
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 1 

Tribological Behaviors of Vacuum Hot-Pressed Ceramic 

Composites with Enhanced Cyclic Oxidation and Corrosion 

Resistance 

 

Xuewu Li 
a,b,c

, Jingsong Liang 
a
, Tian Shi 

a,
*, Danni Yang

 a
, Xinchun Chen

 b,
*, 

Chuanwei Zhang
 a
, Zhaohui Liu 

d
, Dianzi Liu 

e
, Qiaoxin Zhang 

d,
* 

 

a
 School of Mechanical Engineering, Xi’an University of Science and Technology, 

Xi’an 710054, China
 

b
 State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China 

c
 Shandong Key Laboratory of Corrosion Science, Institute of Oceanology, Chinese 

Academy of Sciences, Qingdao 266071, China 

d
 School of Mechanical and Electronic Engineering, Wuhan University of 

Technology, 122 Luoshi Road, Wuhan 430070, China 

e
 Engineering Division, Faculty of Science, University of East Anglia, Norwich NR4 

7TJ, England 

 

 

 

*Corresponding authors. 

E-mail addresses: tianshi@xust.edu.cn (T. Shi), chenxc1213@mail.tsinghua.edu.cn 

(X.C. Chen), zhangqx@whut.edu.cn (Q.X. Zhang) 

*Manuscript
Click here to view linked References

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of East Anglia digital repository

https://core.ac.uk/display/287602456?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:tianshi@xust.edu.cn
mailto:chenxc1213@mail.tsinghua.edu.cn
mailto:zhangqx@whut.edu.cn
http://ees.elsevier.com/ceri/viewRCResults.aspx?pdf=1&docID=102997&rev=3&fileID=1728448&msid={F774FD0E-3F3E-4956-8DA1-71734FAB249E}


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 2 

ABSTRACT 

Wear failure is a bottleneck restricting applications and developments of Ti3SiC2 

ceramic. Particles reinforced composites provide an effective strategy to resist wear. 

In this work, Ti(C,N) particles are used as reinforcements, and Ti3SiC2/Ti(C,N) 

composite is fabricated by vacuum hot-pressing. Scanning electron microscopy 

(SEM), energy dispersive spectrometer (EDS) and X-ray diffract meter (XRD) are 

used to investigate composite morphologies, compositions and phases before and after 

hot-pressing. Meanwhile, high-temperature cyclic oxidations and tribological 

behaviors of composites under various loads, speeds and Ti(C,N) contents are 

characterized. Results show that as-prepared composite is relatively dense, and 

Ti(C,N) addition plays an important role in particle reinforcement of Ti3SiC2. 

Meanwhile, its hardness, wear resistance, cyclic oxidation resistance and corrosion 

resistance are significantly improved. In addition, wear characteristics and 

mechanisms of composites under different loads and speeds are analyzed in details. 

This work shows great potentials in developing engineering applications of ceramics, 

especially in high-temperature, oxidizing, frictional and corrosive environments. 

 

Keywords: Ceramic material; Wear resistance; Cyclic oxidation; Particle 

reinforcement; Corrosion resistance 
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1. Introduction 

Ti3SiC2 ceramic is widely used in high-temperature structural components [1,2], 

electrical contact parts [3-5], welding parts [6], nuclear components [7,8], rotating 

equipments [9,10] and anti-corrosion layers [11,12] due to excellent physical, 

chemical and mechanical behaviors [13,14]. Ti3SiC2 has prominent metallic properties 

[15], such as good thermal conductivity, electrical conductivity and ductility at room 

temperature [16]. It also possesses excellent ceramic behaviors, such as high yield 

strength, high melt point, high thermal stability, thermal-shock resistance and high 

strength [17]. More important, it can be processed by traditional machining, which is 

different from carbide ceramic [18]. Meanwhile, it has lower friction coefficient and 

superior self lubrication than molybdenum disulfide and graphite [19,20]. Such 

special behaviors make Ti3SiC2 widely used in electromechanical, instrumental, 

metallurgical, chemical, automotive, marine, national-defense and aerospace fields. 

