

involves using a similarity transformation to remove non-shape related information, and 

then minimising the sum of squared differences between the vertex points of each object.  

 

Once GPA has been performed, principal component analysis may be used to create a 

statistical shape model which describes variation from the mean shape.  

 

Principal component analysis (PCA) allows for the reduction of the number of dimensions 

when assessing multi-dimensional data. It allows the selection of the principal component, 

which is the component with the greatest effect on the data. In SSA, it is used to generate a 

mean shape, and then produce eigenvectors and eigenvalues to define shape modes. Shape 

modes are orthogonal patterns of variation in shape around the mean.  

 

5.2 MATERIALS AND METHODS 

 

5.2.1 SAMPLE SELECTION AND IMAGE ACQUISITION 

 

The image data used in this study are the same as used in Chapters 3 and 4.  

 

I examined the L1 vertebrae of 4 pigs, 4 sheep, and 42 human spines. Two human specimens 

were excluded as on visual assessment of the 3D objects, they appeared to demonstrate 

superior endplate collapse. The animal sample size was one of convenience, based on 
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availability of whole spines from the abattoir, from which vertebrae were harvested. The 

human sample was taken sequentially from a clinical imaging database. The sample size was 

calculated from established work in the literature on the morphometry of human vertebrae. 

The rationale behind species selection and sample size is explained in further detail in the 

Materials and Methods section of Chapter 3.  

 

Previous work by Tümer et al. in 2016 showed that a sample size of 35 was sufficient to 

create a robust SSM (219) for the articular surface of the talus. This was assessed by 

performing a bootstrap analysis (220) which involves rebuilding the SSM multiple times 

using resampled data. The resulting models may then be assessed qualitatively by 

comparing coloured model meshes. Quantitative assessment can also be performed by 

calculating the variance of the object vertices from the mean shape.  

 

Whole vertebrae are more complex shapes, and therefore it is difficult to assume that a 

sample size of 35 would prove sufficient for an accurate SSM. I have not performed a 

bootstrap analysis as I am not using the SSM for any specific application. Instead, I simply 

require the mean object of the sample population to analyse the shape variation within the 

sample, accepting that this variation may not be representative of any other sample 

population.  
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5.2.2 3D OBJECT CREATION 

 

3D objects of the L1 vertebrae were created using the open access software Stradwin (221). 

The vertebrae were contoured automatically with manual correction, and the objects were 

generated by the software using a distance transform and regularised marching tetrahedra 

(222). Figure 5.1 shows examples of the contouring and Figure 5.2 the subsequent 3D 

object. 

 

 

Figure 5.1: Representative slices of CT through a human L1 vertebra. The yellow outline denotes contouring 
performed on Stradwin. A – Slice through the superior aspect of the L1 vertebral body (white arrow) and the 
superior articular facets (black arrows). B – Slice through the upper third of the L1 vertebral body. C – Slice through 
the lower third of the vertebral body with the spinous process posteriorly (white arrowhead). D – Slice showing the 
inferior articular facets (black arrowheads). 

A B 

D C 
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Figure 5.4: 3D object of the human L1 vertebra which was contoured in Figure 5.1, created using Stradwin, showing 
A. left lateral, B. right lateral, C. superior, D. inferior, E. anterior, F. posterior views 
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5.2.3 GENERATION OF STATISTICAL SHAPE MODEL 

 

The 3D objects were analysed using another open access software, wxRegSurf (223).  

 

Landmarks and semilandmarks, referred to as landcurves in wxRegSurf, were placed on 

corresponding sites on all vertebrae (Figure 5.3). I placed 24 landmarks and 24 

semilandmarks on each vertebral object. 

For each species, a single object was selected as an “average” appearance, based on 

subjective observation. This object was aligned to the centroid and registered to each of the 

other vertebrae of that species, using a similarity transformation, affine transformations, 

called locally affine deformation (LAD) in wxRegSurf, and GPA, to create an average shape 

for that species. Objects of the same species were similar enough in morphology that LAD 

was able to adequately match them.  

 

This average object for each species was named the “canonical” by convention of the 

software. To optimise the registrations, this canonical object was then re-registered with 

each vertebral object of its species, and this was used to create a “true canonical”, using 

similarity transformation, LAD, and GPA. 

 

These “true canonicals” were used as average shape representations of each species.  
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Figure 5.5: Landmark and semilandmark (named "landcurves" as per wxRegSurf naming convention) placements on a human L1 vertebra for 
shape matching. The landmarks are indicated by single red dots. The semilandmarks are indicated by red dashed lines. A - Anterior superior 
oblique view; B - Anterior view; C - Anterior inferior oblique view; D - Posterior superior oblique view; E – Right lateral view, F – Left lateral view 



149 
 

5.3 EXPERIMENTS 

 

5.3.1 HUMAN SHAPE VARIATION 

 

To assess human L1 vertebral shape variation within the study population, I created an SSM. 

 

The software applied PCA to the human “true canonical” to generate an SSM with shape 

modes. Horn’s parallel analysis (224) was performed to assess the number of shape modes 

to consider as significant by judging how many modes are more relevant in their 

contribution to shape than background noise in the PCA coefficient matrix (generated by 

randomisation of the matrix and repeating PCA). As shape mode 1 is mostly scale 

information, I performed Horn’s parallel analysis both including and excluding shape mode 

1. The analysis was performed using a custom MATLAB 2018a (225) script written by 

Professor T Turmezei.  

 

5.3.2 COMPARISON OF HUMAN AND ANIMAL VERTEBRAE 

 

The human “true canonical” was deformed to the pig and sheep “true canonicals”. First the 

objects were automatically aligned to the centroid. Manual alignment was then performed 

by making the superior and inferior endplates parallel on the lateral view, and aligning the 

pedicles, transverse processes and spinous processes for vertical and horizontal symmetry 

on the anterior view (Figure 5.4). No scaling was performed prior to deformation, as scale is 

considered relevant to the comparison between species. 

 

The deformation was performed by the software using TPS, as the objects were too 

dissimilar to use basic LAD. During the registration of human to pig and human to sheep 

objects, I noted difficulties in matching certain anatomical structures. The superior articular 

facets were poorly matched, due to a hooked configuration of the quadruped facet, 
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compared to the relatively broader human facet. The transverse processes also proved 

difficult to match, as the quadruped processes were markedly longer and broader than the 

human.  

 

To address this issue, I added several extra landmarks around these structures, which 

proved effective in allowing TPS deformation with adequate matching of objects.  

 

Using another custom MATLAB 2018a (225) script written by Professor Turmezei, point 

displacement magnitude vectors were calculated for human to pig and human to sheep 

deformations. As the objects are constructed of vertices defining the corners within a 

triangular mesh, the displacement of a vertex by the TPS deformation can be described as a 

vector. These vectors therefore effectively describe the direction and magnitude of 

displacement corresponding vertices between the animal and human objects.  

 

 

  

A B C 

Figure 6.4: Demonstration of object alignment in wxRegSurf. The human vertebral object (red mesh) and sheep vertebral object (green 
mesh) are overlaid, aligned to the centroid with manual alignment subsequently performed by making the superior and inferior 
endplates parallel on the lateral view, and aligning the pedicles, transverse processes and spinous processes on the anterior view. A - 
anterior view. B - superior view. C - lateral view 
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5.4  RESULTS 

 

5.4.1 HUMAN SHAPE VARIATION 

 

Figure 5.7: Horn's parallel analysis of human object principal component analysis with scale (i.e. shape mode 1) 
included. The proportional variation is along the y-axis. The shape modes are along the x-axis. The randomised data 
variation is in red. The cumulative real data are in grey. The real data are in white. The point along the x-axis at 
which the real data trend line crosses the randomised data line represents the number of shape modes which are 
considered to be significant. 
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Figure 5.8: Horn's parallel analysis of human object PCA with scale (i.e. shape mode 1) excluded. The proportional 
variation is along the y-axis. The shape modes are along the x-axis. The randomised data variation are in red. The 
cumulative real data are in grey. The real data are in white. The point along the x-axis at which the real data trend 
line crosses the randomised data line represents the number of shape modes which are considered to be 
significant. 

 

Horn’s parallel analysis was performed with shape mode 1, which is predominantly scaling 

information, both included (Figure 5.5) and excluded (Figure 5.6). When shape mode 1 was 

included, the analysis suggests that the first 5 shape modes are most significant. These 

shape modes are the first 5 components of shape variation, calculated on the basis of total 

variation explained while being unrelated to one another.  When shape mode 1 was 

excluded, the following 9 shape modes, i.e. shape mode 2 – 10, were most significant. I have 
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therefore opted to include shape modes 1 – 10 in the discussion. Due to the complexity of 

the shape of the vertebral object, it is unsurprising that a large number of significant shape 

modes exist. 

 

Figure 5.9: Human SSM showing shape mode 1. A,D,G: -1 standard deviation of variation in the shape mode, B,E,H: 
mean shape, C,F,I: +1 standard deviation of variation in the shape mode. Anterior (A-C), lateral (D-F) and superior 
views (G-I). Black arrows show the major directions of shape change from the mean shape. In the case of shape 
mode 1, this is scale. 

 

Shape mode 1 (Figure 5.7) describes mostly scaling, and there is also slight anteroposterior 

(AP) skewing of the vertebral body as scale increases.  
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Figure 5.10: Human SSM showing shape mode 2. A,D,G: -1 standard deviation of variation in the shape mode, 
B,E,H: mean shape, C,F,I: +1 standard deviation of variation in the shape mode. Anterior (A-C), lateral (D-F) and 
superior views (G-I). Black arrows show the major directions of shape change from the mean shape. 

 

Shape mode 2 (Figure 5.8) describes variation of the transverse process and spinous process 

length, with widening and shortening of vertebral body width and height as the processes 

become longer. Shape mode 2 also shows the greatest variation in pedicle height; as 

vertebral height increases, so too does pedicle height. 
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Figure 5.11: Human SSM showing shape mode 3. A,D,G: -1 standard deviation of variation in the shape mode, 
B,E,H: mean shape, C,F,I: +1 standard deviation of variation in the shape mode. Anterior (A-C), lateral (D-F) and 
superior views (G-I). Black arrows show the major directions of shape change from the mean shape. 

 

Shape mode 3 (Figure 5.9) shows variation of vertebral body width and AP length. As the 

vertebral body becomes narrower and shorter, the superior articular facets become 

broader, and the spinous process becomes more caudally angled. The pedicles also become 

more medially angled and narrower as they join the vertebral body, and the transverse 

processes become less posteriorly angled. The inferior articular processes become more 

posteriorly angled.    
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Figure 5.12: Human SSM showing shape mode 4. A,D,G: -1 standard deviation of variation in the shape mode, 
B,E,H: mean shape, C,F,I: +1 standard deviation of variation in the shape mode. Anterior (A-C), lateral (D-F) and 
superior views (G-I). Black arrows show the major directions of shape change from the mean shape. 

 

Shape mode 4 (Figure 5.10) describes significant variation in pedicle width with a much 

lesser degree of variation in pedicle height. There is also a widening of the superior and 

inferior endplates with a narrowing at the mid-level of the vertebral body. The transverse 

processes become shorter, and the posterior aspect of the spinous process becomes thicker. 

The superior and inferior articular facets become thinner. 
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Figure 5.13: Human SSM showing shape mode 5. A,D,G: -1 standard deviation of variation in the shape mode, 
B,E,H: mean shape, C,F,I: +1 standard deviation of variation in the shape mode. Anterior (A-C), lateral (D-F) and 
superior views (G-I). Black arrows show the major directions of shape change from the mean shape. 

 

Shape mode 5 (Figure 5.11) also describes marked variation in pedicle width. As the pedicles 

become wider, the transverse processes become shorter, vertebral body height decreases, 

inferior articular processes become longer inferiorly, and the craniocaudal (CC) height of the 

apex of the spinous process becomes shorter. This shape mode describes spinal canal width 

and length as well. 
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Figure 5.14: Human SSM showing shape mode 6. A,D,G: -1 standard deviation of variation in the shape mode, 
B,E,H: mean shape, C,F,I: +1 standard deviation of variation in the shape mode. Anterior (A-C), lateral (D-F) and 
superior views (G-I). Black arrows show the major directions of shape change from the mean shape. 

 

As with shape modes 4 & 5, shape mode 6 (Figure 5.12) shows a substantial variation in 

pedicle width. There is also variation in transverse process length and craniocaudal plane 

angulation. As the pedicles become wider, the spinous process becomes shorter in 

craniocaudal dimension, and the inferior articular processes become shorter. 
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Figure 5.15: Human SSM showing shape mode 7. A,D,G: -1 standard deviation of variation in the shape mode, 
B,E,H: mean shape, C,F,I: +1 standard deviation of variation in the shape mode. Anterior (A-C), lateral (D-F) and 
superior views (G-I). Black arrows show the major directions of shape change from the mean shape. 

 

Shape mode 7 (Figure 5.13) describes variation of transverse process length and thickness, 

and spinous process length and CC height. As the transverse processes and spinous 

processes become shorter, the inferior articular processes become longer, and the superior 

articular facets become more steeply angled in the coronal plane. 
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Figure 5.16: Human SSM showing shape mode 8. A,D,G: -1 standard deviation of variation in the shape mode, 
B,E,H: mean shape, C,F,I: +1 standard deviation of variation in the shape mode. Anterior (A-C), lateral (D-F) and 
superior views (G-I). Black arrows show the major directions of shape change from the mean shape. 

 

Shape mode 8 (Figure 5.14) shows variation in pedicle height. As pedicle height increases, 

transverse process length decreases and craniocaudal height increases, and inferior articular 

process length decreases. 
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Figure 5.17: Human SSM showing shape mode 9. A,D,G: -1 standard deviation of variation in the shape mode, 
B,E,H: mean shape, C,F,I: +1 standard deviation of variation in the shape mode. Anterior (A-C), lateral (D-F) and 
superior views (G-I). Black arrows show the major directions of shape change from the mean shape. 

 

 

Shape mode 9 (Figure 5.15) predominantly describes variation in superior articular process 

craniocaudal and anteroposterior length. As the superior articular processes increase in CC 

and AP length, the apex of the spinous process becomes shorter in CC height, and the 

transverse processes become shorter. The inferior articular processes also become slightly 

broader. 
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Figure 5.18: Human SSM showing shape mode 10. A,D,G: -1 standard deviation of variation in the shape mode, 
B,E,H: mean shape, C,F,I: +1 standard deviation of variation in the shape mode. Anterior (A-C), lateral (D-F) and 
superior views (G-I). Black arrows show the major directions of shape change from the mean shape. 

 

Shape mode 10 (Figure 5.10) shows variation in superior articular process AP length, 

transverse process CC height, and spinous process apical CC height.  
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5.4.2 COMPARISON OF HUMAN AND ANIMAL VERTEBRAE 

 

 

Figure 5.19: Average shape objects of the L1 vertebra of the human (A - C), pig (D - F), and sheep (G - I). Shown are 
anterior (A,D,G), lateral (B,E,H), and superior (C,F,I) views of the vertebral objects. 

 

Subjective visual assessment of the three-dimensional objects of the average shape of each 

species shows some clear differences (Figure 5.17), prior to any analysis. The objects are 

anchored to each other by their centroid, with no scaling performed prior to TPS. The 
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human L1 vertebral body is shorter than either quadruped in CC vertebral height, and wider 

and longer in AP dimension.  

 

The human transverse processes are also shorter and markedly shorter than in the 

quadruped. Additionally, the spinal canals show a more oblique orientation in the animal 

objects, likely due to the alignment being based upon peripheral structures such as the 

endplates and transverse processes. 
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Figure 5.20: Human vertebral object matched to the pig and sheep vertebral objects. Anterior view of vertex 
displacement vectors for human to pig (A,B) and human to sheep deformations (C,D). A & C show direction of 
vertex displacement with vectors as lines, with magnitude of millimetres of displacement represented by colour. B 
& D show animal and human object meshes overlaid, with animals in grey, and human vertices in colour 
representing the magnitude of vertex displacement. 

 

mm 
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Figure 5.21: Human vertebral object matched to the pig and sheep vertebral objects. Inferior view of vertex 
displacement vectors for human to pig (A,B) and human to sheep deformations (C,D). A & C show direction of 
vertex displacement with vectors as lines, with magnitude of millimetres of displacement represented by colour. B 
& D show animal and human object meshes overlaid, with animals in grey, and human vertices in colour 
representing the magnitude of vertex displacement. 

  

mm 
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Figure 5.22: Human vertebral object matched to the pig and sheep vertebral objects. Left lateral view of vertex 
displacement vectors for human to pig (A,B) and human to sheep deformations (C,D). A & C show direction of 
vertex displacement with vectors as lines, with magnitude of millimetres of displacement represented by colour. B 
& D show animal and human object meshes overlaid, with animals in grey, and human vertices in colour 
representing the magnitude of vertex displacement. 

 

mm 
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Figure 5.23: Human vertebral object matched to the pig and sheep vertebral objects. Right lateral view of vertex 
displacement vectors for human to pig (A,B) and human to sheep deformations (C,D). A & C show direction of 
vertex displacement with vectors as lines, with magnitude of millimetres of displacement represented by colour. B 
& D show animal and human object meshes overlaid, with animals in grey, and human vertices in colour 
representing the magnitude of vertex displacement. 

 

mm 
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Figure 5.24: Human vertebral object matched to the pig and sheep vertebral objects. Posterior view of vertex 
displacement vectors for human to pig (A,B) and human to sheep deformations (C,D). A & C show direction of 
vertex displacement with vectors as lines, with magnitude of millimetres of displacement represented by colour. B 
& D show animal and human object meshes overlaid, with animals in grey, and human vertices in colour 
representing the magnitude of vertex displacement. 

 

mm 
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Figure 5.25: Human vertebral object matched to the pig and sheep vertebral objects. Superior view of vertex 
displacement vectors for human to pig (A,B) and human to sheep deformations (C,D). A & C show direction of 
vertex displacement with vectors as lines, with magnitude of millimetres of displacement represented by colour. B 
& D show animal and human object meshes overlaid, with animals in grey, and human vertices in colour 
representing the magnitude of vertex displacement. 

 

The vertex displacement vector diagrams (Figures 5.18 – 5.23) are visual representations of 

the magnitude and direction of the displacement of the constituent vertices of the canonical 

human object when deformed to match the canonical animal object.  

 

 

mm 
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5.4.2.1 HUMAN TO SHEEP DISPLACEMENT 

 

The vertices at the anterior surface of the human vertebral body show significant 

displacement magnitude posteriorly towards the centroid in the human to sheep 

comparison. The magnitudes are more pronounced superiorly. The vertices at the lateral 

aspects of the vertebral body show progressively smaller magnitudes of displacement 

towards the centroid, as the lateral surface of the vertebral body approaches the junction 

with the pedicle.  

 

At the junction with the pedicle and the posterior vertebral body surface at the spinal canal, 

the displacement magnitudes are relatively small, best seen on Figures 5.19 & 5.23. After 

alignment, the posterior vertebral body wall of the sheep lies posteriorly to the human, and 

the human vertices are therefore displaced posteriorly towards the centroid. 

