Supplementary file for Hanson et al:

Effects of supplementary dietary polyunsaturated fat on cancer incidence: systematic review and meta-analysis of randomised trials

## Contents

| RESULTS                                                                                                                                                                                   | ;      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Effects of long-chain omega-3 fat on risk of any cancer                                                                                                                                   | ;      |
| Effects of long-chain omega-3 fat on risk of breast cancer4                                                                                                                               | ł      |
| Effects of long-chain omega-3 fat on prostate cancer                                                                                                                                      | ;      |
| Effects of ALA on risk of any cancer                                                                                                                                                      | ;      |
| Effects of ALA on risk of breast cancer                                                                                                                                                   | ;      |
| Effects of ALA on risk of prostate cancer6                                                                                                                                                | ;      |
| Effects of omega-6 on risk of any cancer6                                                                                                                                                 | ;      |
| Effects of omega-6 on risk of breast and prostate cancer                                                                                                                                  | ,      |
| Effects of total PUFA on risk of any cancer                                                                                                                                               | ,      |
| Effects of total PUFA on risk of breast cancer                                                                                                                                            | 3      |
| Effects of total PUFA on risk of prostate cancer                                                                                                                                          | )      |
| Secondary outcomes                                                                                                                                                                        | )      |
| Supplementary Figure 1: Summary risk of bias of included comparisons by domain as assessed by reviewers.                                                                                  | )      |
| Supplementary Figure 2. Funnel plot for effects of LCn3 on diagnosis of any cancer                                                                                                        | L      |
| Supplementary Figure 3. Funnel plot for effects of LCn3 on death from any cancer                                                                                                          | L      |
| Supplementary Figure 4. Funnel plot for effects of LCn3 on diagnosis of breast cancer                                                                                                     | ,<br>- |
| Supplementary Figure 5. Forest plot showing effects of increasing omega-3, omega-6 and total PUFA or deaths from breast cancer in women participants, using random-effects meta-analyses  |        |
| Supplementary Figure 6. Forest plot showing effects of increasing omega-3, omega-6 and total PUFA or breast density in cm <sup>2</sup> , using random-effects meta-analyses               |        |
| Supplementary Figure 7. Forest plot showing effects of increasing omega-3, omega-6 and total PUFA or deaths from prostate cancer in male participants, using random-effects meta-analyses |        |
| Supplementary Figure 8. Forest plot showing effects of increasing omega-3, omega-6 and total PUFA or prostate specific antigen (PSA, ng/ml), using random-effects meta-analyses           |        |
| Supplementary Figure 9. Funnel plot for effects of total PUFA on diagnosis of any cancer                                                                                                  | ;      |
| Supplementary Figure 10. Meta-analysis assessing effects of increasing total PUFA on diagnosis of any cancer, subgrouping by dose of PUFA (as percentage of energy intake)                | 5      |
| Supplementary Figure 11. Forest plot showing effects of increasing LCn3 on side effects using random-<br>effects meta-analyses                                                            | ,      |

|     | Supplementary Figure 12. Forest plot showing effects of increasing LCn3 on dropouts using random-<br>effects meta-analyses |      |
|-----|----------------------------------------------------------------------------------------------------------------------------|------|
|     | Supplementary Figure 13. Forest plot showing effects of increasing ALA on side effects using random effects meta-analyses  |      |
|     | Supplementary Figure 14. Forest plot showing effects of increasing omega-6 on dropouts using random-effects meta-analyses. | . 19 |
| S   | Supplementary Table 1. Table of characteristics, risk of bias and references for included trials                           | . 20 |
| S   | Supplementary Table 2. High vs low LCn3 (primary outcomes)                                                                 | . 25 |
| S   | Supplementary Table 3. High vs low LCn3 (secondary outcomes)                                                               | . 31 |
|     | Supplementary Table 4. GRADE table: summary of findings of effects of omega-3 fats (LCn3 and ALA) or<br>cancers            |      |
| S   | Supplementary Table 5. High vs low ALA (primary outcomes)                                                                  | . 34 |
| S   | Supplementary Table 6. High vs low ALA (secondary outcomes)                                                                | . 36 |
| S   | Supplementary Table 7. High vs low omega-6 (primary outcomes)                                                              | . 37 |
| S   | Supplementary Table 8. High vs low omega-6 (secondary outcomes)                                                            | . 39 |
| S   | Supplementary Table 9. GRADE table: summary of findings of effects of omega-6 fats on cancers                              | . 40 |
| S   | Supplementary Table 10. High vs low total PUFA (primary outcomes)                                                          | . 41 |
| S   | Supplementary Table 11. High vs low total PUFA (secondary outcomes)                                                        | . 44 |
| S   | Supplementary Table 12. GRADE table: summary of findings of effects of total PUFA on cancers                               | . 45 |
| Ref | erences                                                                                                                    | . 46 |

# RESULTS

## (in greater detail than the main paper)

From our trials database we included 47 RCTs (49 comparisons, including 108,194 participants) that assessed outcomes of interest to this review. Thirty four trials (including 97,548 participants) assessed effects of LCn3, three (3179 participants) assessed effects of ALA, eight (4976 participants) assessed effects of omega-6 and 9 trials (including 11,573 participants) assessed effects of total PUFA (Supplementary Table 1). Several trials assessed more than one of these interventions, so numbers of trials and participants are not additive. Of the 47 trials, 38 included participants with normal baseline cancer risk (including healthy adults and those with risk factors for other diseases, or existing disease including CVD, diabetes and eye diseases), 3 included participants with cancer risk factors (2 at high risk of breast cancer, 1 at high risk of bowel cancer) and 6 included participants with previously diagnosed cancer (1 postoperative breast cancer, 3 postoperative colorectal cancer, 1 prostate cancer, one skin cancer). Most trials provided supplementary capsules, but trials of omega-6 and total PUFA tended to provide dietary advice with or without supplementary foods, some trials provide supplementary foods (such as enriched margarines, nuts, and one (set in an institution) provided all food. In four trials the intervention was to reduce fat intake, which also reduced PUFA, so for these trials the higher PUFA arm was the study control arm. Mean trial duration was over 30 months, and most trials were conducted in Europe (20 trials) or North America (15 trials), five were conducted in Japan, two in Australia and/or New Zealand, and five were conducted over more than one continent. Seventeen of the 47 trials were at low summary risk of bias (Supplementary Figure 1, Supplementary Table 1).

Effects of long-chain omega-3 fat on risk of any cancer

Effects of LCn3 on all primary and secondary outcomes, along with sensitivity analyses and subgroupings are displayed in Supplementary Tables 2 and 3. The GRADE assessment is shown in Supplementary Table 4.

Meta-analysis of 27 trials (113,557 participants) reporting from 1 to 1784 cancer diagnoses suggested little or no effect on any cancer diagnosis (RR 1.02, 95% CI 0.98 to 1.07,  $I^2$  0%, Figure 1 in the main paper, high quality evidence), and this lack of effect did not alter in fixed effects meta-analysis, when limiting to trials at low summary risk of bias, low risk of compliance issues or larger trials (at least 100 randomised participants). There was no suggestion of heterogeneity between trials and the funnel plot did not suggest small study bias (Supplementary Figure 2). Subgrouping did not suggest differences in effect by duration, dose, nutrients replaced by LCn3, intervention type, age, sex or baseline cancer risk (test for subgroup differences all p>0.05). Mean duration of included trials was 32 months (SD 22, range 12 to 88 months) and mean dose of LCn3 was 1.7g/d (SD 1.2g/d, range 0.5 to 4.6g/d). Increasing LCn3 has little or no effect on risk of diagnosis of any cancer (high quality evidence).

Eighteen trials (99,336 participants) provided data on 2277 cancer deaths and metaanalysis suggested little or no effect of increasing LCn3 (RR 0.97, 95% CI 0.90 to 1.06, I<sup>2</sup> 0%, Figure 2 in the main paper), and the lack of effect didn't alter in any sensitivity analysis. Subgrouping did not suggest differential effects by trial duration, LCn3 dose, replacement for LCn3, intervention type, age, sex or baseline cancer risk. There was no suggestion of heterogeneity between trials, and the funnel plot showed no sign of small study bias (Supplementary Figure 3). Mean duration of included trials was 43 months (SD 22, range 12 to 88 months) and mean dose of LCn3 was 1.6g/d (SD 1.5g/d, range 0.4 to 6.0g/d). Increasing LCn3 probably has little or no effect on risk of cancer death (moderate quality evidence, downgraded once for imprecision).

Effects of long-chain omega-3 fat on risk of breast cancer

Meta-analysis of 12 trials (92,736 participants, 44,304 women) reporting from 1 to 246 breast cancer diagnoses (661 diagnoses overall) suggest little or no effect of LCn3 on breast cancer diagnosis (RR 1.03, 95% Cl 0.89 to 1.20, I<sup>2</sup> 0%, Figure 3 in the main paper), and this lack of effect did not alter in fixed effects meta-analysis, when limiting to trials at low summary risk of bias, low risk of compliance issues or larger trials (at least 100 randomised participants). There was no suggestion of heterogeneity between trials. Subgrouping did not suggest differences in effect by duration, dose, nutrients replaced by LCn3, intervention type, age, sex or baseline cancer risk (test for subgroup differences all p>0.05), however trials tended to cluster into specific subgroups rather than be spread evenly across subgroups, so differences would be harder to see. There was no suggestion of small study bias in the funnel plot (Supplementary Figure 4). Mean duration of included trials was 48 months (SD 25, range 12 to 88 months) and mean dose of LCn3 was 1.9g/d (SD 1.5g/d, range 0.6 to 4.6g/d). Increasing LCn3 probably has little or no effect on risk of breast cancer diagnosis (moderate quality evidence, downgraded once for imprecision).

Two trials (including 3322 participants, 102 women) reported breast cancer deaths, but each reported a single death, so there were insufficient data to assess effects (Supplementary Figure 5). One of the included trials is a male only study but we included the data in Supplementary Figure 5 as it reported a single death from breast cancer <sup>1</sup>, men are not included in other breast cancer trials. Mean duration of included trials was 60 months (SD 17, range 48 to 72 months) and mean dose of LCn3 was 0.9g/d (SD 0.5g/d, range 0.5 to 1.2g/d). The effect of increasing LCn3 on breast cancer deaths is unclear as the evidence is of very low quality (downgraded once for risk of bias, twice for imprecision).

Lower breast density is associated with lower risk of breast cancer in women. A single trial (not at low summary risk of bias) of 175 women reported on breast density, suggesting a mean difference of 2.06cm<sup>2</sup> (95% CI -4.68 to 8.81, Supplementary Figure 6), a change of less than 10% from the control group baseline of 56cm<sup>2</sup>. This did not change in fixed effects sensitivity analysis or retaining trials of at least 100 participants, but the single trial was lost in sensitivity analyses on summary risk of bias and risk from compliance problems. The effect of increasing LCn3 was unclear as the evidence was of very low quality (downgraded once for imprecision and risk of bias, downgraded twice for indirectness).

Effects of long-chain omega-3 fat on prostate cancer

Seven trials (63,460 participants, 38,525 men) reported on 1021 prostate cancer diagnoses, finding higher risk of prostate cancer in men with increased LCn3 (RR 1.10, 95% CI 0.97 to 1.24, I<sup>2</sup> 0%, Figure 4 in the main paper). This slight increase in prostate cancer risk was stable to all sensitivity analyses. With so few trials we did not carry out subgrouping or assess funnel plots. However, the suggestion of harm was contradicted by findings on PSA (below). Mean duration of included trials was 51 months (SD 24, range 24 to 88 months) and mean dose of LCn3 was 1.2g/d (SD 1.5g/d, range 0.4 to 4.5g/d). Increasing LCn3 may increase the risk of prostate cancer (low quality evidence, downgraded once each for imprecision and inconsistency).

Prostate cancer deaths were reported in only two trials (5 deaths in 5616 participants, 5101 men, Supplementary Figure 7) so effects of LCn3 on prostate cancer deaths could not be assessed. The trials were of 48 and 72 months duration, doses of LCn3 were 0.5 and 0.6g/d. The effect of increasing LCn3 on prostate cancer death is unclear as the evidence is of very low quality (downgraded once for inconsistency and twice for imprecision).

Prostate specific antigen (PSA) is a marker of prostate cancer risk, and higher PSA is associated with higher risk. PSA was reported as a continuous measure in a single large trial of 1622 participants (at low summary risk of bias, MD -0.13ng/ml, 95% CI -0.25 to 0.01, Supplementary Figure 8), suggesting a fall of 25% from a baseline of 0.53ng/ml in those on higher LCn3. Odds of increased PSA was reported in a single trial (not at low summary risk of bias) of 62 participants, reporting only 12 participants with raised PSA (RR 0.47, 95% CI 0.16 to 1.40, Supplementary Table 2), but also suggesting protective effects of LCn3 on PSA.

Effects of ALA on risk of any cancer

Effects of ALA on all primary and secondary outcomes, along with sensitivity analyses and subgroupings are displayed in Supplementary Tables 5 and 6. The GRADE assessment is shown in Supplementary Table 4.

Meta-analysis of 2 trials (752 participants) reported 16 cancer diagnoses and suggested little or no effect on risk of cancer diagnosis (RR 0.98, 95% CI 0.38 to 2.55,  $I^2$  0%, Figure 1 in the main paper), and this lack of effect did not alter in fixed effects meta-analysis, but no trials were at low summary risk of bias. The single large trial (with >100 participants) was also the single trial at low risk of compliance issues and suggested a slight increase in cancer risk with increased ALA (RR 1.09, 95% CI 0.40 to 2.98) but with very wide confidence intervals. As there were only two trials we did not attempt subgrouping or a funnel plot. Mean duration of included trials was 18 months (12 and 24 months), mean

dose of LCn3 was 4.2g/d (3.3 and 5.0g/d). The effect of increasing ALA on diagnosis of any cancer is unclear as the evidence was of very low quality (downgraded once for risk of bias, twice for imprecision).

Two trials (5545 participants) provided data on 123 cancer deaths and meta-analysis suggested little or no effect of LCn3 (RR 1.05, 95% CI 0.74 to 1.49,  $I^2$  0%, Figure 2 in the main paper), which didn't alter in any sensitivity analysis. Subgrouping and funnel plots re not attempted. Duration of included trials was 24 and 40 months, doses of LCn3 were 2 and 5g/d. Increasing ALA probably has little or no effect on risk of cancer death (moderate quality evidence, downgraded once for imprecision).

### Effects of ALA on risk of breast cancer

Two trials (752 participants, 513 women) reported only 4 breast cancer diagnoses, and no trials reported deaths from breast cancer or breast density, so there were insufficient data to assess effects on breast cancer diagnoses, deaths or markers (Figure 3 in the main paper and Supplementary Figure 5). Duration of included trials of breast cancer diagnosis was 12 and 24 months, doses of LCn3 were 3.3 and 5.0g/d. The effect of increasing ALA on risk of breast cancer diagnosis is unclear as the evidence is of very low quality (downgraded once for risk of bias, twice for imprecision),

Effects of ALA on risk of prostate cancer

Meta-analysis of 2 trials (5545 participants, 4010 men) reporting 46 prostate cancer diagnoses suggesting that increasing ALA increases risk of prostate cancer diagnosis (RR 1.30, 95% CI 0.72 to 2.32, I<sup>2</sup> 0%, Figure 4 in the main paper). This increase in risk was consistent across all sensitivity analyses, and supported by a rise in PSA with ALA (below). Mean duration of included trials was 32 months (24 and 40 months), mean dose of LCn3 was 3.5g/d (2.0 and 5.0g/d). Increasing ALA may increase the risk of prostate cancer diagnosis (low quality evidence, downgraded twice for imprecision).

No trials reported deaths from prostate cancer (Supplementary Figure 7). A single large trial at low summary risk of bias reported increased risk of raised PSA (>4ng/ml, RR 1.13, 95% CI 0.86 to 1.50) and higher PSA (by 23% from baseline, MD 0.10ng/ml, 95% CI -0.03 to 0.23, Supplementary Figure 8) in those taking more ALA.

Effects of omega-6 on risk of any cancer

Effects of omega-6 on all primary and secondary outcomes, along with sensitivity analyses and subgroupings are displayed in Supplementary Tables 7 and 8. The GRADE assessment is shown in Supplementary Table 9.

Six trials (4272 participants, 262 cancer diagnoses) suggested that increasing omega-6 increased risk of diagnosis of any cancer (RR 1.21, 95% CI 0.96 to 1.53, I<sup>2</sup> 0%, Figure 1 in the main paper). The increased risk was consistent between dietary and supplemental interventions, and in all sensitivity analyses except when restricting to the single trial at low summary risk of bias. Mean duration of the included trials was 30 months (SD 25, range 12 to 72 months), mean dose was 10.7%E from omega-6, but varied enormously (SD 13.9, median 6.4%E, range 0.2 to 37.8%E from omega-6). The effect of increasing omega-6 on cancer diagnosis is unclear as the evidence is of very low quality (downgraded twice for risk of bias, once for imprecision).

Meta-analysis of the four trials assessing effects of omega-6 on cancer deaths was heterogeneous, and suggested little or no effect (RR 0.97, 95% CI 0.51 to 1.85, I<sup>2</sup> 52%, Figure 2 in the main paper). However, none of the trials were at low summary risk of bias, and fixed effects analysis suggested in increase in risk of cancer death. No subgrouping or funnel plots were run as we included few trials. Mean duration of the included trials was 37 months (SD 12, range 24 to 48 months), mean dose was 14.0%E from omega-6, but varied a great deal (SD 21.0, median 2.8%E, range 1.4 to 37.8%E from omega-6). The effect of omega-6 on cancer deaths is unclear as the evidence is of very low quality (downgraded once each for risk of bias, imprecision and inconsistency).

Effects of omega-6 on risk of breast and prostate cancer

Only one small trial (200 women participants, 4 breast cancer diagnoses, 12 months duration, 2.7%E from omega-6, Figure 3) assessed effects of omega-6 on breast cancer diagnosis, and none on breast cancer deaths or breast density (Supplementary Figures 5 and 6), so there were insufficient data to assess effects. The effect of omega-6 on breast cancer diagnoses is unclear as the evidence is of very low quality (downgraded once for risk of bias, once for indirectness and twice for imprecision).

One trial (2033 male participants, 24 months duration, 2.8% E increase in omega-6) that was not at low summary risk of bias reported 13 prostate cancer diagnoses (RR 2.24, 95% CI 0.69 to 7.26, Figure 4 in the main paper), no trials reported prostate cancer deaths or PSA. The effect of omega-6 on risk of prostate cancer diagnosis is unclear as the evidence is of very low quality (downgraded once each for risk of bias, indirectness and imprecision).

Effects of total PUFA on risk of any cancer

Effects of total PUFA on all primary and secondary outcomes, along with sensitivity analyses and subgroupings are displayed in Supplementary Tables 10 and 11. The GRADE assessment is shown in Supplementary Table 12.

Eight trials (9428 participants, 436 diagnoses) assessed effects of increasing total PUFA on cancer diagnosis, suggesting that increasing total PUFA increases diagnosis risk (RR 1.19, 95% CI 0.99 to 1.42, I<sup>2</sup> 0%, Figure 1 in the main paper). This was consistent across all sensitivity analysis (except when limiting to the three trials at low summary risk of bias, where the RR was 1.08). The funnel plot is difficult to assess with only 8 included trials, but does suggest that smaller trials with higher RRs may be missing (Supplementary Figure 9). If such trials were added back in the RR would rise further. Subgrouping did not suggest important differences between subgroups by study duration, PUFA dose (Supplementary Figure 10), replacement, age, sex and baseline cancer risk. Mean duration of the included trials was 39 months (SD 24, range 12 to 72 months), mean dose was 9.6%E from total PUFA, median 3.3%E, and varied considerably (SD 13, range 0.8 to almost 38%E from total PUFA). Increasing total PUFA may increase risk of diagnosis of any cancer (downgraded once each for risk of bias and imprecision).

Four trials reported on cancer deaths (3407 participants, 73 deaths), suggesting that increasing total PUFA increases risk of death from cancer (RR 1.10, 95% CI 0.48 to 2.49, I<sup>2</sup> 37%, Figure 2 in the main paper). This increase in risk of cancer death was consistent across all sensitivity analyses. We did not carry out subgrouping or funnel plots as there were only four trials. Mean duration of the included trials was 39 months (SD 27, range 12 to 72 months), mean dose was 13%E from total PUFA, median 7%E, and varied considerably (SD 17, range 0.8 to almost 38%E from total PUFA). Increasing total PUFA may increase the risk of cancer death (downgraded twice for imprecision).

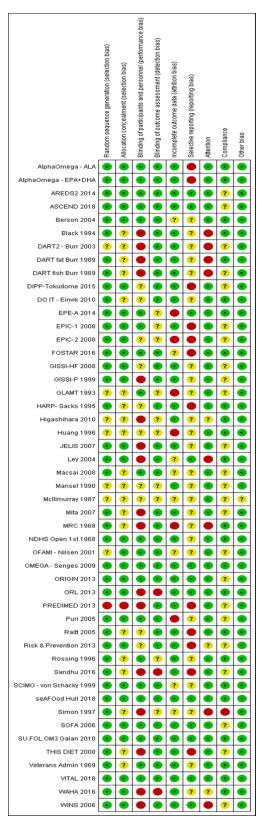
Effects of total PUFA on risk of breast cancer

Meta-analysis of two trials (5198 female participants, 79 diagnoses) suggested that increasing total PUFA increases risk of breast cancer diagnosis, but with very wide confidence intervals (RR 1.11, 95% CI 0.71 to 1.73, I<sup>2</sup> 0%, Figure 3 in the main paper). However, this was not supported in sensitivity analysis limiting to the single trial at low summary risk of bias, and neither trial was at low risk of compliance problems. Duration of both trials was 60 months and the dose was 2%E from total PUFA in one trial, unclear in the other. The effect of increasing total PUFA on risk of breast cancer diagnosis is unclear as the evidence is of very low quality (downgraded once for risk of bias and twice for imprecision).

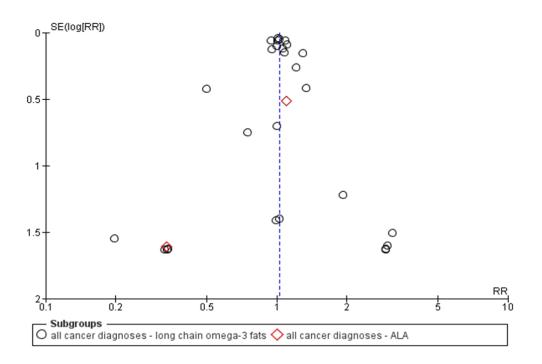
No trials reported breast cancer deaths or breast density (Supplementary Figures 5 & 6).

### Effects of total PUFA on risk of prostate cancer

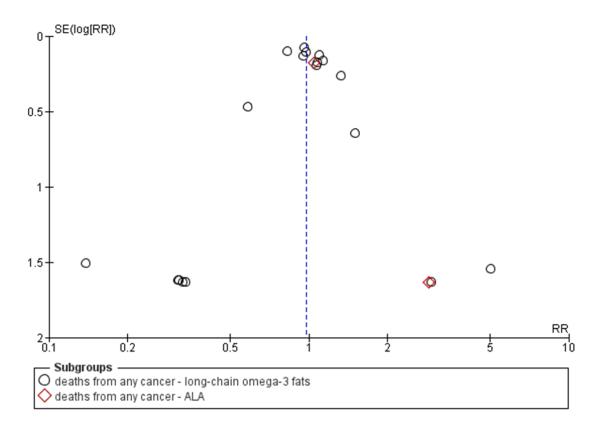
Meta-analysis of two trials (2879 male participants, 32 diagnoses) suggested that increasing total PUFA increases risk of prostate cancer diagnosis, but with the small number of diagnoses, confidence intervals were very wide (RR 1.64, 95% CI 0.80 to 3.36, I<sup>2</sup> 0%, Figure 4 in the main paper). No trials were at low summary risk of bias, all other sensitivity analyses suggested increased prostate cancer risk with increased total PUFA. Duration of the included trials was 24 and 72 months, doses 3 and 11%E from total PUFA. The effect of increasing total PUFA on prostate cancer diagnosis is unclear as the evidence is of very low quality (downgraded once for risk of bias and twice for imprecision).


No trials reported prostate cancer deaths or PSA (Supplementary Figures 7 & 8).

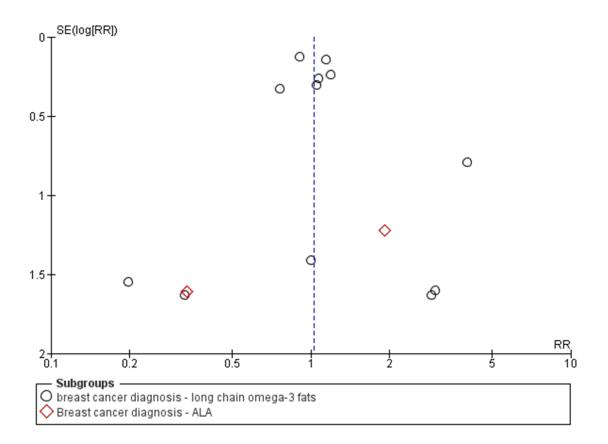
### Secondary outcomes


Prostate cancer diagnoses and deaths are reported above. Effects on body weight and measures of adiposity are reported in full (not just in this subset of trials assessing cancer outcomes) in other reviews in this series so are noted in the Supplementary Tables, but not discussed further here.<sup>2-4</sup> We found no trials reporting any measure of quality of life as effects of increases in LCn3, ALA, omega-6 or total PUFA.

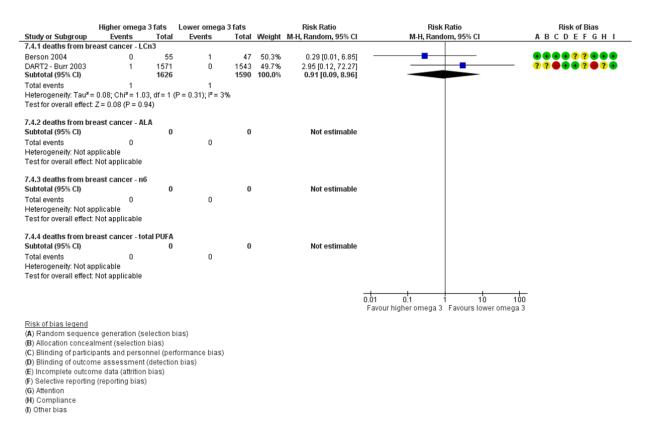
When increasing LCn3 risks of gastrointestinal side effects (RR 1.11, 95% CI 0.89 to 1.31,  $I^2$  84%, including effects on nausea, reflux, diarrhoea and hospitalisation for gastrointestinal problems), bleeding (RR 1.09, 95% CI 0.70 to 1.70,  $I^2$  59%), and dropouts due to side effects (RR 1.31, 95% CI 0.98 to 1.76,  $I^2$  19%) appear increased, while risk of headache or migraine (RR 0.81, 95% CI 0.48 to 1.36,  $I^2$  0%), and psychiatric problems (RR 0.70, 95% CI 0.32 to 1.54,  $I^2$  0%), appear reduced (Supplementary Figure 11). Overall giving LCn3 appears to have little or no effect on risk of all side effects combined (RR 1.03, 95% CI 0.93 to 1.15,  $I^2$  85%), or dropouts for any reason (RR 0.98, 95% CI 0.88 to 1.10,  $I^2$  33%, Supplementary Figures 11 and 12).