Ti3SiC2 also shows good high-temperature oxidation resistance and cyclic oxidation 

resistance. Li et al. [21] have investigated oxidability of Ti3SiC2 after oxidizing at 

1000-1500 °C for 20 h. Results show double-layer films with various compositions 

form on surface. The outer layer composes of TiO2, and the inner composes of SiO2 

and TiO2. Both dense films are difficult to fall off at high temperature, and also 

display excellent oxidation resistance. Liu et al. [22] have discussed cyclic oxidation 

resistance of Ti3SiC2. It is found that obvious oxide layer composing of titanium 

dioxides form on surface after cyclic oxidation at 1100 °C. Furthermore, few cracks 

develop on oxide layer suggesting that Ti3SiC2 acts out excellent resistance to 
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high-temperature cyclic oxidation. 

Under dry friction condition, contact regions of Ti3SiC2 ceramic only occur on its 

protrusions [23-25]. Elastic deformation of contact regions gradually turns into plastic 

deformation, resulting in continuously increased contact areas. Such ceramic suffers 

severe adhesive wear and aggravated abrasion due to its poor plastic deformation with 

growth of friction speed and load [26-28]. Generally, friction coefficient of Ti3SiC2 is 

larger than 0.5 in case of dry friction [29,30]. Friction heat gradually accumulates on 

ceramic, causing a continuous temperature rise on grinding surface [31,32]. As a 

result, cracks and grain fractures develop on ceramic under such heat effect. In 

addition, micro pores inevitably occur on Ti3SiC2, which brings about stress 

concentration, reduced ceramic strength and hardness [33]. Hence, wear resistance of 

Ti3SiC2 ceramic at high temperature is seriously threatened, which limits its 

applications in engineering fields. 

Ti(C,N) is a promising ceramic with prominent physical, chemical and mechanical 

properties, such as acid-alkali resistance, high melting point, high strength, high 

hardness, good chemical stability, corrosion resistance and wear resistance [34,35], 

which exactly compensates for shortcomings of Ti3SiC2. Herein, Ti3SiC2 powders are 

prepared by pressureless sintering at 1400 °C. Then with the aid of vacuum 

hot-pressing, Ti3SiC2/Ti(C,N) material is achieved. Results show that as-prepared 

composite exhibits superior resistances to wear, oxidation and corrosion. This work 

sheds positive insights in fabricating multifunctional ceramic composites for fulfilling 

engineering needs that traditional materials cannot meet under high-temperature, 
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oxidizing, frictional and corrosive environments. 

2. Materials and methods 

2.1 Materials 

Table 1 shows average granularities and purities of raw materials used in this work. 

Ti, SiC, TiC, Al and Ti(C,N) powders were purchased from Haocheng Metal Co., Ltd., 

Shanghai, China. Other reagents used with analytical grades were provided by 

Shaanxi Chemical Industry Co., Ltd., Xi’an, China. 

2.2 Procedures 

Powders were mixed according to a stoichiometric ratio of 

                     n Ti :n SiC :n TiC :n Al =4:2:1:0.2. Ball milling was processed by placing mixed 

powders and absolute ethanol in a vacuum stainless steel tank installed on planetary 

ball mill. In milling process, grinding ball was made of stainless steel, ball to powder 

weight ratio was 4:1, grinding time was 24 h and rotating speed was 200 r/min. After 

milling and drying, homogeneously mixed reactants were obtained. Then reactants 

were put in an alumina crucible and sintered in a vacuum furnace (ZT-15-20, 

Chenhua Electric Furnace Co., Ltd., Shanghai, China) at 1280 °C. After grinding 

sintered products with agate bowl, Ti3SiC2 powders were achieved. 

Ti(C,N) powders with various mass fractions (5, 10, 15, 20 wt%) were mixed with 

the resultant Ti3SiC2. The maximum Ti(C,N) mass fraction of 20 wt% was achieved 

by optimizing composite hardness. After adding absolute ethanol and milling for 24 h, 

uniformly mixed slurry was achieved, and homogeneously reactants were obtained 

with further drying and passing through a 120 mesh sieve. Then compaction treatment 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 6 

was conducted by adding reactants in a circular stainless steel mold on a tablet 

machine (FYD, Sitron Precision Technology Development Co., Ltd., Tianjin, China) 

with 30 MPa molding pressure and 4% paraffin molding agent. After drying in air, 

dewaxing was proceeded in an argon atmosphere furnace at 400 °C for 1 h with a 

temperature rise rate of 5 °C/min. Then dewaxed mixture was placed in a vacuum 

carbon tube furnace and sintered with a temperature rise rate of 10 °C/min at 1250, 

1300, 1350 and 1400 °C. The maximum sintering temperature of 1400 °C was 

determined by optimizing composite hardness. Heat preservation was kept for 1 h 

after sintering. Finally, Ti3SiC2/Ti(C,N) composite was achieved after cooling in 

vacuum condition. 