 

The mesh overlays show that the pedicles are well aligned after centroid alignment and 

subsequent manual alignment, though subjective visual observation suggests that sheep 

pedicles are much shorter in anteroposterior length than humans. Sheep pedicles are 

slightly wider and taller than humans, with small vector displacement magnitudes. The 

direction of displacement is outwards from the human mesh position to the sheep mesh 

position.  

 

Human transverse processes are shorter and less broad than sheep. As a result of longer 

pedicles in humans, the transverse processes also lie posteriorly and are relatively 

posteriorly angled. There is moderate magnitude vector displacement at the tips of the 

transverse processes, which lie furthest from their corresponding points in the sheep. 

Human transverse processes also become narrower towards their apices, whereas the 

sheep transverse process tends to become broader. The vector displacements at the apices 
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of the transverse processes travel anteriorly, as well as superiorly and inferiorly at the 

superior and inferior aspects of the process respectively.  

 

Due to their position, the laminae are even more difficult to assess visually than the 

pedicles. The sheep laminae lie anterior to the human laminae, and the vertices are 

predominantly displaced anteriorly. The visible laminar vertex displacements are of small 

magnitude. 

 

The vertex displacements at the superior articular process are of relatively small magnitude. 

The human superior articular process is taller and broader than the sheep, and lies in a more 

lateral position compared to the sheep. The direction of displacement vectors tends to be 

medial. 

 

The inferior articular processes in the human are longer than the sheep, and lie relatively 

posteriorly. For much of the superior and mid portions of the inferior articular process, the 

vector displacements are anterior and of small magnitude. However, at the inferior aspects 

and the articular facet, the displacements are of greater magnitude, and with an 

anterosuperior direction.  

 

The human spinous process extends further posteriorly than the sheep, and is taller and 

wider, and lies predominantly inferiorly in comparison. The vertex displacements are of 

greatest magnitude inferiorly, in an anterosuperior direction.   

 

5.4.2.2 HUMAN TO PIG DISPLACEMENT 

 

The human to pig vertex displacements follow a similar pattern to the human to sheep 

displacements, but in general are of smaller magnitude.  
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The greatest magnitude of displacement is seen at the anterosuperior vertebral body with a 

posterior and slightly inferior direction, but these magnitudes are smaller than in the sheep. 

As with the sheep, these displacement magnitudes become gradually smaller along the 

lateral surface of the vertebral body towards the junction with the pedicle, and are smallest 

at the inferior aspect of the posterior vertebral body and the inferior laminae.  

 

The pedicles are again well aligned, and as with the sheep, the pig appears to have shorter 

pedicles than the human on visual inspection of the overlaid object meshes. Again, like the 

sheep, the pig pedicles are taller and wider than the human. This difference is most 

pronounced in height with the greatest magnitudes of pedicle vertex displacement being at 

the inferior surface of the pedicle with displacement in an inferior direction, as part of the 

pig pedicle lies inferior to the human.  

 

The pig superior and inferior articular processes show similar magnitude and direction of 

vertex displacement to the sheep. This is again most pronounced at the posterior and 

inferior aspect of the inferior articular processes, with anterior vertex displacement.  

 

A similar magnitude of displacement is seen at the inferior surface of the spinous process as 

at the anterosuperior vertebral body. As in the sheep, the pig spinous process lies superiorly 

to the human, and extends less far posteriorly. It is also shorter in craniocaudal dimension. 

The majority of vertex displacements are in an anterior direction.   
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5.5 DISCUSSION 

 

5.5.1 HUMAN SHAPE VARIATION 

 

The human SSM provides information on shape variation in the sample around the mean 

shape. The most significant shape mode was shape mode 1, as reflected by the results of 

Horn’s parallel analysis when run with and without shape mode 1. I opted to include up to 

shape mode 10 as per the results of the analysis without shape mode 1, for the sake of a 

more complete discussion. However, since scale is the predominant factor of variation, it 

may be that only shape modes 1 – 5 are of experimental or practical importance. 

 

Shape mode 1 describes mostly scale information, accounting for approximately 73% of 

variation. This is likely largely as a result of the fact that the sample population was not 

controlled for height, weight or gender. Marked vertebral body height, width and length, 

pedicle height, transverse process length, and spinous process length variation is found in 

shape mode 1, with the most significant variation of vertebral body height out of all 

assessed shape modes. There is not much in the way of pedicle width variation in shape 

mode 1, which is perhaps surprising, and it is unclear as to why this is the case. One 

possibility is that the predominant forces being applied to the pedicle in humans are in a 

craniocaudal direction, and therefore pedicle height is more prone to variation in growth 

depending upon the weight of the subject.   

 

Shape mode 2 suggests that transverse and spinous process length and pedicle height are 

the next most variable shape differences. With shape mode 1 excluded, shape mode 2 

accounts for approximately 37% of variation. Pedicle width is not significantly described by a 

shape mode until modes 4,5&6, which account for approximately 9%, 7% and 5% of 

variation respectively. This suggests that in the sample population, at least, pedicle height is 

a more variable feature than pedicle width. Indeed, pedicle angulation as described by 

shape mode 3, approximately 11% of variation, is also more variable than pedicle width.  
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As transpedicular access devices and pedicle screws tend to be roughly cylindrical, this 

difference in variability between height and width is unlikely to be of any great importance 

when designing these tools.  

 

Additionally, while pedicles form the superior and inferior boundaries of the intervertebral 

foramina, and therefore size variation could be expected to play a role in the development 

of foraminal stenosis and radiculopathy, the evidence suggests that vertebral body height is 

actually the key factor and that pedicle height does not contribute (226).  

 

Vertebral body width and AP length, superior articular facets broadness, spinous process 

sagittal plane angulation and pedicle axial plane angulation are described by shape mode 3, 

and the next most significant variation (approximately 11% of variation). Pedicle angulation 

is of relevance to percutaneous transpedicular techniques, as devices must be aligned along 

the AP axis of the pedicle and avoid breaching the medial pedicle wall (vertebroplasty 

technique is reviewed in more depth in Chapter 1), and it is interesting to note that it is 

among the more variable aspects of human vertebrae.  

 

As well as marked variation of pedicle width, shape mode 4 also describes widening of the 

superior and inferior endplates with a narrowing at the mid-level of the vertebral body. 

Although I attempted to exclude cases with observed degenerative changes, it is possible 

that some of this endplate width variation is due to early degeneration.  

 

Shape mode 5 shows variation in pedicle width as well as transverse process length, 

vertebral body height decreases. It also shows the most evident inferior articular process 

length variation other than shape mode 1.   
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Shape modes 6 - 10 describe variation in spinous process CC height and thickness, 

transverse process angulation, length and thickness, superior articular facet broadness and 

coronal plane angulation, and inferior articular facet broadness. These aspects of shape are 

therefore less variable than vertebral body and pedicle dimensions, and when scale is 

considered, they are unlikely to meaningfully affect the shape variation of human vertebrae.   

 

To know whether these findings can be extrapolated to a general population, a bootstrap 

analysis of the data could be performed in the next stage of analysis, and the sample 

population size increased accordingly.   

  

5.5.2 COMPARISON OF HUMAN AND ANIMAL VERTEBRAE 

 

Overall, the vertices closer to the centroid of the objects tend to have lower displacement 

compared to those further out. This is borne out by subjective visual assessment which also 

suggests that the shape of these structures is similar between human and animal vertebrae.  

 

The regions of greatest magnitudes of displacement between human and either quadruped, 

the anterior vertebral body surface and posteroinferior spinous process, and these appear 

visually different in shape between human and animal vertebrae. This could represent 

differences in ligamentous attachments and forces between bipedal and quadrupedal gait.  

 

This is an important point to note when considering an animal model. Clearly there are 

marked differences in shape that basic morphometrics (such as the findings in Chapter 3) 

underestimate. However, I am selecting an animal model for early phase testing of 

equipment, and it is understood that the morphologies will be different. My aim is to find 

the closest approximation, and in this regard, the model does not need to be identical to the 

human. 
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The directions of vertebral body vector displacements are similar for the human to pig and 

human to sheep deformations. The magnitude of these displacements is less for the human 

to pig than the human to sheep deformation, which corroborates both the established 

literature discussed in Chapter 2, and the findings in Chapter 3, where it is shown that 

vertebral body length is significantly greater in the human L1 than either quadruped, and 

that this difference is marginally greater between human and sheep than human and pig. I 

found a mean human vertebral body length of 34.59 mm (SD = 3.06 mm). The mean pig 

vertebral body length was 20.10 mm (SD = 0.78 mm), and the mean sheep vertebral body 

length was 18.89 mm (SD = 0.39 mm).  

 

However, the morphometry in Chapter 3 suggested that there was no statistically significant 

difference between the pig and sheep vertebral body length, and that the degree of 

difference was smaller than the findings here. The morphometric mean difference between 

human and sheep vertebral body length at the superior endplate was 8.68 mm, whereas the 

vertex displacement magnitudes at the anterosuperior vertebral body are >20 mm based on 

subjective assessment of visual colour scale.  

 

This represents the fundamental differences in the nature of these two analyses. Whereas 

morphometry considered vertebral body length as an isolated measurement, SSA takes into 

account the entire object, and the vertex displacement vectors are calculated from vertex to 

vertex. Therefore, although both methods convey similar information in some regards, they 

are not directly comparable beyond showing similar trends. 

 

Subjective visual observation of the meshes in Figures 5.19 & 5.23 suggests that human 

pedicles are longer than either quadruped. However, due to the position of the pedicles, it is 

difficult to assess displacement vector magnitudes, and therefore I cannot draw a 

conclusion as to whether either quadruped is closer to the human than the other.  
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Both pig and sheep pedicles were slightly wider and taller than in the human, with similar 

degrees of displacement vector magnitude and patterns of displacement vector directions. 

The colour scale representation suggests that there may be a slightly greater magnitude of 

vector displacement around the human to sheep deformation than the human to pig 

deformation in all directions. This would again correlate with the background literature and 

the findings in Chapter 3. The morphometric analysis showed that at the L1 level, pig pedicle 

width and height were closer to humans than sheep. For example, I found a mean human 

right pedicle width of 7.60 mm (SD = 1.70 mm) and right pedicle height of 15.42 mm (SD = 

1.42 mm). The mean pig right pedicle width was 9.91 mm (SD = 0.76 mm) and mean right 

pedicle height was 17.23 mm (SD = 0.70 mm). The mean sheep right pedicle width was 9.98 

mm (SD = 0.51 mm) and mean height was 20.91 mm (SD = 0.61 mm). These differences 

were statistically significant. 

 

The differences between human and quadruped vertebrae as depicted by vertex 

displacement provides an alternative description to basic morphometric measurements, 

some of which corroborate my earlier findings. There are also new findings provided by SSA 

which do not have corresponding morphometry in Chapter 3.  

 

For example, the trend of decreasing vertex displacement magnitude at the lateral aspects 

of the vertebral body, from anterior to posterior, is not described by a single vertebral body 

width measurement, nor is the fact that the greatest vertex displacement magnitudes are 

found at the anterosuperior vertebral body accounted for by my vertebral length 

morphometric measurements, though I do have to accept that these trends may in part be 

affected by how I have aligned the average shape objects prior to deformation. The 

morphometric measurements also do not take into account the differing angulation of 

transverse processes, whereas SSA shows that human transverse processes lie relatively 

posteriorly and are slightly posteriorly angled with respect to the centroid.  
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Of the novel information provided, the fact that the greatest vertex displacement 

magnitudes are found at the anterosuperior vertebral body is relevant in the selection of an 

animal model for testing vertebroplasty and kyphoplasty in particular. The access cannulae 

are positioned with a slight inferior angulation, and the optimal position for the needle tip is 

considered to be close to the anteroinferior vertebral body wall. Although I have found that 

pigs have lesser magnitudes of displacement than sheep at the anterosuperior vertebral 

body, the displacement is similar between species inferiorly as well as at the lateral aspects 

of the vertebral body. This suggests that the measurement of vertebral body length and 

width may be of less importance when considering which species to select as a model. 

However, they would still remain relevant when comparing against pedicular form. 

 

Some of these additional findings are of limited relevance for the purposes of this thesis, 

such as transverse process position and angulation, spinous process height, angulation and 

apical thickness, and superior and inferior articular process broadness and length, as these 

structures are not directly involved in transpedicular techniques.   

 

Combining the findings here with the morphometric findings of Chapter 3, and given no 

significant differences shown in trabecular microarchitecture between sheep or pigs at L1 in 

Chapter 4, I would suggest that at L1, the pig offers a closer analogue to the human than 

does the sheep, in terms of pedicle shape and dimension.  

 

5.5.3 STRENGTHS AND LIMITATIONS OF THIS STUDY 

 

SSA provides additional information compared to basic morphometry, some of which is of 

direct relevance to this thesis, in particular the corroboration of pedicle dimension 

differences found in Chapter 3, as well as the new finding that the majority of vertebral 

body vertex displacement is at the anterosuperior aspect with similar displacements at the 

lateral and posterior vertebral body surfaces in both pigs and sheep. This suggests that 
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differences in vertebral body morphometric measurements are less likely to be useful in 

selecting an animal model. 

Some of the findings are of less direct relevance to selecting an animal model, such as the 

human shape mode variation, though these are more likely to be of use when considering 

the development of novel instruments. There is also the potential to use this shape model, if 

sufficiently robust (see below), to assess the quantitative relationship between fracture risk 

and shape. 

 

The main limitation of the study is the low animal sample size. Although it allowed me to 

create an average shape for the sample population which was sufficient for my purposes, it 

is far too small to allow extrapolation of the model to a general animal population. A similar 

problem may be present for the human sample. 

 

A logical next step would be to perform a bootstrap analysis of the human sample, to 

determine whether the shape model is sufficiently robust, and therefore whether the shape 

mode variations are applicable to a general human population.  

 

I have also only assessed the L1 vertebra between species. The Chapter 3 morphometry 

data suggest that sheep are likely to be closer to humans in terms of pedicle dimension in 

the thoracic spine, and it would be interesting to extend this study to determine whether 

thoracic vertebral shape analysis corroborates this as well. 

 

Additionally, in the lower lumbar spine, human vertebral bodies become increasingly wider 

and longer than pigs and sheep, and human pedicles become much wider than either 

animal, as shown by the data in Chapter 3. It would be useful to assess whether these 

morphometric differences have corresponding shape differences, and whether those 

differences would be expected to impact transpedicular techniques, and as such, whether 

they would affect the selection of an animal model. 
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It would also be of interest to compare shape differences between different lumbar and 

thoracic vertebrae within the same species. This would provide information on the 

applicability of findings at one level to another.  

 

I also suspect that the use of L1 may have resulted in increased variability, due to the 

transitional nature of the T12 – L1 junction. It would be interesting to compare the shape 

mode variability of L1 with L2 or L3. 

 

As mentioned in the methods above, I noted difficulty in matching the superior articular 

facets between humans and quadrupeds, due to the hooked shape of sheep and pig facets. 

This was more pronounced in the sheep than in the pig. I was able to overcome this by 

adding more landmarks to the objects. 
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5.6 SUMMARY 

 

• The application of SSA in comparative anatomy of vertebrae is a relatively new 

technique using well established analytical methods. 

• The results show that quadruped pedicles are taller and wider than human vertebrae 

at L1, despite the vertebral bodies being smaller. The greatest magnitudes of vector 

displacement are between vertebral body dimensions and transverse and spinous 

processes. This correlates with the findings in Chapter 3, and the background 

literature. 

• At the L1 vertebra, pig vertebrae are more similar to humans than sheep. 

• SSA provides more information than basic morphometry, some of which is directly 

relevant to this thesis. Other factors present interesting areas for novel work. 

• The study was limited by sample sizes 
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CHAPTER 6: 
SUMMARY 
 

 

The main aim of this thesis was to choose an animal vertebra to model human vertebrae for 

transpedicular vertebral access.  

 

The rationale for this thesis is based on the use of vertebroplasty as a technique for treating 

osteoporotic vertebral fractures, and the development of novel instruments and bone 

cements which require preclinical phase testing before being used in live human subjects.  

 

This is of relevance in modern medical practice due to the difficulty in treating osteoporotic 

vertebral fractures, which remain a significant morbidity and mortality risk. Osteoporosis is 

a substantial health burden in the Western world. While complex and multifactorial, and 

despite the existence of preventative medical therapies, the relationship to age and sex 

hormones in combination with longer life expectancies, means that it remains a problem.  

 

Various treatment options for osteoporotic vertebral fractures are currently available, but 

there is no consensus on guidelines for optimal management, with contradictory guidance 

from different medical bodies. This makes managing such patients, who are often elderly 

and present with multiple comorbidities, difficult in clinical practice. For patients with stable 

fractures, conservative medical management is usually the first line treatment option. 

 

However, the existence of minimally invasive percutaneous techniques such as 

vertebroplasties means that additional treatment options exist. The efficacy of 

vertebroplasty is currently debated, with a meta-analysis of the literature suggesting that it 

offers no benefit over a sham procedure placebo effect. However, difficulty in patient 
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selection continues to be an issue for the large sham procedure-controlled trials. There 

continues to be an ongoing debate over the use of vertebroplasty. The authors of the largest 

and most recent sham procedure-controlled trial, VERTOS VI, stated that at their treatment 

centre, they would still use vertebroplasty for certain carefully selected patients.  

 

 As well as controversy with the clinical evidence for vertebroplasty, the development of 

newer equipment and cement is limited either by the difficulty in obtaining sufficiently large 

numbers of human cadaveric vertebrae, or by the use of an animal species without 

consideration as to whether it is indeed the closest alternative to human cadavers.  

 

Although not without limitations, human cadaveric vertebrae offer the closest alternative to 

live human specimens. However, given the cost and limited availability, animal vertebrae 

would offer a practical alternative. Quadrupeds such as pigs, sheep, cows, goats, and deer 

are used both in research and in training of surgeons and radiologists in procedures. While 

comparative anatomy studies have been performed between humans and several 

quadruped species there is no consensus within the literature as to which species would be 

the closest to the human vertebra, especially in the specific context of transpedicular 

techniques.  

 

To address this current deficit in the literature, I have performed three studies comparing 

pigs and sheep with humans. These two species were selected on the basis of availability 

from the local abattoir, and the existing evidence suggests that both are close to human 

vertebrae in basic morphometry, with sheep pedicles being closer to the human in the 

thoracic spine, and pig pedicles being closer to the human in the lumbar spine. 

 

The first study established that radiological measurement of vertebral morphometric 

dimensions was at least as reproducible as, and correlated with, direct visual measurements 

using a vernier caliper.  
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The interspecies comparison showed that overall, when considering pedicle dimensions, 

sheep were closer to humans in the thoracic spine, whereas pigs were closer in the lumbar 

spine. Although pig pedicles were of similar width to humans in the thoracic spine, they are 

considerably taller due to the presence of an intrapedicular transverse foramen.  

