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Abstract 

The bacterial colonization of absorbable membranes used for Guided Tissue Regeneration 

(GTR) as well as their rapid degradation that can cause their rupture, are considered the major 

reasons of clinical failure. To address this, composite membranes of polycaprolactone (PCL) and 

gelatin (Gel) loaded with ZnO-NPs (1, 3 and 6 w% relative to PCL content) were fabricated by 

electrospinning. To fabricate homogeneous fibrillar membranes, acetic acid was used as a sole 

common solvent to enhance the miscibility of PCL and Gel in the electrospinning solutions. The 

effects of ZnO-NPs in the physico-chemical, mechanical and in vitro biological properties of 

composite membranes were studied. The composite membranes showed adequate mechanical 

properties to offer a satisfactory clinical manipulation and an excellent conformability to the 

defect site while their degradation rate seems to be appropriate to allow successful regeneration 

of periodontal defect. The presence of ZnO-NPs in the nanocomposite membranes significantly 

decreased the planktonic and the biofilm growth of the Staphylococcus aureus over time. Finally, 

the viability of human osteoblasts and human gingival fibroblasts exposed to the composite 

membranes with 1 w% and 3 w% of ZnO-NPs, indicated that those membranes are not expected 

to negatively influence in the ability of periodontal cells to repopulate the defect site during GTR 

treatments. The results here obtained suggests that composite membranes of PCL and Gel, 

loaded with ZnO-NPs have the potential for being used as structurally stable GTR membranes 

with local antibacterial properties intended for enhancing the clinical treatments. 

 

 Keywords: Periodontal membranes, ZnO nanoparticles, polycaprolactone, gelatin, 

electrospinning, antibacterial properties, biocompatibility. 
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1. Introduction 

Guided Tissue Regeneration (GTR) technique is the most frequently procedure used to 

regenerate periodontal tissues defects caused by periodontal disease or trauma [1,2]. This 

surgical technique employs barrier membranes to prevent epithelial tissue growth at the bone 

defect site and allow periodontal ligament and alveolar bone cells to repopulate the bone defect 

facilitating its regeneration [1,2]. GTR membranes require being biocompatible, flexible to 

conform the site defect, and preferably, biodegradable to eliminate the need for removal 

surgery. Membranes should present suitable degradation rates matching the tissue formation to 

achieve the desired restoration. Currently, GTR membranes based on biodegradable polymers 

(mainly xenogenic collagen) are commercially available, nevertheless, those membranes present 

poor mechanical properties and high solubility in physiological conditions resulting in difficult 

clinical manipulation and early rupture at the tissue defect site during GTR treatment [3]. Another 

important challenge in GTR procedures are the infections generated by bacterial colonization at 

the membrane [4]. Post-operative infections and early membrane rupture are currently 

considered the major reasons for GTR failure in clinical applications [5,6].  

Composite membranes fabricated by electrospinning can combine the properties of their 

different components and the intrinsic morphology of electrospun materials to result in 

biological, chemical and physical favorable features for tissue engineering. The electrospinning 

technique uses electrostatic forces to produce polymeric-based fibrillar membranes with 

interconnected porosity and fibers diameters ranging from tens of nanometers to few 

micrometers [7], mimicking the morphology of the extracellular matrix (ECM) and enhancing the 

viability, adhesion and proliferation of mammalian cells [7,8].  
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Polycaprolactone (PCL) is a synthetic semi-crystalline polymer approved by the US Food 

and Drug Administration (FDA) [9]. It has excellent biocompatibility and mechanical stability; 

however, its hydrophobic nature and lacking of biologically active functional groups limits its 

ability to promote cell adhesion, proliferation and migration [10]. On the other hand, gelatin (Gel) 

is a natural polymer derived from the partial hydrolysis of collagen, which is the main component 

of ECM, including periodontal connective tissue ECM [11,12]. It displays a good biological 

response since it has some of the functional groups present in collagen but produces lower 

immunogenicity and antigenicity than collagen [13–15]. Nonetheless, Gel dissolution and fast 

biodegradation in physiological conditions make it mechanically unstable and restrict its use in 

GTR membranes [10,16,17]. Blends of PCL and Gel can combine the intrinsic properties of both 

polymers resulting in materials with biologically favorable properties, specially blends with 30 

w% Gel concentrations or higher [15,18,19], and modulated biodegradation rates, overcoming 

the respective disadvantages of PCL and Gel themselves [14,18–21].  

GTR membranes with local antibacterial properties are expected to reduce the risk of 

infections allowing a bacteria-free environment for appropriate tissue regeneration [16]. Several 

polymeric membranes that can deliver antibiotics at the defect site have been investigated as an 

alternative to avoid infections during GTR procedures [22–24]. However, the use of antibiotics 

could increase the risk of developing antibiotics-resistant bacteria which is considered an 

important global problem [25]. Recently, the use of antibacterial nanoparticles (NPs) represents 

a promising strategy to face the increasing emergence of antibiotic-resistant bacteria [26]. 

Particularly, zinc oxide nanoparticles (ZnO-NPs) are “generally recognized as safe” by the FDA 

(21CFR182.8991) and have demonstrated antibacterial activity against a wide variety of bacteria, 
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including antibiotics-resistant strains [26–30]. By using the electrospinning technique, NPs can 

be embedded into polymeric matrices, controlling the undesirable burst release of NPs into the 

organism and taking advantage of the inherent high surface-area-to-volume-ratio of electrospun 

fibrillar membranes to maintain a high surface exposure of the NPs and consequently a high 

antibacterial activity [31]. A study conducted by E. A. Münchow et al. reported the antibacterial 

efficacy of PCL-Gel polymeric electrospun membranes loaded with ZnO-NPs against two oral 

bacteria; their results showed a clear inhibition of bacterial growth using ZnO-NPs concentrations 

of 5, 15 and 30 w% (relative to the total polymer weight) and a relatively good biocompatibility 

using human dental pulp stem cells [32]. However, despite NPs with antibacterial properties are 

promising therapeutic agents, there are still concerns by the possible long-term side effects 

generated by an excessive release of NPs into human tissues [33]. To address this, we fabricated 

electrospun composite fibers of PCL and Gel loaded with ZnO-NPs (PCL-G-Zn membranes) in low 

concentrations (1, 3 and 6 w%) using acetic acid as a green the sole common-solvent and aiming 

to develop biocompatible, biodegradable and mechanically stable membranes with local 

antibacterial properties and lower NPs concentrations. Degradation, water wettability, 

mechanical properties and thermal properties of PCL-G-Zn membranes were studied in terms of 

their micromorphology, atomic structure and elemental chemical composition. The ability of the 