2.3 Characterization 

X-ray diffract meter (XRD, D/MAX-RB, Japan), scanning electron microscopy 

(SEM, JSM-5610LV, Japan) and energy dispersive spectrometer (EDS, Phoenix, USA) 

were used to analyze chemical phases, micro morphologies and surface compositions, 

respectively. Polarization curve and electrochemical impedance spectroscopy were 

obtained by electrochemical workstation (CHI660E, China) for characterizing 

corrosion resistances of Ti3SiC2/Ti(C,N) composites. Polarization curve was recorded 

from -0.5 to 2.5 V with 1 mV/s scan rate. Impedance spectrum was recorded with 10 

mV amplitude from 10
-2

 to 10
5
 Hz. Vickers hardness tester (HVS-1000, China) was 

used to measure sample hardness with an applied pressure of 10 N for 10 s. The final 

hardness was achieved by averaging three measurements. Measured density ( m ) of 

sample was determined using Archimedes principle [36]: 
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 m 1 2 2

A

A B
     


                                               (1) 

where 
1  and 

2  respectively referred to auxiliary liquid density and air density 

(0.0012 g/cm
3
), A  and B  denoted to sample masses in air and auxiliary liquid, 

respectively. Theoretical density (
t ) was calculated according to the composite rule 

[37]: 

a b
t

a b b a

=
+n n

 


 
                                                     (2) 

where 
a  and 

b  respectively represented theoretical densities of Ti3SiC2 and 

Ti(C,N), 
an  and 

bn  respectively indicated mass percentages of Ti3SiC2 and Ti(C,N). 

Relative density (
r ) of composite was expressed as: 

m
r

t

= 100%





                                                      (3) 

High-temperature ball-disk friction and wear tester (HT-1000, Zhongke Kaihua 

Technology Development Co., Ltd., Lanzhou, China) was used for tribological test. 

GCr15 steel ball with 5 mm diameter was used. Before test, as-prepared composite 

was polished by buffing machine, and then ultrasonically cleaned with absolute 

ethanol. The test was processed under room-temperature and dry-friction conditions 

for 20 min with 3 mm rotation radius. Comparative experiments were also conducted 

under various loads and rotation speeds. Instantaneous friction coefficient was 

measured and averaged as the final friction coefficient. Wear rate ( W ) was 

determined by weighing mass changes before and after friction test, which was related 

to mass loss (ΔM ), test load ( N ) and sliding distance ( S ): 

Δ
=

M
W

NS
                                                         (4) 
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Ti3SiC2/Ti(C,N) composite obtained from vacuum hot-pressing was cut into strips 

by wire electrical-discharge machining, then polished, ultrasonically cleaned and 

dried. Al2O3 crucible was also ultrasonically cleaned with absolute ethanol to remove 

impurities and oil stains. Ti3SiC2/Ti(C,N) composite was put in Al2O3 crucible for 

incubating at 800, 1000 and 1200 °C for 50 min in box furnace. Afterwards, it was 

cooled in drying oven for 10 min. The above process represented an oxidation cycle. 

Finally, mass changes before and after oxidation were calculated for determining 

relationships with cycle numbers and analyzing composite oxidation kinetics. 

3. Results and discussion 

3.1 Composition, structure and property of Ti3SiC2/Ti(C,N) composite 

Fig. 1 shows SEM image and XRD pattern of Ti3SiC2 powders. As seen, 

as-prepared powders display plate-like hexagonal-crystal structures, and they are 

uniformly distributed with sizes of about 5-10 μm. The main diffraction peaks in 

XRD results are corresponding to Ti3SiC2 materials. Meanwhile, a small amount of 

TiC peaks are observed, suggesting that as-prepared powders mainly compose of 

Ti3SiC2 besides slight TiC materials. 

Fig. 2a shows XRD patterns of Ti3SiC2/Ti(C,N) composites sintered at 1400 °C 

with different Ti(C,N) mass fractions. XRD patterns of Ti3SiC2/Ti(C,N) materials 

sintered with 20 wt% Ti(C,N) at various temperatures are illustrated in Fig. 2b. It is 

seen that the main components of as-prepared composites are Ti3SiC2 and Ti(C,N) 

accompanied by small amounts of SiC and TiC. Meanwhile, a relatively dense 

composite surface is achieved after sintering at 1400 °C with 20 wt% Ti(C,N), as seen 
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in Fig. 2c. Fig. 2d and e are corresponding to cross-section SEM images of the 

sample in Fig. 2c. As seen, typical plate-like structures fracturing along cleavage 

planes are Ti3SiC2 phases. It is also found that fine Ti(C,N) particles distribute in 

Ti3SiC2 matrix. 