Data on side effects and dropouts are much more limited for ALA (Supplementary Figure 13) and omega-6 (Supplementary Figure 14, all data on side effects and dropouts shown), and no data were available for trials of total PUFA.

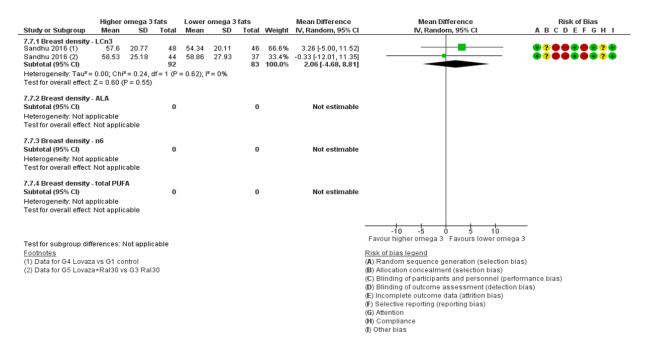



Supplementary Figure 1: Summary risk of bias of included comparisons by domain as assessed by reviewers.

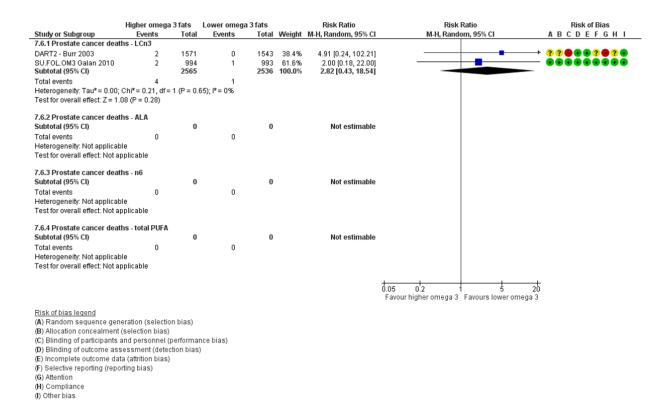



Supplementary Figure 2. Funnel plot for effects of LCn3 on diagnosis of any cancer.

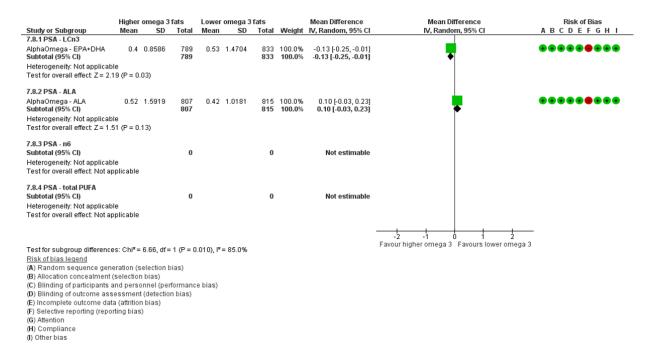



Supplementary Figure 3. Funnel plot for effects of LCn3 on death from any cancer.

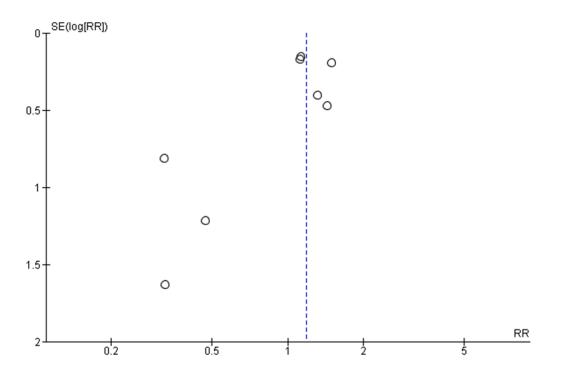



Supplementary Figure 4. Funnel plot for effects of LCn3 on diagnosis of breast cancer.




Supplementary Figure 5. Forest plot showing effects of increasing omega-3, omega-6 and total PUFA on deaths from breast cancer in women participants, using random-effects meta-analyses.




Supplementary Figure 6. Forest plot showing effects of increasing omega-3, omega-6 and total PUFA on breast density in  $cm^2$ , using random-effects meta-analyses.



Supplementary Figure 7. Forest plot showing effects of increasing omega-3, omega-6 and total PUFA on deaths from prostate cancer in male participants, using random-effects meta-analyses.



Supplementary Figure 8. Forest plot showing effects of increasing omega-3, omega-6 and total PUFA on prostate specific antigen (PSA, ng/ml), using random-effects meta-analyses.



Supplementary Figure 9. Funnel plot for effects of total PUFA on diagnosis of any cancer.

| Study or Subgroup                                                     | Higher total<br>Events      | Total               | Lower total<br>Events       |                     | Weight                 | Risk Ratio<br>M-H, Random, 95% Cl             | Risk Ratio<br>M-H, Random, 95% Cl                                                                                                                                                         | Risk of Bias<br>A B C D E F G H I                                                                                                                          |
|-----------------------------------------------------------------------|-----------------------------|---------------------|-----------------------------|---------------------|------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.7.1 PUFA <0.5%E                                                     |                             |                     |                             |                     |                        |                                               |                                                                                                                                                                                           |                                                                                                                                                            |
| Subtotal (95% CI)                                                     | _                           | 0                   | _                           | 0                   |                        | Not estimable                                 |                                                                                                                                                                                           |                                                                                                                                                            |
| Fotal events                                                          | 0                           |                     | 0                           |                     |                        |                                               |                                                                                                                                                                                           |                                                                                                                                                            |
| Heterogeneity: Not appli<br>Fest for overall effect: No               |                             |                     |                             |                     |                        |                                               |                                                                                                                                                                                           |                                                                                                                                                            |
| 5.7.2 PUFA 0.5 to <1.0%                                               | E                           |                     |                             |                     |                        |                                               |                                                                                                                                                                                           |                                                                                                                                                            |
| _ey 2004<br>Subtotal (95% CI)                                         | 1                           | 70<br>70            | 2                           | 66<br>66            | 0.6%<br>0.6%           | 0.47 [0.04, 5.08]<br>0.47 [0.04, 5.08]        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                     |                                                                                                                                                            |
| Fotal events                                                          | 1                           |                     | 2                           |                     |                        |                                               |                                                                                                                                                                                           |                                                                                                                                                            |
| Heterogeneity: Not appli                                              | icable                      |                     |                             |                     |                        |                                               |                                                                                                                                                                                           |                                                                                                                                                            |
| Fest for overall effect: Z :                                          | = 0.62 (P = 0.5             | (4)                 |                             |                     |                        |                                               |                                                                                                                                                                                           |                                                                                                                                                            |
| 5.7.3 PUFA 1.0 to <2.0%                                               |                             |                     |                             |                     |                        |                                               |                                                                                                                                                                                           |                                                                                                                                                            |
| VINS 2006 (1)<br>Subtotal (95% CI)                                    | 87                          | 1462<br><b>1462</b> | 52                          | 975<br>975          | 30.3%<br><b>30.3</b> % | 1.12 [0.80, 1.56]<br>1.12 [0.80, 1.56]        |                                                                                                                                                                                           |                                                                                                                                                            |
| Fotal events                                                          | 87                          |                     | 52                          |                     |                        |                                               |                                                                                                                                                                                           |                                                                                                                                                            |
| Heterogeneity: Not appli<br>Fest for overall effect: Z :              |                             | i2)                 |                             |                     |                        |                                               |                                                                                                                                                                                           |                                                                                                                                                            |
| 5.7.4 PUFA 2.0 to <5.0%                                               | E                           |                     |                             |                     |                        |                                               |                                                                                                                                                                                           |                                                                                                                                                            |
| 3lack 1994 (2)                                                        | 12                          | 67                  | 9                           | 66                  | 5.3%                   | 1.31 [0.59, 2.91]                             |                                                                                                                                                                                           |                                                                                                                                                            |
| DART fat Burr 1989<br>Subtotal (95% CI)                               | 80                          | 1018<br><b>1085</b> | 71                          | 1015<br><b>1081</b> | 35.7%<br>41.1%         | 1.12 [0.83, 1.53]<br><b>1.15 [0.86, 1.53]</b> |                                                                                                                                                                                           |                                                                                                                                                            |
| otal events                                                           | 92                          |                     | 80                          |                     |                        |                                               |                                                                                                                                                                                           |                                                                                                                                                            |
| Heterogeneity: Tau² = 0.<br>Fest for overall effect: Z :              |                             |                     | P = 0.72); I <sup>2</sup> = | = 0%                |                        |                                               |                                                                                                                                                                                           |                                                                                                                                                            |
| .7.5 PUFA 5.0+%E                                                      |                             |                     |                             |                     |                        |                                               |                                                                                                                                                                                           |                                                                                                                                                            |
| /RC 1968                                                              | 2                           | 199                 | 6                           | 194                 | 1.3%                   | 0.32 [0.07, 1.59]                             | ·                                                                                                                                                                                         |                                                                                                                                                            |
| VDHS Open 1st 1968                                                    | 0                           | 348                 | 1                           | 341                 | 0.3%                   | 0.33 [0.01, 7.99]                             | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                     | $\bullet \bullet $ |
| /eterans Admin 1969<br>Subtotal (95% CI)                              | 57                          | 424<br>971          | 38                          | 422<br>957          | 22.5%<br><b>24.1</b> % | 1.49 [1.01, 2.20]<br>0.80 [0.24, 2.64]        |                                                                                                                                                                                           |                                                                                                                                                            |
| Total events                                                          | 59                          |                     | 45                          |                     |                        |                                               |                                                                                                                                                                                           |                                                                                                                                                            |
| Heterogeneity: Tau² = 0.<br>Fest for overall effect: Z :              |                             |                     | P = 0.13); P =              | = 52%               |                        |                                               |                                                                                                                                                                                           |                                                                                                                                                            |
| .7.6 PUFA unclear                                                     |                             |                     |                             |                     |                        |                                               |                                                                                                                                                                                           |                                                                                                                                                            |
| REDIMED 2013                                                          | 10                          | 1285                | 8                           | 1476                | 3.9%                   | 1.44 [0.57, 3.63]                             |                                                                                                                                                                                           |                                                                                                                                                            |
| Subtotal (95% CI)<br>Total events                                     | 10                          | 1285                | 8                           | 1476                | 3.9%                   | 1.44 [0.57, 3.63]                             |                                                                                                                                                                                           |                                                                                                                                                            |
| Heterogeneity: Not appli<br>Fest for overall effect: Z :              |                             | 14)                 |                             |                     |                        |                                               |                                                                                                                                                                                           |                                                                                                                                                            |
| otal (95% CI)                                                         |                             | 4873                |                             | 4555                | 100.0%                 | 1.19 [0.99, 1.42]                             | •                                                                                                                                                                                         |                                                                                                                                                            |
| otal events                                                           | 249                         |                     | 187                         |                     |                        |                                               | -                                                                                                                                                                                         |                                                                                                                                                            |
| leterogeneity: Tau <sup>2</sup> = 0.                                  |                             |                     | P = 0.59); I <sup>2</sup> = | = 0%                |                        |                                               | 0.2 0.5 1 2 5                                                                                                                                                                             |                                                                                                                                                            |
| est for overall effect: Z                                             |                             |                     |                             |                     |                        |                                               | Favours higher total PUFA Favours lower total PUFA                                                                                                                                        |                                                                                                                                                            |
| est for subgroup differe                                              | ences: Chi <sup>2</sup> = 1 | 1.12, df=           | 4 (P = 0.89)                | , I² = 0%           |                        |                                               | -                                                                                                                                                                                         |                                                                                                                                                            |
|                                                                       |                             |                     | neor in contr               | alatoral            | voget el.              | e non broast conco-                           | Risk of bias legend                                                                                                                                                                       |                                                                                                                                                            |
| ootnotes                                                              | and the second second       |                     | acer in contra              | alateral k          |                        |                                               | (A) Random sequence generation (selection bias)                                                                                                                                           |                                                                                                                                                            |
| <u>Footnotes</u><br>1) Combination of wom<br>2) Participants with nev |                             |                     |                             | nd last (r          | not middle             | e) 8-month period                             | (B) Allocation concealment (selection bias) (C) Blinding of participants and personnel (performance)                                                                                      | bias)                                                                                                                                                      |
| ootnotes<br>1) Combination of wom                                     |                             |                     |                             | nd last (r          | not middle             | e) 8-month period                             | <ul> <li>(C) Blinding of participants and personnel (performance<br/>(D) Blinding of outcome assessment (detection bias)</li> <li>(E) Incomplete outcome data (attrition bias)</li> </ul> | bias)                                                                                                                                                      |
| ootnotes<br>1) Combination of wom                                     |                             |                     |                             | nd last (r          | not middle             | e) 8-month period                             | (C) Blinding of participants and personnel (performance<br>(D) Blinding of outcome assessment (detection bias)                                                                            | bias)                                                                                                                                                      |

Supplementary Figure 10. Meta-analysis assessing effects of increasing total PUFA on diagnosis of any cancer, subgrouping by dose of PUFA (as percentage of energy intake).