 

In the lumbar spine, pigs were closer to humans than sheep in terms of height, especially at 

the lower lumbar levels where sheep pedicles became much taller. However, it should be 

noted that neither quadruped species was overall particularly similar to humans in terms of 

pedicle width, except the pig at L3. Although human vertebrae start slightly narrower than 

either animal at L1, they increase significantly in width throughout the lumbar spine, and by 

L5, they are markedly wider than either species. The L3 vertebra was the point where the 

two trend lines intersected. This may not impact transpedicular instrument assessment as 

much as one might initially expect, as even the larger access needles at present are usually 8 

gauge (3.2 mm internal diameter), such as the Kyphon™ Xpander II Osteo Introducers. 

 

The quadruped vertebrae were taller than human vertebrae, whereas human vertebrae 

were wider and longer in AP dimension. The differences in height were smaller than the 

differences in vertebral body length, which was most pronounced in the lower thoracic and 

lumbar spine.  

 

Spinal canal dimensions were larger in humans than either pig or sheep, and this may be 

due to increased size of spinal tracts coordinating bipedal locomotion.  

 

Bone texture analysis allows the comparison of trabecular microarchitecture between 

species. The interface between cement and trabeculae is of importance in load transfer. As 

such, when assessing novel cements, it may be of use to select an animal which more closely 

approximates the human trabecular structure.  
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Bone texture analysis was performed on L1 vertebrae across species. At this level, I showed 

that human vertebrae have lower apparent bone fraction than either quadruped, which is 

consistent with findings in the literature using other techniques. The ability to calculate an 

estimate of trabecular thickness using CT texture analysis allowed me to demonstrate that 

human L1 trabeculae were significantly thinner than pigs or sheep. Importantly, however, 

there was no statistically significant difference in trabecular spacing between humans and 

sheep or pigs.  

 

Since the interdigitation of cement occurs in the spaces between trabeculae, it would seem 

that when considering the internal microarchitecture, sheep and pig vertebrae would be 

equally close to humans, and therefore either might be a suitable choice to model cement 

spread patterns.  

 

Statistical shape analysis is a powerful method of assessing shape variation. It is a geometric 

technique, unlike basic morphometric measurements, in that it takes into account all the 

geometric information of a shape, rather than simply comparing isolated dimensions.  

 

SSA was performed on L1 vertebrae across species. The findings corroborated the 

morphometric findings for pedicle dimensions, showing that at this level, human pedicles 

were shorter and thinner than pigs and sheep. Pedicle shape between the species appeared 

quite similar, as demonstrated by the low magnitude of the displacement vectors around 

the pedicles. Additionally, much of the difference appeared to be due to scaling, suggesting 

that the innate object shapes of the pedicles are not too dissimilar.  

 

The main sites of shape difference were at the anterior vertebral body, transverse processes 

or spinous process, where vector displacement magnitudes were greater. This again 

corresponds to the morphometric findings of measurements at these locations.  
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An important limitation throughout all three studies was, somewhat ironically, the 

availability of whole animal spines from which to harvest vertebrae. As such, the animal 

population numbers were much smaller than the human population. However, these were 

still much cheaper and easier to obtain than human cadaveric vertebrae. With a sufficient 

budget and time, these would be more easily obtained in larger numbers than human 

cadaveric vertebrae. The number of vertebrae I was able to obtain were sufficient for my 

purposes, and similar to other studies in the existing literature.  

 

Combining the results from the three studies, I conclude that pig vertebrae are closer to 

humans than sheep in the lumbar spine, in particular in pedicle size and shape. Sheep 

vertebrae have more similar pedicle morphometry to humans than do pigs in the thoracic 

spine. At the L1 level, either the pig or sheep would represent similarly close approximations 

of human trabecular microarchitecture. Therefore I would suggest using pigs to model the 

human lumbar spine, and sheep to model the human thoracic spine.  

 

These findings are in line with the Chapter 2 systematic review comparing studies assessing 

individual quadruped species. I have provided additional information by directly comparing 

pigs and sheep with humans, and performing statistical analyses to confirm this. I have also 

provided additional evidence to promote the pig over the sheep as a model for the lumbar 

spine with the closer trabecular microarchitecture at the L1 level. SSA at the L1 vertebra also 

corroborates the basic morphometry. 

 

Further work might involve performing the same analyses using larger animal sample sizes, 

to overcome the overarching limitation throughout the studies I have performed.  

 

I have not performed bone texture analysis or SSA at other vertebral levels, and this would 

perhaps be the next logical step in extending the work started here. SSA could also be 
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performed to compare similarities within species across vertebral levels; for example, 

looking at how an L1 vertebra differs from L5 in terms of shape modes. This might offer 

insight into how useful it is to test an instrument on one vertebral level and apply the 

findings to other levels.  

 

I have also not performed 2nd order bone texture analyses due to user inexperience with the 

software, and time constraints. However, statistics such as run length matrices are useful 

additional parameters for comparison.  

 

In conclusion the studies in this thesis compare pig and sheep vertebrae with humans, using 

basic morphometrics, bone texture analysis and statistical shape analysis. Based on the 

results of the studies, I would recommend the use of pigs to model the human lumbar spine, 

and sheep to model the human thoracic spine.  
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GLOSSARY 
 

Affine transformation 
The simplest method of changing a shape, preserving 
parallel lines and planes between objects 

Bone mineral density (BMD) Bone mineral density; a measure of bone mineral 
content which is related to bone strength 

Centroid Mean coordinate value of an object 

Cortical bone The dense outer layer of bones, consisting of columnar 
arrangement of osteons 

Cortoss™ Proprietary bone cement produced by Stryker 

Dual energy X-ray Absorptiometry 
(DEXA) 

Dual energy X-ray Absorptiometry; a radiographic 
technique for assessing bone mineral density 

Generalised Procrustes Analysis 
(GPA) 

A method of matching shapes using a sum-of-least-
squares technique 

Morphometry Basic non-geometric measurements of anatomic 
structures 

Osteon 

The basic unit of bone tissue, consisting of concentric 
layers of osteoblasts, osteoclasts and osteocytes in a 
mineralised extracellular matrix, around a central canal 
containing blood vessels and nerves. 

Landmark Points placed on the surface of objects at corresponding 
locations  

Physis The growth plate of developing bone 

Principal Component Analysis (PCA) A method of describing variability of multidimensional 
data  

Semilandmark A series of points describing a curved surface of an 
object that cannot be described by a single point 

Shape All geometric information that remains when location, 
scale and rotation is removed from an object 

Similarity transformation 
A method of changing an object using rotation, scaling, 
translation and reflection, therefore preserving shape as 
defined above 

Trabecula The longitudinal arrangement of osteons in cancellous or 
medullary bone 

T-score The mean bone mineral density for a young adult (and 
therefore presumed normal) population 

Vertebral compression fracture 
(VCF) 

A fracture of the vertebral body resulting in loss of 
height 
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ABBREVIATIONS 
 

3D Three dimensional 

BMD Bone mineral density; a measure of bone mineral  

Ca10(PO4)6(OH)2 Calcium hydroxyapatite, the main inorganic component 
of bone 

CT Computed Tomography 
DEXA Dual energy X-ray Absorptiometry 

EU27 
The 27 sovereign nations of the European Union (prior 
to Brexit) 

GPA Generalised Procrustes analysis 
MRI Magnetic Resonance Imaging 
PCA Principal component analysis 
PGE2 Prostaglandin E2 
PMMA Polymethylmethacrylate bone cement 
PTH Parathyroid hormone 
PVP Percutaneous vertebroplasty 

RANK 
Receptor activator of nuclear factor kappa-B, a cell 
surface receptor found on many cells including 
osteoblasts 

RANKL 
Receptor activator of nuclear factor kappa-B ligand, a 
cytokine which binds to RANK 

ROS Reactive oxygen species 
SSA Statistical shape analysis 
SSM Statistical shape model 
TA Texture analysis 
TPS Thin-plate spline 
VCF Vertebral compression fracture 
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APPENDICES 
 

A – DIRECT VS CT MEASUREMENTS AND MEAN DIFFERENCES 

 

  VBH 

  Direct 95% CI CT 95% CI Mean Difference 

T1 25.23 (1.18) 22.92  ̶ 27.55 23.64 (0.18) 23.28  ̶ 23.99 1.59 

T2 23.78 (0.98) 21.86  ̶ 25.70 23.89 (0.24) 23.42  ̶ 24.36 0.11 

T3 24.16 (0.71) 22.76  ̶ 25.55 23.66 (0.39) 22.90  ̶ 24.43 0.49 

T4 24.25 (0.83) 22.63  ̶ 25.87 23.65 0.19) 23.28  ̶ 24.02 0.60 

T5 24.35 (0.88) 22.63  ̶ 26.06 23.77 (0.28) 23.22  ̶ 24.31 0.58 

T6 24.88 (0.84) 23.23  ̶ 26.52 23.72 (0.63) 22.49  ̶ 24.96 1.15 

T7 25.09 (0.90) 23.33  ̶ 26.85 23.91 (0.69) 22.55  ̶ 25.27 1.18 

T8 25.77 (0.97) 23.87  ̶ 27.67 25.13 (0.69) 23.77  ̶ 26.48 0.64 

T9 26.39 (0.95) 24.53  ̶ 28.25 25.44 (0.49) 24.48  ̶ 26.39 0.95 

T10 27.21 (1.23) 24.80  ̶ 29.63 25.83 (0.41) 25.02  ̶ 26.63 1.38 

T11 27.77 (1.13) 25.55  ̶ 29.98 25.92 (0.47) 25.00  ̶ 26.85 1.84 

T12 28.62 (0.96) 26.74  ̶ 30.51 25.98 (0.32) 25.36  ̶ 26.59 2.64 

T13 28.59 (1.24) 26.17  ̶ 31.01 26.59 (0.64) 25.35  ̶ 27.84 2.00 

T14 29.77 (1.29) 27.23  ̶ 32.30 27.13 (0.44) 26.26  ̶ 28.00 2.63 

L1 30.70 (1.19) 28.36  ̶ 33.04 28.50 (0.61) 27.30  ̶ 29.70 2.20 

L2 31.96 (1.22) 29.58  ̶ 34.34 28.71 (0.55) 27.63  ̶ 29.79 3.25 

L3 32.49 (1.30) 29.95  ̶ 35.04 29.36 (0.48) 28.40  ̶ 30.31 3.14 

L4 33.31 (1.30) 30.75  ̶ 35.87 30.39 (0.59) 29.23  ̶ 31.55 2.92 

L5 32.89 (1.18) 30.59  ̶ 35.18 30.43 (0.44) 29.58  ̶ 31.29 2.45 

L6 32.58 (0.73) 31.16  ̶ 34.00 30.08 (0.31) 29.48  ̶ 30.68 2.50 

Figure A.1 – Vertebral body height direct and CT measurements (mm) 
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 VBW 

  Direct 95% CI CT 95% CI Mean Difference 

T1 29.65 (2.60) 24.56  ̶ 34.74 30.46 (1.62) 27.29  ̶ 33.63 0.81 

T2 30.68 (1.22) 28.29  ̶ 33.07 30.32 (1.22) 27.92  ̶ 32.72 0.36 

T3 30.44 (1.10) 28.29  ̶ 32.59 30.12 (1.23) 27.70  ̶ 32.53 0.33 

T4 28.15 (0.69) 26.81  ̶ 29.50 30.29 (1.61) 27.14  ̶ 33.44 2.13 

T5 28.35 (0.90) 26.58  ̶ 30.11 30.25 (1.27) 27.76  ̶ 32.74 1.90 

T6 29.20 (1.56) 26.15  ̶ 32.25 31.20 (0.90) 29.44  ̶ 32.97 2.00 

T7 28.97 (0.72) 27.57  ̶ 30.38 30.17 (1.48) 27.27  ̶ 33.06 1.19 

T8 30.21 (0.89) 28.47  ̶ 31.96 31.12 (1.13) 28.91  ̶ 33.33 0.91 

T9 31.46 (0.89) 29.72  ̶ 33.21 29.87 (1.89) 26.17  ̶ 33.58 1.59 

T10 32.07 (0.87) 30.36  ̶ 33.78 32.29 (1.09) 30.16  ̶ 34.43 0.22 

T11 33.63 (2.01) 29.69  ̶ 37.57 33.33 (0.81) 31.73  ̶ 34.92 0.30 

T12 34.09 (1.44) 31.25  ̶ 36.92 32.47 (1.10) 30.32  ̶ 34.61 1.62 

T13 34.86 (1.74) 31.45  ̶ 38.26 32.47 (1.40) 29.71  ̶ 35.22 2.39 

T14 32.78 (1.43) 29.98  ̶ 35.59 32.15 (1.70) 28.81  ̶ 35.48 0.64 

L1 32.78 (.044) 31.92  ̶ 33.64 31.33 (1.19) 28.99  ̶ 33.67 1.45 

L2 33.44 (0.24) 32.97  ̶ 33.92 32.52 (1.27) 30.03  ̶ 35.01 0.92 

L3 35.00 (0.30) 34.40  ̶ 35.59 32.43 (1.42) 29.63  ̶ 35.22 2.57 

L4 35.30 (0.53) 34.28  ̶ 36.33 33.94 (1.35) 31.29  ̶ 36.60 1.36 

L5 37.40 (0.95) 35.54  ̶ 39.27 34.60 (1.29) 32.07  ̶ 37.13 2.81 

L6 37.25 (0.31) 36.64  ̶ 37.86 35.41 (1.75) 31.99  ̶ 38.84 1.84 

Figure A.2 – Vertebral body width direct and CT measurements (mm) 
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  VBL 

  Direct 95% CI CT 95% CI Mean Difference 

T1 20.29 (0.24) 19.82  ̶ 20.76 17.34 (0.40) 16.55  ̶ 18.14 2.95 

T2 20.07 (0.61) 18.87  ̶ 21.28 17.80 (0.60) 16.62  ̶ 18.98 2.27 

T3 19.84 (0.53) 18.81  ̶ 20.87 17.32 (0.65) 16.04  ̶ 18.60 2.52 

T4 20.00 (0.54) 18.95  ̶ 21.05 17.80 (0.82) 16.20  ̶ 19.40 2.20 

T5 19.84 (0.63) 18.60  ̶ 21.08 17.43 (0.42) 16.60  ̶ 18.26 2.41 

T6 19.81 (0.58) 18.68  ̶ 20.94 17.42 (0.65) 16.14  ̶ 18.70 2.39 

T7 19.35 (0.68) 18.02  ̶ 20.68 17.06 (0.72) 15.65  ̶ 18.48 2.29 

T8 19.19 (0.73) 17.76  ̶ 20.63 17.07 (0.60) 15.89  ̶ 18.24 2.12 

T9 19.23 (0.59) 18.08  ̶ 20.38 16.59 (0.90) 14.83  ̶ 18.35 2.64 

T10 19.21 (0.88) 17.49  ̶ 20.93 16.91 (0.45) 16.03  ̶ 17.79 2.31 

T11 19.52 (0.79) 17.97  ̶ 21.07 17.20 (0.45) 16.32  ̶ 18.07 2.33 

T12 19.92 (0.83) 18.31  ̶ 21.54 17.17 (0.35) 16.48  ̶ 17.87 2.75 

T13 20.55 (1.02) 18.55  ̶ 22.55 17.15 (0.49) 16.19  ̶ 18.11 3.40 

T14 20.69 (0.82_ 19.09  ̶ 22.29 17.81 (0.51) 16.81  ̶ 18.81 2.88 

L1 22.24 (1.09) 20.10  ̶ 24.38 19.56 (0.72) 18.14  ̶ 20.97 2.68 

L2 23.08 (0.55) 21.99  ̶ 24.16 20.10 (0.74) 18.66  ̶ 21.55 2.97 

L3 22.47 (0.66) 21.19  ̶ 23.76 20.74 (0.79) 19.18  ̶ 22.29 1.73 

L4 22.24 (0.39) 21.47  ̶ 23.01 20.70 (0.59) 19.54  ̶ 21.85 1.54 

L5 21.56 (0.47) 20.64  ̶ 22.47 19.82 (0.81) 18.23  ̶ 21.41 1.73 

L6 20.76 (0.50) 19.77  ̶ 21.75 18.14 (0.67) 16.83  ̶ 19.45 2.62 

Figure A.3 – Vertebral body length direct and CT measurements (mm) 
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  TPW 

  Direct 95% CI CT 95% CI Mean Difference 

T1 55.17 (2.07) 51.12  ̶ 59.22 50.96 (2.10) 47.02  ̶ 54.90 4.21 

T2 54.08 (1.09) 51.95  ̶ 56.20 48.51 (0.71) 47.13  ̶ 49.89 5.56 

T3 49.91 (1.90) 46.18  ̶ 53.65 46.62 (0.37) 45.89  ̶ 47.35 3.29 

T4 48.90 (1.47) 46.01  ̶ 51.79 46.07 (0.79) 44.52  ̶ 47.62 2.83 

T5 46.96 (1.16) 44.69  ̶ 49.23 44.46 (1.13) 42.25  ̶ 46.67 2.49 

T6 45.85 (0.74) 44.40  ̶ 47.30 45.30 (0.94) 43.47  ̶ 47.14 0.55 

T7 45.42 (0.49) 44.47  ̶ 46.37 44.77 (1.22) 42.37  ̶ 47.16 0.65 

T8 48.00 (1.45) 45.16  ̶ 50.83 44.98 (1.41) 42.23  ̶ 47.74 3.01 

T9 45.40 (2.30) 40.88  ̶ 49.91 43.06 (1.57) 39.99  ̶ 46.13 2.34 

T10 41.17 (2.95) 35.40  ̶ 46.94 39.76 (3.31) 33.27  ̶ 46.26 1.41 

T11 40.93 (2.11) 38.79  ̶ 47.06 38.45 (2.60) 33.37  ̶ 43.54 2.47 

T12 41.05 (1.11) 38.88  ̶ 43.22 38.65 (2.26) 34.23  ̶ 43.07 2.40 

T13 41.90 (1.84) 38.29  ̶ 45.51 39.26 (2.78) 33.81  ̶ 44.72 2.63 

T14 49.32 (3.95) 41.57  ̶ 57.07 47.23 (3.31) 40.74  ̶ 53.72 2.09 

L1 84.88 (3.20) 78.61  ̶ 91.16 83.33 (7.68) 58.28  ̶ 88.37 1.55 

L2 97.08 (1.76) 93.63  ̶ 100.53 96.02 (4.50) 79.19  ̶ 96.84 1.06 

L3 101.84 (2.51) 96.93  ̶ 106.76 98.52 (2.15) 89.30  ̶ 97.74 3.32 

L4 101.22 (5.33) 92.77  ̶ 113.67 99.66 (1.87) 92.99  ̶ 100.33 1.56 

L5 100.30 (3.34) 97.75  ̶ 110.86 99.59 (1.79) 94.08  ̶ 101.10 0.71 

L6 94.54 (3.94) 86.82  ̶ 102.27 94.81 (3.20) 88.53  ̶ 101.08 0.26 

Figure A.4 – Transverse process width direct and CT measurements (mm) 
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  SCW 