Fig. 3a depicts measured densities and relative densities of composites sintered 

with 20 wt% Ti(C,N) at different temperatures. Clearly, relative density increases 

with sintering temperature. As temperature rises, shrinkage force generated from 

sintered body is enhanced leading to an increased material density [38]. Measured 

densities and relative densities of composites sintered at 1400 °C with various Ti(C,N) 

mass fractions are displayed in Fig. 3b. As seen, both densities increase with Ti(C,N) 

content. Since Ti(C,N) density is higher than that of Ti3SiC2, composite density 

increases as Ti(C,N) content rises. 

Fig. 4a displays the relationship between sintering temperature and micro hardness 

of Ti3SiC2/Ti(C,N) composites with 20 wt% Ti(C,N). It is seen that composite 

hardness increases with sintering temperature. As mentioned above, sample density 

showing positive correlation with hardness enhances with sintering temperature, so 

composite hardness also increases with temperature. However, composite hardness 

decreases when sintering temperature achieves 1450 °C. Such an exorbitant 

temperature makes Ti(C,N) particles gather in molten body, resulting in uneven 

heating of ceramic composite. Then composite hardness decreases under actions of 

reinforcement aggregation and thermal runaway. Therefore, the maximum sintering 

temperature of 1400 °C can be finally determined by optimizing composite hardness. 
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Fig. 4b exhibits composite hardness sintered at 1400 °C with different Ti(C,N) mass 

fractions. As seen, micro hardness increases with Ti(C,N) mass fraction. When 

Ti(C,N) mass fraction increases to 20 wt%, a greatly enhanced hardness of 6.81 GPa 

is achieved. As typical hard phases [39], the addition of Ti(C,N) ceramics acting as 

particles for reinforcing Ti3SiC2 matrix significantly increases composite hardness. 

However, composite hardness decreases when Ti(C,N) mass fraction exceeds 20 wt%. 

Exorbitant Ti(C,N) content makes melt viscosity rise and fluidity decline. As a result, 

composite porosity and impurity increase, directly leading to the decrease of 

composite density and hardness. Hence, the maximum Ti(C,N) mass fraction of 20 

wt% is achieved by optimizing composite hardness. 

3.2 Effect of Ti(C,N) content on tribological property 

Instantaneous friction coefficients versus time for composites with different Ti(C,N) 

contents at low speed (0.1 m/s) and light load (5 N) are achieved in Fig. 5a. Fig. 5b 

shows instantaneous friction coefficients versus time for composites with different 

Ti(C,N) contents at high speed (0.4 m/s) and heavy load (20 N). Comparatively, 

larger fluctuations of friction coefficients are found for high speeds and heavy loads. 

Furthermore, both fluctuation ranges of composites with high Ti(C,N) contents are 

larger than the low ones, and the same is true for friction coefficients. 

Fig. 6a and b respectively exhibit average friction coefficients and wear rates 

versus Ti(C,N) contents for composites at various speeds and loads. Under a low 

speed and light load condition, friction coefficient increases first and then decreases, 

but the corresponding wear rate decreases as Ti(C,N) content increases. Under a high 
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speed and heavy load condition, both friction coefficient and wear rate increase with 

Ti(C,N) contents. 

Under a low speed (0.1 m/s) and light load (5 N) condition, Fig. 7a and b show 

surface morphologies of frictional composites with Ti(C,N) contents of 5 and 20 wt%, 

respectively. More and deeper furrows are found in Fig. 7a, suggesting that low 

Ti(C,N) content is easy to develop plastic deformation on composite for its inadequate 

material hardness thereby making a poor resistance to furrows in the case of low 

speed and light load [40]. Hence, friction coefficient of composite increases and wear 

rate is large at this stage. For a high Ti(C,N) content in Fig. 7b, however, relatively 

shallow furrows are observed. When Ti(C,N) content is high, it is hard to produce 

plastic deformation on composite for its enhanced hardness thereby making a strong 

resistance to furrows. So the corresponding friction coefficient gradually decreases, 

and wear rate is small, which is consistent with the data trends in Fig. 5 and 6. 