| Study or Subgroup<br>2.3.1 Drop outs due to side<br>VphaOmega - EPA+DHA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Events<br>effects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Total                                                                                                                                                                                                                                                                                               | Lower on<br>Events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                   | Risk Ratio<br>M-H, Random, 95% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Risk Ratio<br>M-H, Random, 95% Cl                                                                                                                                                                                                                                                       | Risk of Bias<br>A B C D E F G H I |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1192<br>168                                                                                                                                                                                                                                                                                         | 21<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1236<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17.8%<br>7.1%                                                                                                                                                                                                                     | 1.58 [0.92, 2.72]<br>0.45 [0.16, 1.23]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                         |                                   |
| PIC-1 2008<br>PIC-2 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 188<br>189                                                                                                                                                                                                                                                                                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 189<br>190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.7%<br>6.4%                                                                                                                                                                                                                      | 1.29 [0.49, 3.40]<br>1.81 [0.62, 5.30]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                         |                                   |
| OSTAR 2016<br>ISSI-HF 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17<br>102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 101<br>3494                                                                                                                                                                                                                                                                                         | 6<br>104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 101<br>3481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.8%<br>33.3%                                                                                                                                                                                                                     | 2.83 [1.16, 6.89]<br>0.98 [0.75, 1.28]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                         |                                   |
| ligashihara 2010<br>IRL 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34<br>171                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34<br>165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9%<br>5.6%                                                                                                                                                                                                                      | 5.00 [0.25, 100.43]<br>2.17 [0.68, 6.91]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                         |                                   |
| uri 2005<br>tossing 1996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 67<br>18                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 68<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.7%<br>1.8%                                                                                                                                                                                                                      | 3.04 [0.32, 28.54]<br>3.00 [0.34, 26.19]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                         |                                   |
| andhu 2016 (1)<br>CIMO - von Schacky 1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 107<br>112                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 106<br>111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.6%<br>3.7%                                                                                                                                                                                                                      | 0.66 [0.11, 3.87]<br>1.32 [0.30, 5.77]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                         |                                   |
| eAFOod Hull 2018<br>Jubtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 356<br>6197                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 353<br>6127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.6%<br>100.0%                                                                                                                                                                                                                    | 1.49 [0.25, 8.85]<br>1.31 [0.98, 1.76]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                         | ********                          |
| Fotal events<br>Heterogeneity: Tau# = 0.05;<br>Fest for overall effect: Z = 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 202<br>Chi <sup>#</sup> = 14.79,<br>82 (P = 0.07)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                     | 164<br>P = 0.25); P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = 19%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                         |                                   |
| .3.2 Abdominal pain or dis<br>PE-A 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 68                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.6%                                                                                                                                                                                                                              | 7.71 [0.41, 146.61]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                         |                                   |
| EPIC-1 2008<br>EPIC-2 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 45<br>65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 188<br>189                                                                                                                                                                                                                                                                                          | 41<br>62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 186<br>190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 32.4%<br>49.7%                                                                                                                                                                                                                    | 1.09 [0.75, 1.57]<br>1.05 [0.79, 1.40]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                       |                                   |
| ORIGIN 2013<br>SCIMO - von Schacky 1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6281<br>112                                                                                                                                                                                                                                                                                         | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.9%                                                                                                                                                                                                                             | 1.77 (0.99, 3.15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                         |                                   |
| Subtotal (95% CI)<br>Fotal events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6838                                                                                                                                                                                                                                                                                                | 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6817                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100.0%                                                                                                                                                                                                                            | 1.32 [0.30, 5.77]<br>1.17 [0.93, 1.47]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +                                                                                                                                                                                                                                                                                       |                                   |
| Heterogeneity: Tau¥ = 0.01;<br>Fest for overall effect: Z = 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Chi# = 4.38.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ff = 4 (P =                                                                                                                                                                                                                                                                                         | 0.36); I*=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                         |                                   |
| 2.3.3 Diarrhoea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 168                                                                                                                                                                                                                                                                                                 | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.5%                                                                                                                                                                                                                             | 0.58 (0.30, 1.14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                         |                                   |
| EPE-A 2014<br>EPIC-1 2008<br>EPIC-2 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 188                                                                                                                                                                                                                                                                                                 | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 186<br>190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20.6%                                                                                                                                                                                                                             | 1.65 [1.00, 2.72]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                         |                                   |
| OSTAR 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 101                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 101<br>165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.1%<br>6.8%                                                                                                                                                                                                                      | 1.60 [0.54, 4.72]<br>1.09 [0.43, 2.75]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                         |                                   |
| Puri 2005<br>Raitt 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 67<br>100                                                                                                                                                                                                                                                                                           | 14<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 68<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14.2%                                                                                                                                                                                                                             | 1.23 [0.66, 2.29]<br>0.92 [0.42, 1.98]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                         |                                   |
| Subtotal (95% CI)<br>Fotal events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 984                                                                                                                                                                                                                                                                                                 | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 885                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100.0%                                                                                                                                                                                                                            | 1.15 [0.90, 1.48]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +                                                                                                                                                                                                                                                                                       |                                   |
| Heterogeneity: Tau <sup>a</sup> = 0.01;<br>Fest for overall effect: Z = 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chi#= 6.72.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sf= 6 (P =                                                                                                                                                                                                                                                                                          | 0.35); I*=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                         |                                   |
| 2.3.4 Nausea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                         |                                   |
| EPE-A 2014<br>EPIC-1 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 168<br>188                                                                                                                                                                                                                                                                                          | 7 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 75<br>186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18.3%                                                                                                                                                                                                                             | 1.53 [0.69, 3.40]<br>4.20 [1.44, 12.26]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                         |                                   |
| PIC-2 2008<br>OSTAR 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 189<br>101                                                                                                                                                                                                                                                                                          | 19<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 190<br>101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40.2%                                                                                                                                                                                                                             | 1.59 [0.93, 2.72]<br>1.46 [0.76, 2.80]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                         |                                   |
| Higashihara 2010<br>Rossing 1996<br>Subtotal (95% CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32<br>18                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.3%                                                                                                                                                                                                                              | 4.70 [0.23, 94.01]<br>3.00 [0.34, 26.19]<br>1.75 [1.25, 2.47]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                         |                                   |
| Subtotal (95% CI)<br>Total events<br>Reterogeneity: Tau# = 0.00;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95<br>Chi <sup>a</sup> = 3.82, d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 696<br>ff = 5 (P =                                                                                                                                                                                                                                                                                  | 44<br>0.58); I*=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 600<br>0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100.0%                                                                                                                                                                                                                            | 1.75 [1.25, 2.47]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                       |                                   |
| Fest for overall effect: Z = 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23 (P = 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | )                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                         |                                   |
| 2.3.5 Reflux<br>FOSTAR 2016<br>Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 101<br>101                                                                                                                                                                                                                                                                                          | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100.0%<br>100.0%                                                                                                                                                                                                                  | 1.42 [0.71, 2.81]<br>1.42 [0.71, 2.81]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                         |                                   |
| 'otal events<br>leterogeneity: Not applicab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17<br>ole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 101                                                                                                                                                                                                                                                                                                 | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100.0%                                                                                                                                                                                                                            | 1.42 [0.71, 2.81]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                         |                                   |
| est for overall effect: Z = 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00 (P = 0.32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                         |                                   |
| 2.3.6 GI hospitalisation<br>Raitt 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100.0%                                                                                                                                                                                                                            | 1.75 [0.53, 5.79]<br>1.75 [0.53, 5.79]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                         |                                   |
| Subtotal (95% CI)<br>Fotal events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100.0%                                                                                                                                                                                                                            | 1.75 [0.53, 5.79]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                         |                                   |
| Heterogeneity: Not applicab<br>Fest for overall effect: Z = 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .0e<br>92 (P = 0.36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                         |                                   |
| 2.3.7 Any gastrointestinal s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | side effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                   | 103404-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                         |                                   |
| NphaOmega - EPA+DHA<br>NREDS2 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18<br>119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1192<br>2147                                                                                                                                                                                                                                                                                        | 10<br>145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1236<br>2056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.7%<br>9.1%                                                                                                                                                                                                                      | 1.87 [0.87, 4.03]<br>0.79 [0.62, 0.99]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                       |                                   |
| EPE-A 2014<br>EPIC-1 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 67<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 168<br>188                                                                                                                                                                                                                                                                                          | 40<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75<br>186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.8%<br>5.1%                                                                                                                                                                                                                      | 0.75 [0.56, 0.99]<br>0.92 [0.46, 1.86]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                         |                                   |
| EPIC-2 2008<br>FOSTAR 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20<br>67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 189<br>101                                                                                                                                                                                                                                                                                          | 21<br>62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 190<br>101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.1%<br>9.3%                                                                                                                                                                                                                      | 0.96 [0.54, 1.71]<br>1.08 [0.88, 1.33]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                         |                                   |
| GISSI-HF 2008<br>JELIS 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 96<br>352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3494<br>9326                                                                                                                                                                                                                                                                                        | 92<br>155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3481<br>9319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.8%<br>9.5%                                                                                                                                                                                                                      | 1.04 [0.78, 1.38]<br>2.27 [1.88, 2.74]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T                                                                                                                                                                                                                                                                                       |                                   |
| ORIGIN 2013<br>ORL 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6281<br>171                                                                                                                                                                                                                                                                                         | 24<br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6255<br>165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.4%<br>6.7%                                                                                                                                                                                                                      | 0.58 [0.30, 1.12]<br>1.09 [0.65, 1.80]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                         |                                   |
| Risk & Prevention 2013<br>Sandhu 2016 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 200<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6239<br>107                                                                                                                                                                                                                                                                                         | 186<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6266<br>106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.4%<br>2.9%                                                                                                                                                                                                                      | 1.08 [0.89, 1.31]<br>2.48 [0.80, 7.65]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>—</b>                                                                                                                                                                                                                                                                                |                                   |
| seAFOod Hull 2018<br>SOFA 2006<br>Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 114<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 347<br>273<br>30223                                                                                                                                                                                                                                                                                 | 95<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 350<br>273<br>30059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.2%<br>5.0%<br>100.0%                                                                                                                                                                                                            | 1.21 [0.96, 1.52]<br>1.42 [0.69, 2.91]<br>1.11 [0.89, 1.39]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _ <u>_</u>                                                                                                                                                                                                                                                                              |                                   |
| Total events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                     | 885<br>P < 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                   | 1.11 [0.09, 1.39]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T                                                                                                                                                                                                                                                                                       |                                   |
| Heterogeneity: Tau* = 0.13;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chi#= 81.01,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                         |                                   |
| Heterogeneity: Tau# = 0.13;<br>Test for overall effect: Z = 0.1<br>2.3.8 Bleeding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Chi# = 81.01,<br>93 (P = 0.35)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                         |                                   |
| Test for overall effect: Z = 0.1<br>2.3.8 Bleeding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 93 (P = 0.35)<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 188                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.1%                                                                                                                                                                                                                              | 0.20 [0.01, 4.09]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·                                                                                                                                                                                                                                                                                       |                                   |
| Fest for overall effect: Z = 0.1<br>2.3.8 Bleeding<br>EPIC-1 2008<br>EPIC-2 2008<br>FOSTAR 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 93 (P = 0.35)<br>0<br>9<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 188<br>189<br>101                                                                                                                                                                                                                                                                                   | 2<br>10<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190<br>101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15.2%<br>3.8%                                                                                                                                                                                                                     | 0.90 [0.38, 2.18]<br>0.25 [0.03, 2.20]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                         |                                   |
| Fest for overall effect: Z = 0.1<br>2.3.8 Eleeding<br>EPIC-1 2008<br>EPIC-2 2008<br>FOSTAR 2016<br>ELIS 2007<br>DRIGIN 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 93 (P = 0.35)<br>0<br>9<br>1<br>105<br>57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 188<br>189<br>101<br>9326<br>6281                                                                                                                                                                                                                                                                   | 4<br>60<br>65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 190<br>101<br>9319<br>6255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15.2%<br>3.8%<br>31.0%<br>29.8%                                                                                                                                                                                                   | 0.90 [0.38, 2.18]<br>0.25 [0.03, 2.20]<br>1.75 [1.28, 2.40]<br>0.87 [0.61, 1.24]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                         |                                   |
| Fest for overall effect: Z = 0.1<br>2.3.8 Bleeding<br>EPIC-1 2008<br>EPIC-2 2008<br>OSTAR 2016<br>IELIS 2007<br>DRIGIN 2013<br>Risk & Prevention 2013<br>Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 93 (P = 0.35)<br>9<br>1<br>105<br>57<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 188<br>189<br>101<br>9326                                                                                                                                                                                                                                                                           | 4<br>60<br>65<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 190<br>101<br>9319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.2%<br>3.8%<br>31.0%                                                                                                                                                                                                            | 0.90 [0.38, 2.18]<br>0.25 [0.03, 2.20]<br>1.75 [1.28, 2.40]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                         |                                   |
| Fest for overall effect. Z = 0.1<br><b>3.38 Bleeding</b><br>EPIC-1 2008<br>PIC-2 2008<br>OSTAR 2016<br>EULIS 2007<br>ORIOIN 2013<br>Sitek & Prevention 2013<br>Subtotal (95% C)<br>Total events<br>-detrongeneth: Tau# = 0.14:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 93 (P = 0.35)<br>0<br>9<br>1<br>105<br>57<br>16<br>188<br>CbP = 12.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 188<br>189<br>101<br>9326<br>6281<br>6239<br>22324                                                                                                                                                                                                                                                  | 4<br>60<br>65<br>12<br>153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 190<br>101<br>9319<br>6255<br>6266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.2%<br>3.8%<br>31.0%<br>29.8%<br>18.1%                                                                                                                                                                                          | 0.90 [0.38, 2.18]<br>0.25 [0.03, 2.20]<br>1.75 [1.28, 2.40]<br>0.87 [0.61, 1.24]<br>1.34 [0.63, 2.83]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                         |                                   |
| Fest for overall effect. Z = 0.1<br>3.38 Bleeding<br>EPIC-1 2008<br>EPIC-2 2008<br>OSTAR 2018<br>EUIS 2007<br>Sitisk & Prevention 2013<br>Sitisk & Prevention 2013                                                                                                                                                                                                               | 93 (P = 0.35)<br>0<br>9<br>1<br>105<br>57<br>16<br>188<br>Chi <sup>a</sup> = 12.34,<br>37 (P = 0.71)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 188<br>189<br>101<br>9326<br>6281<br>6239<br>22324<br>df= 5 (P                                                                                                                                                                                                                                      | 4<br>60<br>65<br>12<br>153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 190<br>101<br>9319<br>6255<br>6266<br>22317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15.2%<br>3.8%<br>31.0%<br>29.8%<br>18.1%<br>100.0%                                                                                                                                                                                | 0.90 (0.38, 2.18)<br>0.25 (0.03, 2.20)<br>1.75 (1.28, 2.40)<br>0.87 (0.61, 1.24)<br>1.34 (0.63, 2.83)<br>1.09 [0.70, 1.70]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                         |                                   |
| Test for versali effect. Z = 0.1<br>2.3.0 Bleeding<br>IPIC-1 2008<br>PIC-1 2008<br>PIC                               | 93 (P = 0.35)<br>0<br>9<br>1<br>105<br>57<br>16<br>188<br>Chi <sup>a</sup> = 12.34,<br>37 (P = 0.71)<br>ag, rashes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 188<br>189<br>101<br>9326<br>6281<br>6239<br><b>22324</b><br>df= 5 (P<br>2147<br>168<br>9326                                                                                                                                                                                                        | 4<br>60<br>65<br>12<br>153<br>= 0.03); I*<br>7<br>3<br>65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 190<br>101<br>9319<br>6255<br>6266<br>22317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15.2%<br>3.8%<br>31.0%<br>29.8%<br>18.1%<br>100.0%                                                                                                                                                                                | 0.90 (0.30, 2.10)<br>0.25 (0.03, 2.20)<br>1.75 (1.20, 2.40)<br>0.87 (0.61, 1.24)<br>1.34 (0.63, 2.83)<br>1.09 (0.70, 1.70)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                         |                                   |
| Test for versali effect Z = 0.1<br>2.3.0 Bleeding<br>EPIC-1 2008<br>EPIC-2 2                                                         | 93 (P = 0.35)<br>0<br>9<br>1<br>105<br>57<br>16<br>188<br>Chi <sup>p</sup> = 12.34<br>37 (P = 0.71)<br>19, rashes)<br>8<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 188<br>189<br>101<br>9326<br>6281<br>22324<br>df= 5 (P<br>2147<br>168<br>9326<br>6239                                                                                                                                                                                                               | 4<br>60<br>65<br>12<br>153<br>= 0.03); I* :<br>7<br>3<br>65<br>17<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 190<br>101<br>9319<br>6255<br>6266<br><b>22317</b><br>= 59%<br>2056<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15.2%<br>3.8%<br>31.0%<br>29.8%<br>18.1%<br>100.0%                                                                                                                                                                                | 0.90 (0.38, 2.18)<br>0.25 (0.03, 2.20)<br>1.75 (1.28, 2.40)<br>0.87 (0.61, 1.24)<br>1.34 (0.63, 2.83)<br>1.09 (0.70, 1.70)<br>1.09 (0.40, 3.01)<br>0.60 (0.14, 2.59)<br>2.46 (1.85, 3.28)<br>0.47 (0.20, 1.09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                         |                                   |
| Test for overail effect Z = 0.1<br>2.38 (Bleeding<br>PIPC-1 2008<br>PIPC-2 2008<br>PIPC-2 2018<br>ELUS 2007<br>OSTAR 2016<br>ELUS 2007<br>Total events<br>detrogenetics Tast" = 0.1 4;<br>Test for overail effect Z = 0.1<br>VeEDS 2014<br>PIE-A 2014<br>ELUS 2007<br>SIGA & Prevents<br>DIE-A 2014<br>ELUS 2007<br>SIGMO- von Bichacky 1999<br>SIGMO- von Bichacky 1999<br>SIGMO- von Bichacky 1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 93 (P = 0.35)<br>9<br>1<br>105<br>57<br>18<br>Chi <sup>#</sup> = 12.34,<br>37 (P = 0.71)<br>kg, rashes)<br>8<br>4<br>160<br>8<br>3<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 188<br>189<br>101<br>9326<br>6281<br>6239<br><b>22324</b><br>df= 5 (P<br>2147<br>168<br>9326                                                                                                                                                                                                        | 4<br>60<br>65<br>12<br>153<br>= 0.03); (*<br>7<br>3<br>65<br>17<br>5<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 190<br>101<br>9319<br>6255<br>6266<br><b>22317</b><br>= 59%<br>2056<br>75<br>9319<br>6266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15.2%<br>3.8%<br>31.0%<br>29.8%<br>18.1%<br>100.0%                                                                                                                                                                                | 0.90 (0.30, 2.10)<br>0.25 (0.03, 2.20)<br>1.75 (1.20, 2.40)<br>0.87 (0.61, 1.24)<br>1.34 (0.63, 2.83)<br>1.09 (0.70, 1.70)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                         |                                   |
| ve for overval effect Z = 0.1<br>3.3 Bleecing<br>(Pic) - 1200<br>(Pic) - 2000<br>(Pic) - 2000<br>(Pic) - 2000<br>(STAR 2016<br>ELL 2007)<br>(Star 2016<br>(ELL 2007)<br>(Star 2016<br>(Star 2016)<br>(Star 2016)<br>(                                                       | 93 (P = 0.35)<br>9<br>1<br>105<br>57<br>16<br>188<br>Chi <sup>p</sup> = 12.34,<br>37 (P = 0.71)<br>19, rashes)<br>8<br>4<br>160<br>8<br>3<br>1<br>184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 188<br>189<br>101<br>9326<br>6281<br>6281<br>6232<br>22324<br>df=5 (P<br>2147<br>168<br>9326<br>6239<br>107<br>112<br>18099                                                                                                                                                                         | 4<br>60<br>65<br>12<br>153<br>= 0.03); P<br>3<br>65<br>17<br>7<br>3<br>65<br>17<br>7<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 190<br>101<br>9319<br>6255<br>22317<br>59%<br>2056<br>75<br>9319<br>6266<br>106<br>111<br>17933                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.2%<br>3.8%<br>31.0%<br>29.8%<br>18.1%<br>100.0%<br>14.3%<br>25.8%<br>20.8%<br>14.3%<br>5.3%                                                                                                                                    | 0.90 (0.38, 2.18)<br>0.25 (0.03, 2.20)<br>1.75 (1.28, 2.40)<br>0.87 (0.61, 1.24)<br>1.34 (0.63, 2.83)<br>1.09 (0.70, 1.70)<br>1.09 (0.40, 3.01)<br>0.60 (0.14, 2.58)<br>2.46 (1.85, 3.28)<br>0.47 (0.20, 1.09)<br>0.59 (0.15, 2.42)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                         |                                   |
| The for overall effect 2 = 0.1<br>2.3.8 Bleeding<br>EIPIC-1 2008<br>EIPIC-2 20                                                                               | 93 (P = 0.35)<br>9<br>1<br>105<br>57<br>16<br>185<br>Chi# = 12.32<br>37 (P = 0.71)<br>9g, rashes)<br>8<br>4<br>160<br>8<br>3<br>194<br>Chi# = 19.84,<br>00<br>194<br>195<br>105<br>105<br>105<br>105<br>105<br>105<br>105<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 188<br>189<br>101<br>9326<br>6281<br>22324<br>df= 5 (P<br>2147<br>168<br>9326<br>6239<br>107<br>112<br>18099<br>df= 5 (P                                                                                                                                                                            | 4<br>60<br>65<br>512<br>163<br>= 0.03); P<br>5<br>7<br>3<br>65<br>17<br>5<br>0<br>97<br>= 0.001); P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 190<br>101<br>9319<br>6255<br>6266<br>22317<br>= 59%<br>2056<br>75<br>9319<br>6266<br>106<br>111<br>17933<br>= 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.2%<br>3.8%<br>31.0%<br>29.8%<br>18.1%<br>100.0%<br>14.3%<br>25.8%<br>14.3%<br>20.8%<br>14.9%<br>5.3%<br>100.0%                                                                                                                 | 0.00 (0.30, 210)<br>0.25 (0.03, 210)<br>0.25 (0.15, 242)<br>0.27 (0.15, 242)<br>0.27 (0.15, 242)<br>0.27 (0.15, 242)<br>0.27 (0.15, 242)<br>0.27 (0.15, 242)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                         |                                   |
| Test for oversal effect 2 = 0.1<br>2.0.8 Beecking<br>EIPIC-1 2000<br>EIPIC-2 2000<br>EIPIC-2 2000<br>EIPIC-2 2010<br>EIBIC-2 2                                                                               | 93 (P = 0.35)<br>9<br>1<br>105<br>57<br>16<br>188<br>Chi# = 12.34<br>37 (P = 0.71)<br>18, rashes)<br>4<br>160<br>8<br>19.<br>105<br>19.<br>105<br>18.<br>18.<br>18.<br>18.<br>18.<br>18.<br>18.<br>18.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 188<br>189<br>101<br>9326<br>6281<br>22324<br>df=5 (P<br>2147<br>168<br>9326<br>6239<br>107<br>112<br>18099<br>df=5 (P<br>18099                                                                                                                                                                     | 4<br>60<br>65<br>12<br>153<br>7<br>3<br>65<br>17<br>5<br>0<br>97<br>= 0.001); P<br>0<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 190<br>101<br>9319<br>6255<br>22317<br>59%<br>2056<br>75<br>9319<br>6266<br>106<br>111<br>17933                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.2%<br>3.8%<br>31.0%<br>29.8%<br>18.1%<br>100.0%<br>14.3%<br>25.8%<br>5.3%<br>100.0%                                                                                                                                            | 0.00 (0.30, 2.10)<br>0.25 (0.03, 2.00)<br>1.75 (1.20, 2.40)<br>1.69 (0.40, 1.20)<br>1.09 (0.40, 3.01)<br>1.09 (0.70, 1.70)<br>1.09 (0.70, 1.70)<br>2.461 (185, 3.28)<br>0.47 (120, 1.65, 3.24)<br>0.59 (0.15, 2.42)<br>2.97 (0.15, 2.42)<br>1.39 (0.06, 3.2.74)<br>1.19 (0.53, 2.68)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                         |                                   |
| Tes for overall effect 2 = 0.1<br>2.3.8 Biseding<br>EIPC-1 2000<br>EIPC-1 2000<br>EIPC-1 2000<br>EIPC-2 20                                                         | 93 (P = 0.35)<br>9<br>1<br>105<br>57<br>18<br>Chi <sup>2</sup> = 12.34,<br>37 (P = 0.71)<br>18<br>Chi <sup>2</sup> = 12.34,<br>160<br>3<br>1<br>100<br>100<br>100<br>100<br>100<br>100<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 188<br>189<br>101<br>9326<br>6281<br>6239<br>22324<br>df=5 (P<br>2147<br>168<br>9326<br>6239<br>107<br>112<br>18099<br>0, df=5 (P<br>e<br>168                                                                                                                                                       | 4<br>60<br>65<br>12<br>153<br>= 0.03); P<br>7<br>3<br>65<br>17<br>5<br>0<br>97<br>= 0.001); P<br>0<br>10<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 190<br>9319<br>6255<br>22317<br>= 59%<br>2056<br>75<br>9319<br>6266<br>106<br>111<br>17933<br>= 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.2%<br>3.8%<br>31.0%<br>29.8%<br>18.1%<br>100.0%<br>14.3%<br>25.8%<br>20.8%<br>5.3%<br>14.9%<br>5.3%                                                                                                                            | 0.90 (0.30, 2.10)<br>0.25 (0.03, 2.10)<br>0.37 (0.61, 1.24)<br>1.34 (0.63, 2.63)<br>1.09 (0.40, 3.01)<br>1.09 (0.40, 3.01)<br>0.60 (0.14, 2.59)<br>2.46 (1.85, 3.26)<br>0.47 (0.20, 2.10)<br>0.47 (0.20, 1.00)<br>0.59 (0.16, 2.27)<br>1.35 (0.06, 32.74)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |                                   |
| The for overall effect 2 = 0.1<br>3.0 Blocking<br>EPIC-1 2000<br>EPIC-1 2000<br>EPIC-2 2000<br>EPIC-2 2000<br>EUIS 2007<br>State & Freenotion 2013<br>State & Freenotion 2013<br>State & Streenotion 2013<br>State & Streenotion 2013<br>EVIC 2014<br>EVIC 2014             | 93 (P = 0.35)<br>9<br>1<br>105<br>57<br>18<br>Chi <sup>p</sup> = 12.34,<br>37 (P = 0.71)<br>8<br>4<br>160<br>3<br>1<br>104<br>105<br>57<br>18<br>Chi <sup>p</sup> = 10.94,<br>00 (P = 1.00)<br>102<br>122<br>Chi <sup>p</sup> = 25<br>Chi <sup>p</sup> = 1.65,<br>122<br>25<br>Chi <sup>p</sup> = 25<br>128<br>104<br>105<br>105<br>105<br>105<br>105<br>105<br>105<br>105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 188<br>189<br>101<br>9326<br>6281<br>62334<br>df = 5 (P<br>2147<br>188<br>9326<br>6239<br>107<br>112<br>18099<br>df = 5 (P<br>8<br>8<br>83<br>8<br>1809<br>9<br>0<br>6<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>9<br>545                                                                     | 4<br>60<br>85<br>12<br>153<br>= 0.03); P<br>7<br>7<br>3<br>65<br>17<br>5<br>0<br>97<br>= 0.001); P<br>0<br>10<br>20<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 190<br>101<br>9319<br>6255<br>6266<br>22317<br>= 59%<br>2056<br>106<br>111<br>17933<br>= 75%<br>75<br>186<br>190<br>451                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.2%<br>3.8%<br>31.0%<br>29.8%<br>18.1%<br>100.0%<br>18.9%<br>14.3%<br>25.8%<br>20.8%<br>14.9%<br>5.3%<br>100.0%                                                                                                                 | 0.00 (0.30, 2.10)<br>0.25 (0.03, 2.20)<br>1.75 (1.20, 2.40)<br>1.25 (0.03, 2.63)<br>1.34 (0.63, 2.63)<br>1.09 (0.70, 1.70)<br>1.09 (0.70, 1.70)<br>1.09 (0.40, 3.01)<br>0.00 (0.14, 2.50)<br>0.47 (0.20, 100)<br>0.46 (1.45, 3.28)<br>0.47 (0.20, 100)<br>0.59 (0.16, 2.42)<br>2.07 (0.16, 2.42)<br>2.07 (0.16, 2.42)<br>2.07 (0.16, 2.42)<br>1.35 (0.06, 3.274)<br>1.35                                   |                                                                                                                                                                                                                                                                                         |                                   |
| Tes for overall effect 2 = 0.1<br>2.0.8 Bloeding<br>EPIC-1 2000<br>EPIC-1 2000<br>EPIC-1 2000<br>EPIC-2 20                                                         | 93 (P = 0.35)<br>9<br>1<br>105<br>57<br>16<br>Chi* = 12.34,<br>37 (P = 0.71)<br>8<br>4<br>160<br>8<br>3<br>1<br>104<br>Chi* = 10.84,<br>007 = 1.00,<br>108<br>Chi* = 1.084,<br>00<br>109<br>109<br>109<br>109<br>109<br>109<br>109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 188<br>189<br>101<br>9326<br>6239<br>9326<br>6239<br>9326<br>6239<br>9326<br>6239<br>9326<br>6239<br>9326<br>6239<br>112<br>18099<br>9326<br>6239<br>112<br>18099<br>9326<br>615<br>112<br>18099<br>9326<br>112<br>112<br>112<br>112<br>112<br>112<br>112<br>112<br>112<br>1                        | 4<br>60<br>65<br>12<br>153<br>7<br>3<br>65<br>17<br>5<br>0<br>97<br>= 0.001); P<br>0<br>0<br>20<br>20<br>0.44); P<br>=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 190<br>101<br>9319<br>6255<br>6256<br>6256<br>6256<br>6256<br>75<br>9319<br>9319<br>6266<br>106<br>111<br>17933<br>755<br>186<br>190<br>451<br>00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.2%<br>3.8%<br>31.0%<br>29.8%<br>18.1%<br>100.0%<br>14.3%<br>25.8%<br>20.8%<br>14.9%<br>5.3%<br>100.0%                                                                                                                          | 0.00 (0.30, -14)<br>0.00 (0.30, -14)<br>0.75 (1.30, -2.40)<br>0.75 (1.30, -2.40)<br>1.09 (0.40, -2.01)<br>1.09 (0.40, -2.01)<br>0.00 (0.4, -2.90)<br>2.46 (1.85, -2.30)<br>2.46 (1.85, -2.40)<br>0.05 (0.15, -2.42)<br>2.97 (0.15, -2.42)<br>2.97 (0.15, -2.42)<br>2.97 (0.15, -2.42)<br>1.39 (0.00, -22, 74]<br>1.39 (0.00, -22, 74]<br>1.39 (0.00, -22, 74]<br>1.39 (0.44, -2.86]<br>0.60 (0.14, -2.86]<br>0                                       |                                                                                                                                                                                                                                                                                         |                                   |
| The for oversal effect 2 = 0.1<br>3.0 Bloeding<br>EIPC-1 2000<br>EIPC-2 2000<br>EIPC-2 2000<br>EIRC 2000<br>EIRC 2000<br>EIRC 2000<br>EIRC 2007<br>EIRC 2007<br>EIR | 93 (P = 0.35)<br>9 1<br>105<br>57<br>16<br>Chi <sup>#</sup> = 188<br>Chi <sup>#</sup> = 18.4<br>180<br>0<br>181<br>Chi <sup>#</sup> = 19.4<br>104<br>0 (P = 1.00)<br>ning migrain-<br>12<br>26<br>Chi <sup>#</sup> = 1.68, 80<br>(P = 0.43)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 188<br>189<br>001<br>9326<br>6291<br>6292<br>22324<br>df = 5 (P<br>22147<br>18099<br>9326<br>6239<br>107<br>112<br>18099<br>0<br>df = 5 (P<br>8<br>88<br>8189<br>545<br>545<br>545<br>545<br>545<br>545<br>545<br>545<br>545<br>54                                                                  | 4<br>60<br>85<br>12<br>153<br>= 0.03); P<br>7<br>7<br>3<br>65<br>17<br>5<br>0<br>97<br>= 0.001); P<br>0<br>10<br>20<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 190<br>101<br>9319<br>6255<br>6266<br>6266<br>6266<br>6266<br>6266<br>106<br>111<br>17933<br>2'2 75%<br>755<br>186<br>190<br>451<br>0%<br>75<br>5350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.2%<br>38%<br>31.0%<br>29.8%<br>18.1%<br>100.0%<br>14.3%<br>52.8%<br>5.3%<br>100.0%<br>2.8%<br>55.9%<br>100.0%                                                                                                                  | 0.00 (0.3), 210<br>1.00 (0.3), 210<br>1.75 (1.3), 240<br>0.77 (0.3), 1.24<br>1.34 (0.3), 710<br>1.09 (0.40, 3.01)<br>0.60 (0.14, 2.59)<br>0.47 (0.3), 720<br>0.47 (0.3), 720<br>1.09 (0.40, 2.57)<br>1.00 (0.44, 2.59)<br>1.00 (0.44, 2.59)<br>1.00 (0.44, 2.59)<br>0.59 (0.15, 2.42)<br>1.00 (0.44, 2.59)<br>0.59 (0.15, 2.42)<br>1.00 (0.44, 2.59)<br>0.59 (0.15, 2.42)<br>0.59 (0.44, 1.56)<br>0.59 (0.56)<br>0.59 (0.56)                           |                                                                                                                                                                                                                                                                                         |                                   |
| The for overall effect 2 = 0.1<br>2.3.8 Blocking<br>EIPIC-1 2008<br>EIPIC-1 2008<br>EIPIC-2 20                                                                               | 93 (P = 0.35)<br>9 (P = 0.35)<br>9 (P = 0.35)<br>105<br>57<br>16<br>Chi# = 12.34,<br>37 (P = 0.71)<br>18<br>Chi# = 10.84,<br>160<br>1<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 188<br>189<br>001<br>9326<br>6281<br>6293<br>22324<br>df = 5 (P<br>2147<br>188<br>9326<br>6239<br>107<br>112<br>18099<br>df = 5 (P<br>e<br>e<br>e<br>8<br>86<br>845<br>545<br>545<br>545<br>545<br>545<br>545<br>545<br>545<br>545                                                                  | 4<br>60<br>65<br>12<br>153<br>8<br>65<br>17<br>7<br>3<br>65<br>17<br>7<br>9<br>7<br>9<br>7<br>9<br>7<br>9<br>7<br>9<br>7<br>9<br>7<br>9<br>7<br>9<br>7<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1900<br>101<br>9319 6255 6<br>6266 6<br>6268 6<br>222317<br>= 59%<br>20568<br>79319<br>6266 6<br>111<br>1171<br>1773<br>1793<br>451<br>1793<br>451<br>900<br>451<br>900<br>451                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15.2%<br>3.8%<br>31.0%<br>29.8%<br>18.1%<br>18.1%<br>18.1%<br>18.0%<br>14.3%<br>5.3%<br>14.9%<br>5.3%<br>100.0%<br>2.6%<br>40.5%<br>5.3%<br>100.0%                                                                                | 0.00 (0.30, -14)<br>0.00 (0.30, -14)<br>0.75 (1.30, -2.40)<br>0.75 (1.30, -2.40)<br>1.09 (0.40, -2.01)<br>1.09 (0.40, -2.01)<br>0.00 (0.4, -2.90)<br>2.46 (1.85, -2.30)<br>2.46 (1.85, -2.40)<br>0.05 (0.15, -2.42)<br>2.97 (0.15, -2.42)<br>2.97 (0.15, -2.42)<br>2.97 (0.15, -2.42)<br>1.39 (0.00, -22, 74]<br>1.39 (0.00, -22, 74]<br>1.39 (0.00, -22, 74]<br>1.39 (0.44, -2.86]<br>0.60 (0.14, -2.86]<br>0                                       |                                                                                                                                                                                                                                                                                         |                                   |
| The for overall effect 2 = 0.1<br>2.3.8 Blocking<br>EIPIC-1 2008<br>EIPIC-1 2008<br>EIPIC-2 20                                                                               | 93 (P = 0.35)<br>9 (P = 0.35)<br>9 (P = 0.35)<br>105<br>57<br>15<br>105<br>57<br>16<br>18<br>Chi <sup>p</sup> = 1.234,<br>37 (P = 0.71)<br>18<br>18<br>18<br>105<br>31<br>105<br>18<br>105<br>31<br>105<br>105<br>105<br>105<br>105<br>105<br>105<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 188<br>189<br>001<br>9326<br>6281<br>6293<br>22324<br>df = 5 (P<br>2147<br>188<br>9326<br>6239<br>107<br>112<br>18099<br>df = 5 (P<br>e<br>e<br>e<br>8<br>86<br>845<br>545<br>545<br>545<br>545<br>545<br>545<br>545<br>545<br>545                                                                  | 4<br>60<br>65<br>12<br>153<br>8<br>65<br>17<br>7<br>3<br>65<br>17<br>7<br>9<br>7<br>9<br>7<br>9<br>7<br>9<br>7<br>9<br>7<br>9<br>7<br>9<br>7<br>9<br>7<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1900<br>101<br>9319 6255 6<br>6266 6<br>6268 6<br>222317<br>= 59%<br>20568<br>79319<br>6266 6<br>111<br>1171<br>1773<br>1793<br>451<br>1793<br>451<br>900<br>451<br>900<br>451                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15.2%<br>38%<br>31.0%<br>29.8%<br>18.1%<br>100.0%<br>14.3%<br>52.8%<br>5.3%<br>100.0%<br>2.8%<br>55.9%<br>100.0%                                                                                                                  | 0.00 (0.3), 210<br>1.00 (0.3), 210<br>1.75 (1.3), 240<br>0.77 (0.3), 1.24<br>1.34 (0.3), 710<br>1.09 (0.40, 3.01)<br>0.60 (0.14, 2.59)<br>0.47 (0.3), 720<br>0.47 (0.3), 720<br>1.09 (0.40, 2.57)<br>1.00 (0.44, 2.59)<br>1.00 (0.44, 2.59)<br>1.00 (0.44, 2.59)<br>0.59 (0.15, 2.42)<br>1.00 (0.44, 2.59)<br>0.59 (0.15, 2.42)<br>1.00 (0.44, 2.59)<br>0.59 (0.15, 2.42)<br>0.59 (0.44, 1.56)<br>0.59 (0.56)<br>0.59 (0.56)                           |                                                                                                                                                                                                                                                                                         |                                   |
| The for overall effect 2 = 0.1<br>3.3 Bloecing<br>PIPC-1 2000<br>PIPC-1 2000<br>PIPC-1 2000<br>PIPC-1 2000<br>PIPC-1 2000<br>PIPC-1 2000<br>PIPC-2 2000                                                         | $\begin{array}{c} 0\\ 0\\ 0\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                     | 4 4 60<br>65 512<br>153 153<br>7 3 65<br>7 7<br>17<br>17<br>17<br>10<br>0<br>97<br>90<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 190<br>101<br>9319<br>6255<br>5266<br>75<br>9319<br>6257<br>6266<br>75<br>9319<br>67<br>111<br>17933<br>451<br>00%<br>75<br>5350<br>455<br>00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15.2%<br>3.8%<br>31.0%<br>18.9%<br>14.3%<br>5.25.8%<br>5.25.8%<br>5.3%<br>100.0%<br>2.55%<br>5.55%<br>8.9.1%<br>10.9%<br>10.9%<br>10.9%                                                                                           | 0 00 00 20 211<br>0 210 00 210<br>0 210 00 1, 240<br>0 210 00 1, 240<br>1 40 00 2.00 1, 124<br>1 40 00 2.00 1, 124<br>1 40 00 2.00 1, 129<br>1 90 (0.70, 1.70)<br>1 90 (0.70, 1.70)                             |                                                                                                                                                                                                                                                                                         |                                   |
| The for oversal effect 2 = 0.1<br>3.0 Blocking<br>EPIC-1 2000<br>EPIC-1 2000<br>EPIC-1 2000<br>EPIC-1 2000<br>EFL03 2000<br>EFL0                               | 9 0° = 0.35)<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                     | 4 4 60<br>60 55<br>12 153<br>7 3 65<br>7 7<br>8 0 0 0 3); P*<br>9 0 0 0 1); P =<br>0 0 0 0 1); P<br>0 0 0 0 0 1); P<br>0 0 0 0 0 1); P<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1900<br>101<br>9319<br>6255 6256<br>6255 6266<br>222317<br>2058 75<br>756<br>166<br>161<br>111<br>17933<br>755<br>3500<br>425<br>0%<br>2056 75<br>3500<br>425<br>0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.2%<br>3.8%<br>31.0%<br>18.9%<br>18.1%<br>100.0%<br>14.3%<br>20.8%<br>14.3%<br>20.8%<br>5.3%<br>5.3%<br>100.0%<br>100.0%                                                                                                        | 0 00 00 00 211<br>0 01 00 211<br>0 210 00 11 00<br>1 00 10 00 1, 24<br>1 00 10 00 1, 25<br>1 00 10 0, 27<br>1 00 10 0, 27<br>1 10 10 0, 20<br>0 27 10 3, 1 00<br>0 27 10 3, |                                                                                                                                                                                                                                                                                         |                                   |
| The for overall effect 2 = 0.1<br>3.3 Bioeching<br>PIPC-1 2000<br>PIPC-1 2000<br>PIPC-1 2000<br>PIPC-1 2000<br>PIPC-1 2000<br>PIPC-1 2000<br>PIPC-2 200                                                         | 93 0° = 0.350<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 188<br>189<br>101<br>9226<br>6281<br>6281<br>6239<br>9226<br>6239<br>9226<br>6239<br>107<br>112<br>18099<br>94<br>6239<br>107<br>112<br>18099<br>94<br>6239<br>107<br>112<br>18099<br>94<br>6239<br>107<br>112<br>18099<br>94<br>168<br>818<br>818<br>818<br>818<br>818<br>818<br>818<br>818<br>818 | 4 4 60<br>65 512<br>153<br>153<br>153<br>153<br>153<br>153<br>153<br>153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1900<br>101<br>9319<br>6255 6266<br>75<br>9319<br>6266<br>1111<br>1111<br>1111<br>1111<br>1111<br>1111<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.2%<br>3.8%<br>31.0%<br>18.9%<br>18.9%<br>18.9%<br>18.9%<br>100.0%<br>2.8%<br>55.9%<br>100.0%<br>10.9%<br>100.0%                                                                                                                | 0 00 00 00 211<br>0 01 00 211<br>0 07 10 22, 00 01<br>1 00 10 40, 201<br>1 1 00 10 40, 201<br>0 00 10 30, 100<br>0 00 10 30, 554<br>1 0 20 10 00, 554<br>1 0 20                      |                                                                                                                                                                                                                                                                                         |                                   |
| The for oversal effect 2 = 0.1<br>3.0 Blocking<br>IPIC-1 2000<br>IPIC-1 2000<br>IPIC-1 2000<br>IPIC-2 2000                                                         | 9,9,9,0,0,350<br>0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 169\\ 169\\ 169\\ 169\\ 223\\ 223\\ 223\\ 223\\ 223\\ 4\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16$                                                                                                                                                                        | 4 4 60<br>65 512<br>153 153<br>7 7 3<br>5 60 003); P*<br>7 7 3<br>6 0 007); P<br>9 0.001); P<br>9 0.001); P<br>9 0.001); P<br>9 0<br>9 0<br>0 0.44); P=<br>9 8<br>2<br>9 0<br>3 71<br>160<br>0<br>0 0.44); P=<br>9 8<br>2<br>9 10<br>9 10<br>9 10<br>9 10<br>9 10<br>9 10<br>9 10<br>9 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1900<br>101<br>9319<br>6255<br>6266<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>22317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317<br>23317 | 15.2%<br>3.8%<br>31.0%<br>18.9%<br>18.1%<br>100.0%<br>18.9%<br>14.3%<br>25.8%<br>25.8%<br>25.8%<br>25.8%<br>25.8%<br>14.9%<br>55.9%<br>100.0%<br>100.0%<br>100.0%<br>100.0%                                                       | 0 00 00 00 211<br>0 01 00 211<br>1 75 11 22, 200<br>1 00 00 1, 24<br>1 00 00 1, 24<br>1 00 00 1, 24<br>1 00 00 1, 24<br>1 00 00 1, 200<br>1 00 00 1, 200<br>1 00 00 1, 200<br>1 00 00 1, 200<br>1 00 00 1, 200<br>0 00 00 0, 100<br>0 00 00 0, 120<br>0 00 00 0, 120<br>0 00 00 0, 120<br>0 00 0, 00 0, 120<br>0 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00                                                                                                                                                                     |                                                                                                                                                                                                                                                                                         |                                   |
| Tes for overall effect 2 = 0.1<br>2.3.8 Biseding<br>EIPC-1 2000<br>EIPC-1 2000<br>EIPC-1 2000<br>EIPC-2 2                                                                                                                                                                                                                               | 9 0° = 0.35)<br>0<br>0<br>0<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 180\\ 99\\ 101\\ 99266\\ 6281\\ 92266\\ 6239\\ 22324\\ df=5\ (2487)\\ 1809\\ 90\\ 18099\\ 18099\\ 18099\\ 1809\\ 1809\\ 1809\\ 1809\\ 1809\\ 1809\\ 180\\ 180\\ 180\\ 180\\ 180\\ 180\\ 180\\ 180$                                                                                | 4 4 60<br>65<br>12<br>153<br>7<br>3<br>6<br>0<br>7<br>3<br>6<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1900<br>101<br>9319<br>6255 6266<br>6255 6266<br>75<br>75<br>9319<br>6266<br>111<br>17933<br>425<br>939<br>425<br>0%<br>425<br>0%<br>425<br>0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15.2%<br>3.8%<br>31.0%<br>18.9%<br>18.1%<br>100.0%<br>18.9%<br>14.3%<br>25.8%<br>25.8%<br>25.8%<br>25.8%<br>14.3%<br>5.3%<br>14.9%<br>14.3%<br>14.9%<br>14.3%<br>14.9%<br>14.3%<br>100.0%<br>100.0%<br>100.0%<br>100.0%<br>100.0% | 0 00 00 00 211<br>1 75 11.22, 200 00, 124<br>1 75 11.22, 200 01, 124<br>2 76 11.22, 200<br>0 77 10.00, 127<br>1 75 11.25, 200 01, 124<br>0 77 10.00, 127<br>1 75 11.25, 200 01, 124<br>0 77 10.00, 127<br>1 75 11.15, 200 01, 124<br>0 77 10.00, 127<br>1 75 11.15, 200 01, 124<br>0 77 10.00, 127<br>1 75 11.25, 124<br>1 75 11.25, 1             |                                                                                                                                                                                                                                                                                         |                                   |
| Tes for overall effect 2 = 0.1<br>2.3.4 Biseding<br>EIPC-1 2000<br>EIPC-1 2000<br>EIPC-1 2000<br>EIPC-1 2000<br>EIPC-2 20                                                         | 93 0° = 0.359<br>0<br>0<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1800<br>199<br>101<br>102<br>102<br>102<br>102<br>102<br>102<br>102                                                                                                                                                                                                                                 | 4 4 60<br>65 12<br>153<br>15<br>7 3<br>6 0.03); P <sup>1</sup><br>7<br>3<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1900<br>101<br>9319<br>6255<br>6266<br>6255<br>6266<br>75<br>75<br>9319<br>425<br>186<br>190<br>451<br>0%<br>2056<br>75<br>350<br>451<br>0%<br>2056<br>75<br>186<br>190<br>0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.2%<br>3.8%<br>3.10%<br>18.9%<br>18.9%<br>100.0%<br>18.9%<br>14.3%<br>22.8%<br>14.3%<br>22.8%<br>14.3%<br>14.3%<br>14.3%<br>14.9%<br>14.9%<br>100.0%<br>10.0%                                                                   | 0 00 00 00 211<br>0 01 00 211<br>1 75 11 22, 200<br>1 00 00 1, 24<br>1 00 00 1, 24<br>1 00 00 1, 24<br>1 00 00 1, 24<br>1 00 00 1, 200<br>1 00 00 1, 200<br>1 00 00 1, 200<br>1 00 00 1, 200<br>1 00 00 1, 200<br>0 00 00 0, 100<br>0 00 00 0, 120<br>0 00 00 0, 120<br>0 00 00 0, 120<br>0 00 0, 00 0, 120<br>0 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00                                                                                                                                                                     |                                                                                                                                                                                                                                                                                         |                                   |
| Tes for oversil effect 2 = 0.1<br>2.0.2 Biseding<br>EIPC-1 2000<br>EIPC-1 2000<br>EIPC-1 2000<br>EIPC-2 20                                                         | 9 9 0° = 0.359<br>0<br>0<br>1<br>1<br>1<br>5<br>5<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1800<br>199<br>101<br>102<br>102<br>102<br>102<br>102<br>102<br>102                                                                                                                                                                                                                                 | 4 4 60<br>65 12<br>153<br>15<br>7 3<br>6 0.03); P <sup>1</sup><br>7<br>3<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1900<br>101<br>9319<br>6255<br>6266<br>6255<br>6266<br>75<br>75<br>9319<br>425<br>186<br>190<br>451<br>0%<br>2056<br>75<br>350<br>451<br>0%<br>2056<br>75<br>186<br>190<br>0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.2%<br>3.8%<br>3.10%<br>18.9%<br>18.9%<br>100.0%<br>18.9%<br>14.3%<br>22.8%<br>14.3%<br>22.8%<br>14.3%<br>14.3%<br>14.3%<br>14.9%<br>14.9%<br>100.0%<br>10.0%                                                                   | 0 00 00 00 211<br>1 75 11.22, 200 00, 124<br>1 75 11.22, 200 01, 124<br>2 76 11.22, 200<br>0 77 10.00, 127<br>1 75 11.25, 200 01, 124<br>0 77 10.00, 127<br>1 75 11.25, 200 01, 124<br>0 77 10.00, 127<br>1 75 11.15, 200 01, 124<br>0 77 10.00, 127<br>1 75 11.15, 200 01, 124<br>0 77 10.00, 127<br>1 75 11.25, 124<br>1 75 11.25, 1             |                                                                                                                                                                                                                                                                                         |                                   |
| The for overall effect 2 = 0.1<br>3.3 Bioeching<br>PIPC-1 2000<br>PIPC-1 2000<br>PIPC-1 2000<br>PIPC-1 2000<br>PIPC-1 2000<br>PIPC-1 2000<br>PIPC-2 200                                                         | 9 9 0° = 0.359<br>0<br>0<br>0<br>1<br>1<br>1<br>5<br>5<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1800<br>199<br>101<br>102<br>102<br>102<br>102<br>102<br>102<br>102                                                                                                                                                                                                                                 | 4 4 60<br>65 12<br>153<br>15<br>7 3<br>6 0.03); P <sup>1</sup><br>7<br>3<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1900<br>101<br>9319<br>6255<br>6266<br>6255<br>6266<br>75<br>75<br>9319<br>425<br>186<br>190<br>451<br>0%<br>2056<br>75<br>350<br>451<br>0%<br>2056<br>75<br>186<br>190<br>0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.2%<br>3.8%<br>3.10%<br>18.9%<br>18.9%<br>100.0%<br>18.9%<br>14.3%<br>22.8%<br>14.3%<br>22.8%<br>14.3%<br>14.3%<br>14.3%<br>14.9%<br>14.9%<br>100.0%<br>10.0%                                                                   | 0 00 00 00 211<br>1 75 11.22, 200 00, 124<br>1 75 11.22, 200 01, 124<br>2 76 11.22, 200<br>0 77 10.00, 127<br>1 75 11.25, 200 01, 124<br>0 77 10.00, 127<br>1 75 11.25, 200 01, 124<br>0 77 10.00, 127<br>1 75 11.15, 200 01, 124<br>0 77 10.00, 127<br>1 75 11.15, 200 01, 124<br>0 77 10.00, 127<br>1 75 11.25, 124<br>1 75 11.25, 1             |                                                                                                                                                                                                                                                                                         |                                   |
| Tes for oversal effect 2 = 0.1<br>2.3.8 Biseding<br>EIPC-1 2000<br>EIPC-1 2000<br>EIPC-1 2000<br>EIPC-1 2000<br>EIPC-1 2000<br>EIPC-2 20                                                         | $\begin{array}{c} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1800<br>199<br>101<br>102<br>102<br>102<br>102<br>102<br>102<br>102                                                                                                                                                                                                                                 | 4 4 60<br>65 12<br>153<br>15<br>7 3<br>6 0.03); P <sup>1</sup><br>7<br>3<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1900<br>101<br>9319<br>6255<br>6266<br>6255<br>6266<br>75<br>75<br>9319<br>425<br>186<br>190<br>451<br>0%<br>2056<br>75<br>350<br>451<br>0%<br>2056<br>75<br>186<br>190<br>0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.2%<br>3.8%<br>3.10%<br>18.9%<br>18.9%<br>100.0%<br>18.9%<br>14.3%<br>22.8%<br>14.3%<br>22.8%<br>14.3%<br>14.3%<br>14.3%<br>14.9%<br>14.9%<br>100.0%<br>10.0%                                                                   | 0 00 00 00 211<br>1 75 11.22, 200 00, 124<br>1 75 11.22, 200 01, 124<br>2 76 11.22, 200<br>0 77 10.00, 127<br>1 75 11.25, 200 01, 124<br>0 77 10.00, 127<br>1 75 11.25, 200 01, 124<br>0 77 10.00, 127<br>1 75 11.15, 200 01, 124<br>0 77 10.00, 127<br>1 75 11.15, 200 01, 124<br>0 77 10.00, 127<br>1 75 11.25, 124<br>1 75 11.25, 1             | Favours higher omega 3 Favours lower omega 3<br>Risk of bias leaend                                                                                                                                                                                                                     |                                   |
| Test for oversal effect 2 = 0.1<br>3.3 Bioeching<br>IPIC-1 2000<br>IPIC-1 2000<br>IPIC-1 2000<br>IPIC-1 2000<br>IPIC-1 2000<br>IPIC-1 2000<br>IPIC-2 3000<br>IPIC-2 30                                                         | 93 0° = 0.353<br>0 0° = 0.355<br>0° = 0.355<br>0° = 0.355<br>0° = 0.355<br>0° = 0.355<br>0° = 0.355<br>0° = 0.455<br>0° = 0.455<br>0 | 1800<br>199<br>101<br>102<br>102<br>102<br>102<br>102<br>102<br>102                                                                                                                                                                                                                                 | 4 4 60<br>65 12<br>153<br>15<br>7 3<br>6 0.03); P <sup>1</sup><br>7<br>3<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1900<br>101<br>9319<br>6255<br>6266<br>6255<br>6266<br>75<br>75<br>9319<br>425<br>186<br>190<br>451<br>0%<br>2056<br>75<br>350<br>451<br>0%<br>2056<br>75<br>186<br>190<br>0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.2%<br>3.8%<br>3.10%<br>18.9%<br>18.9%<br>100.0%<br>18.9%<br>14.3%<br>22.8%<br>14.3%<br>22.8%<br>14.3%<br>14.3%<br>14.3%<br>14.9%<br>14.9%<br>100.0%<br>10.0%                                                                   | 0 00 00 00 211<br>1 75 11.22, 200 00, 124<br>1 75 11.22, 200 01, 124<br>2 76 11.22, 200<br>0 77 10.00, 127<br>1 75 11.25, 200 01, 124<br>0 77 10.00, 127<br>1 75 11.25, 200 01, 124<br>0 77 10.00, 127<br>1 75 11.15, 200 01, 124<br>0 77 10.00, 127<br>1 75 11.15, 200 01, 124<br>0 77 10.00, 127<br>1 75 11.25, 124<br>1 75 11.25, 1             | Favours higher omega 3 Favours lower omega 3<br><u>Risk of bias legend</u><br>(A) Random sequence generation (selection bias)<br>(B) Allocation concealment (selection bias)                                                                                                            |                                   |
| The for overall effect 2 = 0.1<br>3.0 Bioeching<br>EPIC-1 2000<br>EPIC-1 2000<br>EPIC-1 2000<br>EPIC-1 2000<br>EUIS 2007<br>State & Freenetion 2013<br>State & Freenetion 2013<br>State & Stremention 2013<br>State & Streme                                                                                                                                                                                                             | 93 0° = 0.353<br>0 0° = 0.355<br>0° = 0.355<br>0° = 0.355<br>0° = 0.355<br>0° = 0.355<br>0° = 0.355<br>0° = 0.455<br>0° = 0.455<br>0 | 1800<br>199<br>101<br>102<br>102<br>102<br>102<br>102<br>102<br>102                                                                                                                                                                                                                                 | 4 4 60<br>65 12<br>153<br>15<br>7 3<br>6 0.03); P <sup>1</sup><br>7<br>3<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1900<br>101<br>9319<br>6255<br>6266<br>6255<br>6266<br>75<br>75<br>9319<br>425<br>186<br>190<br>451<br>0%<br>2056<br>75<br>350<br>451<br>0%<br>2056<br>75<br>186<br>190<br>0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.2%<br>3.8%<br>3.10%<br>18.9%<br>18.9%<br>100.0%<br>18.9%<br>14.3%<br>22.8%<br>14.3%<br>22.8%<br>14.3%<br>14.3%<br>14.3%<br>14.9%<br>14.9%<br>100.0%<br>10.0%                                                                   | 0 00 00 00 211<br>1 75 11.22, 200 00, 124<br>1 75 11.22, 200 01, 124<br>2 76 11.22, 200<br>0 77 10.00, 127<br>1 75 11.25, 200 01, 124<br>0 77 10.00, 127<br>1 75 11.25, 200 01, 124<br>0 77 10.00, 127<br>1 75 11.15, 200 01, 124<br>0 77 10.00, 127<br>1 75 11.15, 200 01, 124<br>0 77 10.00, 127<br>1 75 11.25, 124<br>1 75 11.25, 1             | Favours higher omega 3 Favours lower omega 3<br><u>Risk of bias leaend</u><br>(A) Random sequence generation (selection bias)<br>(G) Allocation concealment (selection bias)<br>(C) Binding of participants and personnel (perform<br>O) Binding of outcome assessment (detection bias) | mm to Laty)                       |
| Test for oversal effect 2 = 0.1<br>3.3 Bioeching<br>IPIC-1 2000<br>IPIC-1 2000<br>IPIC-1 2000<br>IPIC-1 2000<br>IPIC-1 2000<br>IPIC-1 2000<br>IPIC-2 3000<br>IPIC-2 30                                                         | 93 0° = 0.353<br>0 0° = 0.355<br>0° = 0.355<br>0° = 0.355<br>0° = 0.355<br>0° = 0.355<br>0° = 0.355<br>0° = 0.455<br>0° = 0.455<br>0 | 1800<br>199<br>101<br>102<br>102<br>102<br>102<br>102<br>102<br>102                                                                                                                                                                                                                                 | 4 4 60<br>65 12<br>153<br>15<br>7 3<br>6 0.03); P <sup>1</sup><br>7<br>3<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1900<br>101<br>9319<br>6255<br>6266<br>6255<br>6266<br>75<br>75<br>9319<br>425<br>186<br>190<br>451<br>0%<br>2056<br>75<br>350<br>451<br>0%<br>2056<br>75<br>186<br>190<br>0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.2%<br>3.8%<br>3.10%<br>18.9%<br>18.9%<br>100.0%<br>18.9%<br>14.3%<br>22.8%<br>14.3%<br>22.8%<br>14.3%<br>14.3%<br>14.3%<br>14.9%<br>14.9%<br>100.0%<br>10.0%                                                                   | 0 00 00 00 211<br>1 75 11.22, 200 00, 124<br>1 75 11.22, 200 01, 124<br>2 76 11.22, 200<br>0 77 10.00, 127<br>1 75 11.25, 200 01, 124<br>0 77 10.00, 127<br>1 75 11.25, 200 01, 124<br>0 77 10.00, 127<br>1 75 11.15, 200 01, 124<br>0 77 10.00, 127<br>1 75 11.15, 200 01, 124<br>0 77 10.00, 127<br>1 75 11.25, 124<br>1 75 11.25, 1             | Favours higher ornega 3 Favours lower ornega 3<br><u>Risk of bias legend</u><br>(A) Random sequence generation (selection bias)<br>(B) Allocation concealment (selection bias)<br>(C) Blinding of participants and personnel (performation)                                             | mm to Laty)                       |