  Direct 95% CI CT 95% CI Mean Difference 

T1 15.42 (1.79) 11.91  ̶ 18.94 16.72 (0.73) 15.28  ̶ 18.15 1.29 

T2 14.01 (0.92) 12.21  ̶ 15.81 14.84 (1.02) 12.84  ̶ 16.84 0.83 

T3 13.67 (0.82) 12.07  ̶ 15.27 14.53 (0.56) 13.44  ̶ 15.63 0.86 

T4 11.81 (1.02) 9.80  ̶ 13.81 14.62 (1.12) 12.43  ̶ 16.82 2.82 

T5 11.08 (1.32) 8.49  ̶ 13.66 14.94 (0.74) 13.49  ̶ 16.39 3.87 

T6 11.75 (0.86) 10.07  ̶ 13.44 13.70 (0.89) 11.95  ̶ 15.44 1.95 

T7 10.42 (0.61) 9.23  ̶ 11.61 13.37 (0.73) 11.93  ̶ 14.80 2.95 

T8 11.20 (1.03) 9.17  ̶ 13.22 13.54 (0.68) 12.21  ̶ 14.86 2.34 

T9 11.90 (0.54) 10.84  ̶ 12.96 13.53 (0.60) 12.35  ̶ 14.70 1.62 

T10 11.00 (0.75) 9.53  ̶ 12.47 14.30 (0.28) 13.76  ̶ 14.84 3.30 

T11 11.97 (0.40) 10.19  ̶ 11.76 14.46 (0.59) 13.30  ̶ 15.62 2.49 

T12 12.89 (0.52) 11.88  ̶ 13.90 15.26 (0.53) 14.22  ̶ 16.29 2.37 

T13 13.65 (0.36) 12.94  ̶ 14.36 14.41 (0.33) 13.78  ̶ 15.05 0.76 

T14 12.81 (0.74) 11.37  ̶ 14.26 14.40 (0.09) 14.22  ̶ 14.57 1.58 

L1 12.49 (0.67) 11.17  ̶ 13.81 13.95 (0.61) 12.76  ̶ 15.14 1.46 

L2 13.26 (0.64) 10.01  ̶ 12.52 15.00 (0.47) 14.08  ̶ 15.92 1.74 

L3 13.49 (0.28) 12.95  ̶ 14.03 15.66 (0.33) 15.02  ̶ 16.30 2.17 

L4 15.71 (1.38) 13.01  ̶ 18.41 17.62 (0.42) 16.79  ̶ 18.45 1.91 

L5 17.08 (0.95) 15.21  ̶ 18.94 17.96 (0.83) 16.33  ̶ 19.60 0.89 

L6 21.53 (2.38) 16.87  ̶ 26.20 19.78 (0.96) 17.91  ̶ 21.65 1.75 

Figure A.5 – Spinal canal width direct and CT measurements (mm) 
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  SCL 

  Direct 95% CI CT 95% CI Mean Difference 

T1 11.95 (1.66) 8.70  ̶ 15.20 13.43 (1.23) 11.02  ̶ 15.83 1.48 

T2 11.16 (0.70) 9.79  ̶ 12.53 10.88 (0.78) 9.34  ̶ 12.41 0.28 

T3 9.71 (0.72) 8.30  ̶ 11.13 10.56 (0.48) 9.61  ̶ 11.50 0.84 

T4 8.85 (0.70) 7.48  ̶ 10.21 10.19 (0.12) 9.96  ̶ 10.42 1.34 

T5 9.05 (0.67) 7.72  ̶ 10.37 10.86 (0.28) 10.30  ̶ 11.42 1.81 

T6 8.69 (0.81) 7.09  ̶ 10.28 10.31 (0.35) 9.62  ̶ 11.00 1.63 

T7 7.81 (0.54) 6.76  ̶ 8.86 10.65 (0.37) 9.92  ̶ 11.38 1.83 

T8 7.89 (0.63) 6.65  ̶ 9.13 10.07 (0.13) 9.82  ̶ 10.33 2.18 

T9 7.73 (0.37) 7.00  ̶ 8.47 10.34 (0.27) 9.82  ̶ 10.87 2.61 

T10 9.47 (0.50) 8.50  ̶ 10.45 10.76 (0.32) 10.13  ̶ 11.39 1.29 

T11 10.21 (0.56) 9.11  ̶ 11.31 10.66 (0.18) 10.31  ̶ 11.01 0.46 

T12 9.40 (0.84) 7.75  ̶ 11.04 10.96 (0.38) 10.22  ̶ 11.70 1.57 

T13 8.91 (0.59) 7.74  ̶ 10.07 11.06 (0.39) 10.30  ̶ 11.83 2.16 

T14 9.91 (0.40) 9.13  ̶ 10.69 10.78 (0.31) 10.17  ̶ 11.38 0.87 

L1 10.26 (0.69) 8.91  ̶ 11.60 10.96 (0.29) 10.39  ̶ 11.54 0.71 

L2 9.92 (0.88) 8.20  ̶ 11.64 10.43 (0.14) 10.36  ̶ 10.50 0.51 

L3 9.63 (1.16) 7.36  ̶ 11.90 10.62 (0.10) 10.47  ̶ 10.76 0.99 

L4 10.00 (0.68) 8.67  ̶ 11.33 10.82 (0.30) 10.75  ̶ 10.88 0.82 

L5 10.12 (0.67) 8.80  ̶ 11.44 10.62 (0.10) 10.42  ̶ 10.81 0.50 

L6 10.52 (1.02) 8.52  ̶ 12.52 11.14 (0.31) 10.54  ̶ 11.75 0.62 

Figure A.6 – Spinal canal length direct and CT measurements (mm) 

  



197 
 

  TL 

  Direct 95% CI CT 95% CI Mean Difference 

T1 102.95 (1.71) 99.59  ̶ 106.30 101.20 (1.02) 95.20  ̶ 99.20 1.75 

T2 100.45 (1.72) 97.08  ̶ 103.83 101.09 (2.57) 96.05  ̶ 106.13 0.64 

T3 98.41 (2.65) 93.23  ̶ 103.60 99.79 (1.54) 96.78  ̶ 102.80 1.37 

T4 96.15 (2.77) 90.71  ̶ 101.58 97.23 (2.58) 92.17  ̶ 102.29 1.09 

T5 90.86 (2.36) 86.24  ̶ 95.48 89.06 (2.34) 84.47  ̶ 93.65 1.80 

T6 84.77 (3.76) 77.40  ̶ 92.14 84.85 (2.95) 79.07  ̶ 90.64 0.09 

T7 79.98 (2.21) 75.65  ̶ 84.31 80.31 (1.73) 76.92  ̶ 83.70 0.33 

T8 71.01 (2.90) 65.33  ̶ 76.70 71.99 (1.97) 68.13  ̶ 75.86 0.98 

T9 65.22 (2.35) 60.62  ̶ 69.82 65.57 (1.91) 61.83  ̶ 69.31 0.35 

T10 59.81 (0.54) 58.75  ̶ 60.87 58.74 (1.29) 56.22  ̶ 61.27 1.07 

T11 56.97 (1.54) 53.95  ̶ 59.99 55.67 (0.99) 53.74  ̶ 57.61 1.30 

T12 56.55 (1.84) 52.96  ̶ 60.15 54.81 (1.68) 51.51  ̶ 58.11 1.74 

T13 57.21 (1.13) 54.99  ̶ 59.43 55.81 (2.23) 49.44  ̶ 58.19 1.40 

T14 56.02 (2.43) 51.26  ̶ 60.78 55.79 (1.42) 53.01  ̶ 58.57 0.23 

L1 57.21 (2.16) 54.97  ̶ 63.45 56.20 (1.97) 52.34  ̶ 60.06 1.01 

L2 57.84 (1.58) 56.75  ̶ 62.93 56.54 (1.94) 51.75  ̶ 59.34 1.29 

L3 58.51 (1.33) 55.91  ̶ 61.11 56.24 (1.34) 53.63  ̶ 58.86 2.27 

L4 56.50 (1.84) 52.89  ̶ 60.11 54.93 (1.25) 52.49  ̶ 57.37 1.57 

L5 54.18 (1.73) 50.79  ̶ 57.58 52.81 (1.99) 48.92  ̶ 56.70 1.37 

L6 49.25 (3.49) 42.40  ̶ 56.09 48.05 (3.53) 41.12  ̶ 54.97 1.20 

Figure A.7 – Total anteroposterior length direct and CT measurements (mm) 
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B – HISTOGRAMS OF DATA DISTRIBUTION FOR HUMAN, PIG AND SHEEP 

MORPHOMETRIC CT MEASUREMENTS 

 

 

 

Figure B.1 – Histograms detailing human vertebral body height data distributions, with measurement size (mm) on 
the x-axis, and number of specimens on the y-axis 
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Figure B.2 – Histograms detailing pig vertebral body height data distributions, with measurement size (mm) on the 
x-axis, and number of specimens on the y-axis 
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Figure B.3 – Histograms detailing sheep vertebral body height data distributions, with measurement size (mm) on 
the x-axis, and number of specimens on the y-axis 
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Figure B.4 – Histograms detailing human vertebral body width data distributions, with measurement size (mm) on 
the x-axis, and number of specimens on the y-axis 
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Figure B.5 – Histograms detailing pig vertebral body width data distributions, with measurement size (mm) on the 
x-axis, and number of specimens on the y-axis 
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Figure B.6 – Histograms detailing sheep vertebral body width data distributions, with measurement size (mm) on 
the x-axis, and number of specimens on the y-axis 



204 
 

 

Figure B.7 – Histograms detailing human vertebral body length data distributions, with measurement size (mm) on 
the x-axis, and number of specimens on the y-axis 
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Figure B.8 – Histograms detailing pig vertebral body length data distributions, with measurement size (mm) on the 
x-axis, and number of specimens on the y-axis 
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Figure B.9 – Histograms detailing sheep vertebral body length data distributions, with measurement size (mm) on 
the x-axis, and number of specimens on the y-axis 
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Figure B.10 – Histograms detailing human transverse process width data distributions, with measurement size 
(mm) on the x-axis, and number of specimens on the y-axis 
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Figure B.11 – Histograms detailing pig transverse process width data distributions, with measurement size (mm) on 
the x-axis, and number of specimens on the y-axis 
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Figure B.12 – Histograms detailing sheep transverse process width data distributions, with measurement size (mm) 
on the x-axis, and number of specimens on the y-axis 
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Figure B.13 – Histograms detailing human spinal canal width data distributions, with measurement size (mm) on 
the x-axis, and number of specimens on the y-axis 
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Figure B.14 – Histograms detailing pig spinal canal width data distributions, with measurement size (mm) on the x-
axis, and number of specimens on the y-axis 
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Figure B.15 – Histograms detailing sheep spinal canal width data distributions, with measurement size (mm) on the 
x-axis, and number of specimens on the y-axis 
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Figure B.16 – Histograms detailing human spinal canal length data distributions, with measurement size (mm) on 
the x-axis, and number of specimens on the y-axis 
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Figure B.17 – Histograms detailing pig spinal canal length data distributions, with measurement size (mm) on the x-
axis, and number of specimens on the y-axis 
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Figure B.18 – Histograms detailing sheep spinal canal length data distributions, with measurement size (mm) on the 
x-axis, and number of specimens on the y-axis 
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Figure B.19 – Histograms detailing human total anteroposterior length data distributions, with measurement size 
(mm) on the x-axis, and number of specimens on the y-axis 
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Figure B.20 – Histograms detailing pig total anteroposterior length data distributions, with measurement size (mm) 
on the x-axis, and number of specimens on the y-axis 
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Figure B.21 – Histograms detailing sheep total anteroposterior length data distributions, with measurement size 
(mm) on the x-axis, and number of specimens on the y-axis 
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Figure B.22 – Histograms detailing human right pedicle width data distributions, with measurement size (mm) on 
the x-axis, and number of specimens on the y-axis 
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Figure B.23 – Histograms detailing pig right pedicle width data distributions, with measurement size (mm) on the x-
axis, and number of specimens on the y-axis 
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Figure B.24 – Histograms detailing sheep right pedicle width data distributions, with measurement size (mm) on 
the x-axis, and number of specimens on the y-axis 
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Figure B.25 – Histograms detailing human right pedicle height data distributions, with measurement size (mm) on 
the x-axis, and number of specimens on the y-axis 

 



223 
 

 

Figure B.26 – Histograms detailing pig right pedicle height data distributions, with measurement size (mm) on the 
x-axis, and number of specimens on the y-axis 
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Figure B.27 – Histograms detailing sheep right pedicle height data distributions, with measurement size (mm) on 
the x-axis, and number of specimens on the y-axis 
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Figure B.28 – Histograms detailing human left pedicle width data distributions, with measurement size (mm) on the 
x-axis, and number of specimens on the y-axis 
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Figure B.29 – Histograms detailing pig left pedicle width data distributions, with measurement size (mm) on the x-
axis, and number of specimens on the y-axis 
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Figure B.30 – Histograms detailing sheep left pedicle width data distributions, with measurement size (mm) on the 
x-axis, and number of specimens on the y-axis 
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Figure B.31 – Histograms detailing human left pedicle height data distributions, with measurement size (mm) on 
the x-axis, and number of specimens on the y-axis 
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Figure B.32 - Histograms detailing pig left pedicle height data distributions, with measurement size (mm) on the x-
axis, and number of specimens on the y-axis 
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Figure B.33 – Histograms detailing sheep left pedicle height data distributions, with measurement size (mm) on the 
x-axis, and number of specimens on the y-axis 
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C – Q-Q PLOTS FOR HUMAN, PIG AND SHEEP MORPHOMETRIC CT 

MEASUREMENTS 

 

 

 

  

HUMAN  PIG  SHEEP  

Figure C.1 – Q-Q plots showing vertebral body height data distribution for human, pig, and sheep CT measurements 

HUMAN PIG  SHEEP  

Figure C.2 – Q-Q plots showing vertebral body width data distribution for human, pig, and sheep CT measurements 
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HUMAN PIG SHEEP 

Figure C.3 – Q-Q plots showing vertebral body length data distribution for human, pig, and sheep CT measurements 

HUMAN PIG SHEEP 

Figure C.4 – Q-Q plots showing transverse process width data distribution for human, pig, and sheep CT measurements 
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HUMAN PIG SHEEP 

Figure C.5 – Q-Q plots showing spinal canal width data distribution for human, pig, and sheep CT measurements 

HUMAN PIG SHEEP 

Figure C.6 – Q-Q plots showing spinal canal length data distribution for human, pig, and sheep CT measurements 
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HUMAN PIG SHEEP 

Figure C.7 – Q-Q plots showing total anteroposterior length data distribution for human, pig, and sheep CT measurements 

HUMAN PIG SHEEP 

Figure C.8 – Q-Q plots showing right pedicle height data distribution for human, pig, and sheep CT measurements 
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HUMAN PIG SHEEP 

Figure C.9 – Q-Q plots showing right pedicle width data distribution for human, pig, and sheep CT measurements 

HUMAN PIG SHEEP 

Figure C.10 – Q-Q plots showing left pedicle height data distribution for human, pig, and sheep CT measurements 
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HUMAN PIG SHEEP 

Figure C.11 – Q-Q plots showing left pedicle width data distribution for human, pig, and sheep CT measurements 
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D – SHAPIRO WILK TEST FOR HUMAN, PIG AND SHEEP CT MEASUREMENTS 

 

T1 Human Pig Sheep 

VBH 0.20 0.90 0.74 

VBW 0.09 0.13 0.90 

VBL 0.27 0.91 0.44 

TPW 0.74 0.17 0.44 

SCW 0.06 0.01 0.74 

SCL 0.16 0.32 0.81 

TL 0.84 0.15 0.58 

RPW 0.54 0.78 0.90 

RPH 0.14 0.89 0.43 

LPW 0.83 0.86 0.68 

LPH 0.53 0.76 0.81 

Figure D.1 – Shapiro Wilk test for human, pig and sheep T1 CT measurements 

 

T2 Human Pig Sheep 

VBH 0.21 0.39 0.81 

VBW 0.37 0.28 0.96 

VBL 0.14 0.90 0.69 

TPW 0.84 0.23 0.23 

SCW 0.34 0.01 0.51 

SCL 0.27 0.67 0.91 

TL 0.57 0.17 0.55 

RPW 0.31 0.61 0.54 

RPH 0.81 0.68 0.59 

LPW 0.07 0.51 0.54 

LPH 0.28 0.36 0.71 

Figure D.2 – Shapiro Wilk test for human, pig and sheep T2 CT measurements 
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T3 Human Pig Sheep 

VBH 0.43 0.77 0.28 

VBW 0.21 0.15 0.26 

VBL 0.10 0.76 0.26 

TPW 0.06 0.93 0.34 

SCW 0.50 0.91 0.22 

SCL 0.62 0.90 0.21 

TL 0.39 0.38 0.58 

RPW 0.23 0.19 0.23 

RPH 0.44 0.85 0.14 

LPW 0.12 0.67 0.13 

LPH 0.08 0.66 0.09 

Figure D.3 – Shapiro Wilk test for human, pig and sheep T3 CT measurements 

 
T4 Human Pig Sheep 

VBH 0.17 0.01 0.73 

VBW 0.18 0.23 0.99 

VBL 0.77 0.12 0.92 

TPW 0.78 0.26 0.28 

SCW 0.23 0.12 0.48 

SCL 0.11 0.96 0.97 

TL 0.72 0.90 0.23 

RPW 0.37 0.63 0.61 

RPH 0.34 0.90 0.83 

LPW 0.08 0.56 0.39 

LPH 0.13 0.79 0.65 

Figure D.4 – Shapiro Wilk test for human, pig and sheep T4 CT measurements 

 
T5 Human Pig Sheep 

VBH 0.71 0.82 0.94 

VBW 0.11 0.44 0.83 

VBL 0.71 0.33 0.91 

TPW 0.12 0.33 0.79 

SCW <0.01 0.72 0.66 

SCL 0.25 0.48 0.69 

TL 0.05 0.96 0.89 

RPW 0.24 0.51 0.08 

RPH 0.32 1.00 0.77 

LPW <0.01 0.41 0.26 

LPH 0.16 0.93 0.49 

Figure D.5 – Shapiro Wilk test for human, pig and sheep T5 CT measurements 
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T6 Human Pig Sheep 

VBH 0.40 0.15 0.87 

VBW 0.17 0.41 0.26 

VBL 0.76 0.85 0.94 

TPW 0.70 0.69 0.43 

SCW 0.34 0.91 0.33 

SCL <0.01 0.50 0.22 

TL 0.11 0.25 0.55 

RPW 0.18 0.63 0.23 

RPH 0.12 0.91 0.19 

LPW 0.02 0.57 0.69 

LPH 0.21 0.88 0.17 

Figure D.6 – Shapiro Wilk test for human, pig and sheep T6 CT measurements 

 