Under a high speed (0.4 m/s) and heavy load (20 N) condition, Fig. 8a and b 

display surface morphologies of frictional composites with Ti(C,N) contents of 5 and 

20 wt%, respectively. Fig. 8c and d correspond to EDS spectra of composites in Fig. 

8a and b, respectively. Rough transfer fragments with numerous Fe elements are 

found in Fig. 8a and c. It shows that Fe elements in steel ball transfer and adhere to 

composite surface during frictional process thereby resulting in severe adhesive wear. 

When Ti(C,N) content reaches 20 wt% (Fig. 8b), composite surface is relatively 

smooth accompanied by some groove marks, transfer fragments and pits induced by 

particle detachment. Meanwhile, Fe and O elements develop on surface (Fig. 8d) 
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indicating that both adhesive wear and oxidative wear occur in frictional process. The 

increase of frictional speed will cause a sharp rise of surface temperature [41]. 

Furthermore, temperature distribution and stress distribution are uneven on such a 

rough contact surface. Therefore, for a low Ti(C,N) content, load-carrying micro 

protrusions produce plastic deformation and adhesive wear thereby resulting in low 

friction coefficient and wear rate. For a high Ti(C,N) content, it will cause adhesive 

wear and oxidative wear of micro protrusions. Under further action of frictional shear 

force, hard phases in composite are peeled off as abrasive particles, eventually leading 

to furrow formation, increased friction coefficient and wear rate, as exhibited in Fig. 5 

and 6. 

3.3 Effect of load and speed on tribological property 

Friction coefficients and wear rates versus applied loads for composites with 20 

wt% Ti(C,N) at different speeds are achieved in Fig. 9a and b, respectively. As seen, 

friction coefficients decrease with the increase of loads, but wear rates increase with 

loads at 0.1 m/s. Both friction coefficients and wear rates decrease as loads increase at 

0.2 m/s. At speeds of 0.3 and 0.4 m/s, friction coefficients and wear rates decrease 

first and then increase with loads. 

Under a heavy load condition (20 N), Fig. 10a and b display surface morphologies 

of frictional composites with 20 wt% Ti(C,N) at 0.1 and 0.2 m/s, respectively. Fig. 

10c and d respectively refer to EDS spectra of composites in Fig. 10a and b. Few 

furrows are found on composite for its high Ti(C,N) content and micro hardness, as 

shown in Fig. 10a. But transfer fragments and a small amount of film products are 
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observed on surface. More film products are also seen in Fig. 10b. The corresponding 

EDS spectrum shows that the main elements of films are Ti, Si, Al and O indicating 

mixtures of Ti, Si and Al oxides. There is also slight Fe element suggesting mild 

adhesive wear on composite surface. At 0.1 m/s, plastic deformation occurs on 

composite surface so that its friction coefficient decreases with the increase of load, 

while wear rate increases with load. Meanwhile, abrasive wear mainly occurs at this 

stage. At 0.2 m/s, more oxide films form on composite making friction coefficient and 

wear rate decrease with the increase of load. Therefore oxide film wear mainly occurs 

at this stage [42]. 

Under a rotation speed of 0.3 m/s, Fig. 11a and b show surface morphologies of 

frictional composites with 20 wt% Ti(C,N) at 5 and 15 N, respectively. Fig. 11c and d 

respectively display enlarged SEM images of Fig. 11a and b. Fig. 11e and f exhibit 

EDS spectra of composites in Fig. 11a and b, respectively. As seen, oxide films also 

form on composites. Compared with low speeds (Fig. 10), such films are more 

uniform, continuous and dense, suggesting that frictional surfaces are easier to oxidize 

as speeds increase. By observing enlarged image in Fig. 11c, oxide film covered with 

a small amount of particles is uniform and continuous at 5 N. These particles act as 

abrasive grains for forming micro grooves on film. At 15 N, cracks develop on oxide 

film (Fig. 11d), which may be fatigue cracks under cyclic stress [43]. The increase of 

load tends to destroy oxide film at 0.3 m/s. As seen in EDS spectra (Fig. 11e-f), the 

main components of oxide films on frictional surfaces are Ti, Si, O and Fe. With 

increases in speed and load, O and Fe contents raise indicating aggravated oxidation 
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on composite and intensified element transfer between friction pairs. Under low load 