Supplementary Figure 11. Forest plot showing effects of increasing LCn3 on side effects using random-effects meta-analyses.

|                                        | Higher omega 3 Lower ome |           |        | omega 3 Risk Ratio   |        |                     | Risk Ratio                                                    | Risk of Bias       |
|----------------------------------------|--------------------------|-----------|--------|----------------------|--------|---------------------|---------------------------------------------------------------|--------------------|
| Study or Subgroup                      | Events                   | Total     | Events | Total                | Weight | M-H, Random, 95% Cl | M-H, Random, 95% Cl                                           | ABCDEFGHI          |
| Berson 2004                            | 6                        | 105       | 8      | 103                  | 1.1%   | 0.74 [0.26, 2.05]   |                                                               |                    |
| DIPP-Tokudome 2015                     | 3                        | 104       | 5      | 101                  | 0.6%   | 0.58 [0.14, 2.37]   | ·                                                             | •••?•••            |
| EPE-A 2014                             | 49                       | 168       | 20     | 75                   | 5.2%   | 1.09 [0.70, 1.70]   |                                                               |                    |
| EPIC-1 2008                            | 80                       | 188       | 91     | 186                  | 13.8%  | 0.87 [0.70, 1.09]   |                                                               | •••?•              |
| EPIC-2 2008                            | 114                      | 189       | 112    | 190                  | 18.2%  | 1.02 [0.87, 1.21]   | _ <b>+</b> _                                                  | •••??              |
| FOSTAR 2016                            | 18                       | 101       | 16     | 101                  | 3.0%   | 1.13 [0.61, 2.08]   |                                                               |                    |
| Higashihara 2010                       | 2                        | 34        | 4      | 34                   | 0.5%   | 0.50 [0.10, 2.55]   | ·                                                             | ?? 🗧 ? 🗧 ? ? 🖢 🗧   |
| JELIS 2007                             | 1766                     | 9326      | 1582   | 9319                 | 27.9%  | 1.12 [1.05, 1.19]   | +                                                             |                    |
| Mita 2007                              | 10                       | 40        | 11     | 41                   | 2.1%   | 0.93 [0.45, 1.95]   |                                                               |                    |
| ORL 2013                               | 22                       | 336       | 21     | 167                  | 3.4%   | 0.52 [0.29, 0.92]   |                                                               |                    |
| Raitt 2005                             | 17                       | 100       | 26     | 100                  | 3.7%   | 0.65 [0.38, 1.13]   |                                                               |                    |
| Rossing 1996                           | 4                        | 18        | 3      | 18                   | 0.7%   | 1.33 [0.35, 5.13]   |                                                               | → <b>@?@?@?@@@</b> |
| Sandhu 2016                            | 5                        | 54        | 6      | 53                   | 1.0%   | 0.82 [0.27, 2.52]   |                                                               |                    |
| seAFOod Hull 2018                      | 40                       | 356       | 27     | 353                  | 4.8%   | 1.47 [0.92, 2.34]   |                                                               |                    |
| SU.FOL.OM3 Galan 2010                  | 134                      | 1253      | 145    | 1248                 | 13.9%  | 0.92 [0.74, 1.15]   |                                                               |                    |
| fotal (95% CI)                         |                          | 12372     |        | 12089                | 100.0% | 0.98 [0.88, 1.10]   | •                                                             |                    |
| Total events                           | 2270                     |           | 2077   |                      |        |                     |                                                               |                    |
| Heterogeneity: Tau <sup>2</sup> = 0.01 |                          | . df = 14 |        | I <sup>2</sup> = 33% |        |                     |                                                               |                    |
| <b>.</b> .                             |                          |           | 0.000  |                      |        |                     | 0.5 0.7 1 1.5 2<br>Eavours bigher omega 3 Eavours lower omega | 3                  |
| Test for overall effect: Z = 0         | .33 (P = 0.74)           | )         | . ,    |                      |        |                     | 0.5 0.7 1 1.5 2<br>Favours higher omega 3 Favours lower omega | 3                  |

#### Risk of bias legend

(A) Random sequence generation (selection bias) (B) Allocation concealment (selection bias)

(C) Blinding of participants and personnel (performance bias)

(D) Blinding of outcome assessment (detection bias)

(E) Incomplete outcome data (attrition bias) (F) Selective reporting (reporting bias)

(G) Attention

(H) Compliance (I) Other bias

Supplementary Figure 12. Forest plot showing effects of increasing LCn3 on dropouts using randomeffects meta-analyses.

|                                                                   | Higher ome      | ga 3                | Lower om | ega 3               |                          | Risk Ratio                             | Risk Ratio                                                           | Risk of Bias |
|-------------------------------------------------------------------|-----------------|---------------------|----------|---------------------|--------------------------|----------------------------------------|----------------------------------------------------------------------|--------------|
| Study or Subgroup                                                 | Events          | Total               | Events   | Total               | Weight                   | M-H, Random, 95% Cl                    | M-H, Random, 95% Cl                                                  | ABCDEFGHI    |
| 2.5.1 Drop outs due t                                             | to side effects | 5                   |          |                     |                          |                                        |                                                                      |              |
| AlphaOmega - ALA<br>Subtotal (95% CI)                             | 18              | 1197<br><b>1197</b> | 21       | 1236<br><b>1236</b> | 100.0%<br><b>100.0</b> % | 0.89 [0.47, 1.65]<br>0.89 [0.47, 1.65] |                                                                      | •••••        |
| Total events<br>Heterogeneity: Not ap<br>Test for overall effect: |                 | 0.70)               | 21       |                     |                          |                                        |                                                                      |              |
| 2.5.2 Any gastrointes                                             | stinal side eff | ect                 |          |                     |                          |                                        |                                                                      |              |
| AlphaOmega - ALA<br>Subtotal (95% CI)                             | 9               | 1197<br><b>1197</b> | 10       | 1236<br><b>1236</b> | 100.0%<br><b>100.0</b> % | 0.93 [0.38, 2.28]<br>0.93 [0.38, 2.28] |                                                                      |              |
| Total events<br>Heterogeneity: Not ap<br>Test for overall effect: |                 | 0.87)               | 10       |                     |                          |                                        |                                                                      |              |
|                                                                   |                 |                     |          |                     |                          |                                        | 0.1 0.2 0.5 1 2 5 10<br>Favours higher omega 3 Favours lower omega 3 |              |