T7 Human Pig Sheep 

VBH 0.88 1.00 0.11 

VBW 0.31 0.35 0.75 

VBL 0.27 0.19 0.92 

TPW 0.52 0.23 0.62 

SCW 0.07 0.03 0.23 

SCL 0.01 0.50 0.48 

TL <0.01 0.11 0.72 

RPW <0.01 0.08 0.83 

RPH <0.01 0.93 0.51 

LPW <0.01 0.33 0.94 

LPH 0.21 0.93 0.45 

Figure D.7 – Shapiro Wilk test for human, pig and sheep T7 CT measurements 

 

T8 Human Pig Sheep 

VBH 0.11 0.97 0.21 

VBW 0.10 0.80 0.96 

VBL 0.72 0.22 0.45 

TPW 0.01 0.01 0.94 

SCW 0.29 0.49 0.43 

SCL 0.02 0.06 0.15 

TL 0.01 0.53 0.93 

RPW 0.05 0.81 0.97 

RPH 0.23 0.95 0.96 

LPW <0.01 0.16 0.71 

LPH 0.03 0.13 1.00 

Figure D.8 – Shapiro Wilk test for human, pig and sheep T8 CT measurements 
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T9 Human Pig Sheep 

VBH 0.02 0.29 0.12 

VBW 0.01 0.13 0.76 

VBL 0.74 0.92 0.32 

TPW 0.04 0.76 0.69 

SCW 0.09 0.74 0.75 

SCL 0.01 0.14 0.28 

TL 0.59 0.58 0.53 

RPW 0.29 0.22 0.65 

RPH 0.22 0.19 0.30 

LPW 0.03 0.09 0.35 

LPH 0.12 0.01 0.54 

Figure D.9 – Shapiro Wilk test for human, pig and sheep T9 CT measurements 

 

T10 Human Pig Sheep 

VBH 0.06 0.45 0.92 

VBW 0.53 0.92 0.28 

VBL 0.36 0.61 0.32 

TPW 0.37 0.79 0.82 

SCW 0.22 0.24 0.42 

SCL 0.24 0.99 0.47 

TL 0.33 0.44 0.45 

RPW 0.09 0.43 0.86 

RPH 0.15 0.97 0.89 

LPW <0.01 0.35 0.73 

LPH 0.16 0.71 0.22 

Figure D.10 – Shapiro Wilk test for human, pig and sheep T10 CT measurements 

 

T11 Human Pig Sheep 

VBH 0.05 0.91 0.70 

VBW 0.07 0.99 0.51 

VBL 0.99 0.25 0.99 

TPW <0.01 0.98 0.76 

SCW 0.29 0.97 0.75 

SCL 0.01 0.35 0.47 

TL 0.51 0.95 0.30 

RPW 0.49 0.29 0.10 

RPH 0.50 0.95 0.96 

LPW 0.68 0.10 0.83 

LPH 0.96 0.99 0.83 

Figure D.11 – Shapiro Wilk test for human, pig and sheep T11 CT measurements 
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T12 Human Pig Sheep 

VBH 0.01 0.31 0.09 

VBW 0.30 0.60 0.81 

VBL 0.41 0.32 0.64 

TPW 0.03 0.84 0.76 

SCW 0.76 0.34 0.51 

SCL 0.01 0.16 0.85 

TL 0.07 0.06 0.68 

RPW 0.09 0.08 0.98 

RPH 0.68 0.93 0.35 

LPW 0.67 0.06 0.62 

LPH 0.17 0.24 0.87 

Figure D.12 – Shapiro Wilk test for human, pig and sheep T12 CT measurements 

 

T13 Pig Sheep 

VBH 0.08 0.97 

VBW 0.98 0.55 

VBL 0.16 0.41 

TPW 0.82 0.59 

SCW 0.55 0.29 

SCL 0.74 0.61 

TL 0.26 0.81 

RPW 0.96 0.09 

RPH 0.88 0.47 

LPW 0.95 0.72 

LPH 0.96 0.81 

Figure D.13 – Shapiro Wilk test for pig and sheep T13 CT measurements 

 

T14 Pig Sheep 

VBH 0.81 0.26 

VBW 0.52 0.98 

VBL 0.31 0.46 

TPW 0.34 0.72 

SCW 0.36 0.26 

SCL 0.12 0.36 

TL 0.36 0.37 

RPW 0.28 0.49 

RPH 0.40 0.94 

LPW 0.70 0.35 

LPH 0.46 0.70 

Figure D.14 – Shapiro Wilk test for pig and sheep T14 CT measurements 
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L1 Human Pig Sheep 

VBH 0.32 0.60 0.49 

VBW 0.01 0.54 0.45 

VBL 0.56 0.25 0.80 

TPW 0.65 0.82 0.51 

SCW 0.17 0.04 0.34 

SCL 0.79 0.94 0.53 

TL <0.01 0.17 0.81 

RPW 0.68 0.02 0.57 

RPH 0.20 0.16 0.99 

LPW 0.20 0.12 0.99 

LPH 0.45 0.69 0.50 

Figure D.15 – Shapiro Wilk test for human, pig and sheep L1 CT measurements 

 

L2 Human Pig Sheep 

VBH 0.36 0.08 0.61 

VBW 0.08 0.83 0.62 

VBL 0.17 0.77 0.79 

TPW 0.67 0.01 0.61 

SCW 0.05 0.22 0.24 

SCL 0.01 0.27 0.82 

TL 0.45 0.96 0.66 

RPW 0.12 0.17 0.99 

RPH 0.65 0.12 0.98 

LPW 0.40 0.64 0.43 

LPH 0.25 0.54 0.97 

Figure D.16 – Shapiro Wilk test for human, pig and sheep L2 CT measurements 

 

L3 Human Pig Sheep 

VBH 0.18 0.90 0.17 

VBW 0.23 0.49 0.75 

VBL 0.77 0.28 0.82 

TPW 0.40 0.32 1.00 

SCW 0.03 0.60 0.40 

SCL 0.45 0.37 0.94 

TL 0.28 0.99 0.16 

RPW 0.52 0.16 0.80 

RPH 0.13 0.03 0.77 

LPW 0.62 0.14 0.27 

LPH 0.02 0.12 0.74 

Figure D.17 – Shapiro Wilk test for human, pig and sheep L3 CT measurements 
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L4 Human Pig Sheep 

VBH 0.41 0.68 0.86 

VBW 0.02 0.82 0.31 

VBL 0.20 0.27 0.64 

TPW 0.37 0.74 0.12 

SCW 0.54 0.85 0.76 

SCL 0.99 0.38 0.92 

TL 0.49 0.84 0.12 

RPW 0.77 0.98 0.77 

RPH 0.01 0.63 0.77 

LPW 0.59 0.08 0.78 

LPH <0.01 0.52 0.74 

Figure D.18 – Shapiro Wilk test for human, pig and sheep L4 CT measurements 

 

L5 Human Pig Sheep 

VBH 0.50 0.40 0.98 

VBW 0.21 0.03 0.91 

VBL 0.03 0.35 0.81 

TPW 0.39 0.82 0.38 

SCW 0.48 0.45 0.91 

SCL 0.47 0.22 0.65 

TL 0.14 0.61 0.17 

RPW 0.39 0.63 0.54 

RPH 0.03 0.36 0.79 

LPW 0.66 0.21 0.12 

LPH 0.01 0.34 0.54 

Figure D.19 – Shapiro Wilk test for human, pig and sheep L5 CT measurements 

 

L6 Pig Sheep 

VBH 0.01 0.86 

VBW 0.18 0.89 

VBL 0.16 0.88 

TPW 0.28 0.17 

SCW 0.33 0.74 

SCL 0.95 0.30 

TL 0.34 0.14 

RPW 0.10 0.49 

RPH 0.85 0.67 

LPW 0.85 0.31 

LPH 0.47 0.48 

Figure D.20 – Shapiro Wilk test for pig and sheep L6 CT measurements 
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E – TABLES SHOWING COMPARISONS BETWEEN HUMAN, PIG AND SHEEP 
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MORPHOMETRICS 
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F – TABLES SHOWING COMPARISONS BETWEEN HUMAN MALE AND FEMALE CT 

VERTEBRAL MEASUREMENTS 

 

 

 

 

 

 

 

 

 

 

  

Male Female 
Mean Difference (p) 

Mean (SD) 95%CI Mean (SD) 95%CI 

T1 18.99 ( 1.27 ) 18.52 – 19.45 16.83 ( 0.74 ) 16.45 – 17.21 2.16 ( 0.00 ) 

T2 20.17 ( 1.02 ) 19.79 – 20.54 18.09 ( 0.84 ) 17.67 – 18.52 2.08 ( 0.00 ) 

T3 20.60 ( 1.36 ) 20.10 – 21.09 18.67 ( 1.29 ) 18.02 – 19.32 1.93 ( 0.00 ) 

T4 20.71 ( 1.79 ) 20.06 – 21.36 18.90 ( 1.33 ) 18.23 – 19.57 1.82 ( 0.00 ) 

T5 21.52 ( 1.26 ) 21.06 – 21.98 19.09 ( 1.25 ) 18.46 – 19.73 2.43 ( 0.00 ) 

T6 21.76 ( 1.61 ) 21.17 – 22.34 19.35 ( 1.15 ) 18.77 – 19.93 2.40 ( 0.00 ) 

T7 22.01 ( 1.33 ) 21.53 – 22.50 19.82 ( 1.54 ) 19.03 – 20.60 2.20 ( 0.00 ) 

T8 22.45 ( 1.54 ) 21.89 – 23.01 20.69 ( 0.86 ) 20.25 – 21.13 1.76 ( 0.00 ) 

T9 23.40 ( 1.79 ) 22.75 – 24.05 21.77 ( 1.31 ) 21.11 – 22.43 1.63 ( 0.00 ) 

T10 24.94 ( 2.11 ) 24.17 – 25.70 23.43 ( 1.26 ) 22.79 – 24.07 1.50 ( 0.01 ) 

T11 26.11 ( 2.14 ) 25.33 – 26.89 23.98 ( 0.87 ) 23.54 – 24.42 2.13 ( 0.00 ) 

T12 27.33 ( 1.81 ) 26.67 – 27.99 25.59 ( 1.10 ) 25.03 – 26.14 1.74 ( 0.00 ) 

L1 28.96 ( 1.92 ) 28.26 – 29.66 27.69 ( 1.46 ) 26.95 – 28.43 1.27 ( 0.02 ) 

L2 30.88 ( 1.90 ) 30.18 – 31.57 29.70 ( 1.57 ) 28.90 – 30.49 1.18 ( 0.03 ) 

L3 31.49 ( 1.83 ) 30.82 – 32.15 30.19 ( 1.72 ) 29.32 – 31.06 1.29 ( 0.03 ) 

L4 31.82 ( 2.08 ) 31.06 – 32.57 30.42 ( 2.14 ) 29.34 – 31.50 1.39 ( 0.05 ) 

L5 32.51 ( 1.96 ) 31.80 – 33.23 30.85 ( 2.05 ) 29.82 – 31.89 1.66 ( 0.02 ) 

Table F.1 – Comparison of vertebral body height measurements between human male and female vertebrae, showing male and 
female mean measurements with standard deviations (SD), and 95% confidence intervals, and the mean difference between 
male and female vertebral body height 



257 
 

 

 

  

  

Male Female 
Mean Difference (p) 

Mean (SD) 95%CI Mean (SD) 95%CI 

T1 33.30 ( 1.99 ) 32.57 – 34.02 31.58 ( 2.62 ) 30.25 – 32.90 1.72 ( 0.04 ) 

T2 32.75 ( 1.98 ) 32.03 – 33.47 30.23 ( 1.31 ) 29.57 – 30.89 2.52 ( 0.00 ) 

T3 31.03 ( 2.53 ) 30.11 – 31.95 27.56 ( 1.18 ) 26.96 – 28.16 3.47 ( 0.00 ) 

T4 29.76 ( 2.15 ) 28.97 – 30.54 27.34 ( 1.52 ) 26.57 – 28.11 2.42 ( 0.00 ) 

T5 30.24 ( 2.01 ) 29.51 – 30.97 27.79 ( 1.21 ) 27.18 – 28.40 2.45 ( 0.00 ) 

T6 31.50 ( 2.06 ) 30.76 – 32.25 28.21 ( 1.28 ) 27.56 – 28.86 3.29 ( 0.00 ) 

T7 32.78 ( 2.10 ) 32.01 – 33.55 30.07 ( 1.83 ) 29.15 – 30.99 2.71 ( 0.00 ) 

T8 33.76 ( 2.55 ) 32.83 – 34.69 31.85 ( 1.66 ) 31.01 – 32.70 1.91 ( 0.00 ) 

T9 35.28 ( 2.89 ) 34.23 – 36.33 32.89 ( 1.38 ) 32.20 – 33.59 2.38 ( 0.00 ) 

T10 37.58 ( 3.01 ) 36.49 – 38.68 35.32 ( 1.68 ) 34.47 – 36.17 2.26 ( 0.00 ) 

T11 40.94 ( 4.00 ) 39.48 – 42.39 38.08 ( 2.22 ) 36.96 – 39.20 2.86 ( 0.00 ) 

T12 43.10 ( 3.00 ) 42.01 – 44.19 40.85 ( 2.43 ) 39.63 – 42.08 2.24 ( 0.01 ) 

L1 43.81 ( 3.43 ) 42.56 – 45.06 39.61 ( 4.41 ) 37.37 – 41.84 4.21 ( 0.00 ) 

L2 45.65 ( 3.35 ) 44.43 – 46.87 41.87 ( 2.77 ) 40.47 – 43.27 3.78 ( 0.00 ) 

L3 47.68 ( 3.82 ) 46.29 – 49.07 43.38 ( 2.19 ) 42.27 – 44.49 4.30 ( 0.00 ) 

L4 50.48 ( 4.26 ) 48.93 – 52.03 46.45 ( 2.12 ) 45.38 – 47.53 4.03 ( 0.00 ) 

L5 55.81 ( 4.53 ) 54.16 – 57.46 50.55 ( 2.27 ) 49.40 – 51.71 5.26 ( 0.00 ) 

Table F.2 – Comparison of vertebral body width measurements between human male and female vertebrae, 
showing male and female mean measurements with standard deviations (SD), and 95% confidence intervals, and 
the mean difference between male and female vertebral body width 
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Male Female 
Mean Difference (p) 

Mean (SD) 95%CI Mean (SD) 95%CI 

T1 20.47 ( 1.94 ) 19.77 – 21.17 18.47 ( 1.17 ) 17.88 – 19.07 2.00 ( 0.00 ) 

T2 21.60 ( 1.96 ) 20.89 – 22.31 19.48 ( 3.24 ) 17.84 – 21.12 2.12 ( 0.03 ) 

T3 23.02 ( 2.02 ) 22.29 – 23.75 21.16 ( 3.18 ) 19.55 – 22.77 1.86 ( 0.05 ) 

T4 25.25 ( 1.87 ) 24.57 – 25.93 22.60 ( 2.25 ) 21.46 – 23.74 2.64 ( 0.00 ) 

T5 26.84 ( 1.91 ) 26.14 – 27.53 24.12 ( 1.84 ) 23.19 – 25.05 2.71 ( 0.00 ) 

T6 28.39 ( 1.83 ) 27.72 – 29.05 25.78 ( 2.21 ) 24.66 – 26.90 2.61 ( 0.00 ) 

T7 30.06 ( 2.53 ) 29.14 – 30.98 26.72 ( 1.80 ) 25.81 – 27.63 3.34 ( 0.00 ) 

T8 31.47 ( 1.93 ) 30.77 – 32.18 28.31 ( 1.72 ) 27.44 – 29.17 3.17 ( 0.00 ) 

T9 32.77 ( 2.02 ) 32.03 – 33.50 29.34 ( 2.30 ) 28.18 – 30.50 3.43 ( 0.00 ) 

T10 33.83 ( 1.91 ) 33.14 – 34.53 30.23 ( 2.42 ) 29.00 – 31.45 3.61 ( 0.00 ) 

T11 34.11 ( 2.00 ) 33.39 – 34.84 30.67 ( 2.15 ) 29.58 – 31.75 3.45 ( 0.00 ) 

T12 35.11 ( 2.23 ) 34.30 – 35.92 31.79 ( 2.67 ) 30.44 – 33.14 3.32 ( 0.00 ) 

L1 36.15 ( 2.51 ) 35.23 – 37.06 31.79 ( 1.82 ) 30.87 – 32.70 4.36 ( 0.00 ) 

L2 38.09 ( 2.76 ) 37.09 – 39.10 33.52 ( 2.13 ) 32.44 – 34.60 4.57 ( 0.00 ) 

L3 38.81 ( 2.93 ) 37.75 – 39.88 34.39 ( 2.20 ) 33.28 – 35.51 4.42 ( 0.00 ) 

L4 38.25 ( 2.69 ) 37.27 – 39.23 34.24 ( 1.87 ) 33.30 – 35.19 4.01 ( 0.00 ) 

L5 37.52 ( 2.80 ) 36.50 – 38.54 34.09 ( 1.88 ) 33.14 – 35.04 3.43 ( 0.00 ) 

Table F.3 – Comparison of vertebral length length measurements between human male and female vertebrae, 
showing male and female mean measurements with standard deviations (SD), and 95% confidence intervals, and 
the mean difference between male and female vertebral body length 
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Male Female 
Mean Difference (p) 

Mean (SD) 95%CI Mean (SD) 95%CI 

T1 81.18 ( 4.74 ) 79.45 – 82.91 73.67 ( 3.70 ) 71.80 – 75.54 7.51 ( 0.00 ) 

T2 75.38 ( 4.56 ) 73.72 – 77.04 67.29 ( 3.11 ) 65.71 – 68.86 8.09 ( 0.00 ) 

T3 69.19 ( 5.09 ) 67.34 – 71.04 63.06 ( 2.79 ) 61.65 – 64.47 6.13 ( 0.00 ) 

T4 67.38 ( 5.34 ) 65.44 – 69.32 61.35 ( 2.18 ) 60.25 – 62.45 6.03 ( 0.00 ) 

T5 67.81 ( 5.48 ) 65.82 – 69.81 62.45 ( 2.49 ) 61.19 – 63.71 5.36 ( 0.00 ) 

T6 69.53 ( 4.61 ) 67.86 – 71.21 62.59 ( 2.95 ) 61.10 – 64.08 6.94 ( 0.00 ) 

T7 68.13 ( 5.33 ) 66.19 – 70.07 62.90 ( 5.61 ) 60.06 – 65.74 5.23 ( 0.01 ) 

T8 66.90 ( 5.26 ) 64.98 – 68.81 57.85 ( 7.89 ) 53.85 – 61.84 9.05 ( 0.00 ) 