PCL-G-Zn membranes for inhibiting planktonic bacterial growth and bacterial biofilm formation 

against Staphylococcus aureus (S. aureus) was studied. The ability of the membranes to sustain 

periodontal cells viability was evaluated exposing human osteoblasts (hFOB) and gingival 

fibroblast (hGF-1) to the membranes lixiviates. 
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2. Materials and Methods 

2.1. Materials.  

Polycaprolactone (PCL; Mn = 80,000 Da), Zinc oxide nanoparticles (ZnO-NPs), MTT ([3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]) (MTT), 2-propanol 99% (ISO), dimethyl 

sulfoxide (DMSO), menadione and hemin were purchased from Sigma-Aldrich. Glacial acetic acid 

(AcAc; 99.5%) and Gelatin Type B derived from porcine skin (Gel) were purchased from J.T Baker. 

Dulbecco’s Modified Eagle’s Medium F12 (DMEM), Fetal Bovine Serum (FBS), 

penicillin/streptomycin 0.25%, trypsin–EDTA 0.25% and Phosphate Buffered Saline (PBS; pH = 

7.4) were acquired from Gibco, and Trypticase Soy Broth (TSB) was purchased from BD Bioxon. 

Staphylococcus aureus (S. aureus; 25923™), human osteoblasts (hFOB; CRL-11372™), gingival 

fibroblasts (hGF-1; CRL-2014™), and geneticin were obtained from ATCC® 

2.2. Fabrication of membranes. 

Blend solutions of PCL and Gel were prepared by dissolving PCL (19% w/v) into AcAc and 

incorporating the appropriate amount of Gel to produce two PCL-Gel solutions with final PCL:Gel 

weight ratio of 70:30 or 55:45. Separately, adequate amounts of ZnO-NPs were weighed (1, 3 and 

6 w%; relative to PCL content) and dispersed individually into PCL-Gel solutions to produce eight 

different PCL-Gel-ZnO solutions, that is, PCL:Gel (70:30) solutions with 0, 1, 3 and 6 wt% of ZnO-

NPs, and PCL:Gel (55:45) solutions with 0, 1, 3 and 6 wt.% of ZnO-NPs. A solution of only PCL in 

AcAc (19% w/v) was also prepared. All solutions were stirred at 300 rpm for 48 h at room 

temperature (RT).  For electrospinning, the PCL-Gel and PCL-Gel-ZnO solutions were 

independently pumped at 1 mL/h, with a needle-to-collector distance of 14 cm and using a 
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voltage of 14 kV. The PCL solution was pumped at the same solution feed rate but increasing the 

needle-to-collector distance and the voltage to 15 cm and 15 kV, respectively. Electrospinning 

was carried out using a horizontal equipment assembled in our laboratory where electrospun 

fibers (membranes) were collected on a static aluminum plate. After electrospinning, membranes 

were removed from the collector, double washed with EtOH (70%) and double distilled water (dd 

H2O), dried at RT and sterilized under ultraviolet light (UV). Electrospun membranes were named 

accordingly to their composition as described in Table 1. 

 

Table 1. Chemical composition of electrospun membranes. 

Electrospun membrane Chemical composition 

  PCL (wt.%)a
  G (wt.%)a ZnO NPs (wt.%)b 

PCL 100 0 0 

PCL-G30 70 30 0 

PCL-G30-1Zn 70 30 1 

PCL-G30-3Zn 70 30 3 

PCL-G30-6Zn 70 30 6 

PCL-G45 55 45 0 

PCL-G45-1Zn 55 45 1 

PCL-G45-3Zn 55 45 3 

PCL-G45-6Zn 55 45 6 
awt.% according to total polymer content (PCL + Gel) in electrospinning solution. b wt.% according to total PCL 
content in electrospinning solution. 
 

2.3. Physico-chemical and mechanical characterization of membranes. 

The micromorphology of the membranes was characterized by Scanning Electron 

Microscope (SEM; JEOL-7600); fiber diameter distribution and surface pore size were estimated 

from SEM micrographs of carbon-coated membrane samples. Elemental chemical composition 
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was determined by Energy Dispersive X-Ray Spectrometry (EDS; Oxford X-Max 150) during SEM 

micrographs acquisition. Incorporation of ZnO-NPs into the PCL-G membranes was corroborated 

by bright field Transmission Electron Microscopy (TEM, PHILIPS CM 100).  

Water wettability of the membranes was determined by measuring their water contact 

angles (WCA) via the static sessile drop method using a Ramé–Hart goniometer; WCA were 

measured at 1, 3, and 5 s after deposition of a 4 L dd H2O drop on the membranes surface.  

Functional groups in the membranes were identified by Infrared Spectroscopy (FTIR) using 

an infrared spectrometer (Nicolet 880 FTIR) with Attenuated Total Reflection (ATR). 

Mechanical properties of the membranes were determined through mechanical stress-

strain tests (tension, 2 mm/min) using a universal test machine (INSTRON 4465); the elastic 

modulus (E), elongation at break (Ɛ) and maximum tensile strength (σmax) were determined. 

The atomic structure of the membranes was determined by acquiring X-Ray diffraction 

(XRD) patterns using a PANalytical X’Celerator diffractometer with CuKα radiation in a 2θ 

configuration. Degree of crystallinity of the membranes (χC-XRD) was calculated from XRD patterns 

according to [(Area of crystalline peaks (110) and (200))/(Area of crystalline peaks (110) and (200) + Area of 

amorphous peak)]x100; [34,35].   

Thermal properties of the membranes were studied by Thermogravimetry (TGA) and 

Differential Scanning Calorimetric (DSC) analysis under nitrogen atmosphere. TGA measurements 

were performed using a thermogravimetric analyzer (TGA2950; TA Instruments) by heating the 

sample from RT to 700 °C at a heating rate of 10 °C/min. DSC measurements were acquired using 

a DSC equipment (Q2000; TA Instruments) from -90 to 150 °C at a heating rate of 10 °C/min. 