<u>Risk of bias legend</u> (A) Random sequence generation (selection bias)

(B) Allocation concealment (selection bias)

(C) Blinding of participants and personnel (performance bias) (D) Blinding of outcome assessment (detection bias)

(E) Incomplete outcome data (attrition bias)

(F) Selective reporting (reporting bias)

(G) Attention

(H) Compliance

(I) Other bias

Supplementary Figure 13. Forest plot showing effects of increasing ALA on side effects using random-effects meta-analyses.

|                                           | Higher om       | ega 6                 | Lower ome     | ega 6      |        | Risk Ratio          | Risk Ratio                         | Risk of Bias     |
|-------------------------------------------|-----------------|-----------------------|---------------|------------|--------|---------------------|------------------------------------|------------------|
| Study or Subgroup                         | Events          | Total                 | Events        | Total      | Weight | M-H, Random, 95% CI | M-H, Random, 95% Cl                | ABCDEFGHI        |
| 4.4.1 dietary advice                      | and supplem     |                       | ods           |            |        |                     |                                    |                  |
| Subtotal (95% CI)                         |                 | 0                     |               | 0          |        | Not estimable       |                                    |                  |
| Total events                              | 0               |                       | 0             |            |        |                     |                                    |                  |
| Heterogeneity: Not a                      |                 |                       |               |            |        |                     |                                    |                  |
| Test for overall effect                   | Not applicat    | ole                   |               |            |        |                     |                                    |                  |
| 4.4.2 GLA suppleme                        | nt              |                       |               |            |        |                     |                                    |                  |
| GLAMT 1993                                | 10              | 54                    | 17            | 57         | 66.9%  | 0.62 [0.31, 1.23]   | — <b>—</b> — <b>—</b> — <b>—</b> — | ?? 🗣 ? 🖷 ? 🗣 ? 🗣 |
| Mansel 1990                               | 7               | 100                   | 8             | 100        | 33.1%  | 0.88 [0.33, 2.32]   |                                    | ??????????       |
| Subtotal (95% CI)                         |                 | 154                   |               | 157        | 100.0% | 0.70 [0.40, 1.22]   |                                    |                  |
| Total events                              | 17              |                       | 25            |            |        |                     |                                    |                  |
| Test for overall effect<br>Total (95% CI) | : Z = 1.27 (P = | = 0.21)<br><b>154</b> |               | 157        | 100.0% | 0.70 [0.40, 1.22]   |                                    |                  |
| Total events                              | 17              | 154                   | 25            | 157        | 100.0% | 0.70 [0.40, 1.22]   |                                    |                  |
| Heterogeneity: Tau <sup>2</sup> :         |                 | 0.22.46               |               | 7): 17 - 0 | ~      |                     |                                    |                  |
| Test for overall effect                   |                 |                       | = 1 (F = 0.5) | /), == 0   | 70     |                     |                                    | 10 100           |
| Test for subgroup dif                     |                 |                       | hlo           |            |        |                     | Favours higher omega 6 Favours lo  | wer omega 6      |
| Risk of bias legend                       | 101011000.140   | appnoa                | 010           |            |        |                     |                                    |                  |
| (A) Random sequen                         | ce generation   | n (select             | ion bias)     |            |        |                     |                                    |                  |
| (B) Allocation concea                     |                 |                       |               |            |        |                     |                                    |                  |
| (C) Blinding of partici                   |                 |                       |               | ce bias)   |        |                     |                                    |                  |
| (D) Blinding of outcor                    |                 |                       |               | ,          |        |                     |                                    |                  |
| (E) Incomplete outco                      | me data (attri  | tion bias             | 3)            |            |        |                     |                                    |                  |
| (F) Selective reporting                   | g (reporting b  | ias)                  |               |            |        |                     |                                    |                  |
|                                           |                 |                       |               |            |        |                     |                                    |                  |
| (G) Attention                             |                 |                       |               |            |        |                     |                                    |                  |
|                                           |                 |                       |               |            |        |                     |                                    |                  |

Supplementary Figure 14. Forest plot showing effects of increasing omega-6 on dropouts using random-effects meta-analyses.

Supplementary Table 1. Table of characteristics, risk of bias and references for included trials

| Trial name & reference                  | Comparison                                                   | Participants                                                           | Number<br>randomised                                                    | Intervention                                                                                                                      | Duration of intervention | Summary<br>risk of bias | Location           |
|-----------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------|--------------------|
| AlphaOmega – ALA<br><sup>5-8</sup>      | n3 ALA vs MUFA                                               | 60-80 year olds with previous MI                                       | 1197 ALA<br>intervention, 1236<br>control                               | Supplementary margarine, 20g/d<br>enriched margarine incorporating<br>2g/d ALA                                                    | 40 months                | Low                     | The<br>Netherlands |
| AlphaOmega -<br>EPA+DHA <sup>5-8</sup>  | n3 EPA+DHA vs<br>MUFA                                        | 60-80 year olds with previous MI                                       | 1192 EPA/DHA<br>intervention, 1236<br>control                           | Supplementary Margarine, 20g/d<br>enriched margarine incorporating<br>400mg/d LCn3 (240mg/d EPA,<br>160mg/d DHA)                  | 40 months                | Low                     | The<br>Netherlands |
| AREDS2 2014 9-11                        | n3 EPA+DHA vs<br>nil                                         | 50-85 year olds at high<br>risk of age-related<br>macular degeneration | 2147 DHA/EPA,<br>2056 placebo                                           | Supplement (capsule), 350 mg/d<br>DHA plus 650 mg/d EPA added to<br>standard AREDS supplement                                     | 60 months                | Low                     | USA                |
| ASCEND 2018 <sup>12, 13</sup>           | n3 EPA + DHA vs<br>MUFA                                      | Patients with DM,<br>without apparent<br>vascular disease              | 7740 intervention,<br>7740 control                                      | Supplement (capsule), 840mg/d<br>EPA+DHA (460mg/d EPA, 380mg/d<br>DHA) as 1 capsule daily                                         | Median 7.4<br>years      | Low                     | UK                 |
| Berson 2004 <sup>14, 15</sup>           | n3 DHA vs n6 LA                                              | People aged 18-55 with retinitis pigmentosa                            | 221 randomised<br>overall, analysed<br>105 intervention,<br>103 control | Supplement (capsule), 1.2g/d DHA<br>plus 1.8g vegetable oil                                                                       | 48 months                | Low                     | USA                |
| Black 1994 <sup>16, 17</sup>            | Higher vs lower<br>n6, higher vs<br>lower PUFA<br>(inverted) | **People with non-<br>melanoma skin cancer                             | 66 intervention,<br>67 control                                          | Dietary advice, reduce total fat to<br>20%E, including omega 6 and total<br>PUFA                                                  | 24 months                | Moderate or<br>high     | USA                |
| DART fat Burr 1989<br>18-20             | n6 LA vs mixed<br>fats, also higher<br>vs lower PUFA         | Men recovering from MI                                                 | 1018<br>Intervention,<br>1015 control                                   | dietary advice, 个 PUFA oil & n6<br>margarines vs usual dietary fats                                                               | 24 months                | Moderate to<br>high     | UK                 |
| DART fish Burr<br>1989 <sup>18-20</sup> | n3 EPA+DHA vs<br>mixed fat                                   | Men recovering from MI                                                 | 1015 intervention,<br>1018 intervention                                 | Dietary advice, advised to eat ≥2<br>portions/wk of 200-400g fatty fish, if<br>not possible given MaxEPA capsules,<br>0.5g EPA/d  | 24 months                | Moderate or<br>high     | UK                 |
| DART2 - Burr<br>2003 <sup>1</sup>       | n3 EPA+DHA vs<br>nil                                         | Men treated for angina                                                 | 1571 intervention,<br>1543 control                                      | dietary advice, advised to eat ≥2<br>portions/wk of 200-400g fatty fish, if<br>not possible given MaxEPA capsules,<br>0.5g EPA /d | 3-9 years                | Moderate or<br>high     | UK                 |
| DIPP-Tokudome                           | n3                                                           | **Patients previously                                                  | 104 intervention,                                                       | Advice plus supplement, reduce                                                                                                    | 24 months                | Moderate or             | Japan              |

| 2015                           | EPA+DHA+ALA vs   | polypectomised for        | 101 control        | total fat intake, decrease n-6 PUFAs, |           | high        |             |
|--------------------------------|------------------|---------------------------|--------------------|---------------------------------------|-----------|-------------|-------------|
|                                | nil              | colorectal tumours        |                    | increase fishy n-3 PUFAs, increase n- |           |             |             |
|                                |                  |                           |                    | 3 PUFAs from perilla oil rich in ALA, |           |             |             |
|                                |                  |                           |                    | and take 8 capsules of fish oil/day   |           |             |             |
|                                |                  |                           |                    | (96 mg/d EPA, 360 mg/d DHA)           |           |             |             |
| DO IT - Einvik 2010            | n3 DHA+EPA vs    | Elderly men with long     | 282 intervention,  | Supplement (capsule), 2.4g/d of       | 36 months | Moderate or | Norway      |
| 21, 22                         | n6 LA            | standing dyslipidaemia or | 281 control        | omega 3 (0.84g/d EPA & 0.48g/d        |           | high        |             |
|                                |                  | hypertension              |                    | DHA)                                  |           |             |             |
| EPE-A Sanyal 2014              | n3 EPA, low dose | People with non-alcoholic | 86 intervention    | Supplement (capsule), High dose       | 12 months | Moderate or | USA         |
| 23                             | vs high dose vs  | steatohepatitis or fatty  | (high dose), 82    | EPA-E 2.7g/d, low dose 1.8g/d         |           | high        |             |
|                                | unclear placebo  | liver disease             | intervention (low  |                                       |           |             |             |
|                                |                  |                           | dose), 75 control  |                                       |           |             |             |
| EPIC-1 2008 24                 | n3 EPA+DHA vs    | Adults with quiescent     | 188 intervention,  | Supplement (capsule), 2.2g/d EPA,     | 12 months | Moderate or | Canada,     |
|                                | mixed fat        | Crohn's disease (CDAI)    | 186 control        | 0.8g/d DHA                            |           | high        | Europe,     |
|                                |                  | score <150                |                    |                                       |           |             | Israel, USA |
| EPIC-2 2008 24                 | n3 EPA+DHA vs    | Adults with Crohn's       | 189 intervention,  | Supplement (capsule), 2.2g/d EPA,     | 13 months | Moderate or | Canada,     |
|                                | mixed fat        | disease                   | 190 control        | 0.8g/d DHA                            |           | high        | Europe,     |
|                                |                  |                           |                    |                                       |           |             | Israel, USA |
| FOSTAR 2016 25                 | n3 EPA+DHA vs    | Adults aged 40+ with      | 101 intervention,  | Supplementary food (enriched          | 24 months | Low         | Australia   |
|                                | low n3           | knee osteoarthritis       | 101 control        | orange juice), 4.5g/d EPA+DHA         |           |             |             |
|                                | EPA+DHA+ALA      |                           |                    |                                       |           |             |             |
| GISSI-HF 2008 26, 27           | n3 EPA+DHA vs    | Patients with chronic     | 3494 intervention, | Supplement (capsule), 866mg/d EPA,    | 45 months | Moderate or | Italy       |
|                                | MUFA             | heart failure             | 3481control        | 1039mg/d DHA, Total Omega-3 Fat:      |           | high        |             |
|                                |                  |                           |                    | 1905 mg/d                             |           |             |             |
| GISSI-P 1999 28                | n3 EPA+DHA vs    | People with recent MI     | 5666 intervention, | Supplement (capsule), 850-882 mg/d    | 42 months | Moderate or | Italy       |
|                                | nil              |                           | 5658 control       | EPA + DHA daily, ratio 1:2            |           | high        |             |
| GLAMT 1993 29                  | n6 GLA vs non-   | People with mild diabetic | 54 intervention,   | Supplement (capsule), 0.48g/d GLA     | 12 months | Moderate or | UK and      |
|                                | fat              | neuropathy                | 57 control         |                                       |           | high        | Finland     |
| HARP- Sacks 1995               | n3 EPA+DHA vs    | Patients with coronary    | 41 intervention,   | Supplement (capsule), 6g/d LCn3       | 24 months | Moderate or | USA         |
| 30                             | MUFA             | heart disease             | 39 control         |                                       |           | high        |             |
| Higashihara 2010 <sup>31</sup> | n3 EPA vs nil    | **Prostate cancer         | 34 intervention,   | Supplement (capsule), 2.4 g/d EPA     | 24 months | Moderate or | Japan       |
|                                |                  | patients with PSA levels  | 34 control         |                                       |           | high        |             |
|                                |                  | <0.2 ng/ml 3 months       |                    |                                       |           |             |             |
|                                |                  | after prostatectomy       |                    |                                       |           |             |             |
| Huang 1996 32                  | n3 EPA+DHA vs    | **People with Dukes A or  | 17 intervention,   | Supplement (capsules), 4g/d EPA +     | 12 months | Moderate or | USA         |
|                                | n6 LA            | B adenocarcinoma of       | 10 control         | 2g/d DHA                              |           | high        |             |
|                                |                  | colon or rectum or        |                    |                                       |           |             |             |
|                                |                  | severely dysplastic       |                    |                                       |           |             |             |

|                                         |                                                      | adenomatoid polyps<br>post-surgery                                                                  |                                                        |                                                                                                                           |           |                               |                                                  |
|-----------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------|--------------------------------------------------|
| JELIS 2007 33                           | n3 EPA vs nil                                        | People with<br>hypercholesterolaemia                                                                | 9326 intervention,<br>9319 control                     | Supplement (capsule), 1.8g/d EPA                                                                                          | 60 months | Moderate or<br>high           | Japan                                            |
| Ley 2004 <sup>34, 35</sup>              | Higher vs lower<br>PUFA (inverted)                   | Adults with impaired<br>glucose intolerance or<br>high normal blood<br>glucose                      | 85 intervention,<br>90 control                         | Diet advice, aim reduced fat diet (no<br>specific goal stated), which reduced<br>PUFA                                     | 12 months | Low (dietary<br>advice trial) | New<br>Zealand                                   |
| Macsai 2008 <sup>36</sup>               | n3 ALA vs MUFA                                       | People with meibomian gland dysfunction                                                             | 18 ALA<br>intervention, 20<br>control                  | Supplement (capsules), 3.3g/d ALA,<br>1.14g/d LA                                                                          | 12 months | Moderate to<br>high           | USA                                              |
| Mansel 1990 37-39                       | n6 GLA vs non-<br>fat                                | Women with macroscopic breast cysts                                                                 | 100 intervention,<br>100 control                       | Supplement (capsules), estimated at 0.54g/d GLA                                                                           | 12 months | Moderate or<br>high           | UK                                               |
| McIllmurray 1987<br>40                  | n6 GLA vs "inert<br>placebo"                         | **People within 1 month<br>of operation to remove<br>Dukes's C colorectal<br>cancer                 | 25 intervention,<br>24 control                         | Supplement (capsules), 3.0g/d GLA                                                                                         | 40 months | Moderate to<br>high           | UK                                               |
| Mita 2007 41                            | n3 EPA vs nil                                        | Japanese type 2 diabetics                                                                           | 40 intervention,<br>41 control                         | Supplement (capsules), 1.8g/d<br>EPA+DHA                                                                                  | 24 months | Moderate or<br>high           | Japan                                            |
| MRC 1968 <sup>42-44</sup>               | n6 LA vs mixed<br>fats, also higher<br>vs lower PUFA | Men who have survived a<br>MI                                                                       | 199 intervention,<br>194 control                       | Diet advice plus oil supplement,<br>reduce dietary fat to 35g/d fat, add<br>84g/d soya oil                                | 48 months | Moderate or<br>high           | UK                                               |
| NDHS Open 1st<br>1968 <sup>43, 45</sup> | n6 LA vs mixed<br>fats, also higher<br>vs lower PUFA | Free-living men aged 45-<br>54 years                                                                | 829 combined<br>intervention<br>groups, 382<br>control | Diet provided (bought from a trial<br>shop), saturated fats replaced in<br>shop foods by polyunsaturated fats<br>and oils | 12 months | Low                           | USA                                              |
| OFAMI - Nilsen<br>2001 <sup>46</sup>    | n3 EPA+DHA vs<br>n6 LA                               | Patients recruited 4-8 days after MI                                                                | 150 intervention,<br>150 control                       | Supplement (capsules), 3.5g/d<br>EPA+DHA                                                                                  | 24 months | Moderate or<br>high           | Norway                                           |
| OMEGA 2009 47, 48                       | n3 EPA+DHA vs<br>MUFA                                | People who have had an acute MI                                                                     | 1940 intervention,<br>1911 control                     | supplement (capsules), 460mg/d<br>EPA and 386mg/d DHA                                                                     | 12 months | Low                           | Germany                                          |
| ORIGIN 2013 <sup>49-51</sup>            | n3 EPA+DHA vs<br>MUFA                                | People at high risk of CVD<br>with impaired fasting<br>glucose, impaired glucose<br>tolerance or DM | 6319 intervention,<br>6292 control                     | supplement (capsule), (465mgEPA +<br>375mgDHA) EPA+DHA 0.84g/d                                                            | 72 months | Low                           | 40 locations<br>in Europe<br>and the<br>Americas |
| ORL Tatsuno 2013<br>52, 53              | n3 EPA+DHA high<br>dose vs low dose<br>vs n3 EPA     | Japanese adults with hypertriglyceridaemia                                                          | 171 intervention<br>(4g TAK), 165<br>control (2g TAK)  | Supplement (capsules), 1.68g/d<br>EPA+DHA                                                                                 | 12 months | Moderate or<br>high           | Japan                                            |

| PREDIMED 2013 <sup>54,</sup><br>55           | PUFA vs MUFA                         | People free of CVD but<br>with DM or at least 3 CVD<br>risk factors                                                                      | 2454 Med with<br>nuts, 2543 Med<br>with olive oil | Dietary advice and food supplement,<br>Mediterranean dietary advice (both<br>groups) plus 30g/d mixed nuts | 60 months | Moderate to<br>high | Spain                            |
|----------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------|---------------------|----------------------------------|
| Puri 2005 <sup>56</sup>                      | n3 EPA vs non-fat                    | People with Huntington's<br>Disease                                                                                                      | 67 intervention,<br>68 control                    | Supplement (capsule), 1.9g/d<br>EPA+DHA                                                                    | 12 months | Low                 | UK, USA,<br>Canada,<br>Australia |
| Raitt 2005 <sup>57</sup>                     | n3 EPA+DHA vs<br>MUFA                | People with implantable<br>cardioverter defibrillators<br>and recent sustained<br>ventricular tachycardia or<br>ventricular fibrillation | 100 intervention,<br>100 control                  | Supplement (capsules), 0.76g/d EPA,<br>0.54g/d DHA (EPA+DHA 1.3g/d)                                        | 24 months | Moderate or<br>high | USA                              |
| Risk & Prevention 2013 58, 59                | n3 EPA+DHA vs<br>MUFA                | Patients with multiple cardiovascular risk factors                                                                                       | 6244 intervention,<br>6269 control                | Supplement (capsules), 0.86g/d<br>EPA+DHA                                                                  | 60 months | Moderate or<br>high | Italy                            |
| Rossing 1996 60,61                           | n3 EPA+DHA vs<br>MUFA                | Adults with insulin-<br>dependent DM mellitus,<br>diabetic nephropathy &<br>normal BP                                                    | 18 intervention,<br>18 control                    | Supplement (capsule), 2g/d EPA,<br>2.6g/d DHA, 4.6g/d EPA+DHA                                              | 12 months | Moderate or<br>high | Denmark                          |
| Sandhu 2016 <sup>62,63</sup>                 | n3 EPA+DHA vs<br>nil, +/- raloxifene | *Healthy<br>postmenopausal women<br>with high breast density<br>detected on routine<br>mammogram screening                               | 54 & 53<br>intervention, 53 &<br>53 control       | Supplement (capsules), 1.86g/d EPA,<br>1.5 g/d DHA                                                         | 24 months | Moderate or<br>high | USA                              |
| SCIMO - von<br>Schacky 1999 <sup>64-66</sup> | n3 EPA+DHA vs<br>mixed fats          | People with<br>angiographically proven<br>coronary artery disease                                                                        | 112 intervention,<br>111 control                  | Supplement (capsule), 1.03g/d<br>EPA+DHA                                                                   | 24 months | Low                 | Germany                          |
| seAFOod Hull 2018                            | n3 EPA vs MCT                        | *Bowel cancer screening<br>patients identified as<br>"high risk" at their 1st<br>colonoscopy                                             | 356 intervention,<br>353 control                  | supplement (capsule), 2g/d EPA                                                                             | 12 months | Low                 | UK                               |
| Simon 1997 <sup>68</sup>                     | Higher vs lower<br>PUFA (inverted)   | *Women with a high risk<br>of breast cancer                                                                                              | 98 intervention,<br>96 control                    | Dietary advice, reduced fat including<br>PUFA vs usual diet                                                | 24 months | Moderate or<br>high | USA                              |
| SOFA 2006 <sup>69-72</sup>                   | n3 EPA+DHA vs<br>n6 LA               | People with previous<br>ventricular arrhythmias &<br>implantable cardioverter<br>defibrillators                                          | 273 intervention,<br>273 control                  | supplement (capsule), 464mg/d EPA<br>+ 335mg/d DHA and 162mg/d other<br>n-3 PUFA, EPA+DHA 0.8g/d           | 12 months | Low                 | 8 countries<br>in Europe         |
| SU.FOL.OM3 Galan<br>2010 <sup>73-78</sup>    | n3 EPA+DHA vs<br>non-fat             | People with a history of<br>MI, unstable angina or<br>ischemic stroke                                                                    | 1253 intervention,<br>1248 control                | supplement (capsule), 400mg/d EPA<br>and 200mg/d DHA, EPA+DHA 0.6g/d                                       | 48 months | Low                 | France                           |

| THIS DIET 2008 79                            | n3 EPA+DHA vs                                 | Recent survivors of first                                                                    | 51 intervention,                        | Dietary advice, Mediterranean style                                                                                                                              | 24 months           | Moderate or                   | USA          |
|----------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------|--------------|
|                                              | nil                                           | MI                                                                                           | 50 control                              | diet high in n3 (>0.75%E from n3,                                                                                                                                |                     | high                          |              |
|                                              |                                               |                                                                                              |                                         | unclear how much EPA, DHA, ALA)                                                                                                                                  |                     |                               |              |
| Veterans Admin<br>1969 <sup>43, 80, 81</sup> | n6 LA vs SFA, also<br>higher vs lower<br>PUFA | Men living at the<br>Veterans Administration<br>Centre                                       | 424 intervention,<br>422 control        | diet provided (residential<br>institution), total fat 40%E, 2/3 of<br>SFA replaced by unsaturated fats<br>(from corn, soybean, safflower and<br>cottonseed oils) | Up to 96 months     | Moderate or<br>high           | USA          |
| VITAL 2018 <sup>82</sup>                     | n3 EPA & DHA vs<br>MUFA                       | Multi-ethnic population<br>of > 25,000 apparently<br>healthy adults without<br>cancer or CVD | 12933<br>intervention,<br>12938 control | Supplement (capsules), 465 mg/d<br>EPA, 375 mg/d DHA (EPA + DHA<br>840mg/d)                                                                                      | median 5.3<br>years | Low                           | USA          |
| WAHA 2016 <sup>83-85</sup>                   | n3 ALA vs unclear                             | Middle aged healthy<br>adults                                                                | 362 intervention,<br>346 control        | Supplement (food), usual diet & walnuts (15%E, ~5g/d ALA) vs usual diet                                                                                          | 24 months           | Moderate to<br>high           | Spain & USA  |
| WINS 2006 <sup>86-88</sup>                   | Higher vs lower<br>PUFA (inverted)            | **Women with localised resected breast cancer                                                | 975 intervention,<br>1462 control       | dietary advice, reduced fat intake<br>(with reduced PUFA)                                                                                                        | 60 months           | Low (as diet<br>advice trial) | USA          |
| Summary:                                     | 34 LCn3                                       | 38 Normal cancer risk                                                                        | 97,548 LCn3                             |                                                                                                                                                                  | Mean 30.4           | 17 trials at                  | 15 N         |
| 47 trials,                                   | 3 ALA                                         | 3 *Cancer risk factors                                                                       | 3,179 ALA                               |                                                                                                                                                                  | months              | Low                           | America      |
| 49 comparisons                               | 8 n6                                          | 6 **Previous cancer                                                                          | 4,976 n6                                |                                                                                                                                                                  |                     | summary risk                  | 20 Europe    |
|                                              | 9 total PUFA                                  |                                                                                              | 11,573 tot PUFA                         |                                                                                                                                                                  |                     | of bias                       | 2            |
|                                              |                                               |                                                                                              | Total: 108,194                          |                                                                                                                                                                  |                     |                               | Australia/NZ |
|                                              |                                               |                                                                                              |                                         |                                                                                                                                                                  |                     |                               | 5 Japan      |
|                                              |                                               |                                                                                              |                                         |                                                                                                                                                                  |                     |                               | 5 combined   |

#### Footnotes

ALA = alpha-linolenic acid, BP = blood pressure, CVD = cardiovascular disease, DHA = docosahexaenoic acid, DM = diabetes mellitus, DPA = docosapentaenoic acid, E = energy intake, EPA = eicosapentaenoic acid or icosapentaenoic acid, LCn3 = long-chain omega-3, MI = myocardial infarction, MUFA = mono-unsaturated fatty acids, n3 = omega 3, PUFA = polyunsaturated fatty acids, SFA = saturated fatty acids, TG = serum triglycerides.