conditions, friction coefficients and wear rates decrease as loads increase because of 

oxide films, which play key roles in lubricating interfaces. Meanwhile, oxide film 

wear occurs on composite. When applied load reaches 15 N, cracks develop on 

composite. As load continues to increase, composite surface is subject to severe 

adhesive wear, and oxide film is damaged. Combining with shearing action, hard 

phases in composites are peeled off to form micro pits. Hard phases also act as 

abrasive particles in friction process, and abrasive wear occurs [44,45]. As a result, 

both friction coefficient and wear rate of composites increase with loads. The above 

tribological behaviors versus applied loads at 0.3 m/s are in accordance with the 

rotation speed of 0.4 m/s. 

3.4 Oxidation resistance of Ti3SiC2/Ti(C,N) composite 

Fig. 12 shows the relationship between mass increments and oxidation cycle times 

of Ti3SiC2/Ti(C,N) composites with 20 wt% Ti(C,N) at different oxidation 

temperatures. As seen, mass increments increase with cycle times. Cyclic oxidation 

process includes three stages. The first stage corresponds to the first 5 cycles. Oxide 

film forms quickly at this stage, exhibiting a sharp oxidation process. The second 

stage is from 5 to 35 cycles, in which oxidation mass increment rate is on the decline. 

At this stage, a dense oxide film forms on composite thereby slowing down its 

oxidation rate. The third stage indicates the cycle more than 35 times. At this stage, 

mass increment tends to be stable, because oxide film on surface is too dense to carry 

out oxidation reaction [46]. 
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Fig. 13a displays XRD patterns of oxide layers on composites after 40 oxidation 

cycles at various temperatures. At 800 °C, oxide layer composes of TiO2, SiO2 and 

slight Ti3SiC2, indicating that composite has been oxidized. At 1000 °C, intensified 

TiO2 diffraction peak and weakened Ti3SiC2 peak suggest aggravated oxidation extent 

on surface. At 1200 °C, TiO2 diffraction peak is significantly enhanced, but Ti3SiC2 

peak almost disappear, demonstrating that Ti3SiC2 phase has been oxidized to form a 

thick oxide film. Fig. 13b shows XRD patterns of oxide layers on composites after 

different oxidation cycles at 1000 °C. As shown, after 5 cycles, the main phase is 

Ti3SiC2, but TiO2 peak is also observed, indicating that composite surface has been 

oxidized. After 20 cycles, the main diffraction peak is TiO2 accompanied by slight 

SiO2 and almost vanished Ti3SiC2 peak, suggesting relatively sufficient oxidation on 

composite. After 40 cycles, the distribution of diffraction peaks on surface is basically 

the same as that of 20 cycles, indicating that oxide film composition has not changed 

[47]. The above analyses are consistent with previous experimental results in Fig. 12. 

Fig. 14a-c show SEM images of oxide layers on composites after 40 oxidation 

cycles at 800, 1000 and 1200 °C, respectively. Fig. 14d and e refer to EDS spectra of 

composites in Fig. 14a and c, respectively. As seen, oxide layer thicknesses at 800, 

1000 and 1200 °C are respectively about 20-30, 70-80 and 120-130 μm, which 

increase with temperatures. It is also observed that Si element disappears and Ti 

element increases, indicating that Ti3SiC2 is continuously oxidized to form TiO2 when 

temperature rises from 800 to 1200 °C [48]. As a result, oxide layer thickens 

gradually, which is consistent with the above experimental results and analysis. 
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Fig. 15a-c exhibit cross-section SEM images of oxide layers on composites after 40 

oxidation cycles at 800, 1000 and 1200 °C, respectively. At 800 °C, Ti3SiC2 is 

oxidized to form a thin oxide film, and also its oxide grains are about 0.5 μm wide 

and 3 μm long. At 1000 °C, oxide grains display clear outlines and sharp edges, which 

is due to freely grown grains without applied pressures during sintering. Meanwhile, 

owing to different growth environments and growth rates of grains, gaps form 

between grains leading to a loose oxide film [49]. Gaps also act as diffusion channels 

of oxygen atoms thereby causing rapidly oxidized composite surface, and the 

corresponding grain size is larger than that at 800 °C. At 1200 °C, TiO2 growth 

presents a lamellar epitaxy trend, and preferred orientation is obvious suggesting that 

TiO2 crystal grows outwards. Similarly, gaps also form between grains leading to 

oxygen atom diffusions for developing oxidation reaction. Finally, a gradually 

thickened oxide film comes into being. 