Quench cooling was applied after first heating scan and immediately a second heating scan was 
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completed. Degree of crystallinity of the membranes (χC-DSC) was calculated from DSC 

thermograms according to [36] (ΔHm/ ΔH0
m)x100, where, ΔHm was the sample melting enthalpy 

and ΔH0
m was the melting enthalpy of 100% crystalline PCL (ΔH0

m(PCL)) = 142.0 J/g [37,38]).  

To evaluate the degradation of the membranes, dry samples (1 cm in diameter) were 

weighed (W0), immersed in PBS and incubated at 37 °C and 120 rpm. After 1, 2, 3, 4, 9, 17, 24 and 

31 days, samples were washed with dd H2O, dried and weighed (W1). Weight loss (Wloss) 

percentage was estimated as [(W0-W1)/W0]X100. 

To estimate the cumulative Zn released from the PCL-G-Zn membranes, individual 

samples (1 cm in diameter) were immersed in 1 mL of MilliQ-H2O and incubated at 37°C and 120 

rpm. After 1, 3 and 7 days of incubation, the samples were taken out from the water and 

immersed again in 1 mL of fresh MilliQ-H2O, the Zn concentration in collected supernatants at 1, 

3 and 7 days was measured by Inductively Coupled Plasma Mass Spectrometry (ICP-MS; iCAP Q, 

Thermo Scientific). 

2.4. In vitro antibacterial activity of composite membranes. 

The antibacterial activity of the membranes was determined by evaluating the planktonic 

and biofilm growth inhibition of S. aureus. Pure cultures of S. aureus were collected from agar 

plates and resuspended in TSB supplemented with menadione 1% v/v and hemin 1% v/v. 

Bacterial solution was adjusted to optical density (O.D.) of 1 at λ = 600 nm (BioPhotometer D30). 

Circular sterilized samples (8 mm in diameter) of the membranes were placed in 48-culture well 

plates by triplicate, individually inoculated with 1 x105 cells/mL and incubated at 37 °C in an 

orbital shaker incubator (Cleaver Scientific Ltd) at 120 rpm. After 1, 3 and 7 days of incubation, 

the capability of the membranes to inhibit planktonic bacterial growth was estimated by 
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measuring the turbidity of the inoculated culture media at λ = 595 nm in a FilterMaxF5 multi-

mode microplate reader (Molecular Devices, USA). Turbidity (%) was calculated according to  

[(O.DA1-O.DA2)/(O.DB1-O.DB2)]x100, where, O.D.A1 = absorbance of supernatants from bacteria 

incubation with the membranes, O.D.B1 = absorbance of supernatants from bacteria incubation 

with no membranes (negative control), O.D.A2 = absorbance of supernatants from membranes 

incubation with no bacteria, and O.D.B2 = absorbance of culture media only.  

The capacity of the membranes to prevent biofilm growth was evaluated by MTT assay. 

Bacteria-incubated membranes were rinsed once with fresh supplemented TSB to detach loosely 

attached bacteria. Then, membranes were transferred to a new culture well plate and incubated 

with a 1:10 solution of MTT:culture-media for 3 h at 37 °C and 120 rpm to asses viability of 

bacteria cells adhered on the membranes. After MTT incubation, bacteria-metabolized formazan 

crystals were solubilized in a ISO:DMSO solution (1:1) and absorbance at λ = 570 nm was read 

using the FilterMax F5. Bacteria viability (%) was estimated according to [(O.DA1-O.DA2)/( O.DB1-

O.DB2)]x100, where O.D.A1 = absorbance of solubilized-formazan from bacteria adhered on PCL-

G or PCL-G-Zn membranes, O.D.B1 = absorbance of solubilized formazan from bacteria adhered 

on PCL membranes (as negative control since they are not expected to prevent bacterial 

adhesion), O.D.A2 = absorbance reads from MTT-incubated corresponding PCL-G or PCL-G-Zn 

membranes with no bacteria, and O.D.B2  = absorbance reads from PCL membranes with no 

bacteria.  

Selected PCL, PCL-G30, PCL-G45, PCL-G30-1Zn and PCL-G45-1Zn membranes used for 

antibacterial testing were fixed (2% glutaraldehyde at 4 °C), washed with PBS, dehydrated 
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through a series of graded ethanol solutions and observed by SEM (JSM 7600F, JEOL) to 

qualitatively assess the membranes stability and the bacterial adhesion on their surface.  

2.5. In vitro biocompatibility of composite membranes. 

The toxicity of lixiviate products from the membranes was tested using hFOB and hGF-1. 

Confluent cell cultures were treated with 0.05% trypsin-EDTA, collected by centrifugation, and 

seeded at a density of 1 x104 cells/well on 24-well culture plates with DMEM supplemented with 

10% v/v FBS and 1% v/v penicillin/streptomycin (0.25%) or 3% geneticin for hGF-1 or hFOB, 

respectively. After 1 day of incubation at 37 °C and 5% CO2, sterilized membrane samples 

(diameter = 6 mm) were individually placed in hanging cell culture inserts (Millicell®) and placed 

on the culture 24-wells plates where cells were seeded 24 h before; culture plates were put back 

in the incubator. After 1 day of culture, hanging inserts were removed and cell viability was 

assessed by MTT assay using the same protocol described above. Percentage of cell viability was 

estimated according to [(O.DA1-O.DA2)/(O.DB1-O.DB2)]x100, where, O.D.A1 = absorbance of 

solubilized formazan from cells cultured in the presence of membranes lixiviates, O.D.B1 = 

absorbance of solubilized formazan from cells cultured in the presence of no membranes 

(positive control), and O.D.A2 = O.D.B2 = absorbance of ISO:DMSO solution.  

2.6. Statistical analysis  

The biological experiments were conducted twice using three samples of each group. 