T9 65.62 ( 4.41 ) 64.02 – 67.23 59.68 ( 3.97 ) 57.67 – 61.69 5.95 ( 0.00 ) 

T10 62.59 ( 4.14 ) 61.08 – 64.09 56.88 ( 4.10 ) 54.80 – 58.95 5.71 ( 0.00 ) 

T11 57.33 ( 4.30 ) 55.76 – 58.90 49.88 ( 8.80 ) 45.43 – 54.34 7.45 ( 0.01 ) 

T12 52.23 ( 6.19 ) 49.98 – 54.49 47.67 ( 4.14 ) 45.58 – 49.77 4.56 ( 0.01 ) 

L1 79.47 ( 9.75 ) 75.92 – 83.02 70.37 ( 5.63 ) 67.52 – 73.22 9.11 ( 0.00 ) 

L2 88.09 ( 7.50 ) 85.36 – 90.82 77.85 ( 6.16 ) 74.73 – 80.97 10.24 ( 0.00 ) 

L3 96.10 ( 7.36 ) 93.42 – 98.78 86.95 ( 6.33 ) 83.75 – 90.15 9.15 ( 0.00 ) 

L4 95.01 ( 8.87 ) 91.78 – 98.24 86.85 ( 5.46 ) 84.09 – 89.62 8.15 ( 0.00 ) 

L5 100.35 ( 8.37 ) 97.31 – 103.40 91.07 ( 5.53 ) 88.27 – 93.87 9.28 ( 0.00 ) 

Table F.4 – Comparison of transverse process width measurements between human male and female vertebrae, 
showing male and female mean measurements with standard deviations (SD), and 95% confidence intervals, and 
the mean difference between male and female transverse process width. 
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Male Female 
Mean Difference (p) 

Mean (SD) 95%CI Mean (SD) 95%CI 

T1 23.63 ( 1.68 ) 23.01 – 24.24 22.44 ( 1.39 ) 21.74 – 23.15 1.18 ( 0.02 ) 

T2 20.34 ( 1.29 ) 19.87 – 20.81 19.10 ( 1.24 ) 18.47 – 19.73 1.23 ( 0.00 ) 

T3 19.34 ( 1.65 ) 18.74 – 19.94 17.97 ( 1.39 ) 17.26 – 18.67 1.37 ( 0.01 ) 

T4 18.37 ( 1.86 ) 17.70 – 19.05 17.58 ( 1.48 ) 16.83 – 18.32 0.80 ( 0.13 ) 

T5 18.00 ( 1.73 ) 17.37 – 18.63 17.33 ( 1.72 ) 16.46 – 18.20 0.68 ( 0.23 ) 

T6 18.43 ( 1.91 ) 17.74 – 19.13 17.53 ( 2.05 ) 16.49 – 18.56 0.91 ( 0.17 ) 

T7 18.62 ( 2.33 ) 17.77 – 19.47 17.61 ( 2.00 ) 16.60 – 18.62 1.01 ( 0.14 ) 

T8 18.96 ( 2.49 ) 18.05 – 19.87 18.28 ( 2.19 ) 17.17 – 19.39 0.68 ( 0.36 ) 

T9 19.30 ( 2.68 ) 18.33 – 20.28 18.46 ( 1.92 ) 17.49 – 19.43 0.84 ( 0.24 ) 

T10 19.80 ( 2.53 ) 18.88 – 20.72 18.99 ( 1.98 ) 17.99 – 19.99 0.80 ( 0.25 ) 

T11 21.89 ( 3.12 ) 20.75 – 23.02 20.71 ( 2.15 ) 19.62 – 21.80 1.18 ( 0.15 ) 

T12 24.91 ( 2.73 ) 23.92 – 25.91 23.56 ( 1.68 ) 22.71 – 24.41 1.35 ( 0.05 ) 

L1 25.56 ( 2.56 ) 24.63 – 26.49 24.78 ( 1.81 ) 23.86 – 25.70 0.78 ( 0.25 ) 

L2 25.09 ( 2.86 ) 24.05 – 26.13 24.00 ( 1.52 ) 23.23 – 24.77 1.09 ( 0.10 ) 

L3 26.17 ( 2.70 ) 25.18 – 27.15 24.20 ( 1.76 ) 23.31 – 25.10 1.96 ( 0.01 ) 

L4 26.97 ( 2.83 ) 25.94 – 28.00 25.61 ( 2.32 ) 24.44 – 26.78 1.36 ( 0.10 ) 

L5 30.53 ( 3.17 ) 29.38 – 31.68 29.98 ( 2.85 ) 28.54 – 31.42 0.55 ( 0.56 ) 

Table F.5 – Comparison of spinal canal width measurements between human male and female vertebrae, showing 
male and female mean measurements with standard deviations (SD), and 95% confidence intervals, and the mean 
difference between male and female spinal canal width. 
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Male Female 
Mean Difference (p) 

Mean (SD) 95%CI Mean (SD) 95%CI 

T1 15.97 ( 1.24 ) 15.52 – 16.42 14.78 ( 1.58 ) 13.98 – 15.58 1.19 ( 0.02 ) 

T2 16.49 ( 1.38 ) 15.98 – 16.99 15.89 ( 1.18 ) 15.29 – 16.49 0.59 ( 0.15 ) 

T3 16.76 ( 1.29 ) 16.29 – 17.23 16.71 ( 1.19 ) 16.10 – 17.31 0.05 ( 0.90 ) 

T4 16.93 ( 1.79 ) 16.28 – 17.58 16.53 ( 1.21 ) 15.91 – 17.14 0.41 ( 0.38 ) 

T5 16.59 ( 1.58 ) 16.02 – 17.17 16.84 ( 1.57 ) 16.04 – 17.63 0.24 ( 0.63 ) 

T6 16.61 ( 1.39 ) 16.10 – 17.12 16.62 ( 1.79 ) 15.72 – 17.53 0.01 ( 0.99 ) 

T7 17.04 ( 1.70 ) 16.42 – 17.66 16.52 ( 1.33 ) 15.85 – 17.19 0.52 ( 0.27 ) 

T8 16.56 ( 1.83 ) 15.89 – 17.22 16.37 ( 1.44 ) 15.64 – 17.10 0.19 ( 0.71 ) 

T9 16.57 ( 2.15 ) 15.79 – 17.35 16.16 ( 1.39 ) 15.45 – 16.86 0.41 ( 0.44 ) 

T10 16.06 ( 1.49 ) 15.51 – 16.60 16.18 ( 1.30 ) 15.53 – 16.84 0.13 ( 0.77 ) 

T11 17.31 ( 2.06 ) 16.56 – 18.06 16.37 ( 1.19 ) 15.77 – 16.97 0.93 ( 0.06 ) 

T12 19.28 ( 1.78 ) 18.63 – 19.93 17.80 ( 1.20 ) 17.19 – 18.40 1.48 ( 0.00 ) 

L1 18.92 ( 1.47 ) 18.39 – 19.46 18.19 ( 1.59 ) 17.38 – 18.99 0.73 ( 0.15 ) 

L2 16.95 ( 1.43 ) 16.43 – 17.47 16.75 ( 1.58 ) 15.95 – 17.55 0.20 ( 0.69 ) 

L3 17.02 ( 1.76 ) 16.38 – 17.66 17.08 ( 2.01 ) 16.06 – 18.10 0.06 ( 0.92 ) 

L4 16.54 ( 1.87 ) 15.86 – 17.23 16.68 ( 1.99 ) 15.67 – 17.69 0.14 ( 0.83 ) 

L5 17.74 ( 2.15 ) 16.95 – 18.52 17.45 ( 2.83 ) 16.02 – 18.88 0.28 ( 0.74 ) 

Table F.6 – Comparison of spinal canal length measurements between human male and female vertebrae, showing 
male and female mean measurements with standard deviations (SD), and 95% confidence intervals, and the mean 
difference between male and female spinal canal length. 
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Male Female 
Mean Difference (p) 

Mean (SD) 95%CI Mean (SD) 95%CI 

T1 72.42 ( 4.46 ) 70.80 – 74.04 63.33 ( 4.47 ) 61.07 – 65.59 9.09 ( 0.00 ) 

T2 73.20 ( 3.60 ) 71.89 – 74.51 65.66 ( 2.84 ) 64.22 – 67.10 7.54 ( 0.00 ) 

T3 75.09 ( 3.31 ) 73.89 – 76.30 67.52 ( 3.09 ) 65.96 – 69.08 7.57 ( 0.00 ) 

T4 76.54 ( 4.07 ) 75.06 – 78.02 69.31 ( 3.69 ) 67.44 – 71.18 7.23 ( 0.00 ) 

T5 79.24 ( 4.44 ) 77.63 – 80.86 73.83 ( 7.68 ) 69.95 – 77.72 5.41 ( 0.02 ) 

T6 80.87 ( 3.33 ) 79.66 – 82.09 73.00 ( 3.04 ) 71.47 – 74.54 7.87 ( 0.00 ) 

T7 82.60 ( 4.52 ) 80.96 – 84.25 74.53 ( 4.76 ) 72.12 – 76.94 8.08 ( 0.00 ) 

T8 82.18 ( 7.44 ) 79.47 – 84.89 76.40 ( 3.63 ) 74.56 – 78.23 5.78 ( 0.00 ) 

T9 83.84 ( 3.94 ) 82.41 – 85.28 76.69 ( 3.72 ) 74.81 – 78.57 7.16 ( 0.00 ) 

T10 82.70 ( 4.26 ) 81.15 – 84.25 76.24 ( 4.30 ) 74.06 – 78.41 6.46 ( 0.00 ) 

T11 81.65 ( 5.39 ) 79.69 – 83.61 74.91 ( 4.86 ) 72.45 – 77.37 6.74 ( 0.00 ) 

T12 85.77 ( 6.16 ) 83.53 – 88.01 77.25 ( 4.05 ) 75.20 – 79.30 8.51 ( 0.00 ) 

L1 90.71 ( 5.98 ) 88.54 – 92.89 81.10 ( 4.64 ) 78.76 – 83.45 9.61 ( 0.00 ) 

L2 94.81 ( 6.46 ) 92.46 – 97.16 86.46 ( 4.03 ) 84.42 – 88.49 8.35 ( 0.00 ) 

L3 95.49 ( 6.38 ) 93.17 – 97.81 87.85 ( 5.59 ) 85.02 – 90.68 7.64 ( 0.00 ) 

L4 93.27 ( 5.72 ) 91.19 – 95.35 86.22 ( 6.16 ) 83.10 – 89.34 7.05 ( 0.00 ) 

L5 86.49 ( 4.56 ) 84.83 – 88.15 81.58 ( 5.95 ) 78.57 – 84.59 4.91 ( 0.01 ) 

Table F.7 – Comparison of vertebral total anteroposterior length measurements between human male and female 
vertebrae, showing male and female mean measurements with standard deviations (SD), and 95% confidence 
intervals, and the mean difference between male and female total anteroposterior length. 
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Male Female 
Mean Difference (p) 

Mean (SD) 95%CI Mean (SD) 95%CI 

T1 9.51 ( 1.13 ) 9.10 – 9.92 8.56 ( 1.43 ) 7.84 – 9.29 0.95 ( 0.04 ) 

T2 7.76 ( 1.05 ) 7.38 – 8.14 6.83 ( 0.88 ) 6.39 – 7.28 0.93 ( 0.00 ) 

T3 6.12 ( 1.37 ) 5.62 – 6.62 5.16 ( 1.08 ) 4.61 – 5.70 0.97 ( 0.02 ) 

T4 6.20 ( 1.03 ) 5.83 – 6.58 4.73 ( 1.15 ) 4.15 – 5.32 1.47 ( 0.00 ) 

T5 5.61 ( 1.38 ) 5.10 – 6.11 4.77 ( 0.79 ) 4.37 – 5.17 0.84 ( 0.01 ) 

T6 5.72 ( 1.16 ) 5.30 – 6.14 5.00 ( 0.90 ) 4.54 – 5.45 0.73 ( 0.03 ) 

T7 6.59 ( 2.24 ) 5.77 – 7.41 5.39 ( 0.76 ) 5.01 – 5.78 1.20 ( 0.01 ) 

T8 6.22 ( 1.45 ) 5.70 – 6.75 5.45 ( 0.91 ) 4.99 – 5.91 0.78 ( 0.04 ) 

T9 6.85 ( 1.20 ) 6.41 – 7.28 5.97 ( 1.19 ) 5.37 – 6.57 0.88 ( 0.03 ) 

T10 7.81 ( 1.43 ) 7.28 – 8.33 6.77 ( 1.52 ) 6.00 – 7.54 1.04 ( 0.04 ) 

T11 8.93 ( 1.58 ) 8.36 – 9.51 7.87 ( 1.20 ) 7.26 – 8.48 1.06 ( 0.02 ) 

T12 8.88 ( 2.11 ) 8.11 – 9.64 7.46 ( 1.29 ) 6.80 – 8.11 1.42 ( 0.01 ) 

L1 8.51 ( 1.47 ) 7.98 – 9.05 7.09 ( 1.16 ) 6.51 – 7.68 1.42 ( 0.00 ) 

L2 8.92 ( 1.54 ) 8.36 – 9.48 7.72 ( 1.39 ) 7.02 – 8.43 1.20 ( 0.01 ) 

L3 10.70 ( 1.44 ) 10.18 – 11.22 9.52 ( 1.69 ) 8.66 – 10.37 1.18 ( 0.03 ) 

L4 12.71 ( 1.95 ) 12.00 – 13.42 11.28 ( 1.08 ) 10.73 – 11.83 1.43 ( 0.00 ) 

L5 16.71 ( 2.17 ) 15.92 – 17.50 14.63 ( 1.22 ) 14.01 – 15.25 2.08 ( 0.00 ) 

Table F.8 – Comparison of right pedicle width measurements between human male and female vertebrae, showing 
male and female mean measurements with standard deviations (SD), and 95% confidence intervals, and the mean 
difference between male and female right pedicle width. 
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Male Female 
Mean Difference (p) 

Mean (SD) 95%CI Mean (SD) 95%CI 

T1 10.10 ( 1.04 ) 9.72 – 10.48 8.99 ( 1.10 ) 8.44 – 9.55 1.10 ( 0.00 ) 

T2 11.73 ( 0.99 ) 11.37 – 12.09 10.34 ( 0.91 ) 9.88 – 10.80 1.39 ( 0.00 ) 

T3 12.32 ( 0.81 ) 12.02 – 12.61 10.74 ( 1.00 ) 10.23 – 11.25 1.58 ( 0.00 ) 

T4 12.50 ( 1.16 ) 12.08 – 12.92 10.89 ( 0.97 ) 10.40 – 11.38 1.60 ( 0.00 ) 

T5 12.85 ( 1.26 ) 12.39 – 13.30 10.75 ( 1.02 ) 10.24 – 11.27 2.09 ( 0.00 ) 

T6 12.65 ( 1.00 ) 12.29 – 13.01 11.04 ( 1.07 ) 10.50 – 11.58 1.61 ( 0.00 ) 

T7 12.37 ( 1.57 ) 11.80 – 12.95 11.03 ( 0.71 ) 10.67 – 11.39 1.34 ( 0.00 ) 

T8 13.11 ( 1.10 ) 12.71 – 13.51 11.73 ( 1.05 ) 11.20 – 12.26 1.38 ( 0.00 ) 

T9 13.66 ( 1.32 ) 13.18 – 14.14 12.38 ( 0.97 ) 11.89 – 12.87 1.28 ( 0.00 ) 

T10 15.35 ( 1.17 ) 14.92 – 15.77 14.09 ( 0.78 ) 13.70 – 14.49 1.26 ( 0.00 ) 

T11 16.62 ( 0.86 ) 16.30 – 16.93 15.51 ( 0.91 ) 15.05 – 15.97 1.11 ( 0.00 ) 

T12 16.81 ( 0.82 ) 16.51 – 17.11 15.49 ( 0.86 ) 15.05 – 15.93 1.32 ( 0.00 ) 

L1 15.88 ( 1.42 ) 15.37 – 16.40 14.53 ( 1.07 ) 13.99 – 15.07 1.35 ( 0.00 ) 

L2 15.47 ( 1.46 ) 14.94 – 16.00 14.05 ( 1.06 ) 13.51 – 14.59 1.42 ( 0.00 ) 

L3 15.11 ( 1.37 ) 14.61 – 15.61 13.93 ( 1.07 ) 13.39 – 14.47 1.18 ( 0.00 ) 

L4 14.01 ( 1.63 ) 13.42 – 14.61 12.81 ( 1.17 ) 12.22 – 13.40 1.20 ( 0.01 ) 

L5 14.00 ( 2.39 ) 13.13 – 14.88 12.43 ( 0.99 ) 11.94 – 12.93 1.57 ( 0.00 ) 

Table F.9 – Comparison of right pedicle height measurements between human male and female vertebrae, showing 
male and female mean measurements with standard deviations (SD), and 95% confidence intervals, and the mean 
difference between male and female right pedicle height. 
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Male Female 
Mean Difference (p) 

Mean (SD) 95%CI Mean (SD) 95%CI 

T1 9.54 ( 1.23 ) 9.09 – 9.98 8.26 ( 1.49 ) 7.50 – 9.01 1.28 ( 0.01 ) 

T2 7.90 ( 1.32 ) 7.42 – 8.38 6.93 ( 0.97 ) 6.44 – 7.43 0.97 ( 0.01 ) 

T3 6.04 ( 1.42 ) 5.53 – 6.56 5.31 ( 0.99 ) 4.80 – 5.81 0.74 ( 0.05 ) 

T4 5.52 ( 1.25 ) 5.07 – 5.98 4.85 ( 0.99 ) 4.35 – 5.35 0.67 ( 0.06 ) 

T5 5.76 ( 1.76 ) 5.12 – 6.39 4.96 ( 0.80 ) 4.55 – 5.36 0.80 ( 0.05 ) 

T6 5.67 ( 1.60 ) 5.09 – 6.25 5.14 ( 0.93 ) 4.67 – 5.61 0.53 ( 0.17 ) 

T7 6.35 ( 2.07 ) 5.60 – 7.10 5.35 ( 0.93 ) 4.88 – 5.82 0.99 ( 0.03 ) 

T8 6.18 ( 1.79 ) 5.53 – 6.83 5.16 ( 0.70 ) 4.81 – 5.52 1.02 ( 0.01 ) 

T9 6.49 ( 1.74 ) 5.86 – 7.13 5.60 ( 0.81 ) 5.19 – 6.01 0.90 ( 0.02 ) 

T10 7.37 ( 1.93 ) 6.66 – 8.07 6.27 ( 1.47 ) 5.53 – 7.02 1.09 ( 0.04 ) 

T11 8.21 ( 2.13 ) 7.43 – 8.98 8.10 ( 1.71 ) 7.24 – 8.97 0.10 ( 0.86 ) 

T12 8.60 ( 1.83 ) 7.94 – 9.27 8.14 ( 2.09 ) 7.08 – 9.20 0.46 ( 0.47 ) 