Colour coding: LCn3 uncoloured, ALA blue, n6 yellow, total PUFA red, N6 and PUFA pink.

| Outcome    | Sensitivity Analysis (SA) or Subgroup | Studies | Participants | Statistical Method               | Effect Estimate    | I <sup>2</sup> , % | p-<br>value* |
|------------|---------------------------------------|---------|--------------|----------------------------------|--------------------|--------------------|--------------|
|            | Main                                  | 27      | 113557       | Risk Ratio (M-H, Random, 95% CI) | 1.02 [0.98, 1.07]  | 0                  | -            |
| All cancer | SA Fixed effects                      | 27      | 113557       | Risk Ratio (M-H, Fixed, 95% CI)  | 1.03 [0.98, 1.07]  | 0                  | -            |
| diagnoses  | SA Low summary risk of bias           | 12      | 66335        | Risk Ratio (M-H, Random, 95% CI) | 1.01 [0.96, 1.06]  | 0                  | -            |
|            | SA compliance                         | 12      | 34827        | Risk Ratio (M-H, Random, 95% CI) | 1.03 [0.96, 1.10]  | 0                  | -            |
|            | SA n>100                              | 25      | 113440       | Risk Ratio (M-H, Random, 95% CI) | 1.02 [0.98, 1.07]  | 0                  | -            |
|            | Duration: 12 to <24 months duration   | 9       | 6464         | Risk Ratio (M-H, Random, 95% CI) | 1.03 [0.91, 1.15]  | 0                  | 0.96         |
|            | Duration: 24 to <48 months duration   | 10      | 15144        | Risk Ratio (M-H, Random, 95% CI) | 1.05 [0.91, 1.21]  | 0                  |              |
|            | Duration: 48+ months duration         | 8       | 91949        | Risk Ratio (M-H, Random, 95% CI) | 1.02 [0.97, 1.07]  | 0                  |              |
|            | Dose: ≤400mg/d LCn3                   | 0       | 0            | Risk Ratio (M-H, Random, 95% CI) | Not estimable      | -                  | 0.93         |
|            | Dose: >400 to ≤1400mg/d LCn3          | 14      | 91676        | Risk Ratio (M-H, Random, 95% CI) | 1.02 [0.98, 1.07]  | 0                  |              |
|            | Dose: >1400 to ≤2400mg/d LCn3         | 7       | 20599        | Risk Ratio (M-H, Random, 95% CI) | 1.03 [0.93, 1.14]  | 0                  |              |
|            | Dose: >2400mg/d to ≤4400mg/d LCn3     | 2       | 738          | Risk Ratio (M-H, Random, 95% CI) | 0.99 [0.10, 9.52]  | 0                  |              |
|            | Dose: >4400mg/d LCn3                  | 2       | 238          | Risk Ratio (M-H, Random, 95% CI) | 1.40 [0.64, 3.10]  | 0                  |              |
|            | Dose: dose unclear                    | 2       | 306          | Risk Ratio (M-H, Random, 95% CI) | 0.96 [0.75, 1.23]  | 0                  |              |
|            | LCn3 replacing MUFA                   | 7       | 70432        | Risk Ratio (M-H, Random, 95% CI) | 1.02 [0.97, 1.07]  | 0                  | 0.23         |
|            | LCn3 replacing omega-6                | 3       | 1317         | Risk Ratio (M-H, Random, 95% CI) | 0.58 [0.29, 1.17]  | 0                  |              |
|            | LCn3 replacing SFA                    | 0       | 0            | Risk Ratio (M-H, Random, 95% CI) | Not estimable      | -                  |              |
|            | LCn3 replacing CHO                    | 0       | 0            | Risk Ratio (M-H, Random, 95% CI) | Not estimable      | -                  |              |
|            | LCn3 replacing other or unclear       | 17      | 41808        | Risk Ratio (M-H, Random, 95% CI) | 1.05 [0.97, 1.13]  | 0                  |              |
|            | Intervention: dietary advice          | 1       | 101          | Risk Ratio (M-H, Random, 95% CI) | 2.94 [0.12, 70.56] | -                  | 0.80         |
|            | Intervention: supplementary capsules  | 23      | 111016       | Risk Ratio (M-H, Random, 95% CI) | 1.02 [0.98, 1.07]  | 0                  |              |
|            | Intervention: supplemental foods      | 1       | 202          | Risk Ratio (M-H, Random, 95% CI) | 1.33 [0.59, 3.02]  | -                  |              |
|            | Intervention: all foods provided      | 0       | 0            | Risk Ratio (M-H, Random, 95% CI) | Not estimable      | -                  |              |
|            | Intervention: combination             | 2       | 2238         | Risk Ratio (M-H, Random, 95% CI) | 1.10 [0.80, 1.50]  | 61                 |              |

Supplementary Table 2. High vs low LCn3 (primary outcomes)

|        | Baseline cancer risk: low - usual population     | 24 | 112499 | Risk Ratio (M-H, Random, 95% CI) | 1.03 [0.98, 1.08]  | 0  | 0.81 |
|--------|--------------------------------------------------|----|--------|----------------------------------|--------------------|----|------|
|        | Baseline cancer risk: moderate - CA risk factors | 2  | 853    | Risk Ratio (M-H, Random, 95% CI) | 0.92 [0.43, 1.96]  | 11 |      |
|        | Baseline cancer risk: high - previous CA         | 1  | 205    | Risk Ratio (M-H, Random, 95% CI) | 0.95 [0.75, 1.22]  | -  |      |
|        | Mean age <50 years                               | 6  | 1346   | Risk Ratio (M-H, Random, 95% CI) | 1.04 [0.29, 3.75]  | 0  | 0.95 |
|        | Mean age 50 to <65 years                         | 17 | 80934  | Risk Ratio (M-H, Random, 95% CI) | 1.03 [0.98, 1.08]  | 0  |      |
|        | Mean age 65+ years                               | 4  | 31277  | Risk Ratio (M-H, Random, 95% CI) | 1.01 [0.95, 1.09]  | 0  |      |
|        | Men & women mixed                                | 24 | 110748 | Risk Ratio (M-H, Random, 95% CI) | 1.02 [0.98, 1.07]  | 0  | 0.54 |
|        | Men only                                         | 2  | 2596   | Risk Ratio (M-H, Random, 95% CI) | 0.87 [0.35, 2.19]  | 77 |      |
|        | Women only                                       | 1  | 213    | Risk Ratio (M-H, Random, 95% CI) | 0.20 [0.01, 4.08]  | -  |      |
|        |                                                  |    |        |                                  |                    |    |      |
| Cancer | Main                                             | 18 | 99336  | Risk Ratio (M-H, Random, 95% CI) | 0.97 [0.90, 1.06]  | 0  | -    |
| deaths | SA fixed effects                                 | 18 | 99336  | Risk Ratio (M-H, Fixed, 95% CI)  | 0.97 [0.90, 1.05]  | 0  | -    |
|        | SA Low summary risk of bias                      | 6  | 61433  | Risk Ratio (M-H, Random, 95% CI) | 0.94 [0.86, 1.04]  | 0  | -    |
|        | SA compliance                                    | 7  | 34122  | Risk Ratio (M-H, Random, 95% CI) | 1.00 [0.85, 1.18]  | 0  | -    |
|        | SA n>100                                         | 16 | 99194  | Risk Ratio (M-H, Random, 95% CI) | 0.97 [0.90, 1.06]  | 0  | -    |
|        | Duration: 12 to <24 months duration              | 2  | 742    | Risk Ratio (M-H, Random, 95% CI) | 0.99 [0.10, 9.52]  | 0  | 0.88 |
|        | Duration: 24 to <48 months duration              | 9  | 26379  | Risk Ratio (M-H, Random, 95% CI) | 1.01 [0.85, 1.20]  | 0  |      |
|        | Duration: 48+ months duration                    | 7  | 72215  | Risk Ratio (M-H, Random, 95% CI) | 0.96 [0.88, 1.05]  | 0  |      |
|        | Dose: ≤400mg/d LCn3                              | 1  | 4837   | Risk Ratio (M-H, Random, 95% CI) | 1.08 [0.76, 1.53]  | -  | 0.70 |
|        | Dose: >400 to ≤1400mg/d LCn3                     | 10 | 86135  | Risk Ratio (M-H, Random, 95% CI) | 0.97 [0.89, 1.06]  | 0  |      |
|        | Dose: >1400 to ≤2400mg/d LCn3                    | 2  | 7037   | Risk Ratio (M-H, Random, 95% CI) | 0.94 [0.73, 1.23]  | 0  |      |
|        | Dose: >2400 to ≤4400mg/d LCn3                    | 3  | 1042   | Risk Ratio (M-H, Random, 95% CI) | 1.77 [0.29, 10.83] | 0  | ]    |
|        | Dose: >4400mg/d LCn3                             | 1  | 80     | Risk Ratio (M-H, Random, 95% CI) | 0.32 [0.01, 7.57]  | _  |      |
|        | Dose: unclear                                    | 1  | 205    | Risk Ratio (M-H, Random, 95% CI) | 0.14 [0.01, 2.65]  | -  |      |
|        | LCn3 replacing MUFA                              | 7  | 78284  | Risk Ratio (M-H, Random, 95% CI) | 0.95 [0.87, 1.04]  | 0  | 0.25 |

|                            | LCn3 replacing omega-6                           | 3  | 1071  | Risk Ratio (M-H, Random, 95% CI) | 0.66 [0.28, 1.56]  | 0         |      |
|----------------------------|--------------------------------------------------|----|-------|----------------------------------|--------------------|-----------|------|
|                            | LCn3 replacing SFA                               | 0  | 0     | Risk Ratio (M-H, Random, 95% CI) | Not estimable      | -         |      |
|                            | LCn3 replacing CHO                               | 0  | 0     | Risk Ratio (M-H, Random, 95% CI) | Not estimable      | -         |      |
|                            | LCn3 replacing other or unclear                  | 8  | 19981 | Risk Ratio (M-H, Random, 95% CI) | 1.13 [0.91, 1.41]  | 0         |      |
|                            | Intervention: dietary advice                     | 0  | 0     | Risk Ratio (M-H, Random, 95% CI) | Not estimable      | -         | 0.76 |
|                            | Intervention: supplementary capsules             | 14 | 89147 | Risk Ratio (M-H, Random, 95% CI) | 0.96 [0.88, 1.05]  | 0         |      |
|                            | Intervention: supplemental foods                 | 1  | 4837  | Risk Ratio (M-H, Random, 95% CI) | 1.08 [0.76, 1.53]  | -         |      |
|                            | Intervention: all foods provided                 | 0  | 0     | Risk Ratio (M-H, Random, 95% CI) | Not estimable      | -         |      |
|                            | Intervention: combination                        | 3  | 5352  | Risk Ratio (M-H, Random, 95% CI) | 1.06 [0.67, 1.68]  | 6         |      |
|                            | Baseline cancer risk: low - usual population     | 16 | 99069 | Risk Ratio (M-H, Random, 95% CI) | 0.97 [0.90, 1.06]  | 0         | 0.15 |
|                            | Baseline cancer risk: moderate - CA risk factors | 0  | 0     | Risk Ratio (M-H, Random, 95% CI) | Not estimable      | -         |      |
|                            | Baseline cancer risk: high - previous CA         | 2  | 267   | Risk Ratio (M-H, Random, 95% CI) | 0.20 [0.02, 1.75]  | 0         |      |
|                            | Mean age <50                                     | 3  | 950   | Risk Ratio (M-H, Random, 95% CI) | 0.69 [0.11, 4.33]  | 0         | 0.93 |
|                            | Mean age 50-<65                                  | 11 | 60140 | Risk Ratio (M-H, Random, 95% CI) | 0.98 [0.88, 1.08]  | 2         |      |
|                            | Mean age 65+                                     | 4  | 38246 | Risk Ratio (M-H, Random, 95% CI) | 0.97 [0.84, 1.12]  | 0         |      |
|                            | Men & women mixed                                | 14 | 93564 | Risk Ratio (M-H, Random, 95% CI) | 0.97 [0.89, 1.06]  | 0         | 0.92 |
|                            | Men only                                         | 4  | 5772  | Risk Ratio (M-H, Random, 95% CI) | 0.99 [0.70, 1.40]  | 0         |      |
|                            | Women only                                       | 0  | 0     | Risk Ratio (M-H, Random, 95% CI) | Not estimable      | <u> -</u> | ]    |
|                            | Main                                             | 12 | 44295 | Risk Ratio (M-H, Random, 95% CI) | 1.03 [0.89, 1.20]  | 0         |      |
|                            | SA fixed effects                                 | 12 | 44295 | Risk Ratio (M-H, Fixed, 95% CI)  | 1.03 [0.89, 1.20]  | 0         | -    |
| Breast cancer<br>diagnoses | SA Low summary risk of bias                      | 7  | 26371 | Risk Ratio (M-H, Random, 95% CI) | 1.02 [0.87, 1.22]  | 0         | -    |
| ulagiloses                 | SA compliance                                    | 6  | 13908 | Risk Ratio (M-H, Random, 95% CI) | 0.96 [0.72, 1.30]  | 1         | -    |
|                            | SA n>100                                         | 11 | 44285 | Risk Ratio (M-H, Random, 95% CI) | 1.03 [0.88, 1.20]  | 0         | -    |
|                            | Duration: 12 to <24 months duration              | 2  | 107   | Risk Ratio (M-H, Random, 95% CI) | 2.92 [0.33, 25.76] | 0         | 0.41 |

| Duration: 24 to <48 months duration              | 2  | 313   | Risk Ratio (M-H, Random, 95% CI) | 0.39 [0.05, 2.94]  | 0  |      |
|--------------------------------------------------|----|-------|----------------------------------|--------------------|----|------|
| Duration: 48+ months duration                    | 8  | 43875 | Risk Ratio (M-H, Random, 95% CI) | 1.03 [0.89, 1.20]  | 0  |      |
| Dose: ≤400mg/d LCn3                              | 0  | 0     | Risk Ratio (M-H, Random, 95% CI) | Not estimable      | -  | 0.60 |
| Dose: >400 to ≤1400mg/d LCn3                     | 7  | 31089 | Risk Ratio (M-H, Random, 95% CI) | 1.05 [0.90, 1.23]  | 0  |      |
| Dose: >1400 to ≤2400mg/d LCn3                    | 3  | 13096 | Risk Ratio (M-H, Random, 95% CI) | 0.76 [0.41, 1.42]  | 0  |      |
| Dose: >2400 to ≤4400mg/d LCn3                    | 0  | 0     | Risk Ratio (M-H, Random, 95% CI) | Not estimable      | -  |      |
| Dose: >4400mg/d LCn3                             | 2  | 110   | Risk Ratio (M-H, Random, 95% CI) | 1.32 [0.18, 10.01] | 0  |      |
| Dose: unclear                                    | 0  | 0     | Risk Ratio (M-H, Random, 95% CI) | Not estimable      | -  |      |
| LCn3 replacing MUFA                              | 5  | 28095 | Risk Ratio (M-H, Random, 95% CI) | 1.04 [0.89, 1.23]  | 0  | 0.71 |
| LCn3 replacing omega-6                           | 1  | 102   | Risk Ratio (M-H, Random, 95% CI) | 0.29 [0.01, 6.85]  | -  |      |
| LCn3 replacing SFA                               | 0  | 0     | Risk Ratio (M-H, Random, 95% CI) | Not estimable      | -  |      |
| LCn3 replacing CHO                               | 0  | 0     | Risk Ratio (M-H, Random, 95% CI) | Not estimable      | -  |      |
| LCn3 replacing other or unclear                  | 6  | 16098 | Risk Ratio (M-H, Random, 95% CI) | 0.99 [0.63, 1.54]  | 5  |      |
| Intervention: dietary advice                     | 0  | 0     | Risk Ratio (M-H, Random, 95% CI) | Not estimable      | -  | 0.76 |
| Intervention: supplementary capsules             | 11 | 44195 | Risk Ratio (M-H, Random, 95% CI) | 1.03 [0.89, 1.20]  | 0  |      |
| Intervention: supplemental foods                 | 1  | 100   | Risk Ratio (M-H, Random, 95% CI) | 0.67 [0.04, 10.35] | -  |      |
| Intervention: all foods provided                 | 0  | 0     | Risk Ratio (M-H, Random, 95% CI) | Not estimable      | -  |      |
| Baseline cancer risk: low - usual population     | 11 | 44082 | Risk Ratio (M-H, Random, 95% CI) | 1.04 [0.89, 1.20]  | 0  | 0.28 |
| Baseline cancer risk: moderate - CA risk factors | 1  | 213   | Risk Ratio (M-H, Random, 95% CI) | 0.20 [0.01, 4.08]  | -  |      |
| Baseline cancer risk: high - previous CA         | 0  | 0     | Risk Ratio (M-H, Random, 95% CI) | Not estimable      | -  |      |
| Mean age <50                                     | 2  | 112   | Risk Ratio (M-H, Random, 95% CI) | 0.99 [0.10, 9.88]  | 11 | 0.43 |
| Mean age 50-<65                                  | 8  | 28710 | Risk Ratio (M-H, Random, 95% CI) | 1.13 [0.92, 1.38]  | 0  |      |
| Mean age 65+                                     | 2  | 15473 | Risk Ratio (M-H, Random, 95% CI) | 0.92 [0.73, 1.16]  | 0  |      |
| Men & women mixed                                | 11 | 44082 | Risk Ratio (M-H, Random, 95% CI) | 1.04 [0.89, 1.20]  | 0  | 0.28 |
| Men only                                         | 0  | 0     | Risk Ratio (M-H, Random, 95% CI) | Not estimable      | -  |      |

|                                          | Women only                                    | 1 | 213   | Risk Ratio (M-H, Random, 95% CI)        | 0 20 [0 01 4 08]     | 1_ |          |
|------------------------------------------|-----------------------------------------------|---|-------|-----------------------------------------|----------------------|----|----------|
|                                          |                                               | 1 | 215   |                                         | 0.20 [0.01, 1.00]    |    |          |
|                                          | Main                                          | 2 | 3216  | Risk Ratio (M-H, Random, 95% CI)        | 0.91 [0.09, 8.96]    | 3  | -        |
| Breast cancer                            | SA fixed effects                              | 2 | 3216  | Risk Ratio (M-H, Fixed, 95% CI)         | 0.92 [0.13, 6.26]    | 3  | -        |
| deaths                                   | SA low summary RoB                            | 1 | 102   | Risk Ratio (M-H, Random, 95% CI)        | 0.29 [0.01, 6.85]    | -  | -        |
|                                          | SA compliance                                 | 1 | 102   | Risk Ratio (M-H, Random, 95% CI)        | 0.29 [0.01, 6.85]    | -  | -        |
|                                          | SA n>100                                      | 2 | 3216  | Risk Ratio (M-H, Random, 95% CI)        | 0.91 [0.09, 8.96]    | 3  | -        |
|                                          | Main                                          | 7 | 38525 | Risk Ratio (M-H, Random, 95% CI)        | 1.10 [0.97, 1.24]    | 0  | <u> </u> |
| cancer<br>diagnoses                      | SA fixed effects                              | 7 | 38525 | Risk Ratio (M-H, Fixed, 95% CI)         | 1.10 [0.98, 1.24]    | 0  | -        |
|                                          | SA Low summary risk of bias                   | 6 | 36492 | Risk Ratio (M-H, Random, 95% CI)        | 1.10 [0.98, 1.25]    | 0  | -        |
|                                          | SA compliance                                 | 4 | 18658 | Risk Ratio (M-H, Random, 95% CI)        | 1.17 [0.99, 1.39]    | 0  | -        |
|                                          | SA n>100                                      | 7 | 38525 | Risk Ratio (M-H, Random, 95% CI)        | 1.10 [0.97, 1.24]    | 0  | -        |
|                                          | Main                                          | 2 | 5101  | Risk Ratio (M-H, Random, 95% CI)        | 2.82 [0.43, 18.54]   | 0  | <br> -   |
| Prostate                                 | SA fixed effects                              | 2 | 5101  | Risk Ratio (M-H, Fixed, 95% CI)         |                      | 0  | -        |
| cancer deaths                            | SA low summary risk of bias                   | 1 | 1987  | Risk Ratio (M-H, Random, 95% CI)        | 2.00 [0.18, 22.00]   | -  | -        |
|                                          | SA compliance                                 | 1 | 1987  | Risk Ratio (M-H, Random, 95% CI)        | 2.00 [0.18, 22.00]   | -  | -        |
|                                          | SA n>100                                      | 2 | 5101  | Risk Ratio (M-H, Random, 95% CI)        | 2.82 [0.43, 18.54]   |    | -        |
| Dichotomous<br>markers of<br>cancer risk | PSA >2ng/ml twice at consecutive measurements | 1 | 62    | Risk Ratio (M-H, Fixed, 95% CI)         | 0.47 [0.16, 1.40]    | -  | <br> -   |
| Continuous<br>markers of                 | Breast density LCn3, cm <sup>2</sup>          | 1 | 175   | Mean Difference (IV, Random, 95%<br>CI) | 2.06 [-4.68, 8.81]   | ]  | -        |
| · 1                                      | PSA, ng/ml                                    | 1 | 1622  | Mean Difference (IV, Random, 95%<br>CI) | -0.13 [-0.25, -0.01] | -  |          |

\* test for subgroup differences, p-value

| Outcome         | Sensitivity Analysis (SA) or<br>Subgroup | Studies | Participants | Statistical Method                   | Effect Estimate     | <b>I</b> <sup>2</sup> , % |
|-----------------|------------------------------------------|---------|--------------|--------------------------------------|---------------------|---------------------------|
| Quality of life | -                                        | 0       | 0            | Mean Difference (IV, Random, 95% CI) | Not estimable       | -                         |
|                 | Weight, kg                               | 3       | 14913        | Mean Difference (IV, Random, 95% CI) | 0.42 [-0.87, 1.71]  | 63                        |
| Weight or       | BMI, kg/m2                               | 4       | 14268        | Mean Difference (IV, Random, 95% CI) | 0.06 [-0.08, 0.19]  | 0                         |
| BMI             | Waist circumference, cm                  | 1       | 71           | Mean Difference (IV, Random, 95% CI) | -1.40 [-7.94, 5.14] | -                         |
|                 | Drop outs due to side effects            | 13      | 12324        | Risk Ratio (M-H, Random, 95% CI)     | 1.31 [0.98, 1.76]   | 19                        |
| Side            | Abdominal pain or discomfort             | 5       | 13655        | Risk Ratio (M-H, Random, 95% CI)     | 1.17 [0.93, 1.47]   | 9                         |
| effects         | Diarrhoea                                | 7       | 1869         | Risk Ratio (M-H, Random, 95% CI)     | 1.15 [0.90, 1.48]   | 11                        |
|                 | Nausea                                   | 6       | 1296         | Risk Ratio (M-H, Random, 95% CI)     | 1.75 [1.25, 2.47]   | 0                         |
|                 | Any gastrointestinal side effect         | 14      | 60282        | Risk Ratio (M-H, Random, 95% CI)     | 1.11 [0.89, 1.39]   | 84                        |
|                 | Bleeding                                 | 6       | 44641        | Risk Ratio (M-H, Random, 95% CI)     | 1.09 [0.70, 1.70]   | 59                        |
|                 | Skin problems (itching, rashes)          | 6       | 36032        | Risk Ratio (M-H, Random, 95% CI)     | 1.00 [0.44, 2.26]   | 75                        |
|                 | Headache or worsening migraine           | 3       | 996          | Risk Ratio (M-H, Random, 95% CI)     | 0.81 [0.48, 1.36]   | 0                         |
|                 | Psychiatric disorders                    | 2       | 940          | Risk Ratio (M-H, Random, 95% CI)     | 0.70 [0.32, 1.54]   | 0                         |
|                 | All side effects combined                | 9       | 37656        | Risk Ratio (M-H, Random, 95% CI)     | 1.03 [0.93, 1.15]   | 85                        |
| Drop outs       |                                          | 15      | 24461        | Risk Ratio (M-H, Random, 95% CI)     | 0.98 [0.88, 1.10]   | 33                        |

Supplementary Table 3. High vs low LCn3 (secondary outcomes)

Supplementary Table 4. GRADE table: summary of findings of effects of omega-3 fats (LCn3 and ALA) on cancers

### High compared to low omega 3 (LCn3 and ALA) for cancers

Patient or population: adults, Setting: community, Intervention: Higher omega-3 intake, Comparison: lower omega-3 intake

|                                  | Anticipated absolute                     | e effects" (95% CI)        | Relative effect               | Nº of participants  | Certainty of the                | Comments                                                                                                           |  |
|----------------------------------|------------------------------------------|----------------------------|-------------------------------|---------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------|--|
| Outcomes                         | Risk with low omega 3 (primary outcomes) | Risk with High             | (95% CI)                      | (studies)           | evidence<br>(GRADE)             |                                                                                                                    |  |
| Cancer diagnoses - LCn3          | 64 per 1,000                             | 65 per 1,000<br>(63 to 68) | RR 1.02<br>(0.98 to 1.07)     | 113557<br>(27 RCTs) | ⊕⊕⊕⊕<br>HIGH                    | Increasing LCn3 has little or no effect on risk of diagnosis<br>any cancer.                                        |  |
| Cancer deaths - LCn3             | 23 per 1,000                             | 23 per 1,000<br>(21 to 25) | <b>RR 0.97</b> (0.90 to 1.06) | 99336<br>(18 RCTs)  | <b>⊕⊕⊕</b> ⊖<br>MODERATE ª      | Increasing LCn3 probably has little or no effect on risk o<br>cancer death.                                        |  |
| Breast cancer diagnoses - LCn3   | 15 per 1,000                             | 15 per 1,000<br>(13 to 18) | RR 1.03<br>(0.89 to 1.20)     | 44295<br>(12 RCTs)  | ⊕⊕⊕⊖<br>MODERATE <sup>b,c</sup> | Increasing LCn3 probably has little or no effect on risk or breast cancer diagnosis.                               |  |
| Breast cancer deaths - LCn3      | 1 per 1,000                              | 1 per 1,000<br>(0 to 6)    | RR 0.91<br>(0.09 to 8.96)     | 3216<br>(2 RCTs)    | ⊕OOO<br>VERY LOW d,e            | The effect of increasing LCn3 on breast cancer deaths<br>unclear as the evidence is of very low quality.           |  |
| Prostate cancer diagnoses - LCn3 | 25 per 1,000                             | 28 per 1,000<br>(24 to 31) | RR 1.10<br>(0.97 to 1.24)     | 38525<br>(7 RCTs)   | €€<br>LOW f.g                   | Increasing LCn3 may increase the risk of prostate cance                                                            |  |
| Prostate cancer deaths - LCn3    | 0 per 1,000                              | 1 per 1,000<br>(0 to 7)    | RR 2.82<br>(0.43 to 18.54)    | 5101<br>(2 RCTs)    | €<br>VERY LOW e,f               | The effect of increasing LCn3 on prostate cancer death<br>unclear as the evidence is of very low quality.          |  |
| Cancer diagnoses - ALA           | 22 per 1,000                             | 21 per 1,000<br>(8 to 55)  | RR 0.98<br>(0.38 to 2.55)     | 752<br>(2 RCTs)     | €<br>VERY LOW <sup>e,h</sup>    | The effect of increasing ALA on diagnosis of any cancer<br>unclear as the evidence was of very low quality.        |  |
| Cancer deaths - ALA              | 22 per 1,000                             | 23 per 1,000<br>(16 to 32) | RR 1.05<br>(0.74 to 1.49)     | 5545<br>(2 RCTs)    | <b>⊕⊕⊕</b> ⊖<br>MODERATE °      | Increasing ALA probably has little or no effect on risk o<br>cancer death.                                         |  |
| Breast cancer diagnoses - ALA    | 8 per 1,000                              | 9 per 1,000<br>(1 to 58)   | RR 1.11<br>(0.17 to 7.40)     | 513<br>(2 RCTs)     | €<br>VERY LOW <sup>e,h</sup>    | The effect of increasing ALA on risk of breast cancer<br>diagnosis is unclear as the evidence is of very low quali |  |
| Breast cancer deaths - ALA       | not pooled                               | not pooled                 | not pooled                    | (0 RCTs)            | -                               | We found no evidence to address this issue.                                                                        |  |
| Prostate cancer diagnoses - ALA  | 10 per 1,000                             | 13 per 1,000<br>(7 to 23)  | RR 1.30<br>(0.72 to 2.32)     | 4010<br>(2 RCTs)    | €€<br>LOW ij                    | Increasing ALA may increase the risk of prostate cance diagnosis.                                                  |  |
| Prostate cancer deaths - ALA     | not pooled                               | not pooled                 | not pooled                    | (0 RCTs)            | -                               | No evidence found                                                                                                  |  |

\*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% Cl). Cl: Confidence interval; RR: Risk ratio

### High compared to low omega 3 (LCn3 and ALA) for cancers

#### Patient or population: adults, Setting: community, Intervention: Higher omega-3 intake, Comparison: lower omega-3 intake

|          | Anticipated absolut                      | e effects <sup>-</sup> (95% CI) | Relative effect | № of participants | Certainty of the    |          |
|----------|------------------------------------------|---------------------------------|-----------------|-------------------|---------------------|----------|
| Outcomes | Risk with low omega 3 (primary outcomes) | Risk with High                  | (95% CI)        | (studies)         | evidence<br>(GRADE) | Comments |

GRADE Working Group grades of evidence

High certainty: We are very confident that the true effect lies close to that of the estimate of the effect

Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different

Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect

Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

#### Explanations

a. Imprecision: 95% CI included a small reduction in risk as well as little or no effect. Downgraded once.

b. Inconsistency: data were consistent across all sensitivity analyses, including limiting analysis to only trials at low summary risk of bias, and consistent with the suggestion of little or no effect for breast density. Not downgraded.

c. Imprecision: 95% CI included both increases and reductions in risk. Downgraded once.

d. Risk of bias: sensitivity analysis retaining only trials at low summary risk of bias altered apparent effect. Downgraded once.

e. Imprecision: 95% CI included both important benefit and important harm. Downgraded twice.

f. Inconsistency: While data on prostate cancer diagnosis and deaths across sensitivity analyses are consistent in suggesting that increasing LCn3 increases prostate cancer risk, including limiting to trials at low summary risk of bias, PSA data suggest that LCn3 reduces PSA (which would tend to protect against prostate cancer). Downgraded once.

g. Imprecision: 95% CI included no effect as well as harm. Downgraded once.

h. Risk of bias: Neither included trial was at low summary risk of bias. Downgraded once.

i. Inconsistency: consistent across all sensitivity analyses, including when limiting only to trials at low summary risk of bias, and consistent with PSA data. Not downgraded.

j. Imprecision: 95% CI included benefits as well as harms. Downgraded twice.