Results are expressed as mean values ± standard deviation. Results were plotted using Origin 9.0 

Software. The statistical significance was determined by one-way analysis of variance (ANOVA), 

followed by a Tukey's multiple comparison test; considering p < 0.05 as statistically significant. 
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3. Results 

3.1. Physico-chemical and mechanical properties of membranes. 

Macroscopically, the membranes were white in color, flexible, soft to the touch and ≈ 0.4 

mm in thickness. (Supplementary Figure S1). Microscopically, the membranes showed a 

randomly oriented fibrillar structure with rough surface fibers of average diameters (d) ranging 

from 1.38 to 0.41 µm (Figure 1), and interconnected porosity with pore size ranging from 138.7 

to 4.5 µm2 (Table 2). Addition of Gel to the membranes, PCL-G, narrowed the average fiber 

diameter and presented a more homogeneous, in fibers diameter, morphology in comparison to 

PCL membranes (i.e. the fiber diameters distribution was lower dispersed; Supplementary Figure 

S2). In the same fashion, the addition of ZnO-NPs to the membranes, decreased the average fiber 

diameter in comparison to their corresponding PCL-G membranes. The average pore size of the 

PCL-G membranes was larger than that of the PCL membranes. In contrast, addition of ZnO-NPs 

to the membranes, significantly decreased the pore size, in comparison to PCL-G or PCL 

membranes (Table 2).  
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Figure 1. Representative SEM micrographs and fiber average diameters of PCL, PCL-G and PCL-G-

Zn membranes. 

 

 

Table 2 also presents the EDS and WCA measurements. The EDS analysis showed high 

concentrations of C and O in the PCL and PCL-G membranes and confirmed the corresponding Zn 

w% concentration in the PCL-G-Zn membranes. Regarding WCA, the PCL membranes showed 

hydrophobic character (WCA ≈ 130°) while the PCL-G membranes showed hydrophilic character, 

WCA ≈ 60°. WCA angles PCL-G membranes increased slightly with the incorporation of ZnO-NPs, 

but remained hydrophilic (WCA ˂ 90). 
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Table 2. Average pore size of the membranes estimated from SEM micrographs, elemental 

composition as obtained from Electron Dispersive Spectroscopy, average water contact angle 

measured at 1 s, 3 s and 5 s after droplet deposition on the membranes. 

Electrospun 
membrane 

Pore size      
(µm2) 

Elemental composition as 
determined from EDS 

(wt.%) 

Water contact angle                                                    
(°) 

    C O Zn 1s 3s 5s 

PCL 71.8 ± 37.4 71.69 28.31 - 132.8 ± 2.4 130.9 ± 2.5 130.5 ± 2.6 

PCL-G30 138.7 ± 74.2 67.45 32.55 - 66.5 ± 1.7 41.0 ± 0.8 31.8 ± 0.1 

PCL-G30-1Zn 24.3 ± 16.7 63.37 35.61 1.02 73.5 ± 3.1 57.5 ± 0.7 41.6 ± 0.0 

PCL-G30-3Zn 36.6 ± 19.9 68.26 28.53 3.21 77.0 ± 1.4 74.4 ± 2.5 65.0 ± 0.7 

PCL-G30-6Zn 21.7 ± 7.7 68.74 25.88 5.39 89.3 ± 1.1 82.1 ± 0.8 77.2 ± 0.5 

PCL-G45 115.6 ± 63.5 68.12 31.88 - 56.9 ± 7.3 19.4 ± 1.9 14.8 ± 0.2 

PCL-G45-1Zn 12.4 ± 10.3 67.30 32.01 0.70 70.6 ± 0.4  49.2 ± 6.7 46.7 ± 4.7 

PCL-G45-3Zn 4.5 ± 2.7 66.83 29.90 3.27 79.2 ± 0.5 64.5 ± 2.7 62.4 ± 3.6 

PCL-G45-6Zn 5.2 ± 3.3 64.80 28.55 6.65 79.4 ± 0.6 66.1 ± 3.6 65.2 ± 0.3 

 

Bright field TEM micrographs (Figure 2) showed dark nanostructures embedded in the 

PCL-G-Zn fibers, suggesting (according to EDS results showing the elemental composition of the 

membranes as C, O and Zn) the successful incorporation of the ZnO-NPs in the membranes. 

 

Figure 2. Representative TEM micrographs of PCL-G-Zn membranes. 
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FTIR spectra of the PCL-G and PCL-G-Zn membranes (Figures 3a and 3b) showed the 

characteristic bands of PCL at 2945 cm-1 (νasCH2), 2859 cm-1 (νsCH2), 1731 cm-1 (νC=O), 1294 cm-1 

(νC-C), 1240 cm-1 (νasC-O-C), 1175 cm-1 (νsC-O-C) and 1045 cm-1 (νC-O), and the characteristic 

bands of Gel at 1651 cm-1 (νC=O, amide I) and 1538 cm-1 (N-H, amide II) [39]. FTIR spectra of the 

PCL membranes showed a band at  3420 corresponding to O-H groups, posibly indicating a slight 

degradation of the PCL molecules possibly induced by the acidity of the AcAc (pH ≈ 2.4) during 

the electrospinning solution [40]. O-H groups in the PCL are expected to increase its 

predisposition to form hydrogen bonds with the N-H groups of the Gel molecules, which can be  

confirmed by the FTIR broad band centered at 3296 cm-1 observed in the FTIR spectra of the PCL-

G membranes that can be attributed to the overlapping of the O-H and N-H groups [41]. The FTIR 

spectra of the PCL-G-Zn membranes did not show any clear band corresponding to Zn-O, mainly 

because those bands are expected to appear at wavenumbers below 550 cm-1 and thus, they 

could easily be overlapped by the stronger bands of PCL at similar wavenumbers. 

XRD patterns of all membranes (Figures 3c and 3d) showed the characteristic two 

diffraction peaks of the semi-crystalline PCL structure at 2Ѳ = 21.11° and 23.99° corresponding 

to the (110) and (200) planes [42]. A decrease in χC-XRD was observed as the Gel content increased 

in PCL-G membranes and with the increasing ZnO-NPs concentration in PCL-G-Zn membranes 

(Table 4). The peaks deconvolution of the XRD patterns for the χC-XRD estimations of membranes 

is shown in the Supplementary Figure S3.  
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Figure 3. FTIR-spectra of (a) pristine Gel and PCL, PCL-G30 and PCL-G30-Zn membranes, and (b) 

pristine Gel and PCL, PCL-G45 and PCL-G45-Zn membranes. XRD patterns of (c) PCL, PCL-G30 and 

PCL-G30-Zn membranes, and (d) PCL-G45 and PCL-G45-Zn membranes. 