L1 8.24 ( 1.86 ) 7.56 – 8.92 7.06 ( 0.97 ) 6.57 – 7.55 1.18 ( 0.01 ) 

L2 8.83 ( 1.84 ) 8.16 – 9.50 7.74 ( 1.38 ) 7.04 – 8.44 1.09 ( 0.03 ) 

L3 10.53 ( 1.77 ) 9.89 – 11.18 9.45 ( 1.30 ) 8.79 – 10.11 1.09 ( 0.03 ) 

L4 12.47 ( 1.82 ) 11.81 – 13.14 11.20 ( 1.41 ) 10.48 – 11.91 1.28 ( 0.01 ) 

L5 16.23 ( 2.09 ) 15.47 – 17.00 14.59 ( 1.77 ) 13.69 – 15.48 1.65 ( 0.01 ) 

Table F.10 – Comparison of left pedicle width measurements between human male and female vertebrae, showing 
male and female mean measurements with standard deviations (SD), and 95% confidence intervals, and the mean 
difference between male and female left pedicle width. 
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Male Female 
Mean Difference (p) 

Mean (SD) 95%CI Mean (SD) 95%CI 

T1 10.22 ( 0.91 ) 9.89 – 10.55 9.28 ( 1.21 ) 8.67 – 9.90 0.94 ( 0.01 ) 

T2 11.96 ( 0.89 ) 11.64 – 12.28 10.43 ( 0.91 ) 9.97 – 10.89 1.53 ( 0.00 ) 

T3 12.77 ( 0.97 ) 12.42 – 13.13 10.81 ( 1.07 ) 10.27 – 11.35 1.96 ( 0.00 ) 

T4 12.46 ( 0.66 ) 12.22 – 12.70 10.94 ( 1.19 ) 10.34 – 11.54 1.52 ( 0.00 ) 

T5 12.65 ( 1.12 ) 12.24 – 13.05 10.84 ( 1.12 ) 10.27 – 11.40 1.81 ( 0.00 ) 

T6 12.75 ( 1.02 ) 12.38 – 13.12 10.78 ( 1.06 ) 10.24 – 11.32 1.97 ( 0.00 ) 

T7 12.46 ( 1.78 ) 11.81 – 13.10 11.09 ( 1.04 ) 10.56 – 11.61 1.37 ( 0.00 ) 

T8 13.06 ( 1.20 ) 12.62 – 13.50 11.61 ( 1.02 ) 11.09 – 12.13 1.45 ( 0.00 ) 

T9 13.68 ( 1.19 ) 13.24 – 14.11 12.31 ( 1.06 ) 11.77 – 12.85 1.36 ( 0.00 ) 

T10 15.47 ( 0.98 ) 15.12 – 15.83 14.37 ( 0.68 ) 14.03 – 14.72 1.10 ( 0.00 ) 

T11 16.48 ( 0.93 ) 16.14 – 16.82 15.44 ( 0.91 ) 14.98 – 15.89 1.05 ( 0.00 ) 

T12 16.75 ( 0.73 ) 16.48 – 17.01 15.50 ( 0.84 ) 15.08 – 15.92 1.25 ( 0.00 ) 

L1 15.93 ( 1.04 ) 15.55 – 16.31 14.25 ( 1.05 ) 13.72 – 14.78 1.68 ( 0.00 ) 

L2 15.38 ( 1.57 ) 14.81 – 15.95 13.43 ( 1.27 ) 12.79 – 14.07 1.95 ( 0.00 ) 

L3 14.79 ( 1.52 ) 14.24 – 15.35 13.67 ( 1.21 ) 13.06 – 14.29 1.12 ( 0.01 ) 

L4 13.93 ( 1.74 ) 13.29 – 14.56 12.93 ( 0.97 ) 12.44 – 13.42 1.00 ( 0.02 ) 

L5 14.10 ( 2.34 ) 13.25 – 14.95 13.15 ( 2.52 ) 11.88 – 14.42 0.95 ( 0.23 ) 

Table F.11 – Comparison of left pedicle height measurements between human male and female vertebrae, showing 
male and female mean measurements with standard deviations (SD), and 95% confidence intervals, and the mean 
difference between male and female left pedicle height. 
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<57  ≥57  
Mean Difference (p) 

Mean (SD) 95%CI Mean (SD) 95%CI 

T1 18.29 ( 1.65 ) 17.58 – 19.00 18.22 ( 1.42 ) 17.64 – 18.80 0.07 ( 0.89 ) 

T2 19.63 ( 1.67 ) 18.92 – 20.35 19.30 ( 1.06 ) 18.87 – 19.74 0.33 ( 0.94 ) 

T3 20.23 ( 1.78 ) 19.47 – 20.99 19.67 ( 1.43 ) 19.09 – 20.26 0.56 ( 0.80 ) 

T4 20.27 ( 1.97 ) 19.43 – 21.12 19.93 ( 1.76 ) 19.21 – 20.65 0.34 ( 0.51 ) 

T5 20.86 ( 1.88 ) 20.06 – 21.67 20.54 ( 1.55 ) 19.90 – 21.17 0.33 ( 0.71 ) 

T6 21.15 ( 1.96 ) 20.31 – 21.99 20.74 ( 1.78 ) 20.01 – 21.46 0.42 ( 0.81 ) 

T7 21.44 ( 2.08 ) 20.55 – 22.33 21.10 ( 1.40 ) 20.53 – 21.67 0.34 ( 0.54 ) 

T8 22.16 ( 1.76 ) 21.40 – 22.91 21.57 ( 1.37 ) 21.00 – 22.13 0.59 ( 0.46 ) 

T9 23.25 ( 1.75 ) 22.50 – 24.00 22.47 ( 1.81 ) 21.73 – 23.21 0.78 ( 0.76 ) 

T10 25.05 ( 1.66 ) 24.34 – 25.76 23.85 ( 2.12 ) 22.98 – 24.71 1.21 ( 0.62 ) 

T11 25.89 ( 2.03 ) 25.02 – 26.76 24.93 ( 2.04 ) 24.09 – 25.76 0.96 ( 0.66 ) 

T12 27.14 ( 1.73 ) 26.40 – 27.88 26.37 ( 1.82 ) 25.63 – 27.11 0.77 ( 0.48 ) 

L1 28.70 ( 1.82 ) 27.92 – 29.48 27.94 ( 1.60 ) 27.28 – 28.59 0.77 ( 0.09 ) 

L2 30.81 ( 2.08 ) 29.92 – 31.70 30.17 ( 1.62 ) 29.51 – 30.83 0.64 ( 0.62 ) 

L3 31.28 ( 2.20 ) 30.34 – 32.22 30.84 ( 1.55 ) 30.20 – 31.47 0.44 ( 0.78 ) 

L4 31.60 ( 2.28 ) 30.62 – 32.57 31.11 ( 2.11 ) 30.25 – 31.97 0.48 ( 0.99 ) 

L5 32.13 ( 2.11 ) 31.23 – 33.04 31.78 ( 2.16 ) 30.90 – 32.66 0.35 ( 0.97 ) 

Figure G.1 - Comparison of vertebral body height measurements between human old and young vertebrae, 
showing old and young mean measurements with standard deviations (SD), and 95% confidence intervals, and the 
mean difference between old and young vertebral body height 
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<57  ≥57  
Mean Difference (p) 

Mean (SD) 95%CI Mean (SD) 95%CI 

T1 32.36 ( 2.68 ) 31.21 – 33.51 32.82 ( 2.05 ) 31.98 – 33.65 0.46 ( 0.94 ) 

T2 32.35 ( 2.45 ) 31.30 – 33.40 31.47 ( 1.75 ) 30.75 – 32.19 0.88 ( 0.68 ) 

T3 30.16 ( 2.93 ) 28.91 – 31.41 29.56 ( 2.55 ) 28.52 – 30.61 0.59 ( 0.59 ) 

T4 28.99 ( 2.34 ) 27.99 – 29.99 28.88 ( 2.24 ) 27.97 – 29.79 0.11 ( 0.45 ) 

T5 29.61 ( 2.09 ) 28.71 – 30.50 29.22 ( 2.17 ) 28.33 – 30.11 0.38 ( 0.31 ) 

T6 30.64 ( 2.16 ) 29.71 – 31.56 30.15 ( 2.63 ) 29.07 – 31.23 0.49 ( 0.26 ) 

T7 32.02 ( 2.11 ) 31.12 – 32.93 31.71 ( 2.64 ) 30.63 – 32.78 0.32 ( 0.52 ) 

T8 33.22 ( 2.27 ) 32.25 – 34.19 32.66 ( 2.19 ) 31.76 – 33.55 0.56 ( 0.06 ) 

T9 34.82 ( 2.87 ) 33.60 – 36.05 34.14 ( 2.58 ) 33.08 – 35.20 0.68 ( 0.20 ) 

T10 37.10 ( 2.99 ) 35.81 – 38.38 36.55 ( 2.71 ) 35.45 – 37.66 0.54 ( 0.09 ) 

T11 39.84 ( 3.11 ) 38.50 – 41.17 40.08 ( 4.28 ) 38.33 – 41.83 0.25 ( 0.58 ) 

T12 42.38 ( 2.71 ) 41.22 – 43.54 42.29 ( 3.28 ) 40.95 – 43.63 0.09 ( 0.65 ) 

L1 42.45 ( 5.06 ) 40.28 – 44.61 42.31 ( 3.47 ) 40.90 – 43.73 0.13 ( 0.32 ) 

L2 44.53 ( 3.11 ) 43.20 – 45.86 43.72 ( 3.79 ) 42.17 – 45.27 0.81 ( 0.07 ) 

L3 46.53 ( 4.23 ) 44.72 – 48.34 45.92 ( 3.66 ) 44.43 – 47.42 0.60 ( 0.29 ) 

L4 49.35 ( 4.52 ) 47.42 – 51.28 48.89 ( 3.82 ) 47.32 – 50.45 0.46 ( 0.66 ) 

L5 53.75 ( 4.53 ) 51.81 – 55.68 54.27 ( 4.79 ) 52.31 – 56.23 0.52 ( 0.65 ) 

Figure G.2 - Comparison of vertebral body width measurements between human old and young vertebrae, showing 
old and young mean measurements with standard deviations (SD), and 95% confidence intervals, and the mean 
difference between old and young vertebral body width. 
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<57  ≥57  
Mean Difference (p) 

Mean (SD) 95%CI Mean (SD) 95%CI 

T1 19.88 ( 2.06 ) 19.00 – 20.76 19.71 ( 1.89 ) 18.93 – 20.48 0.17 ( 0.93 ) 

T2 20.77 ( 2.14 ) 19.86 – 21.68 20.97 ( 3.06 ) 19.72 – 22.23 0.20 ( 0.86 ) 

T3 22.45 ( 2.98 ) 21.18 – 23.73 22.33 ( 2.25 ) 21.41 – 23.25 0.13 ( 0.28 ) 

T4 24.44 ( 2.31 ) 23.45 – 25.42 24.26 ( 2.44 ) 23.27 – 25.26 0.17 ( 0.79 ) 

T5 25.64 ( 2.08 ) 24.75 – 26.53 26.16 ( 2.46 ) 25.16 – 27.16 0.52 ( 0.85 ) 

T6 27.15 ( 2.09 ) 26.25 – 28.04 27.82 ( 2.50 ) 26.80 – 28.84 0.67 ( 0.59 ) 

T7 28.54 ( 2.79 ) 27.35 – 29.73 29.27 ( 2.80 ) 28.12 – 30.41 0.73 ( 0.53 ) 

T8 29.93 ( 2.66 ) 28.79 – 31.07 30.82 ( 2.07 ) 29.97 – 31.67 0.89 ( 0.66 ) 

T9 30.99 ( 2.56 ) 29.89 – 32.08 32.16 ( 2.68 ) 31.07 – 33.26 1.18 ( 0.56 ) 

T10 32.19 ( 2.97 ) 30.92 – 33.46 32.99 ( 2.42 ) 32.00 – 33.98 0.80 ( 0.38 ) 

T11 32.79 ( 2.99 ) 31.51 – 34.06 33.08 ( 2.28 ) 32.15 – 34.01 0.29 ( 0.95 ) 

T12 33.87 ( 3.11 ) 32.54 – 35.20 34.07 ( 2.65 ) 32.99 – 35.16 0.20 ( 0.83 ) 

L1 34.66 ( 3.40 ) 33.21 – 36.12 34.66 ( 2.85 ) 33.49 – 35.83 0.00 ( 0.95 ) 

L2 36.17 ( 3.51 ) 34.67 – 37.67 36.86 ( 3.25 ) 35.54 – 38.19 0.69 ( 0.39 ) 

L3 37.30 ( 3.54 ) 35.78 – 38.81 37.31 ( 3.38 ) 35.93 – 38.69 0.02 ( 0.77 ) 

L4 36.65 ( 2.96 ) 35.38 – 37.91 37.10 ( 3.26 ) 35.77 – 38.43 0.45 ( 0.79 ) 

L5 36.97 ( 3.41 ) 35.51 – 38.43 36.57 ( 2.98 ) 35.36 – 37.79 0.40 ( 0.78 ) 

Figure G.3 - Comparison of vertebral body length measurements between human old and young vertebrae, 
showing old and young mean measurements with standard deviations (SD), and 95% confidence intervals, and the 
mean difference between old and young vertebral body length. 
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<57   ≥57  
Mean Difference (p) 

Mean (SD) 95%CI Mean (SD) 95%CI 

T1 79.28 ( 5.88 ) 76.77 – 81.79 78.02 ( 5.52 ) 75.76 – 80.27 1.26 ( 0.38 ) 

T2 73.83 ( 6.07 ) 71.24 – 76.43 71.51 ( 5.09 ) 69.44 – 73.59 2.32 ( 0.29 ) 

T3 67.83 ( 5.47 ) 65.50 – 70.17 66.43 ( 5.16 ) 64.32 – 68.54 1.41 ( 0.35 ) 

T4 66.29 ( 5.36 ) 64.00 – 68.59 64.44 ( 5.27 ) 62.29 – 66.59 1.85 ( 0.27 ) 

T5 66.96 ( 5.64 ) 64.55 – 69.38 65.09 ( 4.94 ) 63.07 – 67.11 1.87 ( 0.12 ) 

T6 67.56 ( 4.39 ) 65.69 – 69.44 65.93 ( 5.17 ) 63.82 – 68.05 1.63 ( 0.07 ) 

T7 66.75 ( 5.22 ) 64.52 – 68.98 65.97 ( 6.59 ) 63.28 – 68.66 0.78 ( 0.11 ) 

T8 65.27 ( 5.44 ) 62.95 – 67.60 62.48 ( 8.99 ) 58.80 – 66.15 2.80 ( 0.15 ) 

T9 63.90 ( 5.43 ) 61.58 – 66.22 63.32 ( 4.87 ) 61.33 – 65.31 0.58 ( 0.43 ) 

T10 61.62 ( 4.93 ) 59.51 – 63.73 59.74 ( 4.83 ) 57.77 – 61.72 1.88 ( 0.09 ) 

T11 55.18 ( 9.17 ) 51.26 – 59.10 54.44 ( 4.59 ) 52.56 – 56.31 0.74 ( 0.40 ) 

T12 50.92 ( 6.04 ) 48.34 – 53.50 50.46 ( 5.99 ) 48.01 – 52.91 0.46 ( 0.38 ) 

L1 77.80 ( 10.84 ) 73.16 – 82.44 75.06 ( 8.24 ) 71.70 – 78.43 2.74 ( 0.79 ) 

L2 86.36 ( 10.19 ) 82.00 – 90.72 82.99 ( 6.54 ) 80.32 – 85.66 3.37 ( 0.56 ) 

L3 93.73 ( 8.71 ) 90.01 – 97.46 92.29 ( 7.87 ) 89.08 – 95.51 1.44 ( 0.39 ) 

L4 92.61 ( 9.01 ) 88.75 – 96.46 91.88 ( 8.66 ) 88.34 – 95.42 0.73 ( 0.48 ) 

L5 96.77 ( 8.63 ) 93.08 – 100.46 97.57 ( 8.91 ) 93.93 – 101.21 0.80 ( 0.89 ) 

Figure G.4 - Comparison of transverse process width measurements between human old and young vertebrae, 
showing old and young mean measurements with standard deviations (SD), and 95% confidence intervals, and the 
mean difference between old and young transverse process width. 
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<57  ≥57  
Mean Difference (p) 

Mean (SD) 95%CI Mean (SD) 95%CI 

T1 23.27 ( 1.59 ) 22.59 – 23.95 23.18 ( 1.78 ) 22.46 – 23.91 0.08 ( 0.98 ) 

T2 20.21 ( 1.21 ) 19.70 – 20.73 19.65 ( 1.53 ) 19.02 – 20.27 0.56 ( 0.75 ) 

T3 19.37 ( 1.48 ) 18.74 – 20.01 18.42 ( 1.77 ) 17.69 – 19.14 0.96 ( 0.19 ) 

T4 18.78 ( 1.61 ) 18.09 – 19.47 17.48 ( 1.69 ) 16.79 – 18.18 1.30 ( 0.19 ) 

T5 18.40 ( 1.62 ) 17.71 – 19.09 17.20 ( 1.67 ) 16.51 – 17.88 1.20 ( 0.23 ) 

T6 18.90 ( 1.89 ) 18.10 – 19.71 17.41 ( 1.82 ) 16.67 – 18.16 1.49 ( 0.23 ) 

T7 18.87 ( 2.34 ) 17.87 – 19.87 17.74 ( 2.06 ) 16.89 – 18.58 1.13 ( 0.50 ) 

T8 19.46 ( 2.25 ) 18.50 – 20.43 18.06 ( 2.36 ) 17.10 – 19.03 1.40 ( 0.21 ) 

T9 19.79 ( 2.48 ) 18.73 – 20.85 18.31 ( 2.25 ) 17.38 – 19.23 1.49 ( 0.17 ) 

T10 20.12 ( 2.41 ) 19.09 – 21.15 18.98 ( 2.23 ) 18.07 – 19.89 1.14 ( 0.22 ) 

T11 22.16 ( 3.02 ) 20.87 – 23.45 20.87 ( 2.61 ) 19.80 – 21.94 1.30 ( 0.27 ) 

T12 24.62 ( 2.37 ) 23.60 – 25.63 24.30 ( 2.64 ) 23.22 – 25.38 0.32 ( 0.86 ) 

L1 24.99 ( 2.43 ) 23.95 – 26.03 25.57 ( 2.27 ) 24.64 – 26.50 0.58 ( 0.13 ) 

L2 24.71 ( 2.66 ) 23.57 – 25.85 24.73 ( 2.44 ) 23.73 – 25.73 0.02 ( 0.76 ) 

L3 25.34 ( 2.35 ) 24.34 – 26.35 25.64 ( 2.81 ) 24.49 – 26.79 0.30 ( 0.69 ) 

L4 26.41 ( 2.82 ) 25.20 – 27.62 26.60 ( 2.68 ) 25.50 – 27.69 0.19 ( 0.74 ) 