3.5 Corrosion resistance of Ti3SiC2/Ti(C,N) composite 

Polarization curves recorded from -0.5 to 2.5 V with 1 mV/s scan rate for 

Ti3SiC2/Ti(C,N) composites sintered at 1400 °C with various Ti(C,N) mass fractions 

are achieved by electrochemical workstation in Fig. 16a. As seen, anode curves 

display obvious inflection points at about 0.50 V, and then go through downward 

trends. All samples also exhibit passivating characterizations. After being fitted with 

Tafel extrapolation method [50], electrochemical parameters including corrosion 

potentials and current densities are achieved in Fig. 16a. Samples with high corrosion 

potentials and low current densities generally possess weak electron transfers thereby 
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leading to superior corrosion resistances [51]. Corrosion inhibition rate ( ) is also 

used to evaluate corrosion resistances of composites: 

a b

a

100%
I I

I



                                                    (5) 

where 
aI  and 

bI  stand for corrosion current densities of samples. The equation 

indicates that when Ti(C,N) content increases to 20 wt%, a greatly enhanced 

corrosion resistance ( 86.51%  ) is achieved over Ti3SiC2 ceramic, and also 

corrosion resistances of composites increase with Ti(C,N) contents. 

To further characterize corrosion resistances of composites, electrochemical 

impedance spectra are recorded with 10 mV amplitude from 10
-2

 to 10
5
 Hz in Fig. 

16b. As seen, the largest capacitive arc for 20 wt% Ti(C,N) indicates the weakest 

charge transfer as well as greatly enhanced corrosion resistance, which is consistent 

with polarization result. On the one hand, composite density increases with Ti(C,N) 

content, and its addition acts as particles for reinforcing Ti3SiC2 matrix. On the other 

hand, as a typical hard phase, Ti(C,N) significantly improves composite hardness and 

corrosion resistance. In general, Ti(C,N) reinforcements have effectively enhanced 

wear resistance, high-temperature cyclic oxidation resistance and corrosion resistance 

of Ti3SiC2 ceramics. 

4. Conclusions 

Ti3SiC2/Ti(C,N) composites have been prepared in this work. The corresponding 

mechanical properties, tribological behaviors, high-temperature oxidation resistances 

and corrosion resistances have been investigated. The conclusions are as follows: 

(1) The main phases in vacuum hot-pressed composites are Ti3SiC2 and Ti(C,N). 
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Ti3SiC2 phase shows plate-like hexagonal-crystal structures, and Ti(C,N) phase 

exhibits granular characteristic thereby playing a role of particle reinforcement. 

Sintering temperature and Ti(C,N) content have great influences on composite density 

and hardness. Measured density, relative density and hardness of composites increase 

with sintering temperatures, and also they increase with Ti(C,N) contents. 

(2) Under rotation speeds of 0.1-0.4 m/s and applied loads of 5-20 N, friction 

coefficients of composites with 20 wt% Ti(C,N) change within a range of 0.33-0.58, 

while wear rates in a range of 0.50-4.76×10
-6

 g/Nm. Improved wear resistances of 

composites are mainly due to the increase of material hardness induced by Ti(C,N) 

additions and the formation oxide films with good lubricating properties. Surface 

films mainly compose of mixed oxides of titanium and silicon. At low speed and light 

load conditions, plastic deformation occurs on composite leading to abrasive wears. 

As loads and speeds increase, wear mechanisms convert into adhesive wears, and it 

also shows boundary lubrication friction with oxide films. 

(3) Oxidation extent of composite surface increases with temperatures and 

oxidation cycles. Cyclic oxidation process includes three stages. The first stage 

corresponds to a sharp oxidation process. At the second stage, a dense oxide film 

forms on surface thereby slowing down its oxidation rate. At the third stage, oxidation 

mass increment tends to be stable, because oxide film on surface is too dense to carry 

out oxidation reaction. Meanwhile, high-temperature grain growth is also along with 

material oxidation. 

(4) Corrosion resistances of composites increase with Ti(C,N) contents. Ti(C,N) 
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additions act as particles for reinforcing Ti3SiC2 matrix. Meanwhile, as a typical hard 

phase, Ti(C,N) reinforcement significantly improves composite hardness and 

corrosion resistance. 
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Table 1 Average granularities and purities of raw materials used in this work. 