 

 

The mechanical parameters of the membranes calculated from the obtained stress-strain 

curves (Supplementary Figure S4) are reported in Table 3.  Gel and ZnO-NPs addition to the 

membranes increased their elastic modulus in a concentration-dependent manner in comparison 

to PCL membranes. The elongation at break, , of the membranes significantly decreased from 

238.25% to 1.53% as Gel concentration increased. Only for the PCL-30G membranes, the 

concentration of ZnO-NPs played an important role leading to a maximum  for the 1 w%; PCL-

30G-1Zn sample. On the other hand, the maximum tensile strength, max, decreased with the Gel 
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concentration, PCL > PCL-30G > PCL45G, and the addition of ZnO-NPs did not significantly modify 

the max for neither PCL-G30-Zn nor PCL-G45-Zn membranes.  

 

Table 3. Mechanical parameters calculated from the strain-stress curves of the membranes: 

elastic modulus, E; elongation at break, ε; maximum tensile strength, σ max. 

Electrospun 
membrane 

E (MPa) ε at break (%) σ max (MPa) 

PCL 6.09 ± 3.10 238.25 ± 59.12 2.27 ± 0.94 

PCL-G30 12.66 ± 2.63 62.67 ± 22.03 1.46 ± 0.18 

PCL-G30-1Zn 12.74 ± 3.05 117.78 ± 22.60 1.67 ± 0.28 

PCL-G30-3Zn 24.78 ± 7.34 70.33 ± 28.50 1.63 ± 0.19 

PCL-G30-6Zn 26.94 ± 7.36 14.52 ± 3.56 1.43 ± 0.09 

PCL-G45 49.56 ± 20.72 1.53 ± 0.15 0.65 ± 0.29 

PCL-G45-1Zn 41.91 ± 23.65 1.23 ± 0.25 0.43 ± 0.27 

PCL-G45-3Zn 41.91 ± 23.64 1.34 ± 0.21 0.58 ± 0.29 

PCL-G45-6Zn 65.38 ± 17.42 1.23 ± 0.32 0.75 ± 0.40 

 

Thermal parameters of the membranes and of pristine Gel from TGA curves 

(Supplementary Figure S5) are summarized in Table 4. PCL showed a single weight loss step at a 

temperature of maximum weight loss rate (Tmax) of 394 °C. Pristine Gel showed a first weight loss 

step at Tmax of 67 °C followed by a broad degradation step, where two weight loss peaks were 

identified at Tmax of 288 °C and 317 °C.  PCL-G and PCL-G-Zn membranes exhibited an initial weight 

loss at Tmax ≈ 35–32 °C, followed by two weight loss peaks at Tmax ≈ 389–379 °C and at Tmax ≈ 325–

316 °C. PCL-G30-6Zn and PCL-G45-6Zn membranes exhibited additional weight loss peaks at Tmax 

= 227 C and 213 °C, respectively. 
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Table 4. Thermogravimetric characterization and calorimetric properties of pristine Gel 

and PCL-G and PCL-G-Zn nanocomposite membranes. 

Material   
Temperature of maximum 
weight loss rate for each 

degradation step  
  Tma  ΔΗm

b  C-DSC
d C-XRD

e 

   Tmax (°C)  (°C) (J/g)  (%) (%) 

Pristine gelatin 
 

67 288 317 - - - - - - 

PCL 
 

- - - 394 49 54 70 49 46 

PCL-G30 
 

35 - 324 389 35 56 50 35 40 

PCL-G30-1Zn 
 

35 - 324 389 33 56 45 33 39 

PCL-G30-3Zn 
 

35 - 324 389 31 56 44 31 39 

PCL-G30-6Zn 
 

33 227 317 376 28 56 38 28 37 

PCL-G45 
 

32 - 318 387 29 56 41 29 35 

PCL-G45-1Zn 
 

32 - 318 387 29 56 41 29 34 

PCL-G45-3Zn 
 

32 - 318 387 29 56 40 29 36 

PCL-G45-6Zn   35 213 316 381 24 56 36 24 30 

 amelting temperature; bmelting enthalpy; cmelting enthalpy per gram of PCL, ddegree of crystallinity from 

melting enthalpy and edegree of crystallinity from XRD patterns.  

 

 

Calorimetric properties of the membranes from heating DSC scans (Supplementary Figure 

S6) are summarized in Table 4. A unique endothermal peak corresponding to the melting 

temperature (Tm) of the PCL component was detected at 55 °C for all membranes. The 

endothermic melting enthalpy (ΔΗm) of the PCL-G membranes decreased as the Gel 

concentration increased and with the presence of 6 w% ZnO-NPs. The presence of 1 and 3 w% of 

ZnO-NPs in the membranes did not alter the ΔΗm values, indicating that χC-DSC only decreased 

with increasing Gel concentration and with the highest ZnO NPs concentration studied (PCL-30G-

6Zn and PCL-45G-6Zn) in the membranes. 
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Figure 4 shows the weight loss of the membranes as a function of incubation time and the 

cumulative Zn released from the PCL-G-Zn membranes. In Figure 4a could be seen that the PCL 

membranes did not show significant degradation (Wloss < 8%) after 31 days of incubation, while 

the PCL-G and PCL-G-Zn membranes experienced a significantly larger degradation (Wloss ≈ 35 - 

46%), which was faster during the first 3 days. The Wloss was slightly affected by the ZnO Nps 

concentration for the PCL-G30-Zn membranes, where Wloss slightly increased with the increment 

of ZnO content in the PCL-30G membranes. For the PCL-G45-Zn membranes no significant 

differences were observed in Wloss with the increasing content of ZnO-NPs (Figure 4b).  

The release of Zn in water increased over time as ZnO-NPs concentration increased in the 

PCL-G membranes, independently of the Gel concentration (Figure 4c and 4d). However, the Zn 

amount released from all membranes gradually diminished with the incubation time. The release 

of Zn from PCL-G45 membranes with 3 and 6 w% of ZnO-NPs was significantly higher than that 

from their corresponding PCL-G30 membranes, while the Zn amount released from the PCL-G30 

and PCL-G45 membranes with 1w% of ZnO-NPs was comparable.  
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Figure 4. Weight loss percentage over time of (a) PCL, PCL-G30 and PCL-G30-Zn, and of (b) PCL, 

PCL-G45 and PCL-G45-Zn membranes incubated in PBS at 37 °C and 120 rpm. Concentration of 

cumulative Zn released from (c) PCL-G30-Zn membranes and (d) PCL-G45-Zn membranes after 1, 

3 and 7 days of incubation in water at 37 °C and 120 rpm measured by ICP-MS. 

 

 

The inhibition of planktonic bacterial growth measured by the turbidity assay at 1, 3 and 

7 days of incubation (Figure 5a), showed that the PCL-G membranes (PCL-G30 and PCL-G45) 

slightly reduced turbidity over time compared to the PCL membrane. Even more, the addition of 

ZnO-NPs to the PCL-G membranes significantly reduced planktonic growth at the three 

incubation times; moreover, the bacterial growth inhibition was effective independently of the 

ZnO-NPs concentration. On the other hand, a significantly decrease in the viability of the attached 
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bacteria on the membranes (Figure 5b) was observed with the addition of ZnO-NPs to PCL-G 

membranes. Although no clear trend could be inferred regarding the NPs concentration at the 

different incubation times, significant reduced levels of viable bacteria were detected on the 

membranes loaded with ZnO-NPs at 7 days of incubation. 

 

       

Figure 5. (a) Bacterial growth on the broth medium in the presence of the PCL, PCL-G or PCL-G-

Zn membranes measured by the turbidity assay (Turbidity percentage) and (b) Cell viability of the 

adhered bacteria on the PCL, PCL-G and PCL-G-Zn membranes measured by the MTT assay, after 

1, 3 and 7 days of incubation. *, p < 0.05 for ctrl- (bacteria in presence of no membrane) vs. all 

membranes and $, p < 0.05 for PCL-30G or PCL-45G membranes vs. their corresponding 

membrane loaded with 1, 3 or 6 wt.% Zn NPs. All statistical comparisons were performed using 

the same incubation time. 
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Representative SEM micrographs of the PCL, PCL-G and PCL-G-1Zn membranes at 7 days 

of bacterial incubation are shown in Figure 6. PCL-G-Zn with only 1 w% of ZnO-NPs presented an 

important reduction of the adhered bacteria in comparison to membranes with no ZnO NPs 

added. Moreover, the SEM micrographs showed that the fibrillar structure of the membranes 

was preserved after the 7 days in culture with bacteria.  

 

Figure 6. Representative SEM micrographs of PCL, PCL-G30, PCL-30G-1Zn, PCL-G45, and PCL-G45-

1Zn membranes after 7 days of bacterial inoculation. 

 

3.3. In vitro biocompatibility of membranes. 

The viability (as determined by the MTT assays) of hFOB and hGF-1 exposed to the 

membranes lixiviates is shown in Figure 7. In general, both cell types did not show significant 

differences in the percentage of cell viability (CV%) when exposed to the release products of the 

PCL and PCL-G membranes in comparison to the positive control, but the presence of ZnO-NPs in 

the membranes decreased the CV% in a Zn concentration depended manner. However, both cell 

types exhibited more than 85% of CV% after 24 h of culture in the presence of PCL-30G-1Zn or 

PCL-45G-1Zn membranes lixiviates. It is interesting to notice that hFOB were less sensitive to the 
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ZnO-NPs, since only hFOB cells exposed to the PCL-45G-6Zn membranes lixiviates presented less 

than the 50% of cell viability in comparison to the positive control. On the contrary, hGF-1 cells 

showed a significantly decrease in the CV% when exposed to PCL-G membranes with 3 and 6 w% 

of ZnO-NPs, in comparison to the positive control.  

 

Figure 7. Viability of human osteoblasts (hFOB) and human gingival fibroblasts (hGF-1) exposed 

to the PCL, PCL-G blended or PCL-G-Zn membranes lixiviates, estimated by MTT assay after 1 day 

of incubation. *, p < 0.05 vs. ctrl+; and $, p < 0.05 vs. PCL-30G or PCL-45G membranes without 

NPs. 

 

4. Discussion 

Phase-separation of PCL and Gel mixtures, due to their dissimilar physical-chemical properties, 

negatively affects their electrospinning process generating poorly blended inhomogeneous 

membranes. In the current study, fibrillar membranes of PCL and Gel loaded with different 

amounts of ZnO-NPs were fabricated by the electrospinning technique using AcAc. Worth 

mentioning that AcAc is considered a “green” solvent, since it is less toxic than other solvents, 

such as hexafluoro-2-propanol (HFP) or trifluoroethanol (TFE), frequently used for miscible Gel-

PCL electrospinning solutions [32,43]. As a consequence of the synthesis conditions, hydrogen 

bonds between PCL and Gel were exhibited by the FTIR, this hydrogen bonding influenced the 
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structural and mechanical properties of the membranes. The decrement of the average fiber 

diameter of the PCL-G membranes was Gel concentration-dependent and it might be attributed 

to the increment of charge density of the PCL-Gel electrospinning solutions in comparison to the 

PCL-only solution [44]. The amino groups in the amphoteric Gel molecules can be easily 

protonated at pH below their isoelectric point  (pH ≈ 2.4 for AcAc) increasing the charge density 

and conductivity of the electrospinning solution, effect not expected for the PCL solution since it 

is a non-ionic molecule [45]. During the electrospinning process, the increased charge density 

and conductivity in the jet, causes the jet to elongate by electrical forces producing narrower 

fibers [46]. A similar reductive effect in the average fiber diameter of PCL-G membranes was 

observed when the ZnO-NPs were added. The incorporation Zn-based NPs in the PCL-G-Zn 

membranes was confirmed by TEM and EDS, hence, it can be assumed that ZnO-NPs were 

successfully embedded in the PCL-G membranes. It is important to mention that in a previous 

work developing PCL/ZnO-NPs membranes, we observed the formation of zinc acetate after a 

partial reaction of the ZnO-NPs and AcAc in electrospinning solutions [47]; however, in the 

present work there was no evidence of a similar reaction, may be due to the smaller ZnO-NPs 

concentrations (preventing the observation of really small Zn acetate FTIR bands or XRD peaks) 

or a particular effect of the Gel in the present membranes. The addition of ZnO-NPs in the 

electrospinning solutions can increase the number of ions, increasing the charge density of the 

PCL-G-Zn solutions compared to PCL-G solutions, resulting in even narrower fibers. The average 

pore size of PCL-G membranes drastically decreased with the presence of ZnO-NPs, this 

phenomenon can be attributed to the effect of reduced fiber diameter. Sanders et al. 

theoretically demonstrated that smaller fiber diameters increase the number of fibers crossings 
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and decrease its distance, creating a smaller pore size [48]. Interestingly, the fiber diameter of 

the PCL-G membranes decreased with the presence of the Gel, but their average pore size was 

larger than that of the PCL membranes. The cause of this phenomenon is no clear; however, it 

was hypothesized that the dominant phenomenon that produced the pore size of PCL-G 

membranes was the charge-charge repulsion between fibers when they were deposited on the 

collector during the electrospinning process. As the charge density of the PCL-Gel electrospinning 

solutions increased in comparison to the PCL-only solution, the generated charge-charge 

electrostatic repulsion between the charged surface of the fibers also increased, facilitating their 

separation and increasing the pore-size of the PCL-G membranes in comparison to PCL 

membranes. The repulsion phenomenon did not considerably influence the expected relation 

between pore sized and fiber diameter of the PCL-G and PCL-G-Zn membranes, possibly because 

of the difference in the charge densities between the PCL-Gel and PCL-Gel-ZnO solutions. 

The interconnected porosity is an essential factor when designing GTR membranes. In the 

current work, the intrinsic interconnectivity and average pore size of the PCL-G-Zn composite 

membranes (ranging from 4.5 to 36.6 µm2) are expected to be large enough to permit the 

diffusion of physiological nutrients but small enough to act as cellular barrier [49].  

Other relevant characteristic was the change from the hydrophobic to hydrophilic 

character for the PCL-G membranes in comparison to PCL membranes. Since the GTR membranes 

will be in direct contact with physiological fluids, hydrophilic surfaces are preferred to promote 

cell proliferation and to enhance tissue regeneration [50,51]. The addition of ZnO-NPs increased 

the WCA, but the hydrophilic character remained in all the PCL-G-Zn membranes. This could be 

explained by possible physical interactions (van der Waals forces) between the PCL or/and the 
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Gel molecules and the ZnO-NPs that could reduce the surface energy of the membranes and 

consequently their wettability [52]. Another possible explanation is the smaller pore size of PCL-

G-Zn membranes compared with their corresponding PCL-G membranes, that might affect the 

easy distribution/absorption of water droplets on the membranes [53]. 

In terms of their thermal degradation properties, PCL-G and PCL-G-Zn membranes showed 

an initial small weight loss peak that can be attributed to the evaporation of absorbed water 

mostly from the highly hydrophilic Gel component. The second main weight loss peak 

corresponded to the rupture of PCL chains and depolymerization of PCL molecules [54]. The last 

weight loss peak can be ascribed to Gel molecules degradation due to protein chain breakage 

and peptide bonds rupture [55,56]. Therefore, thermal degradation of the membranes displayed 

the contribution of both polymeric components of the membranes, indicating a good blend 

composition. Interestingly, the PCL-G-Zn membranes with the highest ZnO-NPs content (PCL-

30G-6Zn and PCl-45G-6Zn) showed an additional weight loss peak at lower temperatures, which 

might have been caused for an increase in the chain mobility due to a weak interaction between 

the polymer matrix and the ZnO-NPs [57,58]. All membranes exhibited a unique melting 

endothermic peak corresponding to the semi-crystalline PCL component. The ΔΗm of PCL-G 

membranes decreased as the Gel concentration increased, but the presence of 1 and 3 w% ZnO-

NPs did not affect the ΔΗm values within the experimental error. Only the presence of 6 w% of 

ZnO-NPs decreased the ΔΗm value of the membranes, consequently, the crystallinity only 

decreased with increasing concentration of the amorphous component (Gel) and with the 

increment of ZnO-NPs concentration, this result was confirmed by XRD analysis. Diffraction peaks 

from ZnO-NPs were not observed in the XRD patterns of the PCL-G-Zn membranes, possibly 
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because NPs concentration is too small as compared to the overall polymeric weight of the 

membranes.  

The PCL-G and PCL-G-Zn membranes developed in the present study exhibited 

appropriate mechanical stability. Compared with three commercial collagen membranes [59], 

the elastic modulus of the present membranes (E ≈ 6-65 MPa) was lower than the elastic modulus 

of the three reported commercial membranes (E ≈ 90-700 MPa), reflecting higher flexibility. 

Accordingly, the elongation at break of PCL-30G-Zn composite membranes (ɛ ≈ 14 - 117 %) was 

higher than that of reported commercial collagen membranes (ɛ ≈ 5.6 - 7.9 %). The higher 

plasticity of PCL-30G-Zn membranes could confer them better structural integrity during GTR 

treatment. Although the tensile strength of the PCL-G30-Zn membranes (σmax = 1.43 - 1.67 MPa) 

was lower than that of commercially available collagen membranes (σmax = 5.33 - 22.5 MPa), they 

met the mechanical requirements for their clinically use in GTR procedures as they are not 

subjected to high tensile strength when are immobilized at the defect site. Thus, the PCL-G30-Zn 

membranes developed in the present work have adequate mechanical properties to offer good 

clinical manipulation and excellent conformability to the defect site. 

The degradation (weight loss) of the PCL-G membranes was significantly larger than that 

of the PCL membranes. Total weight loss after 3 days of incubation corresponded to 30% and 

45% for PCL-30G- and PCL-45G-based membranes respectively, and it can be mainly attributed 

to the rapid Gel solubilization in aqueous media [60]. To confirm this, a Biuret assay was 

performed (Supplementary Figure S7), where it was confirmed that dissolution of ≈ 90-100% of 

Gel contained in the PCL-G membranes (30 w% and 45 w% of total mass for PCL-30G- and PCl-

45G-based membranes, respectively) occurred during the first three days of incubation. 
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Furthermore, the higher wettability of PCL-G membranes compared with PCL membranes 

facilitated water surface interaction and consequently could also have increased hydrolytic 

degradation of PCL [54]. After day 3 of incubation, the membranes weight loss occurred at a 

lower rate and thus representing (up to day 31) enough membranes’ integrity stability time to 

allow the bone cell repopulation needed for regeneration of the defect site during GTR 

procedures. Iglhaut et al. reported that bone cell migration reaches their peak after 7 days of 

surgery, with a mitotic activity decreased to nearly normal levels by the end of the third week 

[61]. The period in which GTR membranes must remain intact depends on the defect depth, the 

longest treatments in which the membranes are used are that of root coverage which would 

require membranes to remain mechanically stable from 6 to 24 months post-membrane 

implantation [12,62]. 

Bacterial colonization in the defect site and on the membranes are known to significantly 

compromise the outcome of GTR procedures. The antibacterial results demonstrated that 

present PCL-G-Zn membranes possessed antibacterial activity against S. aureus, a strain that has 

been found in the oral cavity and the perioral region [63], this being advantageous in comparison 

to some commercial membranes (composed of xenogenic collagen) that have demonstrated to 

do not disrupt the growth of S. aureus [64]. Turbidity assays showed that PCL-G-Zn membranes 

significantly inhibit planktonic bacterial growth compared with the negative control (bacteria in 

presence of no membranes) and that inhibition was similar for all ZnO-NPs concentrations. This 

might be due to the release of ZnO-NPs or Zn2+ ions in the broth culture media when membranes 

degradation begins once immersed in the media, which is directly related to the concentration 

of Zn released from the membranes in the aqueous medium (ICP-MS results). ZnO-NPs 
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antibacterial effects have been frequently attributed to three mechanisms: 1) mechanical 

disruption of the cell membrane after contact with NPs [65], 2) destabilization of bacterial 

membranes by electrostatic interactions with Zn2+ ions [28], and 3) oxidative stress by production 

of reactive oxygen species (ROS) through photocatalysis [28,66]. The third mechanism was not 

evaluated here since membranes were not incubated under UV radiation; hence, it can be 

inferred that the antibacterial action observed resulted from the combination of the first two 

mechanisms due to the membranes released of Zn2+ and NPs in the medium. The bacterial cell 

viability measured by the MTT assay showed that the PCL-G-Zn membranes significantly reduced 

the biofilm growth on them in comparison to the PCL and PCL-G membranes after 7 days of 

incubation. This long-term antibacterial effect can be primary assigned to the action of the ZnO-

NPs still embedded in the membranes, mainly in the PCL component since the Gel component 

was dissolved during the first 3 days of incubation. A recent study also reported the antibacterial 

efficacy of PCL-Gel electrospun membranes but loaded with considerably higher concentrations 

of ZnO-NPs (5, 15 and 30 w% relative to the total polymer weight) than those in the present study 

[32]. The use of low antibacterial NPs concentration in GTR membranes is an important finding 

of the present work, despite NPs are very promising alternative antibacterial agent for medical 

applications, there are still concerns about the possible long-term side effects of NPs in living 

beings; thus, it is necessary to limit the concentration of NPs released into the host tissue by using 

the minimum effective doses [33,67]. Moreover, in future clinical applications, the reduction of 

the amount of NPs in membranes would reduce their production costs. Currently, there are a few 

valuable reports of GTR electrospun membranes with NPs-based antibacterial properties such as 

PCL/Silica-NPs, PCL/ZnO-NPs, PCL/Gel/ZnO-NPs, PCL/polyethyleneglycol (PEG)/bioactive glass 
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nanopowders (BGs), and PCL-fumarate (PCL-F)/gelatin based with Si and Mg co-doped 

fluorapatite NPs membranes [32,68–71]. However, the GTR membranes developed in this study 

seems to be more efficient in terms of the NPs effective-dose, easier to manufacture, and more 

stable in wet environment than some of those membranes. 

On the other hand, the potential toxicity associated with the release products of the 

membranes may negatively influence the ability of periodontal cells to repopulate and 

regenerate the defect site, causing further problems. The viability of hFOB and hGF-1 after 

exposure to lixiviates from the membranes, indicated that PCL-G30-Zn membranes with 1, 3 and 

6 w% of ZnO-NPs were biocompatible as they exhibited ≈ 100% , ≈ 85% and ≈ 80% of hFOB 

viability, respectively, in comparison with the positive control; however, in the case of PCL-G45 

membranes, only the PCL-G45-1Zn membrane showed more than ≈ 50% of hFOB viability (CV% 

≈ 85%). The viability of hGF-1 indicated that only PCL-G-Zn membranes with 1 w% of ZnO-NPs 

were biocompatible as they displayed ≈ 90% of hGF-1 viability, relative to the positive control. 

From the ICP-MS test measurements, it could be inferred that Zn toxic dose in the medium for 

the hFOB was between ≈ 35 and ≈ 53 ppm, and for the hGF-1 was between ≈ 7 and ≈ 16 ppm. 

These results are in agreement with previous reports of ZnO-NPs release effects on eukaryotic 

cells [58,72], and with the reported Zn-based NPs dosages of median lethal concentration (LC50) 

for small invertebrates (1.79-67.97 ppm) [73]. Therefore, the present PCL-30G-1Zn and PCL-45G-

1Zn membranes are expected to appropriately sustain the viability of periodontal cells around 

them but significantly inhibit bacterial adhesion and consequently biofilm formation. 
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5. Conclusion 

The PCL-G30 membranes loaded with 1 w% of ZnO-NPs showed the most appropriate 

physical, chemical and mechanical properties for being used as GTR membranes. Additionally, 

these membranes prevented planktonic and biofilm growth of S. aureus and were simultaneously 

biocompatible to human osteoblasts (hFOB) and gingival fibroblasts (hGF-1). The present work 

provides valuable information for the development of biocompatible, biodegradable and 

mechanically stable membranes with local antibacterial properties that could be used as a 

promising alternative for improving the clinical success of GTR treatments. 
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