L5 30.72 ( 3.59 ) 29.19 – 32.26 29.99 ( 2.48 ) 28.98 – 31.01 0.73 ( 0.24 ) 

Figure G.5 - Comparison of spinal canal width measurements between human old and young vertebrae, showing 
old and young mean measurements with standard deviations (SD), and 95% confidence intervals, and the mean 
difference between old and young spinal canal width. 
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<57  ≥57  
Mean Difference (p) 

Mean (SD) 95%CI Mean (SD) 95%CI 

T1 15.76 ( 1.37 ) 15.17 – 16.35 15.39 ( 1.55 ) 14.76 – 16.02 0.37 ( 0.83 ) 

T2 16.11 ( 1.45 ) 15.49 – 16.73 16.45 ( 1.24 ) 15.94 – 16.95 0.34 ( 0.74 ) 

T3 16.66 ( 1.42 ) 16.05 – 17.27 16.81 ( 1.08 ) 16.37 – 17.25 0.15 ( 0.66 ) 

T4 17.03 ( 1.71 ) 16.30 – 17.76 16.58 ( 1.52 ) 15.96 – 17.20 0.45 ( 0.39 ) 

T5 17.05 ( 1.84 ) 16.26 – 17.83 16.34 ( 1.21 ) 15.85 – 16.83 0.71 ( 0.23 ) 

T6 17.05 ( 1.79 ) 16.29 – 17.82 16.21 ( 1.12 ) 15.75 – 16.67 0.84 ( 0.57 ) 

T7 17.39 ( 1.69 ) 16.66 – 18.11 16.38 ( 1.34 ) 15.83 – 16.93 1.01 ( 0.49 ) 

T8 16.99 ( 1.72 ) 16.26 – 17.73 16.04 ( 1.57 ) 15.39 – 16.68 0.96 ( 0.58 ) 

T9 16.84 ( 1.87 ) 16.04 – 17.64 16.06 ( 1.92 ) 15.27 – 16.84 0.78 ( 0.74 ) 

T10 16.52 ( 1.49 ) 15.88 – 17.16 15.72 ( 1.25 ) 15.20 – 16.23 0.80 ( 0.63 ) 

T11 16.84 ( 2.88 ) 15.61 – 18.08 16.42 ( 1.53 ) 15.80 – 17.05 0.42 ( 0.30 ) 

T12 18.97 ( 1.74 ) 18.23 – 19.72 18.59 ( 1.76 ) 17.87 – 19.31 0.38 ( 0.29 ) 

L1 18.51 ( 1.49 ) 17.88 – 19.15 18.81 ( 1.60 ) 18.16 – 19.46 0.30 ( 0.54 ) 

L2 17.03 ( 1.66 ) 16.32 – 17.74 16.75 ( 1.28 ) 16.22 – 17.27 0.28 ( 0.78 ) 

L3 17.29 ( 2.11 ) 16.39 – 18.19 16.81 ( 1.53 ) 16.19 – 17.44 0.48 ( 0.58 ) 

L4 16.93 ( 1.96 ) 16.10 – 17.77 16.28 ( 1.81 ) 15.54 – 17.02 0.65 ( 0.84 ) 

L5 18.15 ( 2.38 ) 17.13 – 19.17 17.18 ( 2.33 ) 16.23 – 18.13 0.97 ( 0.73 ) 

Figure G.6 - Comparison of spinal canal length measurements between human old and young vertebrae, showing 
old and young mean measurements with standard deviations (SD), and 95% confidence intervals, and the mean 
difference between old and young spinal canal length. 
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Figure G.7 - Comparison of total anteroposterior vertebral length measurements between human old and young 
vertebrae, showing old and young mean measurements with standard deviations (SD), and 95% confidence 
intervals, and the mean difference between old and young total anteroposterior vertebral length. 

  

<57  ≥57  
Mean Difference (p) 

Mean (SD) 95%CI Mean (SD) 95%CI 

T1 69.96 ( 5.92 ) 67.43 – 72.49 66.57 ( 12.07 ) 61.63 – 71.50 3.39 ( 0.38 ) 

T2 70.76 ( 4.92 ) 68.66 – 72.87 70.51 ( 5.01 ) 68.46 – 72.55 0.25 ( 0.89 ) 

T3 73.14 ( 4.87 ) 71.06 – 75.23 71.93 ( 4.84 ) 69.95 – 73.91 1.21 ( 0.67 ) 

T4 75.09 ( 5.04 ) 72.93 – 77.25 73.14 ( 5.31 ) 70.97 – 75.31 1.94 ( 0.87 ) 

T5 78.68 ( 7.17 ) 75.61 – 81.75 76.23 ( 5.10 ) 74.15 – 78.32 2.44 ( 0.68 ) 

T6 78.98 ( 5.27 ) 76.72 – 81.23 77.47 ( 4.63 ) 75.58 – 79.37 1.50 ( 0.41 ) 

T7 81.13 ( 6.26 ) 78.45 – 83.80 78.68 ( 5.58 ) 76.40 – 80.96 2.45 ( 0.17 ) 

T8 79.51 ( 8.60 ) 75.83 – 83.19 80.84 ( 5.07 ) 78.77 – 82.91 1.33 ( 0.97 ) 

T9 81.86 ( 5.77 ) 79.39 – 84.33 80.99 ( 4.58 ) 79.12 – 82.86 0.87 ( 0.32 ) 

T10 80.81 ( 5.96 ) 78.26 – 83.36 80.21 ( 4.60 ) 78.33 – 82.09 0.60 ( 0.42 ) 

T11 79.80 ( 7.17 ) 76.73 – 82.86 78.95 ( 5.03 ) 76.89 – 81.00 0.85 ( 0.34 ) 

T12 83.58 ( 7.50 ) 80.37 – 86.79 82.21 ( 6.27 ) 79.65 – 84.77 1.37 ( 0.37 ) 

L1 87.98 ( 7.91 ) 84.60 – 91.37 85.63 ( 12.40 ) 80.57 – 90.70 2.35 ( 0.24 ) 

L2 91.49 ( 7.76 ) 88.17 – 94.81 92.39 ( 6.29 ) 89.82 – 94.96 0.90 ( 0.73 ) 

L3 92.77 ( 7.69 ) 89.48 – 96.05 92.99 ( 6.64 ) 90.28 – 95.71 0.23 ( 0.84 ) 

L4 90.25 ( 7.06 ) 87.23 – 93.27 91.44 ( 6.49 ) 88.78 – 94.09 1.19 ( 0.58 ) 

L5 84.46 ( 6.24 ) 81.79 – 87.13 85.15 ( 4.91 ) 83.14 – 87.16 0.69 ( 0.36 ) 
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<57  ≥57  
Mean Difference (p) 

Mean (SD) 95%CI Mean (SD) 95%CI 

T1 8.99 ( 1.17 ) 8.49 – 9.49 9.23 ( 1.50 ) 8.62 – 9.85 0.25 ( 0.60 ) 

T2 7.70 ( 1.29 ) 7.15 – 8.25 7.34 ( 1.03 ) 6.92 – 7.77 0.35 ( 0.37 ) 

T3 5.84 ( 1.39 ) 5.24 – 6.43 5.75 ( 1.34 ) 5.20 – 6.30 0.09 ( 0.55 ) 

T4 5.04 ( 1.43 ) 4.43 – 5.65 5.27 ( 1.37 ) 4.71 – 5.83 0.23 ( 0.69 ) 

T5 5.40 ( 1.22 ) 4.88 – 5.92 5.25 ( 1.34 ) 4.70 – 5.80 0.15 ( 0.62 ) 

T6 5.62 ( 1.27 ) 5.08 – 6.16 5.34 ( 0.97 ) 4.94 – 5.74 0.28 ( 0.11 ) 

T7 6.21 ( 2.01 ) 5.35 – 7.08 6.15 ( 1.93 ) 5.36 – 6.94 0.06 ( 0.93 ) 

T8 6.05 ( 1.58 ) 5.38 – 6.73 5.87 ( 1.09 ) 5.43 – 6.32 0.18 ( 0.19 ) 

T9 6.47 ( 1.63 ) 5.77 – 7.17 6.33 ( 1.26 ) 5.82 – 6.85 0.14 ( 0.37 ) 

T10 6.96 ( 1.31 ) 6.40 – 7.52 7.16 ( 2.00 ) 6.34 – 7.98 0.20 ( 0.79 ) 

T11 8.24 ( 1.58 ) 7.56 – 8.91 8.31 ( 2.26 ) 7.38 – 9.23 0.07 ( 0.39 ) 

T12 8.59 ( 2.25 ) 7.62 – 9.55 8.05 ( 1.88 ) 7.28 – 8.82 0.54 ( 0.05 ) 

L1 7.27 ( 1.15 ) 6.77 – 7.76 7.40 ( 1.82 ) 6.66 – 8.15 0.14 ( 0.08 ) 

L2 8.60 ( 1.81 ) 7.82 – 9.37 8.30 ( 1.48 ) 7.70 – 8.91 0.30 ( 0.11 ) 

L3 10.27 ( 1.96 ) 9.43 – 11.11 10.06 ( 1.56 ) 9.43 – 10.70 0.20 ( 0.14 ) 

L4 12.24 ( 2.03 ) 11.37 – 13.11 12.20 ( 1.65 ) 11.53 – 12.88 0.04 ( 0.69 ) 

L5 16.04 ( 2.15 ) 15.12 – 16.96 15.97 ( 2.16 ) 15.09 – 16.85 0.07 ( 0.29 ) 

 

 

 

 

 

 

 

Figure G.8 - Comparison of right pedicle width measurements between human old and young vertebrae, showing 
old and young mean measurements with standard deviations (SD), and 95% confidence intervals, and the mean 
difference between old and young right pedicle width. 
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<57  ≥57  
Mean Difference (p) 

Mean (SD) 95%CI Mean (SD) 95%CI 

T1 9.55 ( 1.28 ) 9.00 – 10.10 9.88 ( 1.07 ) 9.44 – 10.31 0.33 ( 0.29 ) 

T2 11.35 ( 1.24 ) 10.82 – 11.88 11.17 ( 1.12 ) 10.72 – 11.63 0.18 ( 0.92 ) 

T3 11.87 ( 1.25 ) 11.34 – 12.41 11.70 ( 1.07 ) 11.26 – 12.14 0.17 ( 0.47 ) 

T4 12.13 ( 1.43 ) 11.51 – 12.74 11.79 ( 1.23 ) 11.29 – 12.29 0.34 ( 0.22 ) 

T5 12.18 ( 1.62 ) 11.49 – 12.88 12.09 ( 1.50 ) 11.47 – 12.70 0.10 ( 0.77 ) 

T6 12.14 ( 1.40 ) 11.54 – 12.74 12.06 ( 1.17 ) 11.59 – 12.54 0.08 ( 0.90 ) 

T7 11.84 ( 1.82 ) 11.07 – 12.62 11.98 ( 1.13 ) 11.52 – 12.44 0.14 ( 0.88 ) 

T8 12.62 ( 1.27 ) 12.08 – 13.17 12.65 ( 1.27 ) 12.13 – 13.17 0.03 ( 0.40 ) 

T9 13.19 ( 1.32 ) 12.62 – 13.75 13.26 ( 1.40 ) 12.68 – 13.83 0.07 ( 0.47 ) 

T10 15.09 ( 1.25 ) 14.56 – 15.63 14.76 ( 1.17 ) 14.28 – 15.24 0.33 ( 0.87 ) 

T11 16.37 ( 1.17 ) 15.87 – 16.87 16.12 ( 0.86 ) 15.77 – 16.47 0.25 ( 0.77 ) 

T12 16.52 ( 0.97 ) 16.11 – 16.94 16.21 ( 1.10 ) 15.76 – 16.66 0.31 ( 0.65 ) 

L1 15.76 ( 1.47 ) 15.13 – 16.39 15.12 ( 1.39 ) 14.55 – 15.68 0.64 ( 0.61 ) 

L2 15.45 ( 1.60 ) 14.77 – 16.14 14.56 ( 1.27 ) 14.04 – 15.07 0.90 ( 0.12 ) 

L3 14.20 ( 1.93 ) 13.37 – 15.02 14.21 ( 1.01 ) 13.80 – 14.63 0.02 ( 0.78 ) 

L4 12.94 ( 1.58 ) 12.26 – 13.61 12.99 ( 1.24 ) 12.49 – 13.50 0.05 ( 0.35 ) 

L5 13.66 ( 1.84 ) 12.87 – 14.45 12.86 ( 1.92 ) 12.07 – 13.64 0.80 ( 0.23 ) 

 

 

 

 

 

 

  

Figure G.9 - Comparison of right pedicle height measurements between human old and young vertebrae, showing 
old and young mean measurements with standard deviations (SD), and 95% confidence intervals, and the mean 
difference between old and young right pedicle height. 
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<57 >55 
Mean Difference (p) 

Mean (SD) 95%CI Mean (SD) 95%CI 

T1 9.01 ( 1.49 ) 8.37 – 9.65 9.18 ( 1.43 ) 8.60 – 9.76 0.17 ( 0.58 ) 

T2 7.75 ( 1.44 ) 7.14 – 8.37 7.40 ( 1.14 ) 6.94 – 7.87 0.35 ( 0.72 ) 

T3 5.72 ( 1.30 ) 5.17 – 6.28 5.86 ( 1.38 ) 5.29 – 6.42 0.14 ( 0.82 ) 

T4 5.25 ( 1.28 ) 4.70 – 5.79 5.33 ( 1.15 ) 4.86 – 5.80 0.08 ( 0.71 ) 

T5 5.41 ( 1.53 ) 4.76 – 6.07 5.55 ( 1.57 ) 4.91 – 6.19 0.14 ( 0.87 ) 

T6 5.37 ( 1.48 ) 4.73 – 6.00 5.60 ( 1.39 ) 5.03 – 6.17 0.23 ( 0.60 ) 

T7 6.05 ( 1.88 ) 5.24 – 6.85 5.97 ( 1.79 ) 5.24 – 6.70 0.08 ( 1.00 ) 

T8 5.88 ( 1.90 ) 5.07 – 6.69 5.79 ( 1.26 ) 5.28 – 6.31 0.09 ( 0.22 ) 

T9 6.08 ( 1.63 ) 5.39 – 6.78 6.28 ( 1.49 ) 5.68 – 6.89 0.20 ( 0.51 ) 

T10 6.81 ( 1.60 ) 6.12 – 7.49 7.16 ( 2.07 ) 6.32 – 8.01 0.36 ( 0.78 ) 

T11 8.25 ( 1.81 ) 7.47 – 9.03 8.10 ( 2.16 ) 7.22 – 8.98 0.15 ( 0.32 ) 

T12 8.64 ( 1.86 ) 7.85 – 9.44 8.27 ( 1.98 ) 7.46 – 9.08 0.37 ( 0.21 ) 

L1 8.11 ( 1.68 ) 7.39 – 8.83 7.59 ( 1.72 ) 6.89 – 8.29 0.52 ( 0.06 ) 

L2 8.56 ( 1.93 ) 7.73 – 9.38 8.37 ( 1.63 ) 7.71 – 9.04 0.19 ( 0.09 ) 

L3 10.02 ( 1.64 ) 9.32 – 10.72 9.94 ( 1.50 ) 9.33 – 10.56 0.08 ( 0.08 ) 

L4 11.98 ( 1.99 ) 11.13 – 12.83 12.09 ( 1.62 ) 11.43 – 12.75 0.11 ( 0.68 ) 

L5 15.73 ( 2.35 ) 14.72 – 16.73 15.62 ( 1.94 ) 14.83 – 16.42 0.11 ( 0.43 ) 

Figure G.10 - Comparison of left pedicle width measurements between human old and young vertebrae, showing 
old and young mean measurements with standard deviations (SD), and 95% confidence intervals, and the mean 
difference between old and young left pedicle width. 



277 
 

 

 

 

 

 

  

<57 >55 
Mean Difference (p) 

Mean (SD) 95%CI Mean (SD) 95%CI 

T1 9.86 ( 1.29 ) 9.31 – 10.41 9.94 ( 0.93 ) 9.56 – 10.32 0.08 ( 0.36 ) 

T2 11.54 ( 1.17 ) 11.04 – 12.04 11.34 ( 1.15 ) 10.87 – 11.81 0.20 ( 0.75 ) 

T3 12.13 ( 1.40 ) 11.53 – 12.73 12.08 ( 1.37 ) 11.52 – 12.64 0.05 ( 0.37 ) 

T4 12.03 ( 1.21 ) 11.52 – 12.55 11.86 ( 1.07 ) 11.42 – 12.29 0.18 ( 0.44 ) 

T5 12.05 ( 1.31 ) 11.49 – 12.62 12.01 ( 1.51 ) 11.39 – 12.63 0.05 ( 0.62 ) 

T6 12.06 ( 1.34 ) 11.49 – 12.63 12.09 ( 1.47 ) 11.49 – 12.69 0.03 ( 0.88 ) 

T7 11.72 ( 2.11 ) 10.81 – 12.62 12.24 ( 1.18 ) 11.75 – 12.72 0.52 ( 0.43 ) 

T8 12.36 ( 1.27 ) 11.82 – 12.91 12.75 ( 1.38 ) 12.18 – 13.31 0.38 ( 0.39 ) 

T9 13.16 ( 1.33 ) 12.59 – 13.73 13.25 ( 1.33 ) 12.71 – 13.80 0.09 ( 0.51 ) 

T10 15.06 ( 1.20 ) 14.54 – 15.57 15.14 ( 0.86 ) 14.78 – 15.49 0.08 ( 0.38 ) 

T11 16.39 ( 1.16 ) 15.90 – 16.89 15.88 ( 0.86 ) 15.52 – 16.23 0.52 ( 0.45 ) 

T12 16.58 ( 0.98 ) 16.17 – 17.00 16.08 ( 0.91 ) 15.71 – 16.45 0.50 ( 0.15 ) 

L1 15.74 ( 1.20 ) 15.23 – 16.26 15.00 ( 1.33 ) 14.46 – 15.55 0.74 ( 0.23 ) 

L2 14.90 ( 1.81 ) 14.12 – 15.67 14.11 ( 1.47 ) 13.51 – 14.71 0.79 ( 0.12 ) 

L3 13.62 ( 2.35 ) 12.62 – 14.63 13.79 ( 1.13 ) 13.32 – 14.25 0.16 ( 0.63 ) 

L4 13.35 ( 1.86 ) 12.56 – 14.15 12.93 ( 1.19 ) 12.45 – 13.42 0.42 ( 0.20 ) 

L5 13.68 ( 2.57 ) 12.58 – 14.78 13.00 ( 1.80 ) 12.26 – 13.74 0.68 ( 0.44 ) 

 

 

 

  

Figure G.11 - Comparison of left pedicle height measurements between human old and young vertebrae, showing 
old and young mean measurements with standard deviations (SD), and 95% confidence intervals, and the mean 
difference between old and young left pedicle height. 
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