Supplementary Table 5. High vs low ALA (primary outcomes)

| Outcome                | Sensitivity Analysis (SA) or<br>Subgroup | Studies | Participants | Statistical Method               | Effect Estimate       | <b>I</b> <sup>2</sup> , % |
|------------------------|------------------------------------------|---------|--------------|----------------------------------|-----------------------|---------------------------|
|                        | Main                                     | 2       | 752          | Risk Ratio (M-H, Random, 95% CI) | 0.98 [0.38, 2.55]     | 0                         |
| All cancer diagnoses   | SA Fixed effects                         | 2       | 752          | Risk Ratio (M-H, Fixed, 95% CI)  | 0.96 [0.37, 2.46]     | 0                         |
|                        | SA Low summary risk of bias              | 0       | 0            | Risk Ratio (M-H, Random, 95% CI) | Not estimable         | -                         |
|                        | SA compliance                            | 1       | 708          | Risk Ratio (M-H, Random, 95% CI) | 1.09 [0.40, 2.98]     | -                         |
|                        | SA n>100                                 | 1       | 708          | Risk Ratio (M-H, Random, 95% CI) | 1.09 [0.40, 2.98]     | ]                         |
|                        | Main                                     | 2       | 5545         | Risk Ratio (M-H, Random, 95% CI) | 1.05 [0.74, 1.49]     | 0                         |
| Deaths from any cancer | SA fixed effects                         | 2       | 5545         | Risk Ratio (M-H, Fixed, 95% CI)  | 1.06 [0.75, 1.50]     | 0                         |
|                        | SA low summary risk of bias              | 1       | 4837         | Risk Ratio (M-H, Random, 95% CI) | 1.04 [0.73, 1.48]     | -                         |
|                        | SA compliance                            | 2       | 5545         | Risk Ratio (M-H, Random, 95% CI) | 1.05 [0.74, 1.49]     | 0                         |
|                        | SA n>100                                 | 2       | 5545         | Risk Ratio (M-H, Random, 95% CI) | 1.05 [0.74, 1.49]     | 0                         |
|                        | Main                                     | 2       | 513          | Risk Ratio (M-H, Random, 95% CI) | 1.11 [0.17, 7.40]     | 0                         |
| Breast cancer          | SA fixed effects                         | 2       | 513          | Risk Ratio (M-H, Fixed, 95% CI)  | 1.08 [0.18, 6.40]     | 0                         |
| diagnoses              | SA Low summary risk of bias              | 0       | 0            | Risk Ratio (M-H, Random, 95% CI) | Not estimable         | -                         |
|                        | SA compliance                            | 1       | 481          | Risk Ratio (M-H, Random, 95% CI) | 1.94 [0.18,<br>21.28] | -                         |
|                        | SA n>100                                 | 1       | 481          | Risk Ratio (M-H, Random, 95% CI) | 1.94 [0.18,<br>21.28] | -                         |
| Breast cancer deaths   | Main                                     | 0       | 0            | Risk Ratio (M-H, Random, 95% CI) | Not estimable         | <u> </u>                  |
|                        |                                          |         |              |                                  |                       |                           |
|                        | Main                                     | 2       | 4010         | Risk Ratio (M-H, Random, 95% CI) | 1.30 [0.72, 2.32]     | 0                         |

|                                    | SA fixed effects            | 2 | 4010 | Risk Ratio (M-H, Fixed, 95% CI)         | 1.31 [0.73, 2.34]  | 0 |
|------------------------------------|-----------------------------|---|------|-----------------------------------------|--------------------|---|
| diagnoses                          | SA Low summary risk of bias | 1 | 3783 | Risk Ratio (M-H, Random, 95% CI)        | 1.23 [0.67, 2.24]  | 0 |
|                                    | SA compliance               | 2 | 4010 | Risk Ratio (M-H, Random, 95% CI)        | 1.30 [0.72, 2.32]  | 0 |
|                                    | SA n>100                    | 2 | 4010 | Risk Ratio (M-H, Random, 95% CI)        | 1.30 [0.72, 2.32]  | 0 |
|                                    |                             |   |      |                                         |                    |   |
| Prostate cancer deaths             | Main                        | 0 | 0    | Risk Ratio (M-H, Random, 95% CI)        | Not estimable      | - |
|                                    |                             |   |      |                                         |                    |   |
| Dichotomous markers of cancer risk | PSA >4ng/ml                 | 1 | 1622 | Risk Ratio (M-H, Random, 95% CI)        | 1.13 [0.86, 1.50]  | - |
|                                    |                             |   |      |                                         |                    |   |
| Continuous markers of cancer risk  | PSA, ng/ml                  | 1 |      | Mean Difference (IV, Random, 95%<br>CI) | 0.10 [-0.03, 0.23] | - |

Supplementary Table 6. High vs low ALA (secondary outcomes)

| Outcome         | Sensitivity Analysis (SA) or<br>Subgroup | Studies | Participants | Statistical Method                   | Effect Estimate    | <b>I</b> <sup>2</sup> , % |
|-----------------|------------------------------------------|---------|--------------|--------------------------------------|--------------------|---------------------------|
| Quality of life | -                                        | 0       | 0            | Mean Difference (IV, Random, 95% CI) | Not estimable      | -                         |
|                 |                                          |         |              |                                      |                    |                           |
| Adiposity       | Weight, kg, ALA                          | 0       | 0            | Mean Difference (IV, Random, 95% CI) | Not estimable      | -                         |
|                 | BMI, kg/m2, ALA                          | 1       | 1260         | Mean Difference (IV, Random, 95% CI) | 0.15 [-0.03, 0.33] | -                         |
|                 |                                          |         |              |                                      |                    |                           |
| Side effects    | Drop outs due to side effects            | 1       | 2433         | Risk Ratio (M-H, Random, 95% CI)     | 0.89 [0.47, 1.65]  | -                         |
|                 | Any gastrointestinal side effect         | 1       | 2433         | Risk Ratio (M-H, Random, 95% CI)     | 0.93 [0.38, 2.28]  | -                         |
| Dropouts        |                                          | 0       | 0            | Risk Ratio (M-H, Random, 95% CI)     | Not estimable      | -                         |

|               | <b>T</b>     <b>T</b> |                      | / · · · ·          |
|---------------|-----------------------|----------------------|--------------------|
| Sunnlamontary | 1 1 2 DIA / LIGR      | NIC IOW OMORT 6      | Inrimary outcomed  |
| JUDDEHEINALV  |                       | 1 V.5 10 W 0111580-0 |                    |
|               |                       |                      | (primary outcomes) |

| Outcome              | Sensitivity Analysis (SA) or<br>Subgroup | Studies | Participants | Statistical Method               | Effect Estimate   | <b>I</b> <sup>2</sup> , % |
|----------------------|------------------------------------------|---------|--------------|----------------------------------|-------------------|---------------------------|
|                      | Main                                     | 6       | 4272         | Risk Ratio (M-H, Random, 95% CI) | 1.21 [0.96, 1.53] | 0                         |
| Cancer diagnoses     | dietary advice & supplemental foods      | 4       | 3961         | Risk Ratio (M-H, Random, 95% CI) | 1.17 [0.80, 1.70] | 35                        |
|                      | GLA supplement                           | 2       | 311          | Risk Ratio (M-H, Random, 95% CI) | 1.35 [0.31, 5.98] | 0                         |
|                      | SA fixed effects                         | 6       | 4272         | Risk Ratio (M-H, Fixed, 95% CI)  | 1.20 [0.95, 1.51] | 0                         |
|                      | SA low summary RoB                       | 1       | 689          | Risk Ratio (M-H, Random, 95% CI) | 0.33 [0.01, 7.99] | -                         |
|                      | SA compliance                            | 4       | 3961         | Risk Ratio (M-H, Random, 95% CI) | 1.17 [0.80, 1.70] | 35                        |
|                      | SA n>100                                 | 6       | 4272         | Risk Ratio (M-H, Random, 95% CI) | 1.21 [0.96, 1.53] | 0                         |
|                      | Main                                     | 4       | 3321         | Risk Ratio (M-H, Random, 95% CI) | 0.97 [0.51, 1.85] | 52                        |
| Cancer deaths        | SA fixed effects                         | 4       | 3321         | Risk Ratio (M-H, Fixed, 95% CI)  | 1.12 [0.77, 1.64] | 52                        |
|                      | SA low summary RoB                       | 0       | 0            | Risk Ratio (M-H, Random, 95% CI) | Not estimable     | -                         |
|                      | SA compliance                            | 3       | 3272         | Risk Ratio (M-H, Random, 95% CI) | 0.94 [0.33, 2.66] | 58                        |
|                      | SA n>100                                 | 3       | 3272         | Risk Ratio (M-H, Random, 95% CI) | 0.94 [0.33, 2.66] | 58                        |
|                      | Main                                     | 1       | 200          | Risk Ratio (M-H, Random, 95% CI) | 1.00 [0.14, 6.96] |                           |
| Breast cancer        | SA fixed effects                         | 1       | 200          | Risk Ratio (M-H, Fixed, 95% CI)  | 1.00 [0.14, 6.96] | -                         |
| diagnoses            | SA low summary RoB                       | 0       | 0            | Risk Ratio (M-H, Random, 95% CI) | Not estimable     | -                         |
|                      | SA compliance                            | 0       | 0            | Risk Ratio (M-H, Random, 95% CI) | Not estimable     | -                         |
|                      | SA n>100                                 | 1       | 200          | Risk Ratio (M-H, Random, 95% CI) | 1.00 [0.14, 6.96] | _                         |
| Breast cancer deaths | Main                                     | 0       | 0            | Risk Ratio (M-H, Random, 95% CI) | Not estimable     |                           |
|                      |                                          |         |              |                                  |                   |                           |

|                                          | Main               | 1 | 2033 | Risk Ratio (M-H, Random, 95% CI)        | 2.24 [0.69, 7.26] | - |
|------------------------------------------|--------------------|---|------|-----------------------------------------|-------------------|---|
| Prostate cancer                          | SA fixed effects   | 1 | 2033 | Risk Ratio (M-H, Fixed, 95% CI)         | 2.24 [0.69, 7.26] | - |
| diagnoses                                | SA low summary RoB | 0 | 0    | Risk Ratio (M-H, Random, 95% CI)        | Not estimable     | - |
|                                          | SA compliance      | 1 | 2033 | Risk Ratio (M-H, Random, 95% CI)        | 2.24 [0.69, 7.26] | - |
|                                          | SA n>100           | 1 | 2033 | Risk Ratio (M-H, Random, 95% CI)        | 2.24 [0.69, 7.26] | - |
|                                          |                    |   |      |                                         |                   |   |
| Prostate cancer deaths                   |                    | 0 | 0    | Risk Ratio (M-H, Random, 95% CI)        | Not estimable     | - |
| Dichotomous<br>markers of cancer<br>risk |                    | 0 |      | Mean Difference (IV, Random, 95%<br>CI) | Not estimable     | - |
| Continuous markers<br>cancer risk        | Breast density     | 0 | 0    | Mean Difference (IV, Random, 95%<br>CI) | Not estimable     | - |
|                                          | PSA                | 0 |      | Mean Difference (IV, Random, 95%<br>CI) | Not estimable     | - |

| Outcome         | Sensitivity Analysis (SA) or<br>Subgroup | Studies | Participants | Statistical Method                   | Effect Estimate   | <b>I</b> <sup>2</sup> , % |
|-----------------|------------------------------------------|---------|--------------|--------------------------------------|-------------------|---------------------------|
| Quality of life |                                          | 0       | 0            | Mean Difference (IV, Random, 95% CI) | Not estimable     | -                         |
| Adiposity       | Weight, kg                               | 1       | 177          | Mean Difference (IV, Random, 95% CI) | Not estimable     | -                         |
|                 | BMI, kg/m <sup>2</sup>                   | 0       | 0            | Mean Difference (IV, Random, 95% CI) | Not estimable     | -                         |
| Side effects    |                                          | 0       | 0            | Risk Ratio (M-H, Random, 95% CI)     | Not estimable     | -                         |
| Drop outs       |                                          | 2       | 311          | Risk Ratio (M-H, Random, 95% CI)     | 0.70 [0.40, 1.22] | 0                         |

# Supplementary Table 8. High vs low omega-6 (secondary outcomes)

## Supplementary Table 9. GRADE table: summary of findings of effects of omega-6 fats on cancers

### High compared to low omega 6 for cancer outcomes

Patient or population: adults, Setting: community, Intervention: Higher omega-6 intake, Comparison: low omega 6 intake

|                           | Anticipated                                 | Anticipated absolute effects <sup>-</sup> (95% Cl) |                             | № of participants | Certainty of the     |                                                                                                               |  |
|---------------------------|---------------------------------------------|----------------------------------------------------|-----------------------------|-------------------|----------------------|---------------------------------------------------------------------------------------------------------------|--|
| Outcomes                  | Risk with low omega 6<br>(primary outcomes) | Risk with High                                     | Relative effect<br>(95% CI) | (studies)         | evidence<br>(GRADE)  | Comments                                                                                                      |  |
| Cancer diagnoses          | 56 per 1,000                                | 68 per 1,000<br>(54 to 86)                         | RR 1.21<br>(0.96 to 1.53)   | 4272<br>(6 RCTs)  | ⊕⊖⊖⊖<br>VERY LOW a,b | The effect of increasing omega-6 on cancer diagnosis is unclear as the evidence is of very low quality.       |  |
| Cancer deaths             | 26 per 1,000                                | 25 per 1,000<br>(13 to 48)                         | RR 0.97<br>(0.51 to 1.85)   | 3321<br>(4 RCTs)  | €<br>VERY LOW c,d,e  | The effect of omega-6 on cancer deaths is unclear as the evidence is of very low quality.                     |  |
| Breast cancer diagnoses   | 20 per 1,000                                | 20 per 1,000<br>(3 to 139)                         | RR 1.00<br>(0.14 to 6.96)   | 200<br>(1 RCT)    | €<br>VERY LOW c.f.g  | The effect of omega-6 on breast cancer diagnoses is unclear as the evidence is of very low quality.           |  |
| Breast cancer deaths      | not pooled                                  | not pooled                                         | not pooled                  | (0 RCTs)          | -                    | We found no trials for this comparison                                                                        |  |
| Prostate cancer diagnosis | 4 per 1,000                                 | 9 per 1,000<br>(3 to 29)                           | RR 2.24<br>(0.69 to 7.26)   | 2033<br>(1 RCT)   | €<br>VERY LOW c,e,f  | The effect of omega-6 on risk of prostate cancer diagnosis is unclear as the evidence is of very low quality. |  |
| Prostate cancer death     | 0 per 1,000                                 | 0 per 1,000<br>(0 to 0)                            | not estimable               | (0 RCTs)          | -                    | We found no trials assessing this effect.                                                                     |  |

\*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% Cl). Cl: Confidence interval; RR: Risk ratio; OR: Odds ratio; MD: Mean difference

GRADE Working Group grades of evidence

High certainty: We are very confident that the true effect lies close to that of the estimate of the effect

Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different

Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect

Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

#### Explanations

a. Risk of bias: limiting analysis to trials at low summary risk of bias moves effect from harm to benefit (in the single remaining trial). Downgraded twice.

b. Imprecision: 95% CI includes harm and also no effect. Downgraded once.

c. Risk of bias: None of the included trials were at low summary risk of bias. Downgraded once.

d. Inconsistency: I2 was >50% but less than 60%. Downgraded once.

e. Imprecision: 95% CI includes both benefits and harms. Downgraded once.

f. Indirectness: Only one trial assessed this outcome. Downgraded once.

g. Imprecision: 95% includes both important benefits and harms. Downgraded twice.

| Outcome   | Sensitivity Analysis (SA) or<br>Subgroup | Studies | Participants | Statistical Method               | Effect Estimate   | <b>I</b> <sup>2</sup> , % | p-<br>value* |
|-----------|------------------------------------------|---------|--------------|----------------------------------|-------------------|---------------------------|--------------|
|           | Main                                     | 8       | 9428         | Risk Ratio (M-H, Random, 95% CI) | 1.19 [0.99, 1.42] | 0                         | -            |
| Cancer    | SA fixed effects                         | 8       | 9428         | Risk Ratio (M-H, Fixed, 95% CI)  | 1.18 [0.98, 1.41] | 0                         | -            |
| diagnoses | SA low summary risk of bias              | 3       | 3262         | Risk Ratio (M-H, Random, 95% CI) | 1.08 [0.78, 1.51] | 0                         | -            |
|           | SA by compliance                         | 6       | 4230         | Risk Ratio (M-H, Random, 95% CI) | 1.20 [0.94, 1.54] | 5                         | -            |
|           | SA n >100                                | 8       | 9428         | Risk Ratio (M-H, Random, 95% CI) | 1.19 [0.99, 1.42] | 0                         | -            |
|           | Duration: 1 to <2 years                  | 2       | 825          | Risk Ratio (M-H, Random, 95% CI) | 0.41 [0.06, 2.79] | 0                         | 0.54         |
|           | Duration: 2 to <4 years                  | 2       | 2166         | Risk Ratio (M-H, Random, 95% CI) | 1.15 [0.86, 1.53] | 0                         |              |
|           | Duration: 4+ years                       | 4       | 6437         | Risk Ratio (M-H, Random, 95% CI) | 1.22 [0.89, 1.69] | 27                        |              |
|           | Dose of PUFA: <0.5%E                     | 0       | 0            | Risk Ratio (M-H, Random, 95% CI) | Not estimable     | -                         | 0.89         |
|           | Dose of PUFA: 0.5 to <1.0%E              | 1       | 136          | Risk Ratio (M-H, Random, 95% CI) | 0.47 [0.04, 5.08] | -                         |              |
|           | Dose of PUFA: 1.0 to <2.0%E              | 1       | 2437         | Risk Ratio (M-H, Random, 95% CI) | 1.12 [0.80, 1.56] | -                         |              |
|           | Dose of PUFA: 2.0 to <5.0%E              | 2       | 2166         | Risk Ratio (M-H, Random, 95% CI) | 1.15 [0.86, 1.53] | 0                         |              |
|           | Dose of PUFA: ≥5.0%E                     | 3       | 1928         | Risk Ratio (M-H, Random, 95% CI) | 0.80 [0.24, 2.64] | 52                        |              |
|           | Dose of PUFA: unclear                    | 1       | 2761         | Risk Ratio (M-H, Random, 95% CI) | 1.44 [0.57, 3.63] | -                         |              |
|           | PUFA replacing MUFA                      | 1       | 2761         | Risk Ratio (M-H, Random, 95% CI) | 1.44 [0.57, 3.63] | -                         | 0.50         |
|           | PUFA replacing mixed fats                | 3       | 3115         | Risk Ratio (M-H, Random, 95% CI) | 0.81 [0.35, 1.85] | 29                        |              |
|           | PUFA replacing SFA                       | 1       | 846          | Risk Ratio (M-H, Random, 95% CI) | 1.49 [1.01, 2.20] | -                         |              |
|           | PUFA replacing CHO                       | 3       | 2706         | Risk Ratio (M-H, Random, 95% CI) | 1.13 [0.83, 1.53] | 0                         |              |
|           | Low risk - usual population              | 6       | 6858         | Risk Ratio (M-H, Random, 95% CI) | 1.21 [0.93, 1.56] | 7                         | 0.80         |
|           | Moderate risk - CA risk factors          | 0       | 0            | Risk Ratio (M-H, Random, 95% CI) | Not estimable     | -                         |              |
|           | High risk - previous cancer              | 2       | 2570         | Risk Ratio (M-H, Random, 95% CI) | 1.14 [0.84, 1.56] | 0                         |              |
|           | Mean age <50 years                       | 1       | 689          | Risk Ratio (M-H, Random, 95% CI) | 0.33 [0.01, 7.99] | -                         | 0.27         |
|           | Mean age 50- <65                         | 5       | 5132         | Risk Ratio (M-H, Random, 95% CI) | 1.10 [0.89, 1.36] | 0                         |              |
|           | Mean age 65+                             | 2       | 3607         | Risk Ratio (M-H, Random, 95% CI) | 1.48 [1.04, 2.12] | 0                         |              |

Supplementary Table 10. High vs low total PUFA (primary outcomes)

| 3030 | ed 3 3030 Risk Ratio (M-H, Random, 95% CI) 1.2        | 28 [0.71, 2.30]    | 0  | 0.92   |
|------|-------------------------------------------------------|--------------------|----|--------|
| 3961 | 4 3961 Risk Ratio (M-H, Random, 95% CI) 1.1           | 7 [0.80, 1.70]     | 35 |        |
| 2437 | 1 2437 Risk Ratio (M-H, Random, 95% CI) 1.1           | 2 [0.80, 1.56]     | -  |        |
| 3408 | 4 3408 Risk Ratio (M-H, Random, 95% CI) 1             | 10 [0.48, 2.49]    | 37 | -      |
| 3408 |                                                       | 27 [0.81, 1.99]    |    | -      |
| 136  | sk of bias 1 136 Risk Ratio (M-H, Random, 95% CI) 1.8 | 89 [0.18,<br>0.31] | -  | -      |
| 3408 | 4 3408 Risk Ratio (M-H, Random, 95% CI) 1.1           | 0 [0.48, 2.49]     | 37 | -      |
| 3408 | 4 3408 Risk Ratio (M-H, Random, 95% CI) 1.1           | 0 [0.48, 2.49]     | 37 |        |
| 5198 | 2 5198 Risk Ratio (M-H, Random, 95% CI) 1.1           | 1 [0.71, 1.73]     | 0  | -      |
| 5198 |                                                       | 1 [0.71, 1.73]     |    | -      |
| 2437 |                                                       | 03 [0.62, 1.71]    | -  | -      |
| 0    | 0 0 Risk Ratio (M-H, Random, 95% CI) No               | ot estimable       | -  | -      |
| 5198 | 2 5198 Risk Ratio (M-H, Random, 95% CI) 1.1           | 1 [0.71, 1.73]     | 0  | -      |
| 0    | 0     0     Risk Ratio (M-H, Random, 95% CI)     No   | ot estimable       | -  | -      |
| 2879 | 2 2879 Risk Ratio (M-H, Random, 95% CI) 1.6           | 64 [0.80, 3.36]    | 0  |        |
| 2879 |                                                       | L / J              | 0  |        |
| 0    |                                                       | ot estimable       | -  |        |
|      |                                                       |                    | 0  | <br> - |
| 2879 |                                                       | L / ]              |    | -      |
|      | 2                                                     |                    |    |        |

| Prostate cancer deaths                   | Main           | 0 | 0 | Risk Ratio (M-H, Random, 95% CI)        | Not estimable | - | - |
|------------------------------------------|----------------|---|---|-----------------------------------------|---------------|---|---|
|                                          |                |   |   |                                         |               |   |   |
| Dichotomous<br>markers of<br>cancer risk |                | 0 | 0 | Risk Ratio (M-H, Random, 95% CI)        | Not estimable | - | - |
|                                          |                |   |   |                                         |               |   |   |
| Continuous                               | Breast density | 0 |   | Mean Difference (IV, Random, 95%<br>CI) | Not estimable | - | - |
| measures of cancer risk                  | PSA            | 0 |   | Mean Difference (IV, Random, 95%<br>CI) | Not estimable | - | - |