Powder Granularity (mesh) Purity (wt.%) 

Ti 400 99.9 

TiC 400 99.9 

SiC 400 99.0 

Al 400 99.0 

Ti(C,N) 400 99.0 
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Figure Captions 

Fig. 1. SEM image and XRD pattern of Ti3SiC2 powders. 

 

Fig. 2. (a) XRD patterns of Ti3SiC2/Ti(C,N) composites sintered at 1400 °C with 

different Ti(C,N) mass fractions. (b) XRD patterns of Ti3SiC2/Ti(C,N) composites 

sintered with 20 wt% Ti(C,N) at various temperatures. (c) SEM image and (d-e) 

cross-section SEM images of Ti3SiC2/Ti(C,N) composite sintered at 1400 °C with 20 

wt% Ti(C,N). 

 

Fig. 3. (a) Measured densities and relative densities of Ti3SiC2/Ti(C,N) composites 

sintered with 20 wt% Ti(C,N) at different temperatures. (b) Measured densities and 

relative densities of Ti3SiC2/Ti(C,N) composites sintered at 1400 °C with various 

Ti(C,N) mass fractions. 

 

Fig. 4. (a) Relationship between sintering temperature and micro hardness of 

Ti3SiC2/Ti(C,N) composites with 20 wt% Ti(C,N). (b) Micro hardness of 

Ti3SiC2/Ti(C,N) composites sintered at 1400 °C with different Ti(C,N) mass 

fractions. 

 

Fig. 5. (a) Instantaneous friction coefficients versus friction time for Ti3SiC2/Ti(C,N) 

composites with different Ti(C,N) contents at a low speed of 0.1 m/s and a light load 

of 5 N. (b) Instantaneous friction coefficients versus time for Ti3SiC2/Ti(C,N) 
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composites with different Ti(C,N) contents at a high speed of 0.4 m/s and a heavy 

load of 20 N. 

 

Fig. 6. (a) Friction coefficients and (b) wear rates versus Ti(C,N) contents for 

composites at different speeds and loads. 

 

Fig. 7. SEM images of frictional composites with Ti(C,N) contents of (a) 5 wt% and 

(b) 20 wt% under a low speed (0.1 m/s) and light load (5 N) condition. 

 

Fig. 8. SEM images and EDS spectra of frictional composites with Ti(C,N) contents 

of (a, c) 5 wt% and (b, d) 20 wt% under a high speed (0.4 m/s) and heavy load (20 N) 

condition. 

 

Fig. 9. (a) Friction coefficients and (b) wear rates versus applied loads for composites 

with 20 wt% Ti(C,N) at different rotation speeds. 

 

Fig. 10. SEM images and EDS spectra of frictional composites with 20 wt% Ti(C,N) 

and 20 N load at speeds of (a, c) 0.1 m/s and (b, d) 0.2 m/s. 

 

Fig. 11. SEM images, enlarged images and EDS spectra of frictional composites with 

20 wt% Ti(C,N) and 0.3 m/s rotation speed at loads of (a, c, e) 5 N and (b, d, f) 15 N. 
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Fig. 12. Relationship between mass increments (ΔW ) and oxidation cycle times of 

Ti3SiC2/Ti(C,N) composites with 20 wt% Ti(C,N) at different oxidation temperatures. 

 

Fig. 13. (a) XRD patterns of oxide layers on Ti3SiC2/Ti(C,N) composites after 40 

oxidation cycles at different temperatures. (b) XRD patterns of oxide layers on 

Ti3SiC2/Ti(C,N) composites after various oxidation cycles at 1000 °C. 

 

Fig. 14. SEM images of oxide layers on Ti3SiC2/Ti(C,N) composites after 40 

oxidation cycles at (a) 800 °C, (b) 1000 °C and (c) 1200 °C. EDS spectra of oxide 

layers on Ti3SiC2/Ti(C,N) composites after 40 oxidation cycles at (d) 800 °C and (e) 

1200 °C. 

 

Fig. 15. Cross-section SEM images of oxide layers on Ti3SiC2/Ti(C,N) composites 

after 40 oxidation cycles at (a) 800 °C, (b) 1000 °C and (c) 1200 °C. 

 

Fig. 16. (a) Polarization curves and (b) electrochemical impedance spectra of 

Ti3SiC2/Ti(C,N) composites sintered at 1400 °C with various Ti(C,N) mass fractions 

in 3.5 wt% NaCl solution. 
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