Supplementary Table 11. High vs low total PUFA (secondary outcomes)

| Outcome            | Sensitivity Analysis (SA) or<br>Subgroup | Studies | Participants | Statistical Method                   | Effect Estimate    | <b>I</b> <sup>2</sup> , % |
|--------------------|------------------------------------------|---------|--------------|--------------------------------------|--------------------|---------------------------|
| Quality of<br>life | Main                                     | 0       | 0            | Mean Difference (IV, Random, 95% CI) | Not estimable      | -                         |
|                    |                                          |         |              |                                      |                    |                           |
| Adiposity          | Weight, kg                               | 2       | 3800         | Mean Difference (IV, Random, 95% CI) | 0.37 [-0.05, 0.78] | 0                         |
|                    | BMI, $kg/m^2$                            | 1       | 320          | Mean Difference (IV, Random, 95% CI) | 0.01 [-0.30, 0.31] | 0                         |
|                    | Waist circumference, cm                  | 1       | 331          | Mean Difference (IV, Random, 95% CI) | 0.31 [-0.80, 1.43] | 0                         |
|                    |                                          |         |              |                                      |                    |                           |
| Side effects       | Drop outs due to side effects            | 0       | 0            | Risk Ratio (M-H, Random, 95% CI)     | Not estimable      | -                         |
|                    | Bleeding                                 | 0       | 0            | Risk Ratio (M-H, Random, 95% CI)     | Not estimable      | -                         |
| Drop outs          |                                          | 0       | 0            | Odds Ratio (M-H, Fixed, 95% CI)      | Not estimable      | -                         |

## Supplementary Table 12. GRADE table: summary of findings of effects of total PUFA on cancers

#### High compared to low total PUFA for cancers

Patient or population: adults, Setting: community, Intervention: Higher total PUFA, Comparison: low total PUFA

|                           | Anticipated abs                             | Anticipated absolute effects <sup>-</sup> (95% CI) |                             | № of participants | Certainty of the     |                                                                                                                                |  |
|---------------------------|---------------------------------------------|----------------------------------------------------|-----------------------------|-------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------|--|
| Outcomes                  | Risk with low total PUFA (primary outcomes) | Risk with High                                     | Relative effect<br>(95% CI) | (studies)         | evidence<br>(GRADE)  | Comments                                                                                                                       |  |
| Cancer diagnoses          | 41 per 1,000                                | 49 per 1,000<br>(41 to 58)                         | RR 1.19<br>(0.99 to 1.42)   | 9428<br>(8 RCTs)  | €<br>LOW a,b,c       | Increasing total PUFA may increase risk of diagnosis of any cancer                                                             |  |
| Cancer deaths             | 19 per 1,000                                | 21 per 1,000<br>(9 to 47)                          | RR 1.10<br>(0.48 to 2.49)   | 3408<br>(4 RCTs)  | ⊕⊕⊖⊖<br>LOW ₫        | Increasing total PUFA may increase the risk of cancer death.                                                                   |  |
| Breast cancer diagnoses   | 13 per 1,000                                | 14 per 1,000<br>(9 to 23)                          | RR 1.11<br>(0.71 to 1.73)   | 5198<br>(2 RCTs)  | ⊕⊖⊖⊖<br>VERY LOW e,f | The effect of increasing total PUFA on risk of breast cancer diagnos<br>is unclear as the evidence is of very low quality.     |  |
| Breast cancer deaths      | not pooled                                  | not pooled                                         | not pooled                  | (0 RCTs)          | -                    | We found no trials assessing effects of total PUFA on breast cance death.                                                      |  |
| Prostate cancer diagnoses | 8 per 1,000                                 | 14 per 1,000<br>(7 to 28)                          | RR 1.64<br>(0.80 to 3.36)   | 2879<br>(2 RCTs)  |                      | The effect of increasing total PUFA on risk of prostate cancer<br>diagnosis is unclear as the evidence is of very low quality. |  |
| Prostate cancer deaths    | not pooled                                  | not pooled                                         | not pooled                  | (0 RCTs)          | -                    | We found no trials assessing this outcome.                                                                                     |  |

\*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI). CI: Confidence interval; RR: Risk ratio; MD: Mean difference

GRADE Working Group grades of evidence

High certainty: We are very confident that the true effect lies close to that of the estimate of the effect

Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different

Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect

Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

#### Explanations

a. Risk of bias: Limiting to the 3 trials at low summary risk of bias moved the RR into "no effect" (RR 1.08). Downgraded once.

b. Imprecision: 95% CI includes no effect as well as harm. Downgraded once.

c. Publication bias: funnel plot suggests that if missing small studies were added into the meta-analysis it would increase RR. Not downgraded.

d. Imprecision: 95% CI includes important benefit as well as harm. Downgraded twice.

e. Risk of bias: Limiting to the single trial at low summary risk of bias moved the RR into "no effect" (RR 1.03). Downgraded once.

f. Imprecision: 95% CI includes important benefits and harms. Downgraded twice.

g. Risk of bias: no included trial was at low summary risk of bias. Downgraded once.

# References

1. Burr ML, Ashfield-Watt PA, Dunstan FD, Fehily AM, Breay P, Ashton T, et al. Lack of benefit of dietary advice to men with angina: results of a controlled trial. Eur J Clin Nutr. 2003;57(2):193-200.

2. Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2018;11:CD003177. DOI: 10.1002/14651858.CD003177.pub4

3. Abdelhamid AS, Martin N, Bridges C, Brainard JS, Wang X, Brown TJ, et al. Polyunsaturated fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2018;11:CD012345. DOI: 10.1002/14651858.CD012345.pub3

4. Hooper L, Al-Khudairy L, Abdelhamid AS, Rees K, Brainard JS, Brown TJ, et al. Omega-6 fats for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2018;11:CD011094. DOI: 10.1002/14651858.CD011094.pub4

5. Brouwer IA, Geleijnse JM, Klaasen VM, Smit LA, Giltay EJ, de Goede J, et al. Effect of alpha linolenic acid supplementation on serum prostate specific antigen (PSA): results from the alpha omega trial. PLoS ONE. 2013;8(12):e81519-e.

6. Giltay EJ, Geleijnse JM, Heijboer AC, de Goede J, Oude Griep LM, Blankenstein MA, et al. No effects of n-3 fatty acid supplementation on serum total testosterone levels in older men: the Alpha Omega Trial. Int J Androl. 2012;35(5):680-7.

7. Kromhout D. Alpha-Omega Trial Research Plan <u>https://www.alphaomegacohort.org/trial/2008</u> [

8. Kromhout D, Giltay EJ, Geleijnse JM, Alpha Omega Trial Group. n-3 fatty acids and cardiovascular events after myocardial infarction. N Engl J Med. 2010;363(21):2015-26.

9. Bonds DE, Harrington M, Worrall BB, Bertoni AG, Eaton CB, Writing Group for the Areds Research Group, et al. Effect of long-chain omega-3 fatty acids and lutein + zeaxanthin supplements on cardiovascular outcomes: results of the Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial. JAMA Intern Med. 2014;174(5):763-71.

10. Age-Related Eye Disease S. Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: the Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial. JAMA. 2013;309(19):2005-15.

11. AREDS Research Group, Chew EY, Clemons T, SanGiovanni JP, Danis R, Domalpally A, et al. The Age-Related Eye Disease Study 2 (AREDS2): study design and baseline characteristics (AREDS2 report number 1). Ophthalmology. 2012;119(11):2282-9.

12. ASCEND Study Collaborative Group. Effects of n–3 Fatty Acid Supplements in Diabetes Mellitus. N Engl J Med. 2018;379(16):1540-50. 10.1056/NEJMoa1804989

13. Bowman L, Aung T, Haynes R, Armitage J. ASCEND: Design and baseline characteristics of a large randomised trial in diabetes. Diabetes. 2012;61:A556-A7.

14. Berson EL, Rosner B, Sandberg MA, Weigel-DiFranco C, Moser A, Brockhurst RJ, et al. Clinical trial of docosahexaenoic acid in patients with retinitis pigmentosa receiving vitamin A treatment. Arch Ophthalmol. 2004;122(9):1297-305.

15. Berson EL, Rosner B, Sandberg MA, Weigel-DiFranco C, Moser A, Brockhurst RJ, et al. Further evaluation of docosahexaenoic acid in patients with retinitis pigmentosa receiving vitamin A treatment: subgroup analyses. Arch Ophthalmol. 2004;122(9):1306-14.

16. Black HS, Herd JA, Goldberg LH, Wolf-Je J, Thornby JI, Rosen T, et al. Effect of a low-fat diet on the incidence of actinic keratosis. N Engl J Med. 1994;330(18):1272-5.

17. Black HS, Thornby JI, Wolf-Je J, Goldberg LH, Herd JA, Rosen T, et al. Evidence that a low-fat diet reduces the occurrence of non-melanoma skin cancer. Int J Cancer. 1995;62(2):165-9.

18. Burr ML, Fehily AM, Gilbert JF, Rogers S, Holliday RM, Sweetnam PM, et al. Effects of changes in fat, fish, and fibre intakes on death and myocardial reinfarction: diet and reinfarction trial (DART). Lancet. 1989;2(8666):757-61.

19. Burr ML, Fehily AM, Rogers S, Welsby E, King S, Sandham S. Diet and reinfarction trial (DART): design, recruitment, and compliance. Eur Heart J. 1989;10(6):558-67.

20. Fehily AM, Vaughan-Williams E, Shiels K, Williams AH, Horner M, Bingham G, et al. The effect of dietary advice on nutrient intakes: Evidence from the diet and reinfarction trial (DART). J Hum Nutr Diet. 1989;2(4):225-35.

21. Einvik G, Ekeberg O, Lavik JG, Ellingsen I, Klemsdal TO, Hjerkinn EM. The influence of long-term awareness of hyperlipidemia and of 3 years of dietary counseling on depression, anxiety, and quality of life. J Psychosom Res. 2010;68(6):567-72.

22. Einvik G, Klemsdal TO, Sandvik L, Hjerkinn EM. A randomized clinical trial on n-3 polyunsaturated fatty acids supplementation and all-cause mortality in elderly men at high cardiovascular risk. Eur J Cardiovasc Prev Rehabil. 2010;17(5):588-92.

23. Sanyal AJ, Abdelmalek MF, Suzuki A, Cummings OW, Chojkier M, Group E. No significant effects of ethyl-eicosapentanoic acid on histologic features of nonalcoholic steatohepatitis in a phase 2 trial. Gastroenterology. 2014;147(2):377-84.

24. Feagan BG, Sandborn WJ, Mittmann U, Bar-Meir S, D'Haens G, Bradette M, et al. Omega-3 free fatty acids for the maintenance of remission in Crohn disease: the EPIC Randomized Controlled Trials. JAMA. 2008;299(14):1690-7.

25. Hill CL, March LM, Aitken D, Lester SE, Battersby R, Hynes K, et al. Fish oil in knee osteoarthritis: a randomised clinical trial of low dose versus high dose. Ann Rheum Dis. 2016;75(1):23-9.

26. Gissi-Hf Investigators, Tavazzi L, Maggioni AP, Marchioli R, Barlera S, Franzosi MG, et al. Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372(9645):1223-30.

27. Tavazzi L, Tognoni G, Franzosi MG, Latini R, Maggioni AP, Marchioli R, et al. Rationale and design of the GISSI heart failure trial: a large trial to assess the effects of n-3 polyunsaturated fatty acids and rosuvastatin in symptomatic congestive heart failure. Eur J Heart Fail. 2004;6(5):635-41.

28. Gissi-Prevenzione Investigators. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Lancet. 1999;354:447-55.

Keen H, Payan J, Allawi J, Walker J, Jamal GA, Weir AI, et al. Treatment of diabetic neuropathy with gamma-linolenic acid. The gamma-Linolenic Acid Multicenter Trial Group. Diabetes Care. 1993;16(1):8-15.
 Sacks FM, Stone PH, Gibson CM, Silverman DI, Rosner B, Pasternak RC. Controlled trial of fish oil for

regression of human coronary atherosclerosis. HARP Research Group. J Am Coll Cardiol. 1995;25(7):1492-8.
31. Higashihara E, Itomura M, Terachi T, Matsuda T, Kawakita M, Kameyama S, et al. Effects of eicosapentaenoic acid on biochemical failure after radical prostatectomy for prostate cancer. In Vivo. 2010;24(4):561-5.

32. Huang YC, Jessup JM, Forse RA, Flickner S, Pleskow D, Anastopoulos HT, et al. N-3 fatty acids decrease colonic epithelial cell proliferation in high-risk bowel mucosa. Lipids. 1996;31:S313-S7.

33. Yokoyama M, Origasa H, Matsuzaki M, Matsuzawa Y, Saito Y, Ishikawa Y, et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet. 2007;369(9567):1090-8.

34. Ley SJ, Metcalf PA, Scragg RKR, Swinburn BA. Long-term effects of a reduced fat diet intervention on cardiovascular disease risk factors in individuals with glucose intolerance. Diabetes Research and Clinical Practice. 2004;63:103-12.

35. Swinburn BA, Metcalf PA, Ley SJ. Long-term (5-year) effects of a reduced-fat diet intervention in individuals with glucose intolerance. Diabetes Care. 2001;24(4):619-24.

36. Macsai MS. The role of omega-3 dietary supplementation in blepharitis and meibomian gland dysfunction (an AOS thesis). Trans Am Ophthalmol Soc. 2008;106:336-56.

37. Mansel RE, Gateley CA, Harrison BJ, Melhuish J, Sheridan W, Pye JK, et al. Effects and tolerability of n-6 essential fatty acid supplementation in patients with recurrent breast cysts -- a randomized double-blind placebo-controlled trial. Journal of Nutritional Medicine. 1990;1(3):195-.

38. Mansel RE, Harrison BJ, Melhuish J, Sheridan W, Pye JK, Pritchard G, et al. A randomized trial of dietary intervention with essential fatty acids in patients with categorized cysts. Ann N Y Acad Sci. 1990;586:288-94.

39. Mansel RE, Pye JK, Hughes LE. Effects of essential fatty acids on cyclical mastalgia and noncyclical breat disorders. Omega-6 Essential Fatty Acids: Pathophysiology and Roles in Clinical Medicine. 1990:557-66.

40. McIllmurray MB, Turkie W. Controlled trial of gamma linolenic acid in Duke's C colorectal cancer. British Medical Journal (Clinical research ed). 1987;294(6582):1260 (correction BMJ 987;295(6596):475)-1260 (correction BMJ 987;295(6596):475).

41. Mita T, Watada H, Ogihara T, Nomiyama T, Ogawa O, Kinoshita J, et al. Eicosapentaenoic acid reduces the progression of carotid intima-media thickness in patients with type 2 diabetes. Atherosclerosis. 2007;191(1):162-7.

42. MRC. Controlled trial of soya-bean oil in myocardial infarction. Lancet. 1968;2(570):693-9.

43. Ederer F, Leren P, Turpeinen O, Frantz Id Jr. Cancer among men on cholesterol lowering diets: experience of five clinical trials. Lancet. 1971;2:203-6.

44. Heady JA. Are PUFA harmful? BMJ (Clinical Research Ed). 1974;1:115-6.

45. NDHS Research Group. The National Diet-Heart Study final report. Circulation. 1968;37(II):1-428.

46. Nilsen DW, Albrektsen G, Landmark K, Moen S, Aarsland T, Woie L. Effects of a high-dose concentrate of n-3 fatty acids or corn oil introduced early after an acute myocardial infarction on serum triacylglycerol and HDL cholesterol. Am J Clin Nutr. 2001;74(1):50-6.

47. Rauch B, Schiele R, Schneider S, Diller F, Victor N, Gohlke H, et al. OMEGA, a randomized, placebocontrolled trial to test the effect of highly purified omega-3 fatty acids on top of modern guideline-adjusted therapy after myocardial infarction. Circulation. 2010;122(21):2152-9.

48. Rauch B, Schiele R, Schneider S, Gohlke H, Diller F, Gottwik M, et al. Highly purified omega-3 fatty acids for secondary prevention of sudden cardiac death after myocardial infarction-aims and methods of the OMEGA-study. Cardiovascular Drugs Therapy. 2006;20(5):365-75.

49. Bordeleau L, Yakubovich N, Dagenais G, Rosenstock J, Ryden LE, Spinas G, et al. Cancer outcomes in patients with dysglycemia on basal insulin: results of the origin trial. Diabetes. 2013;62:A98.

50. Bordeleau L, Yakubovich N, Dagenais GR, Rosenstock J, Probstfield J, Chang Yu P, et al. The association of basal insulin glargine and/or n-3 fatty acids with incident cancers in patients with dysglycemia. Diabetes Care. 2014;37(5):1360-6.

51. Origin Trial Investigators, Bosch J, Gerstein HC, Dagenais GR, Diaz R, Dyal L, et al. n-3 fatty acids and cardiovascular outcomes in patients with dysglycemia. N Engl J Med. 2012;367(4):309-18.

52. Tatsuno I. Omega-3 polyunsaturated fatty acids and cardiovascular disease: an emphasis on omega-3-acid ethyl esters 90 for the treatment of hypertriglyceridemia. Expert Rev Cardiovasc Ther. 2014;12(11):1261-8.

53. Tatsuno I, Saito Y, Kudou K, Ootake J. Long-term safety and efficacy of TAK-085 in Japanese subjects with hypertriglyceridemia undergoing lifestyle modification: the omega-3 fatty acids randomized long-term (ORL) study. J Clin Lipidol. 2013;7(6):615-25.

54. Estruch R, Ros E, Salas-Salvadó J, Covas M, Corella D, Arós F et al. Retraction and republication: Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med 2013; 368:1279-90. N Engl J Med. 2018;378:25-.

55. Toledo E, Salas-Salvado J, Donat-Vargas C, Buil-Cosiales P, Estruch R, Ros E, et al. Mediterranean Diet and Invasive Breast Cancer Risk Among Women at High Cardiovascular Risk in the PREDIMED Trial: A Randomized Clinical Trial. JAMA Intern Med. 2015;175(11):1752-60.

56. Puri BK, Leavitt BR, Hayden MR, Ross CA, Rosenblatt A, Greenamyre JT, et al. Ethyl-EPA in Huntington disease: a double-blind, randomized, placebo-controlled trial. Neurology. 2005;65(2):286-92.

57. Raitt MH, Connor WE, Morris C, Kron J, Halperin B, Chugh SS, et al. Fish oil supplementation and risk of ventricular tachycardia and ventricular fibrillation in patients with implantable defibrillators: a randomized controlled trial. JAMA. 2005;293(23):2884-91.

58. Rischio, Prevenzione I. Efficacy of n-3 polyunsaturated fatty acids and feasibility of optimizing preventive strategies in patients at high cardiovascular risk: rationale, design and baseline characteristics of the Rischio and Prevenzione study, a large randomised trial in general practice. Trials. 2010;11:68.

59. Roncaglioni MC, Tombesi M, Avanzini F, Barlera S, Caimi V, Longoni P, et al. n-3 Fatty Acids in Patients with Multiple Cardiovascular Risk Factors. N Engl J Med. 2013;368(19):1800-8. 10.1056/NEJMoa1205409

60. Myrup B, Rossing P, Jensen T, Parving HH, Holmer G, Gram J, et al. Lack of effect of fish oil supplementation on coagulation and transcapillary escape rate of albumin in insulin-dependent diabetic patients with diabetic nephropathy. Scand J Clin Lab Invest. 2001;61(5):349-56.

61. Rossing P, Hansen BV, Nielsen FS, Myrup B, Holmer G, Parving HH. Fish oil in diabetic nephropathy. Diabetes Care. 1996;19(11):1214-9.

62. Sandhu N, Schetter SE, Liao J, Hartman TJ, Richie JP, McGinley J, et al. Influence of Obesity on Breast Density Reduction by Omega-3 Fatty Acids: Evidence from a Randomized Clinical Trial. Cancer Prev Res. 2016;9(4):275-82.

63. Signori C, DuBrock C, Richie JP, Prokopczyk B, Demers LM, Hamilton C, et al. Administration of omega-3 fatty acids and Raloxifene to women at high risk of breast cancer: interim feasibility and biomarkers analysis from a clinical trial. Eur J Clin Nutr. 2012;66(8):878-84.

64. Angerer P, Kothny W, Stork S, von Schacky C. Effect of dietary supplementation with omega-3 fatty acids on progression of atherosclerosis in carotid arteries. Cardiovascular Research. 2002;54(1):183-90.

65. von Schacky C, Angerer P, Kothny W, Theisen K, Mudra H. The effect of dietary omega-3 fatty acids on coronary atherosclerosis. A randomized, double-blind, placebo-controlled trial. Ann Intern Med. 1999;130(7):554-62.

66. von Schacky C, Baumann K, Angerer P. The effect of n-3 fatty acids on coronary atherosclerosis: results from SCIMO, an angiographic study, background and implications. Lipids. 2001;36 Suppl:S99-102.

67. Hull MA, Sprange K, Hepburn T, Tan W, Shafayat A, Rees CJ, et al. Eicosapentaenoic acid and aspirin, alone and in combination, for the prevention of colorectal adenomas (seAFOod Polyp Prevention trial): a multicentre, randomised, double-blind, placebo-controlled, 2 × 2 factorial trial. The Lancet. 2018;392(10164):2583-94. 10.1016/S0140-6736(18)31775-6

68. Simon MS, Heilbrun LK, Boomer A, Kresge C, Depper J, Kim PN, et al. A randomised trial of a low-fat dietary intervention in women at high risk for breast cancer. Nutr Cancer. 1997;27(2):136-42.

69. Brouwer IA, Geelen A, Katan MB. n-3 Fatty acids, cardiac arrhythmia and fatal coronary heart disease. Prog Lipid Res. 2006;45(4):357-67.

70. Brouwer IA, Katan MB, Schouten EG, Camm AJ, Hauer RNW, Wever EFD, et al. Rationale and design of a clinical trial on n-3 fatty acids and cardiac arrhythmia (SOFA). Ann Nutr Metab. 2001;45(Suppl 1):79-.

71. Brouwer IA, Katan MB, Zock PL. Effects of n-3 fatty acids on arrhythmic events and mortality in the SOFA implantable cardioverter defibrillator trial. Am J Clin Nutr. 2006;84(6):1554.

72. Brouwer IA, Zock PL, Camm AJ, Bocker D, Hauer RN, Wever EF, et al. Effect of fish oil on ventricular tachyarrhythmia and death in patients with implantable cardioverter defibrillators: the Study on Omega-3 Fatty Acids and Ventricular Arrhythmia (SOFA) randomized trial. JAMA. 2006;295(22):2613-9.

73. Andreeva VA, Latarche C, Hercberg S, Briancon S, Galan P, Kesse-Guyot E. B vitamin and/or n-3 fatty acid supplementation and health-related quality of life: ancillary findings from the SU.FOL.OM3 randomized trial. PLoS ONE. 2014;9(1):e84844.

74. Andreeva VA, Touvier M, Kesse-Guyot E, Julia C, Galan P, Hercberg S. B vitamin and/or omega-3 fatty acid supplementation and cancer: ancillary findings from the supplementation with folate, vitamins B6 and B12, and/or omega-3 fatty acids (SU.FOL.OM3) randomized trial. Arch Intern Med. 2012;172(7):540-7.

75. Galan P, Briancon S, Blacher J, Czernichow S, Hercberg S. The SU.FOL.OM3 Study: a secondary prevention trial testing the impact of supplementation with folate and B-vitamins and/or Omega-3 PUFA on fatal and non fatal cardiovascular events, design, methods and participants characteristics. Trials. 2008;9:35.

76. Galan P, de Bree A, Mennen L, Potier de Courcy G, Preziozi P, Bertrais S, et al. Background and rationale of the SU.FOL.OM3 study: double-blind randomized placebo-controlled secondary prevention trial to test the impact of supplementation with folate, vitamin B6 and B12 and/or omega-3 fatty acids on the prevention of recurrent ischemic events in subjects with atherosclerosis in the coronary or cerebral arteries. J Nutr Health Aging. 2003;7(6):428-35.

77. Galan P, Kesse-Guyot E, Czernichow S, Briancon S, Blacher J, Hercberg S. Effects of B vitamins and omega 3 fatty acids on cardiovascular diseases: A randomised placebo controlled trial. Br Med J. 2011;342(7787):36.

78. Touvier M, Kesse-Guyot E, Andreeva VA, Fezeu L, Charnaux N, Sutton A, et al. Modulation of the association between plasma intercellular adhesion molecule-1 and cancer risk by n-3 PUFA intake: a nested case-control study. Am J Clin Nutr. 2012;95(4):944-50.

79. Tuttle KR, Shuler LA, Packard DP, Milton JE, Daratha KB, Bibus DM, et al. Comparison of low-fat versus Mediterranean-style dietary intervention after first myocardial infarction (from The Heart Institute of Spokane Diet Intervention and Evaluation Trial). Am J Cardiol. 2008;101(11):1523-30.

80. Dayton S, Pearce ML, Hashimoto S, Dixon WJ, Tomayasu U. A controlled clinical trial of a diet high in unsaturated fat in preventing complications of atherosclerosis. Circulation. 1969;15(1, Suppl 2):II-1-63.
81. Pearce ML, Dayton S. Incidence of cancer in men on a diet high in polyunsaturated fat. Lancet. 1971;1(7697):464-7.

82. Manson JE, Cook NR, Lee IM, Christen W, Bassuk SS, Mora S, et al. Marine n–3 Fatty Acids and Prevention of Cardiovascular Disease and Cancer. N Engl J Med. 2018. 10.1056/NEJMoa1811403

83. Huey L, Bitok E, Kazzi N, Sirirat R, Haddad Tabrizi S, Ros E, et al. Dietary compliance of walnut or no walnut intake in a 1-year randomized intervention trial among free-living elderly in the Walnuts and Healthy Aging Study (WAHA). FASEB Journal2016. p. 1157.10-.10.

84. Ros E, Rajaram S, Sala-Vila A, Serra-Mir M, Valls-Pedret C, Cofan M, et al. Effect of a 1-year walnut supplementation on blood lipids among older individuals: Findings from the walnuts and healthy aging (WAHA) study. FASEB Journal. 2016;30(Supp 1):293-4.

85. Rajaram S, Valls-Pedret C, Cofan M, Sabate J, Serra-Mir M, Perez-Heras AM, et al. The Walnuts and Healthy Aging Study (WAHA): Protocol for a Nutritional Intervention Trial with Walnuts on Brain Aging. Front Aging Neurosci. 2016;8:333-.

86. Chlebowski RT, Blackburn GL, Thomson CA, Nixon DW, Shapiro A, Hoy MK, et al. Dietary fat reduction and breast cancer outcome: interim efficacy results from the women's intervention nutrition study. JNCI Journal of the National Cancer Institute. 2006;98(24):1767-76.

87. Chlebowski RT, Rose DP, Buzzard IM, Blackburn GL, York M, Insull W, et al. Dietary fat reduction in adjuvant breast cancer therapy: current rationale and feasibility issues. Adjuvant The Cancer Journal. 1990;6:357-63.

88. Rose DP, Connolly JM, Chlebowski RT, Buzzard IM, Wynder EL. The effects of a low-fat dietary intervention and tamoxifen adjuvant therapy on the serum estrogen and sex hormone-binding globulin concentrations of postmenopausal breast cancer patients. Breast Cancer Res Treat. 1993;27(3):253